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Abstract
In 2016, Anders Myhr published an optimized model of the TLB design,
made significantly more cost efficient than other floating offshore wind turbine
configurations. This model was called the TLB B2 and was designed for a
5MW wind turbine rotor. The desire for larger turbines is high, but technological
readiness regarding anchor loads, has restricted further development of the TLB
B2. As the technology has matured, more robust and rigid anchors now enable
further scaling of the TLB configuration. This thesis revolves around designing
the TLB B2 to fit a 10MW turbine.

The design phase is approached by utilizing the 3DFloat input file created
by Anders Myhr, and scaling the dimensions to fit the mass of a 10MW turbine.
This is done while still preserving core properties from the original design.
3DFloat is used for the entire thesis and is an aero-servo-hydro-elastic Finite-
Element-Method software created by Prof. Tor Anders Nygaard, in order to
simulate offshore wind turbines in a realistic environment.

To prevent resonance, the structure’s natural (Eigen) frequency becomes
crucial. Thus, several Eigen analysis are done throughout the design phase in
order to ensure that none of the Eigen periods interfere with the wave period,
nor the rotational periods of the rotor. To obtain all Eigen modes outside of the
rotational frequencies proved to be rather challenging as the blade- and tower
modes are complexed and hard to manipulate. An Eigen analysis of the final
structure indicates a mode shape with a period equivalent to the blade passing
frequency, making it prone to resonant behavior.

Fatigue was the primary driver for the structure, due to large thrust forces
subjected to the tower. A necessary increase in supplementary tower mass added
to ensure adequate fatigue lifetime, would consequentially increase the floater
mass tremendously due to preliminary constraints defined in the design phase.
The constraints would predominantly protect the floater against buckling, a very
low utilization, confirms that the TLB B2 [10MW] is likely to benefit from
unlocking these constraints.

Despite the large amount of buoyancy, the TLB B2 [10MW] has a relatively
low mass compared to other configurations with a total mass of approximately
3300 tons. However, analysis indicates a great remaining potential in regards of
mass, which can be utilized by further work and optimizations.
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Sammendrag
I 2016 publiserte Anders Myhr en optimalisert modell av et tidligere TLB
design. Denne viste stort økonomisk potensiale sammenlignet med andre flytende
vindturbiner. Modellen ble kalt TLB B2 og var designet for en 5MW turbin.
Behovet for større turbiner er stort, men manglende kunnskap om forankring har
begrenset videre utvikling av TLB B2. Mer modnet teknologi, muliggjør mer
robuste ankere oppskalering av TLB konfigurasjonen. Oppgaven sentreres rundt
en oppskalering fra 5 til 10MW for TLB B2 designet.

I design fasen utnyttes 3DFloat filen laget av Anders Myhr, og modellen
oppskaleres til å passe massen til en 10MW turbin. Dette er gjort uten å
endre hovedstrukturen til det originale designet. 3DFloat brukes gjennom hele
oppgaven, og er et aero-servo-hydro-elastic Finite-Element-Method program,
laget av Prof. Tor Anders Nygaard, med den hensikt å simulere flytende
vindturbiner i realistiske omgivelser.

For å unngå resonans, blir strukturens naturlige (Eigen) frekvens sentral,
og flere egen analyser er derfor gjort gjennom design fasen. Dette er gjort
for å forsikre at ingen av Eigen modene kommer i nærheten av bølge- og
rotorfrekvensene. Ettersom blad- og tårn moder er komplekse, og vanskelig å
manipulere, indikerer en avsluttende egen analyse mulig resonans ved effektiv
rotorhastighet.

For modellen, var utmatting dimensjonerende som følge av store skyvekrefter
på tårnet. Tillagt ekstra masse på tårnet sørget for tilstrekkelig levetid, men
også stor økning i flytermasse. Dette kom som følge av innledende begrensninger
definert i design fasen. Disse begrensningene ble hovedsaklig satt for å beskytte
flyteren mot bukling, men en lav utnyttelse bekrefter at TLB B2 [10MW]
fordelaktig kan designes uten disse.

Til tross for en høy oppdrift, har TLB B2 [10MW] relativt liten masse
sammenlignet med andre konfigurasjoner med en totalvekt på ca. 3300 tonn. Det
er likevel et stort gjenværende potensiale med tanke på masse, som kan utnyttes
ved vidre arbeid og optimalisering.
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Chapter 1

Introduction

The Paris Agreement entered into force the fourth of November 2016 as a result
of the rapid electrification of the world’s society. One of the treaty’s purposes is
to cap the increase of global warming, preferably at 1.5 degrees Celsius compared
to pre-industrial levels [1]. If Europe is to become carbon neutral within 2050,
the need for renewable energy is evident. As a result, wind energy conversion
systems (WECSs) has seen a significant upswing in terms of being regarded as
a viable competitor against fossil fuels.

Onshore wind power launched into the 21th century as one of the fastest
growing energy sources. However, WECSs need a substantial area in order
to produce energy, and a scarcity of available land has caused the industry to
stagnate. Thus, offshore wind turbines that can exploit the benefits of larger
turbines are regarded as the future alternative to the matter. Offshore wind
energy began in the shallow waters of the North Sea where the abundance of
sites and higher wind resources are more favorable by comparison with Europe’s
land-based alternatives [2]. As of now, the majority of offshore wind installations
are of the bottom fixed foundation principles. Approximately 70% of the wind
resources are only harnessable at sites with a water depth deeper than 50m [3].
As this depth is considered the threshold value for the transition between bottom
fixed and floating structures, further development regarding Floating Offshore
Wind Turbines (FOWT) has proven beneficial. Several concepts are already
being developed, with examples such as the Semi-submersible platform, Tension
Leg Platform TLP, Spar Buoy, and Tension Leg buoy TLB.

The continuous drive for turbines with higher capacity is inducing bigger
foundations. The increase in materials incurs a correspondingly increase in
cost, which is causing wide limitations in regard of industrializing offshore wind
projects. The total cost of bottom-fixed offshore wind turbines (BOWTs) is

1



also heavily impacted by installation and handling. FOWT proposes a solution
to this simply by being lighter and easier to handle. They are generally easier
installed, which can be done by towing them to site. As the technology is still
poorly matured, FOWT is assumed to be at about twice the cost of bottom
fixed foundations. It is however, believed that the cost will decrease at an even
higher rate than for BOWTs due to the high potential of structural simplicity
and cost-effective installations. Unlocking this potential would enable countries
such as Japan, that has a rapidly dropping seabed, to install significant volumes
of FOWT.

1.1 Floater concepts
Commonly, most floaters are developed based on three fundamental concepts,
being the previously mentioned Spar bouy, the TLP, and the Semi-Sub. These
concepts are each defined by their stability principle, which are typically divided
into following categories:

• Mooring line stabilized

• Buoyancy stabilized

• Ballast stabilized

The ballast and buoyancy principles are based upon self-stabilization and would
theoretically not be reliant of any excessive mooring lines. The mooring systems
are installed for the mere reason of containing the floater in a stationary position.
Floaters stabilized exclusively by mooring lines are considered non self-stabilizing
and rely on the tension in the lines in order to maintain stability.

1.1.1 Semi-Sub
The semi-submersible floater is constructed with columns linked by connecting
submerged pontoons, that ensure sufficient buoyancy and hydrostatic stability.
The foundation is kept stationary by mooring lines fastened with drag- or suction
anchors. The floater is typically used at a depth of beyond 40 meters.

The semi-sub benefits from a low installation cost as it can be constructed
onshore and transported to site using conventional tugs. It is not reliant of
mooring lines to keep stable and thus the installed mooring cost is reduced.
However, the majority of the floater is breaching the water surface making it
more exposed to critical wave-induced motions than the other configurations. The
complexed fabrication and large structures also tend to use more material. [4]
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1.1.2 TLP
The Tension Leg Platform (TLP) is kept at rest by mooring lines. The
configuration rely on constant tension in the legs, which is achieved by pulling
the floater below its neutral water line. The excess buoyancy then creates the
necessary tension. The floater can be used in water depths to 50-60 meters,
depending on the metocean conditions.

As the floater is kept below the water surface, it has a lower tendency for
critical wave-induced motions. The TLP has a low mass rate, but require higher
installed mooring cost. Due to the non self-stabilizing configuration, it may also
prove hard to keep stable during transport and installation [4].

1.1.3 Spar
The Spar buoy has a relative simple design with a low water plane area. The
buoy is ballasted to keep the centre of gravity below the centre of buoyancy, and
thus making it stable. Similar to the semi-sub, the spar buoy is not relying on
mooring lines for stability.

The low water plane area leaves the buoy less affected by the impact of
bigger waves. The simple design may be a great starting point for bringing
offshore wind to a commercial level, but the configuration poses a critical
challenge in regard of installation. The buoy needs a depth of more than 100
meters, and requires heavy-lift vessels for offshore operations [4].

1.2 Industrializing offshore wind
Bottom fixed offshore wind farms has been in operation since 1991, and is not
considered "new industry". True industrialization of the sector occured over the
last decade, and the increasingly cost-efficient technology has been adopted by
more and more European and East-Asian countries. As for floating platforms,
they generally have a higher Capital Expenditure (CAPEX), which is a natural
response to the lack of experience and physical understanding of the complex loads
and dynamic responses. Capital expenditures are also increasing with the turbine
size accompanied by the increase in loads. This is however, commonly accepted as
the larger turbines will enable higher power ratings and thus, generate more energy.
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The power from the turbines increases proportionally with the sweeping
area of the rotor, which means that for every increase in the radius, there is a
factor more wind power that can be harnessed. The increased yield of electricity
diminishes the Levelized Cost of Energy (LCOE) and findings indicates that
some configurations of FOWTs may even have a lower LCOE than for BOWTs
[5]

Figure 1.1 illustrates the percentage cost distribution for a FOWT and a
BOWT. As the two are of different size, a comparison would not be completely
accurate, although some general conclusions may still be drawn. The cost of
turbine share is for instance nearly the same despite having different power
ratings. The high amount of cost related to substructure indicates potential
related to cost reduction for the FOWT. This will subsequently catalyze the
process of bringing FOWTs to a commercial level, due to the already low
installation costs.

Figure 1.1: CAPEX breakdown; left: BOWF based on 4.14MW wind turbines, right: Reference FOWF based on
10MW wind turbines [6]

FOWTs could open vast new areas of the ocean to wind power. Bringing
floating wind to an industrial level is an important factor in green transition.
Cost-efficient floating farms can become an almost boundless source of emission
free electricity, and several first movers are competing to develop the best design.
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Amongst other pioneering projects, Hywind Scotland utilizes the ballast
principle and is already breaking ground as the first operating floating wind farm.
Between the pilot and the first commercial project in 2017, the CAPEX per
MW was reduced by 70%. As for their upcoming project, Hywind Tampen, it
is expected to reduce by further 40% [7]. Since 2017, other concepts has been
materializing into full scale farms. WindFloat has its origin in the semi-sub
concept and launched in 2019 a fully operational farm consisting of three turbines
with a power rating of 8,4 MW. In 2021, installation of five 9,5 MW turbines in
the world’s largest floating offshore wind farm, the Kincardine Offshore Wind,
was completed [8].

1.3 Scope and objective
With a rapid increase in turbine size, the need for more robust floating structures is
evident. The tension-leg buoy platform has proven to be highly material efficient,
and thus economically beneficial. However, lack of relevance is caused by the fact
that the TLB only is scaled to 5MW wind turbine rotor, a power capacity soon to
be outdated. Given this context, the following objectives set for the thesis are:

1. Scaling the Tension-Leg-Buoy platform designed by Anders Myhr and Tor
A. Nygaard, from the initial 5 MW, to a 10 MW wind turbine rotor. The
platform is to be scaled while still preserving the original design.

2. Verify an acceptable Eigen frequency by Eigen analysis and time domain
computations with the aero-servo-elastic simulation model 3DFloat.

3. Verify the TLB [10MW] for structural stability.
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Chapter 2

Background

2.1 Introducing the TLB
The previously mentioned Tension-Leg-Buoy TLB is, due to the simplistic design,
economically beneficial. This accommodates a crucial part of developing the
offshore wind industry. Regarding the technical aspect, the TLB platform is
mooring line stabilized, and rely on excess buoyancy in order to remain stationary.
The mooring system is fixed at two heights, one of which being at the bottom of
the floater, while the other being just below the rotor plane.

The concept was initially developed and utilized in 2005 by Professor Sclavounos
of MIT [9], where taut axial mooring lines were used to stabilize the turbine. The
mooring system enabled control of the Eigen periods, which as a rule of thumb,
should not exceed the upper limit of 5 seconds. With further development, the
TLB Baseline (B) was designed by Anders Myhr and Tor A. Nygaard in 2012 for
a 5MW rotor [10]. The concept has long been constrained by the anchor loads,
but with technological progress, the design is now of high relevance in terms of
developing state of the art FOWT technology. The TLB has several desirable
features such as low draft and material consumption, slim and simple design, and
better response characteristics.

The TLB B was designed for rather harsh sites, and had a total mass of
1303 tons, including 190 tons for the anchors. The scale is to fit a 5MW turbine
with a RNA mass of 350 tons. At water depths of 50 - 200 meters, the model
showed great potential compared with onshore wind turbines and was proved to
be a viable alternative for FOWTs at sites similar to K13 [10].
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2.2 TLB B2
The TLB B was, as stated, originally designed for harsh environments, and thus
making it economically inadequate, compared to other configurations. The TLB
B2 however, was developed with a more realistic site in mind, and was therefore
able to showcase the great economical potential with this design. In Anders Myhr’s
Philosophiae Doctor (PhD) Thesis, The TLB B was optimized as the primary
objective which resulted in significant reduction in mooring forces while remaining
the rather cost efficient structure. An essential aspects of the TLB design is to
maintain the Eigen periods within the acceptable range. This is predominantly
done by keeping the periods below the energic part of the wave spectrum. No
modes should neither interfere with the 1P and the 3P ranges of the rotor, a
rather tedious problem to solve by trial and error. The platform was consequently
optimized within the time and frequency domains.

2.2.1 Frequency Domain Optimization
Optimization of the mooring system were mostly done within the frequency
domain. The Eigen period optimization of mooring line axial stiffness and anchor
radius layout are performed with the total mooring line mass as cost function. The
modulus of elasticity is preset, consequently making the mooring line cross section
the deciding variable. The optimization is done with the applied constraints of an
Eigen period below the 3.5 (s) and outside the 1.6 - 3.2 (s) range.

2.2.2 Time Domain Optimization
Optimization within the time domain accounts for floater design. Depth of the
tapered section and floater diameter were used as design variables, as well as pre-
tension in the mooring lines. The applied constraint was simply a minimal tension
of 500kN for all mooring lines during extreme events, corresponding approximately
10% of the nominal pre-tension in the lines.

2.3 Computational tools
The modeling of the TLB B2 relied on the computational tool 3DFloat, which
is an aero-hydro-servo-elastic analysis simulation software package developed at
IFE. 3DFloat is originated in the Finite Element Method (FEM) and simulates
complete offshore wind turbines operating in a realistic environment.
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3DFloat has been applied in projects such as previously mentioned OC3-
HYWIND, and provides visualizations using tecplots, Paraview and python-scrips
that accompany the software. It can generate irregular wave tables, but relies on
external simulation tools for a full turbulence setup. TurbSim will be used for
simulation of full coherent turbulence structures, and is designed to represent a
spatiotermal turbulent velocity field. As for post-processing, Python will be used
as the main tool for all data gathered by 3DFloat.
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Chapter 3

Theory

The purpose of this section is to bring light upon theoretical aspects necessary in
order to obtain the objective presented in 1.3. The practical application will be
introduced as a part of the approach in 4.3

3.1 Natural frequency
Every system has its own set of natural frequencies. These can also be called
Eigen frequencies, and are the frequencies of which the system will oscillate after
an initial disturbance. Each Eigen frequency is set at any given amplitude, and
will remain unaltered in the absence of any driving force or damping. When a
frequency caused by an external force (driving frequency), approaches the natural
frequency of the system, the displacements increase significantly. This is called
resonance and is caused by the forcing frequency being equivalent to the natural
frequency. During resonance, the energy added to the system by the external
force is timed such that it increases the amplitude of the displacement with each
cycle. Being able to avoid resonance is the primary reason for calculating the
natural frequency of a system as it can eventually lead to irreparable damage.

The natural frequency of a simple harmonic oscillator is given by:

f = 1
T

= w

2π (3.1)

Where T is the period , and w is the angular frequency given by:

w =
√
ks

m
(3.2)
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In equation 3.2, ks is determined by the structural stiffness and m is mass of the
structure. An increase in mass would also require an increase in stiffness in order
to preserve the natural frequency, [11].

A system that can exclusively vibrate in a single manner is defined with
only one degree of freedom. A system has as many natural frequencies as it has
degrees of freedom. If a model has three degrees of freedom, it will also have three
natural frequencies, in which the model will vibrate in a specific way, called a
mode shape. As the number of mode shapes increases, numerical methods like
the finite element method are required in order to compute the Eigen frequencies
as well as the associated modes.

3.1.1 1P and 3P
The most present driving frequencies for a FOWT system are the waves, and
the rotor. The first excitation frequency, is the rotational speed of the rotor and
is referred to as 1P. In turbulent wind flow, this frequency will vary within the
given threshold values defined by the cut-in, and cut-out rotor speeds.

The second excitation frequency is the frequency of which a rotor blade
passes: NbP . Nb is the number of blades, giving 2P for a two bladed rotor, and
3P for a rotor equipped with three blades. A given wind turbine structure should
be designed in such a way that the Eigen frequencies does not coincide with either
the 1P or the 3P ranges of the rotor [12].

3.2 Fatigue Theory

3.2.1 Combined Loading
Engineering elements can be subjected to four different types of loadings.

• Normal force, (N). Normal force is directioned perpendicular to the cross
sectional area and is developed through tension or compression.

• Shear force, (V). The shear force is orthogonal to the normal force vector,
meaning it is directed along the plane of the cross section area.

• Torsional moment, (T). This effect occurs whenever an element is twisted.
A torsional moment can be converted into shear force with a given radius.

• Bending moment (M). Bending moment is developed by external loads
bending the element about its body axis.
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It is rarely a case in which an element is required to endure only one of these
loadings, thus introducing the principal of combined loadings. Both the Axial
(normal) forces and bending moments develop axial stress in the member, and can
therefore be added together by the method of superposition. The same method
can be applied for shear force and torsional moment as both will induce shear
stress. The total axial stress can be computed by the following equation. [13]

σtot = Fx

A
+ Mzy

Iz

+ Myz

Iy

= σa + σbz + σby (3.3)

Figure 3.1: Visualization of stress in a cylindrical shell

3.2.2 Fatigue damage and S-N Curves
Fatigue failure accounts for the vast majority of failures. Fatigue is in brief,
crack development during dynamic loadings and occurs for components which are
subjected to loadings that varies with time. Fatigue fracture is caused by a crack
formation, that is usually originated at free surfaces and stress concentrations. A
crack will grow as the component is continuously loaded, until fracture failure.
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The most crucial parameter required in order to estimate the lifetime of a
component is the stress range ∆σ. The stress range is a result of a cyclic loading
for a number of cycles N , and is twice the size of the stress amplitude. ∆σ
can simply be computed by differentiating the maximum stress σmax from the
minimum stress σmin, see figure 3.2. The mean stress (σm) is given as the average
between σmax and σmin. σa is the stress amplitude.

σmax = σm + σa (3.4)

σmin = σm − σa (3.5)

∆σ = σmax − σmin (3.6)

σa = ∆σ
2 = σmax − σmin

2 (3.7)

σm = σmax + σmin

2 (3.8)

Tension or compression are inserted algebraically as positive (tension), or negative
(compression) throughout the entire thesis. Figure 3.2 illustrates how the mean
stress is not exclusively reliant on the difference between the maximum and the
minimum stress. A higher mean stress will shorten the lifetime.

Figure 3.2: Different types of sine formed cycle loadings [14, figure 1.28, p. 27].

S-N Curves

A common approach for estimating lifetime is by subjecting a test specimen to
numerous stress cycles of constant value. The lifetime is defined by the number
of cycles the piece can endure before fracture. By applying multiple runs with
different ∆σ, the results can be utilized and plotted on a graph. The S-N curve is
created by fitting a curve to the data points, see figure 3.3.
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Figure 3.3: Illustration of how an S-N curve is plotted, [15]

The S-N curve estimates the number of cycles until an element reaches a high
probability of fatigue fracture, given a stress range. Different curves are utilized
based on different scenarios, and can be found in engineering codes such as the
DNV-standards.

