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Abstract 

Domestic cats can pose a significant threat to local wildlife in urban and rural areas because 

of their high densities and proficiency as predators. However, few attempts have been made 

to quantify the impact of domestic cats on natural areas like forests, and even the extent to 

which cats use forests and areas further away from human influence remain uncertain. 

I estimated cat occupancy at 411 forest locations in southeastern Norway from April 2018 to 

March 2021 using camera traps. I investigated how cat occupancy and detection probability 

was impacted by human infrastructure, habitat and the terrain. Subsequently, I used the best 

supported occupancy models to predict occupancy across forests in southeastern Norway. 

Cat occupancy decreased strongly further away from houses, and cats if present were more 

likely to be detected closer to houses and forest edges. The best-supported models predicted 

that cats were present at 70% and 47% of forest sites 100 and 200m away from houses 

respectively, and cat presence only dropped below 10% more than 900m from residential 

houses. The model also predicted that cats were present in 12.5% (95% CI: 10-15%) of forests 

in southeastern Norway. 

 This study corroborates previous findings that cats are more likely to use natural areas near 

houses, but also show that cat activity may extend further away from houses into forests than 

previously thought. However, more information on cat abundance and hunting habits in 

forests is needed to assess the impacts cats have on forest fauna. This study represents the 

first population-level study on what determines where cats occur in a large forested area, 

while simultaneously accounting for habitat characteristics and imperfect detection. 
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1. Introduction 

Domestic cats prey on a wide range of fauna, making them a threat to wildlife in many places 

(Thomas et al., 2012; Van Heezik et al., 2010). They have played a role in 26% of all island 

extinctions (Doherty et al., 2016), and the estimates for how much wildlife they kill are 

staggering. In the United States alone, Loss et al. (2013) estimated that cats kill 1.3-4 billion 

birds, 6.3-22.3 billion mammals, 258-822 million reptiles and 95-299 million amphibians each 

year, making free-ranging cats the greatest source of human-related mortality for birds and 

small mammals in the US.  

There are several reasons why domestic cats can have such a large impact on wildlife. Since 

humans provide food subsidies, cats are not regulated by the quantity of prey, allowing cats 

to persist at densities far higher than any natural predator, often around 200-450 cats pr. km2 

in urban areas (Baker et al., 2008; Sims et al., 2008; Thomas et al., 2012; Van Heezik et al., 

2010). Cats also prey on a wide range of fauna (Hervías et al., 2014; Mori et al., 2019), and 

most free-ranging pet cats are active hunters (Seymour et al., 2020; Thomas et al., 2012; Van 

Heezik et al., 2010; Woods et al., 2003).  

While several studies indicate domestic cats can have a negative impact on wildlife in urban 

areas (Thomas et al., 2012; Van Heezik et al., 2010), their impacts in natural areas are not well 

known, and few studies have focused on how cats impact forest fauna in particular. Forests 

often contain more vulnerable and native species, potentially making cats a greater 

conservation concern (Gillies & Clout, 2003; Herrera et al., 2022).   

An important first step in determining how cats impact forest fauna is to discover how 

widespread domestic cats are in forests, and what determines where in forests they are found. 

Most studies indicate cats select against forests, and are mostly found near forest edges 

(Crooks, 2002; Gehrt et al., 2013; Kays & DeWan, 2004; Van Heezik et al., 2010), but some 

studies find cats show weak or no selection against forest habitat, and penetrate further into 

forests (López-Jara et al., 2021; Pirie et al., 2022; Thomas et al., 2014). Most pet cats also 

spend most of their time close to their house (Bischof et al., 2022; Kays et al., 2020; López-

Jara et al., 2021). However, cat home ranges sizes are very variable, and some cats roam much 
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further away from their house and further into forests (Bischof et al., 2022; Kays et al., 2020; 

López-Jara et al., 2021; Pirie et al., 2022). Cats living close to natural areas may also have larger 

home ranges and hunt more (Pirie et al., 2022). Even if only a minority of cats roam extensively 

in forests, the impacts on wildlife could be significant due to the sheer number of pet cats in 

the world.   

Few estimates exist on how widespread cats are in forests. Most studies on cat habitat use 

are telemetry studies that only track a small subset of the cat population. Since cat roaming 

and habitat preferences are highly variable, it is difficult to scale up inferences from individual 

cats in telemetry studies to provide population-level inferences on how widespread cats are 

in different habitats (Bischof et al., 2022). The few non-telemetry studies estimating cat 

abundance or occurrence in forests are often very local, small, and do not account for 

important characteristics of the environment, nor for the fact that cats can be present even if 

they are not detected (Crooks, 2002; Ferreira et al., 2011; Kays et al., 2015; Kays & DeWan, 

2004; López-Jara et al., 2021). 

In this study, I assessed whether cats were present at 411 camera trap sites in southeastern 

Norway over a three-year period while accounting for imperfect detection using occupancy 

modelling. I investigated how cat occupancy and detection was influenced by habitat 

characteristics like human population density and distance to nearest house and forest edge. 

I then used the best occupancy models to estimate the proportion of forested areas in 

southeastern Norway where cats were present. 

