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Abstract: Bioretention cells are popular stormwater management systems for controlling peak runoff
and improving runoff water quality. A case study on a functional large-scale bioretention cell and a
laboratory column experiment was conducted to evaluate the concentrations and retention efficiency
of bioretention cells towards tire wear particles (TWP). The presence of TWP was observed in all
soil fractions (<50 µm, 50–100 µm, 100–500 µm, and >500 µm) of the functional bioretention cell.
TWP concentrations were higher (30.9 ± 4.1 mg/g) close to the inlet to the bioretention cell than 5 m
away (19.8 ± 2.4 mg/g), demonstrating the influence of the bioretention cell design. The column
experiment showed a high retention efficiency of TWP (99.6 ± 0.5%) in engineered soil consisting of
sand, silty-sand, and garden waste compost. This study confirmed that bioretention cells built with
engineered soil effectively retained TWP > 25 µm in size, demonstrating their potential as control
measures along roads.
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1. Introduction

Bioretention cells (also known as stormwater biofilters or rain gardens) have been
widely used to manage stormwater from road runoff [1–3]. The objectives of bioretention
cells are to reduce peak runoff, improve runoff water quality through infiltration, sedimen-
tation, and sorption processes, increase groundwater recharge, and enhance the aesthetics
of the community [4–8]. While their pollutant removal capabilities (e.g., petroleum hydro-
carbon, polychlorinated biphenyls, sediments) have been demonstrated in many studies
(e.g., [4,9–11], removal efficiencies vary depending on site characteristics, design, imple-
mentation, and climatic conditions [12–14]. The hydrological performance of bioretention
cells, their plant growth ability, and their pollutant removal efficiency can be optimized
using engineered soil [8].

Tire wear particles (TWP) are a major source of microplastics in the environment [15,16]
with potentially adverse effects on human health and aquatic and terrestrial ecosystems [17].
However, TWP are seldom found as pure tire particles in the environment because of
mineral encrustations from the road surface during abrasion of tire treads; the resulting
particles are therefore termed tire and road wear particles (TRWP) [18–20]. The primary
entrance to the environment is runoff [15,21], which contains substantial amounts of
TRWP [22]. Runoff treatment in bioretention cells removes TRWP, likely through physical
filtration [23]. The removal efficiency can be affected by TRWP size, as demonstrated
by [9], who studied TRWP ≥ 125 µm and showed decreasing removal efficiency with
decreasing size. This can be problematic for efficient TRWP retention by bioretention cells
because significant amounts of smaller TWP (≤50 µm) have been found in road dust [18,24].
The effective removal of microplastics has also been reported in bioretention cells. For
example, [9,23] demonstrated a reduction of 91% of microplastic particles >125 µm in
bioretention cells. Furthermore, [23] showed high removal (84%) of microplastic particles
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>106 µm, including rubber fragments, in bioretention cells, while [25] reported >70%
removal for larger microplastics and TRWP (>100 µm), and [26] showed >90% removal of
TRWP between 20 and 100 µm in vegetated bioretention and 60% in non-vegetated filters.

The main objective of this study was to evaluate whether bioretention cells established
with engineered soil retain TWP from road runoff, including finer TWP sizes. More
specifically, this study aims to (1) identify and quantify TWP concentrations retained in
different soil size fractions of bioretention cells (functional bioretention cells and lab-scale
columns) and (2) evaluate the TWP retention efficiency and TWP concentrations in the top
and bottom 5 cm of the column soil.

2. Materials and Methods
2.1. Case Study
2.1.1. Sampling Site and Sample Collection

A case study was conducted on a bioretention cell in Drammen, Southern Norway. The
bioretention cell was established in 2019 using engineered soil (70% sand, 30% garden waste
compost, size fractionation in Table 1) and designed to optimize hydrological conditions
(lower peak flow) and plant growth [27]. The bioretention cell is located on a street
with a speed limit of 50 km/h and a traffic density of 20,800 annual average daily traffic
(AADT) [28]. It receives road runoff through several standardized inlets fitted to the side
curb, a 13 cm high structure separating the driveway from the bioretention cell (Figure 1).
These inlets are 70 m apart; they operate only during the warmer seasons and are closed
during the cold winter season owing to icing (December–March) [27].

Table 1. Proportion (by mass) of each soil fraction in bulk soil collected from a functional bioretention
cell in Drammen, Norway, close to the inlet (A) and 5 m away from it (B).

