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Genetic variants associated with two major 
bovine milk fatty acids offer opportunities 
to breed for altered milk fat composition
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Abstract 

Background: Although bovine milk is regarded as healthy and nutritious, its high content of saturated fatty acids 
(FA) may be harmful to cardiovascular health. Palmitic acid (C16:0) is the predominant saturated FA in milk with 
adverse health effects that could be countered by substituting it with higher levels of unsaturated FA, such as oleic 
acid (C18:1cis-9). In this work, we performed genome-wide association analyses for milk fatty acids predicted from 
FTIR spectroscopy data using 1811 Norwegian Red cattle genotyped and imputed to a high-density 777k single 
nucleotide polymorphism (SNP)-array. In a follow-up analysis, we used imputed whole-genome sequence data to 
detect genetic variants that are involved in FTIR-predicted levels of C16:0 and C18:1cis-9 and explore the transcript 
profile and protein level of candidate genes.

Results: Genome-wise significant associations were detected for C16:0 on Bos taurus (BTA) autosomes 11, 16 and 27, 
and for C18:1cis-9 on BTA5, 13 and 19. Closer examination of a significant locus on BTA11 identified the PAEP gene, 
which encodes the milk protein β-lactoglobulin, as a particularly attractive positional candidate gene. At this locus, we 
discovered a tightly linked cluster of genetic variants in coding and regulatory sequences that have opposing effects 
on the levels of C16:0 and C18:1cis-9. The favourable haplotype, linked to reduced levels of C16:0 and increased levels 
of C18:1cis-9 was also associated with a marked reduction in PAEP expression and β-lactoglobulin protein levels. 
β-lactoglobulin is the most abundant whey protein in milk and lower levels are associated with important dairy pro-
duction parameters such as improved cheese yield.

Conclusions: The genetic variants detected in this study may be used in breeding to produce milk with an improved 
FA health-profile and enhanced cheese-making properties.
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Background
Bovine milk is a staple food ingredient in billions of 
people’s diet, where it serves as an important source of 
proteins, fat, minerals and vitamins. Nonetheless, the 
positive effects of cow milk on human health have been 
debated, primarily due to its high content of saturated 

fatty acids (FA) as compared to the level of unsaturated 
acids [1, 2]. Palmitic (C16:0) and oleic (C18:1cis-9) acids 
are the dominant saturated and unsaturated milk FA 
respectively, and together they represent 40 to 50% of 
the total milk fat content [3]. Replacing dietary saturated 
with unsaturated fat has been shown to reduce the risk of 
cardiovascular diseases [1, 4], and might also reduce the 
risk of insulin resistance and type-2 diabetes [5].

Both C16:0 and C18:1cis9 have moderate heritability 
estimates ranging from 0.1 to 0.3 in the extensively stud-
ied Holstein–Friesian breed [6–8]. In Norwegian Red 
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cattle, the heritability estimates are equal to 0.13 and 0.14 
for C18:1cis9 and C16:0, respectively [9], which raises the 
possibility of using selective breeding to improve the FA 
profile of cow’s milk.

Detection of causal polymorphisms and implementa-
tion of genome information in selection typically involves 
the use of phenotypic data from thousands to, even, mil-
lions of individuals [10]. Traditionally, characterisation 
of milk fat composition has been performed using gas 
chromatography (GC), but this becomes costly when 
thousands of samples must be analysed. An alternative is 
to predict milk fat composition using Fourier transform 
infrared spectroscopy (FTIR) [9, 11–15], which produces 
fast, cheap and detailed phenotypes.

Compared to the widely used single nucleotide poly-
morphism (SNP) panels, the use of whole-genome 
sequence data has the potential to detect causative vari-
ants underlying a given trait, or at least genetic vari-
ants that are in very close linkage disequilibrium (LD) 
to the causative variants. Once identified, such variants 
can be used to develop cost-effective genotyping panels 
for validating quantitative trait loci (QTL) and for more 
accurate genomic predictions that persist across diverse 
genetic backgrounds and multiple generations [16, 17]. 
Moreover, coordinated international actions to gener-
ate genome-wide maps of functional elements for animal 
genomes will provide valuable knowledge to understand 
the context within which these variants operate, and 
might eventually pin down the variants and candidate 
genes underlying the genetic basis of complex traits [18].

In this study, our aim was to identify and improve 
the current understanding of genetic variants underly-
ing C16:0 and C18:1cis-9 content in bovine milk using a 
combination of imputed sequence data, mRNA- and pro-
tein-expression profiling. Initially, FTIR-predicted phe-
notypes were combined with array-based SNP genotypes 
in a genome-wide association study (GWAS) to identify 
QTL that have an impact on the concentration of the two 
FA. Next, a candidate gene region was fine-mapped using 
the imputed sequence variants (SNPs and indels). Finally, 
gene expression data from mammary epithelial cells and 
milk protein measurements were used to complement 
the analysis.

Methods
Estimation of bovine milk fat composition from FTIR 
spectroscopy data
Milk fat composition was estimated from FTIR spec-
troscopy data as described in Olsen et al. [9] with some 
adjustments for the number of spectra and animals used. 
In brief, 224 milk samples obtained from a previous feed-
ing experiment and 659 samples from field sampling 
were analysed in parallel by FTIR and GC with flame 

ionisation detector (GC-FID) reference analysis. FTIR 
spectra (regressors) were subsequently calibrated against 
GC-FID reference values (regressands) by using powered 
partial least squares regression. Regressands were pre-
sented as percentages of GC-FID FA values to total fat to 
decrease the correlation between the FA and total fat in 
milk samples to a minimum value. The calibration model 
was applied to 4,619,737 infrared spectra from 640,304 
cows. In this study, we used the C16:0 and C18:1cis-9 
traits.

