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Abstract 

Breast cancer is the most widespread cancer in the world, accounting for 25% of all female 

cancers. There is a high inter- and intra-tumor heterogeneity in breast cancer which makes it 

challenging to optimize the treatment for the individual patient. In recent years, the role of 

immune infiltration in tumor carcinogenesis and pathophysiology has been increasingly 

recognized. It has therefore become a priority to understand the interactions and cooperation 

between immune and cancer cells. Despite a thorough attempt to match treatment options 

with clinicopathological features such as histological classification, grade, stage, biomarkers, 

molecular subtypes, and intrinsic subtypes, many patients show resistance to treatment. One 

attempt to overcome treatment resistance is the emergence of combinatorial treatment, 

meaning treating patients with two drugs at the same time.  

 

CDK4/6 inhibitors are anti-cancer drugs which prohibits cell growth and is shown to have 

promising results in combination with aromatase inhibitors for breast cancer patients with 

hormone receptor positive disease. This drug combination is not yet approved in Norway as 

standard neoadjuvant treatment. The NeoLetRib clinical trial facilitates the access to the 

combinations of aromatase and CDK4/6 inhibitor to patients. The study also gives the 

opportunity to investigate potential biomarkers for more personalized treatment, novel 

predictive biomarkers and assess how the tumor microenvironment changes during treatment.  

 

Single cell analysis is the method we used to capture each cells transcriptome in the tumor 

microenvironment. We performed scRNA-seq of breast cancer biopsies from patients enrolled 

in the clinical trial NeoLetRib before the neoadjuvant treatment and after 21 days. This study 

shows that five cellular subtypes including Tregs, and four monocyte subtypes had a 

significant proportional change. These cell types have been associated with the promotion of a 

proinflammatory microenvironment and may be associated with tumor progression.  
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1. Introduction 

1.1 Breast Cancer 

1.1.1 Epidemiology 

Breast cancer is the most prevalent cancer worldwide accounting for 25% of all female 

cancers, and the most fatal cancer for women in ninety-two countries (1, 2). Breast cancer can 

be detected by several ways. In Norway there is a biennial mammography screening for 

women in the age of 50-69 years old, which has led to increased survival rate related to breast 

cancer (3). In Norway survival rate over the past five years has increased from 91.5% to 

92.1% in addition to an increase of 3.7% in incidence rate compared to the last five-year 

period (2011-2015). The increase in incidence rate is shown to be limited to women of the age 

group 60-79 years and may be related to better diagnostic methods (4, 5). 3424 new cases of 

breast cancer were enumerated in Norway in 2020, which reflects 9,6% of new cancers 

registered that year. This is a lower number than the previous years and it is assumed that this 

is due to the national screening program being paused for some months because of the corona 

virus pandemic (4). 

 

1.1.2 Anatomy and development of the normal breast 

The female breast is a complex organ composed of ducts, lobes, fibrous connective tissue, 

ligaments, and adipose tissue that give support to the breast, this is shown in figure 1a. 

Between 15-20 clusters of lobes can be found in a breast, each develops terminal duct lobular 

units (TDLU) during puberty, this is illustrated in figure 1b (6).  

The lobes, ducts and lobules consist of an inner layer of luminal epithelial cells, these cells 

synthetise milk in the lobules. Basal myoepithelial cells surround the luminal cells, have 

contractive properties, and facilitate milk secretion into the lumen. The basement membrane 

separates the myoepithelial cells from the stroma as seen in figure 1c (6). During menopause 

the levels of hormones such as estrogen will change resulting in an involution of the glandular 

lobes and ducts (7).  
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Figure 1. The female breast. (a) Anatomy of a normal female breast. (b) Lobes with TDLU and lobules. (c) The inner layer 
with luminal epithelial cells is surrounded by myoepithelial cells that are connected to the basement membrane (8). 

 

1.1.3 Hallmarks of cancer 

Breast cancer is a genetic disease as both somatic and germline mutations can be the cause of 

the tumor development and initiation. Despite an increased understanding of the disease the 

past years, there are still many unanswered questions such as what initiates the primary tumor 

progression? Which changes occur for the carcinogenic process to start? How does the cancer 

respond to treatment? A major challenge is that breast cancers are highly inter- and intra-

heterogenous and form complex tumor microenvironments (TME) shaped by genetic 

aberrations, environmental influences, cellular biological context and the characteristics of the 

patient (9).  

 

The hallmarks of cancer were first presented in year 2000 by Hanahan and Weinberg (10), 

and have been revised in 2011 (11) and 2022 (12). Cancer is an evolutionary disease as it 

often requires a plethora of gained characteristics to proliferate and avoid the host immune 

system. The hallmarks have been extensively described and depicts how a normal cell evolve 

firstly into a neoplasm, then becoming tumorigenic and eventually malignant. There are now 

fourteen hallmarks that describe carcinogenesis and tumor progression, which is shown in 

figure 2.  
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Figure 2, Illustration of the fourteen hallmarks of cancer, the newly proposed enabling characteristics established in 2021 

are “nonmutational epigenetic reprogramming” and “polymorphic microbiome”, while the newly presented emerging 
hallmarks are “unlocking phenotypic plasticity” and “senescent cells” (8). 

