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Abstract 
Antimicrobial resistance (AMR) is a global health threat to humans and animals. It is of great 

importance to study and monitor the spread of AMR. This thesis intends to characterize the 

resistome in 35 canine fecal samples with bioinformatic tools using acquired shotgun 

metagenomic sequence data, and to compare the resistome results to those obtained using an 

extended multiplex qPCR method used in an earlier study. Fecal samples collected by dog 

owners for the HUNT-One Health project in addition to blank samples and mocks was 

analyzed. FastQC, MultiQC and Trim Galore were used for quality control and trimming of 

sequence data. AMRPlusPlus with MEGARes was used for AMR gene detection and 

resistome analysis. Only 8,2% of the AMR genes detected by qPCR were also detected in the 

metagenomic shotgun sequencing data. There were also AMR detections in the resistome that 

were not detected using qPCR as the corresponding detections accounted for 22,8% of the 

total detections made with the metagenomic shotgun sequencing data. Various factors such as 

extraction and detection method, sequencing depth, and different starting material could 

explain some discrepancy observed between the qPCR and resistome analysis. This master 

study does however tell a cautionary tale that resistome results vary depending on analysis 

method chosen, and that care should be taken when interpreting such results, especially if just 

one method is used. It would be valuable to have more starting material, increased sequence 

depth and use multiple resistome pipelines/databases in an effort to describe the “true” 

resistome better, as well as investigating taxonomic classification to study the bigger picture 

in the canine fecal microbiota.  
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1 Background 
1.1 Microbiota 
All individuals, both humans and animals, have a microbiota unlike anybody else which can 

be compared to a fingerprint in terms of uniqueness. The microbiota is the community of all 

microorganisms present in a certain environment. Bacteria, viruses, protozoa, and fungi are 

amongst the microorganisms that inhabit the gastrointestinal (GI) tract and collectively 

compose the gut microbiota. The composition of the microbiota plays a central role in 

functions related to metabolism, development of the immune system and to protect against 

pathogens (Rinninella et al., 2019). When the microbiota is in its healthy state, it is in a so-

called normbiosis. However, there can be deviations from normbiosis to dysbiosis, a state 

associated with several diseases including diabetes, asthma, and irritable bowel syndrome 

(Casen et al., 2015). A factor that can contribute to dysbiosis is the use of antibiotics  (Zhang 

& Chen, 2019).  

 

Studies shows that humans and dogs have similar microbiota (Deng & Swanson, 2015). The 

richness and abundance of species varies throughout the GI tract for both humans and dogs. 

However, the GI tract is shorter in dogs compared to in humans and it has been shown that 

fecal samples from dogs are reliable in terms of presenting the most relevant taxa. The 

bacterial phyla Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria and Actinobacteria 

accounts for the majority of the bacterial sequences that are identified in the GI tract in dogs 

(Pilla & Suchodolski, 2020). In the human gut microbiota the major bacterial phyla present 

are similar to the ones in dogs with the exception of Fusobacteria whereas Verrucomicrobia 

is the more common phyla in humans  (Zhang & Chen, 2019). 

 

1.2 One Health 
One Health is a concept used to describe the recognition that human, animal, and 

environmental health are interdependent, and that a holistic One Health approach involving 

various sectors is needed to improve and secure health for all. This involves sectors such as 

research, politics and legislation (World Health Organization, 2017). Amongst the major 

relevant areas for the One Health approach is the fight against AMR, securing food safety and 

controlling zoonoses. One Health is especially relevant in the work against AMR, as AMR 

bacteria knows no species nor geographical boundaries. The World Health Organization 
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(WHO) acknowledges that the One Health approach is necessary to combat public health 

threats (World Health Organization, 2017). When it comes to combatting antibiotic 

resistance, it is crucial to look at humans, animals, and the environment, as resistance bacteria 

can transmit between these various niches (Figure 1). 

 

Figure 1: One health: human, environment and animal health are dependent on each other. Created with BioRender.com 

 

1.2.1 Dogs 
 

Dogs are known to be man´s best friend, making it one of the animals that have the closest 

contact with humans. Dogs live under the same roof, eat some of the same food, and even 

sleep in the same beds as humans. In other words, humans and dogs live in the same 

environment and are exposed to many of the same microorganisms daily. Since bacteria can 

transfer between humans and animals there is reason to believe that dogs and humans share 

many of the same bacteria. This makes the dog an interesting surveillance animal in a One 

Health paradigm and could mirror the occurrence of AMR bacteria in humans (Thomson et 

al., 2022).  

 



 

3 
 

 

1.3 Antibiotics & antibiotic resistance  
Ever since Alexander Fleming discovered penicillin in 1928, antibiotics have saved countless 

lives. Since then, several different antibiotics have been discovered or synthesized. 

Antibiotics can kill or prevent growth of bacteria and are therefore used to treat human and 

animal infections. In many parts of the world, antibiotics is also used prophylactically, and as 

a growth promotor in animal husbandry (McEwen & Collignon, 2018).  

 

Antimicrobial resistant (AMR) bacteria are recognized as one of the major threats to global 

health, development, and food security (World Health Organization, 2021). Balaban et al. 

defined AMR the following way: “the ability of microorganisms to survive and grow in the 

presence of antimicrobials” (Balaban et al., 2019). Amongst numerous consequences is the 

fact that infections and diseases will be harder, or near impossible, and more expensive to 

treat (Bengtsson & Greko, 2014). In ultimate circumstances, simple infections can turn 

deadly.  

 

The main drivers of AMR includes the misuse and overuse of antibiotics (Aslam et al., 2018). 

Using antibiotics inappropriately, for instance administrating a too low dose, or prescribing a 

too-short treatment duration, can result in a sublethal concentration of the antibiotic in an 

infected tissue. This will provide the bacteria with time to adapt and select resistant sub-

clones, resulting in the emergence of AMR bacteria (Milken Institute School of Public 

Health, 2017). As a result, AMR against all existing antibiotics have been reported (Arukovic 

et al., 2019). There are numerous mechanisms that ensures AMR in bacteria, some of which 

arise from mutations in existing gene pools or those that are acquired through horizontal gene 

transfer (HGT).  

 

However, bacterial resistance towards antibiotics existed long before antibiotics were 

discovered and used by humans as a way to treat infectious diseases (Leisner et al., 2016). 

Certain bacteria have natural resistance, such as microorganisms that produce and excrete 

antibiotics as a defensive mechanism. (Perry et al., 2016). Pseudomonas aeruginosa is an 

example of a bacterium with several intrinsic resistance mechanisms conferring resistance to  

antibiotics such as macrolides and tetracyclines (Botelho et al., 2019). 
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A bacterium is categorized as multidrug resistant (MDR) if it is resistant to a minimum of 

three different types of antibiotic classes (Magiorakos et al., 2012). An example of a 

bacterium that can be MDR is the methicillin resistant Staphylococcus aureus (MRSA), a S. 

aureus that has acquired resistance towards all b-lactam antibiotics, which includes 

methicillins and penicillins (Shebl et al., 2020) (Lade & Kim, 2021).  

 

1.4 The Antibiotic Resistome  
The antibiotic resistome includes all genes that either directly or indirectly contribute towards 

AMR in an environment (Wright, 2010) (Crofts et al., 2017). There are various ways of 

defining the antibiotic resistome, depending on the nature of the research. In this thesis, the 

resistome is defined as the detected acquired resistance genes present in the canine gut 

microbiota obtained from fecal samples.  

 

Studies have shown that antibiotic presence in a microbial community causes a significant 

decrease in the richness, structural changes and a selective pressure on AMR genes (Zhao et 

al., 2019). Depending on the type of antibiotic spectrum, different bacteria present in the gut 

microbiota are affected. A study on antibiotic selection pressure determination with the use of 

ciprofloxacin (a fluoroquinolone antibiotic) over the span of six days was performed 

(Bortolaia et al., 2020). The study revealed a trend for positive selection in class D β-

lactamases, and a negative one in class A β -lactamases. After four weeks the AMR gene 

composition in the microbiota was closer to initial state however remained changed to some 

degree (Bortolaia et al., 2020). This shows that the antibiotic resistome is dynamic and 

dependent on factors such as antibiotic use.  

 

1.5 Antibiotic targets 
Antibiotics are either bactericidal or bacteriostatic depending on whether they kill the bacteria 

or slow down their growth. Bactericidal antibiotics, such as penicillins, kills the bacteria by 

for instance destroying the cell wall and bacteriostatic antibiotics stops the bacteria from 

multiplying by targeting different processes such as replication, metabolism, and protein 

production (Norwegian Medicines Agency, 2014). The bacterial ribosome is a common 

antibiotic target for many clinically relevant antibiotics, where the antibiotic inhibits the 

ribosome by binding to different sites (Polikanov et al., 2018). An example of this is the 

antibiotic class macrolides of which binds to the exit of the ribosome tunnel and thereby 
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inhibits protein synthesis (Nguyen et al., 2019). Another important antibiotic targets includes 

the cell wall synthesis. b-lactam antibiotics primarily target penicillin-binding proteins 

(PBPs) to prevent the final step of cell wall synthesis in bacteria (Lade & Kim, 2021).  

 

Different antibiotics target different spectra of bacteria. Some antibiotics act narrowly, 

whereas others act broadly: the narrow-spectrum antibiotics only target specific bacterial 

species or genera, while broad-spectrum antibiotics work on several genera or all. Using 

narrow-spectrum antibiotics are preferred, as it will only affect the bacteria presumed to 

cause the disease. This will limit the antibiotic exposure to other bacterial species dwelling 

within the same individual, thereby also limiting the development of AMR. Correct diagnosis 

and confirmation of causative agents or knowledge-based antimicrobial treatment guidance 

are of paramount importance. However, when a diagnosis is uncertain and condition critical, 

the broad-spectrum antibiotics are useful (Melander et al., 2018). 

 

1.6 Antibiotic use in dogs and their owners 
Several studies have been conducted to compare the use of antibiotics in humans in different 

countries. The use of antibiotics in humans in Norway is considerably lower compared to 

most other countries. A study conducted on paediatric antibiotic use in Norway, Hungary and 

Portugal revealed that the use of narrow spectrum antibiotics is more common in Norway. 

Tetracyclines were more frequently prescribed in Norway whereas newer and broad-spectrum 

antibiotics were commonly prescribed in Hungary and Portugal (Benko et al., 2019). As of 

2020, the most prescribed class of antibiotics in Norway to humans was penicillins 

(NORM/NORM-VET). 

