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Abstract 
Evidence suggests that miRNA signatures could have clinical applications as 
biomarkers for diagnostic and prognostic purposes. In standard analyses, 
miRNAs are considered to exist as well-defined features with a precise start 
and stop positions. In reality, they exist as a population of similar but slightly 
different isoforms - isomiRs. The project has developed methods to investigate 
isomiR populations and studied their variation between healthy and cancer 
patients. The methods presented here have been implemented in an analysis 
pipeline that allows standardised and scalable analysis of raw NGS datasets. 
The value of this approach has been demonstrated by investigating publicly 
available datasets to identify statistically significant changes in isomiR 
populations in various cancers. 

 

 

 

Sammendrag 
Forskning tilsier at miRNA-signaturer kan ha kliniske applikasjoner i 
diagnostisk- og prognostisk sammenheng. I konvensjonelle analyser antas 
miRNA å være veldefinerte enheter med nøyaktige start- og slutt-posisjoner.  
I virkeligheten eksisterer de som en variert populasjon av lignende, men noe 
ulike, isomerer. Gjennom dette prosjektet har det blitt utviklet metoder for å 
undersøke hvordan miRNA-populasjoner varierer mellom friske og syke. 
Metodene har blitt implementert i eksisterende programvare som muliggjør 
standardisert og skalerbar analyse av sekvenseringsdata. Verdien av denne 
tilnærmingen har blitt demonstrert ved å analysere offentlig tilgjengelige 
datasett for å identifisere statistisk signifikante endringer i miRNA-populasjoner 
i ulike krefttyper.  
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1  Introduction 
1.1  The genetic code 

The Central Dogma of molecular biology presented by Francis Crick in 1958 [1], stated 
that genetic information is carried from DNA to RNA to protein [2]. To this day it remains 
a fundamental backbone of genomics.  

Genes, in the traditional sense, are regions of the genomic sequence that produce 
functional proteins. The DNA sequence is first copied, producing messenger RNAs 
(mRNAs), through a process called transcription. mRNAs are in turn translated into 
proteins, with each triplet of nucleotides corresponding to an amino acid. Not all parts 
of the mRNA are effectively translated; both ends have untranslated regions (UTRs), 
and the mRNA often has regions of non-coding sequences called introns (Figure 1). 
The coding regions are commonly called exons. 

 

 

Figure 1. An mRNA transcribed by RNA polymerase II. The mRNA consists of coding sequences 
(exons), non-coding sequences (introns), and an untranslated region on either end. In addition, post-
translational modifications are made to 5’ (capping) and 3’ (polyadenylation) ends [3]. 

 

It was long believed that most of our genome consisted of protein coding genes. Thus, 
one of the most surprising discoveries of modern biology was the finding that no more 
than 2% of the human genome is in fact protein coding. The first draft of the human 
genome was made available in 2001 by means of the Human Genome Project [4]. 
Since then, millions of genomes have been sequenced, which has uncovered a wealth 
of genetic variation. 
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Variation in the human genome is often in the form of single nucleotide variants 
(SNVs). SNVs encompass any single nucleotide changes in the genomic sequence, 
whether germline or somatic, common, or rare. SNVs are generally called single 
nucleotide polymorphisms (SNPs) if they are germline variants naturally occurring in 
at least 1% of the population. These terms are similar and are sometimes used 
interchangeably, but they have different definitions. 

SNPs are widespread throughout the genome, and most are found outside of coding 
regions. As many as 43% of trait-associated SNPs have been reported to be 
intergenic, and 45% to be intronic [5]. Traits in this context are qualitative or 
quantitative characteristics of an individual such as hair colour, disease (qualitative) or 
height (quantitative). 

Since the completion of The Human Genome Project, there have been tremendous 
breakthroughs in the field of medical genetics, linking genotypes to phenotypes and 
uncovering disease causing- and associated genetic variants. 

Genome-wide association studies (GWAS) have been instrumental in these findings. 
GWAS are mainly used to identify SNPs that are associated with traits and disease. 
GWAS SNP arrays have unveiled the genetic origins of many diseases, especially 
Mendelian disorders such as cystic fibrosis [6]. However, for highly complex 
malignancies like cancer, the associations are less obvious. 

While GWAS are indeed based on whole genome sequencing, identification of non-
coding trait-associated SNPs is difficult due to incomplete annotations, imprecise 
background mutation rates, small effect sizes and a lack of knowledge of their 
functional roles in complex networks [7]. 
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1.2  The non-coding genome 

Coding centric approaches lack the ability to explain complex genotype-phenotype 
relationships. A broader outlook is needed to attempt to understand these intricate 
interactions. While there is an increasing consensus on the importance of the non-
coding genome in health and disease, making tangible connections is a challenging 
task. 

It was once assumed that all non-coding DNA was “junk” of little-to-no importance. Still, 
from a perspective of energy conservation, it would not make sense to meticulously 
conserve all of this “useless information” for no reason. With the development of next 
generation sequencing (NGS) technologies and bioinformatics, providing faster and 
more cost-effective analyses, more is being understood on the role of the non-coding 
genome.  

The non-coding genome includes repetitive regions, introns, regulatory elements, and 
non-coding RNAs (ncRNAs) of varying lengths. ncRNAs are further classified as either 
long (>200nt) or short (<200nt) depending on the length of their mature products 
(Figure 2).  

 

 

 

Figure 2. Types of non-coding RNAs. microRNA (miRNA), small interfering RNA (siRNA), small 
nuclear RNA (snRNA), PIWI-interacting RNA (piRNA), and small nucleolar RNA (snoRNA) are short 
non-coding RNAs under 200 nucleotides (nt) in length. Long non-coding RNAs (lncRNAs) are over 
200nt long (subtypes not shown) [8].   
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Non-coding regions make up approximately 98% of the human genome and produce 
90% of all transcribed sequences. Very little of the observed genetic variation, both 
within and between species, is found in protein coding genes. GWAS has revealed 
that the majority of observed diversity is located in transcribed non-coding sequences 
[9]. 

The most extensively studied species of ncRNAs today are microRNAs (miRNAs). It 
has been reported that they regulate over 60% of all protein coding genes, making 
them the largest class of gene regulators [10]. SNPs in miRNAs can have major impact 
on their function, and even alter miRNA biogenesis itself through changing the 
dynamics between the miRNA transcript and the processing enzymes. For example, a 
G > A substitution in the mir-30c gene (rs928508) increases miR-30c expression 
which further modulates chemoresistance in breast cancer [9]. 
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1.2.1 Epigenetics 
Gene regulation on a spatiotemporal level is governed by regulatory elements and 
non-coding RNAs. Neural development, cell differentiation and proliferation, tissue 
specificity, along with all other dynamic physiological processes, rely on epigenetic 
regulation. Unsurprisingly, dysregulation of these functions have repeatedly been 
reported to be associated with cancer [11]. 

While genetics is the study of the DNA sequence, epigenetics describe the 
mechanisms that modify gene expression without altering the sequence itself. Such 
epigenetic modifications can be considered as external forces affecting the rate of 
transcription.  

The three major classes of epigenetic mechanisms are DNA methylation, histone 
modification, and ncRNA-mediated gene regulation [12]. DNA methylation and histone 
modifications act at transcription-level, while ncRNAs are post-transcriptional 
regulators of expression. Moreover, some ncRNAs have the ability to interact with both 
DNA methyltransferases and histone-modifying complexes, making them both direct 
and indirect regulators of gene expression [13]. 