 

Sustaining proliferative signalling and evading growth suppressors are two hallmarks that 

are the major driving forces of uncontrolled cell growth, and means in short that a cancer cell 

is not dependent on external signals in order to divide, and also avoid signals to terminate cell 

division. A cancer cell can accomplish this is various ways, including producing its growth 

factors and overexpress receptors which will enhance proliferation. Examples are vascular 

endothelial growth factor (VEGF), fibroblast growth factor (FGF) and CXCL8 in a 

combination with the receptor for interleukin (IL) 8 and inactivate tumor suppressor genes 

such as the retinoblastoma protein (RB1), p53 and transforming growth factor beta (TGF-β). 

The immune system tolerates the normal cells of the body; however, tumor cells are 

genetically different from normal cells of the body due to the acquisition of somatic mutations 
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and can then become a target of the immune system. Avoiding immune destruction is 

therefore a crucial characteristic for cancer cells. How cancer cells avoid the host’s immune 

system is not clearly understood, but it can include expression of proteins that modulates the 

immune system, acquisition of traits that makes them undetectable and exhaustion of the 

immune cells. Enabling replicative immortality gives the cancer cells the ability to divide 

without any intrinsic limit. This is in contrast to normal cells with a finite lifetime due to the 

telomeres being shortened by each cell division eventually leading to senescence. In cancer 

cells high expression of the enzyme telomerase can keep telomere length above a critical 

threshold which plays a key role in the proliferation of cancer cells. Cancerous tissues are 

often referred to as non-healing wounds which sustains inflammation referred to as tumor-

promoting inflammation. This environment will lead to the recruitment of immune cells 

such as lymphocytes and macrophages to the TME. Macrophages can release growth factors 

and cytokines that in turn will enhance cancer cell growth. There are different stages for 

cancer development, benign lesions are non-cancerous tumors, meaning that they have low 

proliferation and aggressiveness. Malignant tumors on the other hand are cancerous and have 

the potential to spread across the body in a process called metastasis. Activating invasion 

and metastasis by cancer cells can be achieved by the breaking of cell-cell adhesion, by 

supressing E-cadherin as an example, or degradation of the extracellular matrix (ECM) that 

usually would keep the neoplasm in place. As cancer cells grow and recruit other cells to the 

TME the need for oxygen, glucose and nutrients will increase, there will also be a need of 

removing waste products such as carbon dioxide. One solution to this is to form new blood 

vessels, through angiogenesis which is another hallmark of cancerous cells. Genome 

instability and mutation will participate in the acceleration of the tumor development, this 

can include one or several genomic changes such as base substitutions, genome 

rearrangements, insertions and deletions, and chromosome copy-number alterations. Cancer 

cells can deregulate cellular energetics in the TME. One example is that cancer cells will 

undergo anaerobic respiration whether it has access to oxygen or not, and always transform 

glucose into lactate. One of the novel hallmarks is unlocking phenotypic plasticity, the 

disturbance of the cellular differentiation can occur in several ways such as dedifferentiation 

from mature to progenitor cells, trans differentiation to other cell linages or by blocked 

differentiation from progenitor cells to the mature state. This can trap the cell in a more 

proliferative state than the original mature cell state. Senescent cells have long been 

recognized as a protective mechanism against cancer cell progression, but it is observed that 

senescent cells in the TME can modulate the TME and enable other hallmark capabilities. 
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One example is therapy induced senescent cancer endothelial cells in the breast that can 

enhance metastasis and proliferation (12-14) .   

There are also two enabling characteristics that can facilitate the development of hallmark 

abilities, firstly nonmutational epigenetic reprogramming which can be induced by many 

co-opted and corrupted mechanisms which are independent of mutations and genome 

instability. Secondly polymorphic microbiomes are considered to have both a negative and 

positive effect on several hallmark capabilities in some tumor types. The microbiome is often 

associated with organs directly in contact with the environment such as the gut, skin, lung, 

vaginal and oral cancers, but a study of 1526 tumors from breast, brain, bone, and lung among 

others showed a distinct microbiome mainly inside the cancer cells. It was especially 

observed a diverse and rich microbiome in breast cancers (15).  

 

1.1.4 Breast cancer progression 

Breast cancers are mainly carcinomas, this is cancers that that originates from epithelial cells. 

Breast cancer carcinogenesis is a comprehensive process which includes many of the 

hallmarks of cancer such as genetic and epigenetic alterations, and modulations of the TME 

(12, 16). Invasive breast cancer is the endpoint of the process of carcinogenesis which begins 

in the TDLUs. Many mechanisms in this process are unknown, one hypothesis is that the 

cancer cells originate from the TDLUs by progressing through benign breast disease, followed 

by upregulation of proliferation and finally atypical hyperplasia. Atypical hyperplasia is an 

accumulation and piling of the overproduced cells and can be either located in the ducts 

(atypical ductal hyperplasia) or in the lobules (atypical lobular hyperplasia), after this the 

development is believed to evolve to carcinoma in situ which includes ductal carcinoma in 

situ (DCIS) and lobular carcinoma in situ (LCIS). The last steps will then be acquisition of 

invasive and metastatic properties (17-19).   
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1.2 Methods for breast cancer classification 

Breast cancers are divided into different subtypes to provide the best treatment, diagnosis, and 

prognosis. The subtypes are assigned based on histology, morphology, proteomics, and 

genomics. As breast cancers are highly heterogeneous these subtypes are of great importance 

as they attempt to describe the proportions of cell type variation in the TME. This variation is 

also the cause of the cancers to have different clinical behaviour and biological traits (19). 