The goal of this study was to answer (1) how likely cats are to be present at different distances 

from human residences in forests, (2) what other environmental variables influence cat 

occupancy in forests and (3) in what proportion of forests throughout southeastern Norway 

cats are present. I hypothesize that cats will be far more likely to occur close to houses and in 

areas with high human density, since several studies have found cats to spend most of their 

time within 50 or 100 meters of their house (Bischof et al., 2022; Kays et al., 2020). While I 

expect cats to be most influenced by the human factors above, I also expect cats to occur less 

in steep areas (Ferreira et al., 2011) and in areas with a higher proportion of forest in the 

landscape, since most studies indicate cats select against forests (Gehrt et al., 2013; Kays & 

DeWan, 2004; Van Heezik et al., 2010).  
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2. Methods 

2.1. Study area 

The study area extends across more than 80 000 km2 in southeastern Norway, between 58.3 

and 61.9 degrees latitude (Fig. 1). The area includes 70 municipalities spread across four 

counties: Innlandet, Vestfold and Telemark, Viken and Oslo. The climate is temperate, with 

quite large differences in temperature and daylength within seasons. The study area is 

partially covered by snow from December-March (some parts November-May), with more 

snow at higher latitudes and higher elevations. 

More than half the study area is forested, and roughly 80% are production forests (Svensson, 

2021). The most common forest type is boreal coniferous forests dominated by European 

spruce (Picea abies), Scotch pine (Pinus sylvestris) and birch (Betula pubescens) (Svensson, 

2021). These forests are characterized by winters that are long, cold and dry, and short, warm 

and moist summers. Temperate deciduous forests are also found in the more southeastern 

low-elevation parts of the study area, with species like linden (Tilia cordata), maple (Acer 

platanoides), ash (Fraxinus excelsior), elm (Ulmus glabra) and common oak (Quercus robus) 

(Grindeland, 2020). In addition, mixed forests are common in the transition from temperate 

to boreal forests. 

The average population density in the larger study area is 30 people pr km2 (SSB, 2018), 

although the cameras were placed on local sites with a lower average population density than 

in the larger area of southeastern Norway. The larger study area contains a few relatively large 

cities like Oslo (~700 000 inhabitants), Drammen (~100 000 inhabitants) and Fredrikstad 

(~80 000 inhabitants) along with many smaller towns and more sparsely populated areas. Our 

study area is almost devoid of wilderness (i.e. areas more than five kilometres away from any 

human development intervention), even though the national average is 11% wilderness 

(Lundberg & Halleraker, 2021).  
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Figure 1. Study area in southeastern Norway showing camera traps where cats were observed (yellow) 

and not observed (black) for the study duration. Source: Google Maps. 

 

2.2. Camera trapping 

The camera trap data used in this study was collected by the Norwegian Institute for Nature 

Research (NINA) as part of the SCANDCAM project. The goal of SCANDCAM is to monitor 

Eurasian lynx (Lynx lynx) populations, so cameras were placed at locations to maximize the 

probability of detecting lynx. The cameras were mostly placed at features like cliffs, boulders, 

trails and forestry roads (roads used for timber harvest). Almost all cameras were placed in 

forests and attached to trees roughly 70 cm above ground (20 to 150cm depending on the 

terrain and snow depth in winter). The density of camera traps was approximately one camera 

trap per 50 km2, and cameras were rarely placed closer than 2 km from another camera. Since 

cats have small home ranges (3.6 ± 5.6 ha) and seldom roam more than one kilometre from 

their home (Kays et al., 2020), we can assume almost all cats only visit one camera.  
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I only used cameras that took daily timelapse pictures in addition to motion-triggered images. 

This allowed me to distinguish when cameras were not active vs when cameras were active 

but no animals were detected. The cameras used were five Reconyx© camera models 

(http://www.reconyx.com, Holmen, WI, USA): HC500 HyperFire Semi-Covert IR, PC800 

Hyperfire Professional Semi-Covert IR, PC900 HyperFire Professional Covert IR, HC600 

HyperFire High Output Covert IR, and PC850 HyperFire Professional White Flash LED. I also 

used some Bushnell Trophy Cam Aggressor cameras. All models used a trigger speed of 0.2 

seconds, and fired bursts of three images with no delay for trigger interval. 

We used photos taken in the three year-period April 2018 - March 2021. All pictures were 

revised manually at least twice by different observers, to minimize the probability of false 

positives and false negatives caused by misidentifying species. 

 

Figure 2. Camera trap photos of domestic cats from this study. Source: 

https://viltkamera.nina.no/ 

 

 

http://www.reconyx.com/
https://viltkamera.nina.no/
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2.3. Environmental covariates 

I collected several covariates that I hypothesized could impact occupancy and/or detection 

(Table 1-2). For occupancy I estimated human population density, distance to nearest house, 

terrain ruggedness index and forest proportion, and for detection the distance to nearest 

house, distance to nearest road, distance to nearest forest edge, and terrain ruggedness index. 

The detection covariates were selected because they could influence the abundance of cats 

at the site, and greater abundance of cats means cats are more likely to be detected if present. 

Since I assume cats are mostly bound to human settlements, I defined distance to forest edge 

as the distance from each camera to the nearest anthropogenic landscape or structure 

(distance to the nearest field, road or building), so as not to include the distance to lakes and 

bogs located inside of forests. Covariates were calculated using data from 50 x 50 m raster 

cells (250 x 250 m for population density) from various publicly available Norwegian map 

databases (Table 1-2). For more information on how the rawdata from these map databases 

were prosessed to create the covariates, see appendix table 1.  