3.2.3 Irregular loadings and cumulative damage
Miner’s rule

Realistically, the stress cycles that are subjected to a component are far more
complexed than what implied in the section above. Miner’s rule is commonly
used for calculating the cumulative damage for fatigue fractures. Miner’s rule
determines accumulated damage (D) by:

D =
kb∑

i=1

ni

Ni

(3.9)

ni is the number of cycles at a given load level, and Ni is the number of cycles
before failure at the same level. kb is the number of different stress ranges. A
component is likely to fail if:

D ≤ 1 (3.10)

Miner’s rule essentially calculates the damage contribution from all stress ranges,
which are then summed. If the total summed damage fraction is greater than
one, failure will occur.
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Rainflow counting

The Rainflow counting method is a technique utilized in order to simplify a
complexed stress spectrum, and does ultimately consist of four steps.

• Hysteresis Filtering

• Peak-Valley Filtering

• Discretization

• Four Point Counting Method

Hysteresis Filtering is done by defining an amplitude gate. Any variation
that occurs within this amplitude gate is ignored, consequently removing all
fluctuations from the load time history.

Peak-Valley filtering is essentially removing all data points that are not
defined as a turning point. Turning points are data points that are "reversals".
These points are extreme values that changes the direction of the slope.

Discretization, also referred to as binning, is bending the graf slightly to
reduce the amount of unique data points. When cycle counting, it is ideal to have
as few unique stress values as possible. Within the time domain, the y-axis is
divided into a set amount of values, in which a higher value will provide a more
accurate simulation. The data points in the timeline is then rounded to fit these
values, essentially rounding every value to the nearest integer.

The four point counting method is applied by defining four consecutive stress
points: σ1, σ2, σ3, and σ4. These points are sectioned into an inner stress range
(σ2 - σ3) and an outer stress range (σ1 - σ4). If the inner stress range is inside
of the outer range, defined by:

σ2 − σ3 ≤ σ1 − σ4 (3.11)

A cycle is counted for that amplitude, and the inner data points are removed from
the timeline. If the inner stress exceeds the outer stress range, a cycle is not
counted, and the σ2 is established as the new starting point. Figure 3.4 provides
an illustration of the method.
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This procedure is followed throughout the entire timeline, and thus data tools
are preferred for this process. Once all the cycles have been counted, Miner’s rule
can applied with each unique stress amplitude as input.

Figure 3.4: Illustration of the four point counting method,[16]

3.3 Buckling
Theory from this section is based upon [17, Ch.14 p. 516-549].

When an element is loaded with uniaxial tension, it will fail once the normal stress
exceeds the yield or tensile strength of the material. Likewise, if its loaded with
compression, it will fail once the compressive strength of the material is exceeded.
There is however, an additional way the element can fail when in compression,
which is by buckling. Buckling is defined as a loss of stability which occurs once
the applied compressive load reaches a certain critical level. This will ultimately
cause a change in the shape of the element. Buckling will happen suddenly, and
produce large displacements. Although it does not necessarily result in yield or
fracture of the material, it is still considered a failure mode, as a buckled structure
will no longer support the load properly. The most common buckling mode is
column buckling, see section 4.5.2

In 1744, mathematician Leonhard Euler published a book in which he presented
the derivation of the equation for the critical axial load, later called Euler’s
critical load (Pcr).

Pcr = π2EI

L2 (3.12)

The load causing a column to buckle depends on three parameters, and is not
reliant on material strength. The parameters included are Young’s modulus (E),
Area moment of inertia (I) and column length (L). However, this form of the
equation is only valid for an element pinned at both ends. Regarding other support
conditions, the critical load can be computed by introducing the concept of effective
length (Le). The effective length can be defined as the distance between the
inflection points on the deflected shape. Le can be quantified by an effective
length factor [k], see table 3.1.
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Restraint Position Position and
direction

Position and
direction none

Sh
ap

e

Restraint Position Position Position and
direction

Position and
direction

LE 1.0L 0.85L 0.7L 2.0L

k 1 0.85 0.7 2

Table 3.1: Buckling length as a function of real length.

As table 3.1 presents the most common end conditions with the associated
effective lengths, Euler’s formula can now be made applicable for all end conditions.
This is done by replacing the column length with the effective length in equation
3.12

It is important to mention that Euler’s critical load was derived under the
assumption of an "ideal column". This may cause certain limitations in regards of
real applications, as there will always exist small deviations in engineering design.
In regard of eq. 3.12, following conditions are assumed:

• Material with linear elastic behavior

• Member free from geometric imperfections and from residual stresses

• Perfectly centered load

• Small displacement theory

The formula assumes a perfectly centered load, which is never the case, the
applied load will always be somewhat offset from the centroid. Even if its by
a marginal amount, this eccentricity introduces a moment that acts additional
to the axial load, consequently reducing the critical buckling load. Another
limitation mentioned is that the column is assumed to be perfectly straight prior
to loading. Real elements contain imperfections and however small they may be,
these can, like the eccentricity, reduce the critical load.
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Buckling failure is not exclusively restricted to straight members. Thin
plates and shells are also susceptible to buckling failure. This types of buckling
are more sensitive to the presence of imperfections than one might expect from
columns, and thus, the effects are more difficult to predict. Given a more
complexed failure mode, detailed non-linear analysis using the finite element
method is commonly utilized for these structures.
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Chapter 4

Approach

4.1 Description
The long term objective of the TLB concept is to enable industrialization of
offshore wind turbines. In this perspective, mass reduction of steel is critical. The
approach for this thesis heavily relies on the optimizations done in Anders Myhr’s
PhD. Due to time limitations, further optimizations of an upscaled platform will
not be a part of the thesis, thus making it crucial to preserve as much as possible
of the initial design. Key boundaries and constraints are established in advance,
in order to maintain the optimized TLB B2 while upscaling.

4.2 The 10MW turbine
The baseline Rotor Nacelle Assembly (RNA) used for this thesis is the DTU
10MW reference wind turbine. The reference turbine is designed with the purpose
of creating a publicly available model representative to the next generation wind
turbines. The design is created with a high level of detail, enabling simulations
with comprehensive simulation tools [18]. Its properties are presented in table 4.1.
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Table 4.1: Basic turbine RNA properties [18]

Description Value Unit
Rating 10 MW
Rotor, Hub diameter 178.3, 5.6 m
Cut-in, Rated, Cut-out wind speed 4, 11.4, 25 m/s
Cut-in, Rated rotor speed 6, 9.6 RPM
Rated tip speed 90 m/s
Rotor mass 229 Tons
Nacelle mass 446 Tons
Total mass 675 Tons

4.3 Constraints and guidelines
A rather crude approach is applied by replacing the RNA with a lump mass,
equivalent to the rotor mass. This mass is set to 675 tons, representing the
new rotor, see table 4.1. This is done primarily to simplify an already complex
geometry, for the initial steps. The platform is then scaled to the new RNA
mass, maintaining the core properties of TLB B2. The framework of this section
revolves around preliminary guidelines and constraints set in order to preserve the
original design. These guidelines are presented in the sections below.

4.3.1 Height
A bigger rotor will subsequently result in a larger rotor radius. In order to keep the
waves from interfering with the blade trajectory, the hub is simply located higher.
This is done by increasing the tower height. The distance between the SWL and
the hub diameter should be kept at 24.6 m.

4.3.2 Floater
Floater mass

The floater accounts for the platforms buoyancy, causing the tension in the mooring
lines. In the 3DFloat input file, the floater walls are smooth surfaced cylinders
with a given wall thickness, which realistically this is not the case. To account for
support-structures such as butt-welds, ring stiffeners, connections etc. experience
within the matter indicates a generalized floater mass of 200kg steel per cubic
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meter displaced water. This is achieved by increasing the density of the steel used
for the floater, and will have no effect on the amount of displaced water.

Wall thickness

To prevent buckling in the design phase, a general rule of thumb is to keep the
wall thickness from falling short of 0.004 times the cross-section diameter. As there
will not be any optimizations for this platform, this generalization is conservatively
fulfilled throughout the entire structure as a baseline for the design phase.

Excess Buoyancy EB

The buoyancy is as previously stated the source of tension in the mooring lines.
The relationship between mass and excess buoyancy is kept the same as for the
TLB B2 [5MW] platform. A factor of ≈ 1.05 is used. The relationship between
mass and buoyancy was optimized within the time domain by Myhr. and utilized
to prevent slack in the mooring lines.

4.3.3 Mooring line tension
With the mooring line system being the only stabilizing source for the platform, it
is therefore crucial to avoid slack, and thus creating snapping loads. A minimum
10% of nominal pre tension in the mooring lines is desired contained at all times.
The margin was initially applied by Myhr for the TLB B2 [5MW]. The same
mooring lines are used for this thesis as Myhr’s PhD. A standard Bexco DeepRope
Dyneema mooring line type, with a Young’s modulus of 54.5 Gpa is assumed.
Youngs modulus is required in order to compute the necessary stiffness (EA) for
the mooring lines.

4.3.4 Eigen value
To avoid resonance, the Eigen values for the model is to be outside of the 3P and
1P ranges of the rotor, as well as the high energy spectrum of the waves. 1P and
3P are calculated below, and should be avoided, preferably with a 20 % margin.

f1P = ω

60 (4.1)

f3P = ω

60 · 3 (4.2)
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For equation 4.1 and 4.2, ω is the angular velocity of the rotor [RPM]. The eigen
period can be computed by following equation 4.3.

P = 1
f

(4.3)

Table 4.2: 3P and 1P ranges of the rotor

ω Frequency Period
1P 6 - 9.6 [RPM] 0.1 - 0.16 [Hz] 6.25 - 10 [s]
3P 0.3 - 0.48 [Hz] 2.08 - 3.33 [s]

Adding a 20% margin to the periods in 4.2 introduces the following constraints
for the TLB design.

1. Eigen periods should be below 5 seconds

2. Eigen periods should be: P < 1.66s or P > 3.98s

4.4 Environmental Conditions
As the offshore wind industry is expanding, adequate is information about site
conditions is more and more accessible. Knowledge about the wind- and wave
conditions should be obtained not only for estimating and predicting potential
energy yields, but also for determining the load parameters. The original TLB
design was developed for extreme conditions, but was later optimized for the K13
site, which has a database consisting of several years of wind measurements. For
comparative purposes, the TLB B2 [10MW] is developed with the same site
in mind, thus utilizing the same approach as for the TLB B2 [5MW]. It is
notable that the K13 site has a measured water dept of roughly 25 meters, which
is considered quite shallow. As the regular sea-state of the K13 corresponds well
with deeper sites, a K13 deep-site is created, where extreme events are based on
deeper sites. The K13 deepsite is used for this thesis. The relevant design load
parameters are gathered from Myhr [10] and Fisher [19], which are based upon the
IEC-61400-3 standard.

4.4.1 Waves
In the upwind project, a relationship between wave height and return period was
derived as:

Hs,3hrs(Treturn) = 0.6127 · ln(x) + 7.042 (4.4)
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This relationship was used to list several wave heights as a function of the return
period, which was later to be utilized by A. Myhr for the TLB B2 development.

Table 4.3: Extreme wave heights as a function of return period.[10], [19]

Treturn [Yr] Hs,max [m] Hmax [m] TH,max [m]

1 7.1 13.21 9.44

5 8.1 15.07 10.09

10 8.5 15.81 10.33

50 9.4 17.48 10.87

100 9.9 18.41 11.15

Hs is the significant wave height, equivalent to the mean of the highest third
of the waves. In the upwind project, a factor of 1.86 is used to describe the
relationship between Hs and Hmax. Additionally, the minimum wave period is
consistently used as a conservative approach. This is due to the fact that a higher
wave frequency is more likely to interfere with the Eigen frequency [19]. Breaking
waves are not considered for the design.

4.4.2 Wind
As mentioned in ref 4.3.1, a higher tower is required, resulting in different wind
parameters for the rotor hub. The height of the TLB [10MW] is considered
pre-defined as the structure benefits from being as short as possible. A pre-
defined hub height enables calculations of wind speeds at a higher altitude. Myhr’s
height and velocity is used as reference, essentially creating the same storm, simply
measured at different heights. By using a Wind shear exponent provided in the
upwind project, wind speeds at hub height (Vhub), can be computed by following
relationship.

Vhub = V (z)
( z

zhub
)a

(4.5)

with,
zhub = Hub height
V (z) = Reference wind speed
z = Reference height
α = Wind shear exponent (α = 0.14)
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By extracting V (z) from the formula, a conversion factor can be derived. This
factor is later used to emulate the load cases used to verify the TLB B2 [5MW].

fwind
−1 =

(
z

zhub

)a

=
(90.4

117

)0.14
(4.6)

The equations gives a wind conversion factor of fwind
−1 = 1.03677. Same approach

is applied for the wind turbulence. By utilizing the relationship based upon the
distribution from the Noordzeewind OWET project. The associated turbulence
intensities I(U) can be calculated by following method [19]:

I(U) = (15 + aU)
(1 + a)U · I15 (4.7)

The turbulence is calculated according to the IEC-3 standard, defining I15
as 0.15, and a as 5.

4.4.3 Current
The same current is applied, which is taken from the Noordzeewind OWEZ project
[19]. For regular weather conditions, a mean current of 0.6 m/s is used, while a
current of 1.2 m/s is used for extreme events.

4.5 Verification
In chapter 6, the structure is to be verified by an Ultimate Limit State (ULS) -
and a Fatigue Limit State (FLS) analysis. These analyses are done in order to
verify the structure against potential failure during the design load cases, and to
prove its viability. For both ULS and FLS analysis, the structure is verified in 13
different cross-sections in order to come as close to a full verification as possible.
See figure 4.1 for a complete display of the cross-sections.

According to the DNV-RP-C203 standard, due to the varying bending
stress resulted from in- and out of plane bending, the stress should be evaluated
at 8 spots around the circumference of the intersection. Alongside with the
superposition of stresses in the cross-sections, proper Stress Concentration Factors
(SCF) should also be applied. The applied SCF’s are 1.536 for the tubular
sections, and 1.584 for the tapered section which are equivalent to the factors
utilized by Anders Myhr for the TLB B2 [5MW] [10].
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Figure 4.1: Cross sections to be verified for buckling and fatigue.
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4.5.1 Fatigue Limit State analysis
For the FLS verification, the theory presented in chapter 3.2 is applied. The
yearly cumulative damage from each design case is calculated and then summed
for every individual cross-section. A Design Fatigue Factor (DFF) is added for
the final estimated lifetime. The DFF should be defined in accordance with
DNVGL-ST-0119 standard which provides appropriate guidelines based upon
structural detail, and accessibility. For this thesis a DFF factor of 3 is used,
equivalent to the factor used for the TLB B2 [5MW].

For post processing, data gathered by 3DFloat is imported to Python, and
processed with the Rainflow counting method. This enables application of Miner’s
rule for the entire time-series, and the total damage is assessed. The Python
routine for the Rainflow counting method and Miner’s rule was created by Marit
Kvittem at SINTEF. See appendix C and E for S-N curves and complete Python
input file.

4.5.2 Ultimate Limit State analysis
The ULS analysis is done to verify that the structure is in compliance with
engineering demands for strenght and stability. A successful ULS analysis will
ensure that the structure does not exceed the pre-defined constraints such as for
slack and displacements in the tower (sway, surge, heave, roll, pitch and yaw). As a
part of the ULS analysis, the structure is verified against buckling, which was one
of the driving criteria for the development of the TLB B2 [5MW]. Buckling
verification of both column and shell buckling (see figure 4.2) is to be done
according to the DNV-RP-C202 standard. The following method is introduced
in the sections below:

Figure 4.2: Illustration of shell buckling (left), and column buckling (right), [20]
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Buckling verification

For the buckling methodology, a vertical spacing between each ring stiffener is
assumed to be 3m. No longitudinal stiffener is assumed. For the submerged
section, the mass of the stiffeners is accounted for by increasing the steel density
to match the boundary set in section 4.3.2. However, for the tower section, the
mass of the ring stiffener system has not been included. This is due to an already
conservative approach for the submerged section, and small significance to the total
mass. Figure 4.3 illustrates the referential system used for buckling calculations.
As previously mentioned, tension is defined as positive.

Figure 4.3: reference system cylinder shell [20]

Shell buckling

From section 3.3, the stability verification requires that load subjected to the
cylinder, does not exceed Euler’s critical load. The stability requirement is given
by:

σj,Sd ≤ fksd (4.8)

σj,Sd is equivalent to the Von Mises stress, and is defined as:

σj,Sd =
√

(σa,Sd + σm,Sd)2 − (σa,Sd − σm,Sd)σh,Sd + σ2
h,Sd + 3τ 2

Sd (4.9)
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The components included in the Von Mises stress equation is axial compression
or tension (4.10), bending (4.11), circumferential compression or tension (4.14),
torsion(4.12) and shear stress (4.13). Thin walled approach is applied for all
components, and their respective equations are given below. See List of symbols
for all definitions.

σa,Sd = NSd

2πrt (4.10)

σm,Sd = M1,Sd

πr2t
sinθ − M2,Sd

πr2t
cosθ (4.11)

τT,Sd = TSd

2πrt (4.12)

τT,Sd = Q1,Sd

πr2t
sinθ − Q2,Sd

πr2t
cosθ (4.13)

σh,Sd = PSdr

t
(4.14)

where,

PSd = ρgh

Note that the circumferential pressure (displayed as P in figure 4.3) is caused
by the water pressure, and will only be included for the submerged parts of the
structure.

In order to compute the design shell buckling strength from equation 4.8,
the relationship between characteristic buckling strength and the material factor
is used.

fksd = fks

γM

(4.15)

where,

γM = 1.15 for λs < 0.5

γM = 0.85 + 0.60λs for 0.5 ≤λs ≤ 1.0

γM = 1.45 for λs > 1.0
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The characteristic buckling strength is given by:

fks = fy√
1 + λs

4
(4.16)

Note that both the material factor and the characteristic buckling strength is
reliant of the slenderness. For fks, S355 is assumed. The slenderness is calculated
by using the compressive components subjected to the cylinder. In 4.4, every
component subjecting tension is treated as zero. Each compressive load is divided
by the elastic buckling strength, see 4.18.

λs
2 = fy

σj,Sd

[
σa0,Sd

fEa

+ σm0,Sd

fEm

+ σh0,Sd

fEh

+ τSd

fEt

]
(4.17)

Table 4.4: Necessary values for computation of relative slenderness.

σa0,Sd = 0 for σa,Sd ≥ 0

σa0,Sd = −σa,Sd for σa,Sd < 0

σm0,Sd = 0 for σm,Sd ≥ 0

σm0,Sd = −σm,Sd for σm,Sd < 0

σh0,Sd = 0 for σh,Sd ≥ 0

σh0,Sd = −σh,Sd for σh,Sd < 0

fE = C
π2E

12(1 − ν2)

(
t

l

)2
(4.18)

C is the reduced buckling coefficient and is computed for each load component
(axial, bending, pressure and torsion/shear force).

C = ψ

√√√√1 +
(
ρζ

ψ

)2

(4.19)

Each component and their respective coefficients can be found in table 3-2:
Buckling coefficients for unstiffened cylindrical shells, mode a) Shell buckling in
the DNV-RP-C202 standard. [20].
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Column buckling

Buckling of the cylinder as a column is to be checked in accordance with the
standards. DNV-RP-C202 suggests that a verification of column buckling should
be applied if: (

kLc

ic

)2

≥ 2.5E
fy

(4.20)

The effective length factor was set to 2 based on theory presented in 3.3. Should
a verification be deemed necessary, the stability requirement is given by following
equation.

σa0,Sd

fkcd

+ 1
fakd

 σm1,Sd

1 − σa0,Sd

fE1

 σm2,Sd

1 − σa0,Sd

fE2

−0.5

≤ 1.0 (4.21)

The same procedure is applied here, as for equation 4.17. Only compressive loads
are accounted for as these are the only loads that can result in buckling failure.
Bending stress is treated normally due to the principal of superposition. fE1,
and fE2 are defined as Euler’s buckling strength among the principal axes. FEi is
given by:

fEi = π2EIc,i

(kiLc,i)2 Ac

, i = 1, 2 (4.22)

Similar to equation 4.15, the design column buckling strength is given by:

fkcd = fkc

γM

(4.23)

The required buckling strength is defined based on the relative slenderness
for column buckling:

λs = kLc

πic

√
fak

E
(4.24)

where,

fak = b+
√
b2 − 4ac
2a (4.25)

For computation of factors, a, b and c. See DNV-RP-C202, chapter 3.8.2 [20]
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Python algorithm

An adequate amount of monitors is inserted in 3DFloat and the time-series data
from the entire ULS analysis is imported into Python. The method introduced in
4.5 is applied and eight spots is evaluated individually around the cross-section.
Both column, and shell buckling is analyzed in the python algorithm, and the
most critical failure mode for the most critical spot is given as output for each
cross-section.

The same approach is used for the FLS analysis, in which the most critical spot
for each cross-section is used to represent the stability of the structure. For every
step in detail, see full Python algorithm presented in appendix D
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Chapter 5

Results

The dimensions of the structure is in general governed by the need to avoid fatigue.
The lower parts of the tower are subjected to, and must endure large bending
moments, thus making it the design driver of the structure. The diameter of the
tower was continuously increased until the required lifetime was obtained, making
the floater significantly heavier. The submerged section of the floater was primarily
governed by buoyancy, and dimensioned way above its necessary dimensions in
order to resist buckling. As the upper end of the floater was subjected to wave
induced loads, fatigue would be the driving force should the wall thickness be
reduced.