Some of the different breast cancer classifications are shown in figure 3, this also illustrates 

that the classification is complex and requires many types of analysis to provide the best 

treatment and prognosis for the patient.  

 

 

Figure 3. An illustration of breast cancer classifications and subtypes, showing how much a breast cancer can differ in 
receptor expression, grade, prognosis and location. Breast cancers are divided into histological subtypes. This includes the 
non-invasive carcinomas DCIS and LCIS, and the invasive carcinomas IDC and ILC. The intrinsic subtypes categorizes the 
cancers into the basal like, normal like, HER2-enriched, luminal B and luminal A subtypes. The molecular subtypes are 
based on the pathological profile of the cancers and divides them into the triple-negative, HER2-enriched, Luminal B and 
Luminal A subtypes. Breast cancers are also categorized by grade which is associated with the aggressiveness of the tumor, 
HER2-expression, and hormone (ER) expression. Basal like and triple negative disease are associated with a poor prognosis 

while luminal A have the best prognosis (8).  
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1.2.1 Histological classification 

The histological classification of breast cancer includes two main categories the non-invasive 

and the invasive carcinomas, consisting of subgroups based on their location in the breast. 

The non-invasive carcinomas include DCIS, LCIS and Paget’s disease, these have not crossed 

the basement membrane. When cancer cells cross the basement membrane, they are 

considered invasive, the subtypes of the invasive breast cancers are invasive ductal carcinoma 

(IDC) which includes tubular, mucinous, medullary, and inflammatory carcinoma, the second 

group are the invasive lobular carcinoma (ILC) that are often characterized by mutations of 

epithelial cadherin (CDH1) (18). Ductal carcinoma is the most common type of breast cancer 

that constitutes 75-80% of all breast cancers (19).  

 

1.2.2 Grade 

The invasive carcinomas are also categorized by grade. The grade of the cancer is determined 

based on three histological attributes: mitotic activity, degree of nuclear atypia and tubule 

formation. The grade ranges from 1-3, where high grade tumors are more aggressive. The 

three histological features are given a value from 1-3 and are summarized to give the Bloom-

Richardson score. Grade 1 include the tumors with a score between 3-5 and are well 

differentiated with great homology of the normal breast TDLU, they also have a low mitotic 

count and tubule formation. Grade 2 breast cancers include tumors with a score between 6-7 

and are moderately differentiated. Lastly group 3 which include the breast cancers with a 

score of 8-9 are poorly differentiated with a high proportion of cellular pleomorphism, high 

degree of mitoses and no or little visible tubule formation (18, 20).  

 

1.2.3 Biomarkers 

To classify neoplasms further molecular analyses are performed to investigate which 

receptors the tumor overexpresses. Overexpression of the estrogen receptors (ER), 

progesterone receptors (PR) or human epidermal receptor 2 (HER2) characterize pathological 

subtypes of breast cancers and are detected by immunostaining of the three proteins. This 

information is of great importance when it comes to treatment of the patient as hormone 

receptor (HR)-negative tumors are not or less dependent to hormone levels and tends to grow 

faster and be more aggressive than HR-positive tumors. The Ki-67 protein has also become an 
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important proliferation biomarker to the pathological classification. There are also, less 

systematically used biomarkers such as the genomic biomarkers BRCA1, BRCA2 and 

PIK3CA, and immunomarkers such as PD-L1 and infiltrating lymphocytes (2).  

 

1.2.4 Stage 

Breast cancer stages describe how proliferative the cancer is. It is a scale that ranges from I-

IV, where the lowest number indicates lesser spread of the cancer, it is followed by a letter 

and an early letter indicates lower stage. The scale system takes several factors into 

consideration the first three are called the TNM system, “T” stands for tumor size, “N” stands 

for spread to adjacent lymph nodes and “M” is for metastasis to other organs in the body. 

Other factors taken into consideration for the staging are ER, PR and HER2 receptor statuses 

and grade (21).   
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1.3 Intrinsic subtypes 

Breast cancers are very heterogenous and high throughput methods such as transcriptome 

measurements have shown to be of prognostic and predictive value in breast cancer. These 

methods are only now starting to be routinely performed in some western countries, as they 

are still costly (22). Technological advancement has allowed to investigate gene expression 

patterns and by that improve the molecular taxonomy of breast cancers. A study performed by 

Perou et al. applied a cDNA microarray classification technique where they characterised 

distinct gene expression patterns of the molecular breast cancer subtypes (22). An 

unsupervised clustering heatmap with 1753 genes involved in breast cancer progression was 

obtained, which was further reduced to a subset of 496 intrinsic genes with a high variation in 

expression between cancerous tissues. Clustering based on the expression of these 496 genes 

resulted in two main branches one with the ER-positive and one with the ER-negative breast 

cancers (22). 

