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Abstract

This study aimed to explore the effect of data augmentation techniques to improve the perfor-
mance of deep learning models on data sets that contain more features than samples. The data
set used as an example for this case study was Raman spectroscopic data. Deep learning models
have a reputation of requiring large amounts of data and the sample size of data used in this study
was small. As a way to study the effect of increasing sample size, three different augmentation
techniques based on the principles of linear combinations, partial least squares and extended mul-
tiplicative scatter correction were developed and used to increase the sample size. The effect of
these three augmentation techniques was studied for a convolutional neural network by training
and evaluating the neural network using augmented data. The evaluation of the augmentation
methods was based on the performance of the convolutional neural network. In order to study the
behavior of the convolutional neural network, the performance of the neural network was compared
to partial least squares regression model. Furthermore, learning curves where also used to analyze
the performance of the neural network based on the sample size. The augmentation methods were
used to artificially increase the sample size and the learning curves were used to see if the increase
in sample size lead to improvement. The results of this study showed that using augmentation
techniques to increase sample size does improve the performance of model.



1 Introduction

Spectroscopy is a technique that is used to study the structure of atoms and molecules. When light is
passed through these structures using a light producing source, they absorb or emit light at hundreds
of different wavelengths. This behavior makes it possible to investigate the composition and properties
of any substance. Furthermore, spectroscopy is also useful as an analytical method because it can
be used to find the constituents in a substance having unknown chemical composition. A typical
spectroscopy experiment involves passing light from a source through any sample of interest which
results in absorption or emission of light. In case of emission, the sample under study emits light at a
different wavelength than the source. However, during absorption, the sample absorbs energy from the
light source. A spectrometer is an instrument that is used to analyse the wavelength of electromagnetic
radiations by measuring and separating the spectral components based on their physical and chemical
properties. Spectrometer works by taking in light from a source, splitting it into spectral components,
digitize the light signal as a function of wavelength and then finally displaying it through a computer.
There are many different applications and types of spectroscopy. Vibrational spectroscopy is one type
of spectroscopy where the emitted light is affected by molecular vibrations in the molecular structure,
manifesting itself as peaks or overtones at various wavelengths in the spectra. Such type of spectra
contains a lot of information about atoms and molecules of a sample. Raman spectroscopy is a sub
type of vibrational spectroscopy that has been widely used in chemical identification in recent decade
[1].

Spectroscopy have shown promising results in experimental studies however the chemical analysis
method is long and time consuming [1]. Artificial intelligence is a famous principle that is now being
used in many scientific fields to speed up processes. Machine learning(ML) is a subset of artificial
intelligence and it provides a set of algorithms that has the ability to learn and perform specific
tasks without providing explicit set of instructions. Machine learning techniques have been applied
to multiple chemical problems in recent years and have shown promise in the advancement of several
areas of chemistry [2]. Spectroscopic data is high dimensional and possibly highly inter correlated
which means that it has high number of variables and there are correlations among the variables [3].
For spectroscopic data, the feature space can become so large that that the number of samples are left
small. When the variables of the data are highly inter correlated then it is said that the data suffers
from multicollinearity [3]. Multicollinearity is a problem since it undermines the statistical significance
of a variable. This possess an issue for linear machine learning algorithms as they require input data
features to be independent [4]. Furthermore, simple linear models do not work well when the number
of features are greater than the number of samples. Multi variate analysis methods can solve these
problems by extracting new orthogonal latent features that are the combination of existing features.
Partial least squares regression(PLSR) is a type of ML multivariate analysis technique and is used in
this study to analyze Raman spectroscopy data.

Another challenge while working with spectroscopic data is that it usually requires preprocessing.
Preprocessing is defined as the manipulation of data in search of achieving enhanced performance
and it is often a critical step during data modelling. All types and sub types of spectroscopy are
used to study the chemical information of samples by analyzing the absorbance and emitted spectrum
and this interpretation may be difficult if the data suffers from any kind of noise or effects. Raw
spectra may be distorted due to high degree of noise and other effects like scattering and instrumental
effects [5]. Scattering effects are usually occur to the state of the sample while instrumental effects
arise due to measurement conditions that can include the condition and quality of the instrument.
Raman spectra also suffers from scattering effects like fluorescence’s baseline variation and shot noise
[6] [1]. Baseline variations that are a part of the Raman spectrum are uncorrelated to the sample
compositions and it should be removed after acquiring the spectrum to minimize adverse effects [1].
Extended multiplicative scatter correction(EMSC) is a well known method for preprocessing spectral
data and this method is also adapted for the baseline variations experienced in Raman spectroscopic
data due to fluorescence effects.

Machine learning methods require feature engineering or preprocessing and that is why it may not
be optimal to use to these methods when the number of features are large. Deep learning is a sub
field of machine learning and in recent years it is the state of the art technology that is being used in
image analysis and many other domains as well [7]. Deep learning models have proved to be a a very
powerful tool because of its ability to handle large amounts of data. The principle of using multiple
hidden layers for modelling has surpassed the traditional techniques especially in pattern recognition.



There are different kinds of deep neural networks and one of the most popular kind is the convolution
neural network (CNN) which has become a prominent tool for computer vision and text analysis [8].
CNNs are designed to extract features from an input signal with different levels of abstraction. The
combinations of different types of layers in a CNN extracts features(patterns) hierarchically. Extracted
features are then used to make predictions. CNNs are end to end trainable system and they offer an
alternative to a pipeline in which each part is trained independently or crafted manually. CNNs have
recently become popular due their large scale success in image recognition problems and because to
its widespread success, researchers are motivated to used it for spectral data as well [8]. However,
CNN is a data hungry model and this does not comply well with the frequent possibility of spectral
data having limited samples. To account for limited sample sizes, deep learning community uses
a technique called data augmentation. Data augmentation is a method for data set extension. The
principle of data augmentation is to apply transformation techniques on existing original data to derive
new artificially created observations called augmented observations. These observations can then be
used for training models and providing them with sufficient data. However, there have not been a lot
of research performed on the augmentation methods for spectral data.

Motivated by the increasing popularity of CNNs and the limited research present for the augmen-
tation methods for spectral data, three augmentation methods for generating artificial data samples
for spectroscopic data were developed and tested using a CNN model in this study. The three augmen-
tation methods were named as linear augmentation, PLSR augmentation and EMSC augmentation.
All three methods were based on different principles. The linear augmentation method works by
linearly combining samples from the existing data. PLSR augmentation generates new samples by
reconstructing the original data matrix with some deviations using the scores and loadings matrix of a
PLSR model fitted on original data whereas the EMSC augmentation works on the principle of reverse
preprocessing and generates new samples by transforming EMSC preprocessed data back to raw data
with slight variations. The validity of the three augmentation methods was tested by training and
evaluating the performance of CNN model on data generated using the different augmentation meth-
ods. Some of the recent studies have reported that the CNN model performs better on spectral data
compared to linear models such as PLSR [9]. Therefore, in order to evaluate the performance and the
effectiveness of using a CNN model, the results of CNN model were compared to the results of PLSR
model that was trained and evaluated on the same data as CNN. Furthermore, to study the effect
of increasing sample size by augmenting data, the technique of learning curves was used. Learning
curves can act as a diagnostic tool for machine learning models. The data sample size was increased
gradually and the learning curves were used to observe the performance of models with the increasing
sample size. In addition the learning curves were also used to compare the performance of CNN on
artificially generated data and raw data to observe if the augmentation methods lead to improvement
in performance.

2 Theory and background

The theory background needed to understand the concepts and experiments used in this study spans
multiple domains, and this section lays the foundation for topics and methods used later in the study.

2.1 Raman Spectroscopy

Raman spectroscopy allows a highly sensitive structural interpretation and identification of trace
amounts of chemicals based on their unique vibrational fingerprints. It is considered as an inexpensive
technique which is used for the analysis of biological samples[14, 15]. It measures the frequency shift
of inelastic scattered light from a sample when the photon from the incident light strikes a molecule
and produces a scattered photon [10, 11]. The technique is excellent for obtaining biotechnological
samples as they can simultaneously measure broad chemical constituents present in the bio process by
the detection of various functional groups [12, 16]. Generally, Raman measures the shift in energy of
the outgoing photon. The difference in wavelength of the scattered light is dependent on the chemical
composition of the molecules that are responsible for scattering. Magnitude of change in molecular
polarization is proportional to the Raman scattering. Alteration in the molecular polarizability is the
result of the molecular vibrations that displace the constituent atoms from equilibrium according to
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Figure 1: Two types of Raman spectrometers. The upper half of the figure shows the flowchart for
collecting spectra using Dispersive Raman spectroscopy while the lower half shows the flowchart for
FT Raman spectroscopy

the Raman selection rule which states that vibrations are only active if the molecular dipole moment
changes during the vibration [13].

A Raman spectrometer is composed of a sample holder, detector, light source and monochromator.
There are different types of spectrometer that use different methods for collecting spectrum sam-
ples. For example, Dispersive Raman and Fourier transform(FT) Raman are two types of Raman
spectroscopy that use different spectrometers. Dispersive Raman uses a diffraction spectrometer to
disperse the light scattered by the samples. Light is then detected by a multi channel detector and the
wavelengths of light are the detected Raman spectra. FT Raman uses an interferometer that creates
a path difference between the source and signal beams to create an interference pattern. From that
interferogram, the Raman spectra are reconstructed. Difference between both types of Raman spec-
troscopy is visualized in Figure 1. The figure shows flowcharts to demonstrate the difference between
Dispersive and FT Raman spectroscopy. The choice of technique is based on the sample that is under
analysis as both types of spectroscopy show unique characteristics [17].

2.2 Linear Regression

Regression is a statistical method that is used to determine the mathematical relationship between
a dependent variable and a series of one or more independent variables. Linear regression is a basic
type of regression that estimates the relationship between an dependent variable(y) and a independent
variable (x) by using a linear model. The linear regression model is defined as:

y=bo+bix+e (1)

In equation 1, by is the bias which predicts the value of y when x is 0 and e represents the error.
b; is the regression coefficient and this defines the expectation of change in y with the change in x.
Linear regression tries to find the best fit for the data by computing the regression coefficients(bg, b1)
that minimizes the loss function. Loss function is a measure of of difference between the predicted and
actual value of the response(dependent variable). An example of loss function is the mean squared
error( MSE) which is the average of the squared difference between the predicted and actual value of
a variable. The mathematical representation of MSE is provided in equation 3 where y; is the actual
value and y; is the predicted value. The measure of how well the linear model fits a certain data set



Figure 2: Graphical representation of linear regression model for a single dependent (y-axis) and
independent variable (x-axis). The red dots represent the data points of the independent variable and
the blue line represents a linear regression line. The regression line is adjusted to find best fit for data
by minimizing the loss function

can be visualized using a regression line. Regression line is a graphical representation of the regression
equation that represents the relations between the dependent and independent variables. Coeflicients
bo and b; in equation 1 represent the intercept and the slope respectively of the regression line. Linear
regression tries to find the best fit for the regression line using a method called ordinary least squares.
The ordinary least squares method tries to find the best set of regression coefficients for the model by
minimizing the sum of squared distances between the actual and predicted values of the response. A
linear regression model for a single dependent and independent variable is visualized in Figure 2.

L — v )2
MSE = M (2)
n
The linear regression model can be extended to take in to account multiple independent variables
instead of just one. This type of regression is called multiple linear regression and this model is defined
as:

y:b0+b1x1+b2x2...+bnxn+e (3)

where bg. , are regression coefficients and x; ., are independent variables.

A limitation of linear models is that they only work when the predictors(independent variables) are
independent because if there are correlations among the predictors then the linear equation will not
be meaningful anymore. When the independent variables are highly correlated to each other then this
phenomena is called multicollinearity. It is problem because it undermines the statistical significance
of a variable. A multivariate technique that is used when the data suffers from multicollinearity is
partial least squares.

2.3 Partial Least Squares Regression (PLSR)

Partial Least Squares(PLS) method which is also sometimes referred as projection to latent structures[18]
was first developed in the late 1960s to the 1980s by a Swedish economist Herman Wold[19]. However,
it became popular in chemometrics due to the works of Herman’s son Svante [20]. PLS relate the in-
formation present in the dependent variables(targets) and independent variables(predictors). It solves
the problem of multicollinearity by calculating regression coefficients that maximizes the correlation
between target and the predictors and explain as much covariance between them. Partial least squares
regression(PLSR) makes prediction by extracting a set orthogonal factors with predictive power known



as PLS components. Each PLS component is uncorrelated with each other. The PLS components are
numbered in order of the maximum correlation with the target.

In addition to multicollinearity, an additional scenario when the linear models fail is when the
number of predictors(p) are greater than the number of observations(n). In this case, there is no
longer a unique least squares coefficient estimate and as a result the model fits the training data
very well but fails to generalize for the new observations of the future. A solution to overcome the
problem of multicollinearity and too many predictor variables is feature selection which is defined as
the process of reducing the number of predictors to improve model performance. However, feature
selection is not efficient when there are hundreds of predictors. Another approach of to tackle the
defined problems is to use multivariate methods like PCA[21] and PLSR. These methods work by
extracting latent variables that are the result of linearly combining existing variables in the data set.
These latent variables are orthogonal to each other which solves the issue of collinearity. Furthermore,
the extracted latent variables are then used in place of the original variables and as a result the
number of variables are reduced significantly. PCA is a unsupervised method that extracts the latent
variables based on the variation present in the data(X). With PCA, there is no guarantee that the
variables chosen are relevant to the target because the chosen components are obtained to explain the
variance in X. PLSR is a supervised method that works in a similar way to PCA but instead it finds
latent variables that are also relevant to the target(Y). Instead of just the X, PLSR performs the
decomposition of both X and Y simultaneously. The decomposition is done with a constraint such
that the selected component explains as much covariance between X and Y. The decomposition is
similar to PCA but it is also followed by a regression step in which the decomposition of X is used to
predict Y.