5.0.1 Overview
Structural parameters of the TLB B2 [10MW] is presented below and compared
to the original model. For all dimensions, see Python algorithm provided in
appendix A

Table 5.1: Overview of comparable results

Parameter [5MW] [10MW] Unit Increase
Bottom floater diameter 9.22 17.50 [m] 89.8%
Lower tower diameter 6.50 11.5 [m] 76.9%
Upper tower diameter 4.50 7.0 [m] 55.5%
Rotor mass 350 675 [Tons] 92.9%
Floater mass 355 1501 [Tons] 322.8%
Total mass 1068 3958 [Tons] 270.6%
Total deplacement 2166 8098 [Tons] 273.86%
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By retaining the buoyancy criterion stated in 4.3.2, every increase in mass
required in order to satisfy the fatigue verification, equivalents twice the weight
in total deplacement. Significantly increasing the tower diameter, will essentially
result in an exceedingly large floater. Thus, due to a relatively low buckling and
fatigue utilization, the wall thickness of the lower end was reduced by ≈ 20%
below the pre-defined constraints presented in 4.3.2 with the purpose of reducing
the total mass. Further optimizations were not executed due to time limitations.

Figure 5.1: TLB B2 [10MW] (left) and the TLB B2 [5MW] (right)

Figure 5.1 illustrates a visual representation of the two TLB designs displayed
in the same scale. The rotor is replaced with a lump mass, and is not representative
for the hub radius. The mooring system is not portrayed.
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5.0.2 Eigen analysis of the upscaled design
One of the most important aspects of the TLB design is to keep the Eigen modes
outside of the 1P and 3P ranges of the rotor, as well as below the high energy
part of the waves. An Eigen analysis of the final structure (without the rotor)
indicates that the Eigen periods are presumably within the acceptable ranges,
with the exception of the first bending modes. However, it is worth mentioning
that these modes are just beneath the upper boundary of 3.98 s period, which
is defined by the cut-in rotor speed, including a 20% margin. Data gathered by
3DFloat during the ULS analysis indicates that the rotor rarely lingers at cut-in
speeds, and its therefore debatable whether or not the 20% margin is necessary
for the upper bound of the 3P range.

Table 5.2: Overview of results from the Eigen analysis done with, and without the rotor.

Mode
Lump mass Rotor

[Hz] [s] [Hz] [s]

1 0.26 3.86 0.25 3.98

2 0.26 3.86 0.30 3.38

3 0.63 1.58 0.52 1.93

4 0.63 1.58 0.59 1.69

5 0.68 1.48 0.61 1.63

6 1.63 0.61 0.64 1.56

7 1.64 0.61 0.64 1.56

8 1.72 0.58 0.68 1.46

9 4.30 0.23 0.78 1.28

10 4.32 0.23 1.06 0.95

An Eigen analysis with the rotor incorporates the blades to the Eigen modes,
giving slightly higher values to the Eigen periods. The analysis is done with the
blades at 0◦, as a feathered blade state is deemed more favorable for the analysis.
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Figure 5.2 displays the Eigen modes plotted with the acceptable regions
marked. The figure is plotted without the 20% margin included in the 3P range,
and mode 2 and 3 raises immediate awareness due to the close proximity to the
3P region. Likewise to the TLB B2 [5MW], mode 3 causes the most concern as
it may interfere with the blade-passing frequency at rated rotor speeds. Avoiding
the 3P ranges grows increasingly challenging as the rotors get bigger, and a
more detailed design might be necessary for soft-stiff systems. In such a study, a
pitch controller can also be be implemented to prevent the rotor from rotating at
resonance frequencies.

Figure 5.2: Display of Eigen modes with the given threshold values (without the 20% margin)

The desired Eigen modes are obtained by increasing the stiffness of the
mooring lines after finalizing the structural mass needed to fit the ULS and FLS
requirements. The required stiffness of the upper mooring lines are 3.6 · 106 kN,
and 2.46 · 106 kN for the lower mooring lines. A suggested combination of in-stock
mooring lines are not provided in this thesis.
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Chapter 6

Loads analysis

For the ULS and FLS analysis, the same load cases are used to verify the TLB
B2 [10MW] as for TLB B2 [5MW]. Load case 1.1 and 1.6a, provided by the
DNV-OS-J101, covers realistic load combinations and are used for operational
stages. Cases 2.x, 3.x, 4.x, and 5.x are not considered as the turbine is but a
generalized model, and no specific turbine supplier is used [21]. Every case is run
unidirectional and in-line with one of the mooring lines unless specified otherwise.
This is previously done to expose the weakest case for the TLB configuration,
and is done for this thesis verification as well. All the cross sections displayed in
figure 4.1 is listed en table 6.1 below:

Table 6.1: List of cross-sections checked during the verification

Cross-section Position [m]
1 Close to lower endcap -38
2 Below transition (subsea) -20
3 Above transition (subsea) -12
4 In waterline 0
5 Below transition (+10) 9
6 Above transition (+10) 11
7 Below upper mooring 22
8 Above upper mooring 25
9 In tower 42.4
10 In tower 60.2
11 In tower 78
12 In tower 96
13 Below rotor 112.5
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6.1 Ultimate Load Cases
As mentioned above, the load cases utilized for the ULS analysis, is 1.1, which is
at a Natural Sea State (NSS) with a normal turbulence model. 1.6, is at a Severe
Sea State (SSS), where the system is subjected to winds at cut-out speed. The
last case is for Extreme Sea State (ESS), with an extreme Wind speed model.
For this case, the system is parked, with the blades rotated 90 ◦. The rotor will
not generate any power for these conditions, as the case is exclusively testing the
systems survivability.

Table 6.2: Summarized load cases provided by Anders Myhr. [10]

Design
Situation

Load
Case

Wind
State

Wave
State

Current Limit
State

Production 1.1 NTM NSS Wind-gen ULS

Production 1.6a NTM SSS Wind-gen ULS

Parked 6.1a EWM ESS 50-year ULS

6.1.1 ULS analysis
The table below lists a detailed description of all the load cases used for the ULS
verification. For ULS 4-7, and ULS 9, the wind and wave trajectory is angled
60◦. As the environmental loads are more distributed across the mooring lines,
these cases are expected to cause a slight reduction in mooring line and anchor
loads.

Table 6.3: List of ultimate load cases, [10], [21]

Turbine
state

J101
DLC DLC Duration

[Hours]
Direction

[Deg]
Wave

(Hs)[m]
Wave

(Tp)[m]
Wind
[m]

Turbulence
(Ti)[%]

Current
(V)[m/s]

P
ro

du
ct

io
n

1.1 ULS01 1 0 7.1 10.8 11.8 15.7 0.3

1.1 ULS02 1 0 7.1 10.8 18.7 14.5 0.45

1.1 ULS03 1 0 7.1 10.8 24.9 14 0.6

1.1 ULS04 1 60 7.1 10.8 11.8 15.7 0.3

1.1 ULS05 1 60 7.1 10.8 18.7 14.5 0.45

1.1 ULS06 1 60 7.1 10.8 24.9 14 0.6

1.6a ULS07 1 60 9.4 12.4 24.9 14 0.6

1.6a ULS08 1 0 9.4 12.4 24.9 14 0.6

Parked
6.1a ULS09 1 90 9.4 12.4 44.3 13.3 1.2

6.1a ULS10 1 0 9.4 12.4 44.3 13.3 1.2
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Mooring line, and anchor loads

The main constraint regarding the mooring system, is to maintain 10% of the
nominal pre-tension in the mooring lines at all times, for all ULS cases. An
equilibrium state analysis provide stabilized tension in all mooring lines, see table
6.4. For this analysis the systems damping coefficient is increased significantly.

Table 6.4: Nominal pre-tension in upper and lower mooring lines.

Mooring line Tension [kN]

Bottom 11736

Upper 10020

Based on table 6.4, the upper mooring lines should not fall short of a tension
of 1002 kN, while the bottom mooring lines, should be above 1174 kN at all times.

Table 6.5: Overview of the mooring line forces from the ULS analysis

DLC
Bottom mooring line Upper mooring line
Mean [kN] Max [kN] Mean [kN] Max [kN]

ULS 1 11821.4 15518.2 12581.4 19373.9
ULS 2 11817.3 15769.4 11538.2 19007.9
ULS 3 11815.6 15228.7 11342.1 18011.1
ULS 4 12064.1 16109.2 11412.8 16904.5
ULS 5 11884.9 15789.3 10970.4 20602.0
ULS 6 11850.5 16036.8 10952.7 19480.6
ULS 7 11833.1 17085.6 10968.8 20573.5
ULS 8 11637.6 16435.8 11376.6 19423.0
ULS 9 11805.9 16490.8 10293.7 22597.4
ULS 10 11750.8 17110.9 10314.8 27287.9

At certain points during ULS case 10, slack occured in some of the mooring
lines. This was also the case for the TLB B2 [5MW], although no snapping
loads were registered. With higher amplitudes, the TLB B2 [10MW], must be
evaluated in detail and precautions should be done to avoid such loads.
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Table ?? gives an overview of the vertical and resultant anchor loads. One of
the greatest challenges regarding the TLB configurations is the mooring system,
and thus, the anchor loads plays a vital role. The table provides the worst/highest
mean as well as highest maximum load for all anchors. The same approach is
applied for the mooring lines. No ultimate holding capacity is set for neither
mooring lines or anchors, but the results from the ULS analysis gives a fair
indicator of the required capacity.

Table 6.6: Overview of anchor loads from the ULS analysis

DLC
Vertical anchor load Resultant anchor load

Mean [kN] Max [kN] Mean [kN] Max [kN]

ULS 1 14419.7 20968.5 32641.7 46228.8

ULS 2 13632.2 21130.5 32071.0 46080.7

ULS 3 13489.0 19943.6 31990.9 43952.5

ULS 4 13518.0 18837.8 31895.6 44023.3

ULS 5 13185.7 22644.2 31664.6 48520.3

ULS 6 13176.5 21252.3 31676.8 46758.1

ULS 7 13193.0 22649.6 31712.7 48748.5

ULS 8 13523.2 21260.7 32060.8 47251.9

ULS 9 12723.0 23593.1 31568.8 49348.7

ULS 10 12709.1 27155.8 31487.7 52585.3

Translations and rotations at the tower top

As a part of the stability check, heave, surge, sway, pitch, roll, and yaw are
monitored at the tower top. For the translations given in 6.7, the deviations
from the TLB B2 [5MW], are minimal. The rotations in table 6.8 also minimal,
and both compare well with onshore wind turbines. The ULS cases were only run
for an hour at a time, giving an expected variation of at least ± an 20 %. For
better representation, more seeds should be utilized for a longer period of time.
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Table 6.7: Overview of translations at the tower top during ULS analysis

DLC Heave Surge Sway
Mean Max Mean Max Mean Max

ULS 1 0.12 0.47 0.73 0.76 -0.01 0.21
ULS 2 0.07 0.44 0.73 0.76 -0.01 0.20
ULS 3 0.06 0.37 0.73 0.76 -0.02 0.20
ULS 4 0.25 0.82 0.63 0.67 -0.02 0.32
ULS 5 0.15 0.76 0.63 0.67 -0.03 0.40
ULS 6 0.13 0.62 0.64 0.67 -0.04 0.35
ULS 7 0.13 0.82 0.64 0.67 -0.04 0.41
ULS 8 0.07 0.47 0.73 0.76 -0.02 0.22
ULS 9 0.04 1.08 0.64 0.67 -0.00 0.44
ULS 10 0.01 0.81 0.73 0.77 -0.00 0.21

Table 6.8: Overview of rotations at tower top during ULS analysis

DLC
Pitch Roll Yaw

Mean Max Mean Max Mean Max
ULS 1 0.10 0.33 0.01 0.16 0.00 0.06
ULS 2 0.06 0.29 0.01 0.17 0.00 0.09
ULS 3 0.05 0.25 0.01 0.14 0.00 0.08
ULS 4 0.10 0.32 0.01 0.16 0.00 0.07
ULS 5 0.06 0.29 0.01 0.18 0.00 0.08
ULS 6 0.05 0.24 0.01 0.13 0.00 0.09
ULS 7 0.05 0.31 0.01 0.20 0.00 0.08
ULS 8 0.05 0.30 0.01 0.19 0.00 0.08
ULS 9 0.01 0.43 0.00 0.16 0.00 0.02
ULS 10 0.01 0.58 0.00 0.20 0.00 0.02
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Acceleration at the tower top

The upper threshold of the acceleration set for the tower top is 2.5 m/s2. The
measured value with the closest proximity was during ULS9, at an acceleration
of 2.13 m/s2, deeming the values well beneath the targeted limits. See table 6.9
for detailed overview.

Table 6.9: Overview of accelerations at tower top during ULS analysis

DLC
Heave Surge Sway

Mean Max Mean Max Mean Max
ULS 1 0.00 0.82 0.00 0.06 0.00 0.45
ULS 2 0.00 1.09 0.00 0.09 0.00 0.48
ULS 3 0.00 0.94 0.00 0.14 0.00 0.43
ULS 4 0.00 0.97 0.00 0.07 0.00 0.76
ULS 5 0.00 1.34 0.00 0.10 0.00 0.88
ULS 6 0.00 1.47 0.00 0.14 0.00 0.71
ULS 7 0.00 1.31 0.00 0.14 0.00 1.05
ULS 8 0.00 0.86 0.00 0.14 0.00 0.52
ULS 9 0.00 2.13 0.00 0.10 0.00 0.69
ULS 10 0.00 1.86 0.00 0.10 0.00 0.50
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Buckling Utilization

As mentioned earlier, the buckling utilization of the floater was heavily reduced
when scaling the tower to meet the fatigue requirements. As done for the TLB
B2 [5MW], the section breaking the waterline was slightly enforced by increasing
the wall thickness around this area. However, the buckling utilization from the
ULS analysis indicates that it was hardly necessary.

The lower part of the tower is subjected to large bending moments, and
has the highest buckling utilization. By investigating the full buckling overview in
table 6.11, higher turbulence’s can be assumed to create some stress singularities
on the tower, resulting in a higher peak utilization. However, these are rather
low, and are not regarded as critical. Table 6.10 provides the highest utilization,
with the critical ULS case for each cross-section.

Table 6.10: Highest buckling utilization for each cross-section

Cross-section Critical DLC Utilization

1 ULS 07 17%

2 ULS 08 26%

3 ULS 10 35%

4 ULS 10 40%

5 ULS 10 52%

6 ULS 10 73%

7 ULS 10 48%

8 ULS 10 44%

9 ULS 10 17%

10 ULS 10 18%

11 ULS 09 21%

12 ULS 06 29%

13 DLC 07 42%
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Table 6.11: Complete buckling utilization for each cross-section

DLC Section (1-13)
1 2 3 4 5 6 7 8 9 10 11 12 13

1 .12 .21 .24 .26 .31 .42 .34 .34 .13 .14 .18 .20 .41
2 .15 .24 .25 .26 .30 .43 .31 .31 .12 .13 .17 .19 .41
3 .15 .25 .24 .24 .27 .32 .28 .31 .12 .14 .17 .19 .41
4 .12 .20 .24 .25 .32 .43 .34 .34 .13 .15 .18 .20 .41
5 .15 .24 .21 .21 .25 .34 .31 .33 .13 .15 .18 .20 .41
6 .15 .26 .24 .23 .28 .38 .32 .31 .12 .14 .18 .29 .41
7 .17 .23 .23 .25 .30 .39 .30 .34 .13 .16 .20 .22 .42
8 .16 .26 .23 .22 .27 .38 .32 .35 .13 .15 .18 .20 .41
9 .05 .15 .24 .27 .35 .49 .37 .39 .15 .17 .21 .22 .42
10 .06 .22 .35 .40 .52 .73 .48 .44 .17 .18 .21 .23 .42

6.1.2 Fatigue Limit State (FLS)

Table 6.12: Listed cases for Fatigue analysis. Identical to cases implied by Fisher, and applied by Anders M.

DLC
Hub Wind speed Turbulence Hs Tp Occurrence

[m/s] [%] [m] [s] [Hours/y]
FLS01 2.07 30.6 1.1 6.0 531.8
FLS02 4.14 21.6 1.1 5.9 780.6
FLS03 6.22 18.5 1.2 5.8 1230.6
FLS04 8.29 17.0 1.3 5.7 1219.7
FLS05 10.36 16.1 1.5 5.7 1283.7
FLS06 12.44 15.5 1.7 5.9 1250.2
FLS07 14.51 15.1 1.9 6.1 734.2
FLS08 16.59 14.8 2.2 6.4 728.5
FLS09 18.66 14.5 2.5 6.7 366.7
FLS10 20.74 14.3 2.8 7.0 304.8
FLS11 22.81 14.1 3.1 7.4 134.4
FLS12 24.88 14.0 3.4 7.8 85.3
FLS13 26.96 13.9 3.8 8.1 44.7
FLS14 29.03 13.8 4.2 8.5 17.7
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Table 6.12, gives a detailed overview of the FLS cases run by Anders Myhr, and
implied by Fisher. The wind conversion factor has been applied to every case
in order to match the wind speeds with the new reference height of the rotor
hub. Every FLS case implied by fisher that has a wind speed above 30 m/s has
been neglected due to the low occurrence rate, and therefore low impact on fatigue.

The lower end of the tower was driving for the total design of the structure, and
took the most cumulative damage during rated wind speeds, as illustrated by
figure 6.1 . Higher fatigue damage for this case may be a result of resonance with
the third Eigen mode, which had an Eigen period matching the passing period of
the blades at rated angular velocity.

Table 6.13: Summarized lifetime for every cross-section

Cross-section Lifetime [Years]

01 6.96 · 101

02 7.14 · 101

03 8.06 · 101

04 2.75 · 101

05 4.74 · 101

06 1.10 · 103

07 4.56 · 103

08 2.91 · 103

09 5.95 · 104

10 5.41 · 103

11 3.89 · 103

12 7.43 · 104

13 8.71 · 1010
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As mentioned, the floater diameter was increased for the purpose of increasing
the total deplacement, thus making it resistant to fatigue damage. Any parked
states was not included in the FLS analysis, a conservative approach given
the fact the the last two FLS cases should realistically be run with the blades
feathered, and thus the bending moments to the tower would be reduced.

Figure 6.1 provides a full display of the partial fatigue damage from the
Python algorithm.

Figure 6.1: Detailed analysis of cumulative damage from all fatigue load cases

6.1.3 Evaluation and additional aspects
As mentioned earlier, the driving dimension of the structure is the lower end of
the tower due to the large bending moments created by the thrust force subjected
on the turbine. With this in mind, the TLB would be expected to have a linear
increase in mass rather than the cubic increase indicated by this thesis. A linear
increase would result in a mass of 2-2.25 times the original design, estimating a
total mass of approximately 2000 tons. With this being significantly lower than
the finalized TLB B2 [10MW] design, the driving parameters are analyzed for
further improvements.

By increasing the tower diameter, and thus the tower weight, an increase
in deplacement is required. The preliminary constrains set in 4.3, causes
limitations and drivers for the design, with the most critical being the wall
thickness.
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The wall thickness of the floater is predominantly governed by the buckling
utilization, and thus an increase in diameter of this size would theoretically require
less steel per deplaced volume. By not overruling the pre-defined constraints
(see 4.3), the substructure would continuously increase in mass as the need for
deplacement amplifies, causing a spiraling effect of an unnecessary increase in
mass and buoyancy. Ideally, as the floater is not governed by fatigue, the buckling
utilization should not be as low as presented in table 6.10, indicating that the
wall thickness of the floater is tremendously overdimensioned. Overdimensioning
the floater would subsequently cause casual sequences such as increased mooring
line tension, and anchors loads. Vertical anchor load is solved by counterweight,
and although this is significantly more cost-efficient than constructional steel, it
is still to be considered in a holistic analysis.

Although the buckling utilization may be considered the driving parameter
regarding the wall thickness of the floater, other aspects are important to address
as well. Simply reducing the thickness to fit a ≈ 90% utilization would indeed
reduce mass, but also cause a severe reduction in stiffness. The high stiffness of
the lower ends of the structure, is required in order to shift the natural frequencies
away from the critical regions, and thus reducing the risk of resonance. This
essentially means, that although a reduction in wall thickness of the floater is
recommended, uninhibitedly reducing the thickness may cause other issues.

Another way to increase buoyancy is to increase the draft of the structure.
As the TLB B2 is designed for the K13-deep site, with a dept of 50 meters, an
increase in draft was not considered although it was not presented as a constraint
in 4.3. An increase in draft at this dept would result in high risk of the floater
hitting the seabed during ESS, and eventually causing slack and instability.
However, this might indicate that the upscaled version of the TLB may benefit
from a deeper site.