 

In Norway, the development of antibiotic resistance is monitored in humans and animals, by 

the Norwegian Surveillance of Resistance in Microbes (NORM/NORM-VET), as an action 

plan against antibiotic resistance (The Norwegian Vetarinary Institute, 2020). The NORM-

VET report from 2020 states that the total amount of antibiotics sold to dogs (and cats) has 

decreased in the recent years and that the most sold antibiotic for dogs is the penicillin  

amoxicillin in a combination with clavulanic acid (NORM/NORM-VET, 2021). Amoxicillin 

is a broad-spectrum aminopenicillin and belong to the b-lactams class (European Medicines 

Agency, 2019). The b -lactamases act in such a way that it binds to the cell wall synthesis 

enzymes. These enzymes are also called penicillin-binding protein, and by binding to these 
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proteins, the cell wall is weakened and further preventing cell growth and promoting cell 

death (Krause et al., 2016). When it comes to the use of antibiotics in veterinary medicine, 

the European Medicines Agency has certain guidelines which categorizes antibiotics in a 

scale from A to D (A: Avoid, B: Restrict, C: Caution and D: Prudence), where category D is 

the first line treatment. The amoxicillin-clavulanate combination is categorized as «C» 

(European Medicines Agency, 2019).  

 

1.7 Resistance mechanisms 
There are numerous ways a bacteria can protect itself and resist antibiotics. However, all 

these different ways can be divided into three general resistance mechanisms. The first 

mechanism is pumping of antibiotics out of the cell (efflux). Secondly, the bacteria can 

prevent interaction between the target and the drug. Finally, the bacteria can modify or 

destroy the antibiotic compound (Wright, 2005). In this section some of the most common 

resistance mechanisms are introduced. 

 

Active efflux 

Efflux pumps are used by bacteria to actively export/pump unwanted substances out from the 

cells and thereby control their internal environment. Amongst the substrates that can be 

exported out of the cells are antimicrobial agents. The specificity of the efflux pumps can 

vary from being active for just a single substrate or to several types of antibiotics. Hence, the 

efflux pump can work as a MDR mechanism (Piddock, 2006). Efflux pumps are used by 

bacteria such as Streptococcus pneumoniae and P. aeruginosa to resist many classes of 

antibiotics such as macrolides and tetracyclines (Sikri et al., 2018). All bacteria encode for 

efflux pumps, regardless of antibiotic resistance. This suggests that the efflux pumps evolved 

for other reasons than just combatting antibiotics (Cox & Wright, 2013).   

 

Modification of antibiotic targets 

Secondly, a common resistance mechanism is the modification the antibiotic target. 

Antibiotic target site resistance is often caused by mutations in a gene located on the 

chromosome as well as selection for these mutations in the presence of the antibiotic. 

Quinolone resistance (in for example S. pneumoniae ) frequently occurs as a result of 

alteration of the antibiotic target enzymes (Jacoby, 2005). In addition, this resistance can be 

acquired by HGT from other bacteria of which acquire this mutation. The result of this 
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resistance mechanism is that the antibiotic binds less effective or not at all to the target and 

thereby the bacteria survives (Lambert, 2005).  

 

Enzymatic modification or degradation of antibiotic 

Another common resistance mechanism amongst bacteria is that they can induce alteration or 

even degradation of the antibiotic molecule. The alteration or degradation of the microbial 

leads to a reduction or elimination of the antimicrobial activity (Harbottle et al., 2006). An 

example is the modification or cleaving of the β -lactam ring of penicillins executed by the β-

lactamases leading to antibiotic inactivation (Wright, 2005).   

 

Changing the permeability of the cell membrane  

A final common resistance mechanism is modification of permeability of the cell membrane 

and with this restricting the antimicrobial agents from reaching the target sites. The 

cytoplasmic membrane works as a barrier and separator between the external and internal 

environment in bacteria. Decreasing the permeability of the cell membrane leads to a 

decreased fluidity, which has negative impacts on the membrane proteins when it comes to 

activity and structural factors. Therefore, certain bacteria have created a permeability barrier 

on the outside of the membrane. This permeability barrier is a resistance mechanism as it 

prevents the antimicrobial substances to getting to the target sites (Cox & Wright, 2013).  

 

1.8 Ways bacteria acquire antibiotic resistance 

1.8.1 Mutations 

The National Human Genome Institute defines a mutation as the following: “A mutation is a 

change in the DNA sequence of an organism (National Human Genome Institute, 2022b). 

Mutations cause changes in the genotype which can lead to changes in phenotype such as the 

acquisition of antibiotic resistance. Two major types of mutations include base substitution/ 

point mutations and frame shift mutations (insertion/deletion). A single nucleotide 

polymorphism is a mutation where there is one nucleotide difference between two strands 

from the same region of DNA in two different individuals.  
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Mutations has been one of the main drivers of evolution (Arenas et al., 2018). Mutations as 

an evolutionary force has been crucial to create genetic variation, ensuring not only survival 

of the fittest clone, but ultimately creation of novel species. It is only natural that mutations 

can be a result of bacterial adaption to antibiotics by creating AMR clones.  

 

Mutations that contribute towards AMR usually occurs in genes which encode for antibiotic 

targets, transporters, or regulators. An example of a mutation that can happen is in the MDR 

gene MarA, in which mutations can contribute to a higher expression of efflux pump genes 

(Barbosa & Levy, 2000). However, even though the mutation conveys resistance does not 

make it a resistance gene. This is because the gene was already present in the bacteria with 

the function that it had before the mutation. Although mutations have contributed to the 

phenotype AMR, the gene with the mutation should not be classified as an AMR gene. This 

could lead to inaccurate conclusions when it for instance comes to metagenomic assessments 

based on sequence (Martinez, 2014).  Therefore, as well as for the simplicity of this thesis, 

only the acquired AMR genes that have been horizontally transferred will be of interest. 

 

1.8.2 Horizontal gene transfer  

Bacteria have several natural mechanisms to transfer, exchange and take up genetic material. 

The occurrence of HGT can be traced back to the origin of bacteria and has since then 

allowed bacteria to evolve, adapt and survive in different environments (Villa et al., 2019). 

HGT includes the three mechanisms transformation, transduction and conjugation (McInnes 

et al., 2020) (Burmeister, 2015) and the mechanisms are demonstrated in Figure 2. As HGT 

has been crucial for the evolution of the bacteria that has survived until this day, it also causes 

threats. Bacteria can share and acquire AMR genes through HGT, and they can take up 

genetic material either from other bacteria or from the environment. If the genetic material 

taken up by the bacteria contains AMR genes, the bacteria has acquired antibiotic resistance 

genes and can either evolve with these or lose them. Bacteria might acquire multiple 

resistance genes through HGT. The AMR genes are not necessarily expressed though they are 

acquired.  
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Figure 2: The 3 types of horizontal gene transfer (HGT): Transformation, Transduction and Conjugation. Transformation is 

the process of which a bacterium takes up genes from the environment. Transduction is when bacteriophages are used to 

move genes from one bacterium to another. Conjugation is when there is a direct gene transfer between the bacteria 

(Burmeister, 2015). Created with BioRender.com. 

 

1.9 Detection of AMR  
There are multiple methods for detection of AMR and these can be separated into phenotypic 

and genotypic methods. Phenotypic methods include the gold standard antimicrobial 

susceptibility tests (ASTs) and genotypic methods here are molecular tools for AMR 

detection. 

 

1.9.1 Gold standard antimicrobial susceptibility tests  

ASTs are different methods that can be performed to investigate what specific antibiotic a 

bacterium is phenotypically susceptible to and thereby evaluate the antibiotic resistance. 

These tests are for instance used in surveillance and in clinical laboratories to ensure an 

effective treatment for patients by detecting possible presence of resistance prior to the 

treatment. All tests provide qualitative results, and some also provide qualitative results such 

as minimum inhibitory concentration (MIC) or epidemiological cut-off value (ECOFF) 

(surveillance of animals or environment). Amongst the most frequently used ASTs are disk 

diffusion and agar/broth dilution (Mercer et al., 2020). Common for the different ASTs is that 

they in general provide an accurate detection of resistance for isolates. However, as the 

antibiotic resistance is increasing in occurrence, it is crucial to pay close attention to the 

selection of test methods to ensure a still correct AMR detection (Balouiri et al., 2016; 

Jorgensen & Ferraro, 2009).  

 

1.9.2 Molecular tools for AMR detection  

In this section a brief explanation of some relevant molecular tools for AMR gene detection; 

PCR and the sequenced based methods Sanger and next-generation sequencing (NGS). 
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1.9.2.1 PCR based AMR gene detection 

PCR is a frequently used method for detection of AMR genes due to its high sensitivity and 

specificity (Aarts et al., 2001). The method is based on using polymerase enzymes to copy 

specific regions of AMR genes via repeating temperature cycles (denaturation, annealing and 

elongation) to make an exponentially increasing number of copies of the targeted DNA, 

which are thereafter detected using fluorometric methods or separation and staining of the 

amplified bands on a gel, or other downstream analyses.  

 

Multiplex PCRs can detect multiple AMR genes simultaneously in a single assay. Studies 

show that multiplex PCR can be an accurate approach for simultaneous detection of different 

AMR genes, making it an optional tool for important matters such as identification and 

surveillance of antibiotic resistance genes (Strommenger et al., 2003). 

 

1.9.2.2 Sanger sequencing 

The human genome sequencing race ended in 2003 when the first ever human genome was 

completely sequenced. During the Human Genome Project, Sanger sequencing was used and 

the cost of a single sequenced human genome in 2001 was around 100 million dollars 

(National Human Genome Institute, 2021). Sanger sequencing is based on DNA polymerase 

adding fluorescent nucleotides on to a DNA template stands, which grows by one nucleotide 

at the time. The identification of the nucleotide happens with the use of fluorescence tags on 

the nucleotides. Sanger sequencing obtains high quality results for relatively long stretches of 

reads (up to 900bp) (Illumina, 2022), but it is challenging to have multiple targets and can be 

laborious.  

 

1.9.2.3 Next generation sequencing 

Nowadays, more efficient, and cheaper sequencing methods allowing larger genomic 

templates such as whole genomes and metagenomes to be generated/characterized/sequenced. 

The collective of these new sequencing technologies is referred to as NGS. 

 

While it earlier took a decade to sequence the human genome using Sanger sequencing, NGS 

has shorten this time down to a day. Along with the turnaround time, the sequencing cost 

dropped to below ~1500$ in 2015 (National Human Genome Institute, 2021). NGS 

technologies are distinguished from Sanger sequencing as instead of sequencing one 



 

11 
 

fragment at a time, multiple DNA fragments are sequenced in parallel (Illumina, 2022). There 

are multiple technologies that are a part of the NGS technologies, which take into use 

different platforms (Hu et al., 2021).  

 

1.9.2.3.1 Short read sequencing technologies 

Short read sequencing technologies have in common that millions of shorter reads (smaller 

DNA fragments of varying lengths) are sequenced in parallel. These technologies allow for 

multiple individual targets to be sequenced in parallel which require less time, are less 

expensive, require less space (microchip) and each read is generally shorter than the typical 

read length from  Sanger sequencing. (Behjati & Tarpey, 2013). A frequently used NGS 

technology platform is Illumina, which is based on sequencing by synthesis (SBS) 

technology. The SBS method has four major steps, which are sample preparation, cluster 

generation, sequencing and data analysis (Illumina, 2017). 

