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ABSTRACT 

Group records are the alternative solutions for traits that are affected by group 

interaction and are difficult or costly to measure on individuals. We aimed to investigate 

how group size, group composition, and validation sets affect the prediction accuracy 

using group records. Group records were the average of individual records in a tank. We 

used the genomic selection method and three validation sets; across-family, next-

generation, and within-family. Group records (with tank effect) of a subfamily (size=20) 

gave prediction accuracy of 0.54, 0.62, and 0.74 for the above order validation sets. 

Instead, data without tank effect raised the above accuracies to 0.60, 0.67 and 0.78. 

However, group records of a family (size=40) had 0.01-0.03 lower accuracy than the 

subfamilies scenario. The group records based accuracy further declined sharply by 

0.17-0.12 when a group comprised two unrelated families. Overall, we got 0.10-0.40 

reduced accuracy using group records instead of individual ones. Hence, grouping by 

families, a higher number of group records, data without tank effect, smaller group 

sizes, and a close relationship between validation and reference populations improved 

genomic prediction accuracy using group records. 

Keywords: Group records, Genomic selection, Accuracy, Across-family, Within-family. 
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1. INTRODUCTION  

The world population is expected to grow to 9.15 billion by 2050 (Thornton 2010). It 

will increase the demand for animal protein and feed supplies. A more sustainable and 

suitable approach would be the selection and breeding of feed efficient animals since, 

feed shares up to 70% of total costs in livestock production (Alqaisi, Ndambi, and 

Williams 2017). Feed Conversion Ratio (FCR), the total amount of feed consumed per 

unit of production, measures the feed efficiency (De Verdal et al. 2018). In comparison 

to domestic animal species, aquaculture production has a high feed efficiency (de Verdal 

et al. 2018). But fish are reared in water and kept in large groups. The social 

interactions in large groups can affect the feed intake (Kooijman 2009). Thus, recording 

the feed intake of isolated fish might not represent the true feed intake in groups and is 

a very costly way of recording feed efficiency (every fish needs its own tank).  

In animal and fish breeding, the major goal is to produce genetically improved animals 

in the future. Based on the estimates of breeding value (EBV) for a trait, parents are 

selected for breeding purposes. Researchers have developed different methods for 

estimating breeding values. The EBV estimation method is crucial for the accuracy of 

selection (Meuwissen, Hayes, and Goddard 2016). Meuwissen et al. (Meuwissen, Hayes, 

and Goddard 2001) introduced the “Genomic Selection” (GS) method which provides 

more accurate EBV of animals without records.  In GS, a reference population is created, 

phenotyped and genotyped. Then, single nucleotide polymorphism (SNP) effects are 

estimated with the best linear, unbiased prediction (SNP-BLUP). The product of SNP 

effects with SNP genotypes will give genomic EBV for any newly genotyped individuals. 

Thus, phenotypic and genotypic records of the reference population are required to 

estimate the SNP effects. However, recording the feed efficiency at individual level is 

often difficult and expensive. 

Group recording is one of the alternatives for the above problem. It is simple and 

reduces the cost of phenotyping every individual. For example, the total feed intake in a 

fish tank can be calculated by subtracting feed leftover from the feed administered to 

the tank. Then average feed intake per tank and average FCR per tank can be calculated. 

Similarly, the average genotype frequencies per tank can be computed by genotyping all 

the individuals in the tank or a pooled DNA sample from the tank. Then, we can use 

average records of the reference population to estimate the SNP effects. Now, individual 
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EBV can be predicted with SNP effects based on average records instead of individual 

records. This allows the selection of breeding individuals using group records.  

2. OBJECTIVES 

2.1. General Objective 

We aim to predict the accuracy of genomic breeding value with SNP effects estimated 

from group records and compare them to estimates from individual records. 

2.2. Specific Objectives 

i. To develop genomic breeding value predictions based on group and individual 

records and apply them for within and across family predictions, and for the next 

generation. 

ii. To assess the reduction in accuracy of breeding value estimates when group 

versus individual records are used.  

iii. To assess the effects of group sizes and group compositions on the accuracy of 

breeding value estimates based on group records. 

3.  LITERATURE REVIEW 

This literature review aims to discuss 1) Breeding Values and their estimates 2) 

Common methods for estimating EBV 3) EBV estimation with individual versus group 

records.  

3.1. Breeding Value and their estimates (EBV) 

In genetics, phenotypes are the observable characteristics of quantitative traits. The 

animal genotype and the type of environment in which animals grow affect their 

phenotype. Therefore, a part of observed phenotypic variation is because of the 

genotype variation. The genotypic variation is generally classified as additive genetic 

variation and non-additive genetic variation. The non-additive genetic variation is due 

to the interaction between alleles at the same locus (dominance effects) and alleles at 

different loci (epistatic effects). The non-additive genetic variation is often ignored 

because it does not add to the breeding value of an individual and it explains 

substantially less variance than the additive effects (Hill, Goddard and Visscher, 2008). 

The additive genetic variation is due to the additive effects of inherited alleles. In animal 
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breeding, this total additive genetic effect for a trait is known as the breeding value. 

Since the true breeding value of an animal is unknown,  breeding values need to be 

estimated and are denoted as Estimated Breeding Values (EBV) (Su et al. 2012). The 

estimation is done by using own information and that of relatives. The degree of 

relationship among relatives determines the prediction accuracy of breeding value 

(Clark et al. 2012). Thus, relationships have been the fundamental unit in predicting 

breeding values.  

3.2. Common methods for estimating EBV 

Henderson (Henderson 1975) proposed a linear mixed model known as the Best Linear 

Unbiased Prediction (BLUP). BLUP has been used as the standard selection method in 

animal breeding. BLUP estimates the effect of a random variable or breeding value. 