Proportion in Bulk Soil (%)

Soil Size Fraction (µm) A B

<50 3.8 3.3
50–100 24.6 22.6
100–500 35.6 39.0

>500 36.0 35.1
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Figure 1. Left picture: the bioretention cell is the area located between the road and the sidewalk.
Right picture: inlets specially designed and fitted to the side curb bring road runoff to the bioretention
cell. A 13 cm high side curb (a) separates the road from the bioretention cell. Sampling spot in front
of an inlet (b).
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Topsoil samples (0–5 cm) were collected in April 2021 using a soil-sampling tube.
Samples were collected from six different locations: three spots, each located directly in
front of three different inlets and three spots each located 5 m away from these inlets. The
samples were oven-dried at 105 ◦C for 24 h. Samples collected at the inlets were mixed
and homogenized using a not sharp-edged Kenwood kitchen blender KMM770 (Kenwood,
Havant, Hampshire, UK) for 5 min at high speed to prepare a composite sample A. The
three samples taken 5 m away from the inlets were mixed and homogenized similarly,
resulting in composite sample B.

2.1.2. Size Fractionation

After sieving soil samples with a 5 mm mesh to exclude materials beyond the range
of defined microplastics, 30 g of composite samples A and B was sifted using a vibratory
sieve shaker (Retac 3D, Retsch, Germany), with stainless steel mesh sizes of 50, 100, and
500 µm. The four fractions collected (<50 µm, 50–100 µm, 100–500 µm, >500 µm) were
weighed using an analytical balance AT200 METTLER, (Mettler-Toledo GmbH, Giessen,
Germany) and the proportion of each size fraction was determined by dividing the mass of
the specific size fraction by the total mass recovered after sieving. Mass recovery of the size
fractionation after dry sieving of 30 g of soil sample was 99% for sample A and 97% for
sample B. The proportion of each soil fraction in the bioretention soil was similar close to
the inlet and 5 m away from it, with 72 and 74% of particles >100 µm, respectively (Table 1).

The coarser fraction >500 µm was crushed with a mortar and pestle to increase the
homogeneity. All samples were then analyzed in triplicate using simultaneous thermal
analysis coupled with Fourier transform infrared spectrometry (STA-FTIR), followed by
parallel factor analysis (PARAFAC) data modeling, as described in Section 2.3. Differences
in TWP concentrations across size fractions and sampling sites were analyzed using a
two-way analysis of variance, followed by a Tukey pairwise comparison test to identify
different concentrations. The total TWP concentration in bulk soil was first estimated
by factoring concentrations in each size fraction by the soil size fraction proportion (%)
(Table 1) in a bulk sample and then adding concentrations in all size fractions. Differences
in total TWP concentrations between groups A and B were analyzed using t-tests.

2.2. Column Experiment
2.2.1. Engineered Soil and Column Dimensions

An engineered soil was prepared in the laboratory, by mixing medium sand, silty
sand, and garden waste compost collected at Lindum AS, Norway, at a ratio of 8:15:6 by
mass. This engineered soil was recommended by [27] because of its infiltration efficiency
and quality in promoting plant growth [29]. The physical and chemical properties of the
soil used in this experiment were analyzed in a commercial laboratory, Eurofins, (Moss,
Norway), and are presented in SI1. Three similar cylindrical columns (C1, C2, C3, diameter
3.8 cm, surface area 11.34 cm2, and height 50 cm) were each filled with 40 cm of engineered
soil. Dry packing of the columns was used: air-dried soil was added with a funnel into the
columns and then gently pressed by hand. The column test was configured based on the
dimensional parameters of the functional bioretention cells [3]. The ratio of the column
diameter to the effective grain size (see Figure S1 for grain size distribution) was greater
than the recommended minimum ratio (50:1) to avoid wall effects [30]. The bottom of
the column was sealed with a lid with two small openings (5 mm in diameter) to release
effluent water. The openings were connected to a 20 L container to collect the effluent water.