 

Sequencing by synthesis 

The DNA is sequenced while attached to a flow cell, a unit that physically is placed within 

the sequencer. Flow cells consist of channel lanes embedded on a glass slide. The coat is 

made up of two different oligonucleotides, namely short synthetic ssDNA and ssRNA. The 

DNA subjected to sequencing is randomly fragmented and adapters are ligated to both the 

3`end and 5`end. With the help of the adapters and the ssDNA fragments on the lanes, the 

fragmented template DNA is bound to the flow cell. Bridge amplification occurs as 

nucleotides and enzymes are added and the ssDNA becomes dsDNA on the surface of the 

flow cell. Denaturation occurs, leaving ssDNA templates attached to the flow cell followed 

by complete amplification where millions of dsDNA clusters are made. The clusters are 

generated in the flow cell channels. Sequencing occurs in multiple cycles to determine every 

base in the fragment, one by one. Each base is determined by adding labeled reversible 

terminators, DNA polymerase and primers. By then using laser excitation, fluorescence is 

emitted from each cluster, and this is captured making it possible to determine the base. Steps 

after sequencing includes alignment and data analysis (Illumina, 2010). The NovaSeq 6000 is 

amongst the newer models and reduces time and data processing steps by utilizing a two 

channel SBS technology (Hu et al., 2021).  
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1.9.2.3.2 Long read sequencing technologies 

Long read sequencing allow longer fragments to be sequenced, which is an advantage when it 

for instance comes to sequencing genomes with highly repetitive regions. Long read 

sequencing has significant potential to improve several aspects of the sequencing performed. 

Amongst important aspects that distinguishes this technology from other technologies is the 

ability to sequence considerably longer molecules, potentially up to millions of bp’s long 

(Nanopore). Examples of long read sequencing technology platforms are Oxford Nanopore 

Technologies sequencing platform (Oxford Nanopore Technologies, 2022) and PacBio Single 

Molecule Real Time sequencing (PACBIO, 2022).   

 

1.9.2.1 Sequencing of isolates and metagenomics 

Sequencing all the genomic content of a bacterial isolate can provide valuable information on 

potential phenotype of the isolate and its heritage. However, a severe limitation is the fact 

that the bacteria must be cultivatable to acquire an isolate for sequencing. Metagenomics is 

the study of genomic material from multiple organisms at the same time (National Human 

Genome Institute, 2022a). The study of metagenomics can provide taxonomic and functional, 

microbial and eucaryotic composition of a matrix. The technique is culture independent, as 

the whole collection of DNA can be extracted directly from the studied matrix. This makes 

metagenomics a suitable option when it comes to studying and characterizing the collection 

of AMR genes in a matrix, the so-called resistome, in complex bacterial communities such as 

in fecal samples. A typical metagenomic shotgun sequencing workflow is demonstrated in 

Figure 3. 

 

 

Figure 3: Metagenomic shotgun sequencing workflow. Created with BioRender.com 

Several techniques are available for defining the metagenome. Shotgun sequencing is a 

technique that is used by Illumina and normally 150-300bp can be sequenced on this 

platform. The DNA is randomly fragmented into smaller pieces and thereby sequenced 

individually. This is done for both metagenomes and isolate sequencing. For the former, 
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microbes can be assembled back to the original genome generating metagenomic assembled 

genomes (MAGs) or by advanced algorithms based on overlap or k-mer based de bruijn 

graphs (National Human Genome Institute, 2022c).  

 

The field of metagenomics has recently been revolutionized. This is primarily due to 

improvements regarding sequencing technologies and the field of bioinformatics. It is of 

great importance to choose both databases and pipelines that are suitable for the study. 

Available curated AMR gene databases includes MEGARes (Doster et al., 2019), 

Comprehensive Antibiotic Resistance Database (CARD) (Alcock et al., 2020) and ResFinder 

(Bortolaia et al., 2020), among others. Tools for resistome analysis includes AMRPlusPlus 

(Doster et al., 2019), Resistance Gene Identifier (RGI) (Alcock et al., 2020) and GROOT 

(Rowe & Winn, 2018).  

 

1.10 HUNT and HUNT – One Health 
HUNT stands for the Health Examination in Trøndelag, Norway, and is the longest and 

largest health cohort survey, including more than 240 000 participants since the project 

started in 1984. HUNT is Norway´s greatest collection of various health data and biological 

material from one single population. The project HUNT4 is the most recent survey and was 

completed in 2019 (Norwegian Veterinary Institute, 2021).  

 

HUNT- One Health is a project inspired by HUNT4. The project is a collaboration between 

the Norwegian Veterinary Institute, the Norwegian University of Life Sciences and the 

Norwegian University of Science and Technology. The main goal is to facilitate research 

investigating the relationship between human and animal health and how these impact each 

other. The project has a collection of animals feces from dog, swine, cow, pig and sheep with 

corresponding metadata collected between 2017 and 2019 by owners participating in 

HUNT4. The fecal material has been subjected to DNA extraction and shotgun metagenomic 

sequencing. In total, sequence data from approximately 3000 animal fecal samples are 

currently available to the research community (Norwegian University of Life Sciences, 

2021). The metadata available is especially rich for the dogs, where information on health 

status, diet, use, medicine-use, and surroundings is collected. 
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1.11 Purpose of study 
To prevent spread and development of AMR, efficient and correct surveillance is of 

paramount importance. When new methodology rise, such as metagenomics, comparisons of 

performances are needed. Therefore, this thesis aims to test the hypothesis of agreement in 

resistomes in canine fecal samples determined by two methods; a multiplex qPCR and 

metagenomic shotgun sequencing. To test this hypothesis, the resistome of 35 canine fecal 

samples were characterized using bioinformatic tools on metagenomic datasets acquired from 

HUNT One Health. The findings were compared to the multiplex qPCR results, obtained by 

Røken and colleges (Røken et al., 2022), in terms of presence and absence of 34 different 

AMR genes.  

 

Objectives: 

• Characterize the resistome in the feces of 35 dogs using shotgun metagenomic 

datasets and bioinformatic tools 

• Compare the resistome achieved by analysis of shotgun metagenomic datasets with 

those of an extended multiplex qPCR for the same 35 canine fecal samples. 
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2 Materials & Methods 
The sequence data used in this thesis was obtained after sampling, extraction and sequencing 

had been performed. For the readers information, these steps are briefly explained in the 

material section. In addition, a short description on how the qPCR presence/absence data was 

obtained is provided in the material section as this data is unpublished. Both methods are 

based on the same 35 canine fecal samples and sampling methods, but the sample preparation 

and extraction differed. The bioinformatic steps performed as a part of this thesis are 

provided in the method section. The overall workflow of the project from sampling to 

bioinformatic analysis is shown in Figure 4. 

 

 

Figure 4: Workflow of the project from collecting dog fecal samples to resistome analysis. Created with BioRender.com 

 

2.1 Materials  

2.1.1 Sampling, sample selection and the multiplex qPCR results 

The fecal samples were collected through the HUNT One Health study. In short, owners in 

Nord-Trøndelag collected fecal samples from dogs on dry fecal cards, totalling a collection of 

1800 samples. Fecal material dried for at least 2 hours on the paper before being shipped to 

the lab, where they were stored at -20°C. In a separate work performed by Mari Røken and 

colleagues, the presence of 34 AMR genes in 35 of these fecal samples was tested by a 

multiplex qPCR method (Røken et al., 2022). In her study, the fecal samples selected were 

chosen based on the following; only family dogs of good or very good health at the time the 

sampling was included, and no dogs received antibiotics at the time of sampling.  

 

Data on the presence of AMR genes as generated by the multiplex qPCR in these 35 samples 

were kindly provided to us by Mari Røken. In short, the qPCR results were generated after 

bead-beating of the samples followed by DNA extraction using QIAamp PowerFecal Pro 

DNA kit (Qiagen, GmbH, Hilden, Germany) and a high-throughput qPCR (Røken et al., 

2022) performed at NIBIO Svanhovd, Finnmark, Norway. Because of a low sample volume, 

34 AMR genes were pre-amplified from the samples using PCR with a primer pool of 
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forward and reverse primers prior to the use of a qPCR-chip containing 46 assays. In addition 

to the 35 fecal samples, positive and negative control samples were included in the qPCR 

analysis. Here the relevant results from Røkens unpublished work (Røken et al., 2022) was 

extracted and compared to those acquired through a metagenomic approach. 

 

2.1.2 Sequence data 

2.1.2.1 Fecal samples 

DNA extraction 

Extraction of DNA from fecal material streaked on dry paper was conducted in the HUNT 

One Health project, with the aim of performing shot-gun sequencing. For the readers 

understanding, the method is briefly described here: Four circles of 8mm in diameter of each 

fecal card was first homogenized on the FastPrep-24™ Classic instrument, before being 

subjected a lysis step by proteinase K. Thereafter, inhibitors were removed and gDNA 

purified using the high-throughput automated QIAsymphony instrument with the QIAamp 

PowerFecal Pro kit. Every batch of samples were followed by extraction of blanks (paper 

cards only) and mock communities (cards and ZymoBIOMICSTM Microbial Community 

Standard II with log distribution, Zymobiomics, USA).  

 

Library preparation, WGS shotgun sequencing and preparing the reads 

Sequencing of the gDNA from the fecal material was conducted in the HUNT One Health 

project. For the readers understanding, the method is briefly described here: Both the library 

preparation and sequencing was performed by BGI Tech Solutions (Hong Kong, China). 

Libraries were prepared using the ThruPLEX® DNA-seq by Takara. Libraries were 

thereafter sequenced on the Illumina NovaSeq 6000 using the 150 bp paired end (PE) 

sequencing strategy. A minimum of 5GB data per sample, with targeted 20M PE reads per 

sample, was delivered by BGI. BGI processed the raw data by removing adapters, low quality 

reads and contamination and the criteria for removal are provided in Table 1. Reads that did 

not fulfill the criteria was not a part of the dataset used in this thesis. 
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Table 1: The criteria set by BGI to remove reads in terms of adapter sequence, quality score and N bases. 

Reason for removal Threshold 

Adapter sequence Above 25% 

Quality score below 20 Above 50% 

N bases Above 3% 

 

2.1.2.2 Mock and blank samples 

Microbial community samples (ZymoBIOMICSTM Microbial Community Standard II with 

log distribution, Zymobiomics, USA) mixed with clean fecal cards were subjected to DNA 

extraction, library preparation and Illumina sequencing in each batch of fecal samples. The 

mock samples contained Listeria monocytogenes, Pseudomonas aeruginosa, Bacillus subtilis, 

Saccharomyces cerevisiae, Escherichia coli, Salmonella enterica, Lactobacillus fermentum, 

Enterococcus faecalis, Cryptococcus neoformans and Staphylococcus aureus (ZYMO 

RESEARCH). Clean paper cards (4*8mm in diameter punches) served as the blank control. 

Blank samples were included in each batch of DNA extraction through to sequencing. Both 

blank samples and mocks were included in library preparation, sequencing and the 

downstreams analysis.  