The predictors(X) are decomposed as:

X =TPT +E (4)

Similarly Y is decomposed as

Y=TQT+F (5)

In Equation[4] and Equation[5], P and Q are called the loading matrix and T is called the scores
matrix. E and F are the error terms.

Each sample in a particular data set appears as a point in a space defined by position along an
axis. After applying PLSR, the samples will now appear as point in a space defined by its position
in the newly discovered PLS component axis. The new coordinates are the scores returned by PLSR
method. A matrix that contains scores of all samples is called scores matrix. Although the scores
show the location of the samples in the newly discovered PLS component axis but it does not show the
position of that axis. In order to reconstruct the original data matrix from the PLS components, both
the location of the sample relative to the PLS component axis and the location of the PLS component
axis relative to the original axis must be known. The location of the PLS component axis relative to
the original axis is defined by loadings.

2.4 Artificial Neural Network

Artificial neural networks(ANN) are models that belong to the domain of deep learning. ANNs use the
processing of the brain as a base to develop algorithms that can be used to model complex patterns and
predictions problems. Although these networks are a very simplistic representation of the workings of
a human brain but still they possess the ability to solve complex real world problems.

2.4.1 History

The human brain works in extraordinary and complex ways. With the progression in knowledge and
the evolution of science it was only a matter of time when human beings will try to mimic the work-
ing processes of the human brain. The task became possible with the advancements in the modern
electronics. Human brain consists of a network of interconnected neurons that are used to process
information coming in and out of the brain. The architecture and processes in the human brain are
extremely complex and are not easy to model. Artificial Neural Networks (ANNs) are computational
models that are inspired by the human brain. It is important to note that the architecture of an ANN
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Figure 3: A visual representation of the Threshold Logic Unit. Xj 23 represents the input, wi 23
represents the weights, > represents the weighted sum of the inputs and the last symbol represents
the unit step function that decides the output value

is massive simplification of the biological brain. Similar to the human brain, ANNs also consists of an
interconnected network of processing units that learn from the information coming into them called
neurons. Neurons are core processing units of the neural network. The first step in the invention of
ANNs dates back to 1943 when Warren McCullock, a neurophysiologist, and Walter Pitts, a mathe-
matician, published a research paper on how the neurons work[22]. They also modelled a simple neural
network using electrical circuits. After their research, a book was published by Donald Hebb in 1949,
named The organization of behavior [23]. This book focused on a concept stating that the biological
neural pathways that are used by the neurons for communication are strengthened each time they are
used. The concept was named Hebbian Learning in honor of Donald Hebb and it is an important
concept used for the training of ANNs.

2.4.2 The Perceptron

Frank Rosenblatt, a neuro biologist of Cornell came up with a neural network model in 1958 called
Perceptron [24]. Rosenblatt called the perceptron a ”hypothetical nervous system”, indicating that the
perceptron was designed to represent some properties of intelligent biological systems. The architecture
of the perceptron consists of a single neuron and it is based on threshold logic unit which was proposed
by Warren McCulloch and Walter Pitts [24]. A visual representation of a threshold logic unit is provided
in Figure 3. The figure shows the inputs coming into the perceptron model and the weights assigned to
each input represented by X and w respectively. Weights are model parameters that are used to control
the strength of the inputs coming into the model. Training of the perceptron involves the adjustments
of weights that are assigned to each input iteratively. Initially, the weights are randomly generated
and then they are continuously modified such that they gradually start reflecting the mathematical
relation between the input and the output. Weight modification is done by calculating the error. The
error is the difference between the predicted and actual output. The weights are updated as follows:

Wit = Wk +aly — ¥)x (6)

where k represents the iteration, wi and w1 represents the weight during the current iteration
and the updated new weight for the next iteration respectively. « is the learning rate coefficient and
it defines the rate at which the weights will be updated. y and y are the actual and predicted outputs
respectively. x is the input coming coming into the neuron.

The perceptron works by computing a output by calculating weighted sum of the input data and
adding a bias(intercept of the fitted line of model). After computing the output, a step function is
applied which decides the output. The step function could be a simple Heaviside step function shown
in Equation 7. Development of the perceptron is the foundation and an important building block in
the development of ANNs.

0 ifz<O

Heaviside(x) = {1 Fo> 0 (7)
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Figure 4: ReLu activation function and ELU activation function with ELU constant 1. ReLu(left)
maps all negative inputs to zero while ELU(right) smooths the output curve towards the constant
value

2.4.3 Deep Neural Network

Multiple perceptron stacked together forms a multi-layer neural network. Each layers in the multi-
layered neural network have the ability to contain multiple neurons that are interconnected with each
other and organized in a hierarchical(layered) manner. These neurons are responsible for passing a
signal to other neurons based on the received input. There are different levels layers present in a
multi-layer neural network. The different types of layers include the input layer, output layer and the
hidden layers. Input layer is used to take in the input and the output layer provides the output that
depends on the nature of problem. For example if the task is a regression task then the output of
the network will be a single value. Hidden layers are present between the input layer and the output
layer and are used to perform most the computations done by neural network. Neural networks with
two or more hidden layers are called a deep neural networks(DNN). A visual representation of a DNN
is provided in Figure 5. The DNN provided in the figure contains a input layer, 2 hidden layers and
a output layer. Each neuron in the DNN is connected to the neurons of the next layer via channels.
Weights are assigned to each of these channels. Data comes into the network through neurons of the
input layer which computes a weighted sum based on the input and passes it to the neuron of the
hidden layers. The same process is repeated in the next layers until an output is provided via the
last output layer. The output computed by the neurons that is transferred to the neuron in the next
layer is done by an activation function. Output of the activation function is based on the calculated
weighted sum of the input. An activation is a non linear transformation calculated weighted sum of
the input for each neuron. There are several different types of activation functions. Two types of the
activation functions that are used in this study are Relu and ELU.

ReLu stands for rectified linear unit and it is defined as f(x) = max(0,x). It is easy to compute
and the output of the ReLu activation function ranges between 0 to positive infinity. This means
that ReLu produces absolute values for positive inputs and 0 for negative inputs. ELU stands for
exponential linear unit and it is an alternative to ReLU. ELU behaves similar to ReLLU for positive
inputs however, it differs for negative inputs. Instead of mapping all the negative inputs to zero, ELU
smooths the output curve towards a constant. Higher value of the constant results in negative values
with higher coefficients. The ELU activation function defined as:

z if 2z>0
R(z) = {g(ez —-1) ifz<0 ®)

where ¢ represents the ELU constant. A visual representation of both ReLLu and ELU is provided
in Figure 4. The figure shows the difference between both activation functions for handling negative
inputs.

Multi-layer neural network can also be called a feed forward network as the data in these networks
flows in a sequence starting from the input layer and reaching the output layer. Details on the training
process of the DNN can be found in section[2.5]
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Figure 5: a deep neural network with 2 hidden layers

2.5 Training an Artificial Neural Network

The training of an ANN is an iterative process and an iteration of training process of the neural
network is called an epoch. Each epoch is divided into two steps.

e The first step is the forward pass where the input is traversed through all the neurons from the
first to the last layer, an output is calculated and a prediction is made.

e The second step is the backward pass. In the backward pass, the error is calculated and propa-
gated backwards from the last layer to the first layers and weights are updated.

The number of weights in a deep neural network is much larger compared to a linear machine
learning model. If the training data contains a large number of samples as well then the training
process can become computationally and memory expensive. Therefore, a subset of the training data
set is used for each training iteration of an ANN to make the training process efficient. The subset of
data used for training is called batch or mini-batch.

Error in prediction is a useful measure for updating the weights because the update in weights is
proportional to the minimization of a loss function. The loss function is used along with an algorithm
called optimization algorithm. The target of the optimization algorithm is to find the local minima
of the loss function. An optimization algorithms defines the direction and magnitude of the weight
updates for a neural network. There are several types of optimization function and the most basic
type is the Gradient Descent. The gradient is the generalization of the derivative to the loss functions.
Gradient descent algorithm is a first order optimization algorithm. The first order means that the
gradient descent tries to reach the local minima by calculating the first order derivative of the loss
function. Mathematical representation of the Gradient descent algorithm is shown in equation 9. If
the loss function is considered as a bowl with a base and two high ascended ends the the calculated
gradient is a vector which gives the direction in which loss function has the steepest ascent. Therefore,
to reach the local minima(point of steepest descent) the gradient is subtracted from the current weight
resulting the weight update to be in the direction of the local minima.

w 7w—a% (Y,y) (9)

where w is the weight, « is the learning rate and %L(y,y) is the first order derivative of loss
function. y and ¥ represent the actual and predicted values of the response respectively. Gradient
descent algorithm is simple and easy to implement however it is not the best choice when the size of
the data set is large. Gradient descent algorithm updates the weights after calculating the gradient on
the whole data set. So, if the data set is large than it may take a lot of time to converge to the local
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minima. Also, it will not be memory efficient if it calculates the gradient of the whole data set when
the size of data set is large. A variant of the gradient descent algorithm is the stochastic gradient
descent. It can cope with the mentioned problem for the gradient descent by frequently updating the
weights after each training sample. Therefore, for stochastic gradient descent, equation 9 becomes:

0 .
wi=w—az Ly, §)x (10)

where x; represents the training sample.

Adaptive Momentum Estimation(Adam) [25] is another type of optimization function that works by
computing adaptive learning rates for each weight. Adam works in a different way then the stochastic
gradient descent. The learning rate remains same for all updates of the stochastic gradient descent
algorithm however the Adam optimizer computes adaptive learning rates for different weights from
estimates of first and second moments of the gradients. Adam is derived by combining advantages of
two extensions of stochastic gradient descent i.e. Adaptive Gradient Algorithm (AdaGrad) and Root
Mean Square Propagation (RMSProp). Adagrad and RMSProp both maintains per parameter learning
rate that improves performance of the model. In addition to maintaining a per parameter learning rate
RMSProp also adapts the learning rate based on the average of recent magnitudes of the gradients for
the weight. Adam combines the properties of both Adagrad and RMSProp and in addition to adapting
the learning rate based on the average of gradient updates it also makes use of the variance of the
gradients. Specifically, the algorithm calculates an exponential moving average of the gradient and
the squared gradient, and the parameters 81 and 2 control the decay rates of these moving averages.
The averages of the past and past squared gradients mt and vt are computed as:

my = fyme_1 + (1 — f1)g (11)

ve = Bavi_1 + (1 — B2)g? (12)

mt and vt are estimates of the mean and the second moment variance of the gradients respectively.
gt represents the gradient at a time t for a specific weight.

2.5.1 Back-propagation Algorithm

An important algorithm that is used for training neural networks is the back-propagation algorithm.
Back-propagation is used to calculate the gradient for each weight in the network model during the
backward pass of an epoch. The gradient is then used by an optimization algorithm to update the
model weights. The process of updating weights and finding the local minima for a loss function for
a linear model is simple as they do not have high dimensional feature space for the weights. In this
case, the landscape can be imagined as a big bowl visualized in figure 6. However, the process of
updating the weight and to find the local minima for a multi layer neural network is challenging as
it has multiple interconnected neurons which result in a large number of weights that are in a high
dimensional feature space. The high dimensional feature space of the deep neural networks contain
multiple local minimums for the loss function. Therefore, the target in this case is to find the global
minimum of the loss function. However, the abstract high dimensional feature space of neural network
can have hundreds and thousands of dimensions and there is no way to know that a founded local
minima is the global minimum or even close to global minimum. Therefore, the best the network can
do is to find the best local minima it can find.

Back-propagation is an efficient algorithm that works on the principle of chain rule and it is one of
the most widely used algorithm when training an ANN [26]. The chain rule states that the derivative of
f(g(x))) is f'(g(x))g’(x). In simple words, it helps to differentiate composite functions To understand
the working of a back-propagation algorithm, consider a multi layer neural network that went through
the feed forward propagation and computed an output. After computing the output, the error is
propagated back from right to left i.e. from the output layer to the hidden layers. Following this
step, the error of the hidden layer is calculated. After the calculation of errors for the output and the
hidden layers, partial derivative of the loss function for each layer is computed. The loss function is
applied to every node in each layer and the calculated loss function is accumulated for each neuron in
each layer. Imagine a deep neural network with a large number of layers, then in order to calculate
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Figure 6: Representation of Gradient Descent

the weight of a neuron present the i*" layer the gradient of all neurons present in the i + 1...n layers
need to be calculated and calculating the derivative with that many dimensions would be highly
expensive and inefficient. Based on the principle of chain rule, the back-propagation algorithm provides
a computationally efficient approach for computing the partial derivative of loss function for deep
hidden layers of the network. Finally, the weights of the layers are updated based on the computed
loss function.

2.6 Techniques used for training ANNs

Designing a neural network can be a challenging task. There is no general principle for this task as
it solely depends upon the problem in question. In addition to defining the number of layers, number
of neurons in a layer, activation function and optimization algorithm, there are other techniques as
well that can be applied in the network to build more robust and generalized model. Some of the
techniques are elaborated below:

2.6.1 Regularization

It is a difficult task to build a neural network that generalizes well on new and unseen data. A network
cannot learn a problem when it has too little capacity for that problem. Similarly, the network can
learn a problem too well when it is too complex. When the network is unable to learn a problem
because of not enough capacity then the concept is called underfitting and when it learns the problem
too well then the concept is called overfitting. In both cases, the network is not generalized and will
not perform well on new unseen data.

The problem of underfitting can be addressed by increasing the capacity of a network. Increasing the
capacity means adding more neurons to a layer or even adding more hidden layer. However, overfitting
is an issue that is not straightforward to solve and it can requires applying some additional techniques
to the network. Regularization methods can be used in a neural network to prevent overfitting.
Regularization works by introducing a penalty term to the model which ensures small weights. The
penalty term is added to the loss function which effects the updates of the weight values. L1 and L2
regularization are two types of regularization that ensures small weights by applying penalty term.
Another type of regularization technique that is specifically designed for ANNs is the dropout.