BLUP includes the relationship information in estimating EBV which is important for 

traits that have low heritability (Sae-Lim et al. 2017). Based on the source of relatives’ 

information, EBV estimation via BLUP can be broadly classified as follows: 

3.2.1. Traditional BLUP: 

In the traditional BLUP, the relationship among individuals is obtained by pedigree 

records (Mehrban et al. 2019). This method of EBV estimation using BLUP is known as 

Pedigree based BLUP (PBLUP).  

PBLUP models the data as; 

𝒚 = 𝑿𝒃  + 𝒁𝒂 + 𝒆 ,  

where y is the vector of phenotypic records, b is the vector of fixed effects, a is the 

vector of the additive genetic effects or breeding values, e is the vector of residual 

errors, and X, Z are the incidence matrices linking b and a to y, respectively. The random 

effects have the following distributions: 

𝒂 ∼ 𝑵(𝟎,  𝑨𝜎2
𝒂),  𝒆 ∼ 𝑵(𝟎,  𝑰𝜎2

𝒆) 

where A is the additive genetic relationship matrix based on pedigree records, I is an 

identity matrix, and σ2a, σ2e are additive genetic variance and residual error variances, 

respectively.  

In PBLUP, we can select the animals only if phenotypic records are available on the 

animals themselves or their relatives. For example, in the dairy industry, the selection of 
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sires after the milk yields information from the daughter. The average age of the parents 

at the birth of their offspring is known as the generation interval. The annual genetic 

gain is low for longer generation interval species(De Roos et al. 2011). It further 

increases the costs of rearing progenies. Moreover, we cannot accurately select the 

animal until the progenies' performance is available in PBLUP. 

3.2.2.  Genomic BLUP 

After 1990, DNA technology developed rapidly. Animal genetic value is better 

understood with DNA dissection rather than pedigree records. This grew the interest of 

scientists in selecting animals based on DNA information. For example: by Quantitative 

Trait Loci (QTL) mapping. QTL are mapped with the dense neutral markers exploiting 

linkage disequilibrium. It was assumed that the genes with significant effects affect the 

trait only. Consequently, many genes whose effect fails to reach the significance level 

were ignored. The significant genes were able to explain only ≤ 10% of genetic variation 

in animals. Thus, animal breeders lost interest in this approach (Meuwissen et al. 2016).  

Meuwissen et al. (Meuwissen et al. 2001)  introduced the “Genomic Selection (GS)” 

method. Unlike the previous methods, Genomic Selection assumes that every marker 

affects the trait. It estimates the effect of every SNP (single nucleotide polymorphisms) 

marker, known as the SNP effect. A reference population is created, phenotyped and 

genotyped to estimate SNP effects using the following BLUP model: 

𝒚 = 𝑿𝒃 + 𝒁𝒎 + 𝒆 ,  

where y, X, e is as defined above, m is the SNP effects and Z is the matrix containing SNP 

genotypes of all individuals. The SNP effect has 𝒎 ∼ 𝑵(𝟎, 𝑰𝝈𝟐
𝒎) distribution, e has 

above defined distribution, and σ2m is SNP effect variance per marker. This method of 

estimating SNP effect is known as the SNP-BLUP method. 

The SNP genotypes are coded as 0, 1, or 2 based on the allele counts. If a and A are two 

alleles, then 0=aa, 1=aA and 2=AA. The parameter estimates and the marker effects are 

independent of allele coding (Strandén and Christensen 2011). 

In an alternative method, the SNP markers can be used to construct the genome-based 

relationship matrix (G ). If 𝒁𝑖𝑗  is the original SNP genotype matrix coded as 0, 1 or 2 for 
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individual i (rows) at locus j (columns). Then 2𝑝𝑗 = 𝐙𝑗. is the mean allele frequency or 

column average of 𝒁𝑖𝑗  . The (Gij ) constructed from  n  SNP markers is calculated as:  

 𝑮𝒊𝒋 =
(𝒁𝑖𝑗 − 2𝑝𝑗). (𝒁𝑖𝑗 − 2𝑝𝑗)′ 

∑ 2𝑝𝑗(1 − 𝑝𝑗)
𝑛
𝑗=1

 

where the denominator denotes the sum of heterozygosities. 

The (𝒁𝑖𝑗 − 2𝑝𝑗) is known as the centering of alleles. It is done to give more credit to rare 

alleles than to common alleles. Also, we get larger inbreeding coefficients if individuals 

are homozygous for rare allele (VanRaden 2008). Furthermore, the uncertainty of 

marker for estimating EBV is reduced by centering of alleles (Strandén and Christensen 

2011). It is recommended to use base population allele frequencies. But since it is 

difficult to estimate base population allele-frequencies we often use 2𝑝𝑗  from the 

marker data. The scaling by  ∑ 2𝑝𝑗(1 − 𝑝𝑗)
𝑛
𝑗=1  is done to convert  𝑮𝒊𝒋 into a numerator 

relationship matrix (VanRaden 2008). The leading diagonal elements, 𝑮𝒊𝒊 = 𝟏 +

𝑮𝒆𝒏𝒐𝒎𝒊𝒄 𝑰𝒏𝒃𝒓𝒆𝒆𝒅𝒊𝒏𝒈 𝒄𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕 (𝑭𝒊 ). The G matrix then replaces the numerator 

relationship matrix (A) of the PBLUP method. This method of calculating EBV is known 

as the GBLUP method. 

 The SNP effects can be back-solved from the EBV in GBLUP. It may be noted that the 

GBLUP and SNP-BLUP methods are equivalent, which implies that they are identical 

methods but parameterized differently and result in the same genomic EBV (VanRaden 

2008). 