A follow up study by Sørlie et al. used 456 cDNA clones as the intrinsic set of genes and 

applied a hierarchal clustering. The cancers were divided into two branches where one group 

was ER-negative and the other ER-positive breast cancers as in the previously described 

study. In addition the researcher further managed to observe distinct clusters of 6 molecular 

subgroups, luminal A, luminal B, luminal C, normal breast-like, HER2-positive and basal 

like, as shown in figure 4 (23). 
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Figure 4. The gene expression pattern by hierarchical clustering of 476 cDNA intrinsic genes. (A) The six molecular subtypes 
based on difference in gene expression. The luminal A are dark blue, luminal B are yellow, luminal C are light blue, normal 
breast-like is green, HER2 are pink and TNBC is red. (B) illustrates a scaled down cluster diagram. The bars with different 
colours on the right of the diagram represent inserts presented in C-G. (C) HER2 amplicon cluster. (D) Novel unknown 
cluster. Basal epithelial cell-enriched cluster. (F) Normal breast-like cluster. (G) Luminal epithelial gene cluster with ER. 
The green colour in the diagrams represent down-regulations and the red up-regulation (23). 
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Parker et al. suggested that the above-mentioned molecular subtypes could be determined by 

using a clustering method called Prediction Analysis of Microarray (PAM) and selected 50 

genes of the beforementioned 500 intrinsic genes for this analysis. This method is now known 

as PAM50 and has in the recent years been introduced in clinical practice. This improvement 

increased the breast cancer prognosis standard, gave a better prediction, and provided 

suggestions for treatment options. The PAM50 genes and their association to molecular 

subtype is illustrated in figure 5 (24). Studies support the application of PAM50 as it shows 

promising results in improving classification of breast cancers and treatment decisions (19, 

25). 

 

 

Figure 5. A heatmap of Classification by Nearest Centroids (ClaNC). The ClaNC algorithm selected 10 genes per class for a 
total of 50 genes. The genes for the classes are shown as red/green according to their expression in the give class. Black 
indicates that gene was not selected for the given class (24).  



12 

 

1.4 Molecular breast cancer subtypes 

In the clinic immunohistochemical staining are often used to identify biomarkers with strong 

association with patient prognosis, survival, and treatment response. The routine diagnostic 

staining of breast cancer usually include ER, PR, the proliferation protein Ki-67, and some 

cytokeratin’s (19).  

 

ER and PR are both transcriptional regulators and gives an indication of the breast cancer 

being sensitive to endocrine treatment. Cancers with ER and/or PR expression are associated 

with a good prognosis, while cancers that are ER-negative are associated with a poor 

prognosis. Another important factor for breast cancer development and progression are the 

growth factor receptors and ligands that promote proliferation. One of these are HER2 as 

described earlier. The expression of HER2 is associated with aggressive tumors and poor 

prognosis. The breast cancer subtypes can therefore be divided into the HR-positive and HR-

negative groups and will be elaborated further in the following section (19).  

 

1.4.1 HR-positive subgroups 

The HR-positive breast cancers are ER and/or PR positive. They are usually luminal subtypes. 

They are the most common type of breast cancer and are again divided into two main 

subgroups. Luminal A is the most prevalent molecular subtype and accounts for 30-70% of all 

breast cancers. This subtype is usually HER2-negative, ER-positive, PR-positive and has a 

Ki-67 expression <14%, it has a low grade, low risk of recurrence (ROR) and high survival 

rate. Luminal A tumors are associated with the best prognosis and commonly respond well to 

endocrine treatment (2, 26).  

Luminal B, the other HR-positive subgroup accounts for approximately 20% of breast 

cancers. Tumors with this subtype are ER-positive, PR-negative and have a Ki-67 expression 

>14%, it is seen that this subgroup can have both HER2-positive and HER2-negative 

expression. The subgroup is associated with a poorer prognosis than luminal A and has a 

higher proliferation rate as indicated by the higher expression of Ki-67 (2, 26, 27).  
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The ER status only provide an indication of response to endocrine therapy, it is observed that 

only ~50% of patients with ER-positive breast cancers respond to the distributed endocrine 

treatment (26).  

 

1.4.2 HR-negative subgroups 

The HR-negative subgroups are associated with poor prognosis and are divided into two main 

subtypes. Firstly, the HER2-enriched subgroup which accounts for 10-15% of all breast 

cancers. This subgroup is ER-negative, PR-negative, HER2-positive and has a poorer 

prognosis than both HR-positive subgroups as well as being a higher-grade cancer. HER2-

enriched breast cancer is highly proliferative, 10-15% of these cancers are due to germline 

mutations in the BRCA1 or BRCA2 genes (2, 19, 26, 27).  

  

The last subgroup is the triple negative breast cancer (TNBC) or basal group which accounts 

for 15-20% of all breast cancers. With HER2-negative, ER-negative, and PR-negative 

receptor phenotype, this subtype has the worst prognosis and the highest risk of metastasis. 

This group is associated with germline mutations in BRCA1 or BRCA2 in 15-20% of the 

cases and is a high-grade cancer (2, 26, 27).  