A detailed description of the estimation of heritabilities 
and daughter yield deviations (DYD) is in Olsen et al. [9]. 
Briefly, the heritability estimates were obtained from a 
dataset consisting of 2,209,486 FA profiles from 426,505 
cows with a pedigree of 716,753 animals using the DMU 
software version 6 release 5.1 [19].

DYD for 2434 genotyped artificial insemination (AI) 
bulls were estimated using the 4,619,737 spectra for the 
full dataset of 640,304 cows with a pedigree of 999,470 
animals as the sire averages of daughters’ predicted FA 
compositions, which were each corrected for daughter 
fixed effects, non-genetic random effects and half of the 
genetic effects of the bulls mates [9]. DYD were then used 
as pseudo phenotypes in later GWAS.

The concentration of the two FA together with the 
accuracy of prediction (in the form of cross-validated 
squared Pearson product-moment correlation coeffi-
cients;  R2CV) and heritabilities of the individual animal 
predicted FA concentrations, were as reported in Olsen 
et al. [9]. In brief, the calibration of FTIR spectra against 
GC-FID reference values was assessed by 20-fold cross-
validation, i.e. the calibration data were divided ran-
domly into 20 segments and each of them was used as an 
independent test set at a time [9]. Mean concentrations 
were 25.3 and 21.4% of total fat for C16:0 and C18:1cis-9, 
respectively.  R2CV were equal to 0.77 and 0.94 and her-
itabilities to 0.16 and 0.14, for C16:0 and C18:1cis-9, 
respectively.

SNP genotyping and imputation
Details on genotyping, DNA extraction and imputation 
were previously described by Knutsen et al. [15]. In brief, 
genotypes of the animals were obtained from the routine 
genotyping of bulls performed by Geno Breeding and AI 
Association. The bulls were genotyped on at least one of 
four different platforms in order to make a genome-wide 
high-density SNP dataset for the association analyses: 
the Affymetrix 25K SNP array, a custom Affymetrix 50K 
SNP array, the Illumina 54K BovineSNP50 BeadChip and 
the 777K Illumina BovineHD Genotyping BeadChip, 
combined, and imputed to the 777K density. Imputation 
was done using the Beagle software version 4.1 [20], with 
effective population size (Ne) set to 200 and number of 
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phasing iterations set to 20. The remaining parameters 
were set to default values. Map positions were based on 
the UMD 3.1 reference assembly [21], as this was the 
most mature assembly available at the time of analy-
sis, but map positions of the ARS-UCD1.2 assembly 
were also added to the Additional data using the NCBI 
Genome Remapping Service (https:// www. ncbi. nlm. nih. 
gov/ genome/ tools/ remap).

For each imputation step, several genotype quality 
control filters were applied: (1) SNPs with a minor allele 
frequency lower than 0.01 and a Hardy–Weinberg equi-
librium p-value less than  1e−7 were removed; (2) animals 
with more than 10% Mendelian errors were excluded 
from the dataset, and all remaining genotypes with Men-
delian errors were set to missing and later imputed; (3) 
SNPs and animals with a call rate lower than 95% were 
discarded; and (4) for each step, the imputation quality 
was tested using fivefold cross-validation. SNPs with a 
mean discordance rate (calculated as percent incorrectly 
imputed genotypes per marker averaged over each fold) 
between true and imputed genotypes above 10% were 
removed, since these SNPs are likely to be misplaced in 
the reference genome assembly [22]. SNPs on unplaced 
scaffolds and sex chromosomes were also discarded from 
the dataset due to insufficient quality.

In total, 2434 genotyped AI bulls were considered for 
the initial 777k GWAS. After filtering bulls with less than 
20 daughters, the dataset contained 1811 animals with 
imputed genotypes for the 777K Illumina BovineHD 
BeadChip. Of the 1811 bulls, 57 had genotypes imputed 
from the Affymetrix 25K array, 237 were imputed from 
the custom Affymetrix 50K SNP array, 1113 from the 
Illumina 54K BeadChip, and 404 were already genotyped 
on the 777K Illumina BovineHD BeadChip. The resulting 
dataset consisted of 1811 bulls with trait data in the form 
of DYD based on 20 or more daughters for the relevant 
FA and with genotypes for 609,361 SNPs distributed over 
all 29 autosomes. The average number of daughters per 
bull was ~ 300 in all steps.

Whole‑genome sequencing, variant calling and sequence 
imputation
Whole-genome sequencing data were obtained from 153 
animals (132 AI bulls and 31 cows) as described in Olsen 
et al. [23]. All reads were aligned against UMD 3.1 using 
the BWA MEM algorithm version 0.7.10. Variant calling 
was done with the FreeBayes tool version 1.0.2 [24]. Miss-
ing genotypes in the resulting variant call format (VCF)-
file were imputed and phased using Beagle version 4.1 
[20]. This phased dataset was used as a reference panel 
for imputing the 1811 animals from high-density panels 
to sequence density at selected regions with Beagle using 
the same imputation parameters as described before, 

except that the allele miscall rate was set to 0.01. In a 
final filtering step, variants with a minor allele frequency 
higher than 0.02 were retained. In addition, the variants 
with a Beagle’s reported allelic  R2  (AR2) lower than 0.7 
were filtered, as this has been shown to be a robust and 
reliable threshold for filtering imputed sequence variants 
[25–27].