Additional aspects

• As previously mentioned. The mooring line mounted in-line with the wind
and wave direction experiences temporary slack during ULS 10. Slack
line events are known to produce snapping loads as the system re-engages.
These snapping loads can result in shock for the mooring line material, and
cause potential fracture or reduced fatigue lifetime. Although it is the case
for this analysis, snapping loads are not necessarily restricted to extreme
conditions, but can also be triggered by resonance motions.
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An increase in longitudinal pre-strain for the upper set of mooring lines might
eliminate slack. This solution would also require a decrease in pre-strain for
the lower set in order to maintain equilibrium. The slack line event is simply
addressed for this thesis, and thus the model would benefit from an in depth
analysis of the mooring system in order to prevent snapping loads as the
system "reloads".

• An accidental limit state ALS analysis is not performed for the TLB B2
[10MW]. The mooring line system is ensuring stabilization, and should
one of the upper lines fail, the system is likely to lose stability. An ALS
verification could potentially be run for fault cases such as lower mooring
line fracture, or increased yaw response.

• The ULS analysis was carried out with one hour runs. The turbulence file
from TurbSim, does along with the wave table in 3DFloat reset after one
hour. Ideally, simulations should be either be done for longer periods of
time, or several shorter runs utilizing different seed opportunities, to ensure
variation to each unique run. However, extreme values occured during at
some points during one hour runs, and the ULS setup was deemed adequate
for the scope of this thesis.
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Chapter 7

Conclusion

Compared to the original design, the structure increased significantly in mass,
close to a cubic rate. As opposed to the expected increase which was of a linear
approximation, this is probably originated in the preliminary constraints set as
proposed guidelines for the design phase. The referred constraints are regarding
wall thickness, and floater mass. The wall thickness was defined as a way of
protecting the design against buckling in the design phase, but a low utilization
shows an unnecessary use of steel. By containing the pre-set excess buoyancy
of 1.05 times the total mass, the extra steel used for the floater would have a
spiraling effect, resulting in an excessive need for buoyancy. Increased draft may
also reduce the mass of the floater, which might indicate that this configuration
is more suited for deeper sites.

An important aspect is of designing an FOWT is to avoid resonance. Managing
the Eigen frequencies and restraining all modes from the critical regions proved
rather challenging. As the structure passed the FLS and ULS verification, it was
regarded as stable, and the Eigen modes were not furthered altered. However, one
of the modes natural frequencies was found to resonate with the blade passing
frequency at rated rotor speed, in which might affect the total lifetime of the
structure. This is to be considered for further improvements.

Despite the heavy design, the TLB B2 [10MW] has provided crucial guidelines
for further design and optimizations. By determining the critical loads and drivers
for the structure, a more detailed optimization setup can be utilized in order to
unlock the potential of the TLB configuration.
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7.0.1 Further work
As the TLB B2 [10MW] required significantly more mass then estimated, much
work is still to be done. The primary objective is to reduce the mass to fit the
expectations, thus making the platform more cost-efficient. Further work for the
TLB B2 [10MW] revolves around unlocking the constraints set for draft and
wall thickness, as well as steel per deplaced water, which has the potential to
drastically improve the design. Essentially, a detailed buckling analysis proves
the pre set wall thickness of th = 0.004 ·D to be fairly conservative. Further work
might therefore include deriving a tailored generalization of the wall thickness
regarding the TLB configuration for cases in which a full buckling analysis is
neglected. However, this would require a deeper analysis of the Eigen modes as
the TLB would still require a certain amount of stiffness. Although the system
appears to have sufficient damping, no modes should interfere with the 3P region
although this has proven to be a difficult task to accomplish. An optimization
of the model, utilizing wall thickness of the floater, steel per deplaced volume,
and draft as variable parameters, could prove tremendous potential for the TLB
design, as the total mass already is far below the weight of other configurations.

Reducing the mass is also critical regarding the cost of the mooring system.
Technological readiness has for a long time restricted the development of the
TLB configuration, especially the mooring system. Reducing the total mass,
and thus reducing the mooring line, and anchor loads is therefore crucial for
developing a sustainable design. For this thesis the anchor points are regarded as
completely stiff, although this is not necessarily required. Reducing the stiffness
of the anchor point may reduce cost, but should not be done that an extent in
which the Eigen frequencies are significantly altered. The configuration would
benefit from a deeper analysis of the anchor stiffness.

The mass of the structure has been the main concern for this thesis, but
as stated, reducing mooring line cost is also critical for the TLB. The mooring
lines used for this thesis has low utilization regarding minimum breaking load.
This is a direct result of the required stiffness, in which is the driving parameter
for the mooring line diameter. For further work, other types of mooring systems
might be considered. By utilizing the identical geometry, steel tubes has been
discussed as a viable alternative to the Dyneema mooring lines, and might enable
more stiffness for less mass. However, this is merely a suggestion, and is not
regarded as an option for this thesis.
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Appendix A

Buckling analysis

1 import numpy as np
2 from buckling import shell_buckling
3

4 file = open('sensors_uls10 .txt ')
5 a = np. loadtxt (file ,skiprows =500 , dtype='float ',delimiter =';')

#
6 t = a[: ,0];
7

8

9

10

11 ##Cross - sections
12

13 #Close to endcap [-38m]
14 D_endcap = 17.5
15 t_endcap = 0.055 #D *0.004 follow throughout
16 Depth_endcap = 38
17

18 #Below transition [ -20]
19 D_below_transition = 17.5
20 t_below_transition = 0.055
21 Depth_under_transition = 20
22

23 #Above transition [ -12]
24 D1_above_transition = 11.5
25 t1_above_transition = 0.085
26 Depth_above_transition = 12
27

28 #In waterline [0]
29 D_in_waterline = 11.5
30 t_in_waterline = 0.085
31 Depth_topside = 0
32
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33 #Below transition +10 [9]
34 D2_below_transition = 11.5
35 t2_below_transition = 0.085
36

37 #Above transition +10 [11]
38 D2_above_transition = 11.5
39 t2_above_transition = 0.046
40

41 #Below upper mooring [22]
42 D_below_mooring = 11.5
43 t_below_mooring = 0.046
44

45 #Above upper mooring [25]
46 D_above_mooring = 11.5
47 t_above_mooring = 0.046
48

49 #In tower [42.4]
50 D1_in_tower = 11.5
51 t1_in_tower = 0.055
52

53 #In tower [60.2]
54 D2_in_tower = 10.5
55 t2_in_tower = 0.055
56

57 #In tower [78]
58 D3_in_tower = 9.5
59 t3_in_tower = 0.055
60

61 #In tower [96]
62 D4_in_tower = 9
63 t4_in_tower = 0.046
64

65 #Below rotor [112.5]
66 D5_in_tower = 7
67 t5_in_tower = 0.042
68 #
69 #
70 #
71

72 # ---------------------------------------------------------#
73

74 #Close to endcap
75

76 Close_to_endcap_fx = a[: ,35]*1. e3;
77 Close_to_endcap_fy = a[: ,36]*1. e3;
78 Close_to_endcap_fz = a[: ,37]*1. e3;
79 Close_to_endcap_mx = a[: ,38]*1. e3;
80 Close_to_endcap_my = a[: ,39]*1. e3;
81 Close_to_endcap_mz = a[: ,40]*1. e3;
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82

83 bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,\
84 bukling_6 ,bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,\
85 knekking3 ,knekking4 ,knekking5 ,knekking6 ,knekking7 , knekking8 = \
86 shell_buckling (t, Close_to_endcap_fx , Close_to_endcap_fy ,

Close_to_endcap_fz ,\
87 Close_to_endcap_mx , Close_to_endcap_my ,\
88 Close_to_endcap_mz ,D_endcap ,t_endcap , Depth_endcap )
89

90 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,\
91 bukling_6 ,bukling_7 ,bukling_8 ,\
92 knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,\
93 knekking6 ,knekking7 , knekking8 ]
94 max_values = []
95

96 def get_max ( totlist ):
97 for i in totlist :
98 if type(i) == list:
99 max_values . append ( get_max (i))

100 else:
101 max_values . append (i)
102 return max( max_values )
103

104 my_max = get_max ( my_totlist )
105 print("worst case of buckling is", my_max )
106

107 def get_list (max_value , totlist ):
108 for i in range(len( totlist )):
109 for j in totlist [i]:
110 if j == max_value :
111 return i
112

113 print( get_list (my_max , my_totlist ))
114

115

116 below_transition_fx = a[: ,41]*1. e3;
117 below_transition_fy = a[: ,42]*1. e3;
118 below_transition_fz = a[: ,43]*1. e3;
119 below_transition_mx = a[: ,44]*1. e3;
120 below_transition_my = a[: ,45]*1. e3;
121 below_transition_mz = a[: ,46]*1. e3;
122

123 bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,\
124 bukling_6 ,bukling_7 ,bukling_8 ,\
125 knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,\
126 knekking6 ,knekking7 , knekking8 = \
127 shell_buckling (t, below_transition_fx ,\
128 below_transition_fy , below_transition_fy ,\
129 below_transition_mx , below_transition_my , below_transition_mz ,\
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130 D_in_waterline , t_in_waterline , Depth_under_transition )
131

132 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,\
133 bukling_5 ,bukling_6 ,bukling_7 ,bukling_8 ,\
134 knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,\
135 knekking6 ,knekking7 , knekking8 ]
136 max_values = []
137 def get_max ( totlist ):
138 for i in totlist :
139 if type(i) == list:
140 max_values . append ( get_max (i))
141 else:
142 max_values . append (i)
143 return max( max_values )
144

145 my_max = get_max ( my_totlist )
146 print("worst case of buckling is", my_max )
147

148 def get_list (max_value , totlist ):
149 for i in range(len( totlist )):
150 for j in totlist [i]:
151 if j == max_value :
152 return i
153

154 print( get_list (my_max , my_totlist ))
155 above_transition_fx = a[: ,47]*1. e3;
156 above_transition_fy = a[: ,48]*1. e3;
157 above_transition_fz = a[: ,49]*1. e3;
158 above_transition_mx = a[: ,50]*1. e3;
159 above_transition_my = a[: ,51]*1. e3;
160 above_transition_mz = a[: ,52]*1. e3;
161

162 bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,bukling_6 ,\
163 bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,\
164 knekking5 ,knekking6 ,knekking7 , knekking8 = \
165 shell_buckling (t, above_transition_fx , above_transition_fy ,\
166 above_transition_fy , above_transition_mx , above_transition_my ,\
167 above_transition_mz , D1_above_transition ,\
168 t1_above_transition , Depth_above_transition )
169

170 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,
bukling_6 ,\

171 bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,
knekking5 ,\

172 knekking6 ,knekking7 , knekking8 ]
173 max_values = []
174 def get_max ( totlist ):
175 for i in totlist :
176 if type(i) == list:
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177 max_values . append ( get_max (i))
178 else:
179 max_values . append (i)
180 return max( max_values )
181

182 my_max = get_max ( my_totlist )
183 print("worst case of buckling is", my_max )
184

185 def get_list (max_value , totlist ):
186 for i in range(len( totlist )):
187 for j in totlist [i]:
188 if j == max_value :
189 return i
190

191 print( get_list (my_max , my_totlist ))
192 waterline_fx = a[: ,53]*1. e3;
193 waterline_fy = a[: ,54]*1. e3;
194 waterline_fz = a[: ,55]*1. e3;
195 waterline_mx = a[: ,56]*1. e3;
196 waterline_my = a[: ,57]*1. e3;
197 waterline_mz = a[: ,58]*1. e3;
198

199 bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,bukling_6 ,
bukling_7 ,\

200 bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,
knekking6 ,\

201 knekking7 , knekking8 = \
202 shell_buckling (t, waterline_fx , waterline_fy , waterline_fz ,

waterline_mx ,\
203 waterline_my , waterline_mz , D1_above_transition ,\
204 t1_above_transition , Depth_topside )
205

206 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,
bukling_6 ,\

207 bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,
knekking5 ,\

208 knekking6 ,knekking7 , knekking8 ]
209 max_values = []
210

211 def get_max ( totlist ):
212 for i in totlist :
213 if type(i) == list:
214 max_values . append ( get_max (i))
215 else:
216 max_values . append (i)
217 return max( max_values )
218

219 my_max = get_max ( my_totlist )
220 print("worst case of buckling is", my_max )
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221

222 def get_list (max_value , totlist ):
223 for i in range(len( totlist )):
224 for j in totlist [i]:
225 if j == max_value :
226 return i
227

228 print( get_list (my_max , my_totlist ))
229 below_transition2_fx = a[: ,59]*1. e3;
230 below_transition2_fy = a[: ,60]*1. e3;
231 below_transition2_fz = a[: ,61]*1. e3;
232 below_transition2_mx = a[: ,62]*1. e3;
233 below_transition2_my = a[: ,63]*1. e3;
234 below_transition2_mz = a[: ,64]*1. e3;
235

236 bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,bukling_6 ,
bukling_7 ,\

237 bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,
knekking6 ,\

238 knekking7 , knekking8 = \
239 shell_buckling (t, below_transition2_fx , below_transition2_fy ,\
240 below_transition2_fz , below_transition2_mx , below_transition2_my ,\
241 below_transition2_mz , D2_below_transition , t2_below_transition ,

Depth_topside )
242

243 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,
bukling_6 ,\

244 bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,
knekking5 ,\

245 knekking6 ,knekking7 , knekking8 ]
246 max_values = []
247

248 def get_max ( totlist ):
249 for i in totlist :
250 if type(i) == list:
251 max_values . append ( get_max (i))
252 else:
253 max_values . append (i)
254 return max( max_values )
255

256 my_max = get_max ( my_totlist )
257 print("worst case of buckling is", my_max )
258

259 def get_list (max_value , totlist ):
260 for i in range(len( totlist )):
261 for j in totlist [i]:
262 if j == max_value :
263 return i
264
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265 print( get_list (my_max , my_totlist ))
266 above_transition2_fx = a[: ,65]*1. e3;
267 above_transition2_fy = a[: ,66]*1. e3;
268 above_transition2_fz = a[: ,67]*1. e3;
269 above_transition2_mx = a[: ,68]*1. e3;
270 above_transition2_my = a[: ,69]*1. e3;
271 above_transition2_mz = a[: ,70]*1. e3;
272

273 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,
bukling_6 ,\

274 bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,
knekking5 ,\

275 knekking6 ,knekking7 , knekking8 ]
276 max_values = []
277

278 def get_max ( totlist ):
279 for i in totlist :
280 if type(i) == list:
281 max_values . append ( get_max (i))
282 else:
283 max_values . append (i)
284 return max( max_values )
285

286 my_max = get_max ( my_totlist )
287 print("worst case of buckling is", my_max )
288

289 def get_list (max_value , totlist ):
290 for i in range(len( totlist )):
291 for j in totlist [i]:
292 if j == max_value :
293 return i
294

295 print( get_list (my_max , my_totlist ))
296 bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,bukling_6 ,

bukling_7 ,\
297 bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,

knekking6 ,\
298 knekking7 , knekking8 = \
299 shell_buckling (t, above_transition2_fx , above_transition2_fy ,\
300 above_transition2_fz , above_transition2_mx , above_transition2_my ,\
301 above_transition2_mz , D2_above_transition , t2_above_transition ,

Depth_topside )
302

303 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,
bukling_6 ,\

304 bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,\
305 knekking5 ,knekking6 ,knekking7 , knekking8 ]
306 max_values = []
307
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308 def get_max ( totlist ):
309 for i in totlist :
310 if type(i) == list:
311 max_values . append ( get_max (i))
312 else:
313 max_values . append (i)
314 return max( max_values )
315

316 my_max = get_max ( my_totlist )
317 print("worst case of buckling is", my_max )
318

319 def get_list (max_value , totlist ):
320 for i in range(len( totlist )):
321 for j in totlist [i]:
322 if j == max_value :
323 return i
324

325 print( get_list (my_max , my_totlist ))
326 below_mooring_fx = a[: ,71]*1. e3;
327 below_mooring_fy = a[: ,72]*1. e3;
328 below_mooring_fz = a[: ,73]*1. e3;
329 below_mooring_mx = a[: ,74]*1. e3;
330 below_mooring_my = a[: ,75]*1. e3;
331 below_mooring_mz = a[: ,76]*1. e3;
332

333 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,
bukling_6 ,\

334 bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,
knekking5 ,\

335 knekking6 ,knekking7 , knekking8 ]
336 max_values = []
337

338 def get_max ( totlist ):
339 for i in totlist :
340 if type(i) == list:
341 max_values . append ( get_max (i))
342 else:
343 max_values . append (i)
344 return max( max_values )
345

346 my_max = get_max ( my_totlist )
347 print("worst case of buckling is", my_max )
348

349 def get_list (max_value , totlist ):
350 for i in range(len( totlist )):
351 for j in totlist [i]:
352 if j == max_value :
353 return i
354

58



355 print( get_list (my_max , my_totlist ))
356 bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,bukling_6 ,

bukling_7 ,\
357 bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,

knekking6 ,\
358 knekking7 , knekking8 = \
359 shell_buckling (t, below_mooring_fx , below_mooring_fy ,

below_mooring_fz ,\
360 below_mooring_mx , below_mooring_my , below_mooring_mz ,\
361 D_below_mooring , t_below_mooring , Depth_topside )
362

363 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,
bukling_6 ,\

364 bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,
knekking5 ,\

365 knekking6 ,knekking7 , knekking8 ]
366 max_values = []
367

368 def get_max ( totlist ):
369 for i in totlist :
370 if type(i) == list:
371 max_values . append ( get_max (i))
372 else:
373 max_values . append (i)
374 return max( max_values )
375

376 my_max = get_max ( my_totlist )
377 print("worst case of buckling is", my_max )
378

379 def get_list (max_value , totlist ):
380 for i in range(len( totlist )):
381 for j in totlist [i]:
382 if j == max_value :
383 return i
384

385 print( get_list (my_max , my_totlist ))
386

387 above_mooring_fx = a[: ,78]*1. e3;
388 above_mooring_fy = a[: ,79]*1. e3;
389 above_mooring_fz = a[: ,80]*1. e3;
390 above_mooring_mx = a[: ,81]*1. e3;
391 above_mooring_my = a[: ,82]*1. e3;
392 above_mooring_mz = a[: ,83]*1. e3;
393

394 bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,bukling_6 ,
bukling_7 ,\

395 bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,
knekking6 ,\

396 knekking7 , knekking8 = \
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397 shell_buckling (t, above_mooring_fx , above_mooring_fy ,
above_mooring_fz ,\

398 above_mooring_mx , above_mooring_my , above_mooring_mz ,\
399 D_above_mooring , t_above_mooring , Depth_topside )
400

401 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,\
402 bukling_6 ,bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,

knekking4 ,\
403 knekking5 ,knekking6 ,knekking7 , knekking8 ]
404 max_values = []
405

406 def get_max ( totlist ):
407 for i in totlist :
408 if type(i) == list:
409 max_values . append ( get_max (i))
410 else:
411 max_values . append (i)
412 return max( max_values )
413

414 my_max = get_max ( my_totlist )
415 print("worst case of buckling is", my_max )
416

417 def get_list (max_value , totlist ):
418 for i in range(len( totlist )):
419 for j in totlist [i]:
420 if j == max_value :
421 return i
422

423 print( get_list (my_max , my_totlist ))
424

425 in_tower1_fx = a[: ,84]*1. e3;
426 in_tower1_fy = a[: ,85]*1. e3;
427 in_tower1_fz = a[: ,86]*1. e3;
428 in_tower1_mx = a[: ,87]*1. e3;
429 in_tower1_my = a[: ,88]*1. e3;
430 in_tower1_mz = a[: ,89]*1. e3;
431

432 bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,bukling_6 ,
bukling_7 ,\

433 bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,
knekking6 ,\

434 knekking7 , knekking8 = \
435 shell_buckling (t, in_tower1_fx , in_tower1_fy , in_tower1_fz ,

in_tower1_mx ,\
436 in_tower1_my , in_tower1_mz , D1_in_tower , t1_in_tower , Depth_topside )
437

438 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,
bukling_6 ,\

439 bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,
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knekking5 ,\
440 knekking6 ,knekking7 , knekking8 ]
441 max_values = []
442

443 def get_max ( totlist ):
444 for i in totlist :
445 if type(i) == list:
446 max_values . append ( get_max (i))
447 else:
448 max_values . append (i)
449 return max( max_values )
450

451 my_max = get_max ( my_totlist )
452 print("worst case of buckling is", my_max )
453

454 def get_list (max_value , totlist ):
455 for i in range(len( totlist )):
456 for j in totlist [i]:
457 if j == max_value :
458 return i
459

460 print( get_list (my_max , my_totlist ))
461

462

463

464 in_tower2_fx = a[: ,90]*1. e3;
465 in_tower2_fy = a[: ,91]*1. e3;
466 in_tower2_fz = a[: ,92]*1. e3;
467 in_tower2_mx = a[: ,93]*1. e3;
468 in_tower2_my = a[: ,94]*1. e3;
469 in_tower2_mz = a[: ,95]*1. e3;
470