2.2.2. Influent Water and Hydraulic Load

Road runoff was collected in April 2021 from two gully pots in Ås, Southern Norway,
serving as influent water to the columns. The presence and concentration of TWP in the
sediments of these gully pots (Sjoskogenveien and Raadhusplassen) were demonstrated
and studied in detail by [31]. Standing water and sediments from the gully pots (120 L
from Sjoskogenveien and 100 L from Raadhusplassen) were collected and stored in a cold
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room. During application to the columns, the water was continuously stirred to keep the
particles in suspension, and applied similarly to the three columns (C1, C2, and C3) using
Watson peristaltic pumps, calibrated to yield a hydraulic load of 3.7 mm/min for 10 min
(total water height of 37 mm). The application rate and duration were chosen to represent
a Norwegian water quality design rain for a bioretention cell, sized to collect and treat
runoff from a catchment 10 times the size of the bioretention cell area [32]. The pumps were
programmed for 10 min on and 30 min off (10 min application, 30 min rest). The resting
period was later prolonged (up to 4 h), as the high particle loads caused clogging of the soil
and therefore reduced infiltration.

2.2.3. Retention Efficiency of the Columns

The TWP retention efficiency of the columns was calculated by analyzing the TWP
concentrations in the influent and effluent water. For each of the three columns, 6 L of
influent and their entire effluent (13.8 L, 10.3 L, and 14.2 L from C1, C2, and C3, respectively)
were filtered using a 25 µm mesh, and the retained particles were dried and analyzed in
triplicates using STA-FTIR and PARAFAC, as described in Section 2.3, to determine TWP
concentrations.

2.2.4. TWP Concentrations in Top and Bottom Soil

At the end of the experiment, the columns were left to drain for 24 h before topsoil
(top 5 cm) and bottom soil (bottom 5 cm) were collected. Soil samples were oven-dried
at 105 ◦C and subjected to density separation using 1.8 g/cm3 ZnCl2 solution for 2 h, to
get rid of heavier soil particles. As the particle density of TRWP is estimated to be 1.8 g
cm−3 [33], they float in ZnCl2 solution; the supernatant was decanted, rinsed with water
on 25 µm mesh, and oven-dried at 105 ◦C. For one of the three columns, C3, soil samples
were divided into three subsamples, where the first (C3) received the above-mentioned
treatment, the second (C3*) was analyzed without any pretreatment, and the third (C3**)
was filtered through a 25 µm mesh without density separation (only particles >25 µm were
kept for analysis). Rubber material (RM) and TWP concentrations in the top 5 cm soil and
bottom 5 cm soil were calculated. The differences in TWP concentrations at the top 5 cm
and bottom 5 cm were analyzed using a t-test.

2.3. STA-FTIR Analysis and Data Modeling

Decomposition of FTIR data of environmental samples using a valid PARAFAC model
provides a mechanism to detect and quantify RMs among many components [34]. Suitable
data (thermal and FTIR spectra) of the samples were generated using a simultaneous
thermal analyzer STA 449 F1 Jupiter with carrier type S (Netzsch, Selb, Germany), and a
Bruker Tensor 27 FTIR spectrometer with an external gas cell (Bruker, Billerica, MA, USA)
using the procedure described by [31]. The STA registered changes in mass during pyrolysis,
as samples were heated from 40 to 800 ◦C and released gases to the FTIR. The FTIR scanned
spectra of a wavenumber range between 4000 and 600 cm−1 for gas released from the
STA with a resolution of 1.93 cm−1, generating 1762 signal points. The FTIR data yielded
in 666 spectra per sample, giving a total of 1.1 million data points per sample. The data
were arranged in a trilinear multi-way dataset as outlined in [31], to suit PARAFAC [35].
PARAFAC models were then built with components ranging from 2 to 5 using MATLAB
(The MathWorks, Inc., R2018a, Natick, MA, USA) and a PLS Toolbox for MATLAB version
8.6 (Eigenvector Research, Inc., Wenatchee, WA, USA). The PARAFAC analysis steps and
model validation used were described by [31].

From a valid PARAFAC model, the scores of components identified as RMs, core
components of tires [36] and suitable TWP markers [21], were used to calculate the concen-
tration of RMs [31] using Equation (1). The method detection limit (MDL) was 0.7 mg RM
per g dry sediment, equivalent to 1.1 mg/g for TWP [31].

RMj =
(

ml × ai f

)
/(m × Si) (1)
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where
RMj = concentration of RM (mg/g)
ml = sample mass loss during pyrolysis (mg)
m = initial sample dry mass (g)
ai f = score of the f th component of sample i extracted from PARAFAC
Si = sum of score of components of sample i
RM constitutes a variable but significant fraction of TWP, usually between 40 and

60% [37,38]. In this study, 58% was used based on the most relevant data in the context
of the study ([39], tire crumb producer). TWP concentrations were then calculated by
dividing RM concentrations by 0.58. Estimation of TRWP concentrations (i.e., taking
mineral encrustations into account) was not considered in this study, as a wide range
(10–75%) of TWP to TRWP ratios is reported in the literature [18,24,40–42], making TRWP
estimation problematic.