I calculated detection and occupancy covariates at different landscape scales, using the 

covariate values at the site to reflect the probability of detecting cats if they are present and 

the covariate value within a 400m buffer of the camera as the probability the unit was 

occupied. For detection covariates, I used the covariate value in the 50 m x 50 m cell the 

camera was located in. For occupancy covariates I used the exact_extract function in the 

package exactextractr (Baston, 2020) to calculate the mean covariate value within a 400m 

radius buffer of each camera. Raster cells that were partially covered by the buffer were 

weighed against the proportion of the cell covered when calculating the mean value, to ensure 

the most representative estimates. 
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Table 1. Occupancy covariates used in the models. Occupancy covariates were calculated within a 

400m radius buffer of each camera. 

Variable Description Range: mean 

(min-max) 

 Source 

Dist_house Distance to nearest 

residential house (m) 

883 (102-7200)  FKB-Bygning 

(Kartverket, 2017) 

Pop_dens Human population density 

(pr. km2)  

11.3 (0-767.8)  Befolkning på rutenett 

(SSB, 2018) 

TRI Terrain ruggedness index 7.8 (0.1-26.0)  DEM50 (Kartverket, 

2018a) 

Prop_forest Forest proportion  0.84 (0.02-1)  Ar50 (NIBIO, 2016)  

 

Table 2. Detection covariates used in the model. The covariate value was extracted from the 50 x 50 

m raster cell the cameras were located in. 

Variable Description 
Range: mean 

(min-max) 

 
Source 

Dist_house Distance to nearest 

residential house (m) 

881(50-7191)  FKB-Bygning 

(Kartverket, 2017) 

TRI Terrain ruggedness index 9.6(0-37.9)  DEM50 (Kartverket, 

2018a) 

Dist_road Distance to nearest road 

(m) 

411(0-3650)  FKB-Veg (Kartverket, 

2018b) 

Dist_forest_edge Distance to nearest road, 

building or agricultural field 

(m). 

129(0-707)  -Road: FKB-bygning 

(Kartverket, 2018b) 

-Building: FKB-bygning 

(Kartverket, 2017)  

-Fields: Ar50 (NIBIO, 

2016) 
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2.4. Data analysis 

All analyses were carried out in R version 4.1.1 (R Core Team, 2021). I used occupancy models 

for all the analyses. Occupancy models are used to model species occurrence while accounting 

for the fact that a species can be present without being detected (MacKenzie et al., 2002). 

Thus, occupancy models calculate both occupancy probability, 𝛹 and detection probability, p. 

Occupancy is the proportion of sampling units occupied by a given species, while detection 

probability is the probability that a species will be detected in a given survey within a unit if 

the species is present (MacKenzie et al., 2002). By surveying units multiple times, occupancy 

models calculate the probability that the species is present by also including the probability 

the species is present without being detected. Both occupancy and detection probability can 

be modelled as a function of covariates. Occupancy models assume that the site is closed to 

changes in occupancy status between surveys, but not between seasons. How to define a 

sampling unit, season and survey in occupancy modelling is flexible and depends on the study 

objectives (MacKenzie et al., 2017). 

I defined a season as a year, and each year was divided into 52 weekly surveys. To avoid any 

bias caused by differing surveying effort, I only included surveys where the cameras were 

active the whole week. I treated each camera-year combination as separate sites, thus 

“stacking” the yearly detection histories (see Fuller et al., 2016; Linden et al., 2017) to increase 

the sample size we can use to model the effect of habitat covariates. 
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Figure 3. Overview of which weekly surveys the 411 study cameras were active in from April 2018 – 

March 2021. Red = camera active and cat detected, grey = camera active, white = camera inactive. The 

two vertical lines delineate where cameras were split into year-camera “sites” for the occupancy 

analysis. 

 

I calculated Pearson correlation coefficient between all covariates. Since all covariates were 

weakly correlated with each other (r < 0.5), I did not exclude any variables. I log-transformed 

all the distance variables (distance to nearest house-, forest edge- and road), since I assumed 

the distance effect would be stronger at short distances. All the covariates were then 

standardized. 

I used the occu function in unmarked (Fiske & Chandler, 2011) to create the single season 

occupancy models of MacKenzie et al. (2002) for all the occupancy models. As a preliminary 
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analysis, I determined at which landscape scale the occupancy covariates were most 

important for predicting cat occupancy. I fitted occupancy models with occupancy covariates 

calculated at three landscape scales; within 100, 200 and 400 m buffers around each camera. 

For each landscape scale I fitted all possible combinations of my detection and occupancy 

covariates, resulting in 205 models for each occupancy scale. I then compared the combined 

model weights of models belonging to each occupancy scale using AIC with the AICcmodavg 

package (Mazerolle & Mazerolle, 2017). Since the model weights showed that covariates at 

the 400m scale best predicted cat occupancy, I ran all subsequent analyses using the 400m 

scale. 

I then determined how the covariates impacted occupancy and detection probability by fitting 

all combinations of detection and occupancy models, and comparing them using Akaike 

Information Criterion (AICc). Since I had several candidates for best model, I model-averaged 

the best fitting occupancy models (ΔAICc ≤ 2) using the model.avg function in the MuMIn 

package (Barton, 2022). I also combined the AICc weights for all the models each covariate 

appeared in, giving the probability that each covariate is part of the best model (Burnhan & 

Anderson, 2002).  

We used the model averaged occupancy covariate estimates (Table 4) to predict occupancy 

probability in all forests in our study area. We only predicted occupancy probability for cells 

with >60% forest coverage, and for cells that were inside the data range of all our occupancy 

covariates (Table 1). Almost all the forest cells (96%) were inside the covariate data range. We 

also resampled the 50 x 50 m ar50 forest raster (NIBIO, 2016) to a resolution of 700 x 700 m 

so the raster cells would have roughly the same area as the 400m radius buffers we defined 

as the occupancy unit. We were left with almost 50 000 km2 of forest to make predictions on. 

We than calculated and mapped the average occupancy probability across all the forest cells. 

To calculate the confidence interval for the proportion of forests occupied, I simulated the 

values of the intercept and occupancy coefficients 100 000 times by drawing random normally 

distributed values using the model-averaged estimate and standard error for each occupancy 

covariate and the intercept. I applied these simulated coefficient values to the covariate values 

associated with each forest cell and averaged these values to get 100 000 mean occupancy 
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estimates. I then found the 2.5% and 97.5% quantiles for the 100 000 mean occupancy 

estimates to get the 95% CI estimate for proportion of forests occupied by cats. 

 

3. Results 

The camera traps were active for a total of 203 735 days over the three-year study period from 

April 2018 – March 2021 at 941 sites, where one site is a year-camera trap combination (mean 

= 217, SD = 123 active trapping days per site, Fig. 3). There were 411 unique active camera 

trap locations. 

 

3.1. Covariates influencing cat occupancy and detection 

The best cat occupancy model included distance to forest edge, distance to house, distance 

to road and TRI as detection covariates, and the distance to house for occupancy (Table 3). 

However, other potential best models (AICc < 2) also included the terrain ruggedness index 

and forest proportion as occupancy covariates, while maintaining the same detection 

covariates. All the top occupancy models contained TRI and the distance to house, forest edge 

and road as detection covariates. 

Table 3. Top models of cat occupancy models evaluated by AICc. Covariate descriptions are found in 

Tables 1-2.   

Detection covariates Occupany 

covariates 

 Df Log 

likelihood 

AICc ΔAICc  AICc 

weights 

dist_forest_edge + 

dist_house + dist_road 

+ TRI 

dist_house 7 -1981.26 3976.5 0.00 0.26 

dist_forest_edge + 

dist_house + dist_road 

+ TRI 

dist_house + TRI 8 -1980.45 3976.9 0.39 0.22 
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dist_forest_edge + 

dist_house + dist_road 

+ TRI 

dist_house + 

prop_forest + TRI 

9 -1979.97 3977.9 1.43 0.13 

dist_forest_edge + 

dist_house + dist_road 

+ TRI 

dist_house + 

prop_forest 

8 -1981.13 3978.3 1.75 0.11 

dist_forest_edge + 

dist_house + dist_road 

+ TRI 

dist_house + 

pop_dens 

8 -1981.26 3978.5 2.01 0.10 

dist_forest_edge + 

dist_house + dist_road 

+ TRI 

dist_house + 

pop_dens + TRI 

9 -1980.45 3978.9 2.39 0.08 

dist_forest_edge + 

dist_house + dist_road 

+ TRI 

dist_house + 

pop_dens + 

prop_forest + TRI 

10 -1979.97 3979.9 3.43 0.05 

dist_forest_edge + 

dist_house + dist_road 

+ TRI 

dist_house + 

pop_dens + 

prop_forest 

9 -1981.13 3980.3 3.75 0.04 

dist_forest_edge + 

dist_house + dist_road 

dist_house 6 -1986.14 3984.3 7.76 0.01 
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Table 4. Occupancy and covariate estimates for the model-averaged highest ranking cat occupancy 

models (ΔAICc ≤ 2).  

Covariate Estimate Std. Error z.value Pr(z) 

Occupancy     

Int -1.546 0.1473 10.4969 <.001 

dist_house -1.2316 0.1615 7.6271 <.001 

TRI 0.1804 0.1355 1.3317 0.183 

prop_forest -0.0758 0.1017 0.7448 0.456 

Detection     

Int -2.9677 0.0858 34.5974 <.001 

dist_forest_edge -0.6233 0.0605 10.2993 <.001 

dist_house -0.6642 0.0675 9.8379 <.001 

dist_road 0.2608 0.0598 4.3634 <.001 

TRI -0.199 0.0646 3.0818 0.002 

 

All detection covariates were statistically significant (p ≤ 0.002), while only distance to house 

significantly influenced occupancy (p < 0.001) (Table 4). Distance to house had a 6.8 times 

higher effect on occupancy than the second most influential occupancy variable (TRI). Cat 

occupancy strongly decreased further away from houses (Fig. 4). Occupancy was predicted at 

70% and 48% when the mean distance from a house in a 400m buffer radius were 100 and 

200m respectively, and only dipped below 10% more than 900m from the nearest house. The 

furthest away from houses we detected cats was 1532 meters. Occupancy also increased 

slightly in steeper terrain, and decreased slightly at more forested sites, but not significantly 

(Table 4).  
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Figure 4. Predicted cat occupancy at different distances to nearest house in meters. All other variables 

were held constant at their mean values. The points show the camera sites where cats were observed 

(top) and not observed (bottom). 

Predicted detection probability declined steeply when distance to house and distance to 

forest edge increased (Fig. 5a-b). Detection probability was 20% at the forest edge, but 

declined to 3% and 1.7% 50 and 200m from the forest edge respectively. Detection probability 

was 20% and 9% 50 and 200m away from the nearest house. Detection probability also 

decreased closer to roads and in more steep terrain (Fig. 5c-d).  

For occupancy covariates, the probability that each covariate was part of the best occupancy 

model was 100% for distance to house, but for TRI, proportion of forest and population density 

this probability was low (Table 5). For all detection covariates, the probability they were part 

of the best model was close to 100%.  
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Table 5. Probability that each covariate is retained in the top occupancy model, as measured by AICc 

model weights.   

Covariate Detection Occupancy 

Dist_house 1 1 

TRI 0.98 0.47 

Prop_forest - 0.33 

Pop_dens - 0.26 

Dist_road 1 - 

Dist_forest_edge 1 - 

 

 

 

Figure 5. Predicted probability of detecting cats in a given survey week if they are present at the site 

for all detection covariates. (a) distance to nearest house (m), (b) distance to nearest forest edge (m), 

(c) distance to nearest road (m) and (d) terrain ruggedness index. All other covariates were held 

constant at their mean values when predicting. 
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3.2. Occupancy in forests in southeastern Norway 

My model predicted that 12% (CI: 9-15%) of all forests in southeastern Norway are occupied 

by cats (Fig. 6). Most forest cells had a very low occupancy probability, as 46% had occupancy 

probability of less than five percent, while 64% had an occupancy probability of 10 percent or 

less. Only 2.5% of the forest area had an occupancy probability greater than 50%, and the 

highest predicted occupancy was 71%.  

 

Figure 6. Predicted occupancy across all forest areas in southeastern Norway. Black areas were not 

included in the predictions, either because they were not primarily (>60%) forested, or because they 

were outside of the study area.  
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4. Discussion 

4.1. How far do cats go from houses? 

Distance to the nearest house was the strongest determinant of where cats were present in 

forests. Cats were more likely to be present closer to houses, but my model still predicted 

higher cat presence further away from houses than what we expected. Cats were predicted 

to occupy 70% of sites 100m from the nearest house, and occupancy only dipped below 10% 

more than 900 meters away from houses. Cats were also detected at more than 10% of 

cameras between 500-1000 and 1000-2000 meters from the nearest house over their whole 

activity period (Table A2). Other studies show pet cats spend most of their time within 50 or 

100m from their house, and rarely roam further than a few hundred meters (Bischof et al., 

2022; Hervías et al., 2014; Kays et al., 2020; López-Jara et al., 2021). At the same time, these 

studies uncover large variation in roaming, with some cats occasionally roaming much further. 

The maximum linear distance individual cats roamed from their house was 108-2534m (mean 

739m) for López-Jara et al. (2021) and 48-3384m (mean 354m) for Bischof et al. (2022). My 

study seems to indicate that the occasional far-roaming cat other studies have recorded can 

translate into cats occurring at a significant number of sites far away from houses.   

However, it is difficult to compare my estimates on how far away from houses cats roam with 

estimates from telemetry studies. Telemetry studies measure how far into forests individual 

cats go, but not the probability of encountering cats at a given distance from houses like this 

study. Most telemetry studies also only track a small number of cats for a few days or weeks. 

Thus, their estimates of the maximum distance cats roam are likely sometimes 

underestimated (López-Jara et al., 2021). Furthermore, most telemetry studies do not track 

enough cats to get representative estimates on how likely cats are to roam far, since cat home 

ranges are so variable (Hebblewhite & Haydon, 2010). In addition, telemetry studies have 

examined how far cats venture from houses regardless of habitat, while this study looks at 

how far away from houses cats are found while being inside forests. Since forests are likely 

not preferred cat habitat (Kays & DeWan, 2004; Van Heezik et al., 2010), we might have found 

cats to be even more common further away from houses if we had placed the cameras in more 

favourable cat habitats. López-Jara et al. (2021) found evidence supporting this assumption, 

as cats living more than 200m away from forests rarely entered the forest, even though they 
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roamed much further than 200m on average (average maximum distance travelled from 

house was 738 meters). Several studies indicate that while cats can penetrate more than 200 

meters into forests, they are most common less than 50 meters into the forest (Kays & DeWan, 

2004; Pirie et al., 2022). Thus, the probability of finding cats at different distances to houses 

inside forests likely depends on how far into forests the cameras were placed. Both previous 

telemetry studies and this study may underestimate how far away from houses cats go, as a 

result of short tracking duration of cats and cameras being placed inside forests respectively. 

 

4.2. Importance of other occupancy and detection covariates 

While distance to house strongly influenced cat occupancy, human population density had a 

weak non-significant impact on cat occupancy. Thus, I found no proof for my prediction that 

densely populated areas would have more cats, making cats occurring in local forest 

fragments more likely. The reason I found no support for my prediction could be that human 

population density likely is not a great predictor of the number of free-roaming pet cats, and 

more cats may not always make forest penetration more likely. In sparsely populated rural 

areas, households own more cats and a larger proportion of cats have outdoor access than in 

more densely populated urban areas (Lepczyk et al., 2004). While urban areas still have much 

higher cat densities on average (Baker et al., 2008; Lepczyk et al., 2004; Sims et al., 2008; 

Warner, 1985), the difference is smaller than what is expected from comparing human 

population density.  

Perhaps more importantly, several studies have found that cats roam more at low cat and 

human densities. A meta-analysis by Hall, C. M. et al. (2016) found that rural pet cats had 14.4 

times larger home ranges than urban pet cats, and a large recent study tracking 878 cats found 

rural cats had 1.6 times larger home ranges (Kays et al., 2020). Smaller cat home ranges have 

also been directly linked to higher housing densities (Hall, Catherine M et al., 2016; López-Jara 

et al., 2021) and higher cat densities (Van Heezik et al., 2010). There could be several reasons 

why cats roam more at lower densities. Sparsely populated areas often have fewer barriers to 

cat movements like trafficked roads (Barratt, 1997). Furthermore, cats may restrict each 

other’s roaming at high densities through territoriality, but while feral cats are considered 

territorial (Genovesi et al., 1995; Hall et al., 2000), the extent to which pet cats are territorial 
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remains uncertain (Thomas et al., 2014). If greater home ranges at low cat densities is caused 

by territoriality, the commonly suggested cat mitigation measure of reducing the outdoor 

access of cats might not have the intended effect of reducing cat penetration into natural 

areas. If only some cat owners reduce outdoor access, the remaining outdoor cats may 

increase their roaming as a response (Thomas et al., 2014). Thus, the cats’ pressure on more 

distant natural areas might not be reduced, although cat densities and their subsequent 

predation pressure close to cat households would likely decrease (Bischof et al., 2022). 

Discovering why cats apparently have smaller home ranges at higher human and cat 

population densities can thus have important implications for managing the impact of 

domestic cats. When considering the higher ratio of free-ranging cats to people and the larger 

cat home ranges in low population density areas, my finding that human population density 

did not influence cat occupancy is less surprising.  

The steepness and proportion of forest in the landscape also had a weak, not significant effect 

on cat occupancy. I expected to see a strong selection against sites with a higher forest 

proportion in the landscape (Gehrt et al., 2013; Kays & DeWan, 2004; Van Heezik et al., 2010), 

and a preference for less steep sites (Ferreira et al., 2011). However, not all studies find cats 

select strongly against forests, as Thomas et al. (2014) found pet cats selected for green 

habitats. Unfortunately, Thomas et al. (2014) did not distinguish between forest and 

grassland, so it is possible cats only selected for grassland. Feral cats in New Zealand have also 

been found to select for forest habitat (Harper, 2007). Thus, my findings demonstrate that we 

need more research to determine how cats select for or against forests and the landscape 

steepness. These findings also demonstrate that human factors like distance to house is likely 

much more important for the space use of cats than other habitat characteristics, which is 

consistent with most other studies on cats (i.a. Kays et al., 2020; López-Jara et al., 2021).  

At sites occupied by cats, the model predicted that cats are detected 20% of all weeks at the 

forest edge, but the detection probability decreased very rapidly to just 3.4% 50 meters into 

the forest. The difference in detection probability is likely due to cats being more abundant 

closer to the forest edge, since there is no reason to believe it is easier to detect the same 

number of cats on camera closer to the forest edge. Other studies have also found that cats 

are far more abundant in the first 50 meters of the edge.  Kays and DeWan (2004) detected 

cats at half the scent stations <50m from forest edge, but only at 5% of scent stations >50m 
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from edge. However, they still observed cats more than 200m into forest fragments. Pirie et 

al. (2022) found that the average maximum penetration distance into heatland or forests was 

69 meters, with some cats penetrating more than 300 meters into these natural areas. Thus, 

my study corroborates previous studies showing that cats are likely to be much more 

prevalent in forest edges. 

 

4.3. How widespread are cats in forests in Southern Norway? 

This study predicted that cats occur in between 9 and 15% of forests in southeastern Norway. 

Kays et al. (2015) examined occupancy of cats in 32 mostly forested North American protected 

areas using camera traps, and found cats in half the areas. However, cats were very 

uncommon, and were detected 100 times less than in small urban forests in the same region. 

They found that cats occupied 27% of urban forests and only 1.6% of protected areas. This 

result might coincide well with my 9-15% estimate, since forests in southeastern Norway on 

average falls somewhere in between the human influence of urban forests and protected 

areas. However, Kays et al. (2015) disclose limited information on the habitat of the protected 

areas, and how far away from houses and edges the cameras were placed, so it is difficult to 

compare how similar our study areas are in terms of factors relevant for cat roaming. This 

study is the first to my knowledge to sample enough sites across almost the entire range of 

relevant variables to allow for predicting cat occurrence across a vast (50 000 km2) area of 

forest. Population-level studies on cat space use are necessary as a complement to telemetry 

studies, since the roaming behaviour of cats is so variable, making the ecological practice of 

scaling inferences from a limited number of cats to the population level difficult.   