471 bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,bukling_6 ,
bukling_7 ,\

472 bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,
knekking6 ,\

473 knekking7 , knekking8 = \
474 shell_buckling (t, in_tower2_fx , in_tower2_fy , in_tower2_fz ,

in_tower2_mx ,\
475 in_tower2_my , in_tower2_mz , D2_in_tower , t2_in_tower , Depth_topside )
476

477 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,
bukling_6 ,\

478 bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,\
479 knekking5 ,knekking6 ,knekking7 , knekking8 ]
480 max_values = []
481

482 def get_max ( totlist ):
483 for i in totlist :
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484 if type(i) == list:
485 max_values . append ( get_max (i))
486 else:
487 max_values . append (i)
488 return max( max_values )
489

490 my_max = get_max ( my_totlist )
491 print("worst case of buckling is", my_max )
492

493 def get_list (max_value , totlist ):
494 for i in range(len( totlist )):
495 for j in totlist [i]:
496 if j == max_value :
497 return i
498

499 print( get_list (my_max , my_totlist ))
500

501

502 in_tower3_fx = a[: ,96]*1. e3;
503 in_tower3_fy = a[: ,97]*1. e3;
504 in_tower3_fz = a[: ,98]*1. e3;
505 in_tower3_mx = a[: ,99]*1. e3;
506 in_tower3_my = a[: ,100]*1. e3;
507 in_tower3_mz = a[: ,101]*1. e3;
508

509 bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,bukling_6 ,
bukling_7 ,\

510 bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,
knekking6 ,\

511 knekking7 , knekking8 = \
512 shell_buckling (t, in_tower3_fx , in_tower3_fy , in_tower3_fz ,

in_tower3_mx ,\
513 in_tower3_my , in_tower3_mz , D3_in_tower , t3_in_tower , Depth_topside )
514

515 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,
bukling_6 ,\

516 bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,
knekking5 ,\

517 knekking6 ,knekking7 , knekking8 ]
518 max_values = []
519

520 def get_max ( totlist ):
521 for i in totlist :
522 if type(i) == list:
523 max_values . append ( get_max (i))
524 else:
525 max_values . append (i)
526 return max( max_values )
527
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528 my_max = get_max ( my_totlist )
529 print("worst case of buckling is", my_max )
530

531 def get_list (max_value , totlist ):
532 for i in range(len( totlist )):
533 for j in totlist [i]:
534 if j == max_value :
535 return i
536

537 print( get_list (my_max , my_totlist ))
538

539

540 in_tower4_fx = a[: ,102]*1. e3;
541 in_tower4_fy = a[: ,103]*1. e3;
542 in_tower4_fz = a[: ,104]*1. e3;
543 in_tower4_mx = a[: ,105]*1. e3;
544 in_tower4_my = a[: ,106]*1. e3;
545 in_tower4_mz = a[: ,107]*1. e3;
546

547

548 bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,bukling_6 ,
bukling_7 ,\

549 bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,
knekking6 ,\

550 knekking7 , knekking8 = \
551 shell_buckling (t, in_tower4_fx , in_tower4_fy , in_tower4_fz ,

in_tower4_mx ,\
552 in_tower4_my , in_tower4_mz , D4_in_tower , t4_in_tower , Depth_topside )
553

554 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,\
555 bukling_6 ,bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,\
556 knekking4 ,knekking5 ,knekking6 ,knekking7 , knekking8 ]
557 max_values = []
558

559 def get_max ( totlist ):
560 for i in totlist :
561 if type(i) == list:
562 max_values . append ( get_max (i))
563 else:
564 max_values . append (i)
565 return max( max_values )
566

567 my_max = get_max ( my_totlist )
568 print("worst case of buckling is", my_max )
569

570 def get_list (max_value , totlist ):
571 for i in range(len( totlist )):
572 for j in totlist [i]:
573 if j == max_value :
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574 return i
575

576 print( get_list (my_max , my_totlist ))
577

578 below_rotor_fx = a[: ,108]*1. e3;
579 below_rotor_fy = a[: ,108]*1. e3;
580 below_rotor_fz = a[: ,109]*1. e3;
581 below_rotor_mx = a[: ,110]*1. e3;
582 below_rotor_my = a[: ,111]*1. e3;
583 below_rotor_mz = a[: ,112]*1. e3;
584

585 bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,bukling_6 ,
bukling_7 ,\

586 bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,
knekking6 ,\

587 knekking7 , knekking8 = \
588 shell_buckling (t, below_rotor_fx , below_rotor_fy , below_rotor_fz

,\
589 below_rotor_mx , below_rotor_my , below_rotor_mz , D5_in_tower ,\
590 t5_in_tower , Depth_topside )
591

592 my_totlist = [bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,
bukling_6 ,\

593 bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,\
594 knekking5 ,knekking6 ,knekking7 , knekking8 ]
595 max_values = []
596

597 def get_max ( totlist ):
598 for i in totlist :
599 if type(i) == list:
600 max_values . append ( get_max (i))
601 else:
602 max_values . append (i)
603 return max( max_values )
604

605 my_max = get_max ( my_totlist )
606 print("worst case of buckling is", my_max )
607

608 def get_list (max_value , totlist ):
609 for i in range(len( totlist )):
610 for j in totlist [i]:
611 if j == max_value :
612 return i
613

614 print( get_list (my_max , my_totlist ))

Listing A.1: Buckling analysis
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Appendix B

Shell buckling algorithm

1 from pylab import *
2 from numpy import loadtxt
3 from math import pi , sqrt ,sin , cos
4 import numpy as np
5
6 def shell_buckling (t,Ns ,fy ,fz ,mx ,m1 ,m2 ,d,th ,h):
7
8
9 m2 = -m2

10 r = d/2 # Defining radius
11 sax = (Ns)/(2* pi*r*th) # applying formula from DNV -RP -C202
12 bend1 = (( m1 /( pi *(r**2)*th)))
13 bend2 = (( m2 /( pi *(r**2)*th)))
14 sa1 = (fy)/(2* pi*r*th)
15 sa2 = (fz)/(2* pi*r*th)
16 bendx = (( mx /( pi *(r**2)*th)))
17 sin45 = sin(pi *45./180.) # z coordinate
18 cos45 = cos(pi *45./180.) # y coordinate
19 rho_water = 1025 # water density for pressure - kg/m**3
20 g = 9.81 # gravitational force - m/s**2
21
22 P = rho_water *g*h # Pressure
23 s_h = P*r/th
24
25 sh1 = sa1
26 sh2 = sa1* sin45 + sa2* cos45
27 sh3 = sa2
28 sh4 = sa2* sin45 - sa1* cos45
29 sh5 = -sa1
30 sh6 = -sa2* sin45 - sa1* cos45
31 sh7 = -sa2
32 sh8 = -sa2* sin45 + sa1* cos45
33
34 sjh_1 = np.abs( bendx + sh1)
35 sjh_2 = np.abs( bendx + sh2)
36 sjh_3 = np.abs( bendx + sh3)
37 sjh_4 = np.abs( bendx + sh4)
38 sjh_5 = np.abs( bendx + sh5)
39 sjh_6 = np.abs( bendx + sh6)
40 sjh_7 = np.abs( bendx + sh7)
41 sjh_8 = np.abs( bendx + sh8)
42
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43 s1 = bend2
44 s2 = bend1 * sin45 + bend2 * cos45
45 s3 = bend1
46 s4 = bend1 * sin45 - bend2 * cos45
47 s5 = -bend2
48 s6 = -bend1 * sin45 - bend2 * cos45
49 s7 = -bend1
50 s8 = -bend1 * sin45 + bend2 * cos45
51
52
53 liste = [s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8]
54
55 liste_0 = []
56 ll = []
57
58 for i in range (len( liste )):
59 for j in range (len(s1)):
60
61 if liste [i][j] >= 0:
62 ll. append (0)
63 else:
64 ll. append (- liste [i][j])
65
66 liste_0 . append (ll)
67 ll =[]
68
69
70 s1_0 = liste_0 [0]
71 s2_0 = liste_0 [1]
72 s3_0 = liste_0 [2]
73 s4_0 = liste_0 [3]
74 s5_0 = liste_0 [4]
75 s6_0 = liste_0 [5]
76 s7_0 = liste_0 [6]
77 s8_0 = liste_0 [7]
78
79
80
81
82 sax_0 =[]
83 for i in range (len(sax)):
84 if sax[i] >= 0 :
85 sax_0 . append (0)
86 else:
87 sax_0 . append (- sax[i])
88
89
90
91
92 # checking for shell buckling
93
94 l = 3 # distance between ring frames
95 v = 0.3 # poissons ratio
96 E = 210000000000 # youngs modulus
97 fy = 355*10**6
98 Zl = ((l**2) /(r*th))*sqrt (1 -(v**2))
99

100 psi_a = 1 # Defining coefficients from table 3-2 in 3.4.2
101 psi_b = 1
102 psi_T = 5.34 #Only bending and axial stress
103 psi_h = 2
104 zeta_a = 0.702* Zl
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105 zeta_b = 0.702* Zl
106 zeta_T = 0.856*( Zl **(3/4) )
107 zeta_h = 1.04* Zl
108 rho_a = 0.5*(1+( r /(150* th)))** -0.5
109 rho_b = 0.5*(1+( r /(300* th)))** -0.5
110 rho_T = 0.6
111 rho_h = 0.6
112
113 C_a = psi_a *sqrt (1+(( rho_a * zeta_a / psi_a )**2))
114 C_m = psi_b *sqrt (1+(( rho_b * zeta_b / psi_b )**2))
115 C_T = psi_T *sqrt (1+(( rho_T * zeta_T / psi_T )**2))
116 C_h = psi_h *sqrt (1+(( rho_h * zeta_h / psi_h )**2))
117
118
119 FE_a = (( C_a *( pi **2))*(E/(12*(1 -( v**2)))*( th/l)**2))
120 FE_m = (C_m *( pi **2)*E/(12*(1 -(v**2)))*( th/l)**2)
121
122 if l/r > 3.85* sqrt(r/th):
123 FE_T = 0.25* E*(( th/r) **(3/2) )
124 else:
125 FE_T = (C_T *( pi **2)*E/(12*(1 -(v**2)))*( th/l)**2)
126
127 if l/r > 2.25* sqrt(r/th):
128 FE_h = 0.25* E*(( th/r) **(2) )
129 else:
130 FE_h = (C_h *( pi **2)*E/(12*(1 -(v**2)))*( th/l)**2)
131
132 sax_j = []
133 for i in range (len( sax_0 )):
134 sax_j . append (sax[i])
135
136 sj_1 = []
137 sj_2 = []
138 sj_3 = []
139 sj_4 = []
140 sj_5 = []
141 sj_6 = []
142 sj_7 = []
143 sj_8 = []
144
145
146 for i in range (len( sax_0 )):
147 sj_1. append (np.sqrt ((( sax_j [i]+ s1[i]) **2) -((( sax_j [i]+ s1[i]))*s_h)\
148 +( s_h **2) +((3* sjh_1 [i]) **2)))
149
150 sj_2. append (np.sqrt ((( sax_j [i]+ s2[i]) **2) -((( sax_j [i]+ s2[i]))*s_h)\
151 +( s_h **2) +((3* sjh_2 [i]) **2)))
152
153 sj_3. append (np.sqrt ((( sax_j [i]+ s3[i]) **2) -((( sax_j [i]+ s3[i]))*s_h)\
154 +( s_h **2) +((3* sjh_3 [i]) **2)))
155
156 sj_4. append (np.sqrt ((( sax_j [i]+ s4[i]) **2) -((( sax_j [i]+ s4[i]))*s_h)\
157 +( s_h **2) +((3* sjh_4 [i]) **2)))
158
159 sj_5. append (np.sqrt ((( sax_j [i]+ s5[i]) **2) -((( sax_j [i]+ s5[i]))*s_h)\
160 +( s_h **2) +((3* sjh_5 [i]) **2)))
161
162 sj_6. append (np.sqrt ((( sax_j [i]+ s6[i]) **2) -((( sax_j [i]+ s6[i]))*s_h)\
163 +( s_h **2) +((3* sjh_6 [i]) **2)))
164
165 sj_7. append (np.sqrt ((( sax_j [i]+ s7[i]) **2) -((( sax_j [i]+ s7[i]))*s_h)\
166 +( s_h **2) +((3* sjh_7 [i]) **2)))
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167
168 sj_8. append (np.sqrt ((( sax_j [i]+ s8[i]) **2) -((( sax_j [i]+ s8[i]))*s_h)\
169 +( s_h **2) +((3* sjh_8 [i]) **2)))
170
171
172 slender1 = []
173 slender2 = []
174 slender3 = []
175 slender4 = []
176 slender5 = []
177 slender6 = []
178 slender7 = []
179 slender8 = []
180
181 for i in range (len( sax_0 )):
182
183 slender1 . append (np.sqrt (( fy /( sj_1[i]))*((( sax_0 [i])/FE_a)+(( s1_0[i])\
184 /FE_m)+( s_h/FE_h)+(( sjh_1 [i])/FE_T))))
185
186 slender2 . append (np.sqrt (( fy /( sj_2[i]))*((( sax_0 [i])/FE_a)+(( s2_0[i])\
187 /FE_m)+( s_h/FE_h)+(( sjh_2 [i])/FE_T))))
188
189 slender3 . append (np.sqrt (( fy /( sj_3[i]))*((( sax_0 [i])/FE_a)+(( s3_0[i])\
190 /FE_m)+( s_h/FE_h)+(( sjh_3 [i])/FE_T))))
191
192 slender4 . append (np.sqrt (( fy /( sj_4[i]))*((( sax_0 [i])/FE_a)+(( s4_0[i])\
193 /FE_m)+( s_h/FE_h)+(( sjh_4 [i])/FE_T))))
194
195 slender5 . append (np.sqrt (( fy /( sj_5[i]))*((( sax_0 [i])/FE_a)+(( s5_0[i])\
196 /FE_m)+( s_h/FE_h)+(( sjh_5 [i])/FE_T))))
197
198 slender6 . append (np.sqrt (( fy /( sj_6[i]))*((( sax_0 [i])/FE_a)+(( s6_0[i])\
199 /FE_m)+( s_h/FE_h)+(( sjh_6 [i])/FE_T))))
200
201 slender7 . append (np.sqrt (( fy /( sj_7[i]))*((( sax_0 [i])/FE_a)+(( s7_0[i])\
202 /FE_m)+( s_h/FE_h)+(( sjh_7 [i])/FE_T))))
203
204 slender8 . append (np.sqrt (( fy /( sj_8[i]))*((( sax_0 [i])/FE_a)+(( s8_0[i])\
205 /FE_m)+( s_h/FE_h)+(( sjh_8 [i])/FE_T))))
206
207
208 fks_1 = []
209 fks_2 = []
210 fks_3 = []
211 fks_4 = []
212 fks_5 = []
213 fks_6 = []
214 fks_7 = []
215 fks_8 = []
216
217 for i in range (len( sax_0 )):
218 fks_1 . append (fy /( np.sqrt (1+(( slender1 [i]) **4))))
219 fks_2 . append (fy /( np.sqrt (1+(( slender2 [i]) **4))))
220 fks_3 . append (fy /( np.sqrt (1+(( slender3 [i]) **4))))
221 fks_4 . append (fy /( np.sqrt (1+(( slender4 [i]) **4))))
222 fks_5 . append (fy /( np.sqrt (1+(( slender5 [i]) **4))))
223 fks_6 . append (fy /( np.sqrt (1+(( slender6 [i]) **4))))
224 fks_7 . append (fy /( np.sqrt (1+(( slender7 [i]) **4))))
225 fks_8 . append (fy /( np.sqrt (1+(( slender8 [i]) **4))))
226
227 gamma1 = []
228 gamma2 = []
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229 gamma3 = []
230 gamma4 = []
231 gamma5 = []
232 gamma6 = []
233 gamma7 = []
234 gamma8 = []
235
236
237 for i in range (len( sax_0 )):
238 if slender1 [i] < 0.5:
239 gamma1 . append (1.15)
240 elif 0.5 < slender1 [i] < 1.0:
241 gamma1 . append (0.85 + 0.6*( slender1 [i]))
242 else:
243 gamma1 . append (1.45)
244
245 for i in range (len( sax_0 )):
246 if slender2 [i] < 0.5:
247 gamma2 . append (1.15)
248 elif 0.5 < slender2 [i] < 1.0:
249 gamma2 . append (0.85 + 0.6*( slender2 [i]))
250 else:
251 gamma2 . append (1.45)
252
253 for i in range (len( sax_0 )):
254 if slender3 [i] < 0.5:
255 gamma3 . append (1.15)
256 elif 0.5 < slender3 [i] < 1.0:
257 gamma3 . append (0.85 + 0.6*( slender3 [i]))
258 else:
259 gamma3 . append (1.45)
260
261 for i in range (len( sax_0 )):
262 if slender4 [i] < 0.5:
263 gamma4 . append (1.15)
264 elif 0.5 < slender4 [i] < 1.0:
265 gamma4 . append (0.85 + 0.6*( slender4 [i]))
266 else:
267 gamma4 . append (1.45)
268
269 for i in range (len( sax_0 )):
270 if slender5 [i] < 0.5:
271 gamma5 . append (1.15)
272 elif 0.5 < slender5 [i] < 1.0:
273 gamma5 . append (0.85 + 0.6*( slender5 [i]))
274 else:
275 gamma5 . append (1.45)
276
277 for i in range (len( sax_0 )):
278 if slender6 [i] < 0.5:
279 gamma6 . append (1.15)
280 elif 0.5 < slender6 [i] < 1.0:
281 gamma6 . append (0.85 + 0.6*( slender6 [i]))
282 else:
283 gamma6 . append (1.45)
284
285 for i in range (len( sax_0 )):
286 if slender7 [i] < 0.5:
287 gamma7 . append (1.15)
288 elif 0.5 < slender7 [i] < 1.0:
289 gamma7 . append (0.85 + 0.6*( slender7 [i]))
290 else:
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291 gamma7 . append (1.45)
292
293 for i in range (len( sax_0 )):
294 if slender8 [i] < 0.5:
295 gamma8 . append (1.15)
296 elif 0.5 < slender8 [i] < 1.0:
297 gamma8 . append (0.85 + 0.6*( slender8 [i]))
298 else:
299 gamma8 . append (1.45)
300
301 fksd1 = []
302 fksd2 = []
303 fksd3 = []
304 fksd4 = []
305 fksd5 = []
306 fksd6 = []
307 fksd7 = []
308 fksd8 = []
309
310 for i in range (len( sax_0 )):
311 fksd1 . append ( fks_1 [i]/ gamma1 [i])
312 fksd2 . append ( fks_2 [i]/ gamma2 [i])
313 fksd3 . append ( fks_3 [i]/ gamma3 [i])
314 fksd4 . append ( fks_4 [i]/ gamma4 [i])
315 fksd5 . append ( fks_5 [i]/ gamma5 [i])
316 fksd6 . append ( fks_6 [i]/ gamma6 [i])
317 fksd7 . append ( fks_7 [i]/ gamma7 [i])
318 fksd8 . append ( fks_8 [i]/ gamma8 [i])
319
320
321 bukling_1 = []
322 bukling_2 = []
323 bukling_3 = []
324 bukling_4 = []
325 bukling_5 = []
326 bukling_6 = []
327 bukling_7 = []
328 bukling_8 = []
329
330 for i in range (len( sax_0 )):
331 bukling_1 . append (( sj_1[i]) /( fksd1 [i]))
332 bukling_2 . append (( sj_2[i]) /( fksd2 [i]))
333 bukling_3 . append (( sj_3[i]) /( fksd3 [i]))
334 bukling_4 . append (( sj_4[i]) /( fksd4 [i]))
335 bukling_5 . append (( sj_5[i]) /( fksd5 [i]))
336 bukling_6 . append (( sj_6[i]) /( fksd6 [i]))
337 bukling_7 . append (( sj_7[i]) /( fksd7 [i]))
338 bukling_8 . append (( sj_8[i]) /( fksd8 [i]))
339
340 # column buckling
341 a = (1+(2*( fy **2))/( FE_a **2))
342 b = (((2*( fy **2))/( FE_a*FE_h)) -1)*s_h
343 c = (s_h **2) +((( fy **2) *( s_h **2))/FE_h **2) -(fy **2)
344 f_ak = ((b+( sqrt ((b**2) -4*a*c)))/(2*a))
345
346 di = d - 2.* th
347 areal = .25* pi *(d**2 - di **2)
348 icyl = pi *(d**4 - di **4) /64.
349 I_c = sqrt(icyl/a)
350 L_cyl = 89.15
351 k = 2
352
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353 f_akd1 = []
354 f_akd2 = []
355 f_akd3 = []
356 f_akd4 = []
357 f_akd5 = []
358 f_akd6 = []
359 f_akd7 = []
360 f_akd8 = []
361
362
363 for i in range (len( sax_0 )):
364 f_akd1 . append (f_ak/ gamma1 [i])
365 f_akd2 . append (f_ak/ gamma2 [i])
366 f_akd3 . append (f_ak/ gamma3 [i])
367 f_akd4 . append (f_ak/ gamma4 [i])
368 f_akd5 . append (f_ak/ gamma5 [i])
369 f_akd6 . append (f_ak/ gamma6 [i])
370 f_akd7 . append (f_ak/ gamma7 [i])
371 f_akd8 . append (f_ak/ gamma8 [i])
372
373 column_slenderness = ((k* L_cyl )/( pi*I_c))*( sqrt(f_ak/E))
374
375 if column_slenderness <= 1.34:
376 f_kc = (1 -(0.28*( column_slenderness **2)))*f_ak
377 else:
378 f_kc = ((0.9/( column_slenderness **2))*f_ak)
379
380 f_kcd1 = []
381 f_kcd2 = []
382 f_kcd3 = []
383 f_kcd4 = []
384 f_kcd5 = []
385 f_kcd6 = []
386 f_kcd7 = []
387 f_kcd8 = []
388
389
390 for i in range (len( sax_0 )):
391 f_kcd1 . append (f_kc/ gamma1 [i])
392 f_kcd2 . append (f_kc/ gamma2 [i])
393 f_kcd3 . append (f_kc/ gamma3 [i])
394 f_kcd4 . append (f_kc/ gamma4 [i])
395 f_kcd5 . append (f_kc/ gamma5 [i])
396 f_kcd6 . append (f_kc/ gamma6 [i])
397 f_kcd7 . append (f_kc/ gamma7 [i])
398 f_kcd8 . append (f_kc/ gamma8 [i])
399
400 FE = (( pi **2)*E*icyl)/(((k* L_cyl )**2)* areal )
401
402 knekking1 = []
403 knekking2 = []
404 knekking3 = []
405 knekking4 = []
406 knekking5 = []
407 knekking6 = []
408 knekking7 = []
409 knekking8 = []
410
411
412
413 for i in range (len( sax_0 )):
414 knekking1 . append ((( sax_0 [i]) /( f_kcd1 [i])) +((1/( f_akd1 [i])) *(((( m1[i]\
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415 /(1 -(( sax_0 [i])/FE)))**2) +( m2[i]/(1 -(( sax_0 [i])/FE)))**2) **( -0.5))))
416
417 knekking2 . append ((( sax_0 [i]) /( f_kcd2 [i])) +((1/( f_akd2 [i])) *(((( m1[i]\
418 /(1 -(( sax_0 [i])/FE)))**2) +( m2[i]/(1 -(( sax_0 [i])/FE)))**2) **( -0.5))))
419
420 knekking3 . append ((( sax_0 [i]) /( f_kcd3 [i])) +((1/( f_akd3 [i])) *(((( m1[i]\
421 /(1 -(( sax_0 [i])/FE)))**2) +( m2[i]/(1 -(( sax_0 [i])/FE)))**2) **( -0.5))))
422
423 knekking4 . append ((( sax_0 [i]) /( f_kcd4 [i])) +((1/( f_akd4 [i])) *(((( m1[i]\
424 /(1 -(( sax_0 [i])/FE)))**2) +( m2[i]/(1 -(( sax_0 [i])/FE)))**2) **( -0.5))))
425
426 knekking5 . append ((( sax_0 [i]) /( f_kcd5 [i])) +((1/( f_akd5 [i])) *(((( m1[i]\
427 /(1 -(( sax_0 [i])/FE)))**2) +( m2[i]/(1 -(( sax_0 [i])/FE)))**2) **( -0.5))))
428
429 knekking6 . append ((( sax_0 [i]) /( f_kcd6 [i])) +((1/( f_akd6 [i])) *(((( m1[i]\
430 /(1 -(( sax_0 [i])/FE)))**2) +( m2[i]/(1 -(( sax_0 [i])/FE)))**2) **( -0.5))))
431
432 knekking7 . append ((( sax_0 [i]) /( f_kcd7 [i])) +((1/( f_akd7 [i])) *(((( m1[i]\
433 /(1 -(( sax_0 [i])/FE)))**2) +( m2[i]/(1 -(( sax_0 [i])/FE)))**2) **( -0.5))))
434
435 knekking8 . append ((( sax_0 [i]) /( f_kcd8 [i])) +((1/( f_akd8 [i])) *(((( m1[i]\
436 /(1 -(( sax_0 [i])/FE)))**2) +( m2[i]/(1 -(( sax_0 [i])/FE)))**2) **( -0.5))))
437
438
439
440 return bukling_1 ,bukling_2 ,bukling_3 ,bukling_4 ,bukling_5 ,bukling_6 ,\
441 bukling_7 ,bukling_8 ,knekking1 ,knekking2 ,knekking3 ,knekking4 ,knekking5 ,\
442 knekking6 ,knekking7 , knekking8

Listing B.1: Buckling algorithm
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Appendix C

Fatigue analysis

1 import numpy as np
2 from mik_fatigue_funcs import turningpoints , turningpoints_steffen ,\
3 fatiguedamage_twoslope
4 from Stress import cyl_beam_stresses
5
6 #from pylab import *
7 from scipy import interpolate
8 from pylab import *
9

10
11
12
13 # importing data
14 file = open('sensors_4_fls6 .txt ')
15 a = np. loadtxt (file ,skiprows =433 , dtype ='float ',delimiter =';') #
16 t = a[: ,0];
17
18
19
20 ## FATIGUE DATA FOR TOPSIDE STRUCTURE
21 # SN - curve C1 "air"
22 th1 = 25E -3 # plate thickness base material [m]
23 ## SN - curve parameters from DNV -OS -C203:
24 m1 = 3.0 # slope 1
25 loga1 = 12.449 # intercept 1
26 m2 = 5.0 # slope high cycle region
27 loga2 = 16.081 # intercept high - cycle region
28 Nlim = 1.0 E7 # limit for high - cycle region
29 tref =25E -3 # reference thickness (25E -3 for tubular joints )
30 k =0.15 # thickness exponent
31 DFF = 3 # Design Fatigue Factor
32
33 ## FATIGUE DATA FOR SUBSTRUCTURE
34 # SN - CURVE D " CATHODIC PROTECTION "
35 th2 = 25E -3 # plate thickness base material [m]
36 ## SN - curve parameters from DNV -OS -C203:
37 mb1 = 3.0 # slope 1
38 logb1 = 11.764 # intercept 1
39 mb2 = 5. # slope high cycle region
40 logb2 = 15.606 # intercept high - cycle region
41 Nlimb = 1.0 E6
42 # limit for high - cycle region
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43 # reference thickness (25E -3 for tubular sections )
44 k =0.20 # thickness exponent
45 DFF = 3 # Design Fatigue Factor
46
47 ##Cross - sections
48
49 # Close to endcap [ -38m]
50 D_endcap = 17.5
51 t_endcap = 0.055 #D *0.004 follow throughout
52 Depth_endcap = 38
53
54 # Below transition [ -20]
55 D_below_transition = 17.5
56 t_below_transition = 0.055
57 Depth_under_transition = 20
58
59 # Above transition [ -12]
60 D1_above_transition = 11.5
61 t1_above_transition = 0.085
62 Depth_above_transition = 12
63
64 #In waterline [0]
65 D_in_waterline = 11.5
66 t_in_waterline = 0.085
67 Depth_topside = 0
68
69 # Below transition +10 [9]
70 D2_below_transition = 11.5
71 t2_below_transition = 0.085
72
73 # Above transition +10 [11]
74 D2_above_transition = 11.5
75 t2_above_transition = 0.046
76
77 # Below upper mooring [22]
78 D_below_mooring = 11.5
79 t_below_mooring = 0.046
80
81 # Above upper mooring [25]
82 D_above_mooring = 11.5
83 t_above_mooring = 0.046
84
85 #In tower [42.4]
86 D1_in_tower = 11.5
87 t1_in_tower = 0.055
88
89 #In tower [60.2]
90 D2_in_tower = 10.5
91 t2_in_tower = 0.055
92
93 #In tower [78]
94 D3_in_tower = 9.5
95 t3_in_tower = 0.055
96
97 #In tower [96]
98 D4_in_tower = 9
99 t4_in_tower = 0.046

100
101 # Below rotor [112.5]
102 D5_in_tower = 7
103 t5_in_tower = 0.042
104 #
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105 #
106 # ----------------------------------------------------------------------------#
107
108 # Close to endcap
109
110 fx = a[: ,35]*1. e3;
111 fy = a[: ,36]*1. e3;
112 fz = a[: ,37]*1. e3;
113 mx = a[: ,38]*1. e3;
114 my = a[: ,39]*1. e3;
115 mz= a[: ,40]*1. e3;
116
117
118 [sax ,sbendy ,sbendz ,s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,ssh1 ,ssh2 ,ssh3 ,ssh4 ,ssh5 ,\
119 ssh6 ,ssh7 ,ssh8 ,svm1 ,svm2 ,svm3 ,svm4 ,svm5 ,svm6 ,svm7 ,svm8 ,sx ,symax , szmax ] = \
120 cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz ,D_endcap , t_endcap )
121
122 list_totfatigue = []
123 damage1 = fatiguedamage_twoslope (t,s1 ,m1 ,logb1 ,m2 ,logb2 ,\
124 Nlimb ,th2 ,tref =25E-3,k =0.25)
125 list_totfatigue . append ( damage1 )
126
127 damage2 = fatiguedamage_twoslope (t,s2 ,m1 ,logb1 ,m2 ,logb2 ,\
128 Nlimb ,th2 ,tref =25E-3,k =0.25)
129 list_totfatigue . append ( damage2 )
130
131 damage3 = fatiguedamage_twoslope (t,s3 ,m1 ,logb1 ,m2 ,logb2 ,\
132 Nlimb ,th2 ,tref =25E-3,k =0.25)
133 list_totfatigue . append ( damage3 )
134
135 damage4 = fatiguedamage_twoslope (t,s4 ,m1 ,logb1 ,m2 ,logb2 ,\
136 Nlimb ,th2 ,tref =25E-3,k =0.25)
137 list_totfatigue . append ( damage4 )
138
139 damage5 = fatiguedamage_twoslope (t,s5 ,m1 ,logb1 ,m2 ,logb2 ,\
140 Nlimb ,th2 ,tref =25E-3,k =0.25)
141 list_totfatigue . append ( damage5 )
142
143 damage6 = fatiguedamage_twoslope (t,s6 ,m1 ,logb1 ,m2 ,logb2 ,\
144 Nlimb ,th2 ,tref =25E-3,k =0.25)
145 list_totfatigue . append ( damage6 )
146
147 damage7 = fatiguedamage_twoslope (t,s7 ,m1 ,logb1 ,m2 ,logb2 ,\
148 Nlimb ,th2 ,tref =25E-3,k =0.25)
149 list_totfatigue . append ( damage7 )
150
151 damage8 = fatiguedamage_twoslope (t,s8 ,m1 ,logb1 ,m2 ,logb2 ,\
152 Nlimb ,th2 ,tref =25E-3,k =0.25)
153 list_totfatigue . append ( damage8 )
154
155 damage = max( list_totfatigue )
156
157
158 print ( damage )
159
160
161 # Below transition
162
163 fx = a[: ,41]*1. e3;
164 fy = a[: ,42]*1. e3;
165 fz = a[: ,43]*1. e3;
166 mx = a[: ,44]*1. e3;
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167 my = a[: ,45]*1. e3;
168 mz= a[: ,46]*1. e3;
169
170
171 [sax ,sbendy ,sbendz ,s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,ssh1 ,ssh2 ,ssh3 ,ssh4 ,ssh5 ,ssh6 ,\
172 ssh7 ,ssh8 ,svm1 ,svm2 ,svm3 ,svm4 ,svm5 ,svm6 ,svm7 ,svm8 ,sx ,symax , szmax ] = \
173 cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz , D_below_transition ,\
174 t_below_transition )
175
176 list_totfatigue = []
177 damage1 = fatiguedamage_twoslope (t,s1 ,m1 ,logb1 ,m2 ,logb2 ,\
178 Nlimb ,th2 ,tref =25E-3,k =0.25)
179 list_totfatigue . append ( damage1 )
180
181 damage2 = fatiguedamage_twoslope (t,s2 ,m1 ,logb1 ,m2 ,logb2 ,\
182 Nlimb ,th2 ,tref =25E-3,k =0.25)
183 list_totfatigue . append ( damage2 )
184
185 damage3 = fatiguedamage_twoslope (t,s3 ,m1 ,logb1 ,m2 ,logb2 ,\
186 Nlimb ,th2 ,tref =25E-3,k =0.25)
187 list_totfatigue . append ( damage3 )
188
189 damage4 = fatiguedamage_twoslope (t,s4 ,m1 ,logb1 ,m2 ,logb2 ,\
190 Nlimb ,th2 ,tref =25E-3,k =0.25)
191 list_totfatigue . append ( damage4 )
192
193 damage5 = fatiguedamage_twoslope (t,s5 ,m1 ,logb1 ,m2 ,logb2 ,\
194 Nlimb ,th2 ,tref =25E-3,k =0.25)
195 list_totfatigue . append ( damage5 )
196
197 damage6 = fatiguedamage_twoslope (t,s6 ,m1 ,logb1 ,m2 ,logb2 ,\
198 Nlimb ,th2 ,tref =25E-3,k =0.25)
199 list_totfatigue . append ( damage6 )
200
201 damage7 = fatiguedamage_twoslope (t,s7 ,m1 ,logb1 ,m2 ,logb2 ,\
202 Nlimb ,th2 ,tref =25E-3,k =0.25)
203 list_totfatigue . append ( damage7 )
204
205 damage8 = fatiguedamage_twoslope (t,s8 ,m1 ,logb1 ,m2 ,logb2 ,\
206 Nlimb ,th2 ,tref =25E-3,k =0.25)
207 list_totfatigue . append ( damage8 )
208
209 damage = max( list_totfatigue )
210
211 print ( damage )
212
213
214 # Above transition
215 fx = a[: ,47]*1. e3;
216 fy = a[: ,48]*1. e3;
217 fz = a[: ,49]*1. e3;
218 mx = a[: ,50]*1. e3;
219 my = a[: ,51]*1. e3;
220 mz = a[: ,52]*1. e3;
221
222 [sax ,sbendy ,sbendz ,s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,ssh1 ,ssh2 ,ssh3 ,ssh4 ,\
223 ssh5 ,ssh6 ,ssh7 ,ssh8 ,svm1 ,svm2 ,svm3 ,svm4 ,\
224 svm5 ,svm6 ,svm7 ,svm8 ,sx ,symax , szmax ] = \
225 cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz ,\
226 D1_above_transition , t1_above_transition )
227
228 list_totfatigue = []
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229 damage1 = fatiguedamage_twoslope (t,s1 ,m1 ,logb1 ,m2 ,logb2 ,\
230 Nlimb ,th2 ,tref =25E-3,k =0.25)
231 list_totfatigue . append ( damage1 )
232
233 damage2 = fatiguedamage_twoslope (t,s2 ,m1 ,logb1 ,m2 ,logb2 ,\
234 Nlimb ,th2 ,tref =25E-3,k =0.25)
235 list_totfatigue . append ( damage2 )
236
237 damage3 = fatiguedamage_twoslope (t,s3 ,m1 ,logb1 ,m2 ,logb2 ,\
238 Nlimb ,th2 ,tref =25E-3,k =0.25)
239 list_totfatigue . append ( damage3 )
240
241 damage4 = fatiguedamage_twoslope (t,s4 ,m1 ,logb1 ,m2 ,logb2 ,\
242 Nlimb ,th2 ,tref =25E-3,k =0.25)
243 list_totfatigue . append ( damage4 )
244
245 damage5 = fatiguedamage_twoslope (t,s5 ,m1 ,logb1 ,m2 ,logb2 ,\
246 Nlimb ,th2 ,tref =25E-3,k =0.25)
247 list_totfatigue . append ( damage5 )
248
249 damage6 = fatiguedamage_twoslope (t,s6 ,m1 ,logb1 ,m2 ,logb2 ,\
250 Nlimb ,th2 ,tref =25E-3,k =0.25)
251 list_totfatigue . append ( damage6 )
252
253 damage7 = fatiguedamage_twoslope (t,s7 ,m1 ,logb1 ,m2 ,logb2 ,\
254 Nlimb ,th2 ,tref =25E-3,k =0.25)
255 list_totfatigue . append ( damage7 )
256
257 damage8 = fatiguedamage_twoslope (t,s8 ,m1 ,logb1 ,m2 ,logb2 ,\
258 Nlimb ,th2 ,tref =25E-3,k =0.25)
259 list_totfatigue . append ( damage8 )
260
261 damage = max( list_totfatigue )
262
263 print ( damage )
264
265
266 #in waterline
267 fx = a[: ,53]*1. e3;
268 fy = a[: ,54]*1. e3;
269 fz = a[: ,55]*1. e3;
270 mx = a[: ,56]*1. e3;
271 my = a[: ,57]*1. e3;
272 mz = a[: ,58]*1. e3;
273
274 [sax ,sbendy ,sbendz ,s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,ssh1 ,ssh2 ,ssh3 ,ssh4 ,\
275 ssh5 ,ssh6 ,ssh7 ,ssh8 ,svm1 ,svm2 ,svm3 ,\
276 svm4 ,svm5 ,svm6 ,svm7 ,svm8 ,sx ,symax , szmax ] = \
277 cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz ,\
278 D_in_waterline , t_in_waterline )
279
280 list_totfatigue = []
281 damage1 = fatiguedamage_twoslope (t,s1 ,m1 ,logb1 ,m2 ,logb2 ,\
282 Nlimb ,th2 ,tref =25E-3,k =0.25)
283 list_totfatigue . append ( damage1 )
284
285 damage2 = fatiguedamage_twoslope (t,s2 ,m1 ,logb1 ,m2 ,logb2 ,\
286 Nlimb ,th2 ,tref =25E-3,k =0.25)
287 list_totfatigue . append ( damage2 )
288
289 damage3 = fatiguedamage_twoslope (t,s3 ,m1 ,logb1 ,m2 ,logb2 ,\
290 Nlimb ,th2 ,tref =25E-3,k =0.25)
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291 list_totfatigue . append ( damage3 )
292
293 damage4 = fatiguedamage_twoslope (t,s4 ,m1 ,logb1 ,m2 ,logb2 ,\
294 Nlimb ,th2 ,tref =25E-3,k =0.25)
295 list_totfatigue . append ( damage4 )
296
297 damage5 = fatiguedamage_twoslope (t,s5 ,m1 ,logb1 ,m2 ,logb2 ,\
298 Nlimb ,th2 ,tref =25E-3,k =0.25)
299 list_totfatigue . append ( damage5 )
300
301 damage6 = fatiguedamage_twoslope (t,s6 ,m1 ,logb1 ,m2 ,logb2 ,\
302 Nlimb ,th2 ,tref =25E-3,k =0.25)
303 list_totfatigue . append ( damage6 )
304
305 damage7 = fatiguedamage_twoslope (t,s7 ,m1 ,logb1 ,m2 ,logb2 ,\
306 Nlimb ,th2 ,tref =25E-3,k =0.25)
307 list_totfatigue . append ( damage7 )
308
309 damage8 = fatiguedamage_twoslope (t,s8 ,m1 ,logb1 ,m2 ,logb2 ,\
310 Nlimb ,th2 ,tref =25E-3,k =0.25)
311 list_totfatigue . append ( damage8 )
312
313 damage = max( list_totfatigue )
314
315 damage = max( list_totfatigue )
316
317 print ( damage )
318
319
320 # below transition +10
321 fx = a[: ,59]*1. e3;
322 fy = a[: ,60]*1. e3;
323 fz = a[: ,61]*1. e3;
324 mx = a[: ,62]*1. e3;
325 my = a[: ,63]*1. e3;
326 mz = a[: ,64]*1. e3;
327
328 [sax ,sbendy ,sbendz ,s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,ssh1 ,ssh2 ,ssh3 ,ssh4 ,\
329 ssh5 ,ssh6 ,ssh7 ,ssh8 ,svm1 ,svm2 ,svm3 ,svm4 ,svm5 ,svm6 ,svm7 ,svm8 ,sx ,\
330 symax , szmax ] = \
331 cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz ,\
332 D2_below_transition , t2_below_transition )
333
334 list_totfatigue = []
335 damage1 = fatiguedamage_twoslope (t,s1 ,m1 ,loga1 ,m2 ,loga2 ,\
336 Nlim ,th2 ,tref =25E-3,k =0.25)
337 list_totfatigue . append ( damage1 )
338
339 damage2 = fatiguedamage_twoslope (t,s2 ,m1 ,loga1 ,m2 ,loga2 ,\
340 Nlim ,th2 ,tref =25E-3,k =0.25)
341 list_totfatigue . append ( damage2 )
342
343 damage3 = fatiguedamage_twoslope (t,s3 ,m1 ,loga1 ,m2 ,loga2 ,\
344 Nlim ,th2 ,tref =25E-3,k =0.25)
345 list_totfatigue . append ( damage3 )
346
347 damage4 = fatiguedamage_twoslope (t,s4 ,m1 ,loga1 ,m2 ,loga2 ,\
348 Nlim ,th2 ,tref =25E-3,k =0.25)
349 list_totfatigue . append ( damage4 )
350
351 damage5 = fatiguedamage_twoslope (t,s5 ,m1 ,loga1 ,m2 ,loga2 ,\
352 Nlim ,th2 ,tref =25E-3,k =0.25)
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353 list_totfatigue . append ( damage5 )
354
355 damage6 = fatiguedamage_twoslope (t,s6 ,m1 ,loga1 ,m2 ,loga2 ,\
356 Nlim ,th2 ,tref =25E-3,k =0.25)
357 list_totfatigue . append ( damage6 )
358
359 damage7 = fatiguedamage_twoslope (t,s7 ,m1 ,loga1 ,m2 ,loga2 ,\
360 Nlim ,th2 ,tref =25E-3,k =0.25)
361 list_totfatigue . append ( damage7 )
362
363 damage8 = fatiguedamage_twoslope (t,s8 ,m1 ,loga1 ,m2 ,loga2 ,\
364 Nlim ,th2 ,tref =25E-3,k =0.25)
365 list_totfatigue . append ( damage8 )
366
367 damage = max( list_totfatigue )
368
369 print ( damage )
370
371
372 # Above transition +10
373 fx = a[: ,65]*1. e3;
374 fy = a[: ,66]*1. e3;
375 fz = a[: ,67]*1. e3;
376 mx = a[: ,68]*1. e3;
377 my = a[: ,69]*1. e3;
378 mz = a[: ,70]*1. e3;
379
380 [sax ,sbendy ,sbendz ,s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,ssh1 ,ssh2 ,ssh3 ,ssh4 ,ssh5 ,ssh6 ,\
381 ssh7 ,ssh8 ,svm1 ,svm2 ,svm3 ,svm4 ,svm5 ,svm6 ,svm7 ,svm8 ,sx ,symax , szmax ] = \
382 cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz ,\
383 D2_above_transition , t2_above_transition )
384
385 list_totfatigue = []
386 damage1 = fatiguedamage_twoslope (t,s1 ,m1 ,loga1 ,m2 ,loga2 ,\
387 Nlim ,th2 ,tref =25E-3,k =0.25)
388 list_totfatigue . append ( damage1 )
389
390 damage2 = fatiguedamage_twoslope (t,s2 ,m1 ,loga1 ,m2 ,loga2 ,\
391 Nlim ,th2 ,tref =25E-3,k =0.25)
392 list_totfatigue . append ( damage2 )
393
394 damage3 = fatiguedamage_twoslope (t,s3 ,m1 ,loga1 ,m2 ,loga2 ,\
395 Nlim ,th2 ,tref =25E-3,k =0.25)
396 list_totfatigue . append ( damage3 )
397
398 damage4 = fatiguedamage_twoslope (t,s4 ,m1 ,loga1 ,m2 ,loga2 ,\
399 Nlim ,th2 ,tref =25E-3,k =0.25)
400 list_totfatigue . append ( damage4 )
401
402 damage5 = fatiguedamage_twoslope (t,s5 ,m1 ,loga1 ,m2 ,loga2 ,\
403 Nlim ,th2 ,tref =25E-3,k =0.25)
404 list_totfatigue . append ( damage5 )
405
406 damage6 = fatiguedamage_twoslope (t,s6 ,m1 ,loga1 ,m2 ,loga2 ,\
407 Nlim ,th2 ,tref =25E-3,k =0.25)
408 list_totfatigue . append ( damage6 )
409
410 damage7 = fatiguedamage_twoslope (t,s7 ,m1 ,loga1 ,m2 ,loga2 ,\
411 Nlim ,th2 ,tref =25E-3,k =0.25)
412 list_totfatigue . append ( damage7 )
413
414 damage8 = fatiguedamage_twoslope (t,s8 ,m1 ,loga1 ,m2 ,loga2 ,\
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415 Nlim ,th2 ,tref =25E-3,k =0.25)
416 list_totfatigue . append ( damage8 )
417
418 damage = max( list_totfatigue )
419
420 print ( damage )
421
422
423 # Below upper mooring
424 fx = a[: ,71]*1. e3;
425 fy = a[: ,72]*1. e3;
426 fz = a[: ,73]*1. e3;
427 mx = a[: ,74]*1. e3;
428 my = a[: ,75]*1. e3;
429 mz = a[: ,76]*1. e3;
430
431 [sax ,sbendy ,sbendz ,s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,ssh1 ,ssh2 ,ssh3 ,ssh4 ,ssh5 ,\
432 ssh6 ,ssh7 ,ssh8 ,svm1 ,svm2 ,svm3 ,svm4 ,svm5 ,svm6 ,svm7 ,svm8 ,sx ,symax , szmax ] = \
433 cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz ,\
434 D_below_mooring , t_below_mooring )
435
436 list_totfatigue = []
437 damage1 = fatiguedamage_twoslope (t,s1 ,m1 ,loga1 ,m2 ,loga2 ,\
438 Nlim ,th2 ,tref =25E-3,k =0.25)
439 list_totfatigue . append ( damage1 )
440
441 damage2 = fatiguedamage_twoslope (t,s2 ,m1 ,loga1 ,m2 ,loga2 ,\
442 Nlim ,th2 ,tref =25E-3,k =0.25)
443 list_totfatigue . append ( damage2 )
444
445 damage3 = fatiguedamage_twoslope (t,s3 ,m1 ,loga1 ,m2 ,loga2 ,\
446 Nlim ,th2 ,tref =25E-3,k =0.25)
447 list_totfatigue . append ( damage3 )
448
449 damage4 = fatiguedamage_twoslope (t,s4 ,m1 ,loga1 ,m2 ,loga2 ,\
450 Nlim ,th2 ,tref =25E-3,k =0.25)
451 list_totfatigue . append ( damage4 )
452
453 damage5 = fatiguedamage_twoslope (t,s5 ,m1 ,loga1 ,m2 ,loga2 ,\
454 Nlim ,th2 ,tref =25E-3,k =0.25)
455 list_totfatigue . append ( damage5 )
456
457 damage6 = fatiguedamage_twoslope (t,s6 ,m1 ,loga1 ,m2 ,loga2 ,\
458 Nlim ,th2 ,tref =25E-3,k =0.25)
459 list_totfatigue . append ( damage6 )
460
461 damage7 = fatiguedamage_twoslope (t,s7 ,m1 ,loga1 ,m2 ,loga2 ,\
462 Nlim ,th2 ,tref =25E-3,k =0.25)
463 list_totfatigue . append ( damage7 )
464
465 damage8 = fatiguedamage_twoslope (t,s8 ,m1 ,loga1 ,m2 ,loga2 ,\
466 Nlim ,th2 ,tref =25E-3,k =0.25)
467 list_totfatigue . append ( damage8 )
468
469 damage = max( list_totfatigue )
470
471 print ( damage )
472
473
474
475 # above upper mooring
476 fx = a[: ,77]*1. e3;
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477 fy = a[: ,78]*1. e3;
478 fz = a[: ,79]*1. e3;
479 mx = a[: ,80]*1. e3;
480 my = a[: ,81]*1. e3;
481 mz = a[: ,81]*1. e3;
482
483 [sax ,sbendy ,sbendz ,s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,ssh1 ,ssh2 ,ssh3 ,ssh4 ,ssh5 ,\
484 ssh6 ,ssh7 ,ssh8 ,svm1 ,svm2 ,svm3 ,svm4 ,svm5 ,svm6 ,svm7 ,svm8 ,sx ,symax , szmax ] = \
485 cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz , D_above_mooring , t_above_mooring )
486
487 list_totfatigue = []
488 damage1 = fatiguedamage_twoslope (t,s1 ,m1 ,loga1 ,m2 ,loga2 ,\
489 Nlim ,th2 ,tref =25E-3,k =0.25)
490 list_totfatigue . append ( damage1 )
491
492 damage2 = fatiguedamage_twoslope (t,s2 ,m1 ,loga1 ,m2 ,loga2 ,\
493 Nlim ,th2 ,tref =25E-3,k =0.25)
494 list_totfatigue . append ( damage2 )
495
496 damage3 = fatiguedamage_twoslope (t,s3 ,m1 ,loga1 ,m2 ,loga2 ,\
497 Nlim ,th2 ,tref =25E-3,k =0.25)
498 list_totfatigue . append ( damage3 )
499
500 damage4 = fatiguedamage_twoslope (t,s4 ,m1 ,loga1 ,m2 ,loga2 ,\
501 Nlim ,th2 ,tref =25E-3,k =0.25)
502 list_totfatigue . append ( damage4 )
503
504 damage5 = fatiguedamage_twoslope (t,s5 ,m1 ,loga1 ,m2 ,loga2 ,\
505 Nlim ,th2 ,tref =25E-3,k =0.25)
506 list_totfatigue . append ( damage5 )
507
508 damage6 = fatiguedamage_twoslope (t,s6 ,m1 ,loga1 ,m2 ,loga2 ,\
509 Nlim ,th2 ,tref =25E-3,k =0.25)
510 list_totfatigue . append ( damage6 )
511
512 damage7 = fatiguedamage_twoslope (t,s7 ,m1 ,loga1 ,m2 ,loga2 ,\
513 Nlim ,th2 ,tref =25E-3,k =0.25)
514 list_totfatigue . append ( damage7 )
515
516 damage8 = fatiguedamage_twoslope (t,s8 ,m1 ,loga1 ,m2 ,loga2 ,\
517 Nlim ,th2 ,tref =25E-3,k =0.25)
518 list_totfatigue . append ( damage8 )
519
520 damage = max( list_totfatigue )
521
522 print ( damage )
523
524
525 #In tower 1
526 fx = a[: ,81]*1. e3;
527 fy = a[: ,82]*1. e3;
528 fz = a[: ,83]*1. e3;
529 mx = a[: ,84]*1. e3;
530 my = a[: ,85]*1. e3;
531 mz = a[: ,86]*1. e3;
532
533 [sax ,sbendy ,sbendz ,s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,ssh1 ,ssh2 ,ssh3 ,ssh4 ,ssh5 ,
534 ssh6 ,ssh7 ,ssh8 ,svm1 ,svm2 ,svm3 ,svm4 ,svm5 ,svm6 ,svm7 ,svm8 ,sx ,symax , szmax ] = \
535 cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz , D1_in_tower , t1_in_tower )
536
537 list_totfatigue = []
538 damage1 = fatiguedamage_twoslope (t,s1 ,m1 ,loga1 ,m2 ,loga2 ,\
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539 Nlim ,th2 ,tref =25E-3,k =0.25)
540 list_totfatigue . append ( damage1 )
541
542 damage2 = fatiguedamage_twoslope (t,s2 ,m1 ,loga1 ,m2 ,loga2 ,\
543 Nlim ,th2 ,tref =25E-3,k =0.25)
544 list_totfatigue . append ( damage2 )
545
546 damage3 = fatiguedamage_twoslope (t,s3 ,m1 ,loga1 ,m2 ,loga2 ,\
547 Nlim ,th2 ,tref =25E-3,k =0.25)
548 list_totfatigue . append ( damage3 )
549
550 damage4 = fatiguedamage_twoslope (t,s4 ,m1 ,loga1 ,m2 ,loga2 ,\
551 Nlim ,th2 ,tref =25E-3,k =0.25)
552 list_totfatigue . append ( damage4 )
553
554 damage5 = fatiguedamage_twoslope (t,s5 ,m1 ,loga1 ,m2 ,loga2 ,\
555 Nlim ,th2 ,tref =25E-3,k =0.25)
556 list_totfatigue . append ( damage5 )
557
558 damage6 = fatiguedamage_twoslope (t,s6 ,m1 ,loga1 ,m2 ,loga2 ,\
559 Nlim ,th2 ,tref =25E-3,k =0.25)
560 list_totfatigue . append ( damage6 )
561
562 damage7 = fatiguedamage_twoslope (t,s7 ,m1 ,loga1 ,m2 ,loga2 ,\
563 Nlim ,th2 ,tref =25E-3,k =0.25)
564 list_totfatigue . append ( damage7 )
565
566 damage8 = fatiguedamage_twoslope (t,s8 ,m1 ,loga1 ,m2 ,loga2 ,\
567 Nlim ,th2 ,tref =25E-3,k =0.25)
568 list_totfatigue . append ( damage8 )
569
570 damage = max( list_totfatigue )
571
572 print ( damage )
573
574
575 #In tower 2
576 fx = a[: ,87]*1. e3;
577 fy = a[: ,88]*1. e3;
578 fz = a[: ,89]*1. e3;
579 mx = a[: ,90]*1. e3;
580 my = a[: ,91]*1. e3;
581 mz = a[: ,92]*1. e3;
582
583 [sax ,sbendy ,sbendz ,s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,ssh1 ,ssh2 ,ssh3 ,
584 ssh4 ,ssh5 ,ssh6 ,ssh7 ,ssh8 ,svm1 ,svm2 ,svm3 ,svm4 ,svm5 ,svm6 ,
585 svm7 ,svm8 ,sx ,symax , szmax ] = \
586 cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz , D2_in_tower , t2_in_tower )
587
588 list_totfatigue = []
589 damage1 = fatiguedamage_twoslope (t,s1 ,m1 ,loga1 ,m2 ,loga2 ,\
590 Nlim ,th2 ,tref =25E-3,k =0.25)
591 list_totfatigue . append ( damage1 )
592
593 damage2 = fatiguedamage_twoslope (t,s2 ,m1 ,loga1 ,m2 ,loga2 ,\
594 Nlim ,th2 ,tref =25E-3,k =0.25)
595 list_totfatigue . append ( damage2 )
596
597 damage3 = fatiguedamage_twoslope (t,s3 ,m1 ,loga1 ,m2 ,loga2 ,\
598 Nlim ,th2 ,tref =25E-3,k =0.25)
599 list_totfatigue . append ( damage3 )
600
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601 damage4 = fatiguedamage_twoslope (t,s4 ,m1 ,loga1 ,m2 ,loga2 ,\
602 Nlim ,th2 ,tref =25E-3,k =0.25)
603 list_totfatigue . append ( damage4 )
604
605 damage5 = fatiguedamage_twoslope (t,s5 ,m1 ,loga1 ,m2 ,loga2 ,\
606 Nlim ,th2 ,tref =25E-3,k =0.25)
607 list_totfatigue . append ( damage5 )
608
609 damage6 = fatiguedamage_twoslope (t,s6 ,m1 ,loga1 ,m2 ,loga2 ,\
610 Nlim ,th2 ,tref =25E-3,k =0.25)
611 list_totfatigue . append ( damage6 )
612
613 damage7 = fatiguedamage_twoslope (t,s7 ,m1 ,loga1 ,m2 ,loga2 ,\
614 Nlim ,th2 ,tref =25E-3,k =0.25)
615 list_totfatigue . append ( damage7 )
616
617 damage8 = fatiguedamage_twoslope (t,s8 ,m1 ,loga1 ,m2 ,loga2 ,\
618 Nlim ,th2 ,tref =25E-3,k =0.25)
619 list_totfatigue . append ( damage8 )
620
621 damage = max( list_totfatigue )
622
623 print ( damage )
624
625
626 #In tower 3
627 fx = a[: ,93]*1. e3;
628 fy = a[: ,94]*1. e3;
629 fz = a[: ,95]*1. e3;
630 mx = a[: ,96]*1. e3;
631 my = a[: ,97]*1. e3;
632 mz = a[: ,98]*1. e3;
633
634 [sax ,sbendy ,sbendz ,s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,ssh1 ,ssh2 ,ssh3 ,ssh4 ,ssh5 ,ssh6 ,
635 ssh7 ,ssh8 ,svm1 ,svm2 ,svm3 ,svm4 ,svm5 ,svm6 ,svm7 ,svm8 ,sx ,symax , szmax ] = \
636 cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz , D3_in_tower , t3_in_tower )
637
638 list_totfatigue = []
639 damage1 = fatiguedamage_twoslope (t,s1 ,m1 ,loga1 ,m2 ,loga2 ,\
640 Nlim ,th2 ,tref =25E-3,k =0.25)
641 list_totfatigue . append ( damage1 )
642
643 damage2 = fatiguedamage_twoslope (t,s2 ,m1 ,loga1 ,m2 ,loga2 ,\
644 Nlim ,th2 ,tref =25E-3,k =0.25)
645 list_totfatigue . append ( damage2 )
646
647 damage3 = fatiguedamage_twoslope (t,s3 ,m1 ,loga1 ,m2 ,loga2 ,\
648 Nlim ,th2 ,tref =25E-3,k =0.25)
649 list_totfatigue . append ( damage3 )
650
651 damage4 = fatiguedamage_twoslope (t,s4 ,m1 ,loga1 ,m2 ,loga2 ,\
652 Nlim ,th2 ,tref =25E-3,k =0.25)
653 list_totfatigue . append ( damage4 )
654
655 damage5 = fatiguedamage_twoslope (t,s5 ,m1 ,loga1 ,m2 ,loga2 ,\
656 Nlim ,th2 ,tref =25E-3,k =0.25)
657 list_totfatigue . append ( damage5 )
658
659 damage6 = fatiguedamage_twoslope (t,s6 ,m1 ,loga1 ,m2 ,loga2 ,\
660 Nlim ,th2 ,tref =25E-3,k =0.25)
661 list_totfatigue . append ( damage6 )
662
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663 damage7 = fatiguedamage_twoslope (t,s7 ,m1 ,loga1 ,m2 ,loga2 ,\
664 Nlim ,th2 ,tref =25E-3,k =0.25)
665 list_totfatigue . append ( damage7 )
666
667 damage8 = fatiguedamage_twoslope (t,s8 ,m1 ,loga1 ,m2 ,loga2 ,\
668 Nlim ,th2 ,tref =25E-3,k =0.25)
669 list_totfatigue . append ( damage8 )
670
671 damage = max( list_totfatigue )
672
673 print ( damage )
674
675
676 #In tower 4
677 fx = a[: ,99]*1. e3;
678 fy = a [: ,100]*1. e3;
679 fz = a [: ,101]*1. e3;
680 mx = a [: ,102]*1. e3;
681 my = a [: ,103]*1. e3;
682 mz = a [: ,104]*1. e3;
683
684 [sax ,sbendy ,sbendz ,s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,ssh1 ,ssh2 ,ssh3 ,ssh4 ,ssh5 ,
685 ssh6 ,ssh7 ,ssh8 ,svm1 ,svm2 ,svm3 ,svm4 ,svm5 ,svm6 ,svm7 ,svm8 ,sx ,symax , szmax ] = \
686 cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz , D4_in_tower , t4_in_tower )
687
688 list_totfatigue = []
689 damage1 = fatiguedamage_twoslope (t,s1 ,m1 ,loga1 ,m2 ,loga2 ,\
690 Nlim ,th2 ,tref =25E-3,k =0.25)
691 list_totfatigue . append ( damage1 )
692
693 damage2 = fatiguedamage_twoslope (t,s2 ,m1 ,loga1 ,m2 ,loga2 ,\
694 Nlim ,th2 ,tref =25E-3,k =0.25)
695 list_totfatigue . append ( damage2 )
696
697 damage3 = fatiguedamage_twoslope (t,s3 ,m1 ,loga1 ,m2 ,loga2 ,\
698 Nlim ,th2 ,tref =25E-3,k =0.25)
699 list_totfatigue . append ( damage3 )
700
701 damage4 = fatiguedamage_twoslope (t,s4 ,m1 ,loga1 ,m2 ,loga2 ,\
702 Nlim ,th2 ,tref =25E-3,k =0.25)
703 list_totfatigue . append ( damage4 )
704
705 damage5 = fatiguedamage_twoslope (t,s5 ,m1 ,loga1 ,m2 ,loga2 ,\
706 Nlim ,th2 ,tref =25E-3,k =0.25)
707 list_totfatigue . append ( damage5 )
708
709 damage6 = fatiguedamage_twoslope (t,s6 ,m1 ,loga1 ,m2 ,loga2 ,\
710 Nlim ,th2 ,tref =25E-3,k =0.25)
711 list_totfatigue . append ( damage6 )
712
713 damage7 = fatiguedamage_twoslope (t,s7 ,m1 ,loga1 ,m2 ,loga2 ,\
714 Nlim ,th2 ,tref =25E-3,k =0.25)
715 list_totfatigue . append ( damage7 )
716
717 damage8 = fatiguedamage_twoslope (t,s8 ,m1 ,loga1 ,m2 ,loga2 ,\
718 Nlim ,th2 ,tref =25E-3,k =0.25)
719 list_totfatigue . append ( damage8 )
720
721 damage = max( list_totfatigue )
722
723 print ( damage )
724
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725
726 #In tower 5
727 fx = a [: ,105]*1. e3;
728 fy = a [: ,106]*1. e3;
729 fz = a [: ,107]*1. e3;
730 mx = a [: ,108]*1. e3;
731 my = a [: ,109]*1. e3;
732 mz = a [: ,110]*1. e3;
733
734 [sax ,sbendy ,sbendz ,s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8 ,ssh1 ,ssh2 ,ssh3 ,ssh4 ,ssh5 ,
735 ssh6 ,ssh7 ,ssh8 ,svm1 ,svm2 ,svm3 ,svm4 ,svm5 ,svm6 ,svm7 ,svm8 ,sx ,symax , szmax ] = \
736 cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz , D5_in_tower , t5_in_tower )
737
738 list_totfatigue = []
739 damage1 = fatiguedamage_twoslope (t,s1 ,m1 ,loga1 ,m2 ,loga2 ,\
740 Nlim ,th2 ,tref =25E-3,k =0.25)
741 list_totfatigue . append ( damage1 )
742
743 damage2 = fatiguedamage_twoslope (t,s2 ,m1 ,loga1 ,m2 ,loga2 ,\
744 Nlim ,th2 ,tref =25E-3,k =0.25)
745 list_totfatigue . append ( damage2 )
746
747 damage3 = fatiguedamage_twoslope (t,s3 ,m1 ,loga1 ,m2 ,loga2 ,\
748 Nlim ,th2 ,tref =25E-3,k =0.25)
749 list_totfatigue . append ( damage3 )
750
751 damage4 = fatiguedamage_twoslope (t,s4 ,m1 ,loga1 ,m2 ,loga2 ,\
752 Nlim ,th2 ,tref =25E-3,k =0.25)
753 list_totfatigue . append ( damage4 )
754
755 damage5 = fatiguedamage_twoslope (t,s5 ,m1 ,loga1 ,m2 ,loga2 ,\
756 Nlim ,th2 ,tref =25E-3,k =0.25)
757 list_totfatigue . append ( damage5 )
758
759 damage6 = fatiguedamage_twoslope (t,s6 ,m1 ,loga1 ,m2 ,loga2 ,\
760 Nlim ,th2 ,tref =25E-3,k =0.25)
761 list_totfatigue . append ( damage6 )
762
763 damage7 = fatiguedamage_twoslope (t,s7 ,m1 ,loga1 ,m2 ,loga2 ,\
764 Nlim ,th2 ,tref =25E-3,k =0.25)
765 list_totfatigue . append ( damage7 )
766
767 damage8 = fatiguedamage_twoslope (t,s8 ,m1 ,loga1 ,m2 ,loga2 ,\
768 Nlim ,th2 ,tref =25E-3,k =0.25)
769 list_totfatigue . append ( damage8 )
770
771 damage = max( list_totfatigue )
772
773 print ( damage )