 

In this thesis, 30 blank samples and 31 mock samples were included. The reason behind the 

high number of blanks was that the fecal samples were allocated on multiple trays and blanks 

were needed from all trays to identify potential contamination. Since there is no taxonomic 

classification included in this thesis, the mock positive control samples mainly provide 

discussion material on the method. 

 

2.2 Methods 
The workflow of the bioinformatic tools that were used in this master project is presented in 

Figure 5. Quality control and trimming was performed before resistome analysis. The 

resistome analysis in this thesis refers to the resistome defined by the metagenomic shotgun 

sequence data. Visualization of AMR data from metagenomic sequencing was performed in 

ResistoXplorer version 2021.11.04  (Dhariwal et al., 2021) and R-studio version 2022.02.1 

(R version 4.1.3). The resistome analysis was compared to qPCR in terms of absence and 

presence of 34 specific AMR genes. The resistome analysis was performed on AMR gene 

level and are visualized in terms of AMR gene or AMR class. All computations were 
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performed on SAGA, provided by UNINETT Sigma2 (the National Infrastructure for High 

Performance Computing and Data Storage in Norway).  

 

 

Figure 5: Pipeline depicting the steps of quality control of the Illumina reads data. The green boxes are the steps of quality 
control and preprocessing of data, the blue box represents the resistome analysis and the grey boxes are the data processing 
and statistics steps performed with ResistoXplorer or R. Created with BioRender.com. 

 

2.2.1 Quality control  

FastQC version 0.11.9 (https://github.com/s-andrews/FastQC), MultiQC version 1.9  (Ewels 

et al., 2016) and Trim Galore version 0.6.4 (https://github.com/FelixKrueger/TrimGalore),  

were used for quality control and trimming. FastQC and MultiQC were used to present the 

quality of the sequence data from BGI before and after trimming with Trim Galore.  

 

Quality control with FastQC and MultiQC 

FastQC and MultiQC were used to control the quality of high throughput sequence data. 

FastQC detects adapters and primers in addition to flagging low quality sequences, duplicates 

etc. FastQC takes SAM, BAM or fastq files as input, and produce html reports that includes 

basic read statistics, “per base sequence quality”, “per sequence quality scores” etc.. This 

gives the user an overview of different modules. The software also assigns a flag to the 
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different modules in the form of a “pass”, “fail” or “warning”. These modules and flags give 

an insight to potential obstacles and areas that might be problematic at an early stage. 

MultiQC is a tool written in Python, which generates one single report summarizing all the 

FastQC data, giving a nice overview of the sequence statistics and quality in the dataset.   

 

In total, 96 datasets consisting of forward and reverse fastq files from the HUNT One Health 

project were received. These were generated from 35 canine fecal samples, 31 mock samples 

and 30 blank samples. FastQC was run on all 192 of the raw compressed fastq files and the 

script is found in Appendix 1. FastQC gave an output of one html and one zip file per input 

file. The zip files from the raw data were further used as input in MultiQC and the script can 

be found in Appendix 3. The MultiQC software was provided with the path to the folder, and 

it automatically chose the information that it recognized. The output of MultiQC was one 

html file, which was a summary of all the FastQC html files and a folder containing plots and 

text files. These steps were repeated for the trimmed data as FastQC was also run on the 

trimmed reads to confirm adapter removal after trimming. This script can be found in 

Appendix 2. The MultiQC script on trimmed reads is provided in Appendix 4. Bad quality 

reads were removed from all samples on basis of criteria in Table 1 by the provider, BGI. 

Based on this, no data was excluded due to low quality. The range number of reads per 

sample as well as average number of reads in the different sample types are presented in 

Table 2. 

 

Trimming with Trim Galore 

Whereas FastQC and MultiQC gave an overview of multiple quality measures, Trim Galore 

is a preprocessing tool based on FastQC. Trim Galore cuts technical and poor-quality 

sequences. Technical sequences such as adapters and bad quality sequences are removed 

(Bolger et al., 2014).  

 

Here, Trim Galore was used for adapter removal trimming of all 96 raw datasets of fecal, 

mock, and blank samples. The settings used were default. The input files were compressed 

fastq files and the output was one text file and one fastq file for each input file. The text file 

included a summary of parameters, information about the trimming The output fastq files 

were further used in the downstream resistome analysis. The Trim Galore script can be found 

in Appendix 5. 
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2.2.2 Resistome analysis with AMRPlusPlus 

The pipeline AMRPlusPlus version 2.0 with the MEGARes database version 2.0 (Doster et 

al., 2019) was used to analyze for the presence of AMR genes in the acquired datasets. The 

inputs in AMRPlusPlus were the MEGARes database (fasta file), and the forward and reverse 

trimmed reads (fastq format). The pipeline is put together by several software and the ones 

utilized in this thesis are Burrows-Wheeler Aligner (BWA), ResistomeAnalyzer and 

RarefactionAnalyzer (Microbial Ecology Group, 2019). The Nextflow version 20.07.1 (Di 

Tommaso et al., 2017) script is to be found in Appendix 6. The softwares used are briefly 

explained below.  

 

BWA (Burrows-Wheeler Aligner) 

BWA is an alignment tool and is used to align the reads to the MEGARes database (Li & 

Durbin, 2010) in the AMRPlusPlus pipeline. The output from this process is a SAM file. 

 

ResistomeAnalyzer 

ResistomeAnalyzer takes a SAM file as input along with a reference database in fasta format 

(MEGARes) and an annotation database in CSV format (included in the program). All 

parameters were set to default. All alignments of the target genes from the SAM formatted 

alignment file were counted. The output of this program was four text files in TSV format. 

These four files all represented a different level: class, mechanism, gene and group. The TSV 

file on gene level was the one used for the resistome analysis in this thesis. The gene level 

file had four columns containing information on the sample that was analyzed, the level of 

identification, the number of reads aligned to the targeted level, and gene fraction 

(nucleotides in reference fasta file aligned to by a minimum of one sequence read).   

 

RarefactionAnalyzer 

The RarefactionAnalyzer is a tool performing rarefaction analysis by counting the number of 

new AMR hits as a function of reads. This is useful to ascertain whether the sequencing depth 

was adequate for detection of AMR genes. The inputs in this tool were the same as for 

ResistomeAnalyzer, which included an alignment file (SAM), a reference database (FASTA), 

and an annotation database (CSV). The outputs of the program were four text files (TSV) 

with two columns providing information on proportion of reads sampled and the number of 

unique genes detected. The rarefaction data was obtained from this part of the AMRPlusPlus 

pipeline and was exported to R- studio for visualization at gene level. 
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2.2.3 Sorting of data in R-studio 

The AMR resistome data obtained from AMRPlusPlus was a matrix with data that needed to 

be sorted for further use to fit the format of ResistoXplorer and to simplify the visualizations. 

The MEGARes database gave several hits for the same AMR gene in different bacterial 

species, as seen for the tetM gene; MEGARes provided altogether 10 different hits for tetM, 

where both the sequence and length differed between the AMR gene in different bacterial 

species. The tetM with genebank ID X92947 is from Enterococcus faecalis while tetM with 

genebank ID FR671418 is S. pneumoniae. In this thesis the taxonomic composition of the 

ARGs is not of importance because the interest lays in studying the presence of the AMR 

genes regardless of origin bacteria. Therefore, different tetM hits were merged and the same 

is true for all other AMR genes referring to the same gene. An overview of the total amount 

of unique AMR genes for each sample group is provided in Table 3.  

 

2.2.4 ResistoXplorer 

ResistoXplorer (Dhariwal et al., 2021) was used to visualize the resistome from data obtained 

from AMRPlusPlus in terms of alpha diversity, PCA, and relative and actual abundance. The 

settings used were default which included normalization using total sum scaling (TSS). TSS 

means that every AMR gene count was divided with the total number of counts for that 

specific AMR gene. ResistoXplorer did not account for the total number of reads as only the 

number of hits were imported. Other settings included a low count filter where the default 

was set to 2 reads. The low count filter was chosen as features with low abundance and 

prevalence are difficult to distinguish from errors in the sequencing or contaminations. The 

filtered data was used in visualization of PCA and relative/actual abundance (not for alpha 

diversity). Figures obtained from ResistoXplorer are Figure 8, Figure 9, Figure 10, and 

Figure 11. 

 

PCA was performed to reduce the dimensions of the data to show the variety between the 

samples in two dimensions. The samples are clustered based on similarity and the 

dimensionality is reduced using permutational MANOVA. Alpha diversity can the richness 

and/or evenness of the AMR genes within a matrix and can be calculated in several ways 

(Willis, 2019). The richness indicates the amount of unique AMR genes present in the sample 

and the evenness accounts the abundance of the AMR genes. Here, the alpha diversity 
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analysis was conducted based on normalized counts of AMR genes as produced by TSS using 

the t-test/ANNOVA. The alpha diversity was calculated using three different methods: 

Shannon, Chao1 and Pielou`s evenness (Jost, 2007). 

 

2.2.5 R-studio 

All visualizations performed in R-studio was on a gene level. R-Studio was used to visualize 

rarefaction and resistome data from AMRPlusPlus in terms of rarefaction, beta diversity, and 

presence/absence. A rarefaction diagram was created based on the data obtained from the 

RarefactionAnalyzer part of the AMRPlusPlus pipeline on gene level. The comparison of 

qPCR and metagenomic shotgun sequencing was done by looking at absence and presence of 

all 35 AMR genes tested for in the qPCR assay. The two samples that were outliers were 

removed from the qPCR results so a fair comparison could be made as these samples were 

not sequenced well enough (0M and 0,4M reads, median ≈ 28M reads). AMR genes absent in 

all samples were removed from the visualization. The criteria for the presence of an AMR 

gene for the resistome data was set to be a minimum of 10 reads. The reason for this was to 

remove AMR with low abundance as this could be from for instance contaminations. Beta 

diversity was calculated using the Jaccard distance. This distance was based on 

presence/absence data in terms of zeros and ones. The distance was calculated in R and the 

script is in Appendix 7. 
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3 Results 
The result section includes results on quality, resistome analysis and method comparison 

between qPCR and metagenomic shotgun sequencing. All analyses were performed on gene 

level and the visualization in R and ResistoXplorer is based on gene level data. 

 

3.1 Quality  
A summary of factors including quality, adapter content, and number of sequences was 

provided by FastQC and MultiQC. The reads were established to be of overall good quality 

both before and after trimming (phred score above 28), and the adapter content was removed 

from the sequences with Trim Galore. This resulted in an adapter content of less than 0,1%.  

 

3.2 Sequencing depth 
In this thesis, the sequencing depth refers to the number of reads per sample. There were 

variations in the sequencing depth across the different sample types as well as within the 

same sample groups. Figure 6 presents an overview of all samples in terms of number of 

sequences (M) and AMR gene hits per M sequences. The color of the points represents the 

sample type where blank samples are red, fecal samples are green and mock samples are 

blue.  

 

From Figure 6 one can see that the blank samples generally had a lower sequencing depths 

and fewer AMR gene hits per M sequences compared to the two other groups. Most of the 

fecal and mock samples contained similar number of reads. However, the number of AMR 

gene hits per M sequences separated the two clusters as the mock had higher abundances of 

AMR genes. 
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Figure 6: The amount of hits per million sequences vs amounts of sequences in millions. The x-axis provides the number of 
sequences (M) and the y-axis is the number of AMR gene hits per M sequences. 

 

Amongst the fecal samples, two outliers were identified and excluded from further analysis 

due to low sequencing depth. The cutoff read depth was determined to be 17.2M reads 

(Figure 7). The outliers removed had 0.0M and 0.4M sequences per sample and got 0 and 189 

hits respectively. After removing outliers, 33 fecal were further used in resistome analysis 

and method comparison. The sequencing depth (M) of the fecal samples are presented in the 

boxplot in Figure 7. The arrows show the two outliers. 
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Figure 7: Boxplot of sequencing depth from the fecal samples. Based on too low sequencing depth, two outliers were 
removed and excluded from further analysis. 

 
The range and average number of reads and AMR gene read hits for all sample types are 

presented in Table 2, and Table 3 shows the number of samples with AMR gene hits and the 

number of unique genes in the present altogether in one sample type. The 33 fecal samples on 

average had 27.1 M reads and had 60 129 hits (reads aligned to AMR genes in the MEGARes 

database). The sequencing depth per sample ranged between 17.7M to 40.4M reads.  

 

AMR genes were detected in 20 out of 30 blank samples. These samples on average had a 

sequencing depth of 5.7M reads and from this an average of 1 697 hits. In the 31 mock 

samples, a total of 128 unique AMR genes were detected. The mock samples had the highest 

average in terms of sequencing depth and hits per sample with an average sequencing depth 

of 34.7M reads and 429 824 hits.  
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Table 2: Table provides data on the range of numbers of reads per sample type (M), the average read per sample type (M), 

the range of AMR gene hits per sample type and the average hits on AMR genes in the sample types. 

Sample 

type 

Range of reads 

per sample (M) 

Average reads per 

sample (M) 

Range of hits per 

sample  

Average hits 

per sample  

Blank 0,3 – 32,7 5,7 5 – 16 022 1 697 

Fecal 17,2 – 40,4 27,1 12 336 – 211 813 60 129 

Mock 18,1 – 65,9 34,7 143 751 – 1 904 382 429 824 

 

3.3 Resistome analysis 
Results from AMRPlusPlus included a matrix containing various information of the different 

genes from the MEGARes database, such as annotation, class, and mechanism. The amount 

of hits were numbered for all samples for all AMR genes. The result matrix excluded samples 

without hits on AMR genes. In this section, results obtained from the AMRPlusPlus pipeline 

are presented with the use of ResistoXplorer to get an overview of AMR genes present in the 

canine fecal samples, blanks, and mocks.  

 

3.3.1 Data filtering in ResistoXplorer 

The default data filtering in ResistoXplorer was used (Section 2.2.3). In total for the fecal, 

blank and mock samples there were in total unique 167 AMR genes detected. After the data 

filtration, 54 unique AMR genes were removed leaving 103 unique AMR genes for the 

resistome characterization.  

 

3.3.2 Relative abundance per sample 

The relative abundance (y-axis) of the different AMR classes is presented in Figure 8. The 

sample type is indicated with color bars under the x-axis; red sample bar is blanks, green is 

fecal samples and bule is mock. 

 

The major AMR gene classes present in all 33 fecal samples included tetracycline resistance, 

macrolide-lincosamide-streptogramin (MLS) resistance, and elfamycine resistance. In two 

fecal samples, 50% of the AMR genes belonged to the b-lactamase resistance class. MDR 

mechanisms, fluoroquinolone resistance and elfamycine resistance genes accounted for most 

of the resistance classes in the mock samples (more than 90% of the AMR genes detected). 
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The relative abundance of the MDR mechanisms was around 50% in all mock samples and 

represents the biggest portion of AMR genes in this sample type. In blank samples MLS 

resistance had a relative abundance above 75% in six samples and in two samples the relative 

abundance of elfamycines was 1. Two mock samples also had a relative abundance of above 

50% for MDR mechanisms. The results are visualized in Figure 8. 
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Table 3: The total number of samples, the number of samples with hits and the amount of unique AMR genes summed up for each sample type. 

Sample Type Total number of samples Number of samples with AMR 
hits 

Number of unique AMR 
genes 

Blank 30 20 40 

Fecal 33 33 124 

Mock 31 31 128 
 

 

 

 
Figure 8: Relative abundance of AMR gene classes in blank (red), fecal (green) and mock samples (blue). The color of the bars represents the AMR class. The color of the x-axis shows the 
sample type, and the y-axis shows the relative 
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3.3.3 Relative and actual abundance per sample group 

The relative abundance of AMR classes within the sample groups are shown in Figure 9. One 

can see that in general, the same classes of AMR resistance are present in all types of samples 

with varying abundances. MDR mechanisms dominates within the mock samples, 

tetracycline resistance has the highest abundance within the fecal samples and elfamycine 

resistance dominates within the blank samples.  

 

 
Figure 9: The relative abundance of different AMR classes presented for each of the three sample groups: blanks, mocks, 
and fecal samples. The x-axis presents the relative abundance levels, and the y-axis presents the sample groups. 

 
The composition of classes varies across the sample types. Another factor creating visible 

differences between the sample types is the actual abundance (Figure 10). There is a big 

difference in the actual abundance. In the mock samples, there are generally higher levels of 

actual abundance compared to the fecal and blank samples. Conclusively, low amounts of 

AMR genes were found in fecal samples and close to neglectable amounts were detected in 

blank controls. 

 

 
Figure 10: Actual abundance of the different antibiotic classes the AMR genes are resistant towards for all three sample 
types. The x-axis represents the actual abundance of the classes (colors) and the y-axis provides the sample type (mock, fecal 
and blank samples). 
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3.4 Alpha diversity 
Here, the alpha diversity reflects the richness and/or evenness of AMR genes within the 

different sample types. The richness in a sample indicates the amount of unique AMR genes 

present, and evenness indicates the abundance of AMR genes present in the sample. The 

diversity of the resistome in the samples are demonstrated with Figure 11.  

 

Shannon takes both the richness and evenness into account (Figure 11A). The medians of the 

datasets are clearly distinguished for blank, fecal and mock samples with medians of around 

0.7, 2.2 and 3.3 respectively in terms of the Shannon index. Chao1 accounts for richness only 

(Figure 11B). Also here are the medians and majority of data are well separated in terms of 

the Chao index. The blank and mock samples are the most different. Pielou’s evenness index 

only considers evenness (Figure 11C). The mock sample data completely overlaps with the 

blank and fecal samples in terms this index, meaning that approximately 50% of the mock 

datasets cannot be distinguished from the other two in terms of evenness with Pielou´s 

evenness index. 

 
Figure 11: Alpha diversity calculated using three different diversities measurements: Shannon (A), Chao1 (B), and Pielou`s 
evenness (C). The x-axis presents the sample type and the y axis is the alpha diversity measure with different indices 
depending on the diversity measurement used. 

 

3.5 PCA 
Strength and statistical significance of the sampling groups are shown in the PCA plot in 

Figure 12. This shows beta diversity based on the AMR genes to show the difference between 

the different groups. The high dimensional data is reduced into PCA1 and PCA2. PCA1 (x-

axis) explains 45.8% of the variation and PCA2 (y-axis) explains 21% of the variation. The 

PCA method is arbitrary, and the distances plotted are based on the input data.  
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Figure 12 shows three clusters which are somewhat separated. The mock samples are clearly 

separated from the blank and fecal samples over the PC1. The mock samples have a lot of 

variation explained by PC1, whereas the fecal samples have a higher variety explained by 

PC2. There is slight overlap between fecal and blank samples.  

 
 

 
Figure 12: PCA plot for blank (red), fecal (green) and mock samples (blue). The x-axis, PC1, explains 45.8% of the 
variation and the y-axis, PC2, explains 21% of the variation. 

 

3.6 Rarefaction analysis  
A rarefaction analysis was conducted to investigate if the samples had been sequenced deep 

enough to capture the diversity of the AMR genes present. The rarefaction analysis was 

performed on gene level. Figure 13 shows the rarefaction plots for all sample types and 

Figure 14 shows the rarefaction plot for the fecal samples only. The analysis subsamples of 

the total reads, and identifies how many unique AMR genes are identified within those reads. 

According to Figure 13 some samples in each group (mock, negative, fecal) have a flattening 

rarefaction curve, indicating that the sequencing effort was sufficient for detection of the 

AMR genes present. However, there are also some of the fecal and mock samples that are 
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still left with rising rarefaction curves, meaning that more reads per sample might be 

necessary for better characterization of the ARGs in these samples. There is one blank sample 

that has a higher number of unique AMR genes compared to all other blank samples. 

 

 

 
Figure 13: Rarefaction analysis for blank (red), fecal (green) and mock samples (blue). The rarefaction plot shows the 
number of unique genes (y-axis) found in an increasing percentage of total reads. 

 
Figure 14 presents the rarefaction plot for the fecal samples alone. There was an increase in 

number of unique genes as the 100% read mark was approached for certain samples. This 

was generally the case for samples with general higher numbers of unique AMR gene hits. 
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Figure 14: Rarefaction plot showing only fecal samples. The rarefaction plot shows the number of unique genes (y-axis) 
found in the different percentage of reads. Fecal samples with general higher number of unique AMR genes (above 50) tend 
to rise more, indicating a too low sequencing depth. 

 

3.7 Comparison of resistome defined by qPCR and metagenomic sequencing  
The multiplex qPCR assay could detect 34 specific AMR genes, while the metagenomic 

sequencing and resistome analysis could detect approximately 8000 curated AMR genes 

(Doster et al., 2019). The results achieved by qPCR and metagenomic sequencing were 

compared to investigate if the results correspond regarding the 34 AMR genes. Only 33 fecal 

samples were subjected to the comparison as these were the only samples that could be 

compared to the qPCR method while simultaneously having sufficient sequence depth.  
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A presence/absence of shared detectable ARGs was constructed and presented in Figure 15. 

Here, the 33 samples are numbered on the y-axis and the name of the AMR genes are 

presented on the x-axis for both the qPCR and resistome method. The number of reads in all 

fecal samples are presented to the right. AMR genes absent in all samples are not included to 

simplify the figure. However, it is important to keep in mind that there were other AMR 

genes with that were not detected using either method. 

 

A total of 23 out of the 34 AMR genes (67.7%) were detected altogether in the 33 fecal 

samples with the use of qPCR. With the resistome method, 11 out of the 34 AMR genes 

(32.4%) were detected. Table 4 provides the number of samples with the different AMR 

genes detected with both methods, along with the number of samples where the AMR gene 

detections corresponded. The percentages of corresponding samples as a part of qPCR 

detection and resistome detection are presented for each AMR gene.  

 

In the qPCR results 219 detections of the 34 AMR genes in the 33 canine fecal samples were 

made. By comparing the AMR detections to the ones in the resistome analysis, a total of 

8.2% AMR hits corresponded. Out of the 79 AMR gene detections that were made in the 

resistome analysis, 22.8% of these were also made by qPCR. 

 

In total there were 18 instances of correspondence between the two different methods. The 

AMR genes tetA and tetB were detected in 5 and 2 out of 33 samples with the use of qPCR 

detection, respectively, while resistome analysis detected tetA and tetB in 29 and 30 samples, 

respectively. The resistome method detected 100% of the samples that were detected in qPCR 

and the corresponding detections accounted for 17.2% and 6.67% of the total detections made 

in resistome. ErmB had a high prevalence with qPCR being detected in 29 samples. The same 

AMR gene was detected in two samples in the resistome analysis, which corresponded 100% 

with the qPCR despite that they were only detected in 6.90% of the samples compared to 

qPCR. TetM with a prevalence of 31 samples with qPCR was detected in 5 samples (16.1%) 

in resistome.  
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Table 4: The table shows the number of samples of which the different AMR genes were detected with qPCR, resistome 
analysis and the number of samples in which both methods had corresponding findings in terms of presence/absence. The 
corresponding presence in both methods is divided by the qPCR presence to see the percentage of samples where the AMR 
was also detected using resistome analysis. In addition the corresponding presence is also divided by the resistome presence 
to see the percentage of samples in which the AMR genes were detected only with the resistome method.   

AMR gene qPCR 

presence  

Resistome 

presence  

Corresponding 

presence 

Corresponding 

presence / 
qPCR presence  

Corresponding 

samples / resistome 
presence 

aac6 4 1 0 - - 

ant3 19 0 - - - 

aph3 18 1 1 5.56 %  100 % 

blaACT 1 0 - - - 

blaCTX 0 5 - - - 

blaDHA 1 1 1 100 % 100 % 

blaSHV 1 0 - - - 

blaTEM 13 0 - - - 

DfrA 3 0 - - - 

ermB 29 2 2 6.90 % 100 % 

ermF 15 3 2 13.3 % 66.7 % 

floR 2 0 - - - 

intl 7 0 - - - 

mecA 7 0 - - - 

oqxA 1 1 0 - - 

oqxB 1 1 0 - - 

strA 16 0 - - - 

strB 13 0 - - - 

sul1 19 0 - - - 

sul2 11 0 - - - 

tetA 5 29 5 100 % 17.2 % 

tetB 2 30 2 100 % 6.67 % 

tetM 31 5 5 16.1 % 100 % 

vanA 1 0 - - - 

Total 219 79 18 8.22% 22.8% 
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Figure 15: Presence (dark grey)/absence (white) of AMR genes from qPCR and resistome results for all fecal samples. The 
number of reads for each sample is also included. 

 

The beta diversity measured the variation of AMR genes in terms of absence/presence 

(Jaccard distance) between detections in the two different methods: qPCR and resistome. The 

closer two points are to each other in the plot, the more similar they are with regards to which 

genes were identified with either method. The beta diversity is plotted in Figure 16. The 

figure provides a visualization of the results from the non-metric multidimensional scaling 

analysis and shows a clear distinction between the qPCR and resistome results. This 

highlights the discrepancies between the two methods.   
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Figure 16: Beta diversity (Jaccard distance) plot presenting the dissimilarities between the two different methods used for 
AMR gene detection: qPCR and shotgun metagenomic sequencing (resistome). The qPCR method is shown with red and the 
resistome method is shown with blue. 
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4 Discussion 
The discussion section is divided into two main parts: methodology and findings. 

 

4.1 Methodology 
This part of the discussion is focused on the methods performed, in advance, to obtain the 

data and the bioinformatic methods performed in this thesis. All method descriptions are 

found in Section 2.   

 

4.1.1 Dataset 

The dataset used in this thesis was obtained from 35 dogs. This is a relatively low number of 

dogs when it comes to concluding something about the resistome in the feces of Norwegian 

dogs. In other words, assumptions about trends in the Norwegian dog resistome would be 

limited as this would require a larger, more representative dataset. The findings are also 

restricted geographically to Trøndelag and one might find varying results if dogs from for 

instance Oslo or Tromsø were included.  However, the dataset is suitable for the comparison 

of two different methods although more samples would have improved the assurance in our 

results.   

 

4.1.2 Sampling 

The sampling was performed by the dog owners themselves with the use of fecal cards.  The 

procedure is relatively simple, and the owners were instructed on how to do it. However, 

there are several uncertainties associated with this procedure. Primarily, there might be 

contaminations in the samples from surroundings, air, skin, and other things that has been in 

touch with the sample or fecal paper. The fact that different dog owners performed the 

sampling is an uncertainty in itself whereas they all might have a unique way of performing 

the sampling, which can influence the results in different directions.  

 

Fecal cards provide a relatively easy approach for sampling and logistics. However, the use 

of fecal cards might decrease the quality of the sample. The samples were dried in room 

temperature for hours before being sent in the mail. The environmental temperatures of where 

fecal samples are stored has an impact on the quality of the fecal DNA as it may degrade or 

some microbes might grow while being transported. A study showed the degradation rate in 

fecal samples was significantly higher in temperature of 28°C compared to 15°C. At the 
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higher temperature, enzyme activity that is related to fecal degradation is higher and affect 

the samples more as well as the growth and will influence the reproduction of fecal 

microorganisms (Zhang et al., 2019). However, these samples were dried on paper, which has 

shown to be stable for prolonged amount of time (Koster et al., 2021). 

 

A challenge with this collection method is the risk of too little material for the DNA 

extraction. It is therefore a risk that AMR genes, which are present in the microbiota, are not 

represented in the samples. The fecal material might also be distributed unevenly on the 

surface of the fecal cards. Punches from different areas on the fecal cards might therefore 

contribute to a difference in the amount of material. More material does generally lead to 

more DNA that can be extracted and sequenced, which again increases the likelihood of 

detecting more AMR genes. Increasing the abundance of specific AMR genes might increase 

the chances of being detected and is especially important using less sensitive methods. The 

abundance levels of the AMR genes are not emphasized in this thesis and the main focus is 

the presence/absence of AMR genes. 

 

The challenges/risks regarding the sampling methods that are mentioned above are the same 

for both the qPCR and metagenomics results because the same samples were used. 

Uncertainties regarding the sampling method will therefore only influence the 

characterization of the resistome and not the method comparison. Sampling errors are 

difficult to discover as it is expected to have some variations between the fecal samples due 

to factors such as different environments. 

 

4.1.3 Sample preparation and extraction  
One major source of uncertainty regarding the comparison between qPCR and metagenomic 

shotgun sequencing occurs in the sample preparation and extraction steps. The samples were 

prepared and extracted using two similar, but different methods. In addition, different 

amounts of starting material were used as one or two punches of fecal paper were used in the 

qPCR procedure and four punches were used in the shotgun metagenomic sequencing 

procedure. Therefore, there is more starting material, including more fecal paper, in the 

metagenome sequencing method. The consequence of this can be a higher actual abundance 

of AMR genes in this method, which can increase the possibility of detecting the genes for a 
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less sensitive method. However, as mentioned above, this also depends on the sequence depth 

of the sample being sufficient. 

 

4.1.4 Sequencing with Illumina 
Illumina sequencing was utilized to obtain the sequence data. The number of reads sequenced 

per sample (sequencing depth) varied between samples and also within the sample groups 

(Figure 6).  The method gives relatively short reads (here 150pb PE reads) with good quality. 

The fecal material and dry cards provided a low DNA concentration/yield. Illumina 

sequencing was therefore a suitable approach for the detection of AMR genes from the 

samples used.  

 

4.1.5 Read based vs de novo-based approach 

In this thesis a read based profiling of AMR genes was performed. This method was chosen 

as the objective was to characterize the resistome (find AMR genes) of fecal samples and not 

taxonomic profiling. Read mapping does not require assembly resulting in less computational 

power needed as well as less time, which was important in this work. Another important 

factor was that since the fecal samples are from Norwegian dogs, one does not expect to find 

high levels of AMR genes (NORM/NORM-VET, 2021). Since the abundance and richness of 

AMR genes were most likely to be low, it would be difficult to assemble metagenome-

assembled genomes (MAGs). Placing the AMR genes in MAGs can be extremely 

challenging and especially with short read data. Therefore, a read based profiling was a 

suitable approach in this situation. 

 

On the other hand, if there were dogs from other countries or other samples of where a higher 

level of AMR genes were expected, it would be interesting to perform a de novo approach 

and compare the findings with the read based approach. Some of the main challenges with a 

de novo approach is that information (often low abundance reads) can be lost when 

assembling the reads to contigs. It would therefore be desirable to find out if the method 

would detect less AMR genes due to this or if there would have been other AMR genes 

detected. Comparing the findings would contribute to a better understanding on how the 

bioinformatic approach could impact the results for such analyses.  
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However, taxonomical data can also be obtained form a read based approach, which can be of 

great importance. To assess AMR threats this is valuable knowledge as pathogens with AMR 

genes would be important to monitor. The origin of the AMR gene is of valuable knowledge 

as some bacteria are more dangerous than others. In addition, the mock samples would have a 

clear task and be used to validate the presence of the species that are known to be there and 

could also be used to clarify whether the sequencing depth was enough. The mock would also 

help to identify bias of the method.  

 
4.1.6 Choice of resistome pipeline and database 

The resistome pipeline used in this thesis was AMRPlusPlus. AMRPlusPlus is relatively user 

friendly and is used by many researchers. This can make the results more accessible for 

comparison. MEGARes is a relatively large, curated database and was the database that was 

compatible with AMRPlusPlus.  

 

The MEGARes database is a curated meta-database, as it consists of various databases: 

RESFinder, ARG-ANNOT (Gupta et al., 2014), CARD, and the National Center for 

Biotechnology Information (NCBI) (Sayers et al., 2020). The positive aspect of combining 

several curated databases together is that it increases the size of the database, and thus makes 

it possible to detect several genes. This is a positive aspect in the way that it is less likely for 

AMR genes to be missed and in for instance surveillance as it is important to not miss 

potential dangers. On the other hand, there are also challenges with a large database. A 

challenge with the large database is that different databases might use different naming 

traditions for the hits and the results might end up being confusing and hard to interpret.  

 

An alternative that could have been interesting to try would be the CARD database with the 

compatible program RGI. RGI is a program that can be used to predict the resistome in 

various types of sequences such as genomic and protein. Currently there is also an option in 

beta-testing that can predict the resistome from metagenomic reads (Alcock et al., 2020). The 

choices of pipeline and database are important, as it can influence the results. Ideally, in this 

thesis, different pipelines, and databases should have been used to compare the results. One 

could then see if the results correspond, and to what degree the choice of pipeline and 

database influence the findings of AMR genes. However, due to time constraints this was not 

possible, but highlights the importance of more research and to improve our understanding 

within this field. 