Genotyping of cows
The 36 cows used for RNA sequencing were also geno-
typed on the Illumina BovineSNP50 BeadChip. Blood 
samples were collected by certified personnel, and DNA 
extraction and genotyping were performed according to 
the manufacturer’s protocol. Genotypes were quality-
checked and imputed to sequence density as previously 
described.

Genome‑wide association study
This study was initiated by conducting a single marker 
GWAS for C16:0 and C18:1cis-9 concentration with gen-
otypes for 609,361 genome-wide distributed SNPs and 
phenotypes in the form of DYD from 1811 elite AI bulls, 
with follow-up analyses of a selected region imputed to 
sequence level density. The initial GWAS was conducted 
with the GCTA software [28] for computational feasibil-
ity, while the follow-up analyses of selected regions were 
analysed using the ASReml package version 3.0 [29] to 
be able to weight the analysis by number of daughters for 
each DYD and to be able to use genotype dosage data in 
the model.

A mixed linear model single-marker association analy-
sis was performed with the—mlma-loco option of GCTA 
[30]. The model fitted to the performance information for 
each trait and each SNP was:

where DYD is the vector of bull performances, 1 is a 
vector of ones, µ is the mean term, b is the fixed addi-
tive effect of the candidate SNP to be tested for associa-
tion, x is the SNP genotype indicator variable coded as 
0, 1 or 2, Z is an incidence matrix relating phenotypes to 
the corresponding random polygenic effects, a is a vector 
of random polygenic effects, estimated using a genomic 
relationship matrix calculated with all SNPs except those 
on the chromosome where the candidate SNP is located, 
and e is the random residual effect. The var(a) will be re-
estimated each time a chromosome is excluded from cal-
culating the genomic relationship matrix. The suggestive 
significance level was set to p = 1e−5, which is the default 
setting in the R-package qqman [31] used for producing 
manhattan plots, representing a more lenient significance 
threshold for a potential follow-up. The genome-wise 
significance level was set to 8.2e−8, corresponding to a 

(1)DYD = 1µ+ xb+ Za + e,

https://www.ncbi.nlm.nih.gov/genome/tools/remap
https://www.ncbi.nlm.nih.gov/genome/tools/remap
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nominal type I error rate of 0.05 and Bonferroni correc-
tion for 609,361 SNPs.

Re‑analyses of the candidate gene region on BTA11 using 
sequence‑level variants
All sequence-level polymorphisms located between 
90 and 107  Mb on BTA11 that passed quality control 
(102,021 variants) were analysed for association with 
C16:0 and C18:1cis-9 content using ASReml. The model 
that was fitted to the information on performance for 
each trait—marker combination was:

where DYD is the vector of bull performances weighted 
by the number of daughters, 1 is a vector of ones, µ is the 
overall mean, x is a vector of marker genotypes coded 
as a decimal number between 0 and 2 depending on the 
estimated dosage of the alternate allele (as reported by 
Beagle 4.1), b is the fixed effect of the marker, Z is an inci-
dence matrix relating phenotypes to the corresponding 
random polygenic effects, a is a vector of random poly-
genic effects, and e is a vector of residual effects. Genetic 
and residual variances were estimated from the data. a 
was assumed to follow a normal distribution ~ N

(

0,Aσ
2
A

)

 
where A is the relationship matrix derived from the 
pedigree, and σ2

A
 is the additive genetic variance. e was 

assumed to follow a normal distribution ~ N
(

0,Wσ
2
e

)

 
where σ2e is the environmental variance and W is the 
matrix of weights computed by ASReml based on the 
number of daughters in the DYD mean. Association anal-
ysis was performed for each marker. Since ASReml does 
not automatically output p-values for the marker effect, 
these were calculated from the F statistics for the con-
ditional sum of squares, the numerator degrees of free-
dom and the denominator degrees of freedom with the 
R-function pf() from the stats package version 3.4.0 [32].

To estimate the proportion of genetic variance 
explained by all the top SNPs for each trait, the genotypes 
of markers with a p-value passing Bonferroni correction 
was extracted and GCTA reml was run with and without 
the top SNPs as fixed effects using the qcovar option. The 
resulting drop in genetic variance will give an indication 
of the proportion of genetic variance explained by these 
QTL.

Haplotype analyses
Pairwise LD measurements  (r2) were estimated and 
haplotypes were identified for the top-ranking markers 
within the QTL region using the Haploview 4.2 software 
[33] on phased genotypes. Haplotypes were defined by 
Haploview according to the confidence intervals strategy 
[34].

(2)DYD = 1µ+ xb+ Za + e,

RNA isolation, sequencing and read mapping
Gene expression levels were obtained using read counts 
from mRNA isolated from somatic milk cells (SMC) of 36 
cows from the research herd at the Norwegian University 
of Life Sciences, Ås, Norway. The cows were in different 
parities due to the limited size of the research herd. All 
cows were fed the same diet. The animal pedigree was 
used to avoid selection of close relatives. All milk sam-
ples were collected approximately 50 days (range 47–55) 
after calving. This sampling period was chosen since it 
roughly coincides with the peak expression of several 
relevant genes involved in bovine milk fat synthesis [35] 
and with the top of the lactation curve of Norwegian Red 
cows [36].

In our study, we isolated mRNA from SMC. How-
ever, most studies use mammary tissue from biopsies, 
which is an invasive sampling technique that has tech-
nical challenges and management issues in the recovery 
of the animals. In contrast, milk is excreted by the mam-
mary epithelial cells (MEC) lining the inside of the udder, 
which are subject to turnover and shed into the milk 
and therefore represent a proportion of the somatic cells 
found in milk [37]. Cánovas et al. [38] found that, com-
pared to other sources (e.g. mammary gland tissue, laser-
dissected MEC), the quality of the total RNA extracted 
from SMC was high. Moreover, the expression profile of 
genes investigated in SMC-derived material was highly 
correlated with the expression observed in laser-dis-
sected MEC. Several studies have confirmed the useful-
ness of this method [37, 39, 40].

Milk samples were collected manually 2 to 3  h after 
milking to maximise the number of viable cells present 
in the milk. Teats were cleaned with water followed 
by 70% ethanol before milking by hand, and 2 × 50 ml 
milk samples from each animal were collected in Fal-
con tubes. Samples were stored on ice immediately 
after collection and centrifuged at 4  °C for 10  min at 
2300g within 1.5  h to collect the cells that are at the 
bottom of the tubes. After centrifugation, most of the 
fat layer was removed with a clean pipette tip and the 
supernatant was decanted. Each pellet was dissolved in 
4 mL 1 × PBS by pipetting up and down and the liquid 
was transferred to a new 50  mL Falcon tube. Samples 
were centrifuged at 4  °C for 10  min at 2300g and the 
supernatant was decanted. Cell pellets were dissolved 
in 1 mL Trizol (Qiagen), and cells were lysed by pipet-
ting up and down. Samples were stored at − 80 °C until 
RNA extraction with Qiagen RNeasy Plus Universal 
Tissue Mini Kit (Qiagen) according to the manufac-
turer’s protocol. RNA concentrations and quality were 
measured with a NanoDrop8000 spectrophotometer 
(Thermo Fisher Scientific) and Agilent RNA 6000 assay 
on Agilent BioAnalyzer 2100 (Agilent Technologies), 
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respectively. All samples had an RNA integrity number 
(RIN) between 6.6 and 9.2. Samples were prepared for 
paired-end sequencing (2 × 150 bp) using the Illumina® 
TruSeq® stranded mRNA library preparation kits and 
sequenced by the Norwegian Sequencing Centre (www. 
seque ncing. uio. no) using the Illumina HiSeq 3000 
platform.

Before mapping, raw read quality was assessed using 
fastQC version 0.11.5 https:// www. bioin forma tics. babra 
ham. ac. uk/ proje cts/ fastqc/), Illumina adaptors were 
removed, and the sequences were quality-trimmed 
using cutadapt [41]. Cutadapt was set to cut adaptors 
with a minimum overlap length of 8 and low-quality 3′ 
ends were removed by setting a quality threshold of 20 
(phred quality + 33). An index of the UMD 3.1 reference 
genome was built, and reads were aligned to the refer-
ence genome using STAR version 2.3.1 [42]. Sorting and 
indexing of the resulting BAM files were completed using 
SAMtools version 1.3 [43]. The code for the described 
RNAseq mapping method is available as part of a bash-
script pipeline found at https:// gitlab. com/ fabian. gramm 
es/ RNAseq- analy sis/ (version 1.1.0). To look for novel 
splice variants of candidate genes, the BAM-files were 
assembled into transcripts using stringtie version 1.3.3 
[44]. Isoform fraction was set to 5%. All other settings 
were set to default values.

Effect of genotype on gene expression
A weakness that we identified in the use of somatic milk 
cells as the basis for RNAseq analysis was that the expres-
sion levels of FA metabolism genes varied considerably 
between the sampled cows. Even after accounting for 
sequence library size, there was an approximately 100-
fold difference in the expression level of key FA metabo-
lism genes (such as FABP3, SCD1 and DGAT1) between 
samples with the highest and lowest levels of expression. 
Given that we collected the samples from cows raised 
on the same diet and kept in the same environment at 
the same lactation stage, we believe that the variation in 
FA metabolism gene expression level was due to varia-
tion in the proportion of MEC compared to white blood 
cells (immune cells) in each sample. To adjust for this, 
we included an effect of the total expression level of the 
other five major milk protein genes (CSN1S1, CSN2, 
CSN1S2, CSN3 and LALBA) as a covariate in the linear 
model run by Matrix eQTL [45]. The use of this covariate 
will be an indirect way of adjusting for the sample MEC 
to white blood cell fraction.

The percentage of PAEP expression variance explained 
by the top-SNP genotype was calculated by modelling the 
expression as a function of the animal genotype using the 
lm function in R.

Allele‑specific expression
Allele-specific expression (ASE) analysis was done 
using the ASEReadCounter tool from the Genome 
Analysis Toolkit [46] with default settings. Before run-
ning the tool, duplicated reads were removed using 
markdup from Sambamba [47]. ASEReadcounter pro-
duces a table with separate read counts for each het-
erozygous bi-allelic variant in the provided BAM files. 
To test for significant levels of ASE, we used a two-
sided exact binomial test with the R-function binom.
test and with the number of trials equal to total read 
counts at each locus. The test gives a p-value for the 
hypothesis that the number of reads for each allele at 
heterozygous loci will be approximately equal when 
sequenced [48]. The p-values were adjusted using the 
p.adjust R-function with method = “bonferroni”.

Protein analysis
The relative concentration of β-lactoglobulin (β-LG) was 
determined by using an Agilent capillary electrophore-
sis (CE) system (G1600AX), installed with the Agilent 
ChemStation software (Agilent Technologies, Germany) 
as described in Ketto et  al. [49]. The concentration in 
β-LG was determined by adjusting the relative concen-
tration of β-LG with the total protein content determined 
by MilkoScan FT1 (Foss Electric A/S, Hillerød, Den-
mark). The effects of milk protein genotypes on the con-
centration of β-LG in milk were analysed using the lme4 
R package [50], where the effect of cow was treated as a 
random effect. Effects of parity, selection line and stage 
of lactation were not significant and therefore they were 
excluded from the statistical analysis.

Variant annotation
All variants were annotated using the Ensembl Variant 
Effect Predictor web tool [51], based on the Ensembl Bos 
taurus annotation release 88 (ftp:// ftp. ensem bl. org/ pub/ 
relea se- 88/).

Results
Genome‑wide association analyses on a high‑density SNP 
dataset
To identify chromosomal regions with a major impact 
on C16:0 and C18:1cis-9 levels, we performed an initial 
GWAS using 1811 animals genotyped for 609,391 SNPs. 
As shown in Fig.  1, genome-wise significant associa-
tions (p-value < 4.1e−8) were detected for C16:0 level on 
BTA11, 16 and 27, and for C18:1cis-9 level on BTA5, 13 
and 19. Suggestive findings (p < 1e−5) were detected on 
BTA1, 4, 5, 6, 8, 17 and 18 for C16:0 level and on BTA2, 7, 
11, 14, 16, 22 and 26 for C18:1cis-9 level (Fig. 1). Results 

http://www.sequencing.uio.no
http://www.sequencing.uio.no
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://gitlab.com/fabian.grammes/RNAseq-analysis/
https://gitlab.com/fabian.grammes/RNAseq-analysis/
ftp://ftp.ensembl.org/pub/release-88/
ftp://ftp.ensembl.org/pub/release-88/
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for all significant marker and trait combinations are in 
Table S1 (see Additional file 1: Table S1).

The most significant associations were between C16:0 
level and five SNPs spanning a 24-kb region located at 
103.3 Mb on BTA11. This region included the progesta-
gen-associated endometrial protein (PAEP) gene encod-
ing β-lactoglobulin (β-LG) and the glycosyltransferase 6 
domain containing 1 (GLT6D1) gene encoding a protein 
of the same name. The two top SNPs for C16:0 level had 
equal p-values and frequencies (p-value = 3.34e−14, 
MAF = 0.34). The first (rs110186753; A/G) is situated in 
intron 1 of the PAEP gene at 103,302,351 bp, and the sec-
ond rs109087963 (G/A) is located 1940  kb downstream 
of PAEP at 103,308,330 bp. These SNPs also showed an 
association with C18:1cis-9 level (p-value 1.91e−6), with 
alleles having opposing effects. That is, the G and A alleles 
of rs110186753 and rs109087963, respectively, were asso-
ciated with elevated levels of C16:0 and reduced levels of 
C18:1cis-9. The proportion of genetic variance explained 
(2p(1-p)α2/σ2A) by each of these SNPs was 3.4% for C16:0 
level (allele substitution effect: 0.18  g/100  g milk fat) 
and 1.4% for C18:1cis-9 level (allele substitution effect: 
− 0.12 g/100 g milk fat).

Fine‑mapping of the QTL region on BTA11
To fine-map the QTL on BTA11 and possibly identify 
underlying causative variants, we re-analysed phe-
notype data for C16:0 and C18:1cis-9 using 109,401 
imputed sequence variants spanning a region from 90 
to 107  Mb. The results revealed a cluster of 174 vari-
ants associated with both C16:0 and C18:1cis-9 levels 
with largely similar p-values, MAF and allele substitu-
tion effects (Fig.  2). Alleles associated with increased 
concentration of C18:1cis-9 were linked to reduced 

concentrations of C16:0 and vice versa. The proportion 
of genetic variance explained by the QTL passing Bon-
ferroni correction for each trait was 0.11 for C16 (QTL 
on BTA11, 16, and 27) and 0.15 for C18:1 (QTL on 
BTA5,11,13, and 19). Results for all significant marker 
and trait combinations are in Table S2 (see Additional 
file 2: Table S2).

Closer examination of pairwise linkage disequilib-
rium (LD) measurements  (r2) between variants in the 
region, revealed that all 174 variants were in almost 
perfect LD with each other and could be combined 
into two major haplotypes extending from ≈10.5  kb 
upstream of the PAEP transcription start site, through 
the PAEP gene and into the neighbouring gene GLT6D1 
(Fig.  2). Two predominant haplotypes had frequencies 

Fig. 1 Manhattan plots of GWAS results for C16:0 (top) and C18:1cis-9 
(bottom). Chromosomes and marker order are represented on the 
x-axis, with the significance of association (−log10 p-value) between 
each marker and trait shown on the y-axis. The red line represents the 
genome-wise significance level (p-value < 4.1e−8), while the blue line 
represents the suggestive significance level (p-value < 1e−5)

Fig. 2 Analysis of C16:0 using sequencing data. (Top) Association 
analysis of C16:0 in the region between 103.2 and 103.4 Mb on BTA11 
using variants imputed from sequence data. The zoomed region 
showed in the bottom figure, is indicated with a vertical grey bar. The 
y-axis shows −log10(p-value) for each marker-trait association, while 
the x-axis denotes marker position. The red diamond indicates the 
most significant marker for C16:0; rs110992345 at 103,304,509 bp. 
Colouring indicates the level of LD  (r2) between each marker and 
rs110992345. Gene annotation information according to Ensembl 
annotation release 88 is shown with grey and black bars reflecting 
positive and negative strand orientations, respectively. (Bottom) 
An expanded plot showing variants and their effect relative to the 
position in the PAEP gene. The y-axis shows −log10(p-value) for each 
marker–trait association, while the x-axis denotes marker position. 
Point colour indicates variant effect class according to the Ensembl 
annotation release 88
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of 0.29 and 0.54, while less frequent haplotypes, dif-
fering from the two major haplotypes only by two and 
three SNPs, were found with frequencies of 0.04 and 
0.06. Two missense variants (rs110066229 in exon 3 
and rs109625649 in exon 4) encode the A and B vari-
ants of the protein β-LG encoded by PAEP [52], and 
were present in the identified haplotype block. Accord-
ingly, our two major haplotypes were denoted A and B. 
The more frequent B haplotype includes alleles associ-
ated with reduced levels of C16:0 (allele substitution 
effect: −  0.2  g/100  g milk fat) and increased levels of 
C18:1cis-9 (allele substitution effect: 0.14 g/100 g milk 
fat), i.e. the desirable FA ratio. Table S3 (see Additional 
file  3: Table  S3) provides a more detailed description 
of the 174 markers assembling the haplotype block, 
including the haplotype A and B alleles and variant 
effect predictions.

The haplotype included variants in both the coding and 
regulatory regions of PAEP. After variant annotation, a 
polymorphism in exon 3 (rs109990218 at 103,304,656 bp) 
was found to potentially affect alternative splicing of 
exons in different transcripts (Fig.  2), but no transcript 
splice variants (freq. > 0.05) were found. The most sig-
nificant SNP for C16:0 level was situated in intron 3 of 
PAEP (rs110992345; 103,304,509  bp, p = 1.35e−14), 
while the top-ranking marker for C18:1cis-9 level was 
2  kb upstream of PAEP (rs110920335; 103,300,718  bp, 
p-value = 1.35e−8), but no obvious causal function 
could be assigned to either of these SNPs. Tightly linked 
to these top SNPs, and highly significant, were the two 
known missense variants determining the β-LG A and 
B variants. Lastly, the haplotype block contained two 
variants in the 5’ untranslated region of PAEP, a region 
that might influence gene expression (rs41255685 at 
103,301,690  bp and rs41255686 at 103,301,694  bp both 
with a p-value of 9.5e−14).

Gene expression analyses
To investigate whether any of the significant variants 
within the two haplotypes were associated with differ-
ential gene expression of the two genes spanned by the 
haplotype block (i.e. whether they generate a cis expres-
sion QTL effect; cis eQTL), mRNA was isolated from 
somatic milk cells and sequenced to quantify expression 
of the genes. Although it is included in the QTL region, 
GLT6D1 was not found to be expressed in any sample. 
In contrast, PAEP was highly expressed in all samples. 
Therefore, subsequent analyses were directed towards 
this gene.

SNPs that were significant at the genome-wide level, 
and/or situated within a region extending 5  kb up- and 
downstream from PAEP, were tested for their association 
to the expression level of PAEP adjusted by total read 

count of all measurable milk protein mRNAs (see “Meth-
ods” Section). The analysis showed that all 93 tested poly-
morphisms were significantly (p-value < 0.03) associated 
with PAEP expression (see Additional file  4: Table  S4). 
Their association (p-values) was relatively similar, reflect-
ing the similarity in allele frequency and LD between the 
tested variants. To illustrate this, the PAEP expression 
levels relative to genotypes for rs110992345, which is the 
marker most significantly associated with C16:0 level, is 
shown in Fig. 3a. In Fig. 3a, the T allele of rs110992345 
which is present in the frequent and favourable B haplo-
type, and hence associated with lower PAEP expression, 
is compared to the C allele found in the A haplotype.

To validate the apparent difference in allele-depend-
ent expression levels, we also tested for ASE in the 15 
animals that were heterozygous for the seven variants 
located in exons and untranslated regions (UTR) of 
PAEP. Concordant with the results of the eQTL analysis, 
we found that in 98 out of 105 tests for ASE, the alleles 
present in the B haplotype were expressed at a signifi-
cantly (adjusted p-value < 0.05) lower level than the alleles 
present in the A haplotype (Fig. 3b). Fifty of the ASE-tests 
showed extremely low adjusted p-values (< 5.3e−50), 
with the most significant having 6598 reads from the 
A haplotype and 2635 reads from the B haplotype (see 
Additional file 5: Table S5).

Protein analyses
Finally, β-LG protein levels were quantified to test 
whether the haplotypes associated with differences in 
FA and PAEP expression levels also reflect differences in 
protein concentration level. One-hundred and thirty-six 
cows were genotyped for the two SNPs determining the 
A and B β-LG variants tagging the A and B haplotypes, 
respectively. The results showed that animals homozy-
gous for the B variant of β-LG (i.e. alleles of haplotype B) 
had on average 35% less β-LG than cows homozygous for 
the haplotype tagged by the A variant (Fig. 3c).

Discussion
C16:0 and C18:1cis-9 are the most abundant FA in bovine 
milk, but may have opposite effects on human health [1, 
4, 5], and genome-based selection strategies increasing 
the ratio of C18:1cis-9 to C16:0 in milk may offer ways to 
improve fat composition. In the current study, we com-
bined milk FA composition phenotypes with high-den-
sity SNP information and whole-genome sequence data, 
followed by gene expression and protein level analyses to 
detect genetic variants that influence the levels of these 
two FA in milk from Norwegian Red cattle.

The results revealed genome-wise significant QTL 
for C16:0 level on BTA11, 16 and 27, and for C18:1cis-9 
level on BTA5, 13 and 19. Subsequent analyses focused 
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on the QTL on BTA11 since it was the most signifi-
cant and showed opposite effects on levels of C16:0 and 
C18:1cis-9. This analysis revealed a haplotype block span-
ning multiple variants in regulatory and coding regions 
of the PAEP gene, including the two SNPs coding for 
the A and B variants of the PAEP gene product β-LG. 
The most frequent haplotype in the block (haplotype B, 
encoding the B protein variant) was associated with (i) 
a more favourable C16:0 to C18:1cis-9 ratio, (ii) lower 
PAEP expression and (iii) lower β-LG levels as compared 
to haplotype A.