Dropout Dropout[27] is another technique that is used in ANNs to prevent over fitting. The idea of
dropouts was presented by Srivastava et al. in 2012 by excluding subsets of features in each iteration
of the training process[27]. Preceding the concept of dropouts, regularization techniques were used
to tackle the overfitting issue in neural networks. However, the dropout technique has proven to be
a better choice when training a neural network. In their research paper in 2013, Wager et al. tested
that dropout regularization was better than L2-regularization for learning weights for features|28].
Dropout is a method where a set of random neurons are dropped during the training process of a
neural network. The visual illustration of dropouts is provided in figure 7 which shows two neurons in
the fully connected(FC) layer dropped out. The neurons are dropped arbitrarily during each epoch.
The dropped neurons do not contribute in the training process at all. This means they do not produce

15



Dropout

Input layer FC layer Output layer

Figure 7: Dropout illustration: two random neurons are dropped out(indicated with light colors) from
the training process in the FC layer. The dropout neurons will not be used for training.

activation during the forward pass and no weight update is applied during the backward pass. When
the randomly selected set of neurons are dropped out, the remaining neurons will have to make the
predictions which will require them to fill in for the other neurons as well. This is believed to bring
about various independent internal representations being learned by the network and makes the model
more robust. Dropouts are only applied in the training process. Dropout requires indicating dropout
rates when it is implemented in a network. The indicated dropout rate is the probability of dropping
a neuron.

2.6.2 Batch Normalization

Neural networks can have tens of layers. Training neural networks with a large number of layers is a
challenging process. A reason for this challenge is that the distributions of the inputs to deeper layers
may change after every mini-batch. The weights of a neural network are updated layer by layer from
the last output layer to input layer. The update of a layer’s weights is based on the assumption that
all the weights in the prior layers are fixed. In practice, all the layers are updated simultaneously[29].
Since all layers are updated simultaneously, the change in weights will result in the output distribution
of the prior layers to change. Based on the assumption that the state of prior layers do not change
while updating a particular layer, the update procedure is chasing a moving target. Now, in order
for a model to train on a given data, it will require lower learning rates so that the state of layers do
not change significantly during every epoch. This makes it hard for a model to train on saturating
non linearities and it also makes the training process slow[29]. The change in the distributions of the
neurons in the layers can be referred as internal covariate shift[30].

Batch normalization is a method that is used in deep neural networks. This methods standardizes
the outputs of layers before it is passed as an input to the next layer. Standardizing the output means
that the distributions of the outputs of a layer will not change during the weight update procedure.
So, using this method is a step towards achieving fixed distributions that solves the problems caused
by the internal covariate shift[30]. This method will stabilizes the training process and will make it
efficient and optimized[29)].

2.6.3 Reduce Learning Rate on Plateau

Reduce learning rate on plateau(RDLR) is a technique that reduces the learning rate of the optimizer
when the model performance does not improve for a specified number of epoch in the training process.
When the learning rate is high, the weight update is done in big steps. This can be beneficial in first
few epochs. But, if the learning rate is large throughout the training process, the big steps in updating
the weights can have a negative effect. If the model starts going in to the wrong direction and the
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update in weights is large then it can become hard for the model to recover and this can result in
inconsistency in performance. However, if the learning rate is small then the updates in weights is
small and the model may be able to recover even if it starts following the wrong direction. So, it may
be beneficial to use RDLR during training.

2.6.4 Early Stopping

Early stopping(ES) is a type of callback function that stops the training process if the performance of
the model does not improve. If the model is not getting better then there is no need to train the model
any longer and the training should be stopped to save time and resources. Early stopping terminates
the training process if the performance of the model is not improved after a specified number of epoch.

2.7 Convolutional Neural Network

The type of ANNs depends upon the architecture of the connections between the neurons and the
depth of layers. Different arrangements of inter-connected neurons and the number of layers yield
different network architectural options. For example a type of ANN where each neuron of one layers
is connected to all the neurons of the subsequent layer is referred to as a fully connected feed forward
networks. There are various other architectural types of ANNs but for this study we will focus on the
convolutional neural network also referred to as CNN.

Fully connected neural networks can learn global patterns from the input space because of their
architecture in which each neuron is connected to all neurons in the subsequent layer. This architecture
allows the model to learn complex patterns as a whole in the input but it fails to provide the ability
to detect and learn local correlations that can occur in the input space at any random position [31],
[35]. Theoretically, a fully connected network could learn to identify a local pattern in any position of
the input space by simply adding enough neurons. However, this would likely lead to multiple neurons
sharing the same weight patterns but located at various locations in the network, so they could detect
the pattern at different locations in the input space [31]. This can in some cases leads to an inefficient
network architecture, which increases computational cost and requires large data sets that includes
samples of the pattern in all possible locations.

In 1981, a new layered hierarchical architecture of ANN was created by Kunihiko Fukushima which
he called the neocognitron [32]. In this architecture each neuron is connected to the neurons of a small
patch in the previous layer[32]. The receptive field of each layers is increased by gradually decreasing
the size of spatial dimension in the deeper layers so eventually the neurons of the final layers of the
neocognitron have a receptive field that covers the whole input space. It is responsive to any specific
pattern in the input space irrespective of its position or size[32]. Neocognitron is recognized as the
origin of deep CNNss.

Convolutions are a building block of a CNN. The term convolution refers to a mathematical com-
bination of two functions to produce a third function. Basically, convolution means to merge two sets
of information. In terms of machine learning, convolution is the application of a filter to an input
to get an output. If the filter is applied repeatedly over the input then the map of the outputs is
called the feature map of the inputs. This feature map indicates the locations and strengths of an
input feature. The process of convolution is graphically illustrated in Figure[8]. A combination of
convolutional layers is used in the neocognitron for feature extraction and down sampling(reducing
the size and dimensionality of the input) of the input. This architectural design later paved the way
for convolutional neural networks [31]. The CNNs of today are also based on the basic architecture of
the neocognitron. CNNs are widely used in the field of image classification, image segmentation and
computer vision.

A convolutional neural network can consist of different types of layers. A convolutional layer is a
type of layer specifically used in CNNs that that works on the principle of convolutions. A convolutional
layer consists of a filter that is applied to the whole input space with a stride. Stride defines the step
size of the filter. For example if the stride is one then the filter moves one step over the input space.
Similarly, if the stride in two then the filter moves two steps. This striding technique is useful when
the desire is to reduce the output dimension of the layer as a larger stride results in smaller output
dimensions. The size and dimension of the filter of a convolution layer can vary and depends upon
the type of convolutional network. For example the dimension of filter for a 1D convolutional network
is also one because the input space has one dimension. In case of a 1D convolution, a filter of size 2
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Figure 8: Illustration of convolution process

means that each pixel in the output is created by looking at a grid of 2 pixels. By reusing the same
weights for the filters kernel in a sliding window across the input, a filter produces a feature map of a
particular feature or pattern that it has specialized in[33].

Another type of layer that is used in CNNs is the pooling layer. The pooling layers are used for the
reduction of size of output dimension[34]. The pooling has no trainable weights and its purpose is to
only reduce the size of input space going into the next layer. The pooling layer results in a significant
reduction of parameters because the pooling in these layers is performed with a stride equal to its size.
There are different types of pooling layers. For example max pooling return the highest value of the
region it passes over . A max pooling layer of size 2 will reduce the number of features by a factor of
4 and will also tend to keep the strongest activation from the input coming into it. Reducing the size
of the input space may be beneficial to focus on the important parts of the input but sometimes the
requirement may be to preserve the dimensions as it is. For example if the network is deep then too
much dimension reduction may result in the network not capturing any meaningful features. Padding
is a technique used in CNNs to prevent shrinkage of the output dimensions. It works by adding zeros
at the edges of the input feature space. There are different types of padding that are used for different
purpose. For example same padding is used with stride one and it evenly adds zeros to the edges of
the feature space which results in no dimension reduction of the output space. A simple 1 dimensional
CNN is visualized in Figure[9)].

Fully Connected(FC) layers in a neural networks are those layers where all the neurons from one
layer are connected to every neuron of the next layer. FC layers are often used in CNNs along with
convolutional layers. The output from the convolutional layers represents high-level features in the
data. While that output could be flattened and connected to the output layer, adding a fully-connected
layer enables the learning non-linear combinations of these features. Essentially the convolutional
layers are providing a meaningful, low-dimensional, and somewhat invariant feature space, and the
fully-connected layer is learning a (possibly non-linear) function in that space. The difference between
a FC layer and a convolution layer can be visualized in Figure[10].

2.8 Preprocessing

Preprocessing is an important step when training ML models. Real world data is generally inconsistent,
noisy and even incomplete sometimes. Raw data is sometimes in such a condition that it becomes
impossible to use it for training ML models. Preprocessing is a technique that is used to transform
raw data into more understandable, useful and efficient format. Preprocessing includes steps like data
cleaning, data reduction and data transformation.

In vibrational spectroscopy, the measured spectra of a compound can be affected by numerous
factors other than the chemical components that are of interest. The differences in the spectra are
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Figure 10: Difference between a Fully connected(left) and 1D convolutional(right) ANN. The Fully
connected ANN consists of k neurons. The illustrated convolutional network contains f number of
filters and each filter includes ¢ weights. The white part part in the Fully connected network represents
the bias whereas the white part in the convolutional network represents zero padding. The image is
reprinted with permission from Helin, R, Indahl, UG, Tomic, O, Liland, KH. On the possible benefits
of deep learning for spectral preprocessing. Journal of Chemometrics. 2022; 36(2)
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caused by different factors such as noise and systematic errors like non linear instrument responses and
effects induce from undesired chemical and physical variations. This phenomena, in which the response
of a sample is affected by other factors cause unnecessary challenges during analysis. Preprocessing of
spectroscopic data is vital for correcting these unwanted effects.

The choice of the preprocessing method used influences the performance of the predictive model.
There are several popular preprocessing techniques for spectroscopic data like Savitzky—Golay filter-
ing, Standard normal variate. One technique for preprocessing spectroscopic data is the extended
multiplicative scatter correction (EMSC).

Extended Multiplicative scatter Correction (EMSC) : EMSC[37] has proved to be a reliable
method to correct for additive baseline, multiplicative scaling and interference effects. EMSC can also
be used for preprocessing Raman spectroscopy data as it is adapted to the baseline variations caused
due to the fluorescence effects.

EMSC is an extension model of the Multiplicative scatter correction(MSC)[36]. It is an adaptive
and efficient model based preprocessing method. The methods works by determining a least squares fit
of a single spectra against a few profile spectra. Since it is a model based preprocessing method, model
parameters are also saved and returned in addition to correcting the spectra with the desired model.
The returned model parameters can provide valuable information regarding the analyzed spectral
samples.

MSC was derived based on the Beer-Lambert Law law which states that an absorbance spectrum
is directly proportional to the effective optical path length. Here the optical path length can be taken
as the thickness of a compound. According to Beer-Lambert law the absorbance for a transparent
sample containing a single light absorbing chemical substance is given by:

A(¥) =k(¥)cb (13)

where A (¥) is the absorbance at wavenumbers v, k(¥) is the characteristic absorptivity of a com-
ponent at a wave number ¥, b is the optical path length and c is the concentration of light absorbing
chemical species in the sample. The variations in the spectra that are caused by optical path length
are generally referred to as multiplicative variations.

MSC extends the Beer-Lambert model through an additive effect resulting in the model:

A(¥) =a+X(¥)b+ e(¥) (14)

where a is an additive baseline constant, X(¥) is the mean spectrum (or another chosen reference)
and b is a multiplicative constant. Finally, e(¥) is the residual vector containing the interesting
chemical differences between the samples, i.e

e(\_f) =b. Z c;Ak; (V) (15)

where c; are concentrations of the species k; and Ak;(¥) are the specie’s profile deviations from a
mean profile or other reference.

For EMSC, equation 14 is extended with polynomial baseline profiles to handle more complex
baseline changes from sample to sample:

A(¥) =a+xb+d;(¥) +da(v2) + ... + dp (VD) + e(¥) (16)

where vi are polynomials of the wavenumbers with corresponding constants dj. Different EMSC
models can be derived from equation 16. The EMSC model where the polynomial in equation 14 is
extended up to the quadratic term is often referred to as the basic EMSC model. A further extension
of the basic EMSC model above quadratic terms is often denoted polynomial EMSC. The unknown
parameters are estimated using an ordinary or weighted least squares estimation, and the spectra are
corrected according to equation 17:

Acore(¥) = (A(¥) —a—d;(¥) — d2(v2) — ... — da(VR))/b (17)
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2.9 Model Evaluation

After training a machine learning model the performance of a model should be evaluated to interpret its
strength and weakness. Furthermore, the performance model should also be validated on independent
unseen data to determine its generalizability. This section provides details about the evaluation and
validation methods used in this study.

2.9.1 Evaluation Metrices

R squared(R2) and Root mean squared error(RMSE) are the two evaluation metrices used to evaluate
the performance of the models after training in this study. R2 also known as the coefficient of deter-
mination is a statistical measure for a regression model that tells the proportion of variance explained
in a dependent variable by an independent variable. In other words, R2 tells that how well the data
fits the regression model. The value of the R2 varies between 0 and 1 with 0 being the worst and 1
being the best value. It is important to note that R2 is not the measure of correctness of a model. R2
can be interpreted in terms of percentages, e.g a 0.6 value indicates that 60 percent of the data fit the
regression model. A higher value indicates a better fit. R2 can be calculated by:

R2—-1_ SSregression (18)
Sstotal
where SSegression i the sum of squared of regression error which is the sum of squared differences
between the actual and the predicted value. If y is the target and ¥ is the predicted target then
SSregression can be calculated as > (yi — ¥i)?. SStotal is the sum of squared of total error that is the
deviation of data points away from the mean value. It can calculated as ) ;(y; — y)2.

Root mean squared error(RMSE) is the modified version of MSE (defined in equation 2). RMSE
tells the average distance between the predicted values and the original data points. Higher value of
RMSE indicates large error and a lower value indicates less error. RMSE is calculated by taking the
square root of MSE:

>ilyi — )2

n

RMSE = (19)
where y; is the observed data point, y; is the predicted value and the n is the total number of
observation.