After learning that cats are found in a significant portion of forests in southeastern Norway, it 

becomes important to parse out how vulnerable these forests are to cat predation. The 

vulnerability is likely not uniform across different types of forests. In the study area, temperate 

deciduous forests might be more vulnerable to cat intrusion due to higher species diversity 

and higher bird densities. In particular, these forests have several bush- and ground-feeding 

birds that could be vulnerable to cat predation (Suding & Solheim, 2022). Boreal forests can 

be less vulnerable due to their lower species diversity- and prevalence of bush- and ground-

feeding birds. Small mammals constitute an even greater proportion of cat kills (Seymour et 
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al., 2020; Tschanz et al., 2011; Woods et al., 2003), and while rodent control might be seen as 

a benefit of cats in some urban and rural areas, it would not be in forests. By predating 

rodents, cats could compete for food with predators like hawks and owls (George, 1974). More 

knowledge on the prevalence and threat status of species that could be predated by cats is 

necessary to get a better picture of how vulnerable Norwegian forests are to cat intrusion. 

Unfortunately, my estimates on how common cats are in forests can be difficult to generalize, 

due to the high diversity of forests and their local conditions that can impact cats space use. 

In Europe alone there are 42 different forest habitats according to IUCN, spread across several 

biogeographical regions, each with their own fauna, vegetation and climate (Biurrun et al., 

2016). Some forests can have properties that make them more attractive to cats, like 

abundant prey, mild climate and few predators. For instance, some studies suggest predators 

like coyotes can create a landscape of fear for cats, limiting their roaming in natural areas 

(Crooks & Soulé, 1999; Gehrt et al., 2013; Kays et al., 2015). Forests with abundant cat 

predators may thus have less cat penetration. However, not all studies find cats avoiding 

predators (Kays et al., 2020), and many studies claim cats avoid predators based only on cats 

preferring more developed and less natural habitats (Gehrt et al., 2013; Kays et al., 2015), 

which could also be explained by differences in habitat preference. The uncertainty 

surrounding the influence on predators on cat space use demonstrates how we know too little 

about many of the factors impacting cat roaming in natural areas like forests, making it difficult 

to state how my results can be generalized to other forest areas. 

However, we can be more confident in how other factors influence cat roaming in different 

forests. This study corroborates previous findings that clearly demonstrates we can expect 

more cats in forest areas with a greater human presence and more fragmented forests. In 

addition, cats are likely more common in forests in areas with more feral cats. Feral cats have 

larger home ranges (Horn et al., 2011), and likely use more forest habitats. A review of 27 

studies on the habitat use of unowned and feral cats found they used a wide range of forest 

types (Doherty et al., 2015), and feral cats on Stewart Island in New Zealand actively selected 

for broadleaf forest habitats (Harper, 2007). Thus, while feral cats are still mostly attached to 

human settlements  they are likely to roam further away from houses and into forests. While 

there are no good estimates on how many feral cats there are in Norway (Heggøy & 
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Shimmings, 2018), they are probably much less abundant than in places like the United States, 

Australia and Canada where their impacts on wildlife is larger than that of pet cats (Blancher, 

2013; Legge et al., 2017; Loss et al., 2013). Since this study area is relatively sparsely populated 

and probably has few feral cats, forests in other parts of the world could face a greater threat 

from cats on average. 

 

4.4. Implications for management 

This study demonstrates the importance of reducing fragmentation and residential houses 

close to forests in order to reduce the probability of cats occurring there. Several studies have 

advocated for creating no-building buffer zones around vulnerable habitats to mitigate cat 

impacts, often suggesting buffers of 300-400 meters (Lilith et al., 2008; Metsers et al., 2010; 

Thomas et al., 2014). This study indicates that creating a cat-less outer perimeter in 

settlements or fully resident-free buffer zones around forests can greatly reduce the 

probability of cats entering the forest, but buffers would need to be unpractically wide 

(>1000m) to make the probability of cats being present minimal. Still, considering no building 

buffers for example when establishing protected areas with vulnerable fauna could greatly 

reduce the impact of cats (Hanmer et al., 2017).  Fortunately, this study indicates cat 

abundance drops of very rapidly further into forests, to the point where cats might not be 

much of a conservation issue more than 50 meters from the forest edge. Thus, avoiding 

fragmentation might be the best way to reduce the prevalence of domestic cats in forests. In 

cases where cat ownership close to vulnerable areas cannot be avoided, measures like keeping 

cats indoors all the time or at night when they roam the most (Barratt, 1997; Meek, 2003; 

Metsers et al., 2010; Thomas et al., 2014) might greatly reduce the impact on wildlife (Woods 

et al., 2003).  

 

4.5. Determining the impact of cats in forests 

This study is likely the first to assess where cats occur across a large forested area while also 

accounting for environmental variables important for cats and imperfect detection, but this is 



   
 

23 
 

only the first step to assessing the impact cats have on forest fauna. The impact also depends 

on how abundant cats are, and on their hunting habits in forests. Cat abundance could be 

calculated relatively easily with spatial capture/recapture using camera traps since most cats 

are individually recognizable. However, determining how much and what cats hunt in forest 

can be more challenging. Studies have often examined prey returns to determine how much 

and what species cats kill (i.a. Baker et al., 2008; Mori et al., 2019), but this method has flaws. 

Since most cats will not live exclusively in forests, GPS collars or video recorders would be 

needed to assess if prey returns were killed in forests. Measuring prey returns also does not 

account for prey eaten or left behind, and studies on video monitored cats show cats only 

returning 18% (Seymour et al., 2020) or 23% (Crowley et al., 2019) of prey killed. Cats might 

also be biased in the proportion of different species and taxa they return (Seymour et al., 

2020). It is hard to say if the proportion of killed prey that is returned is representative for 

regions with different climate, habitat and prey species, and getting reliable estimates of cat 

predation rates from video recordings might be too time consuming for many research 

projects. The difficulty in obtaining reliable predation estimates from forests makes it difficult 

to assess the impact cats have on forest fauna.  

Even if we could establish how abundant cats are in forests, which species they kill and how 

much they hunt on average, it would be difficult to determine how big a threat cats pose to 

the fauna without also having more knowledge on population sizes of local prey species. Van 

Heezik et al. (2010) compared bird population sizes with cat predation rates in the city of 

Dunedin, and found that some bird species were unlikely to persist long term without nearby 

areas acting as sinks, but no studies have researched whether the predation pressure from 

cats is sustainable in forests where cat densities would be lower. Another question is if cats 

kill prey that would have perished anyways (compensatory mortality) or if cat predation 

comes in addition to other causes of mortality (additive mortality). Studies on cat predation 

have reached different conclusions with some arguing that cat predation could be more 

compensatory (Baker et al., 2008) while others think predation is more additive (Van Heezik 

et al., 2010). Predation by cats can also have several indirect impacts, such as creating a 

landscape of fear for prey species that reduces reproductive success (Beckerman et al., 2007; 

Bonnington et al., 2013). Such sublethal effects of predation can sometimes have a larger 

impact than the predation itself, but are hard to quantify (Cresswell, 2008; Cresswell, 2011). 
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While we can assume that sublethal effects of predation are smaller in forests due to lower 

cat densities, they could still be important, especially close to forest edges. Both how resilient 

forest fauna is to cat predation, whether cat predation is additive or compensatory and the 

extent of sublethal effects of cat predation warrant further investigation, and must be better 

understood in order to grasp the overall impacts of cat predation in forests.  

Accurately quantifying the full extent of cats’ impact on forests is likely impossible. There are 

too many ways cats can impact forest fauna, and many of them are hard to investigate. In 

addition, differences in local conditions between forests can make it hard to generalize results 

from studies in one forest area. However, many forests still share a lot of similarities in how 

they are likely perceived by cats, allowing some broad generalizations so that studies in one 

forest still provide some valuable insight for other forest. By finding that cats occur at a 

significant portion of forest sites and relatively far from houses, this study demonstrates that 

the impacts of cats on forest fauna could be a conservation problem that warrants more 

research. 

 

5. Conclusion 

The goal of this study was to find the proportion of forest habitat in southeastern Norway 

occupied by domestic cats, and how cat occupancy and detection probability was impacted 

by certain habitat characteristics like the proximity to houses. I found cats were most common 

close to houses, while population density, proportion of forests and steepness of the terrain 

had a negligible effect on where cats occur in forests. My model predicted that cats are 

present in 9-15% of forests in southeastern Norway. My results suggest cats may use forests 

more, and extend their activity further away from houses into forests than previously thought. 

However, we need more knowledge on cat abundance and hunting habits in forests to know 

the extent of their threat to forest fauna, and in order to mitigate their impacts.  
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7. Appendix 

 

Appendix table 1. Detailed description of how covariates were processed from raw data. The original 

data was collected from 50 x 50m rasters for all covariates except population density (250 x 250m). 

Covariate Data processing 

Distance to house Data collected from FKB-Bygning (Kartverket, 2017). 

FKB-Bygning was converted to 50 x 50m raster cells with either value 

1 (at least one building in cell) or 0 (no buildings in cell) using GRASS. 

Only full-time homes (“bygningskode” lower than 160) were defined 

as a building. Then the euclidian distance in meters to the closest 

cell with buildings was calculated using the execGRASS function in 

the rgrass7 package (Bivand, 2022).  

Distance to road Data extracted from FKB-veg50 (NIBIO, 2016). Cells were 

transformed to either 1’s (at least one road in cell) or 0’s (no roads 

in cell) using GRASS. The euclidian distance in meters to the closest 

cell with roads was calculated using the execGRASS function in the 

rgrass7 package (Bivand, 2022).  

Terrain ruggedness 

index (TRI) 

Digital terrain model (DTM) data was extracted from DTM50 

(Kartverket, 2018a). I used the terrain function in the raster package 

(Hijmans, 2022)  to convert from DTM to TRI. 

Distance to forest 

edge 

Distance to forest was calculated as the lowest value of three 

distance rasters for each cell; distance to nearest road- building and 

field.  

Distance to building was created using the same rawdata as distance 

to house, but with all building codes instead of only full-time homes. 

Data on fields was calculated from ar50 (NIBIO, 2016), by defining 

fields as area type 20. The euclidian distance in meters to the closest 

cell with roads was calculated using the execGRASS function in the 

rgrass7 package (Bivand, 2022). 
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Forest proportion Data on area use was extracted from AR50 (NIBIO, 2016). I defined 

all cells with area type 30 as forests. 

Population density Data on human population density was collected from SSB (2018), 

and NA-values were transformed to 0’s. 

 

 

Appendix table 2. Percentage of cameras with cat detections at different distances from the nearest 

house.  

Distance to nearest 

house (m) 

Cats detected (%) Total number of 

cameras 

50-100 41,7 24 

100-200 41,0 44 

200-500 34,0 145 

500-1000 13,9 101 

1000-2000 15,7 51 

2000-4000 0 37 

4000-8000 0 9 

 

 



 

 

 