Epigenetic modifications can be mapped with specialised sequencing technologies. 
Methylation levels can be measured with bisulfite sequencing, and histone 
modifications by ChIP-Seq (Chromatin immunoprecipitation sequencing) and ATAC-
Seq (Assay for Transposase-Accessible Chromatin using sequencing). ChIP-Seq 
allows for mapping of histone modifications and protein-DNA binding events, while 
ATAC-Seq provides information on chromatin accessibility.  

RNA sequencing (RNA-Seq) enables us to study the transcriptome, both from coding 
and non-coding regions. The RNAs are isolated and selected for by size. RNA-Seq 
traditionally refers to the sequencing of long RNAs (mRNAs and lncRNAs) whereas 
sequencing of short ncRNAs (which utilises the same technology) is customarily called 
Small RNA-Seq.  
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1.3  miRNAs 

miRNAs are a subclass of short ncRNAs ~22nt in length, first discovered in C. elegans 
in 1993 [14]. They are essential for tissue- and development specific expression due 
to their versatile yet specific nature allowing rapid fine-tuning of cellular processes [15]. 
In recent years, many miRNAs have been shown to be major contributors to 
immunotherapy response and prognosis in cancer [9, 16], and the first clinical 
application of miRNA targeting was in 2013 [17]. miRNAs can have both tumour 
suppressing and oncogenic effects, depending on their target genes (Figure 3).  

 

Figure 3. miRNAs can have both tumour suppressing and oncogenic effects. A miRNA can act 
oncogenic if it inhibits expression of a tumour suppressing gene. Similarly, the miRNA can act as a 
suppressor by silencing oncogenes [3]. 

 

1.3.1 Biogenesis 
The canonical pathway is the main maturation pathway of miRNAs (Figure 4A). Most 
miRNA genes lie in non-coding regions of the genome where they can be several 
kilobases (kb) in length. Once transcribed, the transcript folds to form a complex hairpin 
structure known as a primary miRNA (pri-miRNA). While still in the nucleus, the pri-
miRNAs are cleaved by the Microprocessor complex (mainly composed of the Drosha 
enzyme and RNA-binding enzyme DGCR8) to form precursor miRNAs (pre-miRNAs). 

The pre-miRNA is transported out of the nucleus by Exportin-5 where it is cleaved by 
Dicer, releasing the hairpin, and leaving a miRNA/miRNA* duplex. Finally, a mature 
miRNA combines with one of the Argonaute protein family members AGO1-4 to form 
the miRNA induced silencing complex (miRISC) [18]. In humans, AGO2 is the most 
frequently occurring family member. The mechanism(s) behind selecting which miRNA 
is loaded into the miRISC-complex, and which is degraded, is not fully understood. 
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Figure 4. miRNA biogenesis through (a) the canonical pathway, and (b) the non-canonical mirtron 
pathway [3]. 

 

There are also non-canonical pathways where the miRNA bypasses either Drosha 
processing or Dicer processing. Occasionally, the miRNA gene is found within an 
intron or in the UTR of a protein coding gene [16]. miRNAs that are located within 
introns are called mirtrons, and bypass Drosha mediated cleavage. Instead, they are 
by-products of intron slicing and enter the biogenesis pathway as pre-miRNAs (Figure 
4B) [19]. miRNAs derived from small nucleolar RNAs (snoRNAs) are matured in a 
similar fashion.  

Very few miRNAs have been reported to bypass Dicer cleavage. One of the few known 
examples is the miR-451 transcript where the pre-miRNA is directly loaded into and 
cleaved by AGO2 [20]. 

 

1.3.2 miRNA-mRNA regulatory networks (MMRNs) 
miRNAs exert their gene regulatory effect by binding to target mRNAs causing 
repression of translation through RNA interference.  

Canonical binding patterns are formed between the mRNA 3’ UTR and the miRNA 
seed region, generally considered to encompass nucleotides 2-7, counting from the 5’ 
end (Figure 5A). Binding patterns with imperfect seed region complementarity and/or 
involving other nucleotides in the miRNA sequence are termed non-canonical (Figure 
5B). On rare occasions, the miRNA can also bind to the 5’ UTR or the coding sequence 
of its target mRNA [21]. 



 
 

 8 
 

miRNA-mRNA binding mainly results in miRNA-induced gene silencing through 
translational repression. The exact mechanism remains uncertain, but the consensus 
is that it involves inhibition of translation by deadenylation, decapping and finally decay 
of the mRNA [10]. The multistep nature of miRNA-induced silencing makes the process 
reversible and highly dynamic [22]. 

 

 

 

Figure 5. (a) Canonical miRNA-mRNA binding by seed region complementarity. (b) Non-canonical 
binding pattern [3]. 

 

 

miRNA-mediated cleavage is extensively described in plants, but such behaviour is 
not well documented in mammals. Human AGO2 does display endolytic activity, such 
as the cleaving of the miR-451 transcript, but only under certain conditions. 
Endonucleolytic cleavage requires near perfect base complementarity between 
miRNA and mRNA for AGO2 to be situated properly, which is very rare in mammals 
[23]. 

Each miRNA can target hundreds of mRNAs, and a single mRNA can be targeted by 
multiple miRNAs. Seeing there are more than 2600 annotated human miRNAs and 
~20,000 coding genes, this allows the creation of highly complex regulatory networks. 
An MMRN is mainly composed of many weak miRNA-mRNA interactions, underlining 
the importance of investigating larger populations of miRNAs.  
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1.3.3 miRBase 
There are several miRNA registries available, but the most commonly referenced 
database is miRBase. MiRBase is an online resource storing miRNA sequences and 
their annotations, including both the mature miRNAs and the pre-miRNA like hairpin 
loop. miRBase was established in 2002 and is responsible for miRNA gene 
nomenclature and the addition of newly discovered miRNAs. 271 species are 
represented as per the latest release (v22.1), totalling 38,589 pre-miRNA and 48,860 
mature miRNA entries – of which 1917 and 2654 are from the human genome, 
respectively. 

With each release, miRBase also reports ‘high confidence’ sets. These are miRNAs 
that meet certain criteria, indicating their annotations are of high quality. In miRBase 
v22.1, 26% of human miRNAs are classified as ‘high confidence’. However, there are 
concerns as far as the lack of coherence between the different versions of these sets. 
From one year to another, miRNAs have been removed, only to be added back later, 
contradicting the idea of them being ‘high confidence’. 

In addition to the miRNA annotations, miRBase also contains literature references, and 
information related to both predicted and experimentally validated target genes [24].  
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1.4  isomiRs 

In standard analyses, miRNAs are considered to exist as well-defined features with a 
precise start and stop position - this is also how they are annotated in miRBase. In 
reality, they exist as a population of similar but slightly different isoforms, or isomiRs, 
with varying start and stop positions and the possibilities of polymorphisms in the 
transcribed sequence. isomiRs were first described in 2008 [25]. 

Coding centric approaches tend to investigate miRNAs in a similar way to genes. While 
the pri-miRNA transcripts are indeed transcribed by RNA polymerase II like protein 
coding mRNAs, the miRNAs themselves do not have distinct start and stop codons. 
Thus, the assumption that they are such clearly defined entities appears to be 
incorrect, and it has been shown on multiple occasions that isomiRs are of functional 
importance [26-29]. isomiRs with modifications on the 5’ end (having varying start 
positions) are considered especially important due to alteration of the seed region, as 
they have the potential to cause major changes in mRNA targeting. Nevertheless, they 
are neglected in most miRNA studies. 