After getting SNP effects from reference populations (�̂�𝑗), the EBV for any newly 

genotyped animal (�̂�𝒊 ) can be estimated as  

�̂�𝒊 = ∑𝒁𝑖𝑗 . �̂�𝑗

𝑛

𝑗=1

 

where i, j, n and 𝒁𝑖𝑗  is defined above. . 

 In the traditional methods, accurate EBV of an animal could only be calculated after the 

animal had its performance records or after its progenies had performance records. 

Thus, breeding programs required a long generation interval. Consequently, breeding 

progress was slow and annual genetic gains were small. But if an animal is genotyped 
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after birth or before birth, SNP- or G-BLUP may immediately yield accurate EBV. Hence, 

Genomic Selection (GS) often increases the annual genetic gain by 50-100% more than 

traditional breeding methods (Matthews et al. 2019). Furthermore, GS may give 

accurate EBV for traits that could not be measured directly on selected candidates like 

carcass traits. GS does not only increase the genetic gain, and provides better-estimated 

breeding value but, in dairy cattle, also saves millions of dollars associated with the 

progeny testing procedure. Large scale application of GS in the breeding industry was 

enabled by advanced, affordable, and high-throughput SNP genotyping technologies. All 

of these technologies revolutionized the breeding industries during the last decade 

(Meuwissen et al. 2016). 

3.3.  EBV estimation with individual versus group records  

The SNP effect for a trait can be estimated from individual records as well as group 

records. Individual records are records on individual animals. Group records are pooled 

records or average records (Olson, Garrick and Enns, 2006). For example, a pond has 

two fish with individual records for the weight of 10 kg and 12 kg. The group record will 

be the sum of the individual records i.e., 22kg or the average of them i.e., 11kg. Now, 

EBV can be calculated with BLUP in two separate ways; either by using the group 

records or by using the individual records. The breeding value accuracy is defined as the 

correlation between the EBV and true breeding value (TBV). Furthermore, the breeding 

value accuracy depends on the number and information content of the records 

(Meuwissen, 2009). Individual records contain more information than group records as 

seen above. Thus, it is expected that the group records give less accuracy than 

individual records. But for some traits like feed intake group records are preferable to 

individual records, since they are more easily obtained and/or more abundant. 

Therefore, it is pivotal to know whether the use of group records can result in accurate 

EBV. 

Olson et al. (Olson, Garrick and Enns, 2006) first proposed the use of group records or 

pooled observations with a PBLUP. The approach was applied by other researcher too 

(Cooper et al. 2010) (Peeters, Ellen, and Bijma 2013) (Biscarini, Bovenhuis, and Van 

Arendonk 2008). All of them included the additive genetic effect and a residual as a 

random effect only. Su et al. (Su et al., 2018) used a multi-factored PBLUP model with 

the inclusion of the pen and litter effect as the random variables. Later, Ma et al. (Ma et 
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al., 2020) and Chu et al. (Chu et al., 2019) used the GBLUP method for calculating EBV 

accuracy with group records and individual records. Most of these researchers used 

pooled/averaged observations as the group records. 

The individual records-based Mixed Model Equations (MME) gives higher EBV accuracy 

than group records (Su et al., 2018) (Chu et al., 2019) (Ma et al., 2020) (Biscarini et al. 

2008). Similarly, when the pen effect was included in the MME, EBV accuracy with both 

individual and group records decreased (Ma et al., 2020). Further, when the group size 

varies, EBV accuracy with group records also changes (Su et al., 2018) (Olson, Garrick 

and Enns, 2006) . For example, a group size of 12 and 24 give prediction accuracy of 

66.6% and 57.6% respectively (Su et al., 2018). Thus, when group size increases and the 

number of groups decreases, the EBV accuracy from group records reduces. Similarly, 

the distribution of animals in pens also affects the EBV accuracy based on group 

records. When animals were allocated in a pen having a common sire, the EBV accuracy 

from group records was higher than when animals were allocated randomly (Olson, 

Garrick and Enns, 2006). Thus the selection of the appropriate group size and 

composition is essential for the breeding value accuracy with group records. Table 1 

summarized the findings by different authors. 

Table 1: Summary of literatures published on breeding value accuracy with individual and group 
records. 

S.N. Reference Litter distribution Group  

Size 

GR IR GR/IR Litter/Pen 
effect 
model 

1.  
 
Su et al., 2018 Common Sire/Parent  12 0.479 0.702 0.682 With  

2.  Su et al., 2018 Common Sire/Parent 12 0.550 0.714 0.77 Without  

 

3.  Ma et al., 2020 Common Sire/Parent 12 0.63 0.89 0.68 With  

 

4.  Ma et al., 2020 Randomly distributed 12 0.55 0.89 0.62 With  

 

5.  Ma et al., 2020 Common Sire/Parent 24 0.48 0.89 0.54 With  

 

6.  Biscarini et al. 
,2008 

Common Sire/Parent 4 0.552 0.765 0.721 Without 
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7.  Biscarini et al., 

200 

Common Sire/Parent 4 0.461 0.759 0.607 Without 

8.  Olson et al., 2006 Randomly distributed 2 0.50 0.63 0.793 Without 

9.   Olson et al., 2006 Common sire 2 0.53 0.63 0.84 Without 

10.  Olsen et al 

(2006) 

Randomly distributed 2 0.52 0.61 0.85 With 

11.  Olsen et al 

(2006) 

Randomly distributed 12 0.21 0.63 0.33 Without 

12.  
 
 

Olsen et al 

(2006) 

Common sire 12 0.34 0.63 0.54 Without 

GR: EBV accuracy with group records, IR= EBV accuracy with individual records 

 

3.4. Conclusions from literature 

Breeding animals are generally selected based on the EBV estimated from individual 

records. However, traits like feed efficiency are difficult and expensive to measure 

individually. But it can be easily measured at the group level reducing the phenotyping 

costs. Researchers have estimated the EBV and obtained a reasonable accuracy using 

group records. Most of them used the traditional BLUP for estimating EBV. Some 

researchers used the GBLUP model too. However, they focused on pooling the 

individuals and their phenotypic records. Genomic selection uses the SNP effects to 

estimate the EBV of an animal. The SNP effects for a trait are estimated from phenotypic 

and genotypic records of an individual. For a group recorded trait, pooled/averaged 

phenotypes and pooled/average genotypes can still be used to estimate the SNP effects. 

Therefore, we can apply the SNP-BLUP method to group records. 
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4. MATERIALS AND METHODS 

This section is divided into the sections: i) statistical models for individual records, ii) 

statistical models for group records and iii) data simulation. 

4.1. Statistical model for individual records 

The linear mixed model equation for estimating SNP effects from individual records is 

given below.  

𝒚 = 𝟏µ + 𝒁𝒎 + 𝑾𝒕 + 𝒆 

Where 𝒚  is a vector of phenotypic records; 𝟏 is the vector of ones; µ is the unknown 

overall mean; m is a vector of SNP effects; W is a design matrix; t is a vector of tank 

effects and e is a vector of residual errors. If 𝑿𝑖𝑗  is the original SNP genotype matrix 

coded as 0, 1 or 2 for individual i at locus j and 2𝑝𝑗is the mean allele frequency from 

marker data, then a new SNP genotype matrix with centered alleles count (Z) was 

calculated as (following VanRaden, 2008);  𝒁𝒊𝒋 = 𝑿𝑖𝑗 − 2𝑝𝑗  

It was assumed that the random effects have distributions: m~ N (0, I.𝜎2m), t ~N (0, 

I.𝜎2t), e ~N (0, I. 𝜎2e), 

where 𝜎2m, 𝜎2t, 𝜎2e are variances of a marker effect, tank effect, and errors respectively. I 

is an identity matrix. The variance of the marker effects is: 

 𝝈𝟐
𝒎 =

𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝐺)

𝑠𝑢𝑚 𝑜𝑓 ℎ𝑒𝑡𝑒𝑟𝑜𝑧𝑦𝑔𝑜𝑠𝑖𝑡𝑖𝑒𝑠 (𝐻)
=

𝑉𝑎𝑟(𝑇𝐵𝑉) 

𝛴2𝑝(1−𝑝)
 

 

4.2. Statistical Model for group records 

The individual records based model can be transformed to a group records based model 

by: 

𝑻𝒚 = 𝑻(𝟏µ + 𝒁𝒎 + 𝑾𝒕 + 𝒆) 

where T is a transformation matrix that links individual records to group records , and 

averages the records of a tank. If k be the number of individuals in a tank, T will 

transform k individual records to a single group record, i.e. the element Tti=1/k if 

animal i belongs to tank t and Tti=0 otherwise. 
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Then the model for group records is 

𝒚∗ = 𝟏µ + 𝒁∗𝒎 + 𝑾∗𝒕 + 𝒆∗ 

where  𝒚∗ = 𝑻𝒚 is a vector of average records of the  groups; 𝒁∗ = 𝑻𝒁 is a SNP matrix of 

average allele (centered) counts of groups;  𝑾∗ = 𝑻𝑾 is a matrix linking 𝒕 to 𝒚∗; 𝒆∗ = 𝑻𝒆 

is a vector of residual errors of group records. 

The tank effect variance (𝛔𝒕
𝟐) and SNP effect of a marker variance (𝛔𝒎

𝟐 ) are independent 

of the grouping of individuals. Thus 𝛔𝒕
𝟐 and 𝛔𝒎

𝟐  remain same for the group records. 

However, the group residual errors are the averages of residual errors of k individuals 

in a group. Since residual errors are independent and identically distributed with a 

constant variance 𝛔𝒆
𝟐; 

 𝑉𝑎𝑟(𝒆∗ ) = 𝑣𝑎𝑟(𝑻. 𝒆) = 𝑣𝑎𝑟 (
1

𝑘
∑ 𝑒𝑖

𝑘
1 ) =

1

k
. 𝛔𝒆

2 

Then, if �̂�𝑗  is the estimate of SNP effects from either individual or group records, 

genomic EBV for any newly genotyped individual (�̂�𝒊) can be obtained as  

�̂�𝒊 = ∑𝑿𝒊𝒋. �̂�𝑗

𝑁𝑚

𝑗=1

 

where Nm is the number of markers and i, j and 𝑿𝒊𝒋 is defined as above.  

 The statistical models included in the study are given in Table 2.  

Table 2: Statistical models analyzed in the study. 

Records Data with Tank effect  Data Without tank effect 

Individual records 𝒚 = 𝟏µ + 𝒁𝒎 + 𝑾𝒕 + 𝒆 𝒚 = 𝟏µ + 𝒁𝒎 + 𝒆 

 

Group records 𝒚∗ = 𝟏µ + 𝒁∗𝒎 + 𝑾∗𝒕 + 𝒆∗ 

 

𝒚∗ = 𝟏µ + 𝒁∗𝒎 + 𝒆∗ 

 

 

An example illustrating the individual records and group records model is presented in 

the Appendix. The data analysis was accomplished in Julia (Bezanson et al. 2012). 
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4.3. Data simulation 

The data simulation represents the FCR values in a typical fish breeding scheme. QMSim 

generated the data (Sargolzaei and Schenkel 2009). The simulated heritability (h2) 

estimate of 0.34 was assumed from FCR in Nile tilapia (De Verdal et al. 2018). The 

simulation of the historical population was done to create initial linkage disequilibrium 

(LD). A historical population size of unrelated 200 individuals was considered. No other 

evolutionary forces except genetic drift and mutation were allowed. The population 

undergoes random mating for 400 generations. Each generation consists of 200 

individuals with equal numbers of males and females. Then 100 males and 100 females 

from this historical population were selected as the founder population. They were then 

randomly mated for 11 generations. Each pair of male and female would produce 50 

offspring. Thus, each generation would have a total of 100 families and 5000 offspring.  

For genomic information, there were five chromosomes each having a length of 100 cM. 

Each chromosome had 3000 markers and 100 QTLs (Quantitative Trait Loci), which 

were randomly positioned. Both QTL and markers were biallelic and have a recurrent 

mutation rate of 2.5*10-5. Their allele effects had a normal distribution. Thus, there 

were a total of 15000 genotype markers and 500 QTLs. The genotype file consists of 

animal identities and SNP genotype markers. Similarly, the animal data file has 

information on animal identity, phenotype, residual, and true breeding value (sum of 

QTL effects). 

Each generation had data of 100 families, with 50 individuals per family. All data except 

generations 10 and 11 were excluded from the analysis. In generation 10, 90 out of 100 

families were randomly chosen. The excluded 10 families (500 individuals) were across 

family validation sets. Then, 10 individuals per family were further excluded from each 

of the 90 chosen families. These 900 individuals were within family validation sets. The 

remaining 90 families (each having 40 individuals, i.e. a total of 3600 individuals) were 

the training data-sets. Similarly, from generation 11, all 5000 individuals were the next 

generation validation set.  

The genotype file has the SNP genotypes coded as 0=a1a1, 2=a2a2, 3=a1a2, 4= a2a1. 

Here a1 is the paternal allele and a2 is the maternal allele. We transformed the above 

SNP code based on the allele frequency count as 0=a1a1, 1=a1a2=a2a1, 2=a2a2.  
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QMSim generated the normally distributed phenotypes. The phenotypic variance (𝜎2p ) 

was 1. The genotype has a variance of 0.34 (𝜎2G ) and the error variance (𝜎2e ) was 0.66. 

Phenotypes here were taken as the without tank effect phenotypes. Next, we include the 

normally distributed tank effects with a variance of 0.3 (𝜎2t) to the original phenotypes. 

It increased the phenotypic variance to 1.3 (1+0.3). However, the genotypic variance 

and error variance remains the same as before. Both phenotypes with tank effect and 

without were analyzed in corresponding models (Table 2) accordingly. 

In our study, group records are the average records of fish in a tank. The group sizes 

and fish composition in the tanks were varied to understand their effect on EBV 

estimation. For this, the scenarios in Table 3 were created. 

Table 3: A description of the different scenarios. Each scenario was analysed using either 
individual or group records. 

Scenarios Group Composition Group size 

 (k) 

Number of tanks  

(n) 

I Each individual fish in its own tank  1 3600 

II  Each family was divided into two subfamilies and 
each subfamily was kept in a tank. 

20 180 

III Each family in a tank 40 90 

IV Two unrelated families together in a tank  80 45 

V All unrelated families in a tank 3600 1 

 

For each scenario, 20 replications were produced and analyzed. The genomic prediction 

accuracy was defined as the correlation between the genomic EBV and TBV. The 

prediction accuracy was calculated for within and across families and for the next 

generation validation set. The mean accuracies and standard error (SE) obtained from 

these 20 replicates are reported in the results.    
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5. RESULTS 

Table 4, Table 5, and Table 6 showed the genomic prediction accuracy with standard 

errors for different validation sets. Each table presents results for data; with tank effect 

and without tank effect. The tables also contain the prediction accuracy of genomic EBV 

using group records and individual records. We sectioned the results as below. 

Table 4: Next generation genomic prediction accuracy (mean ± SE of 20 replicates) based on group 
records and individual records in different scenario via data with the tank effect and without the 
tank effect. 

Tank effect Scenario Group Individual 

Yes I 0.838 ± 0.004 0.838 ± 0.004 

II 0.624 ± 0.009 0.811 ± 0.006 

III 0.597 ± 0.01 0.795 ± 0.007 

IV 0.455 ± 0.016 0.809 ± 0.006 

V 0 0.836 ± 0.005 

No I 0.863 ± 0.004 0.863 ± 0.004 

II 0.665 ± 0.009 0.863 ± 0.004 

III 0.636 ± 0.01 0.863 ± 0.004 

IV 0.512 ± 0.015 0.863 ± 0.004 

V 0 0.863 ± 0.004 

 

 

Table 5: Within family genomic prediction accuracy (mean ± SE of 20 replicates) based on group 
records and individual records in different scenario via data with the tank effect and without the 
tank effect. 

Tank effect Scenario Group Individual 

Yes I 0.882 ± 0.003 0.882 ± 0.003 

II 0.737 ± 0.007 0.838 ± 0.006 

III 0.711 ± 0.008 0.820 ± 0.005 

IV 0.543 ± 0.013 0.840 ± 0.006 

V 0 0.880 ± 0.004 

No I 0.902 ± 0.003 0.902 ± 0.003 

II 0.776 ± 0.005 0.902 ± 0.003 

III 0.760 ± 0.006 0.902 ± 0.003 

IV 0.609 ± 0.01 0.902 ± 0.003 

V 0 0.902 ± 0.003 
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Table 6: Across family genomic prediction accuracy (mean ± SE of 20 replicates) based on group 
records and individual records in different scenario via data with the tank effect and without the 
tank effect. 

Tank effect Scenario Group Individual 

Yes I 0.819 ± 0.013 0.819 ± 0.013 

II 0.543 ± 0.031 0.757 ± 0.015 

III 0.532 ± 0.033 0.776 ± 0.015 

IV 0.383 ± 0.036 0.790 ± 0.013 

V 0 0.794 ± 0.016 

No I 0.833 ± 0.011 0.833 ± 0.011 

II 0.596 ± 0.024 0.833 ± 0.011 

III 0.583 ± 0.026 0.833 ± 0.011 

IV 0.461 ± 0.034 0.833 ± 0.011 

V 0 0.833 ± 0.011 

 

5.1. Genomic prediction accuracy by using group records  

Figure 1 shows the genomic prediction accuracy for different validation sets using 

group records with the tank effect. The prediction accuracy is highest in the scenario I, 

i.e. every fish in an individual tank. After that, the prediction accuracy from group 

records continuously drops with more individuals in scenarios II, III, IV and V, 

respectively. The reduction in prediction accuracy is substantial when different families 

are kept together in the tank (Scenario IV and Scenario V). Contrary to this, grouping 

individuals belonging to the same family like Scenario II and scenario III did not result 

in a pronounced decline in accuracy. For instance, the prediction accuracy declines by 

0.01-0.03 from scenario II to scenario III and 0.14-0.17 from scenario III to scenario IV. 

We could not assess accuracy numerically in scenario V since there was only one record 

(all fish in one tank). In general, the prediction accuracy for group records reduces with 

increasing group size and decreasing relatedness. 

Further, we noticed that the within-family selection gives most accuracy. The selection 

accuracy across the family is lower than within the family and next generation. The 

difference between within family and across family accuracy is widest in Scenario II, 

which is 0.20 but narrows down to 0.16 in scenario IV. Figure 2 shows similar results 

without tank effects and displays better accuracies than data with tank effects. For 
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example, the data without tank effects give 0.04-0.06 improved accuracy than data with 

tank effects in scenario II. 

 

 

Figure 1: Genomic prediction accuracy (mean of 20 replicates) of EBV using group records for data 
with the tank effect across different scenarios and validation sets. 

 

 

 

Figure 2: Genomic prediction accuracy (mean of 20 replicates) of EBV using group records for data 
without the tank effect across different scenarios and validation sets. 
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5.2. Genomic Prediction accuracy by using individual records 

Figure 3 displays the genomic prediction accuracy for three validation sets using 

individual records with tank effect. As with group record based accuracy, the within-

family validation sets give most accuracy, while the across family gives lowest accuracy. 

For within-family and next-generation validation sets, the genomic prediction accuracy 

gradually decreases from scenario II to scenario III by 0.016 and 0.018, respectively. 

Then, it rises from scenario III to scenario IV by 0.014-0.02. Scenarios I and V have 

similar accuracy for within-family and next-generation validation sets, which is also the 

highest accuracy using individual records. In the case of across families, the prediction 

accuracy increases from scenario II to scenario III by 0.014 and remains steady 

onwards. 

Figure 4 illustrates the genomic prediction accuracy using individual records without 

the tank effect. It shows that within family accuracy is superior to next-

generation/across family accuracy. However, the accuracies for each validation set 

remain constant throughout all scenarios, i.e. 0.90, 0.86, 0.83 for within family, next-

generation and across family, respectively. Furthermore, the data without the tank 

effect gives better accuracy for individual records too. 

Overall, the data with tank effect gives varying and lower accuracies, whereas the data 

without tank effect gives constant and higher accuracies while using individual records. 
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Figure 3: Genomic prediction accuracy (mean of 20 replicates) of EBV using individual records for 
data with the tank effect across different scenarios and validation sets. 

 

 

 

Figure 4: Genomic prediction accuracy (mean of 20 replicates) of EBV using individual records for 
data without the tank effect across different scenarios and validation sets. 
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5.3. Loss in genomic prediction accuracy using group records instead of 

individual records 

Figure 5 illustrates the loss in genomic prediction accuracy for data with the tank effect, 

while figure 6 shows similar results without the tank effect. From both figures, we can 

conclude that across the family validation set has a considerable loss, whereas within 

the family has a low loss of accuracy. Among the three scenarios (II-IV), the loss is 

substantial in scenario IV, where two different families are together in a tank. For 

example, the accuracy loss in scenario IV for data with tank effect is about two times the 

accuracy loss in scenario II. The accuracy loss using group records is slightly higher in 

scenario III than in scenario II. The data without tank effect gives 0.02-0.04 more loss in 

accuracy in scenario II and scenario III than data with tank effect. However, in scenario 

IV, there is an almost similar loss in accuracy for data with tank effect and without tank 

effect, except across families. The accuracy loss is 0.04 more in data without tank effect 

than with tank effect in scenario IV for across family validation sets. Overall, the 

accuracy loss with group records instead of individual records ranges from 0.10 to 0.40. 

We excluded scenario I and scenario V from figure 5 and figure 6 since they did not aid 

in comparing accuracy loss. Scenario I individuals records are the group records 

themselves, thus having no relative differences in their accuracies. Scenario V has only 

one group record, which gives a 100% accuracy loss when group records are used 

instead of individuals. 
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Figure 5: Loss in genomic prediction accuracy (mean of 20 replicates) in scenarios (II-IV) when 
group records were used instead of individual records for data with the tank effect across 
different validation sets. 

 

 

 

 

Figure 6: Loss in genomic prediction accuracy (mean of 20 replicates) in scenarios (II-IV) when 
group records were used instead of individual records for data without the tank effect across 
different validation sets. 
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5.4. Genomic prediction accuracy when individuals were randomly distributed in 

a tank. 

Additionally, we randomly distributed the individuals in scenario III (ran_III) to 

understand the effect of animal distribution on prediction accuracies. We used data with 

tank effect only. Table 9 presents the animal distribution effect on genomic prediction 

accuracy. Group records based prediction accuracy declined almost to 0. The prediction 

accuracy based on individual records reduces across families by 0.031. But, accuracies 

from individual records increase slightly for within family and next-generation 

validation sets. 

Table 7: Genomic prediction accuracy (mean ± SE of 20 replicates) when individuals in scenario III 
were randomly distributed (ran_III) using data with tank effect and different validation sets. 

 

In general, our results showed that the group records, data with tank effect and across-

family validation sets had higher standard errors than individual records, data without 

tank effect, and within-family/next generation validation sets. Similarly, a group with 

randomly distributed individuals or individuals from different families had a higher 

standard error than a group comprising family members. 

 

 

 

 

Across Family Next Generation Within Family 

Scenarios Group Individual Group Individual Group Individual 

ran_III -0.073 
±0.039 

0.745  
± 0.019 

-0.018  
± 0.021 

0.798  
± 0.008 

-0.032 
±0.019 

0.821 
±0.006 

III 0.532  
± 0.033 

0.776  
± 0.015 

0.597  
± 0.01 

0.795  
± 0.007 

0.711  
± 0.008 

0.820  
± 0.005 
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6. DISCUSSION  

6.1. With versus without tank effects: 

The data without tank effects clearly gives higher genomic EBV accuracy than data with 

tank effect since the latter has higher phenotypic variation and lower heritability. Su et 

al. (Su et al., 2018) reported similar results for phenotypes with and without litter/pen 

effects. 

 

6.2. Scenarios with group records: 

Scenario I gives the highest accuracy. This is because there was no grouping of 

individuals, since every individual was in its own group. Thus, individual and group 

records-based accuracy remains the same in the scenario I. Olson et al.(Olson, Garrick 

and Enns, 2006) also penned everyone separately and did not categorize it as pooled or 

group records. In this sense, grouping individuals starts from scenario II. Where we 

took an average of each tank as our group records, the individual animal information is 

lost. The estimated SNP effect from group records was less accurate than the estimated 

SNP effect from individual records. Hence we found lower prediction accuracy by using 

group records instead of individual records. Ma et al. (Ma et al., 2020), Su et al. (Su et al., 

2018), Chu et al. (Chu et al., 2019), and Biscarini et al. (Biscarini et al. 2008) also 

compared the prediction accuracy based on individual records and group records. All of 

these studies reported reduced prediction accuracy from group records. 

Our statistical model includes the tank effect (pen effect) but the group size is constant. 

Su et al. (Su et al., 2018) suggested that the covariance matrix of the pen effect cannot be 

distinguished from the covariance matrix of the  residual effect if the group size is 

constant. Thus, we cannot separate the tank effect and residual effect, which affects the 

reliability of prediction accuracy based on group records. 

The genomic prediction accuracy increases when the number of training records (T) 

increases (Meuwissen, Hayes, and Goddard 2013) (Goddard 2009). Scenario I has more 

group-records than scenario II. The group composition remains constant in both 

scenarios. Hence, the fall in prediction accuracy was due to reduced number of records 

or increased group size. Our result matches with Su et al. (Su et al., 2018), Ma et al. (Ma 
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et al., 2020) and Olson et al. (Olson, Garrick and Enns, 2006), who had shown that the 

prediction accuracy declines with increasing group size. 

To understand the effect of group composition, we randomly distributed the individuals 

in scenario III. The group size remains constant. It gives a strong decline in prediction 

accuracy for group records. When a group contains related individuals, they have more 

similar genotypes than unrelated individuals. Then the average of each tank may more 

likely represent extreme genotypes, which increases the accuracy of estimation of SNP 

effects. Contrary to this, the estimated SNP effects from the group records of unrelated 

individuals (randomly distributed individuals) resemble each other more, i.e. each 

group is a random sample from the same population. If these random samples are 

sufficiently large (representative of the population), their mean performances and 

genotypes are expected to be very similar. Thus, when unrelated individuals are in a 

tank, we observe a decline in prediction accuracy. Olson et al. (Olson, Garrick and Enns, 

2006) allocated the individuals in pens either based on common parent or randomly. 

The prediction accuracy declines in the latter case, which agrees with our results. Ma et 

al. (2020) also reported reduced genomic prediction accuracy for randomly distributed 

individuals in a tank.  

For scenario IV, each tank has two unrelated families together. As explained above, the 

prediction accuracy from group records declines when unrelated individuals are 

present in the group. Also, there is only one single record in scenario V. Our group 

record is the average record itself. Then, the deviation of the group record from the 

average is 0. Hence all EBV are 0 in scenario V when using group records. Therefore, the 

prediction accuracy (numerically the correlation coefficient is not available) was 0.  

6.3. Individual records: 

We observed that the data without the tank effect gives constant accuracies across all 

scenarios, whereas the data with the tank effect provides varying accuracies. The 

reference population size and composition in a tank differ in the latter case. When we 

keep a family in a tank, we cannot separate the tank effect and family effect. This might 

be why we get reduced accuracy in scenario III. We can disentangle the family effect by 

including different families in a tank. For example, scenario IV and scenario V. Similarly, 

by splitting family members into separate tanks, helps estimating the tank effect. For 
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example, scenario I and scenario II. Likewise the random distribution of animals in 

scenario ran_III removes the spurious association between family effect and tank effect. 

Thus, we get improved accuracy for next generation and within family validation sets in 

scenario ran_III. 

Contrary to this, across-family validation sets showed increased accuracy when the 

number of related individuals increased in a tank (from scenario II to scenario III). After 

scenario III, there is not any significant improvement in prediction accuracy as there is 

no addition of related individuals. Similarly, the random distribution of animals 

removes the relatedness of individuals in a tank. Thus, it might be the reason we 

obtained reduced accuracy when using across-family validation sets in scenario ran_III 

(Table 7). 

6.4. Within/across families and next generation validation: 

We found that genomic prediction accuracy within the families was higher than across 

families and next generation. Van den Berg et al. (van den Berg et al. 2019), Schopp et al. 

(Schopp et al. 2017), and Marjanovic et al. (Marjanovic and Calus 2021) found similar 

results for across and within family/breed analysis. The genomic prediction accuracy 

depends on the effective number of chromosome segments (Me). The prediction 

accuracy increases if Me decreases (Meuwissen et al. 2013) (Marjanovic and Calus 

2021). There is a similar set of marker configurations between training and prediction 

sets for within family analysis. Hence, there is higher within family prediction accuracy. 

Me is greater across the families (van den Berg et al. 2019). Thus, the prediction 

accuracy declines across the families. Instead, we would require dense markers or 

whole genome sequences (WGS) to capture all associations between marker and QTL 

across the families (Marjanovic and Calus 2021). Meuwissen et al. (Meuwissen, van den 

Berg, and Goddard 2021) suggested Bayesian (Bayes) modelling for WGS. Van den Berg 

et al. (van den Berg et al. 2019) found that the Bayes R method yields higher accuracy 

than GBLUP, i.e. higher accuracy for across breed prediction (van den Berg et al. 2019). 

Therefore, high density markers or WGS and a non-linear variable selection models 

would be suitable for genomic prediction across families. This might be the reason why 

we did not find better genomic prediction accuracy across the families.  
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The next generation comprises offspring from the reference population and 

within/across families’ validation sets. Thus, the next generation validation sets contain 

mixed individuals (related and unrelated to the reference population). Hence, the 

genomic prediction accuracy for the next generation is lesser than within family 

accuracy but higher than across family accuracy. Karaman et al. (Karaman et al. 2021) 

reported similar results using the mixed breed validation sets. 

On the whole, it was expected that group records reduce accuracy relative to individual 

records. In this study, group records reduced accuracy by 0.10 -0.40. Whether this loss 

in accuracy is acceptable depends on the particular breeding programme: the costs of 

individual recordings relative to group recordings, the importance of the trait, the 

relationship between reference and validation sets, and whether grouping by families is 

possible. The results showed that grouping by families is very important to achieve 

accurate EBV and that having more/smaller groups improve the accuracy of genomic 

selection.   

7. CONCLUSIONS 

From estimated SNP effects based on group records we concluded 

I. Genomic prediction accuracy of group records is highest when the groups 

contain related individuals. 

II. Genomic prediction accuracy of group records is highest within the families, 

moderate in the next generation and lowest across the families. 

III. Genomic prediction accuracy of group records reduces when the group size 

increases and the number of group records reduces. 

In our study, scenario II, have higher genomic EBV accuracy than other scenarios across 

all validation sets. But this scenario requires more tanks and increased costs per family. 

It can be accommodated if we have a low number of families and our breeding goal is 

centered on group recorded traits. A scenario like IV provides better accuracy for 

individually recorded traits, reduced costs, and a reasonable accuracy for group 

recorded traits. Thus, it can be suited if we have larger families and are less interested 

in group recorded traits. Therefore, the choice of different scenarios largely depends on 

the significance of trait, group size, and relative cost of individual recording against 

group recording rather than on the type of validation sets. 
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APPENDIX 

There are two tanks (n=2) each having three individuals (k=3) with phenotypic records 

of 10, 11, 12 (tank 1) and 7, 8, 9 (tank2) respectively. A 15000 SNP array (m=15000) 

with genotypes coded as 012 was used for genotyping. 

Then, the model for individual records 

𝒚 = 𝟏µ + 𝒁𝒎 + 𝑾𝒕 + 𝒆 

 

[
 
 
 
 
 
𝟏𝟎
𝟏𝟏
𝟏𝟐
𝟕
𝟖
𝟗 ]

 
 
 
 
 

=

[
 
 
 
 
 
𝟏
𝟏
𝟏
𝟏
𝟏
𝟏]
 
 
 
 
 

 µ +

[
 
 
 
 
 
(𝟏 − 𝟎. 𝟓)……… . . (𝟏 − 𝟏)
(𝟎 − 𝟎. 𝟓) ……… . . (𝟐 − 𝟏)
(𝟎 − 𝟎. 𝟓) ……… . . (𝟎 − 𝟏)
(𝟏 − 𝟎. 𝟓) ……… . . (𝟎 − 𝟏)
(𝟏 − 𝟎. 𝟓) ……… . . (𝟏 − 𝟏)

(𝟎 − 𝟎. 𝟓) ……… . . (𝟐 − 𝟏)]
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.

.

.

.
𝒎𝟏𝟓𝟎𝟎𝟎]

 
 
 
 
 

+
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𝟏 𝟎
𝟏 𝟎 
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𝒕𝟐
] +
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𝒆𝟏

𝒆𝟐

𝒆𝟑

𝒆𝟒
𝒆𝟓

𝒆 𝟔]
 
 
 
 
 

  

The individual records transformed to group records as; 

𝑻 = [

𝟏

𝟑

𝟏

𝟑

𝟏

𝟑
 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎
𝟏

𝟑

𝟏

𝟑

𝟏

𝟑
  

] 

Then the model for group records; 

𝒚∗ = 𝟏µ + 𝒁∗𝒎 + 𝑾∗𝒕 + 𝒆∗ 

[
𝟏𝟏
𝟖

] = [
𝟏
𝟏
] . µ + [

−𝟎. 𝟏𝟔𝟔𝟔…… . . 𝟎
𝟎. 𝟏𝟔𝟔𝟔……… . . 𝟎

] .
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𝟏
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] 

 



 

 

 