2.9.2 Validation

When the process of tuning and training a model is completed, the generalizability of the model should
be tested to interpret the performance on model on independent unseen data. This is called model
validation and in order to validate a model, it needs to be tested on unseen data. Based on the
validation results, statements about a model can be made i.e. if the model is overfitting, underfitting
or generalized. Two validation methods used in this study are provided below:

Train Test Split is a technique in which the data set is randomly splitted into subsets e.g train
and test. The idea here is that the train subset is used for training a model while the test subset is
kept aside during the training process. After training the test data acts as a independent unseen data
set and is used to evaluate the model performance. There can be different algorithms for splitting
data in to subsets, one of which is the Kennard stone algorithm. The algorithm extracts a subset of
data that provides uniform coverage over the data and includes samples on the boundary of the data
set. Kennard stone works by selecting two samples that have the largest geometric distance between
them. To select more samples, the algorithm then picks a sample that is farthest apart in terms of
separation distance from the select samples. Separation distance is the distance from a sample to its
closest sample. The process is repeated until the required number of samples are added to the set. For
this study, the kennard-stone package version 1.1.0 from python package index was used[40].

While building models, there is always a possibility of the data being limited and of that is the case
then the train test split technique is very likely to show high bias. This is because of the possibility
of the model missing information about the data that was not in the randomly selected training set.
Therefore, the train test approach is not always enough for validating the model. Another technique
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Figure 11: Kfolds cross validation

that is used for model validation is Cross Validation. This technique can be described as a re-sampling
procedure for validating models. It works by training a model on a portion of data and keeping a
portion aside from the training data. The portion of data that is kept aside is used for validation. This
process is repeated several times and until the model is trained and validated on multiple portions of
data. By performing cross validation, the generalizability of a model can be tested and one can get an
idea of how the model will behave on unseen data in the future.

Kfolds cross validation is a type of cross validation that works by dividing the data set into K
number of folds. Each fold represents a portion of the data. Kfolds cross validation works in three
steps:

e Split the data randomly into K number of folds. The value of K is specified.

e The model is trained on K — 1 folds and the K*® fold is used for validation. After training the
model is evaluated using a evaluation metric and the results are saved.

e Repeat until all the folds have served as the validation set. The scores that are recorded for each
repetition is averaged and the averaged scores are the performance metric for the model.

Kfolds cross validation is simple and it can result in models that are less biased. The value of K is
a parameter and is based on choice. The value of K should be based on the size of data. The steps of
K fold cross validation are visualized in figure[11].

3 Methods and Materials

This section defines the materials and methods that are used to carry out the experimentation is this
study.

3.1 Data set

The Raman spectroscopy data used in this study was the same data was used in a study to explore the
effects of of model based preprocessing on Raman spectroscopy [38]. The data contains the spectral
samples of milk and the variable that is used as a response is the amount of iodine. There are 2682
samples and 2979 variables in the data. The variables represented the Raman shift that ranged between
3000 - 1 em~!. Samples in the data set were based on 232 unique biological samples and multiple
replicates of the 232 unique samples were analyzed and recorded in the data set. Each observation in
the data set belonged to a group(232 in total) and the group was a reference to the original unique
biological sample. Figure 12 shows the first 500 observations of the spectra.

Mean Data Upon visualizing the raw spectral data, it was observed that the data shows some
unusual peaks that stand out and it is not according to the overall trend. These unusual peaks may
be caused by a few observations in the data. It might very likely be that these records were affected
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Figure 12: Data with indicated unusual peak

by some instrumental or atmospheric effects when they were recorded. An example can be visualized
in figure12 which shows an unusual trend marked by a red bounding box and arrow. Machine learning
models can catch these unusual trends and follow on them can diverge from the optimal path by
learning these unimportant details. Therefore, in order to avoid this, the 2682 observations in the data
set were grouped together based on the group number they belonged to and then averaged. This was
done for the response variable as well. This resulted in a data set of 232 observations that was used
for training models in this study. Averaged data is visualized in figure 13. The mean training data is
treated as raw data and it is also referred as raw data in the upcoming sections.

3.2 Specifications

All the experiments were performed on Orion and Kaggle notebooks. Orion is a High-Performance
Computing (HPC) cluster infrastructure owned by the Norwegian university of life science (NMBU).
Kaggle is a online platform that provides free resources for their members for solving data science
problems. The two main packages for building, training and evaluating models used were:

e Sklearn(scikit-learn) (0.23.2) [41]
e Tensorflow (2.4.1) [42]

3.3 Model Training Strategies

This section provides brief descriptions about the strategies and pre-training procedures that were
performed for training models used in this study.

3.3.1 Validation

The data set was splitted into an 80% 20% split of train and test data respectively. After splitting,
there were 185 samples in the train split and 47 samples in the test split. The train data was used for
training and tuning the models while the test data was kept hidden. After the training procedure, the
test data was used for evaluating the models. In order to compare results of different models, same
splits of the data set were used to train and evaluate the model.

Tensorflow and specifically GPUs follow the principle of parallelism. So, while using the GPU with
tensorflow, it is not possible to control the sequence of tasks and thus it is almost impossible to have
reproducible deterministic results. It is possible to restrict CNN to produce same deterministic results
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by not using GPUs but this results in a significant increase in training time. Therefore, training of
the CNN models was carried out using GPUs and 5 repeated experiments were executed for all CNN
models. The results of the 5 experiment repetition averaged and treated as the final model result and
it showed the robustness of the model.

3.3.2 Epochs

CNN models were trained on raw data for 1000 epochs. This number was chosen considering that two
training methods i.e reduce learning rate on plateau and early stopping were used while training the
models. Therefore, 1000 epochs should be enough for a model for convergence.

3.3.3 Batch Sizes

Three different batch sizes i.e. 8, 16 and 32 were used while selecting the benchmark model. These
numbers were chosen as possible optimal options considering the size of the train data split i.e. 185.
After the selection of the benchmark model, the batch size that resulted in the best scores was used
for further experimentation.

3.3.4 Standardization

Standardizing a data set involves re-scaling the distribution of values so that the mean of observed
values is 0 and the standard deviation is 1. The scale of the input and output used to the train the
models are important factor as the weights of the neural network are updated based on the estimates
of error on the training data set. Unscaled values of variables can results in slow and unstable learning
process. Furthermore, unscaled target variables can result in a exploding gradients that can result in
a in efficient model. Therefore the process of data standardization was performed on the input data
before training on the CNN in search of making the training process faster and to make a more efficient
and consistent model. The process of standardization was not performed for PLSR as it extracts its
own features and the data points are mapped on a different scale and coordinate system.

3.4 Benchmark Models

This section defines the experiments and protocols that were followed to determine the benchmark
models for the raw data set. These benchmarks models results will be used as benchmark scores for
all the models used in different experiments.
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3.4.1 PLSR model

Spectroscopic data sets contain large number of variables and fewer observations. Furthermore, spec-
troscopic data suffer from multicollinearity. By taking all these factors into account, PLSR was chosen
as a linear benchmark model since it has the ability to deal with these problems. PLSR transforms
the input data into subspace representation based on the responses which results in lower dimensional
representation of the data and significant decrease in the number of variables.

When using PLSR, it is important to choose the optimal number of PLS components as the
number can vary for different problems and data sets. The reason for varying number of optimal
PLS components is that, first of all, the total number of meaningful PLS components that can be
extracted for a particular data set can vary as the rank of the covariance/correlation matrix depends
on the number of samples and the number of features and both these number can vary for different
data sets. Secondly, each extracted PLS component explains a fraction of variation present in the
data. The optimal number of PLS components is when the components contains the desired fraction
of variation and adding more components does not add a significant amount of variation. However, if
the number of selected PLS components for training model are smaller than optimal then this can lead
to model underfitting as the model will not be able to learn enough variation in the data and if the
number is larger then this may result in a computationally in efficient model which adds little value.

Experiment Design The experiment design for choosing the best PLSR model for the data set
used in this study was divided into two steps i.e. Getting the best number of components and model
evaluation. Grid Search is a concept that is used to compare and choose the optimal hyper parameters
values while developing models. It works by looping through the predefined choice of parameters
and fitting models with each possible combination of parameter options on the data. In the end, the
results for each model are compared and the best set of parameters for the particular data set are
determined. Grid search algorithm was used to determine the optimal number of PLS components in
this experiment. A parameter list containing the possible values of number of PLS components was
set and passed to grid search algorithm to get the optimal number of PLS components for training
the PLSR model on raw data. The experiment was performed using the train split of the raw data
and the predefined choice parameters contained list of number of PLS components that ranged up to
30. A PLSR model with each choice of number of components was trained and evaluated. In order
to validate the results, K folds cross validation with 5 splits was used. At the end, the mean RMSE
values for all models trained using different number of PLS components were compared to determine
the best parameter value. Afterwards, a PLSR model using the determined optimal number of PLS
components as parameter was evaluated on the test data split that was kept hidden for the model
selection and training phases.

3.5 CNN Model

To choose an architecture for deep learning model is a challenging task. The architecture is problem
dependent and often found by hit and trial method [43]. The number of layers, number of neurons in
each layer, activation function and optimizer are all important factors when designing a deep learning
model. Each factor can significantly effect the performance of a model. In this study, the choice
of architecture was based on literature reviews and performing test experiments. A few different
architectures that were selected from different articles were tested on the data to come up with the
best model architecture. The model architectures that were tested are given below:

The first model architecture was taken from a research article that explored the benefits of deep
learning for preprocessing spectral data[43]. The architecture of the model was simple and it consisted
of a single convolutional layer followed by a batch normalization layer. After that there is a fully
connected dense layer with 32 neurons. A flatten layer is added before the dense layer which changes
the dimension of the 2D output from the convolutional and batch normalization layer to a 1D vector
so that it may be passed as input to the dense layer. Finally, there is a dense layer with 1 neuron
at the end that serves as a output layer. Relu activation function is used as an activation function.
Adam optimizer is used as an optimizer with mean squared error being the loss. The full architecture
is provided in Table 1.

The second architecture was taken from a research article in which the authors tried to predict
the quantity of different organic materials by using CNNs on spectroscopic data[44]. This architecture
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Type No. of filters Kernel Size Activation Function/Attribute
ConvlD 8 9 Relu
Batch Norm - - -
Flatten - - -
Dense 32 - Relu
Dense 1 - -
Loss - - MSE
Optimizer - - Adam
Trainable Parameters - - 760,737

Table 1: Summarized CNN architecture 1

consists of six trainable layers including four convolutional layers and two fully connected layers. Every
convolutional layer is followed by a max pooling layer. All convolutional layers are identical except
that the number of filters for the first two layers are 32 while the number of filters for the last two
layers are 64. Kernel size for convolutional layer is 3 and the activation function used is Relu. Pooling
size for the last max pooling layer is 4 while pooling size is kept to 2 for all other max pooling layers.
A drop out layer with a dropout percentage of 0.3 is also added after the last convolutional and max
pooling layer which acts as a regularization layer to avoid overfitting. After the dropout layer, the
feature map is then flattened using a flatten layer and used as input for the fully connected dense
layer with 512 neurons. Finally, an output layer with 6 neurons is used to produce the output because
6 values were to be predicted in the research paper. However, to use the model for this study, the
neurons of the output layer was changed to 1 because only one output will be produced for this data.
Relu, Adam and MSE were used as activation function, optimizer and loss function respectively with
this model. The architecture summary is provided in Table 2.

Type No. of filters Kernel Size Activation Function/Attribute
ConvlD 32 3 Relu
Max Pool - - size = 2
ConvlD 32 3 Relu
Max Pool - - size = 2
ConvlD 64 3 Relu
Max Pool - - size = 2
ConvlD 64 3 Relu
Max Pool - - size = 4
Flatten - - -
Dropout - - 0.3
Dense 512 - Relu
Dense 1 - -
Loss - - MSE
Optimizer - - Adam
Trainable Parameters - - 24,380,673

Table 2: Summarized CNN architecture 2

One more architecture that was tested was taken from a web article that tested the performance
of CNN model on spectroscopic data[45]. The architecture of the model was based on two 1D con-
volutional layers, a dropout layer, a dense layer and finally a dense output layer with one neuron to
produce the output. The activation function used in this network was Relu. The activation function
used in the output layer was the linear activation function. Adadelta was used as an optimizer with
a learning rate of 0.01 and the loss function chosen was mean squared error. Adadelta is a robust ex-
tension of Adagrad that adapts learning rates based on a moving window of gradient updates, instead
of accumulating all past gradients. The choice of Adadelta provided an overview of using a optimizer
that has a different working procedure. Full architecture of the model is given in Table 3.

Another architectural design was taken from an article that used a 1D convolutional neural network
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Type No. of filters Kernel Size Activation Function/Attribute
ConvlD 8 32 Relu
ConvlD 16 32 Relu
Flatten - - -
Dropout - - 0.5
Dense 128 - Relu
Dense 1 - -
Loss - - MSE
Optimizer - - Adadelta(lr = 0.01)
Trainable Parameters - - 5,978,649

Table 3: Summarized CNN architecture 3

to predict the phosphorous content in soil using spectroscopic data[46]. The architecture included 10
hidden layers containing four convolutional layers, four max-pooling layers, and two fully connected
layers. A max pooling layer was present after each convolutional layer. Activation function used was
rectified linear unit (ReLU) for all hidden layers. Two dropout rates of 0.4 and 0.2 were used to avoid
overfitting. The architecture is summarized in Table 4.

Type No. of filters Kernel Size Activation Function/Attribute
ConvlD 32 20 Relu
Max Pool - - size = 2
ConvlD 32 20 Relu
Max Pool - - size = 5
ConvlD 32 20 Relu
Max Pool - - size = 5
ConvlD 32 20 Relu
Max Pool - - size = 5

Dropout - - 0.4
Flatten - - -
Dense 100 - Relu
Dropout - - 0.2
Dense 1 - Linear
Loss - - MSE
Optimizer - - Adam
Trainable Parameters - - 84,809

Table 4: Summarized CNN architecture 4

The fifth architectural concept was taken from an article that studied the application of CNN for
retinal spectroscopic data[47]. The model architecture was used as a feature extractor and consisted
of all convolutional layers. The architecture was made up of three convolution layers having 128, 128,
and 64 filters respectively. Each convolution layer has a kernel size of 25 and uses exponential linear
unit (ELU) as an activation function. Each CNN is followed by a max pooling layer with a pooling
size of 2. The output of this feature extractor model was the flattening of all 64 filters of the last
convolution layer. For this study, a dense layer consisting of one neuron was added to produce an
output for prediction. According to the author, the choice of the ELU has two desirable properties:
producing a zero-centered distribution, which can make the training faster; and having one-sided
saturation which leads to better convergence. Adam was chosen as an optimizer and finally mean
squared error was opted as a loss function for optimizing the training process. The architecture of the
model is summarized in Table 5.
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Type No. of filters Kernel Size Activation Function/Attribute
ConvlD 128 25 elu
Max Pool - - size = 2
ConvlD 128 25 elu
Max Pool - - size = 2
ConvlD 64 25 Relu
Max Pool - - size = 2

Batch Norm - - -

Dense 1 - Linear

Loss - - MSE
Optimizer - - Adam

Trainable Parameters - - 640,513

Table 5: Summarized CNN architecture 5

3.5.1 Best Model

After observing the trends and behaviors of the experiments conducted on the 5 model architecture
that are defined above, some new architectures were designed and tested. The new architectures took
into account the pros and cons of the previous architectures to come up with a model architecture
that would outperform the other models. Finally, after a good amount of effort spent on testing we
came up with an efficient model that was consistent and produced comparable results to the PLSR
benchmark model. The architecture was based on 1 convolutional layer and 1 fully connected dense
layer with 64 neurons. 32 filters and a kernel size of 30 was used in the convolutional layer. A dropout
layer with a dropout value of 0.3 was also added before the dense layer. ReLU activation function was
used for both CNN and the dense layer. Adam optimizer was used along with the MSE loss function
to train the model. The architecture is summarized in Table 6.

Type No. of filters Kernel Size Activation Function/Attribute
Conv1D 32 30 Relu
Flatten - - -
Dropout - - 0.3
Dense 64 - Relu
Dense 1 - -
Loss - - MSE
Optimizer - - Adam
Trainable Parameters - - 6,042,721

Table 6: Summarized best CNN architecture

3.6 Preprocessing

The effect of preprocessing was also analyzed and discussed in this study. Both benchmark PLSR
and CNN models from the raw data experiment were trained and evaluated on preprocessed data as
well. Results of the models that were trained on preprocessed data were compared with the results
of models that were trained on raw data. The method that was used for preprocessing the data set
used in this study was the EMSC method that corrects the spectra by determining a least squares fit
based on a reference spectrum. Mean spectrum was used as a reference spectrum for the implemented
EMSC method used in this study.

Experiment Design When preprocessing spectroscopic data with EMSC method, it is important
to choose the optimal degree of polynomial [2.8]. The polynomial degree is a hyper parameter when
applying EMSC method. The objective of this experiment was to find the optimal polynomial degree
that results in the lowest error. Different choices of polynomial degrees ranging from 0 to 7 were used
as a parameter value for the EMSC method to preprocess the raw spectral data. The preprocessed
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data was then used to train and evaluate the benchmark models. The results of each model trained
and evaluated on data preprocessed using a different polynomial degree were compared to determine
the best parameter value for EMSC method.

3.7 Data Augmentation

Data augmentation is a technique that is used for extending the data set. The main principle of this
technique is to apply a range of transformations to the original data records to derive new observations
for the data. The newly derived observations are called augmented observation. Deep learning models
usually require huge amounts of data. As a point of reference, the database Imagenet[48] contains one
million image samples. Training deep learning models on data sets that have larger sample size can
result in better robust models. Therefore, deep learning community uses the data augmentation meth-
ods to increase sample size when the datasets are not sufficiently large. The augmented observation
can then be used to train deep learning models. Augmented observations can either be added to the
original data set or can be independently used to train models. Since the augmented observations are
obtained as a result of applying transformations to the original data set, they can help the model to
learn the variation in the data and hence can result in improving the performance of the model. By
using this data, the model will not be learning something new however, this data can help the model
to understand the variability better. In order for the augmented observations to be successful, the
augmented data needs to fulfill the following requirements[5].

e Transformations should change the targets in a way that the targets correspond to the augmented
sample like the targets are related to the original samples.

e Transformations should try to produce data as close as possible to the original observations.

Data augmentation is a well known method in the image analysis field. Image data augmentation
involves creating transformed version of images that belong to the same class as the original image.
The transformations include a range of operations like flips, zooms and shifts etc. Augmentation
is beneficial when producing new observations is expensive or time consuming. Spectroscopy is an
example of this statement. It can be time consuming to record new readings for spectroscopic data
sets because generating new data requires to go through a whole process of sampling and recording the
measurements. Nevertheless it is important to note that augmentation can not introduce new chemical
information in the data. Therefore, it cannot replace the effect of measuring new samples. This means
that even if the results are improved by augmenting data, it is not because that the augmentation
introduced some new information in data, but because the model learned how to better account for
the variability existing in the data[5].

Very few studies have been performed on augmentation and deep learning in the field of spec-
troscopy. In this study three new methods were developed and used to augment observations for the
Raman spectroscopic data set. To the best of my knowledge, these method have not been studied
before for Raman spectroscopy data. A different study tested the effect of EMSC augmentation but
that was on a different type of spectral data [5].

3.7.1 Linear Augmentation

The first augmentation method that was derived and tested is called linear augmentation. The method
is based on the principle of linear combinations. Linear combination is a central concept of linear
algebra. A linear combination is a expression constructed by multiplying a set of terms by a constant
and then adding the results. In terms of vectors, a linear combination will be defined as a vector
that is obtained by adding two or more vectors that are multiplied by different scalar values. By
using the concept of linear combinations, new observations can be augmented as a result of linearly
combining data samples from the original data set. Therefore, Linear augmentation method is based
on this theory i.e. a specified number of randomly selected samples from the original data are linearly
combined to generate new observations.

Effect of number of samples in linear combination Three different numbers i.e. 2, 5 and
10 were the numbers chosen as possible parameter options for the linearly augmentation experiment.
These numbers define the number of rows that are linearly combined to augmented new samples. This
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means that if the augmentation is performed with 10 as the parameter value, then the new augmented
observation will be a result of linearly combining 10 randomly selected samples from the original data.
The parameter options also shows the effect of increasing number of linearly combined samples. To
explain effect of different number of samples used in linear combination, histograms of the response
values of the augmented data were plotted and observed. Figure 14 shows the distribution of response
values for the augmented observations when the number of linearly combined samples from raw data
were 2, 5 and 10. In the figure histogram plots, it can be observed that when the number of linearly
combined samples are 5 or 10, the range of the of response values is narrowed down compared to
when the number is 2. In fact, the range is largest when the number of linearly combined samples are
only 2. When a small number of values are randomly selected from a set of values then the mean of
the selected values can be significantly different from the mean of the set of values. Furthermore, if
extreme(elements that are either significantly greater or smaller than the mean) values are randomly
selected from the set of values then the extreme values will have a significant effect on the mean of
the randomly selected values when the number of total randomly selected values are small e.g. 2. As
a result, the range of the average values for different sets of randomly selected values will be large.
However, when the number of randomly selected values is greater e.g. 10, then the extreme values will
not have a strong effect on the average of the randomly selected values and as a result the range of
the values in this case will be narrowed down. In this case, the average values of the randomly values
selected are closer to actual mean. This is the reason that the histogram in Figure[l4a], when the
number of linearly combined samples is 2 shows a wider response range compared to the histogram
showed in figure[14b] and figure[l4c].

Experiment Design The experiment for evaluating linear augmentation technique was divided into
three steps i.e. Best parameters, best samples size and evaluation. The raw data was splitted into
train and test set. The training set was used for the parameter selection phase(best parameters and
sample size) and augmenting new data while the test data was kept hidden until the final step and
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was only used for evaluating the models and the augmentation method. Both PLSR and CNN models
were used to evaluate the augmentation method. The details of the experiment are provided below.

The objective of first step of the experiment was to determine the ideal number of rows parameter
for the linear augmentation method and the ideal number of PLS components for the PLSR model as
the number of PLS components tend to change for different data sets and different sample size [49].
The method for determining the ideal number of components was similar to the benchmark model i.e.
test different number of PLS components options and choose the one that performs best. All three
parameter options for the linear augmentation method were used to augmented data with a constant
sample size of 500. The augmented data was then used to train and evaluate the performance of the
model. The models were validated using K folds cross validation and the number of folds used for the
cross validation were 5. The number of rows parameter option that resulted in the lowest error for
both models was determined as the best parameter for the linear augmentation method.

After determining the best set of parameters for the linear augmentation technique, the next
step was to determine the ideal sample size. Sample size is an important factor as the whole point
of performing augmentation is to have an ideal sample size for training machine learning models.
Therefore, data was augmented with different sample sizes using the linear augmentation method to
determine the ideal sample size and observe the effect of increasing sample size. 200, 500, 1000, 1500
and 2000 were the sample size options that were tested in this experiment. The validation procedure
for this step of the experiment was same as parameter selection step i.e. k fold cross validation.

After determining the best parameter and the best sample size, the last step was to evaluate the
augmentation method. Data augmented using the determined best sample size and parameter was
used to train PLSR and CNN models. After training the models were evaluated on the original raw
test set of the data. This experiment was repeated 5 time in order to get more robust estimates. Final
R2 and RMSE values were the averaged values of the 5 repetition.

3.7.2 PLSR Augmentation

PLSR [2.3] decomposes the original data into scores and loadings. Equation 4 and 5 show the de-
composition of data and response matrices into scores and loadings. The scores matrix represent the
location of data samples in the PLS components space and the loadings matrix represent the location
PLS component space with respect to the original data space. The original data matrix can be recon-
structed after applying PLSR by using the scores and loadings matrix. In addition to constructing the
original data matrix, the same operation can be used to augment new samples. In theory, the loadings
matrix can be multiplied with a randomly generated scores matrix that lies in the same space as the
original scores matrix to generate new samples. The randomly generated scores matrix will contain
the original data points with some random deviations and new samples will be generated as a result of
product of the original loadings and the randomly generated scores matrix. In order for this method
to work it is important that the data points in the randomly generated scores matrix all lie in the same
space and their position is close to the original data points. In order to ensure this, the values of each
PLS score were sampled from a normal distribution which was drawn using a mean value of zero and a
standard deviation of the particular PLS score. The method worked by first estimating the standard
deviation for each PLS score using the maximum likelihood estimation. The new data samples were
then generated by sampling each PLS score value from the normal distribution with mean zero and
the standard deviation of that PLS score.

Experiment Design The outline of experiment design for PLSR augmentation method was quite
similar to linear augmentation method. This experiment was also divided in to three steps with only
the first step being different i.e parameter for the augmentation method. In order to augment data
using PLSR augmentation a set of PLSR scores and loadings matrices are required . These matrices can
be obtained by fitting a PLSR model to the data. Therefore, the parameter to determine for the PLSR
augmentation method is the number of PLS components for PLSR model that will be used to generate
the scores and loadings matrix for generating artificial samples. For this purpose, different number of
PLS components were tested. The parameter options ranged from 20 to full rank(max observations
in the data). The scores and loadings of PLSR models with different number of components were
used to augment data with a constant sample size of 500 using the PLSR augmentation method.
Each augmented data set was used to train models and the parameter option that resulted in the best
model results was selected as a optimal number of PLS components for augmenting data. Following the
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determination of the best augmentation method parameter, the procedures of the remaining steps of
the experiment were similar to the experiment linear augmentation method. The other steps included
determining the best PLSR model for evaluating augmentation method, determining the best sample
size and method evaluation. The validation procedure of the experiments were also similar to the
linear augmentation method i.e. K fold cross validation.

3.7.3 EMSC augmentation

Equation 17 shows how the corrected spectrum was calculated using EMSC preprocessing method.
This equation is a modified form of Equation 16 that shows the equation for the original spectra.
According to these equation, the corrected spectra is basically the mean spectrum added to a residual
term. Therefore, by taking these equations into account the original spectrum can be obtained by:

A(¥) = Acorr(¥).b+a+dy () +da(v2) + ... + du(VP) + e(¥) (20)

In theory, the EMSC method can also be used as an approach for augmenting new data by in-
troducing some physical variations in data. The idea here would be to first calculate the parameters
of the EMSC that are based on scattering and instrumental effects and then augment new data by
introducing similar physical effects. The method is based on the principle of reverse preprocessing
where the EMSC preprocessing is reversed to transform the preprocessed spectra back to raw data
with some slight variations. The slight variations in the data are introduced by using new random
EMSC parameter values that are drawn from the same distribution as the original parameter values.
Thus, in order to create new samples using EMSC augmentation, first the raw data is preprocessed
and the EMSC parameters i.e. a, b, dy, d2 ... d, are calculated for each spectrum in the spectra.
Afterwards, a new set of parameters are drawn from a normal distribution that uses the respective
mean and standard deviation of the measured parameters. Generation of new random parameters
around the old ones helps to preserve correlation between them and thus helps to avoid generation of
unnatural independent parameters. The newly generated parameters can then be used to augment a
new spectrum by reversing the effect of preprocessing. The equation 20 then becomes:

A(¥) = Acore(¥).b +a +d1(¥) + d2(v2) + ... + dn (V) + e(¥)(21)

where a,, b,, d/l, dz ... d» represent the new randomly generated EMSC parameters.

Experiment Design The experiment design for EMSC augmentation was identical to the linear
augmentation and PLSR augmentation methods. This experiment was also divided into 3 steps.
Objectives of second and third steps were exact same i.e. to determine the best augmentation sample
size for models and then to evaluate the augmentation technique by using the best set of parameters
and sample size determined in the previous first and second step. However, the first step was a bit
different. The first step of the experiment is described below.

Polynomial degree is a required parameter for the EMSC method. The idea behind EMSC augmen-
tation is to reverse the process of EMSC method by adding some deviations in the parameter values.
These parameter values are obtained by first apply the EMSC method to the data. Therefore, in order
to apply the EMSC method and then reversing the process, the polynomial degree is required. The
first objective of the EMSC augmentation experiment was to determine the best polynomial degree
for both PLSR and CNN models for the purpose of data augmentation.

Outline of this step was similar to the first steps of linear augmentation method and PLSR aug-
mentation method. For this method, data was augmented using different polynomial degree options
ranging from 0 to 7. After augmentation the data was evaluated for both models and the best options
were determined for both models by validating the RMSE scores using K fold cross validation. In
addition to the determining the best polynomial degree for augmentation, the first step of the experi-
ment also involved determining the optimal number of PLS components for the PLSR model that will
be used to evaluate the augmentation method.

3.8 Learning Curves

In general, learning curve is the representation of rate of something’s growth and improvement. In
machine learning, learning curves are also used for the same purpose. A learning curve is a representa-
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tion of a model’s learning performance evaluated over experience or time. Learning curves are used as
diagnostic tool for models that learn from data sets incrementally. The model is evaluated after every
increment in sample size. Finally, a plot of the measured performance for each sample size is created
to show the learning curves. Observing the learning curves of the model can help to diagnose problems
like underfitting and overfitting as well as whether the training and validation splits are suitable.

Learning curves were also used as a diagnostic tool in this study. The idea was to observe that
increasing the number of samples in the data can actually improve the performance of the model.
Furthermore, the experiment also gave an overview of the suitable number of samples that are enough
to produce a generalized model. The learning curves have not been used very much with deep learning
models. With deep learning models, it is interesting to see how the performance is affected with the
increasing sample size. It is also interesting to observe the learning curves for raw data in this study
as the raw data contains so few samples. A factor to observe is if the learning curves flattens and the
model generalizes with the available sample size and also how fast it flattens out.

In order to carry out the experiment, models were trained on subsets of data and the size of data
sets was increased incrementally. The training subsets ranged from 10 percent to 100 percent of the
data with an increment size of 10 percent. So, the models were trained and evaluated 10 times for
each subset of data. The scikit learn implementation of learning curves was used to carry out the
experiment. The experiment was conducted with both PLSR and the best CNN model. Kfold cross
validation was used to evaluate the performance of model with 5 being the number of folds. The scikit
learn’s learning curves function takes a percentage of data, trains the model and evaluates the model
with cross validation. At the end, a list containing the results of the model for all sample sizes is
obtained and the results are plotted for visualization of the learning curves.

4 Results

This section presents the results obtained by performing the experimentation described in the previous
section of the study. The experiments conducted in this section were intended to compare the per-
formance of CNN for different augmentation methods. The results obtained from the experiment will
also be used to evaluate the different augmentation methods. Furthermore, in addition to the CNN
model, the results of the PLSR model are also presented to analyze the behavior of both CNN and
PLSR on a particular data set.

4.1 Benchmark Model Results

This section presents the results of the benchmark model experiments [3.4]. Results of the grid search
CV experiment that was used to determine the best number of PLS components for the PLSR model
are visualized in figure 15. The figure shows R2 and RMSE values for PLSR models with different
number of PLS components. Observing this figure shows that the highest R2 score and the lowest
RMSE is obtained when number of PLS components are 17. Therefore, a PLSR model with 17 PLS
components was selected as the benchmark model for the raw data. The benchmark PLSR model was
then trained and evaluated on raw data and the results showed a R2 score of 0.90 and a RMSE of
0.94. Similarly, a benchmark CNN model was also determined. The best CNN model [3.5.1] showed
the best results when the batch size was 8. Therefore, best CNN model architecture with batch size 8
was determined as the benchmark CNN model. This model was used for the CNN experiments in this
study. The results of the benchmark CNN model showed an average R2 score of 0.91 and a RMSE
of 0.88. The average number of epochs required to train the CNN model on raw data were 484. Loss
function trend for benchmark CNN model trained on raw data is visualized in figure 16. The figure
shows loss function trend lines for train and validation data over the course of the training process
and demonstrates the ability of CNNs to minimise the loss with increasing number of epochs. The
loss trend figure shows a stable trend towards the end of the training process which implies a stable
model.

After evaluation on raw data, the benchmark models were evaluated on preprocessed data to
compare the results and to analyze the effect of preprocessing on Raman spectroscopy data. Benchmark
PLSR model performed best when raw data was preprocessed using EMSC method with a polynomial
degree of seven resulting in a R2 score of 0.97 and a RMSE of 0.52. However, the benchmark CNN
model showed the best results i.e. a R2 score of 0.91 and a RMSE of 0.92 when EMSC method was
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Figure 15: Grid Search CV results for PLSR model with PLS components ranging from 1 to 30. The
left plot shows the R2 scores and the right shows the RMSE
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Figure 16: Loss function trend for the benchmark CNN model when trained on Raw data. The blue
line shows the trend for training loss while the orange shows the trend for validation loss. First 10

epochs were trimmed for the reason of better visualizing trend because the error in the first 10 epochs
was huge and it was setting the scale very high.
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Figure 17: Raw data preprocessed using EMSC method with polynomial degree one and seven. a shows
the spectra when raw data is preprocessed using polynomial degree one and b shows the processed
spectra using seventh degree polynomial
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Figure 18: RMSE values for benchmark models evaluated on data preprocessed using EMSC method
with polynomial degree ranging from zero to seven. The left plot with blue bars show the PLSR RMSE
values while the right plot with orange bars shows RMSEs for CNN

used with a polynomial degree of one. The average number of epochs required to train the CNN model
preprocessed using EMSC method with polynomial degree of one were 130. Spectra preprocessed using
EMSC method with polynomial degree one and seven are visualized in figure 17a and 17b respectively.
The RMSE scores for benchmark models evaluated on data preprocessed using EMSC method with
polynomial degree ranging from zero to seven are visualized in figure 18. Notice that in figure 18, the
RMSE values of the PLSR model with polynomial degree six(0.53) and seven(0.52) are approximately
equal. Furthermore, both polynomial degrees showed the same R2 score i.e. 0.97 for PLSR model.
This result is in accordance of a study performed on the same data that confirms that the PLSR model
model shows a significant improvement in performance when the data is preprocessed using EMSC
with a sixth degree polynomial [38].

Results of the benchmark models evaluated on raw and preprocessed data are summarized in table

7.

H Model R2 RMSE H

PLSR(17) - Raw 0.90  0.94
PLSR(17) - Prep 0.97  0.52
CNN - Raw 0.91  0.88
CNN - Prep 0.91 0.92

Table 7: Summarized results of Benchmark models evaluated on raw and preprocessed data
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Figure 19: RMSE scores when PLSR and CNN model were trained on data augmented using linear
augmentation method and different parameter options

4.2 Data Augmentation

This section shows the results of Augmentation methods that are discussed in this study. The re-
sults provided in this section will be used to evaluate and conclude the Linear augmentation, PLSR
augmentation and EMSC augmentation methods.

4.2.1 Linear Augmentation

This section shows the results of the experiments that were used to evaluate the linear augmentation
method. Figure 19 presents the results of the first step of the experiment i.e. best parameter selection.
The figure shows the RMSE values for PLSR and CNN models based on the three opted parameter
options for the linear augmentation method. The lowest RMSE obtained using the PLSR model was
1.19 and this was obtained when the number of linearly combined rows for augmenting data were 5.
However, the lowest RMSE value obtained for the CNN model was 1.14 and this was obtained when
2 rows were linearly combined to generate new samples. In addition, another objective of first step of
the experiment was to determine the best PLSR model for evaluating the linear augmentation method
and the results showed that the PLSR gives the lowest RMSE(1.19) with 18 PLS components.

After determining the best parameter value for the augmentation method, the next step was to
determine the best sample size. Since PLSR and CNN both performed best with different parameter
options, the decision was made to generate different data sets for both models using the corresponding
best parameter value. Therefore, for each sample size option two different data sets were generated
using the linear augmentation method with different parameter values. PLSR was evaluated on data
sets generated with using 5 as parameter value and CNN was evaluated on data sets generated using
2 as parameter value. The results of both models evaluated on datasets with different sample sizes
are provided in figure 20. The figure shows that the lowest RMSE value of 1.19 for PLSR model is
obtained when the sample size is at least 500. However, the best RMSE score for CNN model is 0.98
and this score is obtained when the number of samples were at least 1000.

The data sets used for evaluating the linear augmentation method were generated using the cor-
responding best parameter values and best samples sizes for PLSR and CNN model. Results of the
experiment are presented in the table 8. R2 and RMSE values in table show that the CNN has out-
performed the PLSR model with a significant difference. CNN showed an RMSE value of 0.67 while
PLSR showed an RMSE value of 1.07.

H Model R2 RMSE H

PLSR(18) 0.88  1.07
CNN 0.95  0.67

Table 8: Final results for linear augmentation method experiment
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Figure 20: RMSE scores when PLSR and CNN model were trained on data augmented using linear
augmentation method and different sample sizes
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Figure 21: RMSE scores when PLSR and CNN model were trained on data augmented using PLSR
augmentation with different number of PLS components

4.2.2 PLSR Augmentation

This section shows the results of the PLSR augmentation experiment. The first step was to determine
the ideal parameter value i.e. the number of PLS components PLSR for augmentation method. Results
visualized in and the figure 21 show that the RMSE values obtained for PLSR and CNN model when
trained and evaluated on data augmented using the PLSR augmentation method with different number
of PLS components. The lowest RMSE value i.e. 1.2 for the CNN model was obtained when the data
set generated using 50 of PLS component as a parameter. However, PLSR model gave the best RMSE
score of 1.14 on the data set generated using 110 PLS components. Furthermore, the lowest RMSE
score on augmented data using PLSR model was obtained when the number of PLS components were
17. Therefore, a PLSR model with 17 number of PLS components was used for evaluating the PLSR
augmentation method.

Similar to the linear augmentation method, in order to determine the best sample size value,
the corresponding best parameter options for the augmentation were used for generating data set of
different sample sizes for both models. Results are visualized in figure 22 which shows that the optimal
sample size for PLSR model is 1500 while the optimal size for CNN model is 500. After determining
the best parameter and sample size values for the augmentation method, the method was evaluated in
the third step of the experiment and the result of the experiment are presented in table 9. The table
shows that CNN model resulted in a RMSE of 1.11 while the PLSR showed an RMSE value of 0.94.

H Model R2 RMSE H

PLSR(18) 0.90 0.94
CNN 087 111

Table 9: Final results for PLSR augmentation method experiment
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Figure 22: RMSE scores when PLSR and CNN model were trained on data augmented using PLSR
augmentation method and different sample sizes
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Figure 23: RMSE scores when PLSR and CNN model were trained on data augmented using EMSC
augmentation with different polynomial degrees

4.2.3 EMSC Augmentation

Plot showing the RMSE values of PLSR and CNN models when trained and evaluated on data gen-
erated using EMSC augmentation method with different polynomial degrees is visualized in Figure
23. The figure shows that the lowest RMSE value(1.11) for PLSR is obtained when the polynomial
degree was 5 however the lowest RMSE(0.98) for CNN is obtained when the polynomial degree was
2. Furthermore, the optimal number of PLS components that was determined using the experiment
results was 21. The sample size experiment results are visualized in figure 24 which shows that the
ideal data set sample size for PLSR model is 500 and for CNN model is 1000. Finally, the evaluation
of the augmentation method was the final step and the results of the experiment showed that a RMSE
value of 0.62 for CNN and a RMSE value of 0.75 for PLSR. The results of the evaluation experiment
are also presented in table 10.

H Model R2 RMSE H

PLSR(18) 094 0.75
CNN 095  0.62

Table 10: Final results for EMSC augmentation method experiment

4.2.4 Summarized results for all methods

The RMSE values of all augmentation methods, raw and preprocessed experiments are summarized
in Figure 25. This figure shows varying results of PLSR and CNN models for different methods that
shows the different natures of both models. PLSR model with preprocessed data was the best model
and showed the lowest RMSE values compared to all other models. However, preprocessing resulted in
no improvement in performance for the CNN. CNN model performed well with data augmented using
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Figure 24: RMSE scores when PLSR and CNN model were trained on data augmented using EMSC
augmentation method and different sample sizes
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Figure 25: R2 scores for all Augmentation methods collected from the final experiment

the linear augmentation method and the EMSC augmentation method and showed a RMSE value
of 0.67 and 0.62 respectively. The method that worked best for both PLSR and CNN models was
the EMSC augmentation method. The models trained on data augmented using the EMSC method
showed an improvement in performance compared to raw data models.

4.3 Learning Curves

This section shows the results of the learning curve experiments.

4.3.1 Learning Curves for Raw Data

The section shows the learning curve plots for PLSR and CNN models based on raw data. Both PLSR
and CNN models used in this experiment were the same models that were used in the benchmark
experiments. Figure 26a shows the learning curves generated using PLSR model and figure 26b shows
learning curves for CNN model. The model accuracy metric used was RMSE. Figure 26a shows a
good PLSR model fit on raw data. The gap between the validation and training loss is small when the
optimal sample size is reached which shows that the model has generalized well. Furthermore, both
training and validation loss trends seem stable when the sample size is greater than 150 and this is
a sign of the stability of the model. Figure 26b also shows good learning curve trend for the CNN
model with generalization gap becoming small when the sample size reaches 110 approximately and
the training loss is stabilizing towards the end. However, the validation loss is not as stable as the
training loss. Furthermore, the transparent colored shaded regions around the loss trends lines in the
figures show the standard deviation of the RMSE values and this appears because of the Kfold cross
validation performed for each sample size. The standard deviation for both models is small which
shows consistency is performance.
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Figure 27: Learning curves on data augmented using linear augmentation method

4.3.2 Learning curves for data generated using linear augmentation method

This section shows the learning curves for PLSR and CNN models when trained on data augmented
using the linear augmentation method. The parameters used in this experiment for generating samples
were the same parameters that were used for evaluating the linear augmentation experiment. Learning
curves for PLSR model and CNN model on artificially generated data are visualized in figure 27a and
figure 27b respectively. Both figures show that the loss trend seem to stabilize and the generalization
gap is also small when the sample size is large enough. The standard deviations of the accuracy is also
small that is a sign of consistency in performance.

4.3.3 Learning curves for data augmented using PLSR augmentation method

This section shows the learning curves for PLSR and CNN models when the data used for training
was augmented using the PLSR augmentation method. Similar to linear augmentation method the
parameters used were the best parameters that were determined in the PLSR augmentation evaluation
experiment. Figure 28a and figure 28b show the learning curves for PLSR and CNN model respectively.
Both learning curves figures show that the generalization gap becomes small when the sample size is
large enough and the loss trend also stabilizes towards the end. An interesting behavior that can be
observed in the CNN learning curve figure is the big bump when the training size is just above 150.
The standard deviation is also huge for this bump. This bump is interesting because it is not according
to the trend as the loss before and after this bump is completely different.

4.3.4 Learning curves for data augmented using EMSC augmentation method

The best parameters determined in the EMSC augmentation evaluation experiment were used to
augment data and analyze the learning curves for PLSR and CNN model on EMSC augmented data.
Figure 29a and figure 29b show the learning curves for PLSR and CNN model respectively. Both
figures show good trend for the loss function. The gap between the train and validation loss trend is
small which means that the model has generalized. Furthermore, the loss trend is stable towards the
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Figure 28: Learning curves on data augmented using PLSR augmentation method
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Figure 29: Learning curves on data augmented using EMSC augmentation method

end and the standard deviation of the accuracy is small which implies that the model is consistent and
stable.
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5 Discussion

In this section the interpretations, implications and the limitations of the results provided in the results
section are discussed in detail.

5.0.1 Small Data set

All artificially intelligent models irrespective of its type are driven by data. The performance of these
models are totally dependent on the quality and quantity of the data. Applications of machine learning
are growing every day and machine learning is now being used in very diverse fields. The increase
in applications comes with challenges of its own and one of these challenges is the collection of data.
Small sample size or insufficient data are one of the most common challenges faced when implementing
machine learning solutions. Data collection can be a costly process as it may require a lot of time and
effort. Spectroscopy is an example of the domain in which it is common to have a small data set size
and generating new data is a costly process. Data augmentation may be good handy technique to solve
the limitations of a small data set size. Applying transformations in the existing data can allow to
augment new sample and reduce the operational cost of collecting more data. Although augmentation
is beneficial in increasing the sample size but still it cannot replace the process of collecting new
samples. This is because augmented sample generated as a result of applying transformations will
fail to add any type of new information in the data. The augmented samples can help the models
to generalize better on the existing data but it will not help the model to learn any anything new.
Therefore if the target is to make the model perform better for existing data then augmentation can
be very useful. Some of the benefits of data augmentation are listed below:

e Improving model prediction accuracy

— Increase the amount of training data for models
— Prevent data scarcity for better models
— Reduce over fitting and make more generalized models

— Help resolve class imbalance issues for classification problems
e Reduce cost of collecting and labelling data

e Enable rare event prediction
Although augmentation is beneficial but it has its own challenges as well. Some of which are:

e Domain knowledge and developing new research to create data for applications.
e Evaluation of a augmentation method and assessing the quality of data is required

o If the real data set has problems then the augmented data may also contain the same problems.
For example if the original data is biased then the augmented data will also suffer from biasness.
Therefore, identification of an optimal strategy for augmentation is important.

When working with small data sets the model selection and evaluation phase becomes a bit tricky.
This is because they are not enough samples to train the models to learn all variation in the data
and the model validation process becomes even harder. If the data set is small then splitting the data
set into training and test sets for validating the results becomes complicated. While splitting data
sets, it is important to have enough samples for training and leaving enough samples for validation.
In this case, especially the validation process becomes really important because if there is not enough
variability in the validation set then over fitting in inevitable. Furthermore, a lot of variability present
in the data is also not beneficial when the sample size is small. In this case, the splitting process of
data becomes extremely important. The Raman data set used in this study was quite heterogeneous as
the data was divided into different groups which were based on the unique biological samples. Working
with mean data may have been a bit beneficial but it resulted in a significant decrease in the sample
size as well.

ANNSs generally require more amounts of data for training compared to linear models. This is
simply because of the fact that ANNs have to train a lot of parameters. The weight updates are
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performed until the gradient finds a good local minima of the loss function. Determining the best local
minima is a complicated process. The problem is that the model starts off with a poor initial state and
then with some gradient based optimization it converges the network to an optimal solution, which
might not necessarily be the global optimum but a good local minima. So, accomplishing the task
of finding the best local minima requires as much convergence as possible and this requires a larger
sample size. PLSR extracts new features by maximizing the covariance between the features and the
targets. All the features explain a fraction of variation in the data and so the variation present in
the data can be explained by them. The feature extraction process reduces the number of features
significantly with respect to the number of samples thus PLSR can work for data sets with small
number of samples as well. However, the number of samples is still an important factor and increasing
the number of samples can actually induce more variability and may result in a more robust model.

Having known the benefits, challenges, motivation for optimal sample size and limitations of the
spectroscopy data, data augmentation was also practiced in this study and it is one of the main focus
of this study. To evaluate the augmentation methods, the performance of models on raw data, pre-
processed data and data generated using different three different augmentation methods are compared
and discussed further in this section.

5.1 Comparison of PLSR and CNN models based on Raw data

The results provided in section 4.1 show that the CNN model performs better than PLSR model when
the raw data set is used. However, the scores are not the only factors that are enough to conclude
that which model is better. After all it can be argued that the recorded R2 and RMSE values for both
models were not to much apart from each other.

5.1.1 Hyper parameter tuning

Tuning a model is usually the most time consuming part when performing regression or classification
tasks using machine learning. Tuning is usually a trial and error process in which different set of hyper
parameters are tested and compared in order to enhance model accuracy. The hyper parameters tend
to change depending on a particular data set and problem. Hyper parameter tuning for models was
also a time consuming task in this study. For PLSR model, number of PLS components was the hyper
parameter that was tuned. Different options of number of PLS components was tested and the ideal
number of PLS components was selected based on the cross validation scores.

Regarding the hyper parameter selection phase for the CNN model, parameters such as learning
rate, batch size, activation function and optimizer algorithm are required to be determined. These
parameters affect the speed of convergence and the value of converged loss function. Ideally the best
set of hyper parameters are found by trying all sets of parameters using grid search algorithm like it
was done for the PLSR model. But, this process quickly became overwhelming when trying different
choices of architectures. Therefore, the best CNN model was selected based on trail and error. This is
normally the case with ANNs as the architectural design is different for different natures of problems.

Tuning process for the CNN model was relatively slow because it required training a number of
models. Another complication during this process was that ANNs are sensitive to weight initialization.
The weights are initialized randomly at the start of training process and they tend to change for each
repetition. Combining this complication with the parallelism property of ANNs on GPUs, it becomes
impossible to obtain reproducible results. Furthermore, due to the mentioned properties of ANNs the
credibility of the model cannot be judged based on a single run. Multiple runs have to be performed
to judge the predictive power of the model. The knowledge gained through experimentation is surely
beneficial and it can expected to setup new architectures for models faster but even with the experience
it will still be a laborious task.

5.1.2 Efforts Required

Setting up the flow of the PLSR experiment was a straightforward task and it did not require a lot
of efforts. All packages used in this experiment were available in the scikit learn library. Most of the
parameters values were assumed fixed in advance as they were not required for this analysis. The only
parameter that needed tuning was the number of PLS components and setting up for that was not a
big task as well. Another great advantage for the PLSR model were the deterministic results (same

43



results if run again with same conditions). This effect should not be under estimated when one also
has to work with ANNs as well. It is possible to obtain consistent results with ANNs but this leads to
a significant increase in the training time. However, the desire of getting deterministic results using
ANNSs can be argued. This is because ANNs try to find the best local minima for loss function and it
may be that there might be another minima that is better than the previous one which can enhance
the model performance. Therefore, if the ANN is configured to get deterministic results then the fact
that there might be another better minima may not be explored.

A lot of effort had to be put into setting up experiments for the CNN model. A big part of
these efforts went into testing different architectural choices for the CNN model. Different alternate
architectures were tested and evaluated. The depth of model, number of layers, number of neurons and
the effects of different methods like dropout, batch normalization and pooling were tested. This model
selection task is also complicated because the target to achieve is to come up with a good efficient
model and not just an architecture that produces good results but is computationally very expensive.
Furthermore, another thing to make sure is that the models contain sufficient complexity to account
for the complex structures that might be present in the data without being prone to over fitting. After
spending a huge amount of time on the CNN model selection phase, finally some confidence in what
choices were likely to work well with the Raman data set was developed and a model architecture was
selected that checked all check boxes.

5.1.3 Model training time

Data set used for analysis in this study was not particularly large in size. Average of the original raw
data set was taken based on the sample group value in order to remove unusual peaks from the data
[3.1]. This process significantly reduced the sample size and the mean raw data set was based on only
232 samples.

Linear models are generally swift and they take relatively less time to train compared to the deep
learning models. The CNN architecture used in this study for experimentation was relatively shallow
compared to the common architectures of deep learning models. The architecture of the model was
based on a single convolutional and a single fully connected dense layer. Therefore the training time for
a single CNN model was particularly not time consuming at all. The average time taken for training
the CNN model on raw data was 35 seconds and 484 epochs. However this time is also dependent
on the way the training is executed. For example, the run time of 35 seconds was achieved by using
the GPUs. However if the training was performed without GPUs then this training time might have
increased significantly. Furthermore, the training time of the CNNs also tend to increase with the
increase in sample size. For example, if the training time of the CNN model on raw data when the
sample size was 232 is compared with the training time of the CNN model on EMSC augmented data
when the sample size was 1000 then a significant increase in the number of epochs can be noticed. The
CNN model with a 1000 samples took an average of 711 epochs.

It is true that the time of training for PLSR model was always significantly low compared to CNN
model but it is also true that CNN outperformed PLSR in accuracy when the training was performed
on raw data. It can be argued that the difference in accuracy is not significant but this statement is
no different than stating that the training time difference factor is not significant as 35 seconds is also
not a huge value. However, the decision of picking a model as favorite is dependent on the application
and the target to achieve. If the target is to achieve the best accuracy then a compromise on the
training time can be made. Similarly, if the target is efficiency then a sacrifice can be made for that
small difference in the accuracy.

5.2 Preprocessing

EMSC]2.8] was the method that was used for preprocessing the Raman spectroscopic data. EMSC is
a method specifically designed to preprocess spectroscopic data and it is also well suited for correcting
various effects in the Raman spectroscopic data. EMSC is a model based preprocessing technique
and it has the ability to store the parameter values of the corrections which can be used for further
analysis. These parameters can reveal systematic variations in the samples and capture various effects
that are interesting in themselves. The amount of baseline shift of each sample spectrum is an example
of parameters holding interesting information about the samples.
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Figure 30: Performance comparison for CNN model on train and test data preprocessed using EMSC
with different Polynomial Degrees

PLSR model trained on preprocessed data resulted in a significant increase in the performance.
The increase in performance of the PLSR model proves that the EMSC method is well suited for
sorting various effects and noise in Raman spectra and it cleanses data for visual and analytical use.
Even the lowest polynomial degree results in an increase in the performance which also shows how
effective the EMSC method can be.

Studies have shown that ANNs have the ability to learn important features and produce better
results compared to the PLSR model even without preprocessing [9]. ANNs make their own feature
space and learn in their own way. Every layer in the ANNs except the input and the output layer
is basically used for transforming features to space where it is possible to capture the necessary de-
tails. Even in CNNs, all layers before the output including the convolutional layer is used for feature
transformation. This is how CNN models do their own feature extraction. The results of CNN model
on preprocessed data are not according to the trend showed by PLSR model. CNN show no increase
in performance with preprocessed data rather there is a tiny decrease in the RMSE score. The best
result is achieved when the data was preprocessed with a polynomial degree of 1 and these results were
approximately equal to the raw data results. Furthermore, applying the preprocessing makes PLSR
the better model than the CNN. Another interesting pattern that is shown by CNN model is that
increasing the polynomial degree decreases the RMSE values. The behavior is visualized in figure 18.

A possible reason for the results displayed by CNN model on preprocessed data could be that the
model is simply too complex. The CNN model used in this study for experimentation has 6,042,721
trainable parameters. The selection of the model architecture was mainly based on evaluation on raw
data. The process of preprocessing with EMSC method removes most of the noisy unwanted effects
from the data. So, this could be a reason that a more simpler model with less trainable parameters is
enough to learn all variations in preprocessed data. In order to test this hypothesis, the performance
of CNN model evaluated on preprocessed training data was compared to performance of CNN model
evaluated on preprocessed test data. This comparison is visualized in figure 30. The figure shows a
decreasing trend for both training and test data when the polynomial degree rises. Therefore, over
fitting might not be the reason for the decreasing performance of the CNN on preprocessed data.

5.2.1 Effect of preprocessing on CNN training process

Results stated in section 4.1 show that preprocessing data using EMSC with polynomial degree 1 and
training the CNN model on it produces approximately equal results as training the CNN on raw data.
However, the results also showed that the average epochs required for training CNN on preprocessed
data(130) is significantly smaller than the number of epochs required for training on raw data(484). Tt
is known that EMSC removes noisy unwanted effects from the raw spectroscopic data. So, in theory
EMSC preprocessing would make it easier for the model to learn the variation present in the data as
the variation due to noise will no longer be present. Therefore, preprocessing may have actually made
the training process less complicated.
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5.3 Data Augmentation

Linear augmentation, PLSR augmentation and EMSC augmentation were the three data augmentation
techniques that were tested in this study. One of the objective of the study was to evaluate the
three augmentation techniques and to test if these techniques are good alternatives for producing
new observations. The results of the experimentation showed that using the data augmentation and
increasing the sample size is beneficial as it improves the performance of the CNN. The fact that
it seems possible to improve neural networks using augmentation is interesting. Furthermore, it is
important to note that neural networks might not be the best model to use on all problems even
with an optimal sample size. The PLSR model with preprocessed data produced the best overall
performance on the data set used in this study.