 

42 
 

4.2 Findings 
This part of the discussion is focused on the findings in the results in Section 3.  

 

4.2.1 Sequencing depth 
Rarefaction analysis was conducted to investigate if the sequence depth was sufficient to see 

the full diversity of ARGs present. Figure 13 and 14 shows that for some samples, the 

rarefaction curve flattens out, while others continue to rise. The curves which flatten out 

indicates that most unique hits in the samples were found with the chosen read depth and that 

the sequencing depth was sufficient to capture the diversity of ARGs present in those 

samples. There are also curves that keep rising as the amount of reads approach 100%, which 

indicates that there are still more unique AMR genes to be found in the samples and that the 

sequencing depth might be insufficient. The sequencing depth was not a choice in this thesis 

as it was decided by the HUNT One Health project. 

 

The DNA concentrations of the samples sequenced were low (Øivind Øines, HUNT One 

Health, personal communication), which can indicate that there might in some samples not be 

more DNA to sequence. This could be the reason to why some fecal sample curves flatten out 

and does seem to have enough reads to uncover all unique AMR genes. However, this may 

not be case for all fecal samples, as some curves kept rising indicating that a deeper 

sequencing is necessary to detect more unique AMR genes. Another explanation as to why 

some sample curves flatten out might be biological; that there are no more AMR genes to 

detect as there were no more AMR genes to find in the gut microbiota of that specific dog. 

Some variation in terms of AMR gene content between the dogs based on environment, 

lifestyle and earlier antibiotic treatments is to be expected. Two outliers were removed due to 

a low sequencing depth (Figure 7) as these were clear outliers and far below the cutoff of 

17.2 M reads. 

 

There is one negative control sample that stands out with having a higher amount of unique 

AMR genes compared to the other negative controls (Figure 13). An explanation to this 

might be contamination, mislabeling, or operator error. The rarefaction analysis does not 

account for the abundances of the AMR genes and contamination might lead to a higher 

number of unique genes without the abundance of these necessarily being high. The samples 

from the same tray should have been omitted from further analysis as this could give false 
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resistome results. However, the main objective in this thesis was to compare the two methods 

and since there are not that many samples to compare it was important to compare as many 

samples as possible with acceptable sequencing depth. It is however important to keep in 

mind that there can be contaminations. If the sample on the same tray showed results with 

variation in AMR genes detected, contamination would be a likely reason.   

 

A study conducted on the impact of sequencing depth on the characterization of the 

microbiome and resistome presented indications that when it comes to abundance of AMR 

classes, the relative portion of classes remained similar despite sequencing depth (Zaheer et 

al., 2018). The numbers of reads that was aligned to an AMR gene, on the other hand, 

increased significantly as the number of reads sequenced per sample increased. It was found 

that a sequencing depth of 59M was suitable for resistome and microbiome characterization 

in cattle fecal samples. The average sequencing depth of the fecal samples in this thesis was 

27,1M reads (Table 2), which is 46% of the sequencing depth that was established to be 

suitable for the resistome characterization of cattle fecal samples. However, this does not 

necessarily mean that 27,1M is too low as there are many factors that plays a role in this, as 

mentioned above. This also indicates that the relative abundance found in this thesis is well 

represented whether the sequencing was deep enough or not. Another study on phylogenetic 

microbiota profiling also showed that the profiling was dependent on the sequencing depth 

(Rajan et al., 2019). The sequencing depth of the samples had a range of 5-200M and in 

general deeper sequencing resulted in higher richness and evenness, however, it is also 

suggested that the classification did not improve above 60 M. In the future, it might therefore 

be suitable to perform a sequencing depth closer to 59M reads per sample, if this is 

acceptable for the samples used. Due to the low starting material, this might not have been 

possible in the samples used here. 

 

4.2.2 Resistome analysis 

Figure 8 and 9 shows the relative abundance of AMR classes present on sample and 

treatment (sample type) level. The overall presence of AMR classes per sample group is 

shown in Figure 10. A higher relative abundance indicates that the antibiotic would be less 

efficient compared to antibiotics from other classes. It is important to monitor this data and 

pay close attention to the AMR classes present in the microbiota of dogs (companion 

animals) as well as humans and other animals. If the presence of certain AMR classes 
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increases, it could be an indication that the antibiotics will be less and less effective and 

action plans need to be made.  

 

As one can see in Figure 10 the actual abundances of AMR genes in the blanks are a lot 

lower than in the fecal and especially the mock samples. Blanks samples had an average of 

1697 AMR gene hits per sample as to 60129 and 429824 hits per sample for fecal and mock 

samples, respectively. There are several explanations as to why the actual abundance of AMR 

genes are higher in mock samples than of fecal samples. The actual abundance might be 

influenced by the amount of DNA available to sequence. Mock samples have been sequenced 

deeper than the fecal samples as the average number of reads per mock sample is 34.7M 

compared to fecal samples with an average of 27.1M reads per sample (Table 2). This is a 

factor that might have influenced the actual abundance and it is therefore more important to 

study the resistome in terms of relative abundance with this sequence data, even though there 

were also more hits per read in the mock samples.  

 

The detection of AMR genes in the blank samples might be due to presence of genes from 

microorganisms that that are not from the sample. The population of microorganisms that are 

present in reagents or plasticware, can be referred to as kitome. These may be 

microorganisms that have contaminated reagents over time, or other organisms forming 

biofilms on plastics. In the blank samples these includes microorganisms that may be present 

in the buffers and the fecal paper, the plasticware, as well as from the equipment used in the 

lab.  

 

The alpha diversity was calculated using three different indices and it can from this be 

established that the diversity within the different sample types comes from richness of AMR 

genes (Figure 11). The metagenomic shotgun sequencing method could distinguish the 

sample types in terms of richness using the Shannon and Chao1 indices. The diversity of the 

blank samples are nested within the diversity of fecal samples, which can indicate that the 

background “noise” of kitome etc. can also to some small degree present in fecal samples.  

When it comes to the mock samples, the species present are known, and certain predictions 

can be made on basis of the species. Amongst the species in the mock community is P. 

aeruginosa, which possesses multiple types of intrinsic antibiotic resistance. The resistance 

mechanisms P. aeruginosa includes efflux pumps, restricted outer membrane permeability 

and β-lactamase production and thus shows resistance towards many types of antibiotics 
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(Pang et al., 2019). The group with highest relative abundance in the mock samples are MDR 

mechanisms (Figure 9), and the intrinsic resistance in P. aeruginosa might contribute to this . 

The production of β-lactamases contribute towards resistance of the β-lactams antibiotic, 

which is also illustrated in the same figure.  

 

The 35 dogs of which the fecal samples were from were of good health and did not undergo 

antibiotic treatment at the time of sampling. The occurrence of AMR genes in these samples 

are therefore expected to be low. It is also not expected to find alarming AMR genes such as 

mcr, a colistin (last resort treatment) AMR gene that is often present in multi resistant 

bacteria. This AMR gene was not detected in any samples using either method (Li et al., 

2020).  

 

The penicillin amoxicillin in combination with clavulanic acid was the most sold antibiotic 

for companion animals (dogs and cats) in 2020 (NORM/NORM-VET, 2021). Amoxicillins 

are antibiotics in the b-lactams class and the relative/actual abundance of b-lactams resistance 

genes can be seen in Figure 8/Figure 9. This is however not the class that makes up the 

biggest portion of the detected AMR. This is a good indication that despite the high use, the 

antibiotic class can still be efficient to treat infections in dogs. Just because it is the most used 

antibiotic prescribed for dogs does not mean that the usage is high. In Norway, a total of 

360kg antibiotics was purchased for companion animals which accounts for 7.2% of the total 

amount of antibiotics purchased as antibacterial veterinary products for terrestrial animals 

(NORM/NORM-VET, 2021). The use of antibiotics in dogs (and cats) therefore make up a 

relatively small portion of the antibiotics used for animals. 

 
Figure 12 shows the PCA plot for the different sample types. The datasets were visualized 

using ResistoXplorer in which the high dimensional data was projected into two variables 

(PCA1 and PCA2) that explains the principal variation in two dimensions. The PCA plot was 

generated with AMR data on a gene level. There is a clear distinction between the mock 

samples compared to the other two sample types. Factors that could have caused this 

distinction includes the relative and actual abundance (Figure 9 and 10), as distinctions are 

observable here too. The challenge with the representation is that the origin of variation is not 

given. The variations or similarities in the samples can for instance be explained by 

differences in presence/absence of AMR genes, the abundance of AMR genes and the 
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resistance mechanisms of the AMR genes. Here it is also important to keep in mind that 

figures obtained from ResistoXplorer does not include information on the number of reads 

per sample and only the number of AMR gene hits. ResistoXplorer was used to visualize 

multiple figures from the dataset on AMR resistance genes and abundances, and it was not 

possible to include this type of metadata. Therefore, the PCA plot does not account for the 

fact that the blanks had a lower sequencing depth compared to the other sample groups. A 

PCA plot where this type of sequence data is included would perhaps show different 

distances between the samples and sample groups.  

 

4.2.3 Comparison of PCR and shotgun metagenomics 

Figure 15 shows the AMR gene hits for the two different detection methods: PCR and 

metagenomic shotgun sequencing and Table 4 gives a numerical overview of what is 

depicted in the figure. The beta diversity analysis (Figure 16) shows the differences in 

presence/absence findings from the two different methods suggesting a low agreement. 

 

It is particularly difficult to compare the two methods because of the differences in sample 

preparation and extraction as differences might already emerge in the lab. Another major 

challenge with comparing the two methods has been to interpret the AMR gene nomenclature 

to properly group the genes from qPCR and metagenomic resistome analysis (Hall & 

Schwarz, 2016). 

 

In this thesis, the PCR method is considered as a «gold standard» due to amongst other 

factors, the sensitivity and specificity of the method. The metagenomic sequencing method is 

not as sensitive (Waseem et al., 2019), which is also indicated in Table 4. As a result, genes 

detected with qPCR were not necessarily detected with metagenomic resistome analysis. Out 

of the 34 AMR genes that were in the qPCR panel, 23 were detected using qPCR and 11 were 

detected using metagenome shotgun sequencing. The AMR gene with the highest prevalence 

(32 samples) detected with the qPCR was tetM. tetM was discovered in only five of these 

samples using metagenomic shotgun sequencing which is equivalent to 16% of the qPCR 

detection. The metagenomic shotgun sequencing method did detect the presence in some, but 

not all samples suggesting that it is not as sensitive as the qPCR method. This was to be 

expected. However, there are also cases of metagenomic shotgun sequencing detecting AMR 

genes in samples that are not detected in qPCR. BlaCTX was detected in five fecal samples 
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using metagenomic shotgun sequencing and was not detected at all in qPCR. tetA and tetB 

were detected in more samples using metagenomic shotgun sequencing. For these specific 

AMR genes, it can seem like the metagenomic shotgun sequencing method is more sensitive. 