 

Other categories of pathological and clinical factors as patients age, tumor size, lymph node 

status, and lymph vascular invasion are also determined to provide appropriate therapy and 

prognosis for the patient (2, 19).  
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1.5 Treatment 

The treatment options for breast cancer patients are based on the histological grade, stage, 

pathological subtype and molecular subtype. Neoadjuvant therapy is a systemic treatment 

given before local treatment to facilitate surgery and radiation. It is administered through the 

bloodstream (2, 28). This is the conventional treatment for inoperable and locally advanced 

breast cancers (29). Adjuvant treatment is given after local surgical or radiational intervention 

(2). It is observed that some ER-positive breast cancer patients have a high percentage of 

recurrence, one-half of these recurrences are observed between 10-32 years after primary 

diagnosis (30). The aim of adjuvant therapy is to provide a combination of treatments that will 

give the patient the best ease of disease while reducing the ROR and toxicity (29). A better 

understanding of the treatment response and the TME in breast cancer can provide a better 

treatment option to reduce the ROR and side effects of treatment. In this chapter a description 

of the most relevant treatment options for the patient group studied in the thesis are described 

in more details.  

 

1.5.1 Surgery 

The aim of surgical procedures of breast cancer is to attain control over the cancer and get 

further information about the extent of the cancer spread. There are two main types of surgery 

for breast cancer patients one is a mastectomy, which is a total removal of the affected breast. 

The second approach is a lumpectomy, which is a breast conserving surgery and only the 

primary cancer is removed. During surgery an axillary lymph node dissection can provide 

information whether the cancer has the potential to spread to the adjacent lymph nodes or 

metastasis. This is important information regarding further treatment of the breast cancer 

patient (2, 28).  

 

1.5.2 Radiotherapy 

Radiotherapy is high-energy radiance given locally to breast cancer patients. It can be given 

as a neoadjuvant therapy to reduce the cancer size, as an adjuvant treatment for patients with a 

breast cancer type associated with a high ROR, or as an attempt to remove undetected cancer 

cells. The treatment can be applied to the whole breast or limited to only one part of the 

breast; it can also be directed to the regional lymph nodes (28). Despite radiotherapy being 
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one of the most efficient cancer treatment some patients can be subject to local recurrence. 

Tumor size and advanced tumor stage are prompting these relapses even after radiotherapy 

(31). Radiotherapy can be combined with targeted treatments such as endocrine therapy or 

anti-HER2 therapy (28).  

 

There are side effects induced by treatment with radiotherapy such as cardiotoxicity, it is 

therefore of great importance to minimize the exposure of the normal surrounding tissue. 

Some measures to reduce damage to the heart is the beam angles, partial breast irradiation, 

intensity modulated radiotherapy and breath-hold techniques (28, 32).  

Other factors that affect the tumor outcome after radiotherapy are tumor infiltrating cells 

which is a part of the formation of the TME (31), immune cells such as dendritic cells, tumor 

associated macrophages, myeloid-derived suppressor cells and some T-cells are somewhat 

radioresistant (33).  

 

1.5.3 Chemotherapy 

Chemotherapy is a systemic therapy given to breast cancer patients either as a neoadjuvant 

treatment to shrink the cancer or adjuvantly to patients with high ROR or spread to the lymph 

nodes to eliminate remaining cancer cells (2, 34). It is manly administered as a treatment for 

metastatic and locally advanced breast cancers (28). Chemotherapeutic agents evoke 

apoptosis in highly proliferating cells by attaching to microtubules, this prevents proteins 

from assembling properly and inhibits the cell cycle from proceeding (28). The treatment may 

also break the DNA strands and can promote intercalation of the DNA, which is interference 

of the DNA double helix leading to distortion of transcription, repair, and replication. The 

treatment is often given over a period of time to allow the normal cells to repopulate the 

tumor area (34).  

Clinical trials have reported that most aggressive ER-positive breast cancers have a low 

response to chemotherapy alone and are recommended to be treated with a combination of 

chemotherapy and endocrine therapy. Chemotherapies also have a lot of side effects such as 

muscle pain, fatigue, second cancers and sterility (28).   
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1.5.4 Endocrine therapy 

Endocrine or hormonal therapy is mainly offered to patients with ER-positive breast cancer 

both locally advanced and metastatic (28). The aim of endocrine therapy is to inhibit the 

action of estrogen as a growth promoting factor of cancer cells. This disruption can be 

obtained in several ways, one way is to inhibit the synthesis of estrogen done by aromatase 

inhibitors (AI). Another option is by targeting estrogen receptors using selective estrogen 

receptor modulators (SERMs) and/or selective estrogen receptor degraders (SERDs). The 

mechanism of endocrine therapy is illustrated in figure 6.  

 

 

Figure 6. Mechanisms of action for endocrine therapy. (a) Estrogen are small non-polar soluble lipids and can pass the cell 
membrane by diffusion. When they enter the cell, they attach to the estrogen receptors and cause a dimerization of the ERs. 
(b) Androgens are another biomolecule that migrates into the cell and are transformed to estrogen by the enzyme aromatase. 
Aromatase inhibitors will therefore inhibit the production of estrogen in the cells and reduce the overall concentration. This 
is again limiting the proliferation of the cell. (c) SERMs migrate into the cell and block the ERs from connecting to estrogen. 
This inhibits the co-activator from initiating transcription in the cell nucleus. (d) SERDs binds to ERs in the cell and induces 

degradation of ER. Thereby the necessary dimerization will be inhibited. Created with BioRender.com 
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Aromatase inhibitors (AI) 

Aromatase is an enzyme that synthetises estrogen and androgens. Breast cancer proliferation 

have a positive correlation with high estrogen levels and are therefore associated with a high 

aromatase expression. AI will block the function of the aromatase enzyme and the production 

of estrogen as illustrated in figure 6b. There are two classes of AIs which are the non-steroidal 

and the steroidal. Non-steroidal AIs compete with androgens to bind to the substrate-binding 

site of the aromatase and prohibits the activation of the aromatase enzyme, letrozole and 

anastrozole are examples of this therapy. Steroidal AIs includes exemestane and is very 

similar to androstenedione, which is the aromatase substrate. The binding of the AI will lead 

to inactivation of the aromatase substrate-binding site.  

