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Abstract 
 

This simulation study investigates the effects of sample size, assortative mating, 

SNP density, and selection on realized genetic variance (𝜎𝑔
2), estimated genetic 

variance (𝜎𝑔̂
2) and genic variance (𝜎𝑎

2). Sample size had three levels: n = 300, n = 

1500 and n = 3000. SNP density also had three levels: 1K, 50K, and 100K. For 

the assortative mating scenarios, negative and positive mating were considered. 

Positive assortative mating (PAM) increased variance whilst negative 

assortative mating (NAM) and selection reduced the variance. Sample size and 

SNP density maintained the simulated variances. Both assortative mating 

methods and selection had an effect on G-REML estimates whilst sample size. 

SNP density had an effect on estimates genetic variance but not on realised and 

genic variance.  

The realised genetic variance remained unaltered with variations in sample size 

and SNP density. Estimated genetic variance in these scenarios represents both 

realised and genic genetic variance hence the actual variance between 

individuals in a population. Assortative mating and selection, however, alter the 

realized variance. Subsequently, the estimated genetic variance for these factors 

is biased and may not represent the realised and genic, and hence the actual 

population variance. 

 

Keywords: G-REML, genetic variance, genic variance, sample size, SNP density, 

assortative mating, selection. 
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1.0 Introduction 
 

The goal of breeding is to improve every successive generation (Atsbeha et al., 

2015). This improvement is measured as the phenotypic difference between 

parent and offspring generation given by the equation 𝑅 =  ℎ2𝑆 [1]  (Lush, 1943) 

where R is the response to selection, ℎ2 is heritability and 𝑆 is selection 

differential. Heritability is therefore important for predicting genetic gain in 

subsequent generations resulting from the mating of selected parents. It is 

estimated from variance components, genetic, 𝜎𝑔
2 and environmental, 𝜎𝑒

2 using 

the formula ℎ̂2 =  𝜎̂𝑔
2/(𝜎̂𝑔

2 +  𝜎̂𝑒
2)[2].  

Estimation of heritability was first done using the path analysis introduced by 

Wright, (1931). Later, another method based on analysis of variance (ANOVA) 

which used relative intra-class correlation was developed by Fisher (Visscher & 

Walsh, 2019). The third method uses a linear model to estimate heritability from 

pedigree which includes twin studies (Yang et al., 2017). With the advent of 

large-scale genotyping, efforts to estimates genomic-based heritability have been 

suggested. These include estimation of variance explained by SNPs discovered in 

genome-wide association studies (GWAS) termed ℎ𝐺𝑊𝐴
2  and also estimation of 

variance caused by the entire set of SNP of a genotyping array termed ℎ𝑆𝑁𝑃
2  (de 

los Campos et al., 2015; Rawlik et al., 2020) among others. Most of the methods 

are criticised for having inherent flaws (Rawlik et al., 2020; Yang et al., 2017) 

except for offspring-parent regression method. This sets an obvious demand for 

understanding variance components which are used for estimating this 

parameter.  

Variance components are often estimated with restricted maximum likelihood 

(REML) using an animal model where a relationship structure is assumed for 

the additive genetic animal effects. When genomic data is used, the method is 

called the genomic restricted maximum likelihood estimation (G-REML). With 

this method, genomic relationship matrices (GRMs) are used to estimate 

variance components, fitting REML to estimate the variance explained by all 

SNPs (Rawlik et al., 2020; Yang et al., 2010).  
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Efforts have been made to better understand variance components, particularly, 

genetic variance (𝜎̂𝑔
2). Previous studies focused on its dissection into simpler 

components (Clo et al., 2020; Lande & Porcher, 2015; Lynch, 2018). 

It might be interesting to see how these parameters vary with different 

scenarios. For quantitative traits, each SNP has a small effect on the phenotype. 

In human height, for example, some variants have a single effect of 3 mm 

(Rotwein, 2020).  

Previous studies have shown that sample size is inversely proportional to the 

markers to individuals (M/N) ratio leading to contribution of LD structure to 𝜎𝑔̂
2. 

And that with a small sample size, the 𝜎̂𝑔
2 is closer to the  𝜎𝑔

2 due to strong LD 

contribution and that 𝜎𝑎
2 is under-estimated or over-estimated when LD 

contribution is negative or positive respectively. This biasness affects heritability 

estimates (Rawlik et al., 2020).  

The main aim of this study is to investigate the effect of sample size, SNP 

density, selection, and mating schemes on genetic and 𝜎𝑎
2 estimates based on 

genomic estimates of relationships.  
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2.0 Literature review 
 

2.1 Additive genetic and genic variance 
 

Genotype and environment determine the phenotype of an individual. This can 

be represented in the form  𝑉𝑃 = 𝑉𝐺 + 𝑉𝐸 [3] where 𝑉𝑃 is the phenotypic variance, 

𝑉𝐺 is the genetic variance and 𝑉𝐸 is the environmental variance. The genetic 

variance can be dissected into three genetic components, 𝑉𝐺 = 𝑉𝐴 + 𝑉𝐷 + 𝑉𝐼 [4], 𝑉𝐴 

being the additive variance, 𝑉𝐷 is dominance variance and 𝑉𝐼 is the epistatic 

variance (Huang & Mackay, 2016). One of the main foci in breeding  is to single 

out the 𝑉𝐴 from the total genetic components contributing to phenotypic variance 

(Kolstad, 2005). Additive genetic variance is part of the total genetic variance 

which occurs due to the aggregate effect of many genes on a quantitative trait 

with each gene contributing a small effect. For SNPs with effects, the inheritance 

of a particular SNP causes a deviation from the mean phenotype. This deviation 

can be used to predict phenotype changes resulting from allelic substitution 

(Singh & Singh, 2020).  The essentiality of  𝑉𝐴 is that it is used to calculate 

heritability (ℎ2) a key parameter for the determination of genetic gain in 

response to selection (Huang & Mackay, 2016; Lush, 1943). 

 

Rasch & Mašata (2006) outlined some methods of variance components 

estimation methods as ANOVA, MINQUE (Rao, 1971), MIVQUE, and REML 

(Anderson and Bancroft, 1952). With the advent of SNP data, the genomic 

restricted maximum likelihood (GREML) method uses GRMs to estimates 

variance components, fitted using REML became the preferred method (Rawlik 

et al., 2020). Efforts have been made in the past to better understand variance 

components with a focus on genetic variance. The focus was on its dissection into 

individual components. Lande and Porcher (2015) showed that genetic variance 

can be represented in the form G = V + C [5]. G is a variance-covariance matrix 

which is the total genetic variance, V is a matrix whose diagonals give the genic 

variance (𝜎𝑎
2). Walsh and Lynch (2018) had a similar presentation of total 

additive variance, 𝜎𝐴
2  =  𝜎𝑎

2 + 𝑑 [6] .  𝜎𝐴
2 being the total additive variance, 𝜎𝑎 

2   is 



4 
 

the genic variance which is determined by the allele frequencies and when there 

is no LD, it takes the same value as the additive variance. It is the values of 

genetic variance expected under random mating. The last part of the equation, 𝑑 

is the LD generated disequilibrium contribution. Other authors also concur with 

the premise (Clo, Ronfort, and  Awad, 2020; Rawlik et al., 2020). Genic variance 

was first mentioned by Fredeen & Jonsson, (1957) when they studied genetic 

parameters associated with feed efficiency in pigs. Lande, (1976) envisioned 

dissecting genetic variance into building components but did not explicitly 

mention 𝜎𝑎
2. 

Burt, (2015) advanced the premise share by other authors that recent advances 

in genetics show that the estimation of heritability was flawed from the 

beginning. Classical heritability has been criticized as being overestimated, 

whilst GWAS heritability explains a small proportion of the actual heritability. 

Renewed efforts to revisit 𝜎𝑎
2 are necessitated by the need to understand better 

the components which are used in the estimation of heritability.  

 

With an increase in generational time under random mating, recombination 

causes LD decay. This LD decay is dependent on the measure of mutation rate 

(𝜃) and can be described by the equation; 𝐷𝑡 = 𝐷𝑜(1 − 𝑐)𝑡[7] (Falconer & Mackay, 

1996) where D is disequilibrium, 𝑐 is the recombination frequency and 𝑡 is the 

generational time. This affects the differences between genetic and genic 

variances. The 𝜎𝑎
2 however, remains unchanged over generational time under the 

infinitesimal model (Walsh and Lynch, 2018). As generational time increases 

under the assumption of no migration nor mutation, 𝐷 decreases asymptotically 

under the counter influence of drift and mutation. In a finite population, LD and 

𝜎𝑎
2 decreases at a rate of 

1

(2𝑁𝑒)
, 𝑁𝑒 being effective population size. This decrease in 

LD may be due to fixation of alleles by drift and shuffling of markers and QTLs 

by recombination. For traits influenced by many loci, small and cumulative 

effects of LD influence genetic variance value. This LD-mediated change in 𝜎𝐴
2 

can be predicted when the value of genic variance is known.  
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2.2 SNP density 
 

Single nucleotide polymorphisms (SNPs) are a variation of DNA base pairs that 

occurs when a single nucleotide is altered at a specific genome position (Koopaee & 

Koshkoiyeh, 2014; Zhang et al., 2020). SNPs genotypes provide genomic data 

required for genomic selection (GS) of superior animals for breeding and, also 

genetic maps for genetic variation studies of quantitative traits (Meuwissen et 

al., 2001). 

 

SNPs have the highest density in the genome of all the markers, they occur in 

coding and non-coding region, they are more stable and the integration of 

genomic data is easy (Xia et al., 2019; Zhang et al., 2020). Markers can be 

classified as low or high density based on the extent of LD, genome size, and 

species of interest (Xia et al., 2019). Low-density markers are not effective for 

QTL detection when LD is under rapid breakdown and for genomes of large size 

(Ibid.). the reasn for their inffectiveness ids that they are sparse and therefore 

may not be close enough to QTL. Dash et al., (2018) however, found the low-

density chip to be efficient for genetic diversity studies in cattle as does high-

density chips.  

High-density SNP chips are useful for fine-mapping of QTLs and genome 

evolution studies (Meuwissen & Goddard, 2000; Tortereau et al., 2012). Porto-

Neto et al., (2014) reported the discovery of association signals with high-density 

chips that were not discovered before when lower density was used. LD 

persistence across populations has been reported to improve with the density of 

SNPs (Bastiaansen et al., 2014). Whilst high-density chips are more effective in 

genome studies, their use is constrained by high cost, so low-density chips are 

used followed by phasing and imputation (Pryce et al., 2014). Imputation is the 

prediction of unknown genotypes using higher density chips for animals 

genotyped using a low-density chip (Bolormaa et al., 2015). 

This research seeks to investigate and provide empirical evidence on the effect of 

SNP density has on 𝜎𝑔̂
2 and 𝜎𝑎

2. 
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2.3 Selection, mating, and linkage disequilibrium 

 

Linkage disequilibrium (LD) is defined as the non-random association of alleles 

at different loci than it would be by chance (Slatkin, 2016). Selection is choosing 

individuals that have characteristics of interest to be parents of the next 

generation with the hope that their offspring will inherit those desirable 

characteristics. Common forms of selection are directional, stabilizing, and 

disruptive.  

LD can be measured as a deviation of gamete frequency from the expected by 

calculating a coefficient of linkage disequilibrium (D) (Lynch, 2018). Another 

method of calculating LD is the use of Pearson’s LD correlation coefficient (r)  

which is squared to render all values positive. It is a measure of how 

independent any two loci are (Lin et al., 2012). The third method is the 

standardization method, where D is compared to its maximum (Guo, 1997).  

Positive assortative mating (PAM) involves mating individuals with similar 

phenotypes for example, good to good. It alters the additive genetic variance 

mainly by generating LD and more genetic variance because like alleles, positive 

or negative, tend to be linked with each other.  (Hayashi, 1998). Negative 

associative mating (NAM) on the other hand reduces realized genetic variance. 

 

Random selection favours recombination and results in higher genetic variance 

than that produced from directional selection (Sánchez & Woolliams, 2004). The 

𝜎𝑔̂
2 was by regressing offspring genetic values to those of their parents. The 

approach of Hayashi, (1998) based on an infinitesimal model deliberated on the 

effect of LD on selection.  LD consideration in the selection process is based on 

the premise that the response to selection on one locus might affect the other 

locus if the two are in LD thereby influencing the response of haplotypes. Besides 

selection, genetic drift also creates LD among closely linked loci which in turn 

reduces the response to selection which McVean & Charlesworth, (2000) referred 

to as the “Hill–Robertson effect”. This effect is weak when few loci are considered 

but very strong when many closely linked loci are considered. Also, reduction in 

population size increases LD due to loss of haplotypes and increase in genetic 
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drift, so does inbreeding by augmenting the covariance between alleles at 

different loci (Slatkin, 2016). Non-random mating may affect genetic variance. 