Although this study detected variants in the PAEP gene 
that have an effect on milk FA, several previously pub-
lished GWAS have not identified variants near PAEP 
that significantly affect milk FA composition [53–56]. In 
this work, only predicted FA profiles with solid predic-
tion accuracies were used (0.77 for C16:0 and 0.94 for 
C18:1cis-9). Still, we cannot rule out the possibility that 
absorption patterns from other molecules in milk or 
other correlated FA created a false positive signal. The 

current study was conducted using Norwegian red cat-
tle, that may carry causative variants segregating private 
to this breed, which may explain why SNPs in the PAEP 
gene were found to be significant here, and not in most 
other studies. In a study using Holstein, Jersey, and cross-
bred cows and MIR predicted FA profiles in Australia, 
SNPs in PAEP were indeed found to significantly affect 
C18:1 concentration [57].

β-LG is the most abundant whey protein in bovine 
milk [58]. The two major protein isoforms, variants A 
and B, differ at mRNA positions 64 and 118 leading to 
ASP > GLY and VAL > ALA substitutions, respectively 
[52]. The association between PAEP allelic variants and 
milk production traits such as protein percentage, total 
fat yield and fat percentage in cows has been well docu-
mented [59, 60]. Previous studies have shown that β-LG 
can bind both saturated and unsaturated FA, especially 
C16:0, in  vitro [61]. In dairy sheep, β-LG variants were 
shown to affect the concentration of C16:0 along with 
other FA [62]. Furthermore, the B variant associated with 

Fig. 3 Effects of the top associated variants on expression of the PAEP locus. a Relationship between cow genotypes (n = 34) of the top associated 
variant (Chr11_103304509_T_C; rs110992345) and expression of PAEP. The Y-axis denotes the expression of PAEP relative to the sum of expression 
of the five other milk protein genes. The red dot represents the mean expression value within each group. b ASE for 15 cows heterozygous for 
seven exonic SNPs (position shown in bp on BTA11) within the PAEP gene. The X-axis shows mean normalised counts (× 1000) per haplotype allele. 
Haplotype A is coloured black, and haplotype B is coloured grey. c The relationship between the two β-LG protein variants and the percentage of 
β-LG measured in 136 milk samples. The red dot represents the mean expression value within each group
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reduced C16:0 levels has been linked to favourable chem-
ical composition and technological parameters such as 
shorter coagulation time, a lower concentration of whey 
proteins together with higher casein levels and higher 
cheese yield [49, 63].

Still, the mechanism that underlies how different β-LG 
variants or the β-LG protein concentration in milk could 
influence individual FA is not understood. However, 
given the strong C16:0 binding capacity of β-LG, the QTL 
effect on the C16:0 to C18:1cis-9 ratio may be caused by 
differences in the affinity for the FA between the protein 
variants, a change in the concentration of β-LG due to 
differential expression of PAEP, or a combination of these 
effects.

Although differential expression of the two protein 
variants was evidenced, we consider that this difference 
is more likely related to linked polymorphisms within 
regulatory regions rather than within the protein variants 
themselves [64, 65]. PAEP expression in lactating mam-
mals is reported to be regulated by signal transducer and 
activator of transcription 5 (STAT5, also known as milk 
protein binding factor) and activator proteins 1 and 2 
[66]. Several polymorphisms located in putative bind-
ing sites for these transcription factors have been identi-
fied [67–69], but the extensive levels of LD in the region 
hamper our ability to pinpoint one specific variant as the 
underlying causative factor. However, several of our top-
ranked variants were located in these binding sites. Thus, 
we hypothesize that the effect on gene expression can 
be due to the combined impact of alterations at several 
regulatory sites within the haplotypes, rather than to one 
specific SNP.

In addition to the PAEP gene, our GWAS highlights 
several other genes with functions related to milk FA 
composition. For example, the QTL on BTA5 at 93.9 Mb 
affected both C16:0 and C18:1cis-9 levels in opposite 
directions, with the most significant SNP for C18:1cis-9 
level being situated in the first intron of the microsomal 
glutathione S-transferase 1 (MGST1) gene. Although 
the role of this gene in milk fat synthesis is unclear, it is 
known to be strongly associated with levels of milk fat, 
protein, and milk yield [25, 70, 71].

BTA13 harbours a QTL for C18:1cis-9 level in a 
region that also affects de novo-synthesis of short- and 
medium-chained saturated acids (especially C8:0) in our 
population [9, 15]. This QTL region contains at least two 
functional candidate genes, nuclear receptor coactivator 
6 (NCOA6) at 64.6  Mb and acyl-CoA synthetase short-
chain family member 2 (ACSS2) gene at 64.8 Mb. ACSS2 
facilitates the conversion of acetate to acetyl-CoA early in 
the de novo synthesis of FA [35], while NCOA6 is a tran-
scriptional coactivator enhancing, among other things, 
the activity of the peroxisome proliferator-activated 

receptor gamma (PPARG) gene, which encodes a well-
described transcriptional regulator affecting lipid storage 
[35, 72, 73].

Two distinct QTL were found for C18:1cis-9 level on 
BTA19, among which that at 51.38 Mb was located near 
the fatty acid synthase (FASN) gene, which encodes a 
multifunctional enzyme that catalyses de novo synthesis 
of milk FA [35].

We also detected chromosome-wise significant asso-
ciations between C18:1cis-9 level and markers situated 
near the stearoyl-coenzyme A desaturase 1 (SCD) gene 
on BTA26. SCD is involved in the synthesis of monoun-
saturated FA by introducing a double bond in the delta-9 
position of C14:0, C16:0 and C18:0, primarily, thus pro-
ducing the cis-9 variant of these acids [74].

The QTL affecting C18:1cis-9 level at 36.2  Mb on 
BTA27 spans the glycerol-3-phosphate acyltransferase 4 
(GPAT4) gene, which encodes the rate-limiting enzyme 
in the triacylglycerol biosynthesis pathway and plays a 
crucial role in milk fat biosynthesis [75].

The single gene with the most pronounced effect on 
milk fat composition reported in several other breeds, 
is diacylglycerol O-acyltransferase 1 (DGAT1) [56, 76]. 
The reported variants were not found to segregate in the 
whole-genome sequence data of our bulls, and we believe 
it is likely that this polymorphism has reached fixation in 
Norwegian Red.

As discussed in the previous paragraphs, QTL for 
C16:0 and C18:1 levels were found in several regions of 
the genome. The current study extends our previous work 
reported in Olsen et al.[9]. Although the QTL detected in 
our previous study [15] that investigated de-novo synthe-
sized FA largely overlapped with QTL reported in Olsen 
et al. [9], those for C16:0 and C18:1 levels in Olsen et al.
[9], were not confirmed in the work described in this 
paper. We believe that the main reason for these discrep-
ancies is that our data material, especially the marker 
density, have been increased markedly compared to that 
used in Olsen et al. [9]. While the GWAS of Olsen et al. 
[9] included only 17,000 SNPs, the current GWAS incor-
porated more than 600,000 markers imputed from 50 to 
777k density. In addition, the current work included DYD 
estimates using spectra from a much larger number of 
cows compared to the previous work, leading to variabil-
ity in the DYD values between the two data sets. Notably, 
the number of genotyped bulls with DYD for the analysis 
was also doubled, from ~ 900 to ~ 1800 bulls.

An essential requirement when using phenotype data 
(FA composition) from FTIR profiles is that individual 
acids are predicted with high confidence. The prediction 
accuracy of mid-infrared spectroscopy has been demon-
strated [9, 11, 13, 14, 77–80]. However, since FA are cor-
related to total fat, a possible concern is that the predicted 
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values reflect total fat rather than individual acids [81]. To 
address this, we assessed FA concentrations as percent-
ages of total fat instead of gram-acid-per-unit-of-milk [9], 
which led to a prediction accuracy (in the form of cross-
validated squared Pearson product-moment correlation 
coefficients) of 0.77 for C16:0 and 0.94 for C18:1cis-9 lev-
els. Soyeurt et  al.[77] suggested that the predicted con-
centrations were due to real absorbance values specific 
to the FA if the calibration correlations were higher than 
the correlations between total fat and FA. As reported in 
Olsen et al. [9], the C16:0 and C18:1cis-9 squared correla-
tion to total fat was 0.19 and 0.03, respectively, which is 
markedly lower than the cross-validated squared Pearson 
product-moment correlation coefficients. A consequence 
of correcting for total fat is that the prediction accuracies 
are expected to be lower than when FA concentrations 
are expressed as a quantity per unit of milk [13, 77, 78]. 
This was the case for C16:0, while the prediction accu-
racy of C18:1cis-9 was found to be comparable to those 
obtained by milk-based models [9, 13, 78].

Previous work from our group and others has shown 
that the concentrations of milk FA can have strong 
genetic and phenotypic correlation to each other [11, 82, 
83]. C16:0 and C18:1 levels have been found to be nega-
tively correlated to each other, but less to other FA [11]. 
Thus, selection for both traits in a desired direction could 
be feasible. Also, the prediction of one of these FA could 
depend on the prediction of the other. In addition, if this 
correlation holds also for future samples in other envi-
ronments, this correlation could be used to achieve reli-
able predictions [11].

In recent years, methods that explore ways to apply 
imputed sequence variants in GWAS and genomic pre-
dictions in dairy cattle have emerged [17, 84, 85]. The 
current study used sequence imputation to fine map a 
QTL region associated with 16:0 and C18:1cis9 levels in 
milk. With sequence density genotypes, we expect the 
causative variants to be present in the data for the direct 
estimation of their GWA p-value, and hence also their 
effect on the trait. While GWAS with imputed sequence 
data have previously confirmed causative loci in cattle 
[86], imperfect imputation, extensive LD and sampling 
error may result in the causative polymorphism not being 
identified as the most highly associated variant. However, 
using non-linear prediction models where most vari-
ant effects are set to zero and some are set to moderate 
or large values, seems promising [22, 86]. Other studies 
have shown improved genomic prediction reliabilities 
when including selected sequence variants from GWA 
in the prediction [17, 85]. Both these strategies could be 
used with our results. Nonetheless, further research to 
discover functional variants in the genome, and improve-
ments to the computational and statistical methodology 

of GWA and genomic prediction strategies is critical to 
realising the full potential of the sequence data approach.

Conclusions
The current study revealed a haplotype block with two 
major haplotypes spanning both coding and regulatory 
sequences of the PAEP gene, including the polymor-
phisms underlying the A and B variants of the β-LG pro-
tein. The most frequent haplotype B was associated with 
an altered C16:0 to C18:1cis-9 ratio and a marked reduc-
tion in PAEP expression and β-LG levels, which suggests 
a regulatory role of the causative variants that underlie 
the QTL. Furthermore, the B variant is considered to 
be beneficial for technological cheese production traits. 
Thus, our results may be applied in breeding to produce 
milk with a potentially healthier FA profile and more 
favourable cheese-making properties.
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