 

Postmenopausal women with ER-positive breast cancer have a good response to AI, and 

many studies show that AI are more efficient than the widely used SERM tamoxifen and other 

endocrine agents (35, 36). Since AI are reducing the amount of estrogen in the body it can 

however lead to an increased risk of osteoporosis, cardiovascular diseases, and fatigue. Some 

breast cancers are resistant to AIs, this can be acquired during the treatment period, or could 

be present before treatment (36). The resistance can come from an upregulation of the PI3K 

pathway, ESR1 mutations, epigenetic modifications, or upregulation of the Cyclin dependent 

kinase 4 and 6 (CDK4/6) pathways as examples. Studies show that the combination of AI and 

targeted therapy such as CDK4/6 inhibition has better outcomes than treatment with AIs alone 

(28, 37, 38). A study by Dunbier et.al illustrated for the first time a correlation between the 

amount of infiltrating immune cells and poorer response to AI treatment, as infiltrating 

immune cells can have both pro- and antiproliferative properties it would be of great interest 

to find predictive markers regarding AI treatment response (39).  

The resistance to AIs can be elucidated better by getting information about the subtypes of 

cells present in the different breast cancers, as some subgroups can be dependent on other 

growth signals than estrogen and can be used as predictive markers (36). To increase the 

understanding of resistance to therapies, it is also important to analyse biopsies of the tumors 

at different timepoints such as before, during and after treatment too see how the TME 

evolves under treatment pressure.  
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SERM & SERD 

SERMs are modulators that compete with estrogen for the binding site on estrogen receptors. 

When SERMs bind to the receptor they will change the conformation of the ligand-binding 

domain and block the necessary co-factor binding for the gene transcription as illustrated in 

figure 6c. The most common type of SERMs is tamoxifen (28, 40).  

 

SERDs will entirely block the estrogen signalling pathway by degradation of the estrogen 

receptor as illustrated in figure 6d. SERDs are often given to counteract the cancer cells that 

are resistant to SERMs. The NCCN guidelines reported that the combination of fulvestrant, 

which is the most common SERD and CDK4/6 inhibitors was effective for advanced or 

metastatic ER-positive breast cancer (28, 40). 

 

1.5.5 CDK4/6 inhibitors 

CDK4/6 associates with cyclin D1 and phosphorylates RB which in turn releases the E2F 

transcription factor. E2F promotes the continuation of the cell cycle from G1 to S phase, this 

association are therefore a promotor for cell growth, which is one of the hallmarks of cancer 

(12). An upregulation of CDK4/6 and cyclin D1 are often observed in breast cancer, 

especially the HR-positive subtypes (41).  
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Figure 7. (a) In the cell cycle there are several checkpoints to control normal cell growth. One of these in the G1-S 
checkpoint. (b) The estrogen receptor signalling pathway can also activate the cyclin D-CDK4/6 and induce the transition 
from the G1 phase to the S phase. This makes the combination of endocrine therapy such as AI and CDK4/6 inhibitors very 
effective. (c) CDK4/6 inhibitor mechanism of action in the cell. The CDK4/6 inhibitor prevents the transition from G1 to S 
phase by binding to the ATP-pocket in CDK4 and CDK6. This leads to a cell cycle arrest by prohibiting phosphorylation of 
Rb1 and activation of the protein. If the inhibition would not occur the Rb protein would be activated by phosphorylation and 

release the E2F transcription factor.   

 

CDK4/6 inhibitors are a targeted therapy and mainly used to treat breast cancers patients with 

HR-positive and HER2-negative cancers but can also be applied to TNBC patients (42). 

CDK4/6 inhibitors arrest the cancer cells in the G1 phase of the cell cycle by avoiding 

activation of the Rb-E2F complex as seen in figure 7. This inhibits the growth and 

proliferation of the cancer cells. The main three clinically used CDK4/6 inhibitors are 

palbociclib, ribociclib and abemaciclib (28, 41, 42). Palbociclib and ribociclib have been used 

in combination with endocrine therapy such as AI due to the ER-receptor signalling pathways 

ability to activate the cyclin D-CDK4/6-Rb pathway and progression from G1-S phase, this 

combination has shown positive effect on the cancer cell growth (38, 42-44).   
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The CDK4/6 inhibitors have been tested as neoadjuvant treatment in clinical trials and show 

promising results (45). The combination of AI and CDK4/6 are not a standard treatment in 

Norway for locally advanced breast cancer patients, and one of the aims of the NeoLetRib 

clinical trial, studied here, is to make this treatment available for the patients in question. 