Two forms of non-random mating are assortative mating where mating is based 

on phenotypic resemblance and inbreeding where mating individuals are more 

related to each other than the population average (Zhang et al., 2020).  

(Lande, 1976) postulated that PAM reduces genetic variance since it mates 

extremes as compared to random mating. This seems to contradict later co-

publication (Devaux & Lande, 2008) who suggested that assortative mating 

creates positive allelic and loci correlations which increase the genetic variance. 

They also advanced that at equilibrium, the genetic variance, 𝜎𝑔
2, is bigger under 

assortative mating than that exhibited under random mating.  

NAM generates negative LD, reduces heritability, and therefore reduces the 

response to selection (Lynch, 2018). In positive assortative mating, individuals 

with similar phenotypes are mated whilst negative assortative involves 

dissimilar individuals (Hayashi, 1998). PAM increases genetic variance by 

creating a positive correlation between pairs of loci (Bulmer, 1971). Disruptive 

selection was reported to reduce recombination under infinite population size but 

increase it under finite population (Sorensen & Hill, 1983). In a random mating 

scheme,  breeding males and females are paired by random sampling (Nirea et 

al., 2012). Under this method, recombination among loci is proportional to LD 

decay  (Sorensen & Hill, 1983).  

Bulmer, (2001) reported that under the infinitesimal model, selection induces a 

temporary correlation between pairs of loci altering genetic variance which 

reverts when the selection ceases. In the absence of selection, inbreeding leads to 

a reduction in heterozygosity subsequently reducing the additive genetic 

covariance within families whilst increasing it among families (Wright,  1969; 

Crow and Kimura 1970). 

The effects of mating, selection, and LD on  G-REML estimates will be 

investigated. 

 

 

https://en.wikipedia.org/wiki/Phenotypes
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2.4 Sample size 
 

Resource scarcity limits the use of the entire population for an experiment. A 

proportion of the population considered as a representative sample is used for 

the experiment. This proportion is used to infer to the real population is called 

sample size (Faber & Fonseca, 2014). The sample size has to be decided at the 

beginning of the experiment to avoid extreme (low or high)  sizes which can 

either compromise the results of the experiment (Faber & Fonseca, 2014) or 

leads to unwarranted experimental costs. The use of an appropriate sample size 

in an experiment allows the detection of a phenomenon if it does exist in the real 

population or to confirm its nonexistence if it is not discovered by the experiment 

(Ibid.).  

A sample size reduces the probability of discovering a phenomenon that does 

exist in the population (error type II). A very large sample size, on the other 

hand, overestimate statistical differences is overestimated, waste time and 

resources. The power of the test can therefore be improved by increasing the 

sample size. Previous studies showed an underestimation of effective population 

size when a small sample size was used for the investigation (England et al., 

2006). Nelson et al., (2015) reported a close to 5 times difference in the estimated 

population parameter, θ, by using a sample size of 11 000 humans compared to 

when 23 humans were used. For research like this one, there is a trade-off 

between the number of individuals and the number of loci per individual. 

Landguth et al., (2012) suggested there are many benefits in using more markers 

for relatively fewer individuals.  

(Rawlik et al., 2020) reported that sample size affects the ratio of markers (M) to 

the number of individuals (N). As the sample size increases, the M/N ratio 

decreases which in turn leads to reduced contribution of the effective LD 

structure to genetic variance. They also mentioned that, with small sample size, 

the estimate of 𝜎𝑔
2 is closer to the true 𝜎𝑔

2 due to strong LD contribution and that 

𝜎𝑎
2 is under-estimate or over-estimated if LD contribution is negative or positive 

LD, respectively. This bias translates to heritability estimates (Ibid). Hong and 
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Park (2012)’s results however, very small sample size is sufficient to detect 

association when LD is high. 

 

The main aim of this study is to investigate the effect of sample size, SNP 

density, selection, and mating schemes on genetic and 𝜎𝑎
2 estimates based on 

genomic estimates of relationships. 
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3.0 Methods 
 

3.1 Simulation of base populations and breeding schemes. 
 

To investigate the effects of factors hypothesised on genetic and genic variance, 

scenarios were simulated in the software package “QTL and marker simulator” 

(QMSim) (Sargolzaei and Schenkel, 2013). Each scenario was simulated with 20 

replications, 0.5 heritability, a phenotypic variance of 1.0, and a historical 

population of 600 individuals for 1200 generations. The base population had the 

same size as the historical population with 20 generations of breeding, a litter 

size of 10, and a fixed proportion of male progeny of 0.5. 

The genome comprised of 1 chromosome of length 100 cM, 10 000 markers 

randomly distributed across the genome, 500 random QTLs sampled from a 

uniform distribution. The SNP and QTL per base pair mutation rate were 1e-7 

per generation and a minor allele frequency (MAF) for LD calculation of 0.05 

from the first generation was used. Mutations altered the alleles of the bi-allelic 

markers and QTL back and forth. 

The effect of mating on genetic and genic and hence heritabilities were examined 

by simulating two mating designs: a negative assortative and a positive 

assortative. Mating individuals were selected at random. The effects of selection 

were also examined by simulating a selection design based on phenotype. All the 

males and all females were selected or culled based on their phenotype. The 

proportion of selected individuals was 0.2 and hence a selection intensity of 1.40. 

To investigate the effect of sample size on our parameters of interest, three 

populations of varying sizes were used. The largest sample size (LSS) of the 

three had 3 000 individuals, the intermediate (ISS) had 1500 individuals and the 

smallest (SSS) had 300 individuals. The ISS was established by selecting every 

second individual from an ordered list of LSS whilst SSS was drawn from LSS by 

selecting every 10th  individual.  The LSS included only one individual from 

every family to reduce the family effect.  
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To investigate the effect of SNP density,  three SNP densities, 1 000 markers,   

50 000, and 100,000 marker chips were used. The actual number of SNPs 

however varied depending on the segregation of the loci. 

3.2 Estimation of heritability 
 

QMSim output data were extracted to further steps of the analysis. The marker 

data and QTL data files with animal identities and parental alleles were 

converted to SNP genotypes using the Julia software package. The phenotype 

data from QMSim were edited in the R software package to remove ungenotyped 

animals and other columns which were deemed not useful for the study. A 

column of fixed effect with a value of 1 in each row was added to the file as the 

overall mean which was estimated in the analysis.  

The genomic relationship matrix (GRM) and GRM inverse were calculated using 

the WOMBAT software package (Meyer, 2007). The genomic relationship matrix 

(GRM) was calculated using the VaRaden1 method (VanRaden, 2008) and 

centred using allele frequencies. Error and genetic variances were also estimated 

by WOMBAT. To make the GRM positive definite, 0.01 was added to its 

diagonals and zeros were added to the first line of the GRM inverse. 

3.3 Genetic and genic variances 

 

The genetic variance was estimated in the WOMBAT software package.  The 

true or realized genetic variance was calculated from the QTL allele effect and 

allele frequency as the product of the square of allele substitution effect and 

heterozygosity; ∑[(𝑒𝑎1 − 𝑒𝑎2)2 ∗ 2 ∗ 𝑝𝑖(1 − 𝑝𝑗)] [8], where 𝑒𝑎1  is the effect of the 

first allele and 𝑒𝑎2 is the effect of the second allele, 𝑝𝑖 is the freqiency of one allele 

and (1 − 𝑝𝑗) is the frequency of an another allele. 
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4.0 Results. 

 

4.1 Segregation of markers and QTLs 

 

QMSim was used to simulate the effect of sample size (n= 300, n= 1500, and n= 3 

000), mating (negative assortative and positive assortative), and selection. Three 

scenarios (1K, 50K, and 100K SNP chips) were simulated to examine the effect of 

SNP density. On average 55 % of the markers and 54 % QTLs were segregating. 

Pictorial representations of markers and QTLs are shown in Figure 1 and 

Figure 2, respectively. Table 1 shows the number of initial and segregating 

markers and QTLs from the QMSim output file. 

 

  Initial   Segregating   SE 

Scenario Markers QTLs   Markers QTLs   Markers QTLs 

ss3000 10000  500   5473 273   56 2 

NAM 10000 500   5460 274   42 4 

PAM 10000 500   5559 280   50 3 

SNPd 100K 100 000 500   54699 273   570 4 

Selection 10 000 500   5547 278   63 4 

 
Table 1: Initial number of markers and QTLs at generation 0 and segregating markers at generation 20. The 
simulated scenarios are sample size (ss) with 300, 1500, and 3000 individuals. Mating scenarios were negative 
assortative mating (NAM), positive assortative mating (PAM). Other scenarios were SNP density (SNPd) and 
selection. Other scenarios not shown here were not simulated but were extracted as subsets from the 
simulated.  
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Figure 1: Initial and segregating markers. Initial marker bars do not have error bars. Most scenarios had initial 
10 000 markers and approximately half of them were segregated. Scenarios that sought to investigate the 
effect of SNP density had varied marker initial numbers, 1 000, 50 000, and 100 000. 

 

                           Figure 2:Initial and segregating QTLs 

 

. 

 

4.2 True genetic variance   

 

Realised genetic variance (𝜎𝑔
2)  which is the variance of true breeding value was 

calculated for generation 0 and generation 20  from the QMSim output file as the 

QTL variance. The 𝜎𝑔
2 at generation 0  was 0.50 across all the scenarios and 

0
20000
40000
60000
80000

100000
120000

N
u

m
b

er
 o

f 
m

ar
ke

rs

Scenario

A bar graph for initial and segregation markers

Initial Segregating

0

100

200

300

400

500

600

ss300 ss1500 ss3000 NAM PAM SNPd 100K Selection

N
u

m
b

er
 o

f 
Q

TL
s

Scenarios

Initial and segregating QTLs plot

Initial Segregating



14 
 

levels. The same value was maintained for sample size and SNP density after 20 

generations, there was therefore little variation due to different levels of sample 

size and SNP density. Assortative mating and selection showed a deviation from 

this trend. The 𝜎𝑔
2 for dropped from 0.50 in generation 0 to 0.35 and 0.07 in 

generation 20  for negative assortative mating (NAM) and selection respectively. 

PAM however, showed an increase from 0.50 to 1.08 between the generations. 

PAM had the highest value whilst selection had the least. Sample size and SNP 

density did not affect genetic variances. These results are shown in Figure 3. 

 

            Figure 3: Realised genetic variance for generation 0 and generation 20. 

 

 

4.3 Realised and estimated genetic variances 
 

There was a small difference between 𝜎𝑔
2 and 𝜎𝑔̂

2 for both sample size and SNP 

density. The difference was significant for assortative mating and selection 

scenarios. The 𝜎𝑔̂
2was overestimated for NAM and selection whilst it was 

underestimated for PAM. The results are shown in Figure 4. 
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                      Figure 4: True and estimated genetic variance at generation 20. 

 

 

4.4 True heritability 

 

The true heritability (ℎ𝑡
2) values were calculated for generations 0 and 

generation 20 from the QMSim output file as the ratio of phenotypic and QTL 

variances. He values were 0.68, 0.50, 0.41 and 0.12 for positive assortative 

mating, sample size and SNP density, negative assortative mating, and 

selection, respectively. The calculated value was 0.50 ± 0.005 across all the 

simulated scenarios for generation 0. Differences were noted for generation 20 

for NAM (0.41±0.006), PAM (0.68±0.011) and selection (0.12±0.010),  whilst 

sample size (0.50±0.006) and SNP density (0.50±0.082) showed slight differences 

across all levels. The THR for NAM and selection in generation 20 were 0.049 

and 0.39 lower than at generation 0 respectively. PAM however had a higher 

value (+0.18) at generation 20 than at generation 0. Figure 5 below shows the 

comparison of the two. 
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                     Figure 5: True heritability at generation zero and 20. 

 

 

 

4.5 Estimated genetic variance (𝜎𝑔̂
2) 

 

The estimated genetic variance (𝜎𝑔̂
2) was computed by the WOMBAT software. 

There were no significant differences between the three levels of sample size, 

they were all close to 0.5 with a mean value of 0.49. SNP density however had a 

significant effect on 𝜎𝑔̂
2, estimates seemed to decrease as marker density 

increased. SNP density 1K had a significantly higher estimate (0.52±0.015) than 

50K and 100K densities which had estimates of 0.483 (0.014) and 0.482 (0.014) 

respectively. PAM had a very large estimate whilst selection had the smallest 

estimate. Negative assortative mating, PAM, and selection had estimates of 0.47, 

0.58, and 0.10 respectively. 

 

4.6 True and estimated genetic variances. 
 

Figure 6 shows a comparison plot of true genetic and estimated variances.  The 

𝜎𝑔̂
2 is equal to 𝜎𝑔

2 for sample size and SNP density. An over-estimation is observed 

for NAM and selection by 0.12 and 0.03 respectively whilst there is 

underestimation for the PAM scenario by 0.5.  

Assortative mating and selection had an effect on both components. After 20 

generations, 𝜎𝑔
2 mean value for sample size values ( 0.488 ± 0.0120) was slightly 
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lower than that of 𝜎𝑔̂
2 (0.494 ± 0.0006) though the difference was not statistically 

different. For negative assortative mating, the genetic variance had an estimate 

of 0.47 for which was an overestimate relative to 𝜎𝑔
2  of 0.35. Positive assortative 

mating, however, conferred under-estimation of genetic variance as with a value 

of 0.58±0.03  relative to 𝜎𝑔
2 of 1.08±0.06. SNP density had an effect on 𝜎𝑔̂

2. A 

density of 1K had a genetic variance estimate of 0.52 which was significantly 

higher than 50K and 100K which had equal estimated values of 0.48.  

 

               Figure 6: True and estimated genetic variance after 20 generations. 

 

 

 

  4.7 True and estimated heritabilities 

Figure 7 is a bar plot for true and estimated heritability after 20 generations. 

Though not significantly different, there were slight differences between the 
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0.490±0.011 so were SNP density levels with values 0.4955 ± 0.0820 and 
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respectively whilst it under-estimated the same for the PAM scenario by 0.14. 

Heritability estimate, 0.17±0.014, for selection was higher than the 𝜎𝑔
2 , 

0.12±0.010. 

 

                     Figure 7: True and estimated heritability after 20 generations. 

 

 

 

4.8 Genic variance (𝝈𝒂
𝟐) 

 

Figure 8 shows a plot for  𝜎𝑎
2 at generation 0 and generation 20. There were no 

significant differences between 𝜎𝑎
2 at generation 0and generation 20 for the three 

levels of sample size though the values were lower after  20 generations than 

that at generation 0. The values were equal for all levels; 0.48 ± 0.02 and 0.47 ± 

0.02 at generation 0 and generation 20 respectively. For negative assortative 

mating, the 𝜎𝑎
2 at generation 20 was lower but the difference was not significant. 

For positive assortative mating, however, 𝜎𝑎
2 at generation 20 (0.46±0.023) was 

significantly lower than at generation 0 (0.52±0.015). There were no significant 

differences between the two variances for different levels of SNP density though 

𝜎𝑎
2 at generation 20 was higher than that at generation 0, the estimates were 

0.51(0.019) and 0.50(0.011) respectively. There was a large decline in 𝜎𝑎
2 for the 
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selection scenario after 20 generations, from 0.46(0.012) at generation 0 to 

0.14(0.015) at generation 20.  

 

                    Figure 8: Genic variance for generation zero and generation 20. 

 

 

 

4.9 Comparison of realised genetic variance, estimated genetic 

variance, and genic variance 
 

PAM increases variance, negative assortative and selection reduce the variance. 
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estimate was closer to the 𝜎𝑎
2 than it was to the 𝜎𝑔

2. For higher densities, 

however, the genetic variance was underestimated and was in between the genic 

and 𝜎𝑔
2. Selection had an effect on all the parameters under investigation. The 

genetic variance was overestimated and was in between the 𝜎𝑔
2 and 𝜎𝑎

2. The 

results are shown in Figure 9. 

 

 

Figure 9: Plot for realised genetic variance, estimated genetic variance, and genic variance after 20 
generations. The dotted line shows the simulated variance of 0.5.  
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from the lowest to the highest. For positive assortative mating, however, the 

values are in reverse order,  the 𝜎𝑔
2  had the highest value, the 𝜎𝑔̂

2maintained its 

intermediate position whilst the 𝜎𝑎
2 had the least value. The 𝜎𝑔

2 and 𝜎𝑔̂
2 were 

highest for all the simulated scenarios. The values were 1.08, 0.58, and 0.46 for 

𝜎𝑔
2, 𝜎𝑔̂

2 and 𝜎𝑎
2 respectively. Selection had the least component values of all the 

scenarios. 𝜎𝑔̂
2 was intermediate between 𝜎𝑔

2 and 𝜎𝑎
2. The values were 0.07, 0.10 

and 0.1 for 𝜎𝑔
2, 𝜎𝑔̂

2 and 𝜎𝑎
2 respectively.  
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5.0 Discussion 
 

Sample size did not have an effect on realized genetic variance,  estimated 

genetic variance and genic variance.  Hence there was a lack of effect of sample 

size on G-REML estimates of genetic variance. This result differs from Rawlik et 

al., (2020)’s prediction that the estimates diminish as the sample size increases 

because of the decreased ratio between the number of markers (M) and the 

number of individuals (N). The latter may be because Rawlik et al.’s data 

resembled human populations with a very weak family structure and the present 

results resemble animal breeding data with a strong family structure. 

Positive assortative mating had an effect on G-REML estimates whilst negative 

assortative mating has little effect. The 𝜎𝑔̂
2 was in between the 𝜎𝑔

2 and 𝜎𝑎
2.  PAM 

creates positive allelic and loci correlations which increase the genetic variance. 

These results concur with Devaux & Lande, (2008). This may be caused by the 

induced LD which then contributes negatively to 𝜎𝑔̂
2 leading to underestimation 

of the 𝜎𝑎
2. Also, PAM will have even larger effect in the next generation since 

phenotypes are more likely to be influenced by genetics than the environment. 

Phenotypic variances under NAM are likely to be influenced more by 

environmental factors. Since alike individuals are mated in positive assortative 

mating, there is likely inbreeding with small effective size and hence reduction 

in variance within the alike mated individuals. On the other hand, the 

population is split into different strata (high and low) thereby variance increases 

between the, unlike mating groups. NAM will not give the same results. 

Lower SNP density had a higher genetic variance estimate than higher SNP 

density. This is a deviation from the expected trend as an increase in SNP 

density increases the LD between QTLs and markers and therefore the 𝜎𝑔̂
2 is 

expected to increase. Ogawa et al., (2014) reported that 𝜎𝑔̂
2 increases with 

increasing SNP density, which may be expected since a smaller fraction of the 

genetic variance may be captured by a low-density SNP panel. 

Selection showed the lowest genetic variance estimates. This loss of variance can 

be explained by the fact that selection tend to fix loci. The same trend was 
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reported by  Hayashi, (1998). Also, fixation of most QTLs leads to a reduction of 

𝜎𝑔̂
2. 

The 𝜎𝑎
2 is maintained almost constant across scenarios except for the selection 

scenario. This can be because genic variance is only reduced by genetic drift but 

for this for this study, the population of 3000 could have been large enough for 

rapid loss of variance by drift. The phenomenon could also be caused by 

directional changes of gene-frequencies, which were only present in the selection 

scheme (Lande & Porcher, 2015). 
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6.0 Conclusion 
 

Selection has a large effect on the G-REML estimates and the estimated genetic 

variance takes an intermediate value in between the realized and genic variance. 

The estimate, therefore, does not reflect the actual population variance. The two 

assortative mating methods have a larger effect on realized genetic variance 

than they have on estimated genetic variance. The latter is much closer to the 

genic variance and therefore largely represents genic variance despite being 

based on marker rather than QTL relationships. The estimated genetic variance 

is slightly biased in the direction of the realized genetic variance, which is most 

evident for positive assortative mating where the difference between realized 

and genic variance is largest.  

Both sample size and SNP density have little effect of the same magnitude on 

the realized, estimated, and genic variances. The estimated genetic variance for 

these scenarios seems to be closer to the realised genetic variance than it is to 

the genic variance. The realised genetic variance remains unaltered with 

variations in sample size and SNP density. Estimated genetic variance in these 

scenarios represents both realised and genic genetic variance hence the actual 

variance between individuals in a population. Assortative mating and selection, 

however, alter the realized variance. Subsequently, the estimated genetic 

variance for these factors is biased and may not represent the realised and genic, 

and hence the actual population variance.  

Sample size and SNP density have little effect on G-REML estimates. 

Heritability estimates obtained using such variance components may be close to 

the true heritability of a trait in a population. Assortative mating and selection 

lead to biased estimates which may not represent the actual heritability. 
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