3. Results and Discussion
3.1. Case Study
3.1.1. Detection of TWP in the Soil of Bioretention Cells

Fitting the STA-FTIR data from all field samples in PARAFAC with three components
after a preprocessing of filtering and diskipering resulted in a model that captured 85%
variation, had 82% core consistency (Figure S2a) and 88% similarity in split-half analysis
(Figure S2b). Models with similar figures of merit are considered valid [43,44]. The
spectral signals from the wavenumber and temperature loadings of one of the components
mimicked the properties of RM (Figure 2), a typical TWP marker [34]. This result confirms
the presence of TWP in bioretention cells receiving road runoff and is consistent with
the results obtained by [9,23,25,26], who reported the retention of rubbery fragments in
bioretention cells.

3.1.2. TWP Concentrations in Soil Size Fractions Close to and Further away from the Inlet

TRWP sizes are important factors in determining their environmental fate [33,45].
In this study, TWP was observed in all soil fractions (<50 µm, 50–100 µm, 100–500 µm,
>500 µm) of the bioretention cells (Figure 3). TWP concentrations in the soil (in mg per g soil
dry weight) were found to differ significantly across size fractions (F3,16 = 3.76, p < 0.001)
in A and B.

However, because of the differences in the proportion of soil size fractions in a bulk
sample (Table 1), the TWP concentrations of each size fraction were different from those
presented in Figure 3. The calculated TWP concentrations in each soil fraction and the total
TWP concentrations are presented in Figure 4. The results showed that TWP concentrations
in the finer soil fraction (<50 µm) were significantly lower than those in any of the coarser
soil fractions, regardless of the sampling distance from the inlet (F3,16 = 20.7, p < 0.001),
except in B where the difference between <50 µm and 100–500 µm was not significant.
This is related to the mass of the engineered soil in this fraction (3.8 and 3.3% in A and B,
respectively) compared with the other three coarser fractions (Table 1).

Studies on the size distribution of TWP retained by bioretention are scarce. However,
the results of the present study are in contrast with those of [46], who covered size ranges
up to 500 µm and found a decreasing trend of the TRWP concentrations with increasing
sediment grain size in a sedimentation basin. The observed trend in TRWP concentration
in the sedimentation basin differed from that found in the street dust analyzed in the
same study, which showed no clear trend with size. [46] attributed the observed change in
TRWP from coarse in runoff to fine in the sedimentation basin to processes such as easy
transportability of finer particles, sedimentation of coarse particles before entering the
sedimentation basin, and mechanical degradation of coarse particles. The present study,
with bioretention cells close to the road, may not be affected by the processes listed above
and may receive similar TRWP as present in road dust, suggesting significant amounts of
TRWP below 100 µm entering the bioretention cell. Another study by [47], covering size
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ranges similar to those of the present study (but with a lower limit at 10 µm), showed no
clear trend but a relatively higher styrene-butadiene rubber (a TWP marker) concentration
in a street runoff in the size fraction >500 µm than in the size fraction 100–500 µm. However,
the studied matrices, street runoff in [47] and bioretention soil in the current study, are
different and thus not directly comparable.
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Figure 3. Tire wear particles (TWP) concentrations (mg/g, mean and one standard deviation, n = 3)
per soil particle size range in soil samples collected from a functional bioretention cell in Drammen,
Norway, at the inlet (A), and 5 m away from it (B). Means with different letters are statistically
different (Tukey, p < 0.05).
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significant differences between A and B (t-test, p < 0.05).
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Retention efficiency could not be assessed because of a lack of data on the incoming
and outgoing TWP concentrations. Therefore, it was unclear if the low contribution from
the size range <50 µm was attributable to a lower share of small-sized TWP entering the
bioretention cell, or if the bioretention cell was less efficient in retaining the finer TWP, as
reported by [9]. The latter is plausible for two reasons. First, field and road simulator studies
have reported that significant amounts of TWP are found in the size range ≤50 µm [18,24].
Second, the main retention mechanism in bioretention cells is physical straining [23], which
may allow the transfer of finer TWP down the soil profile or farther away with stormwater.
Studies related to the retention efficiency of TWP in bioretention cells are scarce for direct
comparison, and the few available studies are based on particle counts. For example, [9]
observed up to 100% retention of microplastic particles (including rubbery fragments)
larger than 500 µm. The retention efficiency decreased to 55% for the size fraction between
125–355 µm, supporting the suggestion that finer TWP particles may have moved down or
away with stormwater.