 

1.4.1 mirGFF3 
As the amount of research on isomiRs increased, there became an abundance of 
different reporting standards, making it difficult to compare results across studies. To 
address this, the mirGFF3 format was introduced in 2019 [30]. For this project it was 
considered prudent to conform to this standard for the output to be reproducible and 
reusable in the future.  

mirGFF3 is an adaptation of the already well established GFF3 format used for 
describing genes (full definition available at https://github.com/miRTop/mirGFF3). It is 
a tab delimited file with 9 columns, where the first 8 columns contain the pre-miRNA 
name, source (database), feature type, start/end position, score (optional), strand and 
phase (optional): 

 
 

MI0000077:hsu-mir-21  miRBasev22.1u  isomiR  59841266 59841337  .   +    . 
 

 

Finally, column 9 contains a list of additional feature attributes in the format tag=value, 
and is used for storing isomiR specific details: 

 

 

Read=TAGCTTATCAGACTGATGTTG;UID=iso-21-VIV6OYIN0;Name=hsu-miR-21-

5p;Parent=MI0000077;Variant=iso_3p:-1;Cigar=21M;Expression=2564  

https://github.com/miRTop/mirGFF3


 
 

 11 
 

Structure of the attribute string and framework of the mirGFF3 variant classification are 
described in detail in the Methods (section 2.2.1). Here, we provide a simple 
introduction to the general layout of the format.  

When describing characteristics of isomiRs, some terms also need to be established. 
Foremost, when speaking of a miRNA, we are referring to the annotated genomic 
feature (for example in miRBase). A variant refers to one of a set of categorised 
modifications to a miRNA, such as the deletion of a 3’ nucleotide. An isomiR is a 
specific miRNA variant. For instance: 

 

miRNA: miR-21-5p 

Variant: iso_3p:-1 

isomiR: miR-21-5p;iso_3p:-1 

 

A group of isomiRs corresponding to a certain miRNA is referred to as an isomiR 
population, and an isomiR profile refers to the characteristics of the distribution of this 
population. 

Finally, trimming variants are isomiRs that are simply shorter or longer than the 
reference miRNA, implying that the changes are due to imprecise trimming of the pre-
miRNA hairpin (Figure 4). Trimming variants can, for instance, be caused by variation 
in Dicer cleavage, or by other post-transcriptional mechanisms.  
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1.5  Challenging the coding centric view 

Despite the increasing knowledge on the of role the non-coding genome and gene 
regulation, the focus of medical research remains coding centric. 

The dilemma can be illustrated by a classic trait widely known to be heritable - human 
height (Figure 6). Heritability in this context is a measurement of the proportion of 
phenotypic variance that can be attributed to genetic factors [31].  Human height has 
an estimated heritability of approximately 80%, however, less than 4% can be 
explained by significant GWAS-hits. The number increases to 45% when considering 
all SNPs regardless of significance, which still leaves a large amount of unexplained 
variance [32]. 

This phenomenon is called missing heritability and describes the discrepancy between 
observed heritability and the amount that can be explained by genotype data. Such 
observations have further challenged the view on polygenic traits, suggesting that the 
genetic architecture of complex traits is truly omnigenic – meaning all expressed genes 
have the ability to affect each other [33]. Shifting focus to the non-coding genome and 
epigenetic regulators could help to further clarify the association between genotype 
and phenotype. 

 

 

Figure 6. The principle of a genome-wide association study (GWAS). Height measurements and 
sequencing data are obtained from the individuals, and correlation is measured. P-values are used 
to determine the significance of a given variant [34].  
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1.6  Motivations and aims 

Evidence suggests that miRNA signatures could have clinical applications as 
biomarkers for diagnostic and prognostic purposes, and their potential for regulating 
whole pathways make them attractive therapeutical targets [21]. 

It has been shown that cancers can be distinguished based on their isomiR profile 
alone [35]. However, while these studies demonstrate that different cancers display 
different isomiR profiles, they do not identify what (i.e., which isomiRs) is driving the 
classification. 

In this work, we perform a comprehensive investigation of how isomiR populations vary 
among different conditions. Specifically, the project will investigate how isomiR 
populations vary between healthy and cancer patients. 

 

The primary aim of the study is to 

 

1) Develop software to identify, classify, and report isomiRs 
 
 
 

And secondly 

 

2) Visualise isomiR distributions 

 

to provide a foundation for the characterisation of isomiR populations in disease and 
aid in a better understanding of the genetic architecture of complex conditions.  
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2  Methods 
A wide selection of tools has been utilised throughout the project. The data analysis 
pipeline is a combination of software developed as part of this work and pre-made 
software. Post-processing and visualisation methods were developed independently 
as part of this work. All software and version specifications are available on GitHub at 
https://github.com/CBGOUS/BagEnd. Subsequent mentions of GitHub refer to this 
repository. 

 

2.1  FAIR data 

With the emerging wealth of data being produced in academia and industry, there is a 
pressing need for underlying infrastructure and data management guidelines. To 
address this, the FAIR guiding principles were introduced by Wilkinson and colleagues 
in 2016 [36]. They are: 

 
1) Findability 
2) Accessibility 
3) Interoperability1 
4) Reusability 

 

As described by Wilkinson, the quality and impact of a publication should be “[…] a 
function of its ability to be accurately and appropriately found, re-used, and cited over 
time […]” (p.3).  

FAIR data is usually spoken of in the context of research output data and data 
management. However, these principles also apply to the tools, workflows and 
pipelines needed to produce the output data. Without full transparency in all 
components of the research process, the output data cannot entirely be in accordance 
with the FAIR-principles. 

The choice of output format, code structure and post-processing tools have been made 
with these considerations in mind. Code readability and lexicon quality (comments and 
identifier names like methods and variables) have been prioritised over peak 
performance and minimalism. Trying to understand, debug and use overly compacted 
code, however effective, can end up being more time consuming than its slower 
counterpart. This is well documented to be a large cost of any software [37]. 

                                                  
1 Interoperability – the ability of data or tools from non-cooperating resources to integrate 
or work together with minimal effort [30]. 

https://github.com/CBGOUS/BagEnd
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2.2  NGS pipeline 

The NGS analysis pipeline used in this work was developed at the Computational 
Biology Group at Oslo University Hospital (CBGOUS) and consists of more than 30 
steps made to process Small RNA-Seq data. The applications of the pipeline exceed 
far beyond the scope of this project, therefore only the steps relevant to this analysis 
will be described. 

The pipeline is written in Java and runs as an executable jar file. Running the program 
requires three input files, which are specified in  
Table 1, in addition to a log configuration file. In brief, the Data file contains the file 
names, the Pipeline file specifies which analysis steps to perform on the data files, and 
the Configuration file supplies step specific parameters and paths to the necessary 
tools. Full examples of each file type can be found on GitHub. 

 
Table 1. Input files to the NGS analysis pipeline. 

Argument File type File format Description 

-c Configuration file yaml Paths to the reference data and software needed to 
perform the steps. Step specific parameters, such as 
Bowtie alignment options, are also specified here. 

-d Data file tsv Tab separated file with names of fastq-files and 
necessary metadata such as grouping 
information/condition. 

-p Pipeline file json File containing the analysis steps to perform, 
input/output folder names, and a parameter string. 
The parameter string pulls the step specific 
parameters from the Configuration file. 

 

The data processing of this project is performed across 8 steps and is shown in Figure 
7. Steps 1 through 5 carry out the mapping of the sequences to the reference genome 
along with the necessary pre-processing. The input files are unzipped (step 1) before 
the adapter sequences are trimmed from the raw reads (step 2). The trimmed reads 
are further converted from fastq to fasta format, and all duplicate reads are collapsed 
to unique sequences, adding up and storing the count information in the fasta header-
line (step 3).  