Listing C.1: Fatigue analysis
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Appendix D

Stress algorithm

1 from pylab import *
2 from numpy import loadtxt
3
4
5 def cyl_beam_stresses (t,fx ,fy ,fz ,mx ,my ,mz ,d, twall ):
6
7
8 di = d - (2.* twall )
9 a = .25* pi *((d**2) -(di **2))

10 icyl = pi *((d**4) -(di **4))/64.
11
12
13 # normal stresses for points 1-8
14 sax = fx/a # axial stress , positive tension
15 sbendy = my *.5*d/icyl # positive moment gives tension ( positive for pos z)
16 sbendz = mz *.5*d/icyl # positive moment gives tension ( positive for neg y)
17
18 sin45 = sin(pi *45./180.) # z coordinate
19 cos45 = cos(pi *45./180.) # y coordinate
20
21 s1_0 = sax + sbendz
22 s2_0 = sax + sbendy * sin45 + sbendz * cos45
23 s3_0 = sax + sbendy
24 s4_0 = sax + sbendy * sin45 - sbendz * cos45
25 s5_0 = sax - sbendz
26 s6_0 = sax - sbendy * sin45 - sbendz * cos45
27 s7_0 = sax - sbendy
28 s8_0 = sax - sbendy * sin45 + sbendz * cos45
29
30 s1 = s1_0 *1.5
31 s2 = s2_0 *1.5
32 s3 = s3_0 *1.5
33 s4 = s4_0 *1.5
34 s5 = s5_0 *1.5
35 s6 = s6_0 *1.5
36 s7 = s7_0 *1.5
37 s8 = s8_0 *1.5
38
39
40
41 # shear stress
42 symax = fy/a *(4./3) *(d**2 + d*di + di **2) /(d**2 + di **2) # on z axis
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43 szmax = fz/a *(4./3) *(d**2 + d*di + di **2) /(d**2 + di **2) # on y axis
44 # torsion stress , thin wall approx
45 dm = .5*(d+di)
46 sx = mx /(2.* twall *.25* pi*dm **2)
47
48 # shear stresses , positive along section , positive x rotation
49 ssh1 = sx + szmax
50 ssh2 = sx # ignore shear stress due to shear forces here TODO
51 ssh3 = sx - symax
52 ssh4 = sx # ignore shear stress due to shear forces here TODO
53 ssh5 = sx - szmax
54 ssh6 = sx
55 ssh7 = sx + symax
56 ssh8 = sx
57
58 # von Mises stress
59 svm1 = sqrt(s1 **2 + 3.* ssh1 **2)
60 svm2 = sqrt(s2 **2 + 3.* ssh2 **2)
61 svm3 = sqrt(s3 **2 + 3.* ssh3 **2)
62 svm4 = sqrt(s4 **2 + 3.* ssh4 **2)
63 svm5 = sqrt(s5 **2 + 3.* ssh5 **2)
64 svm6 = sqrt(s6 **2 + 3.* ssh6 **2)
65 svm7 = sqrt(s7 **2 + 3.* ssh7 **2)
66 svm8 = sqrt(s8 **2 + 3.* ssh8 **2)
67
68
69 return [sax ,sbendy ,sbendz ,\
70 s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 , \
71 ssh1 ,ssh2 ,ssh3 ,ssh4 ,ssh5 ,ssh6 ,ssh7 ,ssh8 ,\
72 svm1 ,svm2 ,svm3 ,svm4 ,svm5 ,svm6 ,svm7 ,svm8 ,\
73 sx ,symax , szmax ]

Listing D.1: Stress algorthm
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Appendix E

Rainflow counting algorithm

1 import numpy as np
2 import pylab as plt
3 import scipy
4
5 # ##############################################################
6 ## Functions to calculate partial fatigue damage for welded ##
7 ## steel structures from timeseries of stress given in Pa ##
8 ## and two - sloped SN - curves as defined in DNV -OS -C203 Fatigue ##
9 ## Design of Offshore Steel Structures . ##

10 ## ##
11 ## Stress concrentration factors for hot -spot stress must be ##
12 ## included in the stress timeseries before these functions ##
13 ## are used. ##
14 ## ##
15 ## Stress cycles are counted using Rainflow counting . ##
16 ## ##
17 ## See example_fatigue_funcs .py for example of how to use ##
18 ## ##
19 ## Marit Kvittem Feb 2015 ##
20 # ##############################################################
21
22 def turningpoints (x):
23
24 ## Find the amplitude at turning points of a 1D numpy array x
25
26 dx = np.diff(x)
27 Np = np.sum( dx [1:] * dx [: -1] < 0)
28 ind = np. where (dx [1:] * dx [: -1] < 0)
29 tp_m = x[ind]
30
31 ## add end points
32 tp = [x[0]]
33 tp. extend (tp_m)
34 tp. extend ([x[ -1]])
35
36 return tp
37
38 def turningpoints_steffen (x,amp): # Written by Steffen Aasen , April 2016
39 #save indexes of turning points
40 turningpoints =[]
41 indexes =[]
42 for i in range (1, len(x) -1):
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43 if x[i -1] >x[i] and x[i+1] >x[i] or x[i -1] <x[i] and x[i+1] <x[i]:
44 indexes . append (i)
45 #make array with turningpoints
46 for element in indexes :
47 if abs(x[element -1] -x[ element ]) >amp and abs(x[ element +1]\
48 -x[ element ]) >amp:
49 turningpoints . append (x[ element ])
50
51 # delete points that are not turningpoints (due to numerical error )
52 indexes =[]
53 for i in range (len( turningpoints ) -2):
54 if turningpoints [i+1] > turningpoints [i] and turningpoints [i+2]\
55 >turningpoints [i+1] or turningpoints [i+1] < turningpoints [i]\
56 and turningpoints [i+2] < turningpoints [i+1]:
57 indexes . append (i+1)
58 turningpoints_2 =[]
59 for i in range (len( turningpoints )):
60 if i not in indexes :
61 turningpoints_2 . append ( turningpoints [i])
62
63 return turningpoints_2
64
65 def findrfc_wafo (x):
66
67 ## Rainflow counting of 1D list of turning points x
68 ## based on matlab wafo 's tp2arfc4p and default values given in tp2rfc
69
70 def_time =0.
71 res0 = []
72 T = len(x)
73 ARFC = np. zeros (( int(np. floor (T/2)) ,2))
74 N = -1
75
76 res = np. zeros (max ([200 , len(res0)]))
77
78 nres = -1
79
80 for i in range (0,T):
81 nres = nres +1
82 res[nres] = x[i]
83 cycleFound = 1
84 while cycleFound ==1 and nres >=4:
85 if res[nres -1] < res[nres -2]:
86 A = [res[nres -1] , res[nres -2]]
87 else:
88 A = [res[nres -2] , res[nres -1]]
89
90 if res[nres] < res[nres -3]:
91 B = [res[nres], res[nres -3]]
92 else:
93 B = [res[nres -3] , res[nres ]]
94
95 if A[0] >= B[0] and A[1] <= B[1]:
96 N=N+1
97 arfc = [[ res[nres -2]] ,[ res[nres -1]]]
98 ARFC[N] = [res[nres -2] , res[nres -1]]
99 res[nres -2] = res[nres]

100 nres = nres -2
101 else:
102 cycleFound = 0
103 ## residual
104 res = res [0: nres +1]
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105
106 def res2arfc (res):
107 nres = len(res)
108 ARFC = []
109 if nres < 2:
110 return
111 ## count min to max cycles , gives correct number of upcrossings
112 if (res [1] - res [0]) > 0.:
113 i_start = 0
114 else:
115 i_start =1
116 I = range (i_start ,nres -1 ,2)
117 Ip1 = range ( i_start +1,nres ,2)
118 ## def_time = 0
119
120 for ii in range (len(I)):
121 ARFC. append ( [res[I[ii]], res[Ip1[ii ]]] )
122
123 ARFC = np. array (ARFC)
124
125 return ARFC
126
127 ARFC_res = res2arfc (res)
128
129 ARFC = np. concatenate (( ARFC , ARFC_res ))
130
131 ## make symmetric
132 [N,M] = np. shape (ARFC)
133 I = []
134 J=0
135 RFC = ARFC
136
137 for ii in range (N):
138 if ARFC[ii ,0] > ARFC[ii ,1]:
139 ## Swap variables
140 RFC[ii ,J],RFC[ii ,J+1] = RFC[ii ,J+1] , RFC[ii ,J]
141
142 cc = RFC
143
144 rfcamp = (RFC [: ,1] - RFC [: ,0]) /2.
145
146 return rfcamp
147
148
149
150 def fatiguedamage_twoslope (time ,stress ,m1 ,loga1 ,m2 ,loga2 ,Nlim ,\
151 th =25E-3, tref =25E-3,k =0.25) :
152 ## stress : stressvector , unit: Pa
153 ## m1 , loga1 , m2 , loga2 : Parameters from table 2.2 in RP -C203
154 ## Note that the parameters in RP C203 are given for stress ranges in MPa
155 ## tref , k: perameters from point 2.4 in RP -C203
156 ## th: structural detail thickness
157 ## Calculates fatigue damage for bilinear SN curves
158 ## hist: true/ false parameter , wether or not to plot histogram
159
160 stress = stress *1.E -6
161
162
163 tp = turningpoints_steffen (stress ,0.0) ## Find turning points
164 mm = findrfc_wafo (tp) ## Rainflow cycles as by the routine in matlab wafo
165
166 Nbins = len(mm)
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167
168 if th <tref:
169 th = tref
170
171 a1 = 10.** loga1
172 K1 = 2.0** m1/a1 *( th/tref)**(k*m1)
173 beta1 = m1
174
175 a2 = 10.** loga2
176 K2 = 2.0** m2/a2 *( th/tref)**(k*m2)
177 beta2 = m2
178
179
180
181 alim = (1.0/( K1*Nlim)) **(1./ m1)
182 alim2 = (1.0/( K2*Nlim)) **(1./ m2)
183
184
185 avalid = (1.0/( K2 *1.0 E7)) **(1./ m2)
186
187 if not np. round (alim ,0) == np. round (alim2 ,0):
188 print ( loga1 )
189 print ( loga2 )
190 print (m1)
191 print (m2)
192 print (K1)
193 print (K2)
194 print (alim)
195 print ( alim2 )
196 print ('alim not the same as alim2 , check SN curve values ')
197
198 dd = 0.0
199
200 amp = abs(mm)
201
202 for aa in amp:
203 if aa > alim:
204 dd = dd + K1*aa ** beta1
205
206 elif aa <= alim:
207 if aa < avalid :
208 key = True
209
210 dd = dd + K2*aa ** beta2
211 else:
212 dd = dd + K2*aa ** beta2
213
214 D_T = dd
215
216 return D_T

Listing E.1: Rainflow counting
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Appendix F

ULS analysis

1 #from pylab import *
2 from scipy import interpolate
3 from pylab import *
4
5
6
7
8 # importing data
9 file = open('sensors_uls10 .txt ')

10 a = np. loadtxt (file ,skiprows =433 , dtype ='float ',delimiter =';') #
11 t = a[: ,0];
12
13 #pitch , roll , yaw
14 Roll = a[: ,8];
15 Max_roll = max(Roll)
16 Mean_roll = mean(Roll)
17 print ('Worst case of roll is ', Max_roll )
18 print ('Mean roll is ', Mean_roll )
19
20 Pitch = a[: ,9];
21 Max_pitch = max( Pitch )
22 Mean_pitch = mean( Pitch )
23 print ('Worst case of pitch is ', Max_pitch )
24 print ('Mean pitch is ', Mean_pitch )
25
26 Yaw = a[: ,10];
27 Max_yaw = max(Yaw)
28 Mean_yaw = mean(Yaw)
29 print ('Worst case of yaw is ', Max_yaw )
30 print ('Mean yaw is ', Mean_yaw )
31
32 #Heave , sway , surge
33 Heave = a[: ,11];
34 Max_heave = max( Heave )
35 Mean_heave = mean( Heave )
36 print ('Worst case of heave is ', Max_heave )
37 print ('Mean heave is ', Mean_heave )
38
39 Sway = a[: ,12];
40 Max_sway = max(Sway)
41 Mean_sway = mean(Sway)
42 print ('Worst case of sway is ', Max_sway )
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43 print ('Mean sway is ', Mean_sway )
44
45 Surge = a[: ,13];
46 Max_surge = max( Surge ) -87
47 Mean_surge = mean( Surge ) -87
48 print ('Worst case of surge is ', Max_surge )
49 print ('Mean surge is ', Mean_surge )
50
51 # Acceleration at towertop
52 a_heave = a[: ,17];
53 Max_a_heave = max( a_heave )
54 Mean_a_heave = mean( a_heave )
55 print ('Max heave acceleration is ', Max_a_heave )
56 print ('Mean heave acceleration is ', Mean_a_heave )
57
58 a_sway = a[: ,18];
59 Max_a_sway = max( a_sway )
60 Mean_a_sway = mean( a_sway )
61 print ('Max sway acceleration is ', Max_a_sway )
62 print ('Mean sway acceleration is ', Mean_a_sway )
63
64 a_surge = a[: ,19];
65 Max_a_surge = max( a_surge )
66 Mean_a_surge = mean( a_surge )
67 print ('Max surge acceleration is ', Max_a_surge )
68 print ('Mean surge acceleration is ', Mean_a_surge )
69
70 # Mooring line tension
71 fline1 = a[: ,20];
72 min1 = min( fline1 )
73 mean1 = mean( fline1 )
74 max1 = max( fline1 )
75 print ('mininum force (1) is ', min1)
76 print ('mean force (1) is ', mean1 )
77 print ('maximum force (1) is ', max1)
78
79 fline2 = a[: ,21];
80 min2 = min( fline2 )
81 mean2 = mean( fline2 )
82 max2 = max( fline2 )
83 print ('mininum force (2) is ', min2)
84 print ('mean force (2) is ', mean2 )
85 print ('maximum force (2) is ', max2)
86
87 fline3 = a[: ,22];
88 min3 = min( fline3 )
89 mean3 = mean( fline3 )
90 max3 = max( fline3 )
91 print ('mininum force (3) is ', min3)
92 print ('mean force (3) is ', mean3 )
93 print ('maximum force (3) is ', max3)
94
95 fline4 = a[: ,23];
96 min4 = min( fline4 )
97 mean4 = mean( fline4 )
98 max4 = max( fline4 )
99 print ('mininum force (4) is ', min4)

100 print ('mean force (4) is ', mean4 )
101 print ('maximum force (4) is ', max4)
102
103 fline5 = a[: ,24];
104 min5 = min( fline5 )
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105 mean5 = mean( fline5 )
106 max5 = max( fline5 )
107 print ('mininum force (5) is ', min5)
108 print ('mean force (5) is ', mean5 )
109 print ('maximum force (5) is ', max5)
110
111 fline6 = a[: ,25];
112 min6 = min( fline6 )
113 mean6 = mean( fline6 )
114 max6 = max( fline6 )
115 print ('mininum force (6) is ', min6)
116 print ('mean force (6) is ', mean6 )
117 print ('maximum force (6) is ', max6)
118
119 # Anchors
120 Anchor1_fx = a[: ,26];
121 Anchor1_fy = a[: ,27];
122 Anchor1_fz = a[: ,28];
123
124 Anchor1_horizontal = []
125 Anchor1_resultant = []
126 for i in range (len( Anchor1_fx )):
127 Anchor1_horizontal . append (sqrt ((( Anchor1_fx [i]) **2) +\
128 (( Anchor1_fy [i]) **2)))
129
130 A1_max_fz = max( Anchor1_fz )
131
132 for i in range (len( Anchor1_horizontal )):
133 Anchor1_resultant . append (sqrt ((( Anchor1_horizontal [i]) **2) +\
134 (( Anchor1_fz [i]) **2)))
135
136 print ('Mean vertical anchorload (2) ', mean( Anchor1_fz ))
137 print ('Highest vertical anchor load (1) is ', A1_max_fz )
138 print ('Highest resultant anchor load (1) is ', max( Anchor1_resultant ))
139 print ('Mean resultant (2) is ', mean( Anchor1_resultant ))
140
141 Anchor2_fx = a[: ,29];
142 Anchor2_fy = a[: ,30];
143 Anchor2_fz = a[: ,31];
144
145 Anchor2_horizontal = []
146 Anchor2_resultant = []
147 for i in range (len( Anchor1_fx )):
148 Anchor2_horizontal . append (sqrt ((( Anchor2_fx [i]) **2) +\
149 (( Anchor2_fy [i]) **2)))
150
151 A2_max_fz = max( Anchor2_fz )
152
153 for i in range (len( Anchor1_horizontal )):
154 Anchor2_resultant . append (sqrt ((( Anchor2_horizontal [i]) **2) +\
155 (( Anchor2_fz [i]) **2)))
156
157 print ('Highest vertical anchor load (2) is ', A2_max_fz )
158 print ('Mean vertical anchorload (2) ', mean( Anchor2_fz ))
159 print ('Highest resultant anchor load (2) is ', max( Anchor2_resultant ))
160 print ('Mean resultant (2) is ', mean( Anchor2_resultant ))
161
162 Anchor3_fx = a[: ,32];
163 Anchor3_fy = a[: ,33];
164 Anchor3_fz = a[: ,34];
165
166 Anchor3_horizontal = []
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167 Anchor3_resultant = []
168 for i in range (len( Anchor1_fx )):
169 Anchor3_horizontal . append (sqrt ((( Anchor3_fx [i]) **2) +\
170 (( Anchor3_fy [i]) **2)))
171
172 A3_max_fz = max( Anchor3_fz )
173
174 for i in range (len( Anchor1_horizontal )):
175 Anchor3_resultant . append (sqrt ((( Anchor3_horizontal [i]) **2) +\
176 (( Anchor3_fz [i]) **2)))
177
178 print ('Mean vertical anchorload (2) ', mean( Anchor3_fz ))
179 print ('Highest vertical anchor load (3) is ', A3_max_fz )
180 print ('Highest resultant anchor load (3) is ', max( Anchor3_resultant ))
181 print ('Mean resultant (2) is ', mean( Anchor3_resultant ))

Listing F.1: ULS analysis
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