Total TWP concentrations in mg per g soil dry weight (dw) (all soil fractions considered)
were 30.9 ± 4.1 mg/g (mean ± standard deviation, SD) at the inlet and 19.8 ± 2.4 mg/g 5 m
away from the inlet. These concentrations were three and two times higher than the average
TWP concentrations reported by [41] in roadside soils in the Seine River watershed, France.
The slightly lower TWP concentrations reported in [41] may be attributed to the fact that the
roadside soil was sampled at a depth of 0–15 cm (0–5 cm in the present study) and further
away from the road edge (3–15 m). However, other factors not specified in the study (e.g.,
traffic density and service time) make comparisons difficult. [48] estimated an average TWP
concentration of 20.2 mg/g in roadside soil collected at 0–10 cm depth and 0.5 m away from
the edge of federal roads in Germany, with an average traffic density of 24,000 AADT. This
is consistent with the TWP concentrations observed in the present study. Although these
studies have different TWP-generating conditions and treatment systems than the present
study, the results indicate that roadside bioretention systems retain TWP. Not unexpectedly,
we also showed that total TWP concentrations in soil, while of the same order of magnitude,
were significantly higher at the inlet than 5 m away from it (t-test, p = 0.03).

3.2. Column Infiltration Experiment
3.2.1. Retention Efficiency of the Engineered Soil

An average of 12.8 ± 2.1 L of road runoff with a TWP concentration of 77.2 ± 4.9 mg/L
passed through each column (Table 2). With a concentration of solid particles >25 µm of
367 mg/L, the influent was within the range of total suspended solids concentrations
reported in highway stormwater (49–980 and 8–810 mg/L [49,50]). The physical and
chemical properties of the soil used in this experiment fulfilled the requirements of biore-
tention applications with respect to infiltration and plant growth (Supplementary Materials
Section S1). However, clogging at the column top was observed after one week of infil-
tration, suggesting that the initial resting period was insufficient for the hydraulic load
and was therefore increased. Particle deposition, which was expected to be high in road
runoff, was likely the cause of the clogging. [51] demonstrated clogging at the top of a
column owing to particle deposition. Similarly, [52] found a high infiltration decline owing
to clogging as a result of sediment accumulation. However, the results of the present study
should be interpreted cautiously because a year and a half worth of rainfall was applied for
two weeks in the column experiment. Further studies testing the influence of hydraulic
loadings on the retention capacity of bioretention cells towards TRWP would be valuable,
especially since high TRWP concentrations could hinder the functionality of bioretention
cells. Furthermore, the absence of freeze–thaw cycles and vegetation in the columns may
have made the soil more prone to clogging than what is typically observed in operative
bioretention cells, which also calls for further tests using vegetated columns.
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Table 2. Tire wear particles (TWP > 25 µm) concentrations in the influent and effluent of bioretention
columns (C1–C3).

Sample Column Water (L)
Total Solid Particles >25 µm

(mg/L)
TWP Concentration mg/L Removal Efficiency (%)

Mean SD Mean SD

Influent 366.7 79.9 4.9

Effluent

C1 13.8 40.6 0.1 0.1 99.9 0.1

C2 10.3 117.3 0.8 0.2 99.0 0.2

C3 14.2 12.5 0.1 0.0 99.9 0.0

Concentrations of total solid particles >25 µm and TWP >25 µm are listed in Table 2.
The effluent contained 56.8 ± 54.2 mg/L of total solid particles >25 µm, with differences ob-
served between columns, which may be attributed to, e.g., heterogeneity of soil compaction
and particle concentrations in the influent. Despite this unexpected variability in total
solid particles >25 µm in the effluent, the overall TWP removal efficiency remained similar
and was 99.6 ± 0.5% for TWP > 25 µm. This level of removal is high compared with that
of the few available studies on the removal efficiency of microplastics (including rubber
fragments) by bioretention cells [9,23,25,26]. However, these studies were conducted on
field bioretention cells, which have been in operation for 2–3 years. The bioretention cells
had different configurations than the column test in the current study, either in terms of the
size of the catchment area they served or in their soil composition.