The unique reads are further filtered for known contaminants and ribosomal RNA 
sequences (step 4), and finally the remaining sequences are mapped to the reference 
genome. Step 4 and 5 both use Bowtie [38] for mapping, with a mismatch acceptance 
of 1 and 0, respectively. 
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Figure 7. Flowchart of the steps in the NGS analysis pipeline. Not shown is the step for performing 
quality control checks with FastQC [39], which can be implicated before trimming to aid in 
identification of the adapter sequence, and/or after trimming to validate the quality of the data. Dashed 
lines indicate work done outside of the main NGS pipeline. Contributions from this project are 
highlighted in red [40]. 

 

The isomiR classification is performed in step 6. Step 6 processes the mapped miRNA 
reads to determine isomiR content for each parsed file (sample). The details of the 
classification process are described further in the next section. After classification, the 
isomiR count information for each sample is run through step 7 and joined into a single 
merged count file. The output files from steps 6 and 7 are shown in Table 2. 

Different users of the software will likely have different needs, and the variety of output 
files and formats aims to meet as many as possible. Sample specific files are marked 
with sample ID (filename), and project specific files are marked with project ID (in this 
context, the project equals all samples in the input Data file).  

The 8th and final step of the NGS analysis pipeline constructs an R-script to perform 
differential expression analysis on the merged count file using edgeR from 
Bioconductor [41]. 

For this work, the output files mirGFF3 and merged_isomir_counts are used for 
isomiR visualisation and differential expression analysis, respectively. 
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Table 2. Output files from the NGS analysis pipeline. m = number of isomiRs, n = number of samples. 

Step File name File format Description 

6 SAMPLEID mirGFF3 All detected isomiRs are written out 
in the mirGFF3 format. 

6 SAMPLEID.trim.clp.gen.isomircounts tsv Tab separated file with m rows and 
2 columns. First column is the 
isomiR name, second column is the 
counts of this isomiR in the current 
sample. 

6 SAMPLEID.iso_pretty tsv Tab separated file visually 
representing the isomiRs and their 
dispersion. 

6 PROJECTID_uniq_isomirs fasta All unique isomiRs detected across 
all samples written in fasta format. 

6 PROJECTID_uniq_isomirs tsv Tab separated file with m rows and 
2 columns containing all isomiRs 
detected across all samples. First 
column is the isomiR name, second 
column is the corresponding 
sequence. 

7 PROJECTID.merged_isomir_counts tsv Tab separated file with m rows and 
n+1 columns. First column is the 
isomiR name, and subsequently one 
column for each sample. 

7 PROJECTID.trim.clp.gen.isomircounts_wseq tsv Same as above, including an extra 
column with the sequence for each 
isomiR. 

 

 

As an example, the layout of the pretty plot is shown below. Rows one and two 
show the miRNA annotation information and total count number, respectively. The 
subsequent rows contain the sequence, MD-string, count number, and abundances 
for each variant of this miRNA (as percentage of the total population). 

This ‘plot’ allows for a simple, visual inspection of the results in plain text format without 
the need for post-processing. 

 

 

 

 

 

 
hsu-miR-21-5p|MIMAT0000076 : chrMI0000077:hsu-mir-21 + 8 --> 29 (+) : UAGCUUAUCAGACUGAUGUUGA 
Total Counts = 36682 
 
       hsu-miR-21-5p      TAGCTTATCAGACTGATGTTGAC        MD:Z:23      15737     42.9% 
       hsu-miR-21-5p      TAGCTTATCAGACTGATGTTGA         MD:Z:22      10919     29.77% 
       hsu-miR-21-5p      TAGCTTATCAGACTGATGTTGACT       MD:Z:24       6808     18.56% 
       hsu-miR-21-5p      TAGCTTATCAGACTGATGTTG          MD:Z:21       2564      6.99% 
       hsu-miR-21-5p      TAGCTTATCAGACTGATGTT           MD:Z:20        564      1.54% 

     . 
     . 
     . 
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2.2.1 The mirGFF3 class 
The classification of isomiRs is performed in the mirGFF3 class, which has been 
developed as a part of step 6 of the NGS pipeline (Figure 7). 

Calling a step in the json file requires four pieces of information; the step name, input 
folder, output folder, and a parameter string. For step 6, the json entry is: 

 

{"step":"ParseSAMForMiRNAs"," inputFolder":"inputfolder",  

"outputFolder":"outputfolder",   "parameterString":"parseIsoUnfiltered"} 

 

The parameter string is used to pull a specific set of parameters from the yaml file, 
which are used to customise the functionality of the pipeline. The yaml entry for step 
6 containing the parameters used in this project is the following: 

 

ParseSAMForMiRNAs: 

    Required: 

 

    Optional: 

        parseIsoUnfiltered:   " --bleed=2, --mirbase_version=22.1u,  

        --ref_genome=hsu, --min_counts_per_million=0,  

        --analyze_isomirs=true, --group_by_seed_region=false,  

        --seed_string=2-7" 

 

For the parseIsoUnfiltered parameter string, the required flags are bleed, 
mirbase_version, and ref_genome. The reference genome “hsu” used in this 
work will be explained further in the next section.  

Additionally, the user can employ a filtering option (min_counts_per_million) to 
discard low counts and specify whether the software is to analyse isomiR content or 
not (analyze_isomirs). If the group_by_seed_region flag is set to true, 
isomiRs will be grouped according to the seed region (specified through 
seed_string). The value of this is questionable, but the argument can be made that 
isomiRs with identical seed regions may have similar targets. 

The bleed value states how many positions the isomiR of interest is allowed to diverge 
from the reference miRNA’s start- and stop positions. For this work a threshold of 2 
has been used, and all reads starting or ending more than two positions from the 
mature reference miRNA are discarded.  
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As an example, we consider the following reads mapped to the miRNA miR-21-5p: 

 

a)     TGTCGGGTAGCTTATCAGACTGATGTTGACTGTT 
b)          --TAGCTTATCAGACTGATGTTGA-- 
c)          --TAGCTTATCAGACTGATGTTGAC- 
d)          ----GCTTATCAGACTGATGTTGA-- 
e)         GGGTAGCTTATCAGACTGATGTTGA-- 
f)          --TAGCTTATCAGACTGATGT-----     

 

Here, read a) shows a portion of the miR-21-5p hairpin precursor, with the annotated 
miRNA in red letters and the bleed region highlighted in yellow. Read b), c) and d) 
have start- and stop positions within the threshold and will be retained. Read e) and f) 
are discarded as they fail to meet the bleed cut-off due to a 3-nucleotide extension and 
3-nucleotide deletion, respectively. 

The full range of possible 5’/3’ isomiR variants is shown in Figure 8. The modifications 
include deletions, template extensions, non-template extensions, and the compound 
event of a deletion followed by a non-template extension. Template extensions refer 
to extensions of the mature miRNA sequence that match the hairpin precursor 
nucleotide in the same position (for instance, read c) and e) from above). For this 
project, only the trimming variants will be considered (green and red events). 

 

 

 

Figure 8. All possible isomiR trimming variants considering a bleed of 2. The first row shows a portion 
of the pre-miRNA hairpin sequence, and below it the reference miRNA is shown in blue. Trimming 
variants are the variants with only deletions and/or template extensions (red/green events in bold). 
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IsomiR trimming variants in the mirGFF3 format are in the form iso_5p:+/-N and 
iso_3p:+/-N. A full description of variant nomenclature can be found in Table 3.  

For conciseness, from here on out they will be referred to as 5p:+/-N and 3p:+/-N, 
respectively. N indicates the number of positions the end- or start position is shifted to 
the right. Revisiting miR-21-5p reads a) through d) from the previous page, they 
correspond to the following variants: 

 

a)     TGTCGGGTAGCTTATCAGACTGATGTTGACTGTT  
b)          --TAGCTTATCAGACTGATGTTGA--    ref 
c)          --TAGCTTATCAGACTGATGTTGAC-  3p:+1 
d)          ----GCTTATCAGACTGATGTTGA--  5p:+2 

 

The end position of read c) is shifted one position to the right due to a 3’ extension, 
giving it the variant name 3p:+1. Read d) has 2 deletions on the 5’ end, i.e., the start 
position is shifted 2 positions to the right, which equals variant 5p:+2. 