However, there are also other reasons as to why this is the case such as lack of specificity.  

 

Table 4 shows that the qPCR method detected more AMR genes in more samples than what 

the metagenomic shotgun sequencing method did. However, despite qPCR being the more 

sensitive method, there were also instances where AMR genes were detected in the resistome 

and not in qPCR, as for instance tetA and tetB. PCR-inhibitors can be a possible explanation 

to this. PCR-inhibitors are chemical substances that are found in several different biological 

materials such as fecal materials. The consequences of PCR-inhibitors false negatives and a 

decrease in sensitivity (Schrader et al., 2012). Since the inhibitors do not impact the 

metagenomic shotgun sequencing this might be the reason as to why AMR genes were 

detected only in the resistome. 

 

A challenge in the method comparison was the different names used in qPCR compared to 

those in the MEGARes database. AMR gene names can be complicated as it might occur that 

multiple databases use different naming conventions. Another experience was that the AMR 

databases used slightly different names compared to the naming in qPCR. There are also 

chances that reads align to an AMR gene that is very similar but with a different name. Some 

of the AMR genes detected with metagenomic shotgun sequencing were also separated in 

terms of which species the AMR gene was detected in. Due to the different naming 

conventions, the same gene may have different names depending on which species it 

originated from. Extensive knowledge about each gene is necessary to make sure that such 

grouping is correct. 

 

In the metagenome shotgun dataset, there were AMR genes aligned to ten different tetM 

AMR genes. The different tetM genes were of varying lengths and were found in different 

bacteria. All tetM genes with different origins and lengths were merged into “tetM” to be 

comparable to the one tetM in the qPCR dataset. The AMR genes found in different bacteria 

are different enough to be separated in the database. However, in qPCR there was only one 

set of primers for the tetM AMR gene. This might explain the discrepancies observed in the 

occurrence of this gene with qPCR and resistome analysis.  
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Both methods have positive and negative aspects to them. The qPCR method shows an 

overall higher sensitivity as it in general detected a higher number of the AMR genes in 

samples. However, with qPCR one must know what to look for and use primers accordingly. 

This might indicate that this method is an advantage when there are certain AMR genes that 

are checked for. On the other hand, a positive aspect of metagenomic shotgun sequencing is 

that the reads in the samples are aligned to a whole database and thereby detecting any AMR 

gene that is in the database. By constantly updating and curating the database, all known 

AMR genes can in theory be detected. This is an advantage when it comes to surveillance as 

unexpected AMR genes might occur. The risk with using this method would be that it is not 

sensitive enough. Therefore, it would be favorable to investigate the two methods by also 

studying the relationship between qPCR abundance and shotgun metagenomic detection. 

Finding a relationship between the two factors would make it possible to determine a 

threshold AMR gene detection using metagenomic shotgun sequencing in this dataset. When 

it comes to surveillance, the AMR genes of higher abundances might in some cases be the 

ones that are most important to detect. The higher abundance AMR genes that are present in 

more samples can be looked at as more of threat. However, it is also important to find the low 

abundance AMR genes found in fewer samples that are potential threats that might spread. 

This depends on the aim of the research/surveillance. 

 

Metagenomics is a relatively new field and is under rapid development. There is room for 

improvement when it comes to the methods and the bioinformatic tools and therefore great 

potential for the method to improve in terms of for instance sensitivity. The low sensitivity of 

the metagenomic shotgun sequencing method is a reoccurring challenge when it comes to the 

detection of low abundance populations that are present below the threshold of detection  

(Lanza et al., 2018). Targeted enrichment of resistance genes is a method with a higher 

sensitivity and accuracy compared to the metagenomic sequencing. To execute this method 

38 thousand  probes were designed to target the sequences that are found in CARD. This 

method was able to identify AMR genes present in the human gut microbiota that were not 

detected using shotgun sequencing (Guitor et al., 2020). Further, it would be interesting 

comparing metagenomic shotgun sequencing to the targeted enrichment method as it would 

here be a possibility to use the same database (CARD) and detect for the same sequences 

using the same naming traditions.  
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5 Conclusion 
In this thesis the resistome of 35 Norwegian canine fecal samples were characterized, with 

data acquired from metagenomic shotgun sequencing. The metagenomic shotgun sequencing 

resistome analysis detected a total of 124 unique AMR genes. The results were compared to 

the results from a qPCR multiplex assay based on 34 AMR genes. The qPCR method 

detected approximately 2/3 of the AMR genes in the panel, compared to approximately 1/3 

for the metagenomic resistome analysis. However, only 8.2% of the findings in the 

metagenomic resistome analysis corresponded to the qPCR findings and this was 22.8% of 

the total findings in the resistome for the 34 AMR genes. This shows that there was a low 

agreement between the two methods. Several factors that could have contributed to this are 

discussed including differences in extraction, low sequencing depth, and choice of 

bioinformatic tools. In future studies it would be interesting to investigate the comparison 

further with the use of different programs and databases for detection, as well as taxonomic 

classification in addition to the resistome characterization to get a better picture of the 

microbiota.  
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Appendix 

APPENDIX 1: FastQC script on raw reads 
 
#!/bin/bash 
#SBATCH --account=nn9305k 
#SBATCH --time=16:00:0        ## Total time requested 
 
##memory specs 
#SBATCH --mem=100G            ## How much memory  the job needs 
#SBATCH --partition=bigmem  
#SBATCH --cpus-per-task=16    ## Total number of CPUs, max on SAGA is 40 
#SBATCH --job-name=fastqc 
 
 
#loading a module, use version number 
module load FastQC/0.11.9-Java-11 
 
# input 
files=/cluster/projects/nn9305k/active/okarlsen/hunt_analysis/raw_data/*.g
z 
 
# outdir 
outdir=/cluster/projects/nn9305k/active/okarlsen/hunt_analysis/fastqc_raw 
 
# Running fastqc, include threads: --threads <tall>  
fastqc --threads 8 -o $outdir $files 
 
echo -e "\n This is the end.\n" 
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APPENDIX 2: FastQC script on trimmed reads 
 
#!/bin/bash 
#SBATCH --account=nn9305k 
#SBATCH --time=6:00:0         ## Total time requested 
 
##memory specs 
#SBATCH --mem=100G            ## How much memory the job needs 
#SBATCH --partition=bigmem  
#SBATCH --cpus-per-task=16    ## Total number of CPUs, max on SAGA is 40 
#SBATCH --job-name=fastqc 
 
#loading a module, use version number 
module load FastQC/0.11.9-Java-11 
 
# input 
files=/cluster/projects/nn9305k/active/okarlsen/hunt_analysis/trimgalore/*
.fq.gz 
 
# outdir 
outdir=/cluster/projects/nn9305k/active/okarlsen/hunt_analysis/fastqc_trim
med 
 
# Running fastqc, include threads: --threads <tall>  
fastqc --threads 10 -o $outdir $files 
 
echo -e "\n This is the end.\n" 

 

APPENDIX 3: MultiQC script on raw reads 
 
#!/bin/bash 
#SBATCH --account=nn9305k 
#SBATCH --time=1:00:0       ## Total time requested 
 
##memory specs 
#SBATCH --mem=20G           ## How much memory the job needs 
#SBATCH --cpus-per-task=2   ## Total number of cpus, max on SAGA is 40 
#SBATCH --job-name=multiqc 
 
# Activate conda 
source /cluster/projects/nn9305k/src/miniconda/etc/profile.d/conda.sh 
 
# Activate multiqc 
conda activate bifrost 
 
# Input data path 
path=/cluster/projects/nn9305k/active/okarlsen/hunt_analysis/fastqc_raw 
outdir=/cluster/projects/nn9305k/active/okarlsen/hunt_analysis/multiqc_raw 
 
# Run command 
multiqc -o $outdir $path 
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APPENDIX 4: MultiQC script on trimmed reads 
 
#!/bin/bash 
#SBATCH --account=nn9305k 
#SBATCH --time=1:00:0       ## Total time requested 
 
##memory specs 
#SBATCH --mem=20G           ## How much memory the job needs 
#SBATCH --cpus-per-task=2   ## Total number of CPUs, max on SAGA is 40 
#SBATCH --job-name=multiqc 
 
# Activate conda 
source /cluster/projects/nn9305k/src/miniconda/etc/profile.d/conda.sh 
 
# Activate multiqc 
conda activate bifrost 
 
# Input data path 
path=/cluster/projects/nn9305k/active/okarlsen/hunt_analysis/fastqc_trimme
d 
outdir=/cluster/projects/nn9305k/active/okarlsen/hunt_analysis/multiqc_tri
mmed 
 
# Run command 
multiqc -o $outdir $path 
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APPENDIX 5: Trim Galore script on raw reads 
 
#!/bin/bash 
#SBATCH --account=nn9305k 
#SBATCH --time=5:00:0         ## Total time requested 
 
##memory specs 
#SBATCH --mem=40G             ## How much memory the job needs 
#SBATCH --partition=bigmem  
#SBATCH --cpus-per-task=8     ## Total number of CPUs, max on SAGA is 40 
#SBATCH --job-name=trimgalore 
 
# Array (R1 and R2 in 1 array) 
#SBATCH --array=0-95 
 
# Input and output 
input=/cluster/projects/nn9305k/active/okarlsen/hunt_analysis/raw_data 
output=/cluster/projects/nn9305k/active/okarlsen/hunt_analysis/trimgalore 
 
cd $input 
files=($(ls *1.fq.gz)) 
R1=${files[$SLURM_ARRAY_TASK_ID]} 
R2=${R1%%1.fq.gz}2.fq.gz 
 
# Activate conda 
source /cluster/projects/nn9305k/src/miniconda/etc/profile.d/conda.sh 
 
# Activate Trimgalore 
conda activate Trimgalore 
 
# Run program 
trim_galore -o $output --paired --quality 15 $R1 $R2 
 
echo -e "\n This is the end.\n" 

 
 
 

APPENDIX 6: AMRPlusPlus NextFlow script on trimmed reads 
 
# Nextflow command ran in screen from amrplusplus_v2 folder 
nextflow run main_AmrPlusPlus_v2.nf -profile singularity_slurm --reads "/c
luster/projects/nn9305k/active/okarlsen/hunt_analysis/amr_data/*_{1,2}.fq.
gz" --amr "/cluster/projects/nn9305k/src/amrplusplus_v2/data/amr/megares_d
atabase_v1.02.fasta" --output "/cluster/projects/nn9305k/active/okarlsen/h
unt_analysis/amrplusplus" -work-dir $USERWORK/amrplusplus 
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APPENDIX 7: R script for calculating beta diversity (Jaccard 
distance) 

 
# Calculate Jaccard distances 
 
dist <- vegdist(all_data, method = "jaccard", binary = TRUE) 
 
nmds <- metaMDS(dist, distance = "jaccard", k = 2, try = 500, 
autotransform = FALSE) 



 

 

 