3.2.2. Vertical Distribution of TWP in the Columns

In this study, a test with samples that received no pretreatment, C3*, showed a TWP
concentration of 5.0 ± 1.4 mg/g in the top 5 cm of the column, while the TWP concentration
in the bottom 5 cm was below MDL (1.1 mg/g) (Table 3). The relatively high TWP con-
centration in the top 5 cm seems to originate mainly from the deposition of finer particles
(<25 µm), as wet sieving of the same sample with a 25 µm mesh (C3**) showed a reduction
in TWP concentration (Table 3). It is likely that these fine particles also contributed to the
observed reduction in infiltration in the columns.

Table 3. Tire wear particles concentrations (TWP, in mg/g soil dw) in the 0–5 cm (Top 5 cm) and
35–40 cm (Bottom 5 cm) soil layers of bioretention columns C1–C3, following ZnCl2 density separation
of soil samples. In column C3, TWP concentrations were also determined without prior filtration nor
density separation (C3*), and with filtration only (C3**). N/A: not available.

Column
Top 5 cm Bottom 5 cm

Mean SD Mean SD

C3* 5.0 1.4 0.0 0.0

C3** 1.0 1.7 N/A N/A

C1 0.9 1.0 0.4 0.5

C2 0.8 0.3 0.9 0.5

C3 0.6 0.7 0.4 0.2

TWP concentrations, determined in samples pretreated with density separation and
filtration, in the top 5 cm (0.7 ± 0.7 mg/g) and bottom 5 cm (0.6 ± 0.4 mg/g) showed no
statistically significant difference (t-test, p = 0.21). Considering the mass balance in the
influent and effluent, sample pretreatment by density separation may have underestimated
TWP concentrations due to unrecovered particles with higher density (>1.8 g/cm3). Higher
TWP concentrations in the filtered top 5 cm sample (C3**, 1.0 ± 1.7 mg/g) than in the
density separated top 5 cm (C3, 0.5 ± 0.4 mg/g) also support this suggestion. This result
indicates that while sample preparation by density separation using ZnCl2 is a common
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practice in microplastics and TRWP analysis [53–55], it is not optimal for TRWP, as it fails
to recover TRWP denser than 1.8 g/cm3. Although comparing TWP concentrations at the
top and bottom of the columns provided valuable results, further studies looking at TWP
concentrations over the entire soil profile would enable mass balance and thereby a better
understanding of TWP fate in bioretention cells.

The results of these experiments imply that bioretention cells are efficient in retaining
TWP > 25 µm. However, the observed high concentrations of TWP <2 5 µm in the top
5 cm of the engineered soil suggests the entry of a high proportion of finer TWP to the
bioretention system (Table 3). This warrants further study on the fate of TWP < 25 µm and
their retention by bioretention cells, especially since our results on a large-scale functional
bioretention cell showed that TWP in the finer soil fraction (<50 µm) only represented 7%
of the top 5 cm of soil.

4. Conclusions

This study demonstrated that bioretention cells built for high infiltration and good
plant growth conditions could retain TWP. A case study on a functional bioretention cell
showed the presence of TWP in the top 5 cm of soil in all soil size fractions (<50 µm,
50–100 µm, 100–500 µm, >500 µm). TWP concentration was affected by the inlet fitted to
the roadside curb, as TWP concentrations at the inlet were higher (30.9 ± 4.1 mg/g) than
those observed 5 m away from the inlet (19.8 ± 2.4 mg/g).

The column experiment, despite varying concentrations of total solid particles >25 µm
in the effluent, showed high retention efficiency (>99%) of TWP > 25 µm in engineered soil
consisting of sand, silty-sand, and garden compost.

The TWP was observed at the top and bottom of the column. Surface clogging and
limited infiltration were observed during the experiment and attributed to a high particle
load in a short time. A long-term study on a vegetated bioretention cell may provide more
realistic wetting and drying conditions and particle loadings from the road environment
to better explain the TWP dynamics in bioretention cells. A filter size smaller than 25 µm
might also help in understanding the efficiency of bioretention cells in retaining finer TWP.
Finally, bioretention cells built with engineered soils not only transport high amounts of
runoff water but also have been shown to retain TWP, demonstrating their potential as
control measures along roads.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14203233/s1, Section S1: Particle size distribution of engi-
neered soil; Figure S1: Grain size distribution of the engineered soil used in the column experiment;
Section S2: PARAFAC model validity indicators; Figure S2: (a) core consistency of 82%, (b) similarity
measure of splits 88%.
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