In addition to a variant name, all isomiRs receive their own unique identifier (UID) of 
the form: 

 

iso-NN-C{N} 

 

where NN corresponds to the length of the isomiR, and C{N} to the encoded nucleotide 
sequence. The UID is encoded from the sequence according to the MINTbase 
framework [42]. Each 5-, 4-, 3-, 2- and 1-mer of nucleotides can be represented by one 
or two letters that are not A, G, T or C. As an example, the reference variant of miR-
21-5p translates to: 

 

TAGCTTATCAGACTGATGTTGA   ->   VIV6OYINL 

 

And the UID-string for the miR-21-5p reference miRNA becomes: 
 

iso-22-VIV6OYINL 

 

Finally, the information is combined into the full mirGFF3 attribute string: 

 
Read=TAGCTTATCAGACTGATGTTGA;UID=iso-22-VIV6OYINL;Name=hsu-miR-21-

5p;Parent=MI0000077;Variant=ref;Cigar=22M;Expression=10919 
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The attribute string is a semicolon-delimited string composed of the read sequence, 
UID-string, miRNA name, miRBase accession number for the parent pre-miRNA, 
isomiR variant, cigar string, and expression (count) number. The cigar string originates 
from the SAM file and specifies the matches (or mismatches) between the read and 
the reference. For example, “22M” stands for “22 matches” between the read and the 
reference. Cigar strings also contain information on mismatches, deletions, insertions 
etc., but for this project no mismatches have been allowed in the alignment. 

 

 

 

 

 

 

 

 

Table 3. isomiR variants in the mirGFF3 format. 

Variant Description 

iso_5p:+/-N + indicates the start is shifted to the right, - indicates the start is shifted 
to the left. N is the number of nucleotides it differs. 

iso_3p:+/-N + indicates the start is shifted to the right, - indicates the start is shifted 
to the left. N is the number of nucleotides it differs. 

iso_5p:+/-N,iso_3p:+/-N In case of modifications on both 3’ and 5’ ends, variants are separated 
with “,” 

iso_add3p:N Number of non-template nucleotides added at 3’ end. 

iso_add5p:N Number of non-template nucleotides added at 5’ end. 

iso_snv_seed SNV in nucleotides 2-7 

iso_snv_central_offset SNV in nucleotide 8 

iso_snv_central SNV in nucleotides 9-12 

iso_snv_central_supp SNV in nucleotides 13-17 

iso_snv SNV in any other nucleotide 
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2.3  The reference genome 

Species in miRBase are represented by a three- or four-letter code such as hsa for 
homo sapiens and mmu for mus musculus. This species ID needs to be specified in the 
Configuration file (Table 1) under host name. The host name is used to locate the 
annotation- and sequence files for the reference genome: 

 
1) Genome annotation file (gff3) 
2) pre-miRNA hairpin sequences (fasta) 
3) Mature miRNA sequences (fasta) 

 

A custom subset of miRBase has been used for this project, being deemed most fit for 
the purpose. The aim of this project is to study isomiR populations and their dispersion 
in human tissue rather than determining their origin. Since many miRNAs are present 
in multiple copy numbers throughout the genome, these have been reduced to unique 
sequences only. For convenience and speed, the start- and end position for mature 
miRNAs are given relative to their pre-miRNA hairpin and not as absolute genome 
coordinates. 

When working with custom subsets of species, a new host name should be given to 
avoid confusing it with the original. For this project, the host name is set to hsu for 
homo sapiens unique sequences. The reference genome and sequence files should 
then be named accordingly, as shown in Table 4. The miRNA names must also be 
changed to match the new host name: 

 
hsa-miR-21-5p -> hsu-miR-21-5p 

 

This is due to the way the pipeline indexes and maps sequences based on the input 
host name. Before running the pipeline, the genome index for the specific host must 
be built with Bowtie [38]. 

Table 4. Annotation- and sequence files for the reference genome. 

File File name Comment 

Genome reference hsu_genome.gff3 Adapted from miRBase v22.1: hsa.gff3 

pre-miRNA sequences hsu_hairpin.fa Adapted from miRBase v22.1: 
hsa_hairpin.fa 

Mature miRNA sequences hsu_mature.fa Adapted from miRBase v22.1: 
hsa_mature.fa 

Bowtie index hsu_genome.[a-z].[0-9].ebwt > bowtie-build -f -r 
hsu_hairpin.fa hsu_genome 
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2.4  Data collection 

Raw reads in fastq format were downloaded from the Sequence Read Archive (SRA) 
at https://www.ncbi.nlm.nih.gov/sra with the SRA toolkit command fastq-dump [43]. 
Inclusion criteria for the datasets were: 

 

1) Raw Small RNA-Seq data 
2) Patient-derived samples (not cell lines) 
3) Patients had not undergone treatment 
4) Minimum of 5 disease samples + 5 controls 

 

3 SRA projects (SRP) containing samples from 4 different conditions meeting these 
criteria were selected. The conditions were glioblastoma (GBM), lung adenocarcinoma 
(LAC), colorectal cancer (CRC) and prostate cancer (PC). The raw fastq files were 
inspected to determine the adapter sequences. FastQC was then performed on all 
samples after adapter trimming to ensure successful trimming and satisfactory read 
quality. Two of the conditions’ samples were sourced from plasma microvesicles, and 
two from tissue samples. Further details are provided in Table 5. 

  

 

 

 

 

 

Table 5. SRA datasets used in the project. 

Condition Source SRP 3’ adapter sequence 

CRC (n=200) Plasma microvesicles SRP061240 5’-AGATCGGAAGAGCACACGTCT-3’ 

PC (n=72) Plasma microvesicles SRP061240 5’-AGATCGGAAGAGCACACGTCT-3’ 

GBM (n=5) Tumour/frontal cortex SRP063390 5’-TGGAATTCTCGGGTGCCAAGG-3’ 

LAC (n=10) Tumour/adjacent normal tissue SRP359604 5’-TGGAATTCTCGGGTGCCAAGG-3’ 

 

 

https://www.ncbi.nlm.nih.gov/sra
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1st quadrant (+,+): 

- Single end 5’ extensions 
- 5’ extension + 3’ extension 

 

2nd quadrant (+,-): 

- Single end 3’ deletions 
- 5’ extension + 3’ deletion 

 

4th quadrant (-,+): 

- Single end 3’ extensions 
- 5’ deletion + 3’ extension 

 
 

3rd quadrant (-,-): 

- Single end 5’ deletions 
- 5’ deletion + 3’ deletion 

 

 

2.5  Post-processing and visual representations 

2.5.1 Data wrangling 
The mirGFF3 output files from step 6 in the NGS pipeline were further processed in 
Python to prepare the data for visualisation. Expression values were normalised by 
counts per million (CPM) and log2-transformed. A summary file was created for each 
dataset, where counts for each isomiR variant in a sample was summed up across all 
miRNAs. The fraction occupied by each variant was then computed. 

Based on the differential expression report from step 8, miRNAs of interest were 
extracted from the datasets, and their expression values CPM normalised and log2-
transformed. The fraction occupied by each variant was then computed. 

 

2.5.2 Visualisation 
Heatmaps of the log2fold-changes from differential expression analysis were 
generated in R using pheatmap [44]. 

Additionally, radar plots of isomiR expression and distributions were created in R using 
ggplot2 [45]. The foundation of the plot is a line plot with isomiR variants on the  
x-axis and counts on the y-axis. The plots are then transformed from cartesian (x,y) 
to polar (r,θ) coordinates where r is the counts, and the variants are the θ values.  

There are 25 variants in total, including the reference. In the radar plots, variants are 
arranged according to the unit circle principle, although with some necessary 
modifications ( 

Figure 9). Starting with the reference variant at the 90° angle, the rest of the variants 
are situated as follows:  
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Figure 9. Structure of the isomiR radar plots. The variants are arranged according to the unit circle 
principle where quadrants 1-4 are (+,+), (+,-), (-,+) and (-,-). + and – correspond to extensions and 
deletions, respectively. Due to there being 25 variants, the plots could not be perfectly divided into 
quadrants. 

 

Two different versions of these plots will be presented: expression plots and fraction 
plots. The expression plots have log2-transformed normalised counts as r values and 
show the volume of the isomiR population and how it is distributed among the different 
variants. The fraction-plots show the fraction, or proportion, that each of the variants 
represent in the given population.  
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2.6  Target prediction using miRAW 

Target predictions were performed for a selection of isomiRs using miRAW [46].  
miRAW is a deep learning-based method for predicting miRNA targets that is trained 
by analysing the whole transcript of the miRNA and the target gene 3’ UTR. 

23 isomiRs were compared to ~19,700 3’ UTRs, and miRAW predicts probable binding 
regions and calculates the free binding energy for each isormiR/target gene pair. The 
prediction results were filtered by the prediction probability (==1) and predicted binding 
free energy (< -25 kcal/mol). The network was visualised with Cytoscape [47]. 
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3  Results 
3.1  Software 

The resulting software is a Java program that can successfully identify and report a 
wide array of isomiRs, complete with Python and R scripts to post-process and 
visualise the results. 

Step 6 of the NGS Pipeline has been significantly rewritten and modifications were 
made to the reporting output. Primarily, the Java class mirGFF3String has been 
created to carry out the identification and classification of isomiRs in NGS data. One 
of the key methods in this class checks for SNVs and classifies them according to their 
position in the isomiR sequence (Table 3). Additional methods perform the checks for 
5’ deletions, 5’ extensions, 3’ deletions, and 3’ extensions, and combine them if 
multiple events have occurred. Having these methods separated makes it possible to 
accommodate for all 5’/3’ events and combinations thereof, as well as making the code 
more readable for subsequent updates. Finally, one method performs the translation 
of the sequence in question into its UID-string. 

Although only trimming variants have been analysed in this work, the program is fully 
able to handle all variants described in the mirGFF3 format. It has been tested for all 
5’/3’ variant combinations shown in Figure 8, in addition to SNV variants. The program 
successfully classifies them according to the naming convention in Table 3.  
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3.2  Differential expression 

Heatmaps of log2fold-changes between conditions and their respective controls are 
presented in Figure 10 and Figure 11. The columns (miRNAs) and rows (variants) are 
sorted by the frequency of which they occur in the differential expression analysis. 
isomiRs not differentially expressed are coloured grey. 

Overall, the variants most susceptible to differential expression in all conditions were 
ref, 3p:-1, and 3p:-2. As can be seen in Figure 10 and Figure 11, there are distinct 
bands for variants ref, 3p:-1 and 3p:-2, which all cluster at the top. There is also 
a visible but slightly less prominent band for 3p:+1. 

3’ modifications are markedly more common than 5’ modifications, and 3’ deletions 
more common than 3’ extensions. The only two variants never seen differentially 
expressed were 5p:-2,3p:+1 and 5p:-2,3p:+2. These are variants with 
simultaneous extension events on both ends making them 3 and 4 nucleotides longer 
than the reference, respectively. 

There seems to be no preference for any particular variant to be exclusively up- or 
downregulated in the disease state. If a variant (such as 3p:-1) is repeatedly 
differentially expressed across many miRNAs, the expression change is typically seen 
in both directions. However, the overall change in an isomiR population for a specific 
miRNA tends to be in the same direction, i.e., the isomiRs are all increasing, or 
decreasing.  

In rare cases, some variants of a miRNA are seen to deviate from this trend. For 
instance, miR-24-5p and miR-219a-5p each display both up- and downregulated 
isomiRs in GBM. The former shows a log2fold-change of -1.5  for its 3p:-1 variant 
and +5.2  for  5p:-2,3p:-2 (2 nucleotide extension on 5’ and 3’ end). This is also 
one of the rare cases where 5p:-2,3p:-2 is differentially expressed, which only 
occurred 7 times across all datasets and miRNAs.  

Of the differentially expressed isomiRs, 332 were unique to GBM, 128 to LAC, 10 to 
CRC and 28 to PC samples.  
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Figure 10. Log2fold-changes for (a) GBM and (b) LAC. The columns (miRNAs) and rows (variants) 
are sorted by the frequency of which they occur in the differential expression analysis. Red arrows 
mark miR-21-5p, the most frequently differentially expressed miRNA in both GBM and LAC. 
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Figure 11. Log2fold-changes for (a) CRC and (b) PC. The columns (miRNAs) and rows (variants) are 
sorted by the frequency of which they occur in the differential expression analysis. Red arrows mark 
miR-760, the most frequently differentially expressed miRNA in both CRC and PC. 
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3.3  isomiR profile patterns 

The secondary aim of the project was to visualise the identified isomiR populations. A 
few examples of the applications of the visualisation will be discussed. 

Figures 12-15 show the volume and distribution of the 25 isomiR variants across all 
miRNAs in different conditions. The expression plots (12A-15A) show that expression 
levels of miRNAs and their variants vary with both tissue type and condition. 
Predominantly, lung tissue and LAC (Figure 13A) samples display very high miRNA 
expression values, up to 4 times greater than GBM (Figure 12A) and 1600 times 
greater than CRC (Figure 14A) and PC (Figure 15A) samples. The population of 
isomiRs also seems to be more diverse in brain- and lung tissue. 

Further, it shows that the most commonly occurring isomiRs are single nucleotide 3’ 
trimming variants (3p:-1 and 3p:+1). Variants with 5’ modifications are, comparably, 
rarely seen. They make up a small share of the population (on average, all 5’ variants 
combined accounted for ~2.6% of the population) and are seldom differentially 
expressed. 

In GBM samples and the respective controls the three top variants (ref, 3p:-1, and 
3p:+1) collectively accounted for roughly the same share of the population (87% vs 
87.2%, respectively). However, the individual proportions were different, being 59%, 
18%, and 10% of the population for GBM versus 75%, 16%, and 2.2% for controls.  
For LAC samples, the changes in composition were less noticeable, with a 3%, 8%, 
and 4.3% difference for ref, 3p:-1 and 3p:+1, respectively. The changes in 
composition between CRC samples, PC samples and controls were negligible (Table 
6). 

 

 

 

Table 6. Average % of the population accounted for by the main variants (all miRNAs). 

 ref 3p:-1 3p:+1 total 

GBM/control 59%/75% 18%/10% 10%/2.2% 87%/87.2% 

LAC/control 57%/54% 28%/36% 7.9%/3.6% 92.9%/93.6% 

CRC/control 45%/46% 39%/38% 2.4%/2.6% 86.4%/86.6% 

PC/control 45%/46% 40%/38% 2.1%/2.6% 87.1%/86.6% 
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Figure 12. (a) Log2-expression and (b) composition of the isomiR populations across all miRNAs in 
GBM samples. The reference and single nucleotide 3’ extension/deletion variants (in red) make up 
87% and 87.2% of the isomiRs in disease state versus control, respectively. 
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Figure 13. (a) Log2-expression and (b) composition of the isomiR populations across all miRNAs in 
LAC samples. The reference and single nucleotide 3’ extension/deletion variants (in red) make up 
92.9% and 93.6% of the isomiRs in disease state versus control, respectively. 
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Figure 14. (a) Log2-expression and (b) composition of the isomiR populations across all miRNAs in 
CRC samples. The reference and single nucleotide 3’ extension/deletion variants (in red) make up 
86.4% and 86.6% of the isomiRs in disease state versus control, respectively. 
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Figure 15. (a) Log2-expression and (b) composition of the isomiR populations across all miRNAs in 
PC samples. The reference and single nucleotide 3’ extension/deletion variants (in red) make up 
87.1% and 86.6% of the isomiRs in disease state versus control, respectively. 
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3.3.1 Aberrant isomiR expression levels 
The differential expression analysis in section 3.2 above shows the presence and 
extent of differentially expressed isomiRs. As an example, we will look at miR-21-5p. 
miR-21-5p was the most frequently differentially expressed miRNA in both GBM and 
LAC samples, and has been reported to be a prognostic biomarker in at least 29 
different diseases [48]. 

Figure 16 shows that miR-21-5p is, overall, more highly expressed in the disease 
state versus healthy state in both brain- and lung tissue. 14 and 19 out of 25 possible 
variants were differentially expressed in GBM and LAC samples, respectively. Variants 
having two-nucleotide deletions or extensions on the 5’ end show both the lowest 
expression values and the lowest rate of differential expression. In PC samples, all four 
3’ trimming variants showed differential expression (Figure 19), but none were 
differentially expressed in CRC (Figure 18). 

From Figure 17, the miR-21-5p isomiR profile appears to be fairly similar between 
GBM and LAC samples. The reference variant is the dominating variant, followed by 
3’ single nucleotide extension- and deletion events. This observation contrasts with the 
general trend of 3’ deletions being more common than 3’ extensions (Table 6). Variants 
ref, 3p:-1 and 3p:+1 collectively accounted for 80% of the miR-21-5p population 
in GBM samples, and 91% in LAC samples (Table 7).  

In CRC and PC samples, the three top variants remain the same as for GBM and LAC 
samples, but the composition changes considerably. Abundance of the reference 
variant decreases, and that of 3p:-1 increases to make up over 50% of the total 
population. 

 

 

 

 

Table 7. Average % of the population accounted for by the main variants of miR-21-5p. 

 ref 3p:-1 3p:+1 total 

GBM/control 47%/46% 8%/13% 25%/27% 80%/86% 

LAC/control 56%/54% 11%/13% 24%/22% 91%/89% 

CRC/control 34%/35% 53%/52% 11%/11% 86.4%/86.6% 

PC/control 35%/35% 56%/52% 6.7%/11% 87.1%/86.6% 
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Figure 16. Log2-expression of the miR-21-5p isomiR population in (a) GBM samples and (b) LAC 
samples. Differentially expressed variants are marked with ✱. 
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Figure 17. Composition of the miR-21-5p isomiR population in (a) GBM samples and (b) LAC 
samples. In both conditions and tissue types, the dominant variants are the reference miRNA, and 
single nucleotide deletion or extensions on the 3’ end (in red). 
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Figure 18. (a) Expression and (b) composition of the miR-21-5p isomiR population in CRC samples. 
The dominant variants are the reference miRNA, and single nucleotide deletion or extensions on the 
3’ end (in red). No variants were differentially expressed. 
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Figure 19. (a) Expression and (b) composition of the miR-21-5p isomiR population PC samples. 
The dominant variants are the reference miRNA, and single nucleotide deletion or extensions on the 
3’ end (in red). Differentially expressed variants are marked with ✱. 
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3.3.2 Divergent isomiR profiles 
As seen in the previous sections, the composition of isomiR populations normally 
favours the reference variant, along with single nucleotide 3’ deletion- and extensions. 
For individual miRNAs however, the composition of the population can vary 
considerably.  

In CRC and PC samples, the miRNA with the highest number of differentially 
expressed variants was miR-760 (Figure 11). For this isomiR population, the most 
commonly occurring variant was 3p:+1, followed by 5p:-1,3p:+1. The latter 
corresponds to a single nucleotide extension on both the 5’ and 3’ end, and for miR-
760, this variant is more highly expressed than the reference (Figure 20 and Figure 
21). Although the composition is atypical, it remains similar between the healthy and 
disease state in CRC and PC (Table 8). 

The expression levels of miR-760 differs between tissue types. Figure 22 and Figure 
23 show expression levels and compositions of miR-760 in GBM and LAC samples. 
Expression levels in these tissues and malignancies were markedly lower, and the 
isomiR profiles quite different to what is seen in CRC and PC samples. For GBM and 
LAC samples, the reference variant was much more abundant than for CRC and PC 
samples, where the 3p:+1 variant is favoured. 

Only the 3p:+1 variant was significantly differentially expressed in GBM samples, 
while none of the variants were found differentially expressed in LAC. 

 

 

 

 

 

 

Table 8. Average % of the population accounted for by the main variants of miR-760. 

 ref 3p:-1 3p:+1 5p:-1,3p:+1 total 

GBM/control 22%/19% 2.2%/3.8% 22%/36% 17%/17% 63.2%/75.8% 

LAC/control 23%/16% 6.3%/1.4% 31%/29% 14%/12% 74.3%/58.4% 

CRC/control 9%/9% 9%/10% 40%/39% 15%/15% 73%/73% 

PC/control 9%/9% 10%/10% 40%/39% 14%/15% 73%/73% 
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Figure 20. (a) Expression and (b) composition of the miR-760 isomiR population in CRC samples. 
Single nucleotide 3’ extensions and a variant with both 3’ and 5’ extensions (in red) occur more 
frequently than the reference miRNA. 
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Figure 21. (a) Expression and (b) composition of the miR-760 isomiR population in PC samples. 
Single nucleotide 3’ extensions and a variant with both 3’ and 5’ extensions (in red) occur more 
frequently than the reference miRNA.  
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Figure 22. (a) Expression and (b) composition of the miR-760 isomiR population in GBM samples. 
Only one variant was significantly differentially expressed (✱). 
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Figure 23. (a) Expression and (b) composition of the miR-760 isomiR population in LAC samples. 
The extreme values seen in (b) (in red) correspond to 6 control samples where the given variant is 
the only one that is present. 
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3.4  Target prediction 

Based on the results presented in section 3.3, target prediction was performed for the 
miR-21-5p isomiR population using the miRAW miRNA target prediction tool. The 
predictions show that the target network changes with the inclusion of multiple isomiRs. 

For instance, target predictions of miR-21-5p and its isomiRs reveal unique gene 
targets for several variants (Figure 24). Predictions were done for 23 isomiRs, 
producing over 10,000 hits. After filtering out less reliable predictions, 540 predicted 
interactions for 9 isomiRs remained, of which 5 showed unique targeting interactions. 
The reference miRNA had no unique targets. Single- and double 3’ extensions (3p:+1 
and 3p:+2) were predicted to have 19 and 25 unique target mRNAs, respectively. 

 

 

Figure 24. MMRN of miR-21-5p and its isomiRs. The nodes are isomiRs (grey labels), targets are 
mRNAs (blue labels), and edges are predicted miRNA-mRNA interactions. The inner circle 
represents mRNA targets shared between two or more variants. Labels outside of the circle are 
unique to the isomiR they are connected to.  
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4  Discussion 
While the fundamental role of miRNAs in regulatory networks is widely studied, that 
role is certainly more complicated than once thought. Rather than existing as well-
defined entities, miRNAs exist as a population of isomiRs. This population can vary, 
for example, across different tissue types and between healthy and disease study 
groups. While tools exist to study isomiRs, they are limited in terms of how they can 
investigate isomiR variation, and how they can identify important variants. The aim of 
this thesis was to develop methods for improved characterisation of miRNA 
populations expressed in NGS datasets that can be used to improve understanding of 
the roles of isomiRs in health and disease.  

The methods have been implemented in an analysis pipeline that allows standardised 
and scalable analysis of raw NGS datasets. Thus, a user can specify a list of raw NGS 
data for a sample set and perform stepwise characterisation of isomiR populations that 
reports statistically significant changes in isomiR population between conditions, such 
as healthy and disease samples. Furthermore, the methods provide tools that allow 
the user to visually inspect observed isomiR populations in order to identify notable 
changes. However, the radar plots are generated to spot patterns and trends in large 
volumes of data, and not to be used independently for making claims of significance 
or for drawing conclusions. 

The value of this approach has been demonstrated by investigating publicly available 
datasets to identify statistically significant changes in isomiR populations in various 
cancers.  
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4.1  Characterisation of isomiR populations 

The results of this work support the view that, rather than being expressed as a single 
well-defined feature, miRNAs exist as populations of similar isomiRs. Up to 25 isoforms 
of a single miRNA could be detected by looking at trimming variants alone, with almost 
unlimited numbers of additional isoforms possible through the presence of 
polymorphisms. Our findings from investigating several sets of NGS datasets from 
various cancer studies indicate many different isoforms of a miRNA are present. Also, 
for individual miRNA populations, the expression levels of these alternative variants 
can be greater than that of the reference miRNA.  

Such characteristics can be seen for miR-760, where the reference variant accounted 
for only ~10% of the population in the CRC and PC samples, and ~20% in the GBM 
and LAC samples. miR-760 has previously been claimed to be downregulated in CRC 
[49], in contrast to the observations in this work. If standard analyses fail to capture 
isomiR variants, these miRNA levels could be massively underreported. Whether the 
inconsistent findings are due to the divergent isomiR profile of this miRNA or is a 
consequence of differences in the analyses is unclear. Regardless, it highlights the 
importance of investigating miRNA populations more thoroughly. 

The contrasting isomiR profiles of miR-760 to miR-21-5p also suggest that multiple 
mechanisms are responsible for isomiR variation. It is likely much more complicated 
than the term ‘trimming variant’ implies. If there was systematic, random error in Dicer 
cleavage, comparable characteristics would have been observed in all miRNAs. 

Among tissues, conditions, and miRNAs, the most commonly occurring isomiRs were 
3’ trimming variants. The argument could be made that they are not of functional 
importance as they do not impair canonical seed region pairing. However, target 
predictions for the miR-21-5p isomiR population indicate that the 3’ variants introduce 
many additional and unique targeting events, suggesting that they have a relevant and 
potentially disruptive effect on the regulatory mRNA network (Figure 24). The 3’ 
extension events (3p:+1 and 3p:+2) were predicted to have 19 and 25 unique target 
genes, respectively. The functional ramifications of these additional targets have not 
been explored as part of this work. Nonetheless, whether they have alternative 
functional roles or not, they can have an effect merely by contributing to increased 
expression levels of the miRNA (i.e., failing to take them into consideration can lead to 
undercounting of miRNA reads, as was observed for miR-760). 

A potential explanation for the lack of 5’ isomiRs is the canonical targeting associated 
with seed region binding between the miRNA and its target. This represents a core 
functionality and additional changes at the 5’ end of the miRNA would cause a frame 
shift-like event changing the seed region complementarity (Figure 5). This would 
introduce much greater disruption to regulatory function, i.e., there is a form of selective 
pressure at work in the isomiR generation process. 
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A further observation from the study of the publicly available cancer datasets is that 
isomiR profiles seem to display condition- and tissue specificity, much like miRNA 
expression levels [50]. 

In these datasets, condition specificity was marked by: 

• The reference variant decreased and 3’ variants increased in GBM samples 
compared to controls (Table 6) 

• 3’ extensions increased and 3’ deletions decreased in LAC samples compared 
to controls (Table 6) 

Similarly, tissue specificity was shown by: 

• The reference variant is much less abundant in microvesicles, and most 
abundant in brain tissue (Table 6) 

• In miR-21-5p, isomiR composition changes from favouring 3’ deletions in 
microvesicles, to 3’ extensions in brain- and lung tissue (Table 7) 

• The reference variant of miR-760 is decreased in microvesicles compared to 
brain- and lung tissue (Table 8) 
 

In the studied datasets, samples sourced from microvesicles show isomiR patterns 
that are strikingly different from the tissue samples. Also, isomiR profiles in 
microvesicles remained very similar between healthy and disease states, compared to 
tissue samples. This warrants further investigation as no metric has been developed 
for comparing isomiR profiles at this point. Divergences in miRNA content between 
microvesicles and tissues have previously been described [51], and direct 
comparisons between the two groups should therefore be done with caution. Still, it 
relays interesting information on exosomal miRNA distributions and how they differ 
from those in tissues. Selective forces seem to choose subpopulations of miRNAs to 
load into microvesicles, which might extend to the preference of selected variants as 
well. 

Microvesicles also generally display less disruptions to miRNA expression levels. From 
the differential expression analysis results, log2fold-changes are notably smaller in 
CRC and PC samples (Figure 11) than in GBM and LAC samples (Figure 10). They 
appear to reach statistical significance due to the larger sample sizes (n=200 and 
n=72, vs n=5 and n=10, respectively). The isomiR changes reportedly unique to CRC 
and PC samples might also be present in the other conditions, but sample sizes are 
too small for them to reach significance. 

Regardless of the small sample size, over 300 isomiRs were uniquely differentially 
expressed in GBM samples. The markedly high numbers could be a consequence of 
the different cell types in the GBM tumour and the frontal cortex of the control samples. 
The former is a neoplasm derived from glial cells, whereas frontal cortex is also rich in 
neural bodies, which presumably have different miRNA expression profiles. This might 
be a confounding factor and should be kept in mind.  
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4.2  Software optimisation 

The methods in this thesis were developed with the four FAIR-principles in mind – 
findable, accessible, interoperable, and reusable. However, additional refinements can 
be made to the software to improve user experience.  

First of all, it would be preferable to slightly simplify the variant classification used in 
the mirGFF3 class. A proposed modification is to avoid the compound events 
described in the original format in which deletions can be followed by non-template 
extensions. Figure 25 shows a suggested simplification where the “deletion with non-
template extension” event is removed. This would instead be termed an SNV and 
classified according to the nomenclature in Table 3. We do not know the mechanism(s) 
responsible for these events, and thus the general term SNV could be more 
appropriate. In addition to reducing confusion, this modification would reduce the 
number of methods needed for the classification, which increases code readability, 
and reduces the maintenance load. 

Secondly, the post-processing scripts can be optimised in terms of user-friendliness 
and automation. The intention is to further develop the Python data-wrangling script to 
allow it to run as a command-line program, as well as streamlining the R scripts for 
processing larger amounts of data simultaneously. 

 

 

Figure 25. Suggested simplification of the mirGFF3 5’/3’ isomiR classification.  
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4.3  Further directions 

The methods developed in this project were developed to facilitate standardised 
miRNA profiling based on Small RNA-Seq data. Based on our investigation of publicly 
available datasets, the following opportunities include, but are not limited to: 

 

1) Investigation of SNV-isomiRs 
 

2) Systematic investigation of alterations in isomiR profiles 
 

3) Investigation of the targets and functional implications of isomiRs 
 

4) Investigation of the possible mechanisms underlying the production of isomiR 
variants 
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