5.3.1 Linear Augmentation

First step of the experiment showed varying results for PLSR and CNN models. If the results in figure
19 are observed then a trend of increase in the RMSE value is seen with the increase in number of
linearly combined rows for the CNN model. The difference in the distribution of range of response
values due to different number of linearly combined rows seem to be an important factor for CNN
model. The CNN model gives the best RMSE value when 2 rows are linearly combined for generating
new samples. This could be because the range of response values is large when 2 rows are linearly
combined and when the range of the response values is large, the chances of error by the model reduces
and thus the low RMSE scores. However, as the range of response values shrinks like in the case of 5
and 10 linearly combined rows, the margin of error decreases and according to the CNN results this
increases the RMSE values. However, the PLSR model results do not follow the same trend. The best
RMSE value for PLSR model is obtained when the number of linearly combined rows is 5. Difference in
the results trend for PLSR and CNN is interesting. Second step of the experiment show that increasing
the sample size enhances the performance of the CNN model. Enhancement in performance of the
CNN model also points that the linear augmentation method has the ability to be an effective method
for the CNN models. However, the same cannot be said based on the results of the PLSR model.
PLSR model gives the best RMSE when the sample size is 500 but the enhancement in performance
is not significant compared to the CNN model. Results of the final evaluation experiment for the
CNN model were quite promising. Augmenting data using the linear augmentation method and then
evaluating the CNN model showed a significant increase in the performance compared to the raw data
scores. This may very well be the the result of the increased number of samples as the augmentation
does not introduce any new variation in the data. Furthermore, if the linear augmentation method
is an effective method then the results also correspond to the theory that CNN models require larger
amounts of data to excel.

Results for PLSR model on linearly augmented data are not as promising as CNN. PLSR model
showed worse results for linearly augmented data when compared with raw data. This is an interesting
behavior because linear augmentation does not add or remove any variation present in the data. There-
fore, a plausible reason for this behavior could be the parameter choices for the linear augmentation
method since the parameters were different for PLSR and CNN models. In order to better understand
the behavior of the PLSR model the results of the training data were also analyzed. The model showed
a R2 score of 0.96 and a RMSE value of 0.33 when evaluated on training data while the R2 and RMSE
values for test data were 0.88 and 1.07 respectively. These results are significantly better than what
was observed for test data. The significant difference in the results of the training and test data is a
clear sign of over fitting. A possible reason of the bad performance on test data could be related to
the effect of the number of samples used in the linear combinations. The cross validation experiment
performed in the first step of the linear augmentation showed that the optimal number of rows for
making linear combinations and generating new samples is 5 for PLSR model and 2 for CNN model.
Therefore, the difference in the behavior for CNN and PLSR model and the over fitting of the PLSR
model when evaluated on test may be due to the narrow range of distribution of response values as
a result of linearly combining 5 rows. Furthermore, the learning curve plot visualized in figure 27a
shows a validation accuracy of 0.6 which gave some confidence to the previous statement. The narrow
distribution response issue can be easily solved by adding the original data samples to the artificially
generated data set. Therefore, an experiment was conducted in which the PLSR model was trained
on a data set that was the concatenated version of artificially generated samples and the original data
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samples. The concatenated data set had the same response distribution as the original data set. The
PLSR was then evaluated on test data and showed a R2 score of 0.90 and a RMSE score of 0.94.
The results are similar to the results observed for raw data experiment and this shows that the linear
augmentation method was successful for both PLSR and CNN models.

5.4 PLSR Augmentation

Results of the experiment for the PLSR augmentation method presented in section 4.2.2 show promise
for the augmentation technique when the results of the PLSR model are observed. PLSR model
displayed approximately equal results for the augmentation data compared to the raw data. However,
the results for CNN model were not as promising. CNN model showed worse results for augmented
data compared to PLSR model and the results of CNN model on raw data. In fact, the difference in
performance was quite significant. In order to analyze the performance of CNN model the results of
the CNN were thoroughly analyzed. The CNN model showed an average R2 score of 0.98 and a RMSE
of 0.52 when evaluated on training data and an average R2 score of 0.87 and RMSE of 1.11 on test
data. There is a big difference between the train and test performance and this shows signs of over
fitting. However, it is a difficult question to ask the reason for the decrease in performance for CNN
model. Even though there are signs of over fitting it cannot be be claimed that only over fitting is
the reason for the bad performance of the CNN model and even if over fitting is the reason then what
caused the model to overfit is the real question.

There can be a number of possible reasons for the decrease in performance for the CNN model.
A plausible reason for the not promising results of the CNN on test data could be the augmentation
method it self. However another interesting factor to observe here is the learning curves plot for PLSR,
augmented data visualized in figure 28b. It was a bit surprising to see that the PLSR augmentation
for CNN gave an RMSE value of 1.11 when evaluated on test data but the validation loss in the
learning curve plot is approximately 0.6. This difference in these results is interesting and it might
mean that the PLSR augmentation method is not that bad after all and it has potential to be a good
augmentation method. However, the amount of experimentation and tests performed in this study
are not enough to make claims and to state the reason of different results observed in the test data
experiment and learning curves. Furthermore, the difference in the behavior of CNN and PLSR may
be because of the difference in nature of both models i.e. PLSR is a linear model and CNN is a non
linear model and they have their own ways of working.

5.5 EMSC Augmentation

Results of the EMSC augmentation method experiment show promise for the EMSC augmentation
method. The results also show that increasing the sample size was beneficial for the models. Both
PLSR and CNN model showed an increase in performance when they were trained and evaluated on
data set generated using EMSC augmentation method. Both models showed better results than the
results observed in the raw data experiment. However, this does not mean that EMSC augmentation
add some new variation in the data. EMSC augmentation method works by reversing the effects of
EMSC preprocessing using the parameter values that were recorded during the preprocessing process.
New random parameters are produced and these new parameters are normally distributed based on the
mean and standard deviation of the original parameters. The performance of the models on artificially
generated data is dependent on the new randomly generated parameters. Sometimes the random
values may result in inducing better variance in the data and sometime they may not. However, the
overall performance should always be fluctuating around the values that were observed in the raw data
experiment.

5.6 Learning Curves

There is a lot of information that can be extracted form the learning curves provided in section 4.3.
First of all lets talk about the learning curves of the PLSR model. All the learning curves of PLSR
model shows that the training RMSE starts from a point that is at zero or approximately very close to
zero. As the training size increases the RMSE starts to increase. This might seem like a very strange
behavior but it is actually quite logical. In each figure it can be observed that when the training RMSE
is zero or very close to zero, the validation RMSE is at its highest value. At the first data point in

47



the PLSR plots when the training RMSE is extremely small and the validation RMSE is extremely
large, the size of the data set is extremely small. When the data is extremely small, the model has
no problem in fitting the data so it does that perfectly or with very little error. However, when the
model fitted on extremely small data set tries to make prediction on the validation set, the RMSE
shoots up. This is because the model is not mature enough to make good predictions on validation
set as it has not learned all the variation present in the data. The small training data set does not
provide the model with all the necessary variation present in the data. However, aside from this when
the data set size is increased it is observed that validation error starts to decrease and training error
starts increasing. Because, now the model is able to learn the complex variation present in the data
and now it is unable to fit the data perfectly even for the train data. In the last few points of the
plots a nice trend is observed for each PLSR model. When the data size is large enough the difference
between the train and validation score becomes small, the space between the validation and training
lines is narrowed down and both train and validation loss trends become stable. This shows that at
that specific sample size point, the model fits the data well and the model is generalized.

The learning curves for the CNN models show a nice trend. It is observed in all the plots that
the training and validation RMSE gets better with the increase in the data size. Furthermore, the
generalization gap between the validation and training loss becomes small at the end and both loss
trends are approximately flat and stable near the end which shows that the models are stable and
generalized. The loss trends for augmented data where better stabilized compared to the raw data
loss trends which showed some fluctuations in the RMSE towards the end. This shows that the model
stabilized better when the sample size was larger. In general, the learning curves plots show that all
techniques were successful in enhancing the performance of CNN. Some augmentation methods require
more samples to show best performance but all methods showed an approximate RMSE of 0.5 while the
raw data learning curves with just 175 samples showed an approximate RMSE of just 0.9. This shows
the potential of the augmentation methods and the effects of a larger sample size. Furthermore, an
interesting behavior was observed in figure 28b. The figure shows that both training and validation loss
experience a huge bump and the RMSE value shoots. This behavior is not according to the preceding
and succeeding trend. A possible reason for this event can be the training process of the ANNs. ANNs
tend to converge to optimal local minima in search of finding the global minima. As there are multiple
local minima present sometimes the model might converge towards a bad local minima and may never
recover. Furthermore, the use of early stopping will only make the recovery task harder for the model
because if the model is not able to improve the loss within the specified number of epoch then the
training will terminate. Therefore, the reason of the huge bump is loss observed in figure 28b could be
due to the reason that the CNN model converged towards a bad minima and was not able to recover.

5.7 ANN and Robust Performance

One of the targets while developing artificially intelligent models is to develop a model that is robust.
Robust in machine learning terms is a property of a model to produce consistent results and it charac-
terizes how the model performs for new independent data. The performance of the ANN depends on
the ability of the model to find the best local minima. The performance of ANNs vary for each training
run due to the fact that there are a number of local minima present and the model may not be able
to find the same minima every time. Random initialization of weights for each training run is also a
factor for this varying performance. It is possible to restrict the ANNs to get deterministic results but
again the question is whether it is in the best interest. ANNs are non linear models that generalize
on data in high dimensional spaces. In search of the global minima, ANNs can find a optimal local
minima and the convergence of the model is based on that. Due to the presence of multiple local
minima the model cannot know that which minima is the best. Even though it performs well on a
particular minima there might be that a better one exists and on the next training run the model
may be able to converge towards it. Therefore, if the model is restricted to have deterministic results
then it is not possible to have the ability to converge towards a more optimal solution. Furthermore,
the non deterministic results can make it difficult to evaluate the robustness of a model. Therefore,
concrete statements cannot be made on the performance of a model based on one or two evaluation
results. Even in this study the results for the CNN model are based on the average of results of five
repetition of the experiment.

While training ANNs, an interesting factor to discuss is that whether the fluctuating results of
the model are significant or not. By significant it means that whether the difference in result is due
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the property of the model converging towards a different minima or it has something to do with the
data. For instance a model can perform bad on the same data it performed well on during different
training experiment executions. The difference in performance may be based on the possibility that
there is some complex variation present in the data and the model is not complex enough to capture it.
Another possible reason could be that the model was just unlucky to converge towards a bad minima
and it was just not able to recover from that state. An example of this was observed in the learning
curves experiment for the PLSR augmentation method.

Furthermore, the generalization of an ANN is also affected by the sample size. if the data size
is not large enough then the fluctuations in the results are more because the model was not able to
generalize well. This factor was also observed in this study. The results of all 5 executions of the raw
data experiment for CNN model were reviewed and it was observed that the minimum RMSE out of
all 5 values was 0.82 and the maximum was 1.03 (Average: 0.88). In order to test the hypothesis
of the model generalizing better with a large enough sample size, the results of all 5 executions of
the EMSC evaluation experiment were also observed. The minimum RMSE value observed for the
augmented data experiment was 0.57 and the maximum was 0.68 (Average: 0.62). So, not only did
the performance of the model increased by adding more samples through augmentation but the model
generalized better as the difference between the maximum and minimum RMSE values decreased.

6 Conclusion

In this study, three different augmentation methods i.e. linear augmentation, PLSR augmentation and
EMSC augmentation were developed and tested on a CNN. The purpose was to study the performance
of deep learning models on data sets that contain more features than samples and to observe if increas-
ing sample size using data augmentation leads to any improvement in performance of the models. The
results of the experimentation performed in this study showed that using augmentation techniques to
increase sample size did improve the performance of the CNN model. EMSC augmentation method
proved to be best performing augmentation method in this study as the data augmented using this
method resulted in the most enhancement of the model performance. The linear augmentation method
also showed great promise and resulted in a significant enhancement of performance for the CNN. In
terms of comparison, the PLSR augmentation came last out of the three methods and the evaluation
results of this method showed no signs of performance enhancement rather it showed a decrease in
result values. Furthermore, the effect of increasing sample size using the augmentation methods was
also studied using learning curves. The learning curves plots showed that all augmentation methods
were successful and managed to enhance CNN performance. It is true that there was difference in the
sample size requirement for the different augmentation methods but all methods managed to show a
better RMSE value for the CNN when compared to the raw data which only had 175 samples. The
difference in performance observed for the PLSR augmentation in the learning curves plot and the
evaluation experiment on original test data is interesting. The approximate validation RMSE value
of 0.6 observed in the learning curve plot shows some hope and potential for PLSR augmentation
method. The reason for the PLSR failing on the test data is not clear and requires further testing.
Based on the results observed in this study and the results reported in other studies it can be
concluded that ANNs possess the ability of outperforming linear models but generalizing this statement
and claiming that ANNs are always better is not correct. PLSR model with preprocessed data proved
to be the best model in this study. ANNs managed to outperform PLSR for raw data but this came
at the cost of longer training times and a greater amount of effort spent on model architecture and
parameter selection. The choice of model depends upon the end requirements and the problem at hand.
Furthermore, increasing the number of samples using augmentation can improve the performance and
produce better ANN models. The performance of CNN enhanced and the model showed more stability
when the sample size was larger for the augmentation methods compared to the small sample size of
raw data. Data augmentation can be useful technique for increasing sample size and enhancing model
performance but an in depth analysis and evaluation of the methods used for augmentation is required.
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