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Abstract 

Among the most abundant genera in the gut of 6-month-old infants are the Bacteroides and 

Bifidobacterium genera. Bifidobacterium species are well known to utilize human milk 

oligosaccharides (HMOs) but can also degrade mucins present in humans' gastrointestinal tract. 

Mucins are structurally similar to HMOs and are the primary resource for Bacteroides species. 

Bacteroides have recently been discovered to degrade HMOs, and Bifidobacterium seems not 

to be the only species to possess this trait. There is currently a knowledge gap related to the 

common metabolism of these resources and the potential competition between the Bacteroides 

and Bifidobacterium genera. This thesis aims to investigate metabolic pathways and glycoside 

hydrolases that are recognized for HMO- and mucin degradation with the help of metagenomics 

and proteomics. 

A subset of 11 samples were selected from a bigger sample-set of 100 16S rRNA sequenced 

fecal samples. The subset was split into two groups: samples high in Bacteroides and samples 

high in Bifidobacterium. A shotgun analysis was performed to investigate the potential 

functions present in Bacteroides and Bifidobacterium and proteome analysis to identify and 

match proteins to the shotgun data. Accordingly, an SCFA analysis was performed to identify 

associations between the produced SCFA and metabolic pathways. All necessary intracellular 

glycoside hydrolases (GHs) for HMO degradation were detected for both genera in the shotgun 

data, including sialidases, fucosidases, β-galactosidases, and β-hexosaminidases. Two mucin-

related GHs were found in the genome of Bifidobacterium and not in Bacteroides. Sulfatases 

that may be used to degrade other substrates in human breast milk were identified in the 

Bacteroides genome and not in Bifidobacterium. The proteomics revealed the presence of 

fucosidases and β-hexosaminidases in both genera. However, sialidases were missing for 

Bifidobacterium and Bacteroides, whereas the latter also lacked β-galactosidases. There was no 

correlation between SCFAs and the two genera, but the potential for producing acetate was 

observed in different metabolic pathways for Bifidobacterium and Bacteroides. The latter 

illustrated a potential for producing propionate as well. 

The study revealed similar abilities of HMO and mucin degradation between Bacteroides and 

Bifidobacterium, although the Bifidobacterium genus is likely better adapted and has a broader 

repertoire of the necessary enzymes for HMO utilization. Bacteroides could depend on other 

factors in human milk to compete with the Bifidobacterium species. The potential competition 

between these genera and the metabolic pathways they may exploit to promote their species' 

growth, should be further investigated. 
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Sammendrag 

Blant de mest tallrike bakteriene i tarmen til 6 måneder gamle spedbarn er slektene Bacteroides 

og Bifidobacterium. Bifidobacterium er godt kjent for å benytte seg av oligosakkarider i 

brystmelk (HMO), men de kan også degradere muciner som finnes i den gastrointestinale 

trakten hos mennesker. Mucin er veldig like HMO i strukturen, og er hovedressursen til arter i 

Bacteroides slekten. Bacteroides har og nylig blitt observert å kunne degradere HMO, slik at 

Bifidobacterium ser ut til å ikke være den eneste slekten som har denne egenskapen. Foreløpig 

er det et avvik i kunnskapen relatert til deres felles metabolisme for disse ressursene, som 

fremmer levedyktigheten og gjør at de bosetter seg i tarmen. Målet med denne oppgaven har 

vært å undersøke metabolske reaksjonsveier og glykosid hydrolaser som er kjent for HMO- og 

mucin degradering, ved hjelp av metagenomikk og proteomikk.  

Fra et prøvesett på 100 16S rRNA sekvenserte fekale prøver, ble 11 prøver valgt ut. De ble delt 

inn i to grupper: høy Bacteroides og høy Bifidobacterium. En shotgun analyse ble gjennomført 

for å undersøke potensielle funksjoner hos Bacteroides og Bifidobacterium, samt en proteom-

analyse for å identifisere og matche proteiner til shotgun-data. I tillegg ble det gjennomført en 

kortkjedet fettsyre-analyse for å identifisere assosiasjoner mellom de produserte fettsyrene og 

metabolske reaksjonsveiene. Alle nødvendige intracellulære glykosid-hydrolaser (GH) for 

HMO degradering ble funnet for begge slekter i shotgun-dataen. Disse inkluderer sialidaser, 

fukosidaser, β-galaktosidaser og β-heksosaminidaser. To mucin-relaterte GHer ble funnet i 

genomet til Bifidobacterium, men ikke hos Bacteroides. Sulfataser, som kan benyttes for 

degradering av andre substrater i brystmelk ble funnet hos Bacteroides og ikke hos 

Bifidobacterium. Proteomikken avslørte tilstedeværelse av fukosidaser og β-heksosaminidaser 

hos begge slektene. Sialidaser derimot manglet hos begge, og Bacteroides manglet også β-

galactosidaser. Ingen korrelasjon mellom kortkjedede fettsyrer og bakterieslektene ble 

observert, men potensialet for acetat-produksjon ble observert i ulike metabolske reaksjonsveier 

for Bifidobacterium og Bacteroides. Bacteroides illustrerte også et potensiale for propionat-

produksjon.  

Både Bacteroides og Bifidobacterium viste gode muligheter for degradering av HMO og mucin 

i denne studien, men Bifidobacterium synes å være bedre tilpasset med et større repertoar av 

enzymene som er nødvendige i degradering av HMO. Bacteroides kan være avhengig av andre 

faktorer i brystmelk for å kunne konkurrere med Bifidobacterium. Metabolske reaksjonsveier 

og GHer som Bacteroides og Bifidobacterium benytter seg av burde undersøkes videre, for å få 

en bredere forståelse av hva det er som fremmer veksten til disse slektene i tarmen til spedbarn. 
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1. Introduction 

 
1.1. The Gut Microbiota and General Functions 

The human body harbors a vast number of microorganisms: on the skin, from the air we breathe, 

and the food we digest. The biggest part of the human microbiome – which means all living 

microorganisms in the human body - is in the intestine, also known as the gut microbiome. The 

human intestine inhabits approximately 200-1000 different bacterial species, whereas the 

composition of these species varies between individuals (Forster et al., 2019). The ratio between 

bacterial cells and human cells in the human body is approximately 1:1 (Sender et al., 2016), 

and the total number of genes within these bacterial cells is more than 100 times greater than in 

the entire human gene set (Qin et al., 2010). The bacterial community lives in symbiosis with 

its host, meaning they live together, and the relationship between bacteria and humans can be 

either mutualistic, commensalistic, or parasitic. This ecosystem has proven complex, and even 

with new bioinformatic tools and expanding knowledge, there are many uncertainties about 

host-microbe interactions and how microbes affect human health. These interactions have been 

studied for many years, and the knowledge is continually expanding to understand better the 

numerous factors that impact human health. 

The human gut microbiota composition may have inter-individual variations, but the general 

functions remain primarily the same. The functional roles can vary among the members of the 

four major bacterial phyla Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria 

(Forster et al., 2019). For example, did the Actinobacteria investigated in Forster et al. (Forster 

et al., 2019) show enriched functions associated with lipid and carbohydrate metabolism, while 

Bacteroidetes had iron and sulfur transporter functions as crucial functions. Humans rely on 

many of the functions completed by the gut microbiota. They ferment foods, fibers, and 

nutrients that enter the intestine and generate energy for their benefit, but they also produce 

vitamins and amino acids that are essential to humans (Masi & Stewart, 2022). Another vital 

function of the gut microbiome is to defend the human body against pathogens that may enter 

the gastrointestinal (GI) tract. Many of the immune responses against pathogens, recognition 

and tolerance of antigens and the commensal flora, and food responses occur in the 

gastrointestinal system (Vighi et al., 2008). Even if there are many variations in the bacterial 

composition and abundance of species within the gut of healthy people, distinguishing healthy 

and unhealthy microbiomes is not easy (Eisenstein, 2020). Nevertheless, a healthy gut 
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microbiome includes a diverse microbiota covering each niche in the intestine which works 

preventive and protects against colonization of other bacterial species, like pathogens. 

1.2. The Infant Gut Microbiota and Colonization 

New-born infants show great interindividual variations in their gut bacterial composition but 

become more alike over time. The bacterial composition in the gut converges from an infant 

gut microbiota to an adult-like microbiota within the first few years of living – and the most 

significant alterations occur between birth and two years of age (Avershina et al., 2016; Milani 

et al., 2017). Around three years of age, it is almost impossible to tell the difference between a 

child and an adult from their gut microbiota composition (Milani et al., 2017). The first 

colonization is thought to start at birth, but some studies have suggested in utero colonization 

that indicates a presence of microbes in the amniotic fluid, placenta, and meconium (Collado et 

al., 2016; Perez-Munoz et al., 2017) – but both the prevalence and abundance has been pretty 

low in these samples.   

The mother has the greatest external impact on the gut colonization of the infant, and mother-

infant associations have been found in the first six months after delivery (Matamoros et al., 

2013). For example, a previous study associated the mother-child-shared Bacteroides with 

vaginal delivery (Nilsen et al., 2021), suggesting vertical transmission of this genus. The initial 

establishment is influenced by several factors, and the mode of delivery is one of them. 

Depending on the delivery mode, the prevalence of different bacterial species in the infant gut 

varies, as well as the diversity. Typically, a lower diversity during the first week of life has been 

observed in cesarean-section (CS) delivered infants compared to vaginally delivered infants 

(Rutayisire et al., 2016). They are also less often colonized by Bifidobacterium and Bacteroides 

and more often colonized by Clostridium and Staphylococcus (Milani et al., 2017; Rutayisire 

et al., 2016). The maternal perineal and vaginal microbes like Lactobacillus and Prevotella are 

natural infant intestinal colonizers for vaginally delivered infants (Hoang et al., 2021; Milani et 

al., 2017). Other normal inhabitants for vaginal delivery are facultative proteobacteria such as 

Escherichia coli and other Enterobacteriaceae (Matamoros et al., 2013). Exposure to the 

mother's vaginal and fecal microbiota is lacking during CS, and environmental bacteria that 

exist in the hospital and on hospital staff, including human skin are usual colonizers instead.  

The stomach and the small intestine only inhabit a few bacterial species because of the acidic 

pH, but from the ileum located at the end of the small intestine, the pH gets more basic/alkaline 

together with the number of bacteria. After birth, oxygen depletion is usually facilitated by the 
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early proteobacteria, which in turn creates an anaerobic environment that favors the growth of 

strict anaerobe species like Bifidobacterium, Clostridium, and Bacteroides (Rautava et al., 

2012). This process is introduced just after birth and shortly after the entire colon is anaerobic. 

Because of this, the colon has the densest microbial community and only the species that do not 

need oxygen in their metabolism and generate energy from fermentation settle here (Lin et al., 

2014). 

Several factors influence the colonization of the human gut beside the delivery mode (figure 

1.1). These can, for example, be the gestational age at birth, feeding mode (breast- or formula-

fed), geographical location, medical factors (antibiotic treatments), and familial environment 

(Matamoros et al., 2013; Milani et al., 2017). 

 

Diet is an important factor from the very beginning since the bacteria’s ability to break down 

different carbohydrates is one of the main factors that determine the gut bacterial composition 

(Kononova et al., 2021). Human milk is the first diet that humans encounter, and the 

carbohydrates that are digested are determined by feeding mode, as the carbohydrate 

composition varies between breastmilk and formula. The exclusive breastfeeding usually lasts 

for about six months, but variations are great due to cultures, availability, or other social 

contexts. At six months, children are generally introduced to solid foods as well, making an 

impact on the gut bacterial succession. 

1.3. Human Milk Oligosaccharides 

Different lactating stages distinguish human milk into colostrum, transitional and mature milk 

(Mosca & Gianni, 2017). Colostrum is the milk produced in the first lactating stage in the first 

days after birth, which primarily benefits the infant gut by transferring immunological factors 

and growth factors rather than nutrients (Granger et al., 2021; Mosca & Gianni, 2017). The 

colostrum then transitions into mature breast milk, which is more focused on transferring 

Figure 1.1. General factors that influence the bacterial composition in the gut from birth. The arrows in the 

“birth” boxes (Vaginal Delivery + Caesarean Section) indicates a usual increase in these genera for these delivery 

modes. The figure was inspired by Matamoros (Matamoros et al., 2013).  
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nutrition for the infant, but also immune factors, growth factors, and vertical transfer of bacteria 

from the breast milk microbiome (Granger et al., 2021).  

Human Milk Oligosaccharides (HMOs) are the third most abundant solid component in breast 

milk after lactose and lipids. The concentration ranges from approximately 1-10 g/L in mature 

milk and 15-23 g/L in colostrum (Mosca & Gianni, 2017), but there are some variations 

between lactating mothers. HMOs are resources that lead to the production of short-chained 

fatty acids. They are glycan structures that enter the infant intestine from breastmilk without 

being broken down by the infants’ enzymes (Rautava et al., 2012). Instead, these are utilized 

by bacteria in the infant colon and therefore considered prebiotics and an excellent substrate for 

bacteria with the correct enzymatic degradation abilities. Because not all bacteria have the 

necessary enzymes for HMO-degradation, the HMOs contribute to establishing a specialized 

community (Borewicz et al., 2019). 

HMOs consists of five different monosaccharide building blocks, which are D-glucose (Glc), 

D-galactose (Gal), N-acetylglucosamine (GlcNAc), fucose (Fuc), and sialic acid (N-acetyl 

neuraminic acid (Neu5Ac)) (figure 1.2) (Borewicz et al., 2019). Lactose, which is Gal-β1,4-

Glc, is always found on the reducing end of HMOs and can be elongated with either a β1-3 

linkage or β1-4 linkage to two different disaccharides. These are formed by Gal and GlcNAc: 

Lacto-N-biose (LNB) with a β1-3 linkage creating a type 1 chain, and N-acetyl lactosamine 

(LacNAc) with a β1-4 linkage creating a type 2 chain (Masi & Stewart, 2022). LNB terminates 

the chain, and LacNAc can be further elongated (figure 1.2). β1-6 linkages also occur and will 

create a branched HMO molecule. Further additions may occur if fucose is added with α1-2, 

α1-3, and α1-4 linkages, and sialic acid with α2-3 and α2-6 linkages (Bode, 2012). These 

additions term the HMO as fucosylated or sialylated, respectively. A neutral HMO does not 

have any sialic acid additions, and they make up more than 75% of the total HMO concentration 

(Wang et al., 2020). Consequently, the sialylated, also known as acidic HMO structures make 

up about 8-21% of the total HMOs (Ioannou et al., 2021). Together, all these building blocks 

can create hundreds of different structures, but only 20-25 accounts for more than 95% of the 

total HMOs (Ioannou et al., 2021).  

The structures vary depending on the maternal genotype, which determines the composition 

and concentration of the separate structures (Borewicz et al., 2019). This means that the 

oligosaccharide composition is specific to each mother, and it is determined by the activity of 

two fucosyl-transferases; α1-2-fucosyltransferase FUT2 and α1-3/4-fucosyltransferase FUT3. 

A variable for HMOs in mothers is the presence or absence of fucose residues on HMOs, which 
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defines their Secretor status and Lewis blood type (Ioannou et al., 2021). Women expressing 

the Se genes are referred to as secretor women, and the gene codes for the activity of FUT2. 

Lewis positive women express the gene Le which codes for the activity of FUT3. Se-positive 

and Le-positive women will have high concentrations of HMOs that are either α1-2-fucosylated 

or α1-4-fucosylated, respectively (Borewicz et al., 2019). Accordingly, Le-negative and Se-

negative women will not have very high levels of these HMOs. Breast milk can be assigned to 

one of four groups based on the expression of the fucosyltransferases, and these are Le-positive 

secretors (Se+Le+), Le-negative secretors (Se+Le-), Le-positive non-secretors (Le+Se-) and 

Le-negative non-secretors (Le-Se-) (Bode, 2012).  

 

Figure 1.2. Human milk oligosaccharides. 

(A) Monosaccharides in HMO. Fuc, fucose; Glc, glucose; Gal, galactose; GlcNAc, N-acetylglucosamine; Neu5Ac, 

N-acetylneuraminic/sialic acid. (B) Disaccharides in HMO. LNB, Lacto-N-Biose; LacNAc, N-acetyl lactosamine; 

Lac, lactose. Gal and GlcNAc are linked together with a β1-3 (LNB) or β1-4 (GlcNAc) linkage and terminate or 

extend the chains of HMO. Lactose has a β1-4 linkage between Gal and Glc and is always on the reducing end of 

HMO. (C) Illustrations of a type 1 chain and type 2 chain of HMO, with mono- and disaccharides in (A) and (B). 

This figure is inspired by and based on (Masi & Stewart, 2022). 

 

Certain inhabitants of the intestine produce enzymes that degrade the linkages in HMO 

structures, which enables the degraded HMO for utilization by other bacterial species or 

subspecies. This process is known as cross-feeding, a mechanism that strains of a certain species 

or even different species use and promote the growth of themselves or others (Turroni et al., 

2018). 
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1.3.1. HMO Utilization and Degradation 

HMO degradation in the infant gut is not yet fully understood. However, there are glycosidases, 

sugar transporters, and glycan-binding proteins necessary for HMO degradation – at least in the 

well-studied Bifidobacterium spp. In extracellular hydrolase-dependent HMO degradation in 

Bifidobacterium, HMOs are hydrolyzed into mono- and disaccharides by secretory glycoside 

hydrolases and then incorporated inside the cells (Gotoh et al., 2018). Before they are 

incorporated, the mono- and disaccharides will be available for other bacteria to utilize. 

Oligosaccharide transporter-dependent degradation is when HMOs are directly imported into 

the cells by ATP-binding cassette (ABC) transporters (Gotoh et al., 2018). And then, inside the 

cells, the saccharides are hydrolyzed by intracellular glycosidases.  

Glycoside Hydrolases 

Numerous studies and researchers have tried to characterize enzymes that degrade HMOs. 

These enzymes are known as carbohydrate-active enzymes (CAZymes), categorized into 

different families. A family contains at least one member and is then populated by homologous 

sequences in the Carbohydrate Active Enzymes database (Drula et al., 2021). Specific glycoside 

hydrolases (GHs) are known for HMO degradation, and they react with water to break 

glycosidic linkages (Ioannou et al., 2021). GHs are classified into 171 families to this date 

(Drula et al., 2021). Substrate specificity can vary in the family, but for GHs, the catalytic 

mechanism seems to be well conserved (Drula et al., 2021).  

Lacto-N-Biose (LNB) is always found on the terminating end of HMO (figure 1.2). Galacto-N-

biose (GNB) is structurally similar to LNB but is found in mucins in the mucosal barrier in the 

intestine in certain core-structures. Both glycans have to be cleaved to make the rest of the 

substrate available for degradation (Ioannou et al., 2021). The enzyme LNB/GNB 

phosphorylase (GLNBP, EC 2.4.1.211) cleaves the LNB or GNB, and belong to the GH112 

family. Endo-β-N-acetylglucosaminidases (GH18 or GH85) remove glycans from peptides and 

they may target β1-4 linkages in LacNAc as well as β1-3 linkages of LNB or GNB. Neu5Ac 

residues, or sialic acids, are freed and cleaved by sialidases/neuraminidases (GH33). α-L-

fucosidases (GH29 and GH95), depending on their specificity, cleave the fucose residues of 

HMOs (Ioannou et al., 2021). Other enzymes involved in HMO degradation are Lacto-N-

biosidases (GH20 and GH136) and β-hexosaminidases/β-1,6-N-acetylglucosaminidases 

(GH20) that release lactose, and β-galactosidases from families GH2 and GH42 including the 

β-galactosidases from family GH35 (Ioannou et al., 2021; Marcobal et al., 2011). It is the β-

galactosidases able to degrade β1,4 linkages that cleave the lactose. The GH1 family seems to 
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not have been characterized in species of the infant gut flora, however, they may target β1,4-

linkages of lactose. An overview of the GH families with HMO degrading enzymes and their 

target substrates can be found in table 1.1. 

Table 1.1. Overview of GH families. Illustrates their enzymes and targeted bond that may be involved in HMO 

and mucin degradation. This table is made with the same information as in (Ioannou et al., 2021) and table 1 in 

the applicable article and with information from (Tailford et al., 2015).   

H
M

O
 r

e
la

te
d

 

GH 

Family 

Enzyme Target 

GH18 Endo-β-N-acetylglucosaminidase/ 

Endoglycosidase 

 alβ1-3/4GlcNAc2 

GH112 GNB/LNB phosphorylase  alβ1-3GlcNAc2/  alβ1-3GalNAc2 

GH136 Lacto-N-biosidase  lcNAcβ1-3Gal 

GH1 β-1,4-galactosidase  alβ1-4-Glc 

GH35 β-galactosidase  alβ1-4-Glc 

M
u

ci
n

 r
el

a
te

d
 

GH89  α-N-acetylglucosaminidase GlcNAcα1-4Gal 

GH101 α-N-acetylgalactosaminidase (Galβ1-3)GalNAc-Ser/Thr 

GH129 α-N-acetylgalactosaminidase (Galβ1-3)GalNAc-Ser/Thr 

H
M

O
 a

n
d

 m
u

ci
n

 r
el

a
te

d
 

GH95 α-1,2-L-fucosidase Fucα1-2Gal 

GH2 β-1,4-galactosidase  alβ1-4-Glc 

GH42 β-galactosidase Galβ1-4-Glc + Galβ1-3-Gal + Galβ1-4-Gal + 

Galβ1-6-Gal 

GH20  Lacto-N-biosidase  lcNAcβ1-3/6Gal 

β-hexosaminidase/ β-1,6-N-

acetylglucosaminidase 

GH29 α-L-fucosidase Fucα1-3/4Gal 

α-1,3/1,4-L-fucosidase Fucα1-3/4GlcNAc 

GH33 2,3-2,6-α-sialidase Neu Acα2-3/6 al + Neu Acα2-6GlcNAc 

GH85 Endo-β-N-acetylglucosaminidase/ 

Endoglycosidase 

 alβ1-3/4GlcNAc2 

Multiple pathways are used to utilize HMO by different bacteria. One of them is the Leloir 

pathway which consists of four enzymes: galactose mutarotase (GalM); galactokinase (GalK); 

UDP-glucose-hexose-1-phosphate uridylyltransferase (GalT); and UDP-glucose-4-epimerase 

(GalE) (Nishimoto & Kitaoka, 2007). Galactose is metabolized to Glucose-1P through this 

pathway in most organisms and Glucose-1P is then used in the glycolysis. It starts with β-

Galactose, which is converted to α-Galactose by GalM (EC 5.1.3.3), and GalK (EC 2.7.1.6) 

converts the α-Galactose to Galactose-1P. Further, GalT (EC 2.7.7.12) makes the UDP-

Galactose and converts UDP-Glucose to Glucose-1P. GalE (EC 5.1.3.2) finishes the pathway 

by converting UDP-Galactose to UDP-Glucose, which enters the GalT reaction to Glucose-1P 

(Nishimoto & Kitaoka, 2007). The LNB/GNB pathway is similar to the Leloir pathway, but 

they have a few differences. The key enzyme is the GLNBP whereas the resulting N-acetyl-
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hexosamines are further phosphorylated by NahK (EC 2.7.1.162) (Nishimoto & Kitaoka, 2007). 

Additionally,  the pathway likely uses GalT2 instead of GalT1 due to higher affinity toward 

GalNAc1P (N-acetyl-galactosamine-1-phosphate) than Gal1P (De Bruyn et al., 2013). It is a 

more energy-conserving pathway and is mostly used by some Bifidobacterium species as the 

main metabolic pathway for galactose as an energy source (Nishimoto & Kitaoka, 2007).  

1.4. Mucin O-Glycans  

Throughout the GI tract, mucus covers the surfaces of the epithelial cells, creating a barrier that 

separates pathogens and other harmful organisms and agents from the epithelial cells, 

preventing inflammation and colorectal cancer (Luis et al., 2021). Mucus is present in a two-

layered system in the colon, where the bacterial density is highest. The inner layer functions as 

an actual barrier, thick and attached to the epithelium, while the outer layer is looser and is 

where the commensal bacteria colonize (Raimondi et al., 2021). As mucus is the first barrier 

that agents and organisms must interact with and diffuse through to access other organs, the 

risk of disease increases if the mucosal barrier is in some way eliminated or the level of 

glycosylation is reduced (Bansil & Turner, 2006; Luis et al., 2021). This happens if mucin-

degrading species are overrepresented, disassembling the mucin oligosaccharides, resulting in 

a thin mucosal layer that exposes the epithelial cells (Raimondi et al., 2021).   

Mucins are the main component of mucus and are made up of glycoproteins with high levels of 

fucosylation, which is the reason for the viscous properties of mucus (Bansil & Turner, 2006). 

They can be membrane-bound or secreted and utilized as a nutrient source for certain bacterial 

species, such as Bacteroides spp. (Luis et al., 2021; Raimondi et al., 2021). Also, their structure 

is quite similar to HMO. The oligosaccharides in mucin represent ~ 80% of the mucin mass, 

which are N-acetylgalactosamine (GalNAc), GlcNAc, Gal, Fuc, and Neu5Ac, whereas the latter 

four are also components of HMO (Raimondi et al., 2021). Mucins are called O-glycans 

because their oligosaccharide chains are attached to the protein core with an O-glycosidic 

linkage on the side-chain of serine or threonine (Bansil & Turner, 2006). This protein core 

makes up the remaining 20% of mucin. There are eight different protein cores (figure 1.3), with 

threonine or serine always linked to GalNAc, which can be extended by backbone chains. As 

in HMOs, the backbone consists of either a type 1 (β1-3 linkage) or type 2 (β1-4 linkage) chain 

and can also be branched (Li & Chai, 2019) (figure 1.3). The backbone is linked to a variable 

peripheral part that is recognized depending on a person’s blood group antigens and lewis 

antigens but can also consist of substituents such as sialic acid, fucose or sulfate (Li & Chai, 

2019; Luis et al., 2021). Sulfate can be added to the 6-hydroxyl of N-acetyl-D-Glucosamine 
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(6S-GlcNAc) and the terminal D-galactose (Gal) on the hydroxyl position 3, 4 or 6 (3S-Gal, 

4S-Gal and 6S-Gal) (Luis et al., 2021). It caps the glycan so that it is unavailable for further 

degradation, and mucin-utilizing species are therefore dependent on sulfatases that removes the 

sulfate. 

 

 

Figure 1.3. Mucin O-glycans.  

(A) Monosaccharides and sulfate can be added to the mucin glycans. (B) Backbone- repeat glycan structure of 

mucin. Type 1 chain, type 2 chain & branched chain consisting of Gal and GlcNAc. (C) Di- and tri-saccharides in 

the protein core of mucins and their respective linkages. GalNAc is always bound to Threonine or Serine. (D) 

Example illustration of mucin. The variable peripheral part varies depending on blood group antigens, lewis 

antigens, and other substituents can be sulfate, fucose or Neu5Ac (sialic acid). Fuc, Fucose; Gal, Galactose; 

GlcNAc, N-acetylglucosamine; GalNAc, N-acetylgalactosamine; Neu5Ac, N-acetyl neuraminic acid / sialic acid. 

This figure is inspired by and made based on Li & Chai, (Li & Chai, 2019) and Masi & Stewart (Masi & Stewart, 

2022). 

 

1.4.1. Mucin Utilization and Degradation 

Mucins are diverse structures as well as HMOs and rely on proteases, sulfatases, and GHs to be 

degraded (Tailford et al., 2015). As with HMOs, the sialic acids need to be removed from 

mucins to make them available for other GHs. The removal is performed by sialidases such as 

the GH33 family, which vary in substrate specificity. The genes involved in the sialic acid 

metabolism can be found in nan gene clusters in several bacteria, making them capable of fully 

utilizing the sialic acids after they are removed (Tailford et al., 2015). The majority of these 

live in the mucus regions of the body, which are high in sialic acids, like the lung, bladder, and 

the gut, and especially the distal colon (Almagro-Moreno & Boyd, 2009). There are variations 

Fuc
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 al
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between species and the genes they encode, and some of them only encode the sialidases, while 

other have the full set or even lacks the full set of the nan-operon (Tailford et al., 2015). GHs 

necessary for mucin degradation include sialidases of family GH33, the α-L-fucosidases in 

GH29 and GH95, endo-β-N-acetylglucosaminidases in family  H  , β-galactosidases in GH2, 

GH42 and  H20, α-N-acetylglucosaminidases in GH89 and the α-N-acetylglucosaminidases 

in families GH101 and GH129 (Drula et al., 2021; Tailford et al., 2015). Seven of these GH 

families are also needed for HMO degradation, and the overview of the GH families is 

illustrated in table 1.1. Because sulfate is present on mucin glycans, sulfatases are also needed 

in the degradation of mucin. However, the specific sulfatases are poorly investigated and just 

recently a few sulfatases produced by Bacteroides thetaiotamicron were characterized (Luis et 

al., 2021). 

1.5. HMO- and Mucin- Degrading Bacteria 

Several bacterial species are known to degrade HMOs and mucins in the human gut. So far, a 

few species have been studied for their mucin-degradation abilities, such as Akkermansia 

muciniphila, Ruminococcus gnavus, Bifidobacterium longum subsp. infantis, Bacteroides 

fragilis and Bacteroides thetaiotamicron (Tailford et al., 2015). For the utilization of HMO, 

there seem to be a few common denominators, which are species of the genera Bacteroides and 

Bifidobacterium (Masi & Stewart, 2022). Because mucin highly resembles HMO, the 

knowledge of HMO utilization among other gut commensals that are related to mucin 

utilization should be emphasized. There is evidence that species of Bacteroides, for example, 

can degrade HMO. For instance, did most of Bifidobacterium spp. and Bacteroides spp., grow 

and produce lactate and SCFA when fed certain HMOs in a performed experiment (Yu et al., 

2013). Additionally, B. thetaoitamicron and B. fragilis showed an upregulation of mucin-

utilizing genes during HMO consumption, thus indicating HMOs being attractive to more 

species than those we already know well, such as Bifidobacterium species (Marcobal et al., 

2011).  

Bacteroides 

Bacteroides is a gram-negative, anaerobic bacteria, and it is a genus that belongs to the family 

Bacteroidaceae and phylum Bacteroidetes. The GC-content of the Bacteroides DNA ranges 

between 40-48%, and they have a circular genome sized from 2.1 Mb to 7.9 Mb (Wexler, 2014). 

According to the List of Prokaryotic names with Standing in Nomenclature (LPSN) web 

interface (Parte et al., 2020), Bacteroides is identified as 101 species and eight subspecies, while 

Parabacteroides (formerly Bacteroides) is identified as ten species. The Virtual Metabolic 
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Human Database (VMHD) provides information about the inhabitants of the human gut 

microbiome; Bacteroides are identified as 63 species and Parabacteroides as six species in this 

database today (Magnúsdóttir et al., 2017). Some Bacteroides species are known as 

opportunistic pathogens, acting as beneficial in the right location but a pathogen in other parts 

of the body and could lead to diseases like oral infections, meningitis, or pericarditis (Zafar & 

Saier, 2021). One example is the B. fragilis which is also highly prevalent in the human gut 

(Zafar & Saier, 2021).  When investigating the gut microbiota of infants, vaginal delivery seems 

to be a cause for colonization of the Bacteroides genus, as vertical transfer from the mother has 

been suggested by several studies (Backhed et al., 2015; Carrow et al., 2020; Zafar & Saier, 

2021). Bacteroides members, including Parabacteroides, degrade a lot of complex and simple 

sugars, oligosaccharides, and polysaccharides, including HMOs as well as mucins and plant-

derived polysaccharides (Borewicz et al., 2019). The human intestine is abundant in these 

substrates and  is an attractive place for the Bacteroides genus to settle, which appear among 

the most abundant genera in the human gut.  

Bifidobacterium 

Bifidobacterium is a gram-positive, strictly anaerobic genus that belongs to the 

Bifidobacteriaceae family and Actinobacteria phylum. The GC-content are known to be high 

with an average of 60%, and the genome size ranges from approximately 1.73 Mb to 3.25 Mb 

(Milani et al., 2014). The genus was already isolated from infant fecal samples already in the 

late 1800s (Milani et al., 2016) and is today identified as 106 different species and 18 subspecies 

in total, according to the LPSN web interface (Parte et al., 2020). According to the VMHD, the 

Bifidobacterium genus is identified as 39 species (Magnúsdóttir et al., 2017).  

In the human adult gut, the most common Bifidobacterium species are Bifidobacterium 

adolescentis and Bifidobacterium longum, but in the gut of infants, the most common 

Bifidobacterium species are Bifidobacterium bifidum, Bifidobacterium breve and 

Bifidobacterium longum (Turroni et al., 2012). However, there are no strict boundaries between 

infant and adult groups as Bifidobacterium is thought to be a common vertical transmitted 

bacteria from mother to child through the mother’s vaginal tract or human breast milk (Makino 

et al., 2013). Since the genus is generally genetically adapted to the utilization of glycans in 

milk, the milk can also act as a carrier for vertical transmission of bifidobacteria and a good 

energy source (Milani et al., 2016). This could be used to explain why the genus is not only 

isolated from the human gut but from the gut of some mammals, birds, and insects whose 

offspring need parental care as well (Ventura et al., 2014).  
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Bifidobacterium is not the only one but a well-known and the main commensal HMO-utilizer, 

and the genus usually accounts for more than 50% of the total bacterial gut population within 

breast-fed infants (Gotoh et al., 2018). They colonize their host right after birth, and the 

abundance usually decreases again around six months with weaning and introduction to solid 

foods and aging. As the enzymes present in the genome of bifidobacterial species degrade 

complex diet carbohydrates, and host-derived carbohydrates, the products are not only SCFAs 

such as acetate but also lactate and succinate (Ioannou et al., 2021). These products are 

beneficial for the growth of other bacteria as they are made available for degradation in their 

niche and help regulate the dynamics between bacteria in the gut. Fecalibacterium prausnitzii 

utilize acetate through butyrate production as one example of cross-feeding between 

bifidobacteria and other species (Rios-Covian et al., 2015). 

1.6. Short-Chain Fatty Acids (SCFA) 

SCFA are known end-products from bacterial fermentation of dietary fibers and 

polysaccharides that the host cannot digest themselves (Hur & Lee, 2015), and they are 

important for food intake, inflammations, and insulin signaling. The fermentation of the 

different SCFAs is performed by enzymes that, like GHs, belong to the CAZyme family. 

The main SCFAs produced are acetate, propionate, and butyrate in a 60:20:20 mmol/kg ratio in 

adults (Martin-Gallausiaux et al., 2021), but depending on the intake of dietary fibers and the 

presence of carbohydrates, this ratio will differ. Within infants, for instance, the dietary 

polysaccharides are derived mainly from milk and the microbiota that inhabits the intestine at 

this time occupy different niches. Branched-chain fatty acids (BCFA) originate from protein 

and amino acid breakdown (den Besten et al., 2013), and are present at much lower 

concentrations than the three main fatty acids. These are isovalerate, 2-methyl butyrate, and 

isobutyrate. Acetate is produced by most gut bacteria, and butyrate and propionate are produced 

by more specific species in the gut.  

For butyrate production, substrates such as acetate, lactate, amino acids, and other 

carbohydrates are used (Martin-Gallausiaux et al., 2021). For six-carbon sugars, the glycolysis 

converts monosaccharides into phosphoenolpyruvate (PEP), which is further fermented into 

alcohols or organic acids. For five-carbon sugars, the pentose-phosphate pathway converts the 

monosaccharides into PEP (den Besten et al., 2013). Families belonging to the Clostridiales 

order can produce butyrate, for instance, Eubacterium, Ruminococcus, and Feacalibacterium 

(den Besten et al., 2013; Martin-Gallausiaux et al., 2021). As for butyrate, propionate can be 
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produced from lactate and substrates such as 1,2-propanediol, amino acids, and carbohydrates 

(Martin-Gallausiaux et al., 2021). Veilonella and Bacteroides can produce propionate using the 

succinate pathway, while others ferment lactate into propionate through the acrylate pathway 

(den Besten et al., 2013; Martin-Gallausiaux et al., 2021).  

1.7. Analytical Approaches to Study the Taxonomic and Functional Aspects of the 

Gut Microbiota 

The evolution in science has accelerated massively over the past decades, especially 

considering DNA technologies and bioinformatic tools. Gut microbes are difficult to cultivate 

as they live under conditions that are challenging to recreate in the lab. From in vitro studies 

and cultivation to understanding different omics – today, extracting DNA and RNA from 

samples is sufficient to gain knowledge that was not possible before. 

Omics is a collective description of biological studies that identify, quantify and investigate the 

characteristics of genes, proteins, and metabolites in a cell, tissue, or organism – and that ends 

with -omics (Vailati-Riboni et al., 2017). These are genomics, transcriptomics, proteomics, and 

metabolomics from genes, mRNA, proteins, and metabolites, respectively. Metagenomics is 

the collection of genomes that, in theory, exists in a sample (Escobar-Zepeda et al., 2015). 

Looking at the metagenomes of samples can provide insights into complex ecosystems, as the 

genes present in each genome play a role here. However, the presence of a gene does not 

necessarily reflect the activity of the protein. Transcriptional and translational factors such as 

insertions or deletions may influence the result from gene to protein, deactivating the protein – 

and it is the study of transcriptomics and mRNA used to characterize the genes and measure 

how they are regulated (Lowe et al., 2017). Nevertheless, post-translational changes can occur, 

and therefore, transcriptomic studies might not be sufficient. In this case, proteomics is 

necessary, which is the study of the function of all expressed proteins (Tyers & Mann, 2003). 

A perfect example of post-translational changes is reported in the gene nosZ that exists in 

certain soil bacteria and codes for the enzyme N2OR (Bakken et al., 2012). N2OR reduces the 

greenhouse gas N2O into N2, but low pH in the soil may result in the protein's deactivation and 

prevent the reaction from happening. Even if the protein is produced and activated – there is no 

guarantee that it will function and produce N2 if the conditions around it are not satisfying. 

Furthermore, metabolomics is used to measure and compare the metabolites present in a 

sample, like with the use of gas chromatography (GC) and the analysis of SCFAs. 
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1.7.1. Bioinformatic Tools 

The range for the use of bioinformatic tools is immense, from polymerase chain reaction (PCR) 

primer design to sequence alignments and protein structure prediction. These tools are used to 

get higher accuracy, information, and efficiency of the data while also being cost-effective. It 

is also useful for gene prediction when investigating genetic disorders such as cancer, autism, 

or diabetes. This is due to the discovery and characterizing of genetic changes in genomes. 

Accordingly, bioinformatic tools have been used to understand the effects of these changes. 

Many of the tools can be used to annotate genes and proteins that are present in the amino acid 

sequences that one can gain from, e.g., shotgun sequencing results. With the help of these tools, 

it is possible to discover functions, gene names, and other valuable information to gain more 

insight into the relevant genomes. Examples of these are represented in table 1.2. 

Table 1.2. Overview of bioinformatic tools used to annotate genes. This information is withdrawn from the 

sources listed in the table (date: 15.03.2022).  

Tools Description Limitations Source 

eggNOG 

mapper v2 

(Batch 

Functional 

Annotation) 

Uses precomputed Orthologous Groups 

(OGs) and phylogenies from the 

EggNOG database to transfer 

functional information from fine-

grained orthologs only.  

Up to 100 000 

proteins in 

FASTA format 

(Cantalapiedra et al., 

2021) 

(Huerta-Cepas et al., 

2018) 

  

dbCAN Annotate proteins (FASTA formate) 

using DIAMOND, HMMER, and 

eCAMI via CAZy, dbCAN, and 

CAZyme peptides, respectively. 

Max 20MB file 

size 

(Zhang et al., 2018) 

GhostKOALA 

& BlastKOALA 

Complete KO (KEGG orthology) 

assignments to characterize individual 

gene functions. Reconstruct KEGG 

pathways, BRITE hierarchies, and 

KEGG modules to imply high-level 

functions of the organism or the 

ecosystem.  

1-30 proteins 

with max. 

length of 

40 000 aa 

(Kanehisa et al., 2016) 

InterProScan Software package that functionally 

characterizes nucleotide or protein 

sequences. 

1-30 sequences https://www.ebi.ac.uk/i

nterpro/about/interprosc

an/  

 

 

https://www.ebi.ac.uk/interpro/about/interproscan/
https://www.ebi.ac.uk/interpro/about/interproscan/
https://www.ebi.ac.uk/interpro/about/interproscan/
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1.7.2. Analyzing Proteins 

Extraction of proteins can be done from various samples like the soil, humans, plants, animals, 

viruses, etcetera. The cells must be lysed to separate the protein from the host cell. This process 

is easier in cells of mammalian cells, as the plasma membrane is easily disrupted, while the cell 

wall appears more rigid in fungi and bacteria (Tan & Yiap, 2009). When performing a mass 

spectrometry (MS)-based proteome analysis, the proteins must be converted to peptides first 

(Wiśniewski et al., 2009). This process involves a solubilization of the protein with detergents, 

separation by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE), and 

digestion of the trapped proteins (Wiśniewski et al., 2009). Proteins treated with SDS will 

unfold and the SDS molecules binds to the protein almost proportional to the protein mass. 

Accordingly, when running the proteins through the gel in PAGE they will be separated based 

on their mass as SDS is negatively charged. This causes the protein to have a charge density 

and it will be driven through the gel with the same force, making small molecules migrate faster 

than bigger molecules (Tan & Yiap, 2009). The PAGE is not only used to separate specific 

proteins, but also to purify them by removing contaminants. The advantage of having the 

proteins in a gel is the reduced risk of contaminations (Wiśniewski et al., 2009). After SDS-

PAGE, the proteins can be visualized in the gel by staining with Coomassie Blue. The wanted 

proteins can then be extracted from the gel for further analysis. 

Mass spectrometry (MS) is the most used method to identify the proteins in a sample, and it 

can also be used to look at post-translational modifications in proteins, like methylation. With 

the extensive analysis of samples and high throughput, genomics provides complete genomic 

sequences, which are important to identify proteins quickly and correlate to MS measurements 

of peptides (Domon & Aebersold, 2006). There are different mass spectrometers, and a well-

known method is the LC-MS/MS (liquid chromatography-tandem mass spectrometry). Briefly 

explained, the spectrometer has an ion source, a mass analyzer, and a detector to detect the 

proteins ion mass. In LC-MS/MS, the proteins are converted into a gaseous state, and by 

measuring the mass to charge ratio, they are characterized by high resolution and mass 

accuracy. The result is a mass spectrum that can be used to identify the peptides.  

1.7.3. Sequencing Methods for Nucleic Acids 

Different approaches to investigate the gut microbiota composition and its functions are limited 

when considering the different sequencing methods. In theory, all genomes in a sample would 

be represented using the available technologies today. However, 16S rRNA gene sequencing 

can provide poor taxonomic resolution challenging the accuracy of similar taxonomies (Nilsen 
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et al., 2021; Ravi et al., 2018), while Shotgun sequencing is a more accurate method but 

expensive and complex due to storage and analysis complications. Several technologies have 

been developed since the mid-seventies, and DNA sequencing methods have evolved rapidly.  

Sanger sequencing is known as a first-generation sequencing method, and it was developed 

back in 1977 by Frederick Sanger and his colleagues – and is the first method in DNA 

sequencing (Heather & Chain, 2016). It is based on dideoxynucleotides (ddNTP) in DNA 

polymerization reactions, and the ddNTP has one less OH-group than the deoxynucleotide 

(dNTP) in DNA. dNTP is the substrate for polymerase, and if the 3’OH group on the nucleotide 

is removed, a new nucleotide will not attach, and the reaction will stop (Heather & Chain, 2016). 

The template for sequencing is divided into four tubes, and each tube has a primer, dNTPs, 

DNA polymerase, and one radiolabeled ddNTP. This provides a normal polymerization 

reaction in each tube until the ddNTP attaches and terminates it. Knowing the length of the 

fragment where termination occurred, the position of the added ddNTP is known. This is 

visualized with polyacrylamide gel electrophoresis and radiography, and the fragments can be 

read from the gel picture in the correct order. Today, each ddNTP has a fluorescence dye, 

making it possible to use only one tube for the reaction and capillary-based electrophoresis. 

When high throughput is not necessary, Sanger sequencing is sufficient and is good for specific 

primers on specific templates, such as plasmids or PCR products, as it read lengths up to 1000bp 

(Heather & Chain, 2016; Slatko et al., 2018).  

Next-generation sequencing (NGS), or second-generation sequencing, has several platforms, 

such as Illumina, 454 (Pyrosequencing), and Ion Torrent (Slatko et al., 2018). The platforms 

have small method variations, but all apply to the same concept. The method differs from 

Sanger sequencing as it does not apply radiolabelling or fluorescence dye before visualization 

on a gel (Slatko et al., 2018). Instead, samples are prepared in a library with amplified DNA or 

ligation with custom adapters. The library is then applied to a solid surface, amplifying each 

fragment with covalent links that hybridize the library adapters. This results in clusters of DNA, 

each coming from a single DNA fragment that will be a single sequencing reaction. In Illumina, 

the nucleotides are marked with a fluorophore that will emit a signal when it is cut off, revealing 

the correct sequence order (Illumina, 2017). A big advantage of using NGS is the need for a 

single volume on the reaction plate where all reactions are run in parallel, making it a very cost-

effective method. However, they rely on shorter reads up to ~ 500 bp (Heather & Chain, 2016).  

There are also third-generation sequencing methods which still is relatively new. It aims to 

sequence long DNA and RNA molecules and is therefore also known as Large Fragment Single 
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Molecule (LFSM) sequencing or Single Molecule Sequencing (SMS) (Heather & Chain, 2016; 

Slatko et al., 2018). Examples of platforms using these methods are PacBio and Oxford 

Nanopore, which can sequence full genomes in a short amount of time. The backsides of third-

gen technologies are their relatively high error rate and incredibly vast storage needs.  

1.7.4. Analyzing the Short-Chain Fatty Acid Composition  

The SCFAs in the human intestine are not produced by human cells as humans lack the enzymes 

needed to degrade the fiber substrates (den Besten et al., 2013). Instead, they are produced by 

the microbial community in the intestine, providing the necessary fuel for intestinal epithelial 

cells. SCFAs also regulates epithelial cell functions and strengthen the gut barrier functions 

(Martin-Gallausiaux et al., 2021). The colonocytes absorb most of the SCFA in the cecum and 

large intestine. This leads to an issue when analyzing the SCFA composition in the intestine 

because only 5% are secreted in the analyzed feces (den Besten et al., 2013). Methods to analyze 

and study the SCFA composition in feces have advanced over the decade, and gas 

chromatography (GC) is the most common and precise method used (Primec et al., 2017). Other 

known methods are related to liquid chromatography (LC), like high-performance liquid 

chromatography (HPLC), nuclear magnetic resonance (NMR), and capillary electrophoresis 

(CE) (Primec et al., 2017). 

Gas chromatography is compatible with SCFAs due to the acid’s volatile properties. The GC 

consists of a stationary phase and a mobile phase, and is coupled to a detector, which collects 

the data analyzed by a computer. In the mobile phase, the carrier gas that the samples are 

separated by, interacts with the stationary phase (Primec et al., 2017). The carrier gas varies 

based on the column and the detector used, but typically they are helium, argon, hydrogen, or 

nitrogen. The samples are loaded into a column where the stationary phase is normally based 

on polysiloxanes or polyethylene glycol (PEG) (Primec et al., 2017). The most used detector is 

the flame ionization detector (FID), sensitive to ionized hydrogen molecules. The ions are 

creating a current proportional to the organic compounds in the sample, and this current is 

registered by the detector and is then analyzed by a computer program creating chromatograms.  

1.8. PreventADALL 

Different studies have investigated the bacteria to host interactions for multiple years, intending 

to prevent diseases in humans and improve public health. One of them is the Preventing Atopic 

Dermatitis and ALLergies in children (PreventADALL) – study. In this study, the goal has been 
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to prevent allergic disease development in early infancy, as atopic dermatitis for instance, that 

may predispose to food and other allergy development later in life (Lodrup Carlsen et al., 2018). 

Early life factors, exposure, environment, microbiota, and xenobiotics have been assessed in 

the study and the biological sampling included blood, urine, skin swabs and feces for 

microbiota, placental biopsies and swabs, amniotic fluid (if CS), vernix caseosa, saliva and 

breast milk (Lodrup Carlsen et al., 2018). A total of 2397 mother-child pairs from Oslo, Østfold 

and Stockholm were enrolled in the study.  

1.9. Aim of Thesis 

Bacterial utilization of HMO- and mucin-related substrates have been thoroughly investigated 

in vitro. However, there is a knowledge gap related to the metabolism and potential competition 

for these resources between Bifidobacterium and Bacteroides in the infant gut. Both genera 

have been observed to utilize both mucin and HMO, but their metabolism and potential benefits 

remain unclear.  

This thesis aims to investigate the metabolic pathways and glycoside hydrolases known for the 

degradation of mucins and HMOs in Bifidobacterium and Bacteroides. To achieve this, the 

following sub aims were included: 

o Create a database containing the genes only from Bifidobacterium and Bacteroides 

species and compare the presence of these genes between the two genera 

o Identify proteins involved in HMO- and mucin-utilization with proteome analysis 

o Examine short-chain fatty acid composition from gas chromatography 

This will be addressed by analyzing the genome and proteome data gathered from 

Bifidobacterium and Bacteroides, using the feces of 6-month-old infants collected from the 

PreventADALL study. 
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2. Materials and Methods 

An overview of the performed experiments is illustrated in figure 2.1.  

 

Figure 2.1. Flow chart of the experiments. The flow chart illustrates the workflow in this thesis.  
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2.1. Sample Criteria 

The following criteria were set when selecting the samples used in the experiments: There had 

to be enough feces left in the samples for both the proteome analysis and short-chain fatty acid 

analysis. The fecal samples had to have a relatively high abundance of either the Bacteroides 

or Bifidobacterium genus. All samples were from 6-month-old infants that were breastfed until 

at least six months of age, and all infants were delivered vaginally. A total of 14 samples were 

selected for shotgun sequencing, six with high amounts of Bacteroides and five with high 

amounts of Bifidobacterium, including one positive (Bifidobacterium Breve) and two negative 

controls (negative from DNA extraction plates + PCR-water). The abundance of Bacteroides 

and Bifidobacterium in these samples can be found in Appendix A1, table 1.  

2.2. Short-Chain Fatty Acid Analysis of Samples with Gas Chromatography  

Fecal samples were 10 × diluted in dH2O, whereas 300 µl of the sample was diluted 1:1 with an 

internal standard (0.4 % formic acid and 2000 µM 2-methyl valeric acid). The samples were 

centrifuged at 13 000 rpm for 10 minutes, and the supernatant was filtered through spin columns 

(0.2 µM filter, VWR USA), and centrifuged at 10 000 rpm for 5 minutes. The eluate was 

transferred into a GC vial (VWR, USA). Trace 1310 with autosampler (ThermoFisher 

Scientific) was the gas chromatographic instrument used. The data program used to identify the 

peaks was Thermo ScientificTM DionexTM ChromeleonTM 7 Chromatography Data System 

Version 7.2 SR4. For more details, see Appendix B, protocol B1. 

2.3. Extraction of DNA from Fecal Samples 

The following procedures for DNA extraction from fecal samples had already been performed 

by lab personnel using the “Mag ure Stool DNA LQ kit” (Angen Biotech, China). The kit was 

used according to the manufacturer’s recommendations. 

Before starting, the extraction kit contents had to be prepared. This was done by adding PDB 

to the Proteinase K to a 20 mg/ml final concentration, which was then stored at -20 to +8˚C. 

PDB was then added to RNase A to a 15 mg/ml final concentration, also stored at -20 to +8˚C. 

Buffer GW1 was diluted with 100 % ethanol and stored at room temperature. Buffer MLE was 

diluted with isopropanol and stored at room temperature. Buffer ATL had PVP-10 powder 

added to it before use, and Magnetic Particles N was shaken properly before use.  

To isolate the bacterial DNA, lysis was performed by transferring 100-150 mg sample (150 ml 

if liquid) to a 2 ml bead tube. Buffer ATL+PVP-10 and Buffer PCI were added to the samples. 
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Samples were run on FastPrep96 (MP Biomedicals) for 2 × 40 seconds at 1800 rpm with a 5-

minute break between rounds. The samples were incubated on a heat block at 65˚C for 20 

minutes and should be fully lysed. Centrifuging at 13 000 × g for 5 minutes was performed to 

collect bigger particles. The samples were then stored at 4˚C until further procedures.  

The sample was transferred to a KingFisher Deep Well (DW) plate. The samples were treated 

with RNase A for 10 minutes at room temperature, to remove potential RNA contaminations. 

MagPure Particles N is paramagnetic beads that bind the negatively charged DNA. Proteinase 

K denatures proteins, and lysis buffer ensures viscosity and the correct pH. The KingFisher 

plates were prepared manually with the recommended volumes. Proteinase K, Buffer MLE, 

MagPure Particles N, and sample + RNase A were mixed. The following steps were performed 

by the KingFisherFlex robot (Thermo Fisher Scientific, USA) to extract the DNA. The first 

sample wash was performed using Buffer GW1, and the two next wash rounds were performed 

using ethanol. The MagPure particles released DNA in the last step by adding elution buffer to 

the sample. 

Illumina 16S sequencing was performed on all samples, and the data was used to investigate 

the abundance of Bacteroides and Bifidobacterium in all samples, as explained in the sample 

criteria (section 2.1). The extracted DNA was left at -20˚C and was used to prepare for Shotgun 

sequencing.  

Before continuing with the samples, it was important to ensure that DNA was present in the 

selected samples. The presence was checked by measuring the DNA concentration and 

checking the samples on a gel. 

2.4.  Measuring DNA Concentrations using Qubit 

The DNA concentration was measured using the Qubit Quant-iTTM Assay (Thermo Fisher 

Scientific, USA) to ensure sufficient DNA in the following library preparations. The QubitTM 

fluorometer (Qubit 9V, Invitrogen, USA) was used to quantify DNA before tagmentation, after 

library clean-up, and after pooling of libraries. 198 µl of Working Solution (1:200 dilution of 

Quant-iTTM reagent in Quant-iTTM buffer) was added to 2 µl of DNA sample. All samples were 

then vortexed and incubated in the dark at room temperature for approximately 2 minutes before 

being measured in the QubitTM fluorometer. 
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2.5. Agarose Gel Electrophoresis 

Gel electrophoresis was used for quality assessment and the presence of the DNA in the 

samples. The gel was a 2 % agarose gel (with peqGreen), which was run on 80 V for 42 minutes 

with a 100 bp ladder after the samples were amplified. When running the gel later after library 

pooling of shotgun samples, it was run at 80 V for 50 minutes with the same sized ladder. The 

gels were visualized using the Molecular Imager Gel DOCTM XR Imaging Systems (appendix 

A2, Figure 1).  

2.6.  Preparing Samples for Shotgun Sequencing 

According to the manufacturer's recommendations, the following steps were performed using 

the ‘Illumina® DNA  rep, (M) Tagmentation’ protocol.  

Tagmentation of genomic DNA was performed using Bead-Linked Transposomes (BLT), 

which fragment and tag the DNA with adapter sequences. Tagmentation Buffer 1 (TB1) ensured 

the correct pH. 54.4 ng to 438 ng DNA was mixed with the tagmentation master mix, including 

BLT and TB1. The tagmentation reaction was induced by running the following program on 

the thermal cycler: Preheat lid option set to 103˚C, reaction volume set to 50 µl, 55˚C for 15 

minutes, and then hold at 10˚C.  

Before the samples were ready for amplification, the tagmentation reaction had to be stopped 

by adding Tagment Stop Buffer (TSB). TSB may precipitate but is easily dissolved by heating 

at 37˚C for approximately 10 minutes. The samples were then sealed and run on the following 

program on the thermal cycler: Preheat lid option set to 103˚C, reaction volume set to 60 µl, 

3 ˚C for 15 minutes, and hold at 10˚C. When placed on the magnetic stand for approximately 

3 minutes, the supernatant was removed, and the beads were washed twice with 100 µl Tagment 

Wash Buffer (TWB). Then TWB was added again to cover the beads to prevent them from 

drying out.  

TWB supernatant was removed, and PCR master mix was added. The PCR Master Mix 

included enhanced PCR mix (EPM) and PCR-water. The samples were mixed with a pipette to 

resuspend the beads fully, and droplets were collected with a quick spin. Index adapters were 

then added to each sample. The tagmented DNA was amplified using a combination of four i5 

and four i7 adapters (Appendix A1, Table 2). The samples were sealed and centrifuged, and 

placed on the thermal cycler with the following PCR amplification program: Preheat lid option 

was set to 103˚C, then 6 ˚C for 3 minutes, and 9 ˚C for additionally 3 minutes. They were then 
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run on five cycles of 9 ˚C for 4  seconds, 62˚C for 30 seconds, and 6 ˚C for 2 minutes. Finally, 

the temperature was set to 6 ˚C for 1 minute and then held at 10˚C. 5 µl of each sample was 

collected for gel electrophoresis, and the rest was left at 2-8˚C overnight. 

Each sample library was purified after amplification using Sample Purification Beads (SPB), 

Resuspension Buffer (RSB), and 80% EtOH. The samples were centrifuged and placed on the 

magnetic stand for 5 minutes, and 40 µl supernatant was transferred to a new plate. A clean-up 

with a 1.8 × SPB– to– sample ratio was performed, and the beads were washed twice with 200 

µl EtOH before RSB was added to eluate the DNA, which was transferred to a new plate. An 

exception was two of the samples where RSB was added initially instead of SPB, whereas the 

ratio of SPB was adjusted to fit the new volume. The samples were stored overnight at -25 to -

15˚C.  

Before pooling the libraries, the samples were normalized by measuring Qubit concentrations. 

The amount of sample added to the library ranged from 2 µl for the highly concentrated samples 

to 21 µl for the less concentrated samples, to add 80 ng of DNA from each sample. The final 

library concentration measured from Qubit was approximately 9,82 ng/µl.   

Finally, the pooled library was checked on an agarose gel as previously described and sent to 

NovoGene (UK) for Illumina sequencing. The gel picture can be found in Appendix A2, figure 

2. 

2.7.  The Proteome Analysis 

Isolating bacterial cells 

The same samples that were used for shotgun sequencing, were used for the proteome analysis. 

Approximately 0.2 grams of feces were weighed out for each sample, including replicates 

(Appendix A, Table 3). Fecal samples were suspended in a cold TBS-buffer and passed through 

a MerckTM Nylon-Net SteriflipTM Vacuum Filter Unit (20 µm, Fisher Scientific, USA) to 

remove fibrous materials and human cells. Samples were centrifuged at 4000 rpm for 10 

minutes to pellet bacterial cells, and then resuspended in TBS. The second filtering to remove 

eukaryote proteins and capture bacterial cells was performed using the Millipore Vacuum unit 

(Merck Millipore, USA) and 0.22 µL membrane filters (Millipore, USA). 

Lysis of bacterial cells 

Fast-Prep tubes were prepped with Lysis buffer (50 mM Tris HCl, 200 mM NaCl, 0.1% Triton-

X100, 10 mM Dithiothreitol, and 2% Sodium Dodecyl Sulfate) and acid-washed glass beads 
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(0.2 g of <106 µm beads, 0.2 g of 425-600 µm beads, and 2 × of 2.5-3.5 mm beads (Sigma-

Aldrich, Germany)) together with the membrane filters containing the sample. A negative 

control was also included containing only lysis buffer and beads. All tubes were put on ice for 

30 minutes and occasionally vortexed. Cells were disrupted using FastPrep96TM (MP 

Biomedicals, USA) by 3 × 60-second pulses at 1800 rpm and then centrifuged at 16 000 g for 

15 minutes at 4˚C. The supernatant was then transferred to new tubes (approximately 700 µl). 

Bicinchonic Acid (BCA) protein assay - measuring protein concentration  

All samples, including the blank (lysis buffer), were diluted at 1:5 in dH2O. BCA working 

solution from the Pierce BCA Protein Assay Kit (ThermoFisher Scientific, USA), which had a 

reagent-to BCA-ratio of 1:50, was added to the samples. The samples were then incubated at 

60˚C for 30 minutes before being transferred on ice to stop the reaction. The absorbance was 

measured at 562 nm on the Eppendorf BioPhotometer D30 (Eppendorf AG, Germany), which 

was calibrated with BCA standard solutions (25, 50, 100, 150, 200, and 250 µg/ml). All sample 

measurements can be found in Appendix A1, Table 4.  

SDS-PAGE – purification of protein 

All samples were up-concentrated based on the previous BCA measurements using speedvac 

to the desired volume of 19.5 µL containing approximately 40 µg protein for the best results on 

the mass spectrometer (MS). This is equivalent to 2.05 µg/µL protein, which was used on the 

SDS-PAGE (Sodium Dodecyl Sulfate – Polyacrylamide Gel Electrophoresis). SDS-PAGE was 

used as a clean-up step to purify the proteins and get rid of other contaminants.  

A heating block was preheated to 90˚C, and a reducing sample buffer was made, using 4 × 

sampling buffer (ThermoFisher Scientific, USA) and 10 × reducing agent (ThermoFisher 

Scientific, USA). The sampling buffer binds to the proteins and colors them in the gel later. The 

reducing sample buffer was added to the 40 µg protein sample and was incubated at 90˚C for 5 

minutes. DTT in the reducing agent keeps the protein unfolded in this denaturing step. All 

samples were centrifuged at 10 000 g for 1 minute. The gel (Mini-PROTEAN TGX Stain-Free 

Gels, Bio-Rad Laboratories, USA) was unpacked and assembled. Freshly made 1 × TGS buffer 

(Tris-Glycine-SDS, Bio-Rad, USA) was poured into the inner chamber while used 1 × TGS 

buffer was poured into the outer chamber. 30 µl of each sample was transferred to wells in the 

gel using every other well to avoid contamination of samples. The gel was run at 270 V for 5 

minutes. Gel 1 was removed after 5 minutes, and gels 2 and 3 were run for additional 4 minutes 
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to separate all the samples from the well. Also, gels 4 and 5 were run for three additional 

minutes.  

Staining and de-staining of SDS-gel 

A 1000 mL stock with a de-staining solution was made containing 25 % isopropanol, 10 % 

glacial acetic acid, and Milli-Q-water. A 0.05 % Coomassie staining solution was made 

(Coomassie Brilliant Blue R250, Bio-Rad, USA) in a 100 mL destaining stock. All gels were 

stained for 1 hour at 20 rpm, then de-stained for 2 × 20 minutes at 20 rpm in destaining solution, 

and were then de-stained overnight at 20 rpm in a 1:2 destaining stock solution. The colored 

bands of the gel samples were cut into 1 × 1 mm cubes, 200 µl dH2O were added to cover the 

gel pieces and the samples were stored in the refrigerator for a couple of days.  

In-gel reduction, alkylation, and digestion 

The samples were incubated for 15 minutes at room temperature at 500 rpm on a Thermo mixer. 

The liquid was removed and 200 µl 50% ACN (Acetonitrile, Sigma-Aldrich) / 25 mM AmBic 

(Ammonium Bicarbonate, Sigma-Aldrich, USA) was added. The samples were incubated for 

15 minutes at room temperature and 500 rpm. The liquid was removed and 200 µl dH2O was 

added again before the previous steps were repeated. Afterward, 100 µl of 100 % ACN was 

added, and samples were then incubated for 5 minutes at room temperature at 500 rpm. The 

liquid was removed, and lids remained open to air dry samples for approximately 2 minutes.  

The samples were reduced, meaning the disulfide bonds were cleaved, by adding DTT solution 

(10 mM DTT (Dithiothreitol, Sigma-Aldrich, USA), 100 mM AmBic) and incubated for 30 

minutes at 56˚C at 500 rpm. The samples were cooled down and DTT solution was removed 

before IAA solution (55 mM IAA (Iodoacetamide, Sigma-Aldrich, USA), 100 mM AmBic) 

was added, and the samples were incubated for 30 minutes in the dark at room temperature. 

IAA prevented the proteins from forming disulfide bonds. IAA solution was removed and      

100 % ACN was added to dry out the gel pieces. Following, the samples were incubated for 5 

minutes at room temperature at 500 rpm, and the liquid was removed from the samples which 

were air-dried as previously described. 

Trypsin buffer (25 mM AmBic, 10 % ACN and milliQ-water) was made. For digestion, 30 µl 

of 10 ng/µl Trypsin solution (0.5 ng/µl Trypsin, Trypsin buffer) was added to each sample 

which was then incubated for 30 minutes on ice. Trypsin is a Serine protease that cleaves the 

protein at the carboxyterminal of Arginine and Lysine residues, which is advantageous for MS 

analysis as it results in a positive charge at the C-terminus of the peptide (Dau et al., 2020). 



26 

 

Additional trypsin buffer was added to the samples to cover the gel pieces, and they were then 

incubated overnight at 37˚C and 500 rpm. The next day, samples were cooled down, and a 1 % 

TFA (Trifluoroacetic acid, VWR, USA) was added to terminate the reaction. The samples were 

then stored in the refrigerator.  

Zip Tip and elution of proteins 

The samples were centrifuged at 21 500 rpm for 3 minutes to collect droplets. They were 

sonicated in a water bath for 15 minutes to extract the proteins from the gel and into the TFA 

solution. New Eppendorf tubes were prepared with 70 % ACN/0.1 % TFA to elute the proteins. 

The extraction was done using a C18 solid-phase extraction method. To enhance the binding of 

the proteins to the ZipTip (Merck-Millipore, USA), the C18 material inside must be equilibrated 

and conditioned. This was done by pipetting and discarding 100 % MeOH, a 70 % ACN/0.1 % 

TFA solution, and 0.1 % TFA, whereas the latter is an ion-pairing agent. The sample was then 

pipetted up and down to bind to the hydrophobic C18 material. 0.1 % TFA was pipetted and 

discarded to cleanse the proteins. They were eluted in the new Eppendorf tubes by pipetting up 

and down in the 70 % ACN/0.1 % TFA solution. The samples were then dried out with a 

speedvac and left in the refrigerator.  

Mass spectrometry analysis of proteins 

Before the mass spectrometry (MS) analysis was performed, peptides were dissolved in 2 % 

ACN/0.1 % TFA, and 1.5 µl of each sample was measured on a Thermo Scientific NanoDrop 

One Microvolume UV-Vis Spectrophotometer (A205) (ThermoFisher, USA) using a drop of   

2 % ACN/0.1 % TFA as blank. The measurement results are in Appendix A1, table 5. The 

peptide samples were analyzed by coupling a nano UPLC (nanoElute, Bruker) to a trapped ion 

mobility spectrometry/quadrupole time of flight mass spectrometer (timsTOF Pro, Bruker). The 

peptides were separated by an Aurora C18 reverse-phase (1.6 µm, 120 Å) 25 cm × 75 μm 

analytical column with an integrated emitter (IonOpticks, Melbourne, Australia). 

Complementary information can be found in Appendix B1, protocol 2. 

2.8. Bioinformatic Analysis 

2.8.1. The Shotgun Database 

Analysis of raw data, annotation of bacterial taxonomy, and creation of FASTA file  

For the raw data analysis, the shotgun pipeline that was used, used trimmomatic for adapter 

clipping and quality trimming. BowTie2 with the human genome was used to map away all 

human DNA sequences, to ensure the anonymity of all individuals in this study. SPAdes-meta 
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was used to assemble the reads to contigs, and MaxBin and MetaBat2 were used to bin the 

contigs to metagenome-assembled genomes (MAGs). Drep dereplicates the bins from Maxbin 

and MetaBat2, and the best candidates will be used further in the analysis. Prodigal was used 

to convert the DNA sequences to amino acid sequences, which will be mapped to proteins by 

eggNOG mapper (v2, Batch Functional Annotation). FASTQ was used to determine the quality 

of the bin, and FASTQC quality-checked the reads, bins, and MAGs. From Drep, bacterial 

taxonomy was annotated to the contigs within the MAGs using the Kraken algorithm with the 

HumGut database. R studio version 1.4.1103 was used to annotate the taxonomy of all nodes 

present in the Shotgun data (Appendix C1). All nodes from Bacteroides and Bifidobacterium 

were extracted (Appendix C2), and a FASTA file with the amino acid sequences for the 

applicable nodes was made (Appendix C3). 

EggNOG mapper – to annotate potential proteins from the shotgun database 

EggNOG mapper version 2.1.6 annotated all potential proteins present from the FASTA files 

for Bacteroides and Bifidobacterium (Cantalapiedra et al., 2021). EggNOG mapper provided 

information about e-values, taxonomy, EC-numbers, description of proteins, COG-category, 

gene names, and pathways they belonged to in a table. Nodes that had e-values > 1e-10 were 

removed from the table. The taxonomy from the shotgun data and HumGut database was used 

for annotation instead of the taxonomy from eggNOG mapper. The code is attached as an R 

markdown file in Appendix C4.  

KEGG Mapper Reconstruct – to reconstruct metabolic pathways 

KEGG Mapper – Reconstruct (updated 01.07.2021) was used to reconstruct KEGG pathways 

with a set of K numbers extracted from the table retrieved from eggNOG and processed in 

Rstudio (Kanehisa & Goto, 2000). This way, potential proteins were visualized in pathways for 

the two bacterial genera separately, making it easier to compare them. The code can be found 

in Appendix C5 as an R markdown file. 

dbCAN – to annotate glycoside hydrolases to potential proteins from the shotgun database 

All amino acid sequences from the FASTA file retrieved in the beginning, were run through 

dbCAN to annotate GH families. Tools used in dbCAN were HMMER, DIAMOND, and 

eCAMI. A threshold value was set for the GH-families having to be equal in at least two of the 

three tools before annotating them to the node. The rest were removed from the dataset. These 

annotations were then added to the eggNOG-table and used to identify nodes with GH-families 

related to HMO- and mucin- degradation. The code can be found in Appendix C6 as an R-
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markdown file. Afterward, all GHs related to HMO and mucin degradation were counted for 

each genus.  

Sequence alignments of GalT1 and GalT2 in ClustalW 

GalT exists as two proteins: GalT1 and GalT2 but is only identified as UDP-glucose-hexose-1-

phosphate uridylyltransferase and annotates to the same EC-code (EC 2.7.7.12). The 

information provided by the online databases was not detailed enough to identify GalT1 and 

GalT2, but we wanted to identify each of these in the shotgun data as they typically appear in 

different pathways. An identification of the different GalT protein sequences was performed by 

Turroni et al. (De Bruyn et al., 2013; Turroni et al., 2010), where the sequence used of 

Bifidobacterium bifidum was deposited in the GenBank database. By doing a sequence 

alignment in ClustalW with the GalT1- and GalT2-sequences found in the Turroni-article, and 

two sequences of GalT (EC 2.7.7.12) from Bifidobacterium bifidum JCM 1255 in the shotgun 

database, the GalT proteins could be identified.  

Metagenome Assembled Genomes Taxonomy // Data treatment 

Only the bins and nodes with annotated species from the Bacteroides and Bifidobacterium 

genera were used, and Phocaeicola and Parabacteroides were included. The database was used 

to annotate the taxonomy to the MAGs, and MAGs with no nodes from the mentioned groups 

were removed. At the species level, a threshold value was set for MAGs, which were considered 

“pure” when one specie represented 80% or more of the sample. This was checked by looking 

at the table “Table_nodebin” made in Appendix C2, which had information on all nodes, and 

which sample they came from. Length and coverage of the nodes were also considered. The 

MAGs that were not considered pure were grouped as “Bacteroides,” “Bifidobacterium,” or 

“uncertain” instead of at species level. Samples that had lost significant amounts of their 

explained abundances were removed (4 and 5 removed) when calculating the average 

abundance of species in samples high in Bacteroides (1-6) and samples high in Bifidobacterium 

(7-11). 

2.8.2.   Proteome-Analysis after Mass Spectrometry 

The raw files from mass spectrometry were analyzed using MaxQuant version 1.6.17.0, and the 

MAXLFQ algorithm was implemented for label-free quantitative detection of proteins. The 

sequence database made in Rstudio and the human genome (Homo Sapiens, 73 952 sequences) 

were used to search against the raw files, to get hits on proteins that could derive from 

Bacteroides and Bifidobacterium, and to reduce contaminants, respectively. 
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Filtering of protein data using Perseus v1.6.6.0 

Perseus version 1.6.6.0 was used to process further the data that was retrieved from MaxQuant. 

Rows were filtered based on categorical columns to remove proteins only identified by site, 

reverse proteins, and potential contaminants. Rows were then filtered based on text columns to 

remove all human proteins from the human genome (Homo Sapiens, 73 952 sequences) to 

reduce further contaminants. The values were then log2(x) transformed and categorical 

annotations for the samples were added. One of the categorical annotations described the 

replicates, and the other was split into: samples high in Bacteroides (1-6) and high in 

Bifidobacterium (7-11). Rows were then filtered based on valid values, removing all proteins 

that appeared once in the dataset. Missing values NaN were replaced by 0 for improved 

functionality of the dataset.   

The shotgun database with information from eggNOG, KEGG, and dbCAN was annotated 

against nodes in the protein dataset, to match the potential proteins to proteins detected in the 

proteome analysis. The average value of all replicates was calculated and used instead of each 

replicate separately. For clustering, all samples that had a low total amount of label-free 

quantification (LFQ) intensity were removed (<1000) to avoid clustering based on the number 

of proteins. The LFQ-intensity aims to determine the amount of proteins in a sample. The 

Pearson correlation was also investigated in scatter plots of each replicate. 

KEGG mapper reconstruct – to reconstruct metabolic pathways  

KEGG Mapper – Reconstruct was used to investigate pathways found in the proteomics data 

by extracting the K numbers from the table in Perseus. The lists with K numbers were made for 

Bacteroides and Bifidobacterium separately to compare them to the reconstructed pathways 

made for potential proteins, as described for the shotgun data in Appendix C5. GH-families 

annotated from dbCAN in Perseus were also compared to the potential presence of proteins in 

the database.  

2.9. Statistical Analysis 

Correlation of SCFAs and 16S taxonomy 

A matrix with absolute values of SCFA concentration in mmol/kg feces and relative abundances 

(0-1) of taxonomies from the 16S data was made. To correlate SCFAs to bacterial taxa gathered 

from 16S data for samples 1-11, spearman’s correlation was used, with the significance level 

set to 0.1 (p < 0.1). Through Spearman’s rank correlation coefficient rho (ρ), a new matrix was 
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created. P-values were also included as a separate matrix, and together these made a correlation 

plot. Two additional correlation plots were made but investigated the groups separately (high 

in Bacteroides and high in Bifidobacterium). The same method as previously described was 

used but with a p-value < 0.05. The code for the analysis of the first correlation plot can be 

found in appendix C7 as an R Markdown file.  
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3. Results  

 
3.1. Sample Selection 

The 16S sequencing results were investigated based on the sample criteria described in section 

2.1. Out of 100 fecal samples, 48 were empty and therefore excluded for further analysis as 

enough feces had to be left for the proteome analysis and short-chain fatty acid analysis. Of the 

52 remaining samples, 23 met the criteria “were still breastfed at the age of 6 months” and “born 

vaginally.” The samples were randomly chosen, and six samples (samples 1-6) were placed in 

the group “high in Bacteroides,” and five samples (samples 7-11) were placed in the group 

“high in Bifidobacterium.”  

3.2. Gut Microbiota Composition in Selected Samples 

In the group high in Bacteroides, the general abundance of Bacteroides was 37.3% and 5.2% 

of Bifidobacterium (figure 3.1). The second most abundant genus in this group was the 

Clostridium sensu stricto 1 with 12.66%, followed by Escherichia-Shigella with 10.06%. In the 

group high in Bifidobacterium, the general abundance of Bifidobacterium was 49.23% and 

8.55% of Bacteroides. The second most abundant genus in this group was Escherichia-Shigella, 

with 10.43%.  

 

Figure 3.1. Average gut microbiota composition of two groups based on 16S sequencing results. A bar chart 

representing the average abundance for samples high in Bacteroides (1-6) and samples high in Bifidobacterium 

(7-11), given in percentage. 

There were great inter-individual variations in the gut microbiota composition between all 

samples included in the experiments (figure 3.2). The abundance of Bifidobacterium and 
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Bacteroides in the samples was quite varying due to the sample criteria, ranging from not being 

present at all to being the main genus present. Sample two had the highest abundance of 

Bacteroides with 55.20%, while sample 11 had the highest abundance of Bifidobacterium with 

68.92%. Sample nine had an approximate ratio of 2:1 of Bifidobacterium and Bacteroides, 

respectively, and was the sample with the evenest abundance of the two genera. Additionally, 

Clostridium sensu stricto 1 was the main colonizer within sample 3, highly contributing to the 

high average of this genus in the high in Bacteroides group observed in figure 3.1.  

 

Figure 3.2. Gut microbiota composition samples 1-11 based on 16S sequencing results. The abundance of 

different genera is given in percentage for samples 1-11, which are samples high in Bacteroides (1-6) and samples 

high in Bifidobacterium (7-11). Colour-coded explanations of species to the right, with Bifidobacterium and 

Bacteroides marked with circles. 

 

3.3. Composition of Bacteroides and Bifidobacterium Species from Shotgun Sequencing   

Of the 62 complete MAGs, 40 were annotated as Bacteroides or Bifidobacterium. Two MAGs 

were annotated as Parabacteroides. For samples high in Bacteroides (1-6), the total average 

abundance of the Bacteroides genus was 64.44 %, whereas the highest abundance belonged to 

Bacteroides fragilis NCTC 9343 (22.1%) and Bacteroides dorei DSM 17855 (15.45%). 2.64% 

was annotated to the Bifidobacterium genus, which included 1.26% of Bifidobacterium longum 
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subsp. infantis ATC 15697 and 0.51% of Bifidobacterium longum subsp. longum JCM 1217. 

For samples high in Bifidobacterium (7-11), the total average abundance of the Bifidobacterium 

genus was 64.65%, with the highest abundance belonging to Bifidobacterium longum subsp. 

infantis (23.77%), Bifidobacterium bifidum ATCC 29521 (14.34%), and Bifidobacterium 

longum subsp. longum JCM 1217 (14.08%). A total of 6.77 % was annotated to the Bacteroides 

genus, with most of them belonging to Bacteroides fragilis (1.55%) and Bacteroides fragilis 

NCTC 9343 (1.41%). The remaining percentage of the MAGs (uncertain groups) were either 

unmapped, removed, or not considered pure enough to be annotated to one of the genera. Figure 

3.3 represents only the abundance of MAGs from Bacteroides (and Parabacteroides) and 

Bifidobacterium present in samples 1-11 since all other genera were excluded from the shotgun 

dataset.  

 

Figure 3.3. Shotgun sequencing results of MAGs annotated to Bacteroides (and Parabacteroides) and 

Bifidobacterium species. The figure illustrates the average abundance of MAGs annotated as either Bacteroides, 

Parabacteroides, or Bifidobacterium genus in samples high in Bacteroides (1, 2, 3, 6) and samples high in 

Bifidobacterium (7-11) down to a strain level. The category “Bifidobacterium” had several species included in the 

MAGs and could not be annotated to just one. These included Bifidobacterium adolescentis, B. angulatum, B. 

bifidum, B. breve, B.catenulatum, B. dentium, B. longum, B. longum subsp. infantis, B. londum subsp. longum, B. 

pseudocatenulatum, B. thermophilum, B. ruminantum, B. pullorum subsp. gallinarum, B. pseudolongum subsp. 

globosum, B. kashiwanohense. Accordingly, the category “Bacteroides” had several species included in the MAGs 

and could not be annotated to just one. These included Phocaeicola, uncultured Bacteroides sp., Parabacteroides 

sp. AN4, Parabacteroides merdae, P. distasonis, P. gordonii, Bacteroides sp. CAG:545, Bacteroides uniformis, B. 

xylanisolvens, Bacteroides thetaoitamicron, B. stercoris, B. ovatus, B. dorei, B. intestinalis, B. cellulosilyticus, B. 

bouchesdurhonensis, B. plebeius, B. sartorii, B. coprophilus, B. stercorirosoris, B. finegoldii, B. acidifaciens and 

B. salyersiae. The category “uncertain groups” are MA s that were unmapped, removed samples, and MAGs that 

had different genera annotated to the nodes within the MAGs and were not considered pure. 
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3.4. Extraction and Identification of Unique Genes for Bacteroides and Bifidobacterium 

After annotation and removing all genes that had e-value > 1e-10, the final number of genes 

from Bacteroides and Bifidobacterium was 34 025 out of the total 70 251 genes, removing more 

than half of the initial database from the shotgun data. The COG categories were then 

investigated in the database created in Appendix C4. The highest abundance category was “S” 

(function unknown), with 6560 out of 34 025 genes. The second most abundant COG category 

was “ ” (Carbohydrate transport and metabolism), with 4023 genes. 

3.5. Proteome Analysis 

Filtering protein data 

After mass spectrometry and the raw data treatment were performed, a total of 1541 unique 

proteins were mapped to the database. After the filtration performed in Perseus, including 

removal of proteins only identified by site, reverse proteins, potential contaminants, human 

proteins, and all proteins that only appeared once in the dataset, the result was a table containing 

717 unique proteins. These proteins were used further in the analysis.   

3.5.1. Calculations and Clustering of Proteins with Perseus 

All samples were run in parallels throughout the protein extraction protocol, meaning each fecal 

sample had a replicate. In Perseus, the Pearson correlation between replicates was calculated 

and ranged between 0.619-0.940 (table 3.1). Sample 3 had no correlation due to no results in 

replicate 3b after MS. 

Table 3.1. Pearson correlation between replicates. The Pearson correlation was calculated by Perseus. The table 

illustrates the correlation between replicate a and b in samples 1-11. Sample 3b had no results after MS and the 

pearson correlation between 3a and 3b was therefore 0. 
Sample 1a/1b 2a/2b 3a/3b 4a/4b 5a/5b 6a/6b 7a/7a 8a/8b 9a/9b 10a/10b 11a/11b 

Pearson 

correlation 

 

0.925 

 

0.619 

 

0 

 

0.827 

 

0.865 

 

0.693 

 

0.940 

 

0.83 

 

0.633 

 

0.835 

 

0.801 

 

The correlations indicated a similar outcome of unique proteins from each sample-replicate. 

The replicates would also cluster together when clustering based on LFQ intensity and unique 

proteins. Therefore, all replicates were merged. The average LFQ intensity between replicates 

were calculated, including the total LFQ intensity in each sample (table 3.2).  Samples 3, 4, 8, 

and 9 were removed due to low total LFQ-intensity (< 1000), which can also be observed in the 

histograms in Appendix A2, Figure 3. Sample 1 and 5 stood out with a total LFQ intensity > 

5000. The other samples had a total LFQ intensity laying around 2000. 
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Table 3.2. Total LFQ intensity in each sample. The LFQ intensity was measured by mass spectrometry. The 

represented LFQ intensity is after the protein-filtration performed in Perseus and calculating the average between 

replicates. 
Sample 1 2 3 4 5 6 7 8 9 10 11 

Total 

LFQ- 

intensity 

 

5434.78 

 

1405.38 

 

173.86 

 

369.62 

 

5579.33 

 

2200.23 

 

2224.58 

 

628.65 

 

757.84 

 

1841.25 

 

2145.83 

 

Sample 1 and 5 had big differences between them but also differed from the other samples. 

There was a high presence of proteins in samples 1 and 5 that were hardly present in the other 

samples, especially the proteins in clusters 3 and 4 (figure 3.4A). 

The annotation in Perseus revealed which genus was prevalent in each cluster (figure 3.4B). 

Cluster 1 had proteins only belonging to the Bacteroides species, while cluster 2 had proteins 

only annotated to the Bifidobacterium species, except for one protein that was annotated to the 

Bacteroides genus. Cluster 3 had proteins from both genera but primarily from Bacteroides, 

with 216 out of 254 proteins. Cluster 4 had proteins almost exclusive from the Bacteroides 

species, while clusters 5 and 6 had proteins that belonged only to the Bifidobacterium species.  

Almost 85% of the proteins in sample 1 belonged to cluster 4, and around 11% of the proteins 

belonged to cluster 1 (figure 3.4C). Both cluster 1 and 4 were Bacteroides dominant clusters. 

Cluster 3, which was primarily proteins from species of Bacteroides, was prevalent within the 

high in Bacteroides group and dominated samples 2, 5, and 6. It was also quite abundant in 

samples 10 and 11 in the high in Bifidobacterium group, although these samples had a more 

even distribution of all 6 clusters. Sample 7 had over 70% of its proteins from cluster 2, while 

sample 11 had approximately 20% of its proteins from cluster 2, which was a Bifidobacterium 

dominated cluster. Both samples belonged to the high in Bifidobacterium group. Cluster 6 

appears mainly in samples high in Bifidobacterium but is observed to some extent in samples 

high in Bacteroides, like sample 5 and 6.  
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Figure 3.4. Clustering of proteins and abundance in samples high in Bacteroides and high in Bifidobacterium. 

(A)Heatmap of the average LFQ intensity in analyzed samples. All samples with higher total LFQ intensity 

than 1000 and the proteins that appeared in clusters 1-6. S1, S2, S5, and S6 are samples from infants who had high 

abundance of Bacteroides, while S7, S10, and S11 are samples from infants who had high abundance 

Bifidobacterium. The figure was made in Perseus version 1.6.6.0.  

(B)Bar chart of unique proteins in all six clusters. Provides the count of unique proteins found in all given 

clusters and to which genus they were annotated. The bar chart illustrates which genus is most abundant in each 

protein cluster. 

(C)Bar chart of clusters that are present in all samples. The quantity of proteins given in LFQ intensity 

illustrates the abundance of the protein clusters present in the samples high in Bacteroides and samples high in 

Bifidobacterium.  

 

3.5.2. Glycoside Hydrolases 

Shotgun data 

After the annotation performed in dbCAN,  all glycoside hydrolases were annotated to the 

proteins from the MS and shotgun data separately. In the shotgun data, all GH-families related 

to HMO- and mucin-degradation were found in at least one node that came from 

Bifidobacterium (Table 3.3). Bacteroides had 10 out of 15 GH-families that were found in at 

least two nodes. The genus seems to miss the HMO-related GH112 and GH1, the mucin-related 

GH101 and GH129, and the HMO- and mucin related GH85.  

The most abundant GHs detected in both genera were the GHs related to both HMO- and Mucin 

degradation, like the  H families  H2 and  H42 (β-galactosidases),  H20 family (β-

hexosaminidases), and GH29 family (fucosidases). The GH33 (sialidases) were also found in 

both genera, yet not as abundant as the other. Additionally, Bifidobacterium had several 

potential proteins from both GH112 and GH1 in the shotgun data, whereas Bacteroides did not 

have any of these GH families. 

Protein data 

Out of the proteins observed in the proteomics, five of 15 GH-families were identified from 

Bifidobacterium, and three were identified from Bacteroides (table 3.3). The fucosidase in 

GH29 was a common GH for the two genera. GHs found in Bacteroides was the HMO-related 

GH18 which is an endo- β-N-acetylglucosaminidase, and the HMO- and Mucin-related GH20 

(Lacto-N-biosidase and β-hexosaminidase), including the GH29 (fucosidase). GHs found in 

Bifidobacterium were the HMO-related GH112 (GLNBP) and GH136 (Lacto-N-biosidase). 

Additionally , the HMO-and mucin-related GH95 and GH29 (fucosidases), and GH2 (β-

galactosidase). The most abundant GH in the protein data was the β-galactosidase from the 

GH2 family, which was only found in Bifidobacterium.  
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Table 3.3. Glycoside hydrolases present in the shotgun data and proteomics data. Heatmap illustrating the 

presence of potential proteins and proteins detected in mass spectrometry within the genomes of the genera 

Bacteroides and Bifidobacterium. Complementary information about the GH families can be found in table 1.1 in 

the introduction. The table was made based on the information in Ioannou et al. (Ioannou et al., 2021) and Tailford 

et al. (Tailford et al., 2015).  

 

3.6. KEGG Mapper Reconstruct – Metabolic Pathways 

By using the K-numbers withdrawn from the EggNOG annotation database, KEGG Mapper 

Reconstruct was used to visualize the pathways that were thought to be common in Bacteroides 

and Bifidobacterium. From the degradation of HMOs, galactose is a common monosaccharide 

that most organisms can further utilize (Raimondi et al., 2021). Therefore, a reconstruction of 

the galactose metabolism and Leloir pathway was done (figure 3.5A). Bifidobacterium may 

also use the GNB/LNB-pathway (figure 3.5B). As most genera in the gut microbiota produce 

acetate, this pathway was reconstructed (figure 3.5C), and because Bacteroides is recognized 

for utilizing propionate through the succinate pathway, this pathway was reconstructed as well 

(figure 3.5D). 
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The pathway of the galactose metabolism was complete for the Bifidobacterium genus, apart 

from GalM (EC 5.1.3.3), which only appeared in the genome and proteome of Bacteroides 

(figure 3.5A). The other proteins used in the Leloir pathway were present in Bifidobacterium, 

with GalE (EC 5.1.3.2) and GalT1 (EC 2.7.7.12) detected in the proteomics data and shotgun 

data. Bacteroides did not have the complete Leloir pathway, as the GalT1 was absent. The 

transferase (EC 2.7.7.9) in the galactose metabolism that converts the UDP-glucose into 

glucose-1P was also absent from the datasets for Bacteroides.  

The LNB/GNB pathway was complete within the Bifidobacterium genus but not in Bacteroides 

(figure 3.5B). Bacteroides lacked the GLNBP enzyme belonging to family GH112, that 

removes the LacNAc and GalNAc from the reducing ends of HMOs and mucins. The absence 

is also observed in Table 3.3. Additionally, Bacteroides lacked the NahK (EC 2.7.1.162) and 

GalT2 (EC 2.7.7.12). All proteins in this pathway were found in the proteomics and shotgun 

database for Bifidobacterium except for GalT2 (EC 2.7.7.12) which was only observed in the 

shotgun data. 

The transformation of phosphoenolpyruvate and pyruvate into acetate was complete for both 

genera, only illustrated by different pathways (figure 3.5C). Bifidobacterium illustrated the 

potential of producing lactate (EC 1.1.1.27), formate (EC 2.3.1.54), and ethanol (EC 1.1.1.1/2) 

on the way to acetate. Bacteroides, on the other hand, had the enzyme pyruvate dehydrogenase 

(EC 1.2.5.1) to make acetate out of pyruvate directly in both the shotgun and proteomic data, 

which Bifidobacterium was lacking. The potential of producing acetate through Acetyl-CoA 

was shown in both genera, though Bacteroides had more enzymes present, including the Acetyl-

CoA-hydrolase (EC 3.1.2.1), which was also discovered in the proteomics. 

Three pathways exist to produce propionate: the acrylate pathway, the propanediol pathway, 

and the succinate pathway. Bacteroides illustrated the potential for the complete succinate 

pathway, and Bifidobacterium did not (figure 3.5D). No proteins in this pathway were detected 

in the proteomics data, only in the shotgun database. The acrylate pathway and the propanediol 

pathway were also investigated, but neither of the two genera had complete pathways for 

propionate production through these pathways. 
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Figure 3.5. Metabolic pathways. Pathways were investigated using the potential proteins in shotgun data and 

the proteins detected in the proteome analysis. White indicates that the protein was not present in either dataset. 

The bright colors indicate the presence in shotgun data, while darker colors indicate the presence in both shotgun 

data and proteomics data. Blue colors belong to Bacteroides, and orange colors belong to Bifidobacterium. This 

is also illustrated in (A).  

(A) Galactose metabolism. The galactose utilization pathway from HMOs and GNB/LNB to galactose is further 

processed into glucose and used in glycolysis and other energy-conserving metabolisms. The Leloir pathway is 

integrated into the galactose metabolism from the utilization of galactose into glucose (GalMKTE). 

(B) GNB/LNB pathway. With enzymes and substrates involved.  

(C) Pyruvate metabolism. With the production of acetate and the enzymes and substrates involved. 

(D) Succinate pathway. Illustrates the production of propionate and the enzymes and substrates involved.  
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Finally, because of the mucin-utilizing species to an extent being dependent on sulfatases, 

enzymes with EC number 3.1.6.- were searched for in the shotgun database. The arylsulfatase 

(EC 3.1.6.1) and choline-sulfatase (EC 3.1.6.6) were observed in the Bacteroides genus and not 

in the Bifidobacterium genus. The proteins were not detected in the proteome analysis. 

3.7. Short-Chain Fatty Acid analysis 

There were great inter-individual variations between the samples when investigating SCFA 

levels. Samples 2-4 had higher butyrate levels than the others (figure 3.6). Acetate was the 

SCFA with the highest levels in all samples, particularly in sample 11, with a concentration of 

96.1 mmol/kg feces of the total SCFAs, which were 126.44 mmol/kg feces. The ratio of acetate 

to propionate in sample 1 and 7 were almost 1:1. 

 

Figure 3.6. SCFA levels in samples 1-11, given in mmol/kg feces. A bar chart illustrating the absolute values 

of the different SCFA-concentrations in samples high in Bacteroides (1-6) and samples high in Bifidobacterium 

(7-11). 

The overall levels of SCFAs detected were higher in the high in Bacteroides group compared 

to the Bifidobacterium group, with a total average of SCFA-concentration at 100.82 mmol/kg 

feces (figure 3.7). For comparison, the high in Bifidobacterium group had a total average of 

78.91 mmol/kg feces with SCFAs. Acetate levels were approximately equal, but when applying 

relative values, acetate accounted for 70% of the total SCFA levels in the high in 

Bifidobacterium group and 57% of the total SCFA levels in the Bacteroides group. Propionate- 

and butyrate-levels were substantially higher in the Bacteroides group. Especially butyrate, 

with almost three times higher levels than what was observed in the Bifidobacterium group.  
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Figure 3.7. Bar chart representing the average of SCFA levels in two sample sets. The bar chart illustrates the 

difference in SCFA production between the samples high in Bacteroides (1-6) and the samples high in 

Bifidobacterium (7-11) with absolute values.  

When the correlations performed in the statistical analysis were investigated, no positive 

correlations between Bacteroides or Bifidobacterium and the SCFAs were observed (Appendix 

C7, figure C7.1). Only a weak negative correlation was observed for Bifidobacterium and 

butyrate with a p-value < 0.1. Lastly, when splitting up the two groups in separate correlation 

plots (p-value < 0.05), still no correlations were observed between the two genera and the 

SCFAs. 
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4. Discussion 

Pathways and Glycoside Hydrolases present in the genomics and proteomics of 

Bifidobacterium and Bacteroides genus.’ 

4.1. The Leloir- and LNB/GNB- Pathways – Enzymes in the Galactose Metabolism 

The Bifidobacterium genus had a complete presentation of all GHs related to HMO- and Mucin- 

utilization in the intestine in the gene set provided from the shotgun sequencing data (Table 

3.3). All genes were also present in the galactose metabolism (figure 3.5A), except for the 

galactose mutarotase,  alM ( C  .1.3.3), which converts β- al into α- al. α-Gal is the 

substrate for galactokinase (EC 2.7.1.6), and the GalM is needed to convert the galactose into 

the correct form to enter the Leloir pathway. However, all other enzymes were present in the 

shotgun data, including  al  and  alT1 in the proteomics. The genus may  ust convert α-Gal 

and LNB into Galactose-1P for the continuing metabolism of the Leloir pathway without being 

dependent on GalM. The conversion of β- al into α-Gal could also be performed by other 

genera, like the Bacteroides genus, which had the GalM detected both in the shotgun and 

proteomic data. Another study investigating the gene set of B. longum NCC2705 found no gene 

cluster for the full set of enzymes in the Leloir pathway, only a cluster containing the GalK and 

GalT (Nishimoto & Kitaoka, 2007). Little reports were found about the GalM and the 

Bifidobacterium genus. However, the genes encoding the Leloir enzymes seem to be observed 

in other species (Nishimoto & Kitaoka, 2007). 

Nevertheless, Bifidobacterium has an alternative way of degrading galactose through the 

LNB/GNB pathway (figure 3.5B). All proteins were observed in the shotgun data of this 

pathway, and only GalT2 was lacking from the proteomics. It is likely that this is a preferred 

pathway for Bifidobacterium and that it does not depend on the GalM. Due to the direct use of 

Gal1P, it will not require the GalK (EC 2.7.1.6) either, making it less energy-requiring and thus 

more appealing for the Bifidobacterium genus (De Bruyn et al., 2013). Finally, the sequence 

alignments of GalT1 and GalT2 revealed a presence of both, whereas the coexistence probably 

is due to the LNB/GNB pathway, which has been suggested to be present only in B. bifidum, 

B. longum subsp. infantis, B longum subsp. longum, and B. breve strains of Bifidobacterium 

(De Bruyn et al., 2013; Turroni et al., 2010). As all these genomes were represented as MAGs 

(figure 3.3) used in the shotgun data, the presence of the GalT proteins was expected. However, 

GalT was not observed in either the shotgun data or the proteomics data for Bacteroides. This 

could suggest that Bacteroides does not have the full capacity of degrading galactose but 

partially and further rely on other species like the Bifidobacterium species, for instance, to 

convert Gal1P to Glc1P.  
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For comparison, the Bacteroides genus lacked 5 out of the 15 GHs in the gene set provided 

from the shotgun sequencing data where Bifidobacterium had all (table 3.3). Among these were 

the HMO-related GH112. The GH112 family holds the lacto-N-biose phosphorylase or galacto-

N-biose phosphorylase (GLNBP) (EC 2.4.1.211) enzyme. It utilizes galactosyl-β1,3-N-

acetylhexosamines (LNB or GNB) and degrades them into Galactose-1P and N-

acetylhexosamines which is GalNAc or GlcNAc (Ioannou et al., 2021). Since this pathway is 

primarily known to be found in species of the Bifidobacterium genus, it was not expected to be 

present in the genome of Bacteroides (figure 3.5B). However, Bacteroides utilize GNB in 

mucins and must use other mechanisms and enzymes than Bifidobacterium. The GH112 is 

specific towards the β1,3-linkages of LNB and GNB in HMOs and mucins, but the N-

acetylglucosaminidases of families  H1  and  H   target β1,3/4-linkages of LNB and 

LacNAc, whereas the β1,4-linkages are highly abundant in mucins (Bell & Juge, 2021). GH18, 

which is related to HMO degradation, was found in the gene set of Bacteroides with eight GHs, 

while Bifidobacterium had one (Table 3.3). The GH18 was also found in the proteomics data 

of Bacteroides, as one of three GHs discovered here. GH85, which is both HMO and mucin 

related, was not present within the Bacteroides shotgun data, but two GH85 were found within 

the Bifidobacterium genus. Either way, the presence of the GH18 may suggest that even if the 

Bacteroides genus lacks certain HMO-related GHs such as the GH112, it does not mean it lacks 

the capability of degrading β1,3/4-linkages of LNB.  

4.2. β-Hexosaminidase Activity needed for HMO- and Mucin Degradation 

The β-hexosaminidase belonging to the GH20 family (EC 3.2.1.52) targets the β1-3 or β1-6 

linkages between GlcNAc and Gal, releasing the adjacent LNB. These linkages are found in all 

HMO structures and mucin, and therefore, the enzyme is necessary to degrade both substrates. 

It appears 29 times in the Bacteroides genus and 12 times in the Bifidobacterium genus in the 

shotgun data (Table 3.3). One GH20 was found annotated to Bacteroides in the proteomic data 

but not Bifidobacterium. This means that the Bacteroides express the gene and produce the 

protein needed to cleave the β1-3/6 linkages in HMO and mucin, while Bifidobacterium has the 

potential to produce the protein.  

In addition to the β-hexosaminidase, a Lacto-N-biosidase (EC 3.2.1.140) in the GH20 family 

targets the same linkages, releasing lactose from the reducing ends of HMOs (Ioannou et al., 

2021). There is an additional lacto-N-biosidase in family GH136 (EC 3.2.1.140), but it only 

targets the β1-3 linkage in LNB, resulting in a smaller range for this enzyme than the GH20 

Lacto-N-biosidase. The GH136 was also found in the genomes of both genera, including one 
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protein in the proteomics of Bifidobacterium. Finally, this illustrates the ability of both genera 

to release lactose as the presence of GH20 and GH136 was present in the shotgun and 

proteomics data. The expression of GH20 in B. thetaoitamicron was upregulated when grown 

on HMO carbon sources in Marcobal et al. (Marcobal et al., 2011), supporting the presence of 

the GH in Bacteroides in the database and its potential ability to degrade the respective linkages 

in HMOs.  

4.3. Degrading Lactose 

The release of lactose from the reducing end of HMOs performed by β-hexosaminidases 

enables it for β-galactosidases (EC 3.2.1.23) that can degrade β-1,4-linkages between Gal and 

Glc in lactose. β-galactosidases that degrade these linkages can be found in the families of GH1, 

GH2, GH35, and GH42. According to Ioannou et al. (Ioannou et al., 2021), this enzyme has not 

been characterized in the GH1 family from the highly abundant bacterial species in the infant 

gut. However, glycosidase profiles were characterized by GH1 β-galactosidases in MAGs of B. 

breve in a machine learning approach study performed by Sabater et al. (Sabater et al., 2021). 

The GH1 was observed eight times in the shotgun data for the Bifidobacterium genus (table 

3.3), which may indicate a potential for the genus to use the galactosidase in HMO-degradation. 

However, it was not discovered in the proteomics of the genus. The GH1 was not present in the 

data for Bacteroides, but the GH2, GH35, and GH42 were highly present, whereas the GH2 

appeared 65 times. It is related to both HMO- and mucin degradation, and the high occurrence 

could support the suggestion of Bacteroides activating the same genes for HMO degradation as 

for the utilization of host mucus glycans, which was proposed by Marcobal et al. (Marcobal et 

al., 2011). No β-galactosidases were detected in the proteomics for Bacteroides, but the genus 

had the gene and potential ability to express it and produce the protein. 

The β-galactosidases do not only degrade lactose (Miwa et al., 2010). They may cleave general 

β-linkages that yield galactose but with varying specificity. The GH42 seems to have broader 

specificity than the other galactosidases and may degrade β1,3/6-linkages as well as the β1,4-

linkages. This explains the relation to mucins, which do not appear to have Glc, but GlcNAc 

and GalNAc, to mention some. As with Bacteroides, the GH2 was also highly abundant in 

Bifidobacterium, with 37 proteins detected in the shotgun data, including five proteins detected 

in the proteomics. The second most abundant galactosidase was the GH42, with 27 proteins. 

Finally, the findings suggest that Bifidobacterium not only specializes in HMO degradation but 

also utilize mucin. Accordingly, it supports the possibility that Bacteroides might do the same. 
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4.4. Fucosidases – the Removal of Fucose from HMOs and Mucin 

Fucose is attached with α1-2/3/4 linkages on HMOs and Mucins, and these are removed with 

fucosidases which were highly abundant in both the Bacteroides and Bifidobacterium genera. 

The fucosidases of the  H9  family cleave the α1-2 linkage. Seven of this GH were observed 

in the shotgun data of Bacteroides, while six were observed for Bifidobacterium. The latter also 

had two GHs present as proteins (Table 3.3). The  H29 cleaves the α1-3/4 linkages, and eight 

and 16 GHs were found in the shotgun data for Bifidobacterium and Bacteroides, respectively. 

The GH was also found in the proteomic data for both genera. The presence of these in each 

genus illustrates their potential for utilizing mucins and HMOs with fucose attached. 

4.5. Sialidases – Sialic Acid as a Potential Energy Source 

Sialidases are present in the GH33 family, and they are important for removing sialic acids in 

HMOs and mucins, as they cleave the α2-3/6 linkage between Neu5Ac and the saccharide. No 

proteins of this GH family were found for either genus, but they appeared in the shotgun data 

for both, with two and eight GHs in Bacteroides and Bifidobacterium, respectively (Table 3.3). 

From the shotgun data, there is potential for both Bacteroides and Bifidobacterium genus to 

remove sialic acids using sialidases of GH33. Further degradation of the sialic acids can be 

performed using genes in so-called nan gene clusters (Bell et al., 2019). In Bacteroides fragilis, 

a pathway for sialic acid metabolism has been described, converting the Neu5Ac into GlcNAc-

6-P (Bell et al., 2019). The latter can be converted to fructose-6-P, which is used in the 

glycolysis. However, the complete operon was not discovered in the shotgun database, but the 

pathway could be noteworthy for investigation in later research. The sialic acids must be 

cleaved off by sialidases to make them available for sialic acid degrading proteins, and the 

bacteria that harbor these genes are normal habitants of the human gut. As sialic acids are 

abundant on mucin and certain HMOs, this could be a potential energy source and promote 

growth for the respective species.  

4.6. Mucin Related Glycoside Hydrolases 

The O-glycosidic linkages in the protein core of mucins must also be degraded to utilize the 

mucin oligosaccharide fully. This can be done by enzymes known as endo-α-GalNAcases of 

the GH101 or GH129 family, which frees the glycan from the protein by cleaving the linkage 

between galactosylβ1,3-N-acetyl-galactosamine (Gal-β1,3-GalNAc) and Serine or threonine. 

This linkage is, for instance, found in the abundant core-1 of O-glycan mucins (Koutsioulis et 

al., 2008). The GalNAcase has been found in Bifidobacterium longum and is abundant among 

Bifidobacterium species (Bell & Juge, 2021; Fujita et al., 2005). As Bacteroides is adapted to 
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mucin degradation, it would be interesting to observe the presence of the families of GH101 

and GH129, but no such presence was detected (Table 3.3). No reports of GH101 or GH129 

present in Bacteroides species were found either. As expected, the shotgun data provided six of 

the GH101 family and 5 of the GH129 family in Bifidobacterium. Even if Bacteroides is 

adapted to mucin degradation, it seems to lack endo-α-GalNAcases within the GH101 and 

GH129 families and will most likely use other mechanisms or glycosidases that were not 

investigated in this study.  

 

4.7. Sulfatases - Necessary to an Extent for Growth of Gut Microbes 

Sulfate is known to be attached to mucin oligosaccharides, capping the glycan, and making it 

unavailable for further degradation by the bacteria that utilize mucin (Luis et al., 2021). 

Literature that reports sulfated HMOs, however, is lacking. Kostopoulos et al. stated in 2020 

that there are no reports of HMO being sulfated like mucin glycans, but in the same year, Quin 

et al. stated the identification of 16 sulfonated HMOs for the first time (Kostopoulos et al., 

2020; Quin et al., 2020). Mucin utilizing species are dependent on sulfatases to some extent for 

growth, and the presence of sulfate on HMOs should be further investigated as this topic has 

little knowledge. One sulfatase in Bacteroides thetaiotamicron degrades sulfate on the 3S-Gal 

of mucins and seems to be of great importance for this species and gut colonization (Luis et al., 

2021). Investigating sulfatases in the shotgun data, the arylsulfatase (EC 3.1.6.1) appeared in 

the genomes of Bacteroides. Arylsulfatases catalyze the hydrolysis of aromatic sulfate esters, 

and Kostopoulos et al. discovered a high expression of these in human milk, as they are part of 

glycosaminoglycans (GAGs) (Kostopoulos et al., 2020). GAGs are polysaccharides consisting 

of disaccharides with GlcNAc and GalNAc, and they are highly sulfated, potentially making 

them an alternative substrate for Bacteroides in human milk other than HMOs (Kostopoulos et 

al., 2020). Therefore, the potential of other components in human milk to be alternatively used 

as substrates for gut bacteria should be further investigated. 

4.8. Short-Chain Fatty Acids  

4.8.1. Acetate Production through Pyruvate Metabolism 

Both Bacteroides and Bifidobacterium illustrated complete pathways for acetate production 

(figure 3.5C). This was expected as most species produce acetate in the intestine, including the 

species of Bacteroides and Bifidobacterium (Louis et al., 2007). Investigating the shotgun data, 

they seem to use different pathways. Both genera reveal the potential of producing acetate 

through Acetyl-CoA, but only Bifidobacterium seems to produce acetate through Acetyl-CoA 
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and acetaldehyde. This makes it possible for the genus to produce ethanol through the pyruvate 

metabolism. Bacteroides had the presence of pyruvate dehydrogenase (EC 1.2.5.1) that directly 

converts pyruvate into acetate, which was also found in the proteomic data. The protein was 

not discovered in the data for Bifidobacterium. The gene used to produce lactate from pyruvate 

(EC 1.1.1.27) was only found in the shotgun data of Bifidobacterium and concurred with 

findings in Louis et al. (Louis et al., 2007). Even if most proteins lacked in the proteomic data, 

both genera illustrated the potential of producing acetate through more than one pathway.  

When exploring SCFA levels of the two groups (figure 3.7), the high in Bifidobacterium group 

had higher relative acetate levels than the high in Bacteroides group. This could result from 

several factors but may indicate an imbalance related to more acetate-producing bacteria and 

less propionate- and butyrate-producing bacteria in the high in Bifidobacterium group. Endwise, 

correlations between Bacteroides or Bifidobacterium and acetate were not discovered in any 

correlation analysis performed. This could be explained by the wide range of bacteria that 

produce this metabolite.  

4.8.2. Propionate Production through the Succinate Pathway 

Bacteroides revealed the complete pathway for propionate production through the succinate 

pathway (figure 3.5D). Bifidobacterium lacked enzymes converting the Succinyl-CoA into (R)-

methylmalonyl-CoA (EC 5.4.99.2) and further into (S)-methylmalonyl-CoA (EC 5.1.99.1). 

Proteins belonging to the succinate pathway were not detected, although it does not reject the 

pathway from the metabolism of Bacteroides, which are known to produce propionate (Rios-

Covian et al., 2017). There is a possibility that the proteins were not yet produced when 

extracting proteins from the samples. The ability of Bifidobacterium to produce propionate is 

uncertain, although when searching for literature, it seems like certain Bifidobacterium species 

produce 1,2-propanediol. 1,2-propanediol is a precursor for propionate production, and it seems 

the genus promotes the growth of species that produce propionate through that pathway 

(Bunesova et al., 2018). Lactate, which was found to be produced by Bifidobacterium and not 

Bacteroides, is a precursor in propionate production through the acrylate pathway. Therefore, 

the alternative pathways for propionate production were investigated – but neither of the genera 

had complete sets of enzymes through the acrylate pathway or the propanediol pathway. 

Accordingly, this study did not provide any indications of Bifidobacterium producing 

propionate. Finally, the propionate levels were higher for the group high in Bacteroides (figure 

3.7). This could be explained by the sample criteria, providing a high abundance of Bacteroides 

in these samples. 
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4.8.3. The Difference in Butyrate Levels Between Groups High in Bacteroides and High 

in Bifidobacterium 

Butyrate is produced from many substrates. Some are lactate and acetate found in the pyruvate 

metabolism (figure 3.5C). However, butyrate levels were three times higher in the high in 

Bacteroides group compared to the high in Bifidobacterium group (figure 3.7), despite the two 

groups having almost equal acetate levels. This could reflect a difference in the abundance of, 

for example, lactate-utilizing species within the gut microbiota in the samples. There were 

particularly three samples that contributed to the high butyrate levels, and these were samples 

2, 3, and 4 (figure 3.6). It is noteworthy that those three samples all were high in Bacteroides 

samples and that the correlation analysis had an, although weak, negative correlation between 

butyrate and Bifidobacterium. This could indicate that Bifidobacterium has a negative effect on 

butyrate production. But, the correlation analysis had (p < 0.1), and the correlation was not 

significant. An analysis with more samples would be necessary for a more accurate result, and 

the p-value should be lower than 0.05. 

4.9. Technical Considerations and Future Research 

4.9.1. Shotgun Analysis 

The most abundant species of Bacteroides and Bifidobacterium found in the shotgun data 

(Figure 3.3) were used to validate the data. These were Bacteroides fragilis and Bifidobacterium 

longum. The KEGG pathway database provides metabolic pathways known for bacterial 

species, and the galactose degradation pathway, as well as the succinate pathway of B.fragilis 

and B. longum, were investigated to compare with the shotgun data. KEGG pathway database 

provided the same information as observed in both pathways of shotgun data (figure 3.5A and 

3.5D). This offers higher credibility to the shotgun data.  

For a broader understanding of mucin and HMO utilization, it would be interesting to 

investigate specific species of the two genera. This thesis did not focus on the specific species 

but the genus level and the potential metabolism present in each genus. Most likely, not all 

species of Bacteroides and Bifidobacterium that inhabit the infant gut possess all the pathways 

or GHs presented in this thesis. They may depend on cross-feeding strategies between 

themselves and other species, and knowing the contribution of each specie would provide for a 

better understanding of their metabolism in the future.  

4.9.2. The Proteome Analysis 

There was high concordance of the two parallels run in the protein extraction. In addition, the 

clusters with proteins annotated to Bifidobacterium had a higher abundance within samples 
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from the high in Bifidobacterium group and vice versa (figure 3.4C). These observations made 

the results more trustworthy. However, the number of proteins varied between the samples, and 

barely any proteins were extracted from samples 3, 4, 8, and 9 compared to the other samples 

(Table 3.2). This could be due to repeated thawing and freezing of samples before use, and the 

protein extraction protocol is extensive in terms of potential missteps, which could have 

influenced the result. The analysis only provided proteins from inside the bacterial cells, and 

the number of extracellular proteins in the bacteria could impact the number of proteins that 

were extracted. Substantially fewer proteins were extracted from the Bifidobacterium genus, 

and it may have a higher quantity of extracellular proteins than Bacteroides. Additionally, the 

Bifidobacterium is a gram-positive bacterium in contrast to the gram-negative Bacteroides and 

could be more difficult to lyse. The sample size of 11 samples could also be a limitation 

regarding protein extraction, and more samples would provide for higher variation in the 

bacterial composition. This would increase the possibility of obtaining more proteins, including 

more unique proteins from the protein extraction. 

A final limitation is the increased risk of false positives when mapping bacteria to the proteins 

discovered in the mass spectrometry because all observed proteins intended to map to the 

species in the shotgun database. The database was based on species from Bifidobacterium and 

Bacteroides, and proteins of other species that resembles the amino acid sequence of 

Bifidobacterium or Bacteroides proteins may annotate to them after all.  

5. Conclusion 

The shotgun analysis uncovered the full presence of the glycoside hydrolases necessary for 

HMO degradation for Bacteroides and Bifidobacterium, whereas many of the discovered GHs 

may also apply to mucin degradation. This indicates a common potential for Bacteroides and 

Bifidobacterium to utilize these substrates. The proteome analysis revealed a presence of 

fucosidase, which removes fucose from HMOs and mucins in both genera. The β-

hexosaminidase was found in the proteome for Bacteroides but was lacking in Bifidobacterium. 

The β-hexosaminidase Lacto-N-biosidase, releasing lactose from the reducing end of HMOs, 

was observed in the proteomics for both genera. Further, to degrade lactose, β-galactosidases 

are required, and the protein was only found in the proteome of Bifidobacterium. The GLNBP 

was detected only in Bifidobacterium. However, Bacteroides may exploit N-acetyl-

glucosaminidases instead of GLNBP. And finally, the sialidase was lacking in the proteomics 

of both genera. An extended sample set with more samples providing a wider bacterial 
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composition of Bacteroides and Bifidobacterium may lead to the detection of more proteins 

relevant for HMO- and mucin degradation. The variation of enzymes present in 

Bifidobacterium likely reveals a better adaption towards the utilization of HMO than 

Bacteroides, and it seems like the two genera overlap in their utilization specialties. In addition 

to its mucin-degrading capabilities, there were indications for the ability of Bacteroides to 

utilize other substrates with sulfatases, like GAGs, which are also highly present in human 

breast milk. The metabolic pathways and potential competition for common resources between 

Bacteroides and Bifidobacterium should be further investigated.  
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Appendix A1 – Tables with Sample Information and Measurements 

 

Table 1. Relative abundance (0-1) of Bacteroides and Bifidobacterium in samples 1-11. These are numbers 

based on 16S rRNA sequencing. The table also illustrates the placement of samples for indexing later.  

Placement |   Sample# Bacteroides Bifidobacterium 

A1 1 0,4110 0,00037 

B1 2 0,5520 0,00072 

C1 3 0,2252 0,001737 

D1 4 0,3049 0,0461 

E1 5 0,2485 0,1132 

F1 6 0,4971 0,1481 

A2 7 0,05096 0,3041 

B2 8 0,00043 0,3676 

C2 9 0,2531 0,4964 

D2 10 0,00265 0,6038 

E2 11 0,12050 0,6892 

G1 12 Positive Control: Bifidobacterium breve 

F2 13 Neg. Control DNA- Extraction 

G2 14 Neg. Control PCR water 
 

Table 2. Index adapters for shotgun sequencing. A combination of i5 and i7 adapters were used on samples 1-

14. 

Index adapters H503 H505 H506 H517 

H705 A1 B1 C1 D1 

H706 E1 F1 G1 A2 

H707 B2 C2 D2 E2 

H710 F2 G2 - - 
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 Table 3. Overview of grams feces added to falcon tubes of samples 1-11. The samples were different and 

certain were difficult to weigh out, including some of the samples not having enough feces left for 2x 0.2g.  

 

Table 4. Protein concentrations. The measured concentration of protein samples, using Pierce BCA Protein 

Assay Kit. The dilution factor was 5 and must be multiplied by the concentration given by the bio photometer. 

The desired concentration was 2.05 µg/µl. 

Sample Absorbance  

(562 nm) 

Concentration (µg/ml) * 

dilution factor 

Concentration 

(µg/µl) 

1.1a 0.231 275 0.275 

1.1b 0.339 430 0.430 

1.2a 0.567 750 0.750 

1.2b 0.286 355 0.355 

1.3a 0.354 450 0.450 

1.3b 0.265 325 0.325 

1.4a 0.158 170 0.170 

1.4b 0.164 180 0.180 

1.5a 0.170 190 0.190 

1.5b 0.173 190 0.190 

1.6a 0.143 150 0.150 

1.6b 0.319 400 0.400 

2.1a 0.631 840 0.840 

2.1b 0.194 220 0.220 

Highest % bacteria Sample # New sample name and 

measured grams 

Replicate name and 

measured grams 

Bacteroides 1 1.1a 0.195 1.1b 0.191 

Bacteroides 2 1.2a 0.202 1.2b 0.280 

Bacteroides 3 1.3a 0.190 1.3b 0.202 

Bacteroides 4 1.4a 0.196 1.4b 0.214 

Bacteroides 5 1.5a 0.211 1.5b 0.181 

Bacteroides 6 1.6a 0.236 1.6b 0.206 

Bifidobacterium 7 2.1a 0.181 2.1b 0.131 

Bifidobacterium 8 2.2a 0.204 2.2b 0.127 

Bifidobacterium 9 2.3a 0.190 2.3b 0.210 

Bifidobacterium 10 2.4a 0.222 2.4b 0.184 

Bifidobacterium 11 2.5a 0.191 2.5b 0.205 
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2.2a 0.236 280 0.280 

2.2b 0.235 280 0.280 

2.3a 0.335 420 0.420 

2.3b 0.192 220 0.220 

2.4a 0.604 805 0.805 

2.4b 0.654 875 0.875 

2.5a 0.140 145 0.145 

2.5b 0.169 185 0.185 

 

Table 5. NanoDrop measurement. All 11 samples with replicates were measured on NanoDrop. 

Sample Mg/mL A280 A260/A280 

1.1a 0.023 0.02 1.75 

1.1b 0.017 0.02 1.63 

1.2a 0.040 0.04 1.68 

1.2b 0.025 0.03 1.82 

1.3a 0.025 0.03 1.73 

1.3b 0.025 0.03 1.31 

1.4a 0.024 0.02 1.96 

1.4b 0.031 0.03 1.42 

1.5a 0.032 0.03 1.84 

1.5b 0.020 0.02 1.94 

1.6a 0.008 0.01 2.90 

1.6b 0.008 0.01 2.94 

2.1a 0.017 0.02 1.69 

2.1b 0 0 0 

2.2a 0.004 0 3.80 

2.2b 0.022 0.02 2.01 

2.3a 0.004 0 4.85 

2.3b 0.007 0.01 2.42 

2.4a 0.01 0.01 2.73 

2.4b 0.054 0.05 1.70 

2.5a 0.020 0.02 2.06 

2.5b 0.026 0.03 1.64 
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Appendix A2 – Figures 

 

Figure 1. Gel picture of all samples after amplification for shotgun sequencing. Upper lanes: 100bp ladder, 

sample 1-6 + positive control. Lower lanes: 100bp ladder, sample 7-11 + two negative controls. The smear 

indicates fragmented DNA, and fragment sizes ranges from ~150 bp to 3000bp. The bottom of the wells may be 

debris from buffers or other contaminants.  

 

Figure 2. Pooled library gel picture before shotgun sequencing. The smear is caused by the different 

fragment sizes of the intended size from 200-1000bp. Illumina sequence fragments up to around 500bp and will 

not be able to sequence overlapping sequences that are bigger than that. 
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Figure 3. Histograms with LFQ intensity in samples 1-11 with replicates (a/b). The 0-block is replacing the 

NaN missing values. The figure represents the number of unique proteins that are present in the samples and 

illustrates why some samples were removed. The figure was made in Perseus version 1.6.6.0.  
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Appendix B – Protocols 

Protocol B1.  

 

GC analysis of short chain fatty acids in fecal samples  

 

Instrument: Trace 1310 with autosampler (ThermoFisher Scientific)  

Injector: 

Mode: split 

Temperature: 250 °C 

Carrier gas: Helium 

Column flow: 2.5 ml/min 

Split flow: 200 ml/min 

Purge flow: 3 ml/min 

Injection volume: 0.2 µl  

Liner: 4mm x 6.3mm x 78.5mm (Catalog# 23311.5, Restek) 

Syringe: 10 µl syr FN 50 mm C, Ga 23, cone tip (catalog# 365D3741, ThermoFisher 

Scientific) 

Column:  

Stabilwax DA 30m, 0.25 mm ID, 0.25 µm (Restek) 

 Temperature program: 90 °C to 150 °C (6 min), 150 °C to 245 °C (1.9 min) 

 Time per sample: 14.9 min 

Detector:  

Type: FID 

Temperature: 275 °C 

Hydrogen: 30 ml/min 

Air: 300 ml/min 

Makeup gas: 30 ml/min  
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Protocol B2.  

Mass Spectrometry - TimsTOF Aurora 

The peptide samples were analysed by coupling a nano UPLC (nanoElute, Bruker) to a 

trapped ion mobility spectrometry/quadrupole time of flight mass spectrometer (timsTOF Pro, 

Bruker). The peptides were separated by an Aurora C18 reverse-phase (1.6 µm, 120Å) 25 cm 

X 75 μm analytical column with an integrated emitter (IonOpticks, Melbourne, Australia). 

The temperature of the column was kept at 50°C using the integrated oven. Equilibration of 

the column was performed before the samples were loaded (equilibration pressure 800 bar). 

The flow rate was set to 300 nl/min and the samples were separated using a solvent gradient 

from 2% to 25 % solvent B over 70 minutes, and to 37 % over 9 minutes. The solvent 

composition was then increased to 95 % solvent B over 10 min and maintained at that level 

for an additional 10 min. In total, a run time of 99 min was used for the separation of the 

peptides. Solvent A is 0.1 % (v/v) formic acid in milliQ water, while solvent B is 0.1 % (v/v) 

formic acid in LC-MS grade acetonitrile. 

 

The timsTOF Pro was run in positive ion data-dependent acquisition PASEF mode with the 

control software Compass Hystar version 5.1.8.1 and timsControl version 1.1.19 68. The 

acquisition mass range was set to 100 – 1700 m/z. The TIMS settings were: 1/K0 Start 0.85 

V⋅s/cm2 and 1/K0 End 1.4 V⋅s/cm2, ramp time 100 ms, ramp rate 9.42 Hz, and duty cycle 

100 %. The capillary voltage was set at 1400 V, dry gas at 3.0 l/min, and dry temp at 1 0 ℃. 

The MS/MS settings were the following: number of PASEF ramps 10, total cycle time 0.53 

sec, charge range 0-5, scheduling target intensity 20000, intensity threshold 2500, active 

exclusion release after 0.4 min, and CID collision energy ranging from 27-45 eV. 
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Appendix C – R Markdown-files 

C1 – Annotation of Bacterial Taxonomy with the HumGut Database 

Downloaded the HumGut table with metadata for each HumGut genome from [link] 

http://arken.nmbu.no/~larssn/humgut/ Also removed unnecessary columns. 

library(readr) 

## Warning: package 'readr' was built under R version 4.1.2 

HumGut.tsv <- read.table(file = "HumGut.tsv", sep = "\t", header = TRUE) 
HumGut.tsv <- HumGut.tsv[,-2:-8] 
HumGut.tsv <- HumGut.tsv[,-3:-15] 

Loaded the “ eads-shotgun file”/“reads_file” containing all se uences from Shotgun 

sequencing and removing values in parentheses etcetera. 

reads_file <- "reads.txt" 
new_krk.tbl <- read_delim(reads_file, delim = "\t",  
                          col_names = c("C/U","Seq.ID","Tax.ID","bp.length"
,"LCA"),  
                          trim_ws = T) 

## Rows: 11739 Columns: 5 
## -- Column specification ------------------------------------------------
-------- 
## Delimiter: "\t" 
## chr (4): C/U, Seq.ID, Tax.ID, LCA 
## dbl (1): bp.length 
##  
## i Use `spec()` to retrieve the full column specification for this data. 
## i Specify the column types or set `show_col_types = FALSE` to quiet this 
message. 

new_krk.tbl$Tax.ID <- gsub("\\s*\\([^\\)]+\\)", "", new_krk.tbl$Tax.ID) 
new_krk.tbl <- new_krk.tbl[,-5] 
new_krk.tbl$OrganismName <- "NA" 
colnames(HumGut.tsv) = c("Tax.ID", "OrganismName") 

Want to match HumGut-IDs from the HumGut-database with the HumGut-IDs in 

“new_krk.tbl”, and then copy these into the new column “Organismname”. 

library(stringr) 

## Warning: package 'stringr' was built under R version 4.1.2 

all_humgut <- str_detect(new_krk.tbl$Tax.ID, pattern = "HumGut") 
all_to_get_annotations <- which(all_humgut == TRUE) 
for (i in all_to_get_annotations) { 
  matcher <- which(new_krk.tbl$Tax.ID[i] == HumGut.tsv$Tax.ID) 
  OrganismeNavnet <- HumGut.tsv$OrganismName[matcher] 

http://arken.nmbu.no/~larssn/humgut/
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  new_krk.tbl$OrganismName[i] <- OrganismeNavnet 
} 

Wants to check which cells that have no ID, and that the taxonomy is correct. 

no_humgut <- str_detect(new_krk.tbl$OrganismName, pattern = "NA") 
indeks <- which(no_humgut == TRUE) 
 
for (i in indeks) { 
  new_krk.tbl$OrganismName[i] <- new_krk.tbl$Tax.ID[i] 
} 
 
dobbeltsjekk <- table(new_krk.tbl$Tax.ID[all_to_get_annotations], new_krk.t
bl$OrganismName[all_to_get_annotations]) 
dobbeltsjekk <- as.data.frame(dobbeltsjekk) 
# View(dobbeltsjekk) 
# View(HumGut.tsv) 

Wants to check out the unique nodes: 

head(unique(new_krk.tbl$Seq.ID)) 

## [1] "NODE_18_length_270080_cov_476.099574" 
## [2] "NODE_41_length_194961_cov_451.282179" 
## [3] "NODE_50_length_184487_cov_444.522800" 
## [4] "NODE_63_length_153841_cov_421.194703" 
## [5] "NODE_69_length_147463_cov_438.804498" 
## [6] "NODE_77_length_143847_cov_478.664781" 

The annotation for bacterial taxonomy is done. 

C2 – Get Bifidobacterium and Bacteroides Proteins from all Faa/Fasta-Files 

First, all nodes belonging to the same BIN had to be checked if they belonged to the same 

species. To do this, all fasta-files from Drep had to be uploaded. A new data frame was made. 

library(tidyverse) 

lines <- list.files(".", pattern = "fa") 
 
Table_nodebin <- matrix(nrow = 1, ncol = 2) 
colnames(Table_nodebin) <- c('Bin', 'Nodes') 
Table_nodebin <- tbl_df(Table_nodebin) 

Checked which lines had nodes or not and retrieve them. 

for (i in 1:length(lines)) { 
  lines_Read <- readLines(lines[i])  
  logicals <- str_detect(lines_Read, pattern = ">")  
  idx <- which(logicals) #Tells us where 
   
  Pre_Node_table <- matrix(data = NA, nrow = length(idx), ncol = 2) 
  colnames(Pre_Node_table) <- c('Bin', 'Nodes')  
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  Pre_Node_table <- tbl_df(Pre_Node_table) 
  Pre_Node_table$Bin <- "NA" 
  Pre_Node_table$Nodes <- "NA" 
   
  Pre_Node_table$Bin <- lines[i] 
   
  Pre_Node_table$Nodes <-lines_Read[idx] 
  Table_nodebin <- rbind(Pre_Node_table, Table_nodebin) 
} 

 emove all “ >” and then retrieve all species from new_krk.tbl to each node in Table_nodebin 

Table_nodebin$Bacteria <- "NA" 
Table_nodebin$Nodes <- str_remove_all(Table_nodebin$Nodes, pattern = ">") 
rm_last_row <- nrow(Table_nodebin) 
Table_nodebin <- Table_nodebin[-rm_last_row,] 
 
for (i in 1:nrow(Table_nodebin)) { 
  bacteria_inn <- which(new_krk.tbl$Seq.ID == Table_nodebin$Nodes[i]) 
  Table_nodebin$Bacteria[i] <- new_krk.tbl$OrganismName[bacteria_inn] 
} 

The latter code crosschecks random subjects from new_krk.tbl in Table_nodebin, for 

example: 

Table_nodebin[260,] 

## # A tibble: 1 x 3 
##   Bin               Nodes                              Bacteria            
##   <chr>             <chr>                              <chr>               
## 1 Sample9.007.fasta NODE_228_length_12040_cov_2.708148 Actinomyces sp. p
h3 

which(new_krk.tbl$Seq.ID == Table_nodebin$Nodes[260]) 

## [1] 11024 

new_krk.tbl[11024,] 

## # A tibble: 1 x 5 
##   `C/U` Seq.ID                             Tax.ID       bp.length Organi
smName   
##   <chr> <chr>                              <chr>            <dbl> <chr>          
## 1 C     NODE_228_length_12040_cov_2.708148 HumGut_27048     12040 Actino
myces s~ 

We can see that they have the same node name and organism name, which is good. 

However, we only wanted genes from species that were Bacteroides and Bifidobacterium, and 

then bind them into one table. 

Idx_Bacteroides <- which(str_detect(Table_nodebin$Bacteria, pattern = "Bact
eroides*")) 
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Bacteroides_NodeBin <- Table_nodebin[Idx_Bacteroides,]  
 
Idx_Parabacteroides <- which(str_detect(Table_nodebin$Bacteria, pattern = "
Parabacteroides*")) 
Parabacteroides_NodeBin <- Table_nodebin[Idx_Parabacteroides,] 
 
Idx_Bacteroidales <- which(str_detect(Table_nodebin$Bacteria, pattern = "Ba
cteroidales*")) 
Bacteroidales_NodeBin <- Table_nodebin[Idx_Bacteroidales,] 
 
Idx_Phocaeicola <- which(str_detect(Table_nodebin$Bacteria, pattern = "Phoc
aeicola*")) 
Phocaeicola_NodeBin <- Table_nodebin[Idx_Phocaeicola,] 
 
Idx_Bifido <- which(str_detect(Table_nodebin$Bacteria, pattern = "Bifido*")
) 
Bifido_NodeBin <- Table_nodebin[Idx_Bifido,]  
#Binding all tables together into one table 
New_table <- rbind(Bifido_NodeBin, Bacteroides_NodeBin, Parabacteroides_Nod
eBin, Phocaeicola_NodeBin, Bacteroidales_NodeBin) 
 
saveRDS(New_table, file = "Bacteroides_Bifido_tabell") 

Had to check the bins from this table. These were the only ones that were used. 

unike_bins <- unique(New_table$Bin) 

A total of 42 bins have genes coming from either Bacteroides or Bifidobacterium species. 

Had to check all nodes and which BINs they were from. 2975 nodes. 

Ferdig_testbin <- NULL 
for (i in 1:length(unike_bins)) { 
  TestBin <- which(New_table$Bin == unike_bins[i])  
  Ferdig_testbin <- append(Ferdig_testbin, TestBin) 
  Testbin2 <- New_table$Bin[Ferdig_testbin]      
  TestNode <- New_table$Nodes[Ferdig_testbin]  
} 

Making sure that it was correct, by looking at “testnode 2 ” 

New_table$Nodes[Ferdig_testbin[28]] 

## [1] "NODE_17_length_199593_cov_215.343654" 

TestNode[28]  

## [1] "NODE_17_length_199593_cov_215.343654" 

unique(Testbin2)  

##  [1] "Sample9.11.fa"      "Sample9.007.fasta"  "Sample9.003.fasta"  
##  [4] "Sample9.001.fasta"  "Sample7.001.fasta"  "Sample6.020.fasta"  
##  [7] "Sample6.019.fasta"  "Sample6.016.fasta"  "Sample6.014.fasta"  
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## [10] "Sample6.009.fasta"  "Sample6.008.fasta"  "Sample6.004.fasta"  
## [13] "Sample5.4.fa"       "Sample5.27.fa"      "Sample5.15.fa"      
## [16] "Sample4.21.fa"      "Sample4.2.fa"       "Sample4.19.fa"      
## [19] "Sample4.005.fasta"  "Sample10.015.fasta" "Sample10.014.fasta" 
## [22] "Sample10.011.fasta" "Sample10.010.fasta" "Sample10.009.fasta" 
## [25] "Sample10.007.fasta" "Sample10.005.fasta" "Sample10.002.fasta" 
## [28] "Sample1.013.fasta"  "Sample5.23.fa"      "Sample5.20.fa"      
## [31] "Sample5.14.fa"      "Sample5.12.fa"      "Sample5.10.fa"      
## [34] "Sample4.6.fa"       "Sample4.3.fa"       "Sample4.017.fasta"  
## [37] "Sample4.006.fasta"  "Sample2.15.fa"      "Sample1.11.fa"      
## [40] "Sample1.009.fasta"  "Sample1.001.fasta"  "Sample4.18.fa" 

All unique bins were put in its own file “unike_bins” for read_lines later. To look at the 

proteins, faa-files must be used, as fasta-files are nucleotide-sequences. 

path_til_protein <- "Oda_shotgun/Drep/Data/prodigal/unike_bins/" 
protein_lines <- list.files(path = path_til_protein, pattern = "fa") 
 
protein_lines2 <- str_remove(protein_lines, pattern = ".faa") ##Making a te
mporary vector just to match files 

Searched for all lines that matched with the unique bins. 

Alle_protlines_read <- NULL 
for (i in 1:length(protein_lines2)) { 
  Riktig_Bin <- which(protein_lines2 == unike_bins[i])  
  denne_filen <- protein_lines[Riktig_Bin]  
  protlines_Read <- readLines(paste0(path_til_protein, denne_filen))  
  Alle_protlines_read <- append(Alle_protlines_read, protlines_Read)   
} 

The following code took about 30-45 minutes. The loop finds the lines in protlines_read that 

matches with test nodes, which are the nodes with Bifidobacterium and Bacteroides. 

Ferdig_variabel <- NULL  
for (i in 1:length(TestNode)) { 
  test_Variable <- which(str_detect(Alle_protlines_read, paste0(pattern = T
estNode[i], "*")) == TRUE) 
  Ferdig_variabel <- append(Ferdig_variabel,test_Variable) 
} 

The following code shows how many lines were withdrawn from 42 bins and 2975 nodes 

length_table <- length(Alle_protlines_read[Ferdig_variabel]) 
print(paste("The table has ", length_table, " lines")) 

Found lines with nodes and wanted to see where they were. 

prot_logicals <- str_detect(Alle_protlines_read, pattern = ">")  
prot_idx <- which(prot_logicals)  
#print(prot_idx) 
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Withdrew the sequences from 42 bins and 2975 nodes. This code took about 20-25 minutes to 

run. 

Alle_sekvensene_vivilha <- NULL 
for (i in 1:length(Ferdig_variabel)) { 
  inni_protidx <- min(which(prot_idx > Ferdig_variabel[i])) 
  sekvensene_vivilha <- Alle_protlines_read[c(Ferdig_variabel[i]:(prot_idx[
inni_protidx]-1))] 
  Alle_sekvensene_vivilha <- append(Alle_sekvensene_vivilha,sekvensene_vivi
lha) 
  #print(i) 
} 

 

 

C3 – Create a FASTA File for eggNOG Mapper Annotation 

This FASTA file should contain the aminoacid sequences of all nodes that were from 

Bacteroides and Bifidobacterium species and will be run through eggNOG mapper for 

annotation, as well as dbCAN. 

new_line <- ">" 
Final_Alle_sekvensene_vivilha <- c(Alle_sekvensene_vivilha, new_line) 
 
 
krok_munn <- which(str_detect(Final_Alle_sekvensene_vivilha, pattern = ">")
) 
sink(file = "Skal_i_eggNOG.faa") ##Lager en fil som limer inn alt som egent
lig skal printes i konsollen (cat-funksjonen) 
for (i in 1:length(krok_munn)) { 
  protein_hoy <- min(which(krok_munn > krok_munn[i])) 
  selve_linjen_hoy <- krok_munn[protein_hoy]-1 
  selve_linjen_lav <- krok_munn[i]+1 
  hele_prot_sekvensen <- Final_Alle_sekvensene_vivilha[selve_linjen_lav:sel
ve_linjen_hoy] 
  Hente_ut_node <- Alle_sekvensene_vivilha[krok_munn[i]] 
  #hele_prot_sekvensen <- cat(hele_prot_sekvensen, sep = "") #SlÃƒÂ¥r samme
n linjene 
  cat(Hente_ut_node) 
  cat(sep = "\n") 
  cat(hele_prot_sekvensen, sep = "") 
  cat(sep = "\n") 
} 
 
sink() #Stenger filen: med annenhver node og proteinsekvensen 
## revert output back to the console -- only then access the file! 
closeAllConnections() 
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C4 – Skal_i_eggNOG.faa - File Annotated in eggNOG Mapper 

 

library(readxl) 

## Warning: package 'readxl' was built under R version 4.1.2 

library(stringr) 
eggNOG_results <- read_xlsx("EggNOG mapper results.xlsx") 
colnames(eggNOG_results) <- eggNOG_results[5,] 
eggNOG_results <- eggNOG_results[-c(1:5,70252:70254),] #Fjerner de to først
e kolonnene og de tre siste (NA) 
colnames(eggNOG_results) <- str_replace(colnames(eggNOG_results), pattern = 
"#", replacement = "") 

  enkel_eggNOG_res <- eggNOG_results 
  enkel_eggNOG_res <- enkel_eggNOG_res[,-c(2,5,6,14:18,20)] 

Removed nodes with e-values higher than 1e-10, which were approximately half of the 

proteins. 

lav_evalue <- which(enkel_eggNOG_res$evalue < 1e-10) #Wants these 
head(enkel_eggNOG_res$evalue[lav_evalue]) 

## [1] "0.0"       "0.0"       "0.0"       "1.23e-191" "1.25e-287" "1.87e-4
0" 

Høy_evalue <- which(enkel_eggNOG_res$evalue > 1e-10) #Removing these 
head(enkel_eggNOG_res$evalue[Høy_evalue]) 

## [1] "6.28e-221" "4.83e-257" "2.11e-220" "8.18e-267" "8.48e-223" "2.46e-2
88" 

enkel_eggNOG_res <- enkel_eggNOG_res[-c(Høy_evalue),] #Have 34 025 genes le
ft.  

Wanted the taxonomy from the shotgun data (HumGut) in this table. Had to match node-

names in the two tables: 

Bacteroies_Bifido_tabell <- readRDS("Bacteroides_Bifido_tabell") 
enkel_eggNOG_res$ShotgunTaks <- "NA" 
enkel_eggNOG_res$ShotgunNode <- "NA" 
 
One_digit <- which(str_detect(enkel_eggNOG_res$query, pattern = "NODE_[:dig
it:]_length_[:digit:][:digit:]")) 
En_skal_inn <- str_extract(enkel_eggNOG_res$query[One_digit], pattern = "NO
DE_[:digit:]_length_[:digit:][:digit:]") 
enkel_eggNOG_res$ShotgunNode[One_digit] <- En_skal_inn 
 
Two_digits <- which(str_detect(enkel_eggNOG_res$query, pattern = "NODE_[:di
git:][:digit:]_length_[:digit:][:digit:]")) 
To_skal_inn <- str_extract(enkel_eggNOG_res$query[Two_digits], pattern = "N
ODE_[:digit:][:digit:]_length_[:digit:][:digit:]") 
enkel_eggNOG_res$ShotgunNode[Two_digits] <- To_skal_inn 
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Three_digits <- which(str_detect(enkel_eggNOG_res$query, pattern = "NODE_[:
digit:][:digit:][:digit:]_length_[:digit:][:digit:]")) 
Tre_skal_inn <- str_extract(enkel_eggNOG_res$query[Three_digits], pattern = 
"NODE_[:digit:][:digit:][:digit:]_length_[:digit:][:digit:]") 
enkel_eggNOG_res$ShotgunNode[Three_digits] <- Tre_skal_inn 
 
Four_digits <- which(str_detect(enkel_eggNOG_res$query, pattern = "NODE_[:d
igit:][:digit:][:digit:][:digit:]_length_[:digit:][:digit:]")) 
Fire_skal_inn <- str_extract(enkel_eggNOG_res$query[Four_digits], pattern = 
"NODE_[:digit:][:digit:][:digit:][:digit:]_length_[:digit:][:digit:]") 
enkel_eggNOG_res$ShotgunNode[Four_digits] <- Fire_skal_inn 
 
Five_digits <- which(str_detect(enkel_eggNOG_res$query, pattern = "NODE_[:d
igit:][:digit:][:digit:][:digit:][:digit:]_length_[:digit:][:digit:]")) 
Fem_skal_inn <- str_extract(enkel_eggNOG_res$query[Five_digits], pattern = 
"NODE_[:digit:][:digit:][:digit:][:digit:][:digit:]_length_[:digit:][:digit
:]") 
enkel_eggNOG_res$ShotgunNode[Five_digits] <- Fem_skal_inn 
 
#Må gjøre det samme med denne tabellen for å matche 
Bacteroies_Bifido_tabell$ShotgunNode <- "NA" 
 
One_digit_shot <- which(str_detect(Bacteroies_Bifido_tabell$Nodes, pattern 
= "NODE_[:digit:]_length_[:digit:][:digit:]")) 
En_skal_inn_shot <- str_extract(Bacteroies_Bifido_tabell$Nodes[One_digit_sh
ot], pattern = "NODE_[:digit:]_length_[:digit:][:digit:]") 
Bacteroies_Bifido_tabell$ShotgunNode[One_digit_shot] <- En_skal_inn_shot 
 
Two_digit_shot <- which(str_detect(Bacteroies_Bifido_tabell$Nodes, pattern 
= "NODE_[:digit:][:digit:]_length_[:digit:][:digit:]")) 
To_skal_inn_shot <- str_extract(Bacteroies_Bifido_tabell$Nodes[Two_digit_sh
ot], pattern = "NODE_[:digit:][:digit:]_length_[:digit:][:digit:]") 
Bacteroies_Bifido_tabell$ShotgunNode[Two_digit_shot] <- To_skal_inn_shot 
 
Three_digit_shot <- which(str_detect(Bacteroies_Bifido_tabell$Nodes, patter
n = "NODE_[:digit:][:digit:][:digit:]_length_[:digit:][:digit:]")) 
Tre_skal_inn_shot <- str_extract(Bacteroies_Bifido_tabell$Nodes[Three_digit
_shot], pattern = "NODE_[:digit:][:digit:][:digit:]_length_[:digit:][:digit
:]") 
Bacteroies_Bifido_tabell$ShotgunNode[Three_digit_shot] <- Tre_skal_inn_shot 
 
Four_digit_shot <- which(str_detect(Bacteroies_Bifido_tabell$Nodes, pattern 
= "NODE_[:digit:][:digit:][:digit:][:digit:]_length_[:digit:][:digit:]")) 
Fire_skal_inn_shot <- str_extract(Bacteroies_Bifido_tabell$Nodes[Four_digit
_shot], pattern = "NODE_[:digit:][:digit:][:digit:][:digit:]_length_[:digit
:][:digit:]") 
Bacteroies_Bifido_tabell$ShotgunNode[Four_digit_shot] <- Fire_skal_inn_shot 
 
Five_digit_shot <- which(str_detect(Bacteroies_Bifido_tabell$Nodes, pattern 
= "NODE_[:digit:][:digit:][:digit:][:digit:][:digit:]_length_[:digit:][:dig
it:]")) 
Fem_skal_inn_shot <- str_extract(Bacteroies_Bifido_tabell$Nodes[Five_digit_
shot], pattern = "NODE_[:digit:][:digit:][:digit:][:digit:][:digit:]_length
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_[:digit:][:digit:]") 
Bacteroies_Bifido_tabell$ShotgunNode[Five_digit_shot] <- Fem_skal_inn_shot 
 
## Finding the matching cells and put them into Bakterie_node_eggNOG$Shotgu
nTaks in a for-loop 
 
for (i in 1:nrow(enkel_eggNOG_res)) { 
  idx <- which(Bacteroies_Bifido_tabell$ShotgunNode == enkel_eggNOG_res$Sho
tgunNode[i]) 
  enkel_eggNOG_res$ShotgunTaks[i] <- Bacteroies_Bifido_tabell$Bacteria[idx] 
} 
 
enkel_eggNOG_res <- enkel_eggNOG_res[,-c(2,3)] 
 
write.csv2(enkel_eggNOG_res, file = "EggNOG_gene_taxonomy.csv") #Saving the 
file 

To look at the COGs, the following codes were run. 87 different COG categories were 

observed which included the combinations of COGs, and 26 single COG categories exist. The 

goal was to find out which category had the most proteins, and all categories were checked. 

Examples:  

unique(enkel_eggNOG_res$COG_category)  

##  [1] "-"    "M"    "U"    "GM"   "G"    "O"    "P"    "S"    "J"    "F"    
## [11] "H"    "K"    "E"    "KT"   "C"    "V"    "L"    "EGP"  "I"    "EG"   
## [21] "EP"   "D"    "T"    "GK"   "EH"   "QT"   "GP"   "MV"   "LU"   "DG"   
## [31] "JKL"  "KL"   "KLT"  "ET"   "EF"   "NU"   "LT"   "EK"   "DF"   "FG"   
## [41] "FJ"   "LV"   "OP"   "DM"   "Q"    "IQ"   "IM"   "A"    "CE"   "EQ"   
## [51] "CO"   "N"    "PT"   "MU"   "FK"   "EU"   "JM"   "NPU"  "GKT"  "OU"   
## [61] "CH"   "DZ"   "HJ"   "MP"   "EM"   "HP"   "CP"   "EJ"   "MO"   "B"    
## [71] "FP"   "NO"   "NT"   "EV"   "KMT"  "KO"   "HQ"   "MNU"  "CG"   "LO"   
## [81] "DT"   "OT"   "KLMT" "MQ"   "GIM"  "DN"   "IL" 

G: Carbohydrate-transport and metabolism 

length(which(str_detect(enkel_eggNOG_res$COG_category, pattern = "G"))) 

## [1] 4023 

P: Inorganic ion transport and metabolism 

length(which(str_detect(enkel_eggNOG_res$COG_category, pattern = "P"))) 

## [1] 2853 

E: Amino acid transport and metabolism 

length(which(str_detect(enkel_eggNOG_res$COG_category, pattern = "E"))) 

## [1] 2511 

I: Lipid transport and metabolism 
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length(which(str_detect(enkel_eggNOG_res$COG_category, pattern = "I"))) 

## [1] 699 

S: Function unknown 

length(which(str_detect(enkel_eggNOG_res$COG_category, pattern = "S"))) 

## [1] 6560 

C5 – K-numbers for the Reconstruction of Pathways 

 egg_ko’s for Bacteroides and Bifidobacterium were listed separately in excel. The following 

code was used to remove unwanted subjects, before annotating the K-numbers in KEGG 

Mapper Reconstruct. They were saved separately as CSV files, which were opened in excel 

and saved in notebook. 

KO_bifido <- read_excel("KO_bifido.xlsx") 
#which(str_detect(KO_bifido$KEGG_ko, pattern = "ko:")) 
KO_bifido$KEGG_ko <- str_remove_all(KO_bifido$KEGG_ko, pattern = "ko:") 
KO_bifido$KEGG_ko <- str_replace_all(KO_bifido$KEGG_ko, pattern = ",", repl
acement = ";") 
write.csv2(KO_bifido, file = "KO_bifido.csv") 
 
KO_bacteroides <- read_excel("KO_bacteroides.xlsx") 
#which(str_detect(KO_bacteroides$KEGG_ko, pattern = "ko:")) 
KO_bacteroides$KEGG_ko <- str_remove_all(KO_bacteroides$KEGG_ko, pattern = 
"ko:") 
KO_bacteroides$KEGG_ko <- str_replace_all(KO_bacteroides$KEGG_ko, pattern = 
",", replacement = ";") 
write.csv2(KO_bacteroides, file = "KO_bacteroides.csv") 

Split columns with “;” to separate all  -numbers in excel. 

C6 – dbCAN Annotation for Glycoside Hydrolase Families 

Started by making an overview of all GH families (171) in a table, from the cazy-website 

library(rvest) 

## Warning: package 'rvest' was built under R version 4.1.2 

##  
## Attaching package: 'rvest' 

## The following object is masked from 'package:readr': 
##  
##     guess_encoding 

library (dplyr) 
 
start_link <- "http://www.cazy.org/GH" 
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i <- 1:171 
end_link <- ".html" 
 
vector_link <- paste0(start_link, i, end_link, sep = "") 
data_frame_genes <- as.data.frame(matrix("NA", ncol = 2, nrow = 171)) 
 
 
for (a in 1:171) { 
  link = vector_link[a] 
   
  page = read_html(link) 
   
  name = page %>% html_nodes("tr:nth-child(1) .tdsum") %>% html_text() 
   
  data_frame_genes[a,2] <- name 
  data_frame_genes[a,1] <- paste0("GH", a, sep = "") 
  #print(a) 
} 
head(data_frame_genes) 

##    V1 
## 1 GH1 
## 2 GH2 
## 3 GH3 
## 4 GH4 
## 5 GH5 
## 6 GH6 
#

V2 
## 
1                                                                                                                                                                                                                                                                                                 
ß-glucosidase (EC 3.2.1.21); ß-galactosidase (EC 3.2.1.23); ß-mannosidase (
EC 3.2.1.25); ß-glucuronidase (EC 3.2.1.31); ß-xylosidase (EC 3.2.1.37); ß-
D-fucosidase (EC 3.2.1.38); phlorizin hydrolase (EC 3.2.1.62); exo-ß-1,4-gl
ucanase (EC 3.2.1.74); 6-phospho-ß-galactosidase (EC 3.2.1.85); 6-phospho-ß
-glucosidase (EC 3.2.1.86); strictosidine ß-glucosidase (EC 3.2.1.105); lac
tase (EC 3.2.1.108); amygdalin ß-glucosidase (EC 3.2.1.117); prunasin ß-glu
cosidase (EC 3.2.1.118); vicianin hydrolase (EC 3.2.1.119); raucaffricine ß
-glucosidase (EC 3.2.1.125); thioglucosidase (EC 3.2.1.147); ß-primeverosid
ase (EC 3.2.1.149); isoflavonoid 7-O-ß-apiosyl-ß-glucosidase (EC 3.2.1.161)
; ABA-specific ß-glucosidase (EC 3.2.1.175); DIMBOA ß-glucosidase (EC 3.2.1
.182); ß-glycosidase (EC 3.2.1.-); hydroxyisourate hydrolase (EC 3.-.-.-); 
ß-rutinosidase /a-L-rhamnose-(1,6)-ß-D-glucosidase (EC 3.2.1.-); protodiosc
in 26-O-Î²-D-glucosidase (EC 3.2.1.186) 
## 

ß-galactosidase (EC 3.2.1.23) ; ß-mannosidase (EC 3.2.1.25); ß-glucuronidas
e (EC 3.2.1.31); a-L-arabinofuranosidase (EC 3.2.1.55); mannosylglycoprotei
n endo-ß-mannosidase (EC 3.2.1.152); exo-ß-glucosaminidase (EC 3.2.1.165); 
a-L-arabinopyranosidase (EC 3.2.1.-); ß-galacturonidase (EC 3.2.1.-); ß-xyl
osidase (EC 3.2.1.37); ß-D-galactofuranosidase (EC 3.2.1.146); ß-glucosidas
e (EC 3.2.1.21) 
## 
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3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
ß-glucosidase (EC 3.2.1.21); xylan 1,4-ß-xylosidase (EC 3.2.1.37); ß-glucos
ylceramidase (EC 3.2.1.45); ß-N-acetylhexosaminidase (EC 3.2.1.52); a-L-ara
binofuranosidase (EC 3.2.1.55); glucan 1,4-ß-glucosidase (EC 3.2.1.74); iso
primeverose-producing oligoxyloglucan hydrolase (EC 3.2.1.120); coniferin ß
-glucosidase (EC 3.2.1.126); exo-1,3-1,4-glucanase (EC 3.2.1.-); ß-N-acetyl
glucosaminide phosphorylases (EC 2.4.1.-); ß-1,2-glucosidase (EC 3.2.1.-); 
ß-1,3-glucosidase (EC 3.2.1.-); xyloglucan-specific exo-ß-1,4-glucanase / e
xo-xyloglucanase (EC 3.2.1.155); stevioside-ß-1,2-glucosidase (EC 3.2.1.-); 
lichenase / endo-ß-1,3-1,4-glucanase (EC 3.2.1.73); protodioscin 26-O-ß-D-g
lucosidase (EC 3.2.1.186); ß-glucuronidase (EC 3.2.1.31) 
## 

maltose-6-phosphate glucosidase (EC 3.2.1.122); a-glucosidase (EC 3.2.1.20)
; a-galactosidase (EC 3.2.1.22); 6-phospho-ß-glucosidase (EC 3.2.1.86); a-g
lucuronidase (EC 3.2.1.139); a-galacturonase (EC 3.2.1.67); palatinase (EC 
3.2.1.-) 
## 5 endo-ß-1,4-glucanase / cellulase (EC 3.2.1.4); endo-ß-1,4-xylanase (EC 
3.2.1.8); ß-glucosidase (EC 3.2.1.21); ß-mannosidase (EC 3.2.1.25); ß-gluco
sylceramidase (EC 3.2.1.45); glucan ß-1,3-glucosidase (EC 3.2.1.58); exo-ß-
1,4-glucanase / cellodextrinase (EC 3.2.1.74); glucan endo-1,6-ß-glucosidas
e (EC 3.2.1.75); mannan endo-ß-1,4-mannosidase (EC 3.2.1.78); cellulose ß-1
,4-cellobiosidase (EC 3.2.1.91); steryl ß-glucosidase (EC 3.2.1.104); endog
lycoceramidase (EC 3.2.1.123); ß-primeverosidase (EC 3.2.1.149); xyloglucan
-specific endo-ß-1,4-glucanase (EC 3.2.1.151); endo-ß-1,6-galactanase (EC 3
.2.1.164); ß-1,3-mannanase (EC 3.2.1.-); arabinoxylan-specific endo-ß-1,4-x
ylanase (EC 3.2.1.-); mannan transglycosylase (EC 2.4.1.-); lichenase / end
o-ß-1,3-1,4-glucanase (EC 3.2.1.73); ß-glycosidase (EC 3.2.1.-); endo-ß-1,3
-glucanase / laminarinase (EC 3.2.1.39); ß-N-acetylhexosaminidase (EC 3.2.1
.52); chitosanase (EC 3.2.1.132); ß-D-galactofuranosidase (EC 3.2.1.146); ß
-galactosylceramidase (EC 3.2.1.46); ; ß-rutinosidase /a-L-rhamnose-(1,6)-ß
-D-glucosidase (EC 3.2.1.-); a-L-arabinofuranosidase (EC 3.2.1.55); glucoma
nnan-specific endo-ß-1,4-glucanase (EC 3.2.1.-); hesperidin 6-O-a-L-rhamnos
yl-ß-glucosidase (EC 3.2.1.168) 
## 

endoglucanase (EC 3.2.1.4); cellobiohydrolase (EC 3.2.1.91); lichenase / en
do-ß-1,3-1,4-glucanase (EC 3.2.1.73); 

dbCAN had a limit with files no larger than 20MB. The eggNOG-file was almost 40MB and 

had to be split into two separate files for dbCAN-annotation and then put back together again. 

eggNOG_fil_1 <- eggNOG_fil[1:76548] 
eggNOG_fil_2 <- eggNOG_fil[76549:153094] 
write.csv2(eggNOG_fil_1, file = "dbCAN_del1.csv") #Aminoacid sequence 1 and 
2 
write.csv2(eggNOG_fil_2, file = "dbCAN_fil2.csv") 

library(readxl) 
dbCANresultDel1 <- read_xlsx("dbCANresultDel1.xlsx") 
dbCANresultDel2 <- read_xlsx("dbCANresultdel2.xlsx") 
 
dbCANresults <- rbind(dbCANresultDel1, dbCANresultDel2) #Bound together 
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All data from the dbCAN metaserver was uploaded in excel, and all proteins with only one 

tool-match were removed for all nodes. The excel-sheets were then uploaded to Rstudio, and 

the correct GHs were put in the correct cell. 

Wanted to remove unnecessary information and signs from the table. 

dbCANresults$HMMER <- gsub("\\s*\\([^\\)]+\\)", "", dbCANresults$HMMER) 
 
#Fjerner rekken jeg ikke trenger med "signalP" 
dbCANresults <- dbCANresults[,-6] 
 
#Only HMMER-proteins, without the "_" 
listeBact <- strsplit(dbCANresults$HMMER, split = "_") 
 
#Replacing all HMMER-values with HMMER-values without the "_" using a for-l
oop 
for (i in 1:nrow(dbCANresults)) { 
  Variabel_bact <- listeBact[[i]][1] 
  dbCANresults$HMMER[i] <- Variabel_bact 
} 
 
#And did the same with DIAMOND-values 
dbCANresults$DIAMOND <- gsub("\\s*\\([^\\)]+\\)", "", dbCANresults$DIAMOND) 
 
listeBact2 <- strsplit(dbCANresults$DIAMOND, split = "_") 
for (i in 1:nrow(dbCANresults)) { 
  variabel_bact2 <- listeBact2[[i]][1] 
  dbCANresults$DIAMOND[i] <- variabel_bact2 
} 

Made a new column meant for those GHs that were equal for at least two tools used in 

dbCAN. 

dbCANresults$equalAtleast2 <- "NA" 

GHs matching will be put into the new column with this code: HMMER vs eCAMI 

indeks_HMMER_eCAMI <- which(dbCANresults$HMMER == dbCANresults$eCAMI) 
dbCANresults$equalAtleast2[indeks_HMMER_eCAMI] <- dbCANresults$HMMER[indeks
_HMMER_eCAMI] 
                                                                      
#Doublechecking: 
indeks_NA <- which(dbCANresults$equalAtleast2 == "NA") 
length(indeks_NA) 

## [1] 1776 

HMMER vs DIAMOND Using the indeks_Na to fill in 

indeks_HMMER_DMND <- which(dbCANresults$HMMER[indeks_NA] == dbCANresults$DI
AMOND[indeks_NA]) 
limes_inn <- indeks_NA[indeks_HMMER_DMND] 
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dbCANresults$equalAtleast2[limes_inn] <- dbCANresults$DIAMOND[limes_inn] 
#Doublechecking: 
indeks_NA2 <- which(dbCANresults$equalAtleast2 == "NA") 
length(indeks_NA2) 

## [1] 860 

eCAMI vs DIAMOND Using the Indeks_NA2 to fill in 

indeks_eCAMI_DMND <- which(dbCANresults$eCAMI[indeks_NA2] == dbCANresults$D
IAMOND[indeks_NA2]) 
limes_inn_2 <- indeks_NA2[indeks_eCAMI_DMND] 
dbCANresults$equalAtleast2[limes_inn_2] <- dbCANresults$eCAMI[limes_inn_2] 
#Doublechecking: 
indeks_NA3 <- which(dbCANresults$equalAtleast2 == "NA") 
length(indeks_NA3) 

## [1] 230 

Cells that still have NA-values could be a result of “+” values or different orders on several 

GHs. 

Kun_ett_verktoy <- which(dbCANresults$`#ofTools` == "1") 
dbCANresults <- dbCANresults[-Kun_ett_verktoy,] 

Wanted to remove + values 

test123 <- which(dbCANresults$equalAtleast2 == "NA") 
 
#Checking that none are the same 
which(dbCANresults$HMMER[test123] == dbCANresults$eCAMI[test123]) 

## integer(0) 

#Lager en vektor med de som har NA-verdier i HMMER. Fjerner pluss-tegn og s
plitter 
vektor_HMMER <- dbCANresults$HMMER[test123] 
HMMER_split <- strsplit(vektor_HMMER, split = "\\+") 
HMMER_split[[5]][1] #Sjekker 

## [1] "GT4" 

#For DIAMOND 
Vektor_DIAMOND <- dbCANresults$DIAMOND[test123] 
DIAMOND_split <- strsplit(Vektor_DIAMOND, split = "\\+") 
DIAMOND_split[[3]][1] #Sjekker 

## [1] "CBM35" 

#For eCAMI 
Vektor_eCAMI <- dbCANresults$eCAMI[test123] 
eCAMI_split <- strsplit(Vektor_eCAMI, split = "\\+") 
eCAMI_split[[228]][3] 

## [1] "CBM13" 



79 

 

Got the GHs that matched between eCAMI and DIAMOND 

library(stringr) 
for (i in 1:length(test123)) { 
  b <- 1:length(eCAMI_split[[i]]) 
  c <- 1:length(DIAMOND_split[[i]]) 
  c1 <- ifelse(length(which(eCAMI_split[[i]][b] == DIAMOND_split[[i]][c[1]]
)) > 0, 1, 0) 
  c2 <- ifelse(length(which(eCAMI_split[[i]][b] == DIAMOND_split[[i]][c[2]]
)) > 0, 1, 0) 
  c3 <- ifelse(length(which(eCAMI_split[[i]][b] == DIAMOND_split[[i]][c[3]]
)) > 0, 1, 0) 
  c4 <- ifelse(length(which(eCAMI_split[[i]][b] == DIAMOND_split[[i]][c[4]]
)) > 0, 1, 0) 
  c5 <- ifelse(length(which(eCAMI_split[[i]][b] == DIAMOND_split[[i]][c[5]]
)) > 0, 1, 0) 
   
  c_all <- c(c1,c2,c3,c4,c5) 
  c_all_2 <- which(c_all > 0, arr.ind = FALSE) 
  c_all_3 <- paste(DIAMOND_split[[i]][c_all_2], sep = ",") 
  c_all_4 <- str_c(c_all_3, collapse = "+") 
  dbCANresults$equalAtleast2[test123[i]] <- c_all_4 
} 
which(dbCANresults$equalAtleast2 == "NA") # Ingen verdier med NA 

## integer(0) 

head(which(dbCANresults$equalAtleast2 == ""))  

## [1]   3  11  15  18 101 123 

Did the exact same thing with HMMER and DIAMOND 

test1234 <- which(dbCANresults$equalAtleast2 == "") 
which(dbCANresults$HMMER[test1234] == dbCANresults$DIAMOND[test1234]) 

## integer(0) 

library(stringr) 
for (i in 1:length(test1234)) { 
  e <- 1:length(HMMER_split[[i]]) 
  d <- 1:length(DIAMOND_split[[i]]) 
  d1 <- ifelse(length(which(HMMER_split[[i]][e] == DIAMOND_split[[i]][d[1]]
)) > 0, 1, 0) 
  d2 <- ifelse(length(which(HMMER_split[[i]][e] == DIAMOND_split[[i]][d[2]]
)) > 0, 1, 0) 
  d3 <- ifelse(length(which(HMMER_split[[i]][e] == DIAMOND_split[[i]][d[3]]
)) > 0, 1, 0) 
  d4 <- ifelse(length(which(HMMER_split[[i]][e] == DIAMOND_split[[i]][d[4]]
)) > 0, 1, 0) 
  d5 <- ifelse(length(which(HMMER_split[[i]][e] == DIAMOND_split[[i]][d[5]]
)) > 0, 1, 0) 
   
  d_all <- c(d1,d2,d3,d4,d5) 
  d_all_2 <- which(d_all > 0, arr.ind = FALSE) 
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  d_all_3 <- paste(DIAMOND_split[[i]][d_all_2], sep = ",") 
  d_all_4 <- str_c(d_all_3, collapse = "+") 
  dbCANresults$equalAtleast2[test1234[i]] <- d_all_4 
} 

And with eCAMI and HMMER 

test12345 <- which(dbCANresults$equalAtleast2 == "") 
which(dbCANresults$HMMER[test12345] == dbCANresults$DIAMOND[test12345]) 

## integer(0) 

library(stringr) 
for (i in 1:length(test12345)) { 
  e <- 1:length(HMMER_split[[i]]) 
  d <- 1:length(eCAMI_split[[i]]) 
  d1 <- ifelse(length(which(HMMER_split[[i]][e] == eCAMI_split[[i]][d[1]])) 
> 0, 1, 0) 
  d2 <- ifelse(length(which(HMMER_split[[i]][e] == eCAMI_split[[i]][d[2]])) 
> 0, 1, 0) 
  d3 <- ifelse(length(which(HMMER_split[[i]][e] == eCAMI_split[[i]][d[3]])) 
> 0, 1, 0) 
  d4 <- ifelse(length(which(HMMER_split[[i]][e] == eCAMI_split[[i]][d[4]])) 
> 0, 1, 0) 
  d5 <- ifelse(length(which(HMMER_split[[i]][e] == eCAMI_split[[i]][d[5]])) 
> 0, 1, 0) 
   
  d_all <- c(d1,d2,d3,d4,d5) 
  d_all_2 <- which(d_all > 0, arr.ind = FALSE) 
  d_all_3 <- paste(HMMER_split[[i]][d_all_2], sep = ",") 
  d_all_4 <- str_c(d_all_3, collapse = "+") 
  dbCANresults$equalAtleast2[test12345[i]] <- d_all_4 
} 

A few cells did not have any values at all. These were checked up manually and fixed. 

which(dbCANresults$equalAtleast2 == "N") 

## integer(0) 

which(dbCANresults$equalAtleast2 == "") 

##  [1]   11  555  607  660  929 1244 1580 1870 2010 2036 2039 2212 2668 26
81 2711 
## [16] 2764 2792 2865 2898 2950 3265 3443 3554 3601 3782 3895 3915 

dbCANresults$equalAtleast2[102] <- "GH20" 
dbCANresults$equalAtleast2[329] <- "GH171" 
dbCANresults$equalAtleast2[719] <- "GH2" 
dbCANresults$equalAtleast2[1278] <- "GH2" 
dbCANresults$equalAtleast2[1455] <- "GH43" 
dbCANresults$equalAtleast2[1824] <- "GH30" 
dbCANresults$equalAtleast2[1825] <- "GH154" 
dbCANresults$equalAtleast2[1837] <- "GH2" 
dbCANresults$equalAtleast2[2036] <- "GH13" 
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dbCANresults$equalAtleast2[2972] <- "GH43" 
dbCANresults$equalAtleast2[3111] <- "GH78" 
dbCANresults$equalAtleast2[3128] <- "GH2" 

The rest of the blanks did not have any matches and was removed. 

slette <- which(dbCANresults$equalAtleast2 == "") 
library(stringr) 
library(dplyr) 
dbCANresults <- dbCANresults[-slette,] 
 
length(unique(dbCANresults$equalAtleast2)) 

## [1] 197 

Finished the table and checked the GHs present 

dbCANfinal_result <- dbCANresults[,-c(3:6)] 
write.csv2(dbCANfinal_result, file = "dbCANfinal_result.csv") 

dbCANfinal_result <- read.csv2(“dbCANfinal_result.csv”) 

Put all GH-annotations in the already filtered (by e-values) EggNOG-table, to have it all in 

one place. 

EggNOG_gene_taxonomy <- read.csv2("EggNOG_gene_taxonomy.csv")  

Made a new column in the table 

GH_nodes <- read_excel("GH_nodes.xlsx") 
            
EggNOG_gene_taxonomy$GH_dbCAN <- "NA" 

Put the GHs from dbCAN-table into eggNOG-table. 

           for (i in 1:nrow(EggNOG_gene_taxonomy)) { 
             eggnog_match <- which(EggNOG_gene_taxonomy$accn == GH_nodes$`G
ene ID`[i]) 
             GH_family_name <- GH_nodes$equalAtleast2.1[i] 
             EggNOG_gene_taxonomy$GH_dbCAN[eggnog_match] <- GH_family_name 
           } 

Made a separate table with only GHs that were filtered by e-values. 

library(stringr)            
alle_GH_genes <- which(str_detect(EggNOG_gene_taxonomy$Kolonne2, pattern = 
"GH")) 
kun_gh_gener <- EggNOG_gene_taxonomy[alle_GH_genes,] 
kun_gh_gener <- as.matrix(kun_gh_gener) 

write.csv2(kun_gh_gener, file = "GH_genes.csv") 

To load the file again: Kun_gh_gener <- read.csv2(“Alle_gh_gener_eggNO _cazy.csv”) 
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C7 – Statistical Analysis of Short-Chain Fatty Acids 

 

Correlation plot of SCFAs and 16S taxonomy 

In excel, a matrix was made with the relative values of the abundance (0-1) of bacterial 

taxonomies from the 16S data, and the relative values of short-chain fatty acid concentration 

presented in mmol/kg feces. 

library(readxl) 
My.data <- read_excel("Corrplot.xlsx") 

## New names: 
## * Other -> Other...33 
## * Other -> Other...37 

 

Creating a correlation matrix using spearman correlation, showing correlation between 

variables. 

My.corr.data <- cor(My.data, method = c("spearman")) 

 

Looking at significant p-values, which will be used to make the correlation plot. 

library(Hmisc) 

My.rcorr.data <- rcorr(as.matrix(My.data)) 
 
mydata.coeff <- My.rcorr.data$r 
mydata.p <- My.rcorr.data$P 
 
#signif.mydata <- p.adjust(mydata.p, method = "hochberg") 
#signif.mydata <- as.data.frame(signif.mydata) 

 

Visualizing the plot, with the p significance level 0.1. 

corrplot(My.corr.data, method = "circle", type = "lower", p.mat = mydata.p, 
sig.level = 0.1, insig = "blank", tl.col = "black") 
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Figure C7.1. Correlation plot between genus and SCFA concentration. P-value < 0.1 with spearman 

correlation. Red circles indicate negative correlation, blue circles indicate positive correlation. The darker the 

colour and the bigger the circle, the bigger correlation is there. The figure is made in R-studio in cooperation 

with Marianne Frøseth. 

Two additional correlation plots were made but investigating the groups separately (high in 

Bacteroides and high in Bifidobacterium). The same method as illustrated above was used, 

only with a p-value < 0.05. Still, no correlations between Bacteroides or Bifidobacterium and 

SCFAs appeared.  

 



 

 

  



 

 



 

 

 