CDK4/6 inhibitors also have effects on the anti-tumor immunity by an increase of tumor 

antigen presentation, suppression of regulatory T cells (Treg) proliferation and enhanced 

cytotoxic T-cell clearance of cancer cells (46, 47). Recent studies show that CDK4/6 

inhibitors also induce remodelling of the chromatin architecture and activation of 

transcriptional enhancers that effect apoptosis and luminal differentiation as well as activation 

of RB1 and AP-1 expression (48).  
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1.6 Immune cells in the TME  

The immune system is a defence system of the body and can be divided into two main groups 

namely the innate immune system which is our first line of defence and the adaptive immune 

system. The innate immune system is composed of physical barriers and phagocytic cells such 

as dendritic cells (DC), neutrophils, natural killer cells (NK), and macrophages. The adaptive 

immunity is more dynamic and evolves during life through interactions with different cells 

and microbes. The adaptive immune system is composed of B and T cells which are target 

specific and selective. A further division of the adaptive immune system is often made, which 

is the humoral immunity and cell-mediated immunity. B cells produces antibodies that mark 

targets that needs to be eliminated or neutralized by the immune system this is the humoral 

immunity (49-51). 

 

Many intratumoral interactions occurs between cancer cells, tumor infiltrating cells and 

soluble mediators during immunoediting, which will be described in further details below. 

Some of the cells are tumor suppressors such as CD8+ cytotoxic T lymphocytes (CTLs), T 

helper cells 1 (Th1), DCs, M1 macrophages and N1 neutrophils. Other immune cells have 

tumor promoting properties, these cells include myeloid derived suppressor cells (MDSCs), 

regulatory T cells (Treg), M2 macrophages and N2 neutrophils. The amount of the different 

immune cells influences prognosis and the cancer evolution. It is therefore important to have a 

good understanding of the quality and quantity of the different immune cells in a tumor. It has 

been observed a high heterogeneity in immune infiltration between patients with the same 

breast cancer subtype or between patients with different subtypes. The different immune cells 

found in breast cancer will here be elaborated further and are illustrated in figure 8 with their 

most important functions in the breast cancer TME and disease progression (52, 53).  
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Figure 8. The immune cells found in the TME of breast cancer. CD8+ T cells are associated with antitumor activity by 
recognition of tumor antigens and their cytotoxic activity. CD4+ T cells have many subtypes including Th1 which is 
associated with antitumor activity, by recognising tumor antigens. Th17 are on the other hand associated with protumor 
activity by inducing angiogenesis and immunosuppression. Tregs are associated with protumor activity by inducing a 
immunosuppressive environment in the TME. NK cells have both pro- and antitumor activity by secreting cytotoxic cytokines 
and granzymes as well as promoting of angiogenesis. B cells and their role on breast cancer is not well known but there is 
observed both pro- and antitumor activity by degradation of cancer cells and antibody production. A subgroup of Bregs is 
observed to inhibit T cell function and induce tumor progression. MDSCs have protumor activity by suppression of CTLs and 

promotion of angiogenesis and metastasis. DCs have different activity based on their cellular state. Immature DCs have 
protumor activity by recruiting Tregs, while mature DCs activates the adaptive immune cells by secretion of cytotoxic 
cytokines. Macrophages are commonly divided into M1 and M2, M1 have antitumor activity by activation of CTLs and 
antigen presentation while M2 secretes tumor growth factors and induces the recruitment of Tregs. Neutrophils are 
commonly divided into N1 and N2, N1 have antitumor activity by activating immune cells and killing of cancer cells. N2 have 
protumor activity by secreting immune suppressive cytokines.  

 

1.6.1 Lymphocytes 

The tumor infiltrating lymphocytes can be both tumor suppressors and promotors. CTLs are 

associated with a better prognosis and overall survival for breast cancer patients and are 

essential for the destruction and suppression of cancer cells. CD4+ T lymphocytes consists of 

several subgroups of Ths, namely Th1, Th2 and Th17 as well as Tregs. Of these Th1 is 

associated with a better overall survival and are found in a lesser abundance in breast cancer 

patients compared to healthy patients, whereas many of the other CD4+ cells are associated 

with a worse prognosis. Th2 can induce inflammation which is associated with tumor 

progression. Th17 can have a degree of plasticity and can be associated with both worse 

prognosis and antitumor immunity (52, 53). 

 



23 

 

Tregs are immunosuppressive cells and have an important role in providing immune 

homeostasis (54). It is observed an increased amount of Tregs in the TME in breast cancer 

and are associated with a lower overall survival rate (55, 56). Tregs are considered as tumor 

promoting cells in breast cancers as they express granzyme A and B which induce the 

production of the anti-inflammatory cytokine IL-10, which is highly associated with immune 

escape. They also produce TGF-β by expressing CTLA-4, PD-1 and PD-L1 (56). Tregs also 

hinder the activation and proliferation of CTLs, which promotes the tumor progression (57). 

The relative amount of Tregs compared to CTLs have therefore shown to influence prognosis 

(52, 53, 57).  

 

B cells are commonly fewer in number than T cells in breast cancer and are mostly associated 

with a good prognosis. They are often found close to the T cells due to their antigen 

presenting properties. When these cells mature, they turn into plasma cells which have an 

anti-tumor humoral effect on the cancer. Bregs have anti-immune abilities by inhibiting the 

functions of T cells by the production of PD-L1 and the cytokines IL-10 and TGF-β. Some B 

cells can induce the conversion of T cells to Tregs which have pro-tumor abilities as described 

above (52, 53, 58).  

 

NKs are lymphocytes and a part of the innate immune system, they recognise abnormal cells, 

such as cancer cells, that lacks or have an underrepresented amount of major 

histocompatibility complex (MHC) I on their cell surface. NK cells secrete cytotoxic granules 

and cytokines that lyses the target cell. There are two main subgroups of NKs the one with 

highest cytotoxic properties is the CD56dimCD16+ this is found in a lower concentration than 

the other subgroup in breast cancer patients. The other group are the CDbrightCD16- which are 

less cytotoxic but produce more cytokines, this subgroup is reported to have angiogenic 

properties and can therefore have an importance as prognostic and predictive value (52, 58).  
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1.6.2 Dendritic cells 

DCs belong to the innate immune system but is essential for creating a bridge between the 

innate and the adaptive immune system. This is mediated by activating CTLs and CD4+ T 

cells through antigen presentation via MHC I and MHC II molecules respectively, leading to 

priming of T cells. CTLs will then secrete granzymes and perforins leading to apoptosis of the 

target cell. DCs progress through a maturation process, but evidence is showing that in breast 

cancer some DCs are kept in the immature state, in which they produce both TGF-β and IL-

10, that in turn recruit more Tregs with pro-tumor properties. It is therefore important that 

DCs mature to acquire anti-tumor properties (52, 59).  

 

1.6.3 Macrophages 

Macrophages are cells belonging to the innate immune system and differentiate from 

monocytes in tissues. They serve several functions such as phagocytosis, antigen presentation, 

and production of cytokines. As antigens are detected on foreign cells the macrophages can 

migrate to the target cell and lyse them, followed by the uptake of the antigen of the foreign 

cell, which the macrophage in turn can present to T cells via MHC I/II molecules (52, 59, 60).  

 

Macrophages are commonly divided into two subgroups based on different phenotypes. The 

first subgroup is M1, also called the classical activated macrophages. These are activated by 

the secretion of interferon (IFN) -γ and tumor necrosis factor-α (TNF-α) from Th1 cells. M1 

are associated with inflammation and an increased antigen presentation. This is promoted by 

the production of cytokines such as IL-6, IL-12 and TNF which activates the CTLs and NKs 

that in turn will lead to apoptosis of cancer cells. As M1 can activate T cells and itself are 

activated by Th1, they are associated with a good prognosis in cancer (52, 58-60).  

 

The second group are M2, also called the alternative activated macrophages. These are 

activated by IL-4 and IL-13 secreted by Th2s. M2 are associated with anti-inflammatory 

responses, phagocytosis, and tissue remodelling. M2 helps the cancer cells to survive by 

producing tumor growth factors such as TGF-β and platelet-derived growth factor (PDGF), 
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suppressor enzymes such as IL-12 and chemokines. They also recruit more Tregs which are 

associated with tumor progression and worse prognosis (52, 58-60).  

 

1.6.4 MDSC and neutrophiles 

MDSCs are cells with high heterogeneity and are recruited to the TME by cancer cells. In the 

TME MDSCs have pro-tumor properties and induce angiogenesis, immune evasion, and 

metastasis. This is done by secretion of the cytokines TGF-β and IL-10 which inhibit the anti-

tumor immune cells, they also promote the formation of nitric oxide and reactive oxygen 

species (ROS) which can inhibit the immune cells from degrading the cancer cells (52).   

 

Another population of cells with very similar morphology are the neutrophils. They are a part 

of the innate immune cells and are commonly one of the first cells to reach a damaged tissue. 

At the site of damage, they can perform phagocytosis of cells and eliminate pathogens. The 

neutrophiles can be divided into two subgroups N1 and N2 which have anti- and protumor 

properties respectively. N1 can activate both the adaptive and innate immune cells. They also 

produce ROS which may kill cancer cells. N2 on the other hand produce pro-tumorigenic 

cytokines that can inhibit the communication and activation of T cells and B cells, which will 

promote the tumor growth. These two subtypes lack good marker genes to distinguish them 

from each other (33, 52, 58, 59).  
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1.7  Immunoediting 

The immune system has a critical role in cancer evolution. Cells of the immune system may 

have antitumor or protumor properties this allows the immune system to shape the TME in a 

process called immunoediting. Immunoediting includes three phases: elimination, 

equilibrium, and escape, as shown in figure 9 (49-51).  

 

Both the innate and adaptive immune system are active during elimination, and it is thought 

that this often occurs long before the cancers get clinically visible. Meaning that the patient 

will be cancer free if this phase is completed. In this phase the cancer cells can release signals 

such as type I interferons (IFN) which activates DCs and the adaptive antitumor immune 

response. The tumor cells can also express tumor antigens that are recognized by the adaptive 

immune system leading to destruction of the cancer cells. This will induce the production of 

cytokines, which again will trigger the progression to an adaptive immune response, this 

process is illustrated in figure9 a and b (49-51).  
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 Figure 9: The steps in immunoediting, a mechanism occuring when a cellular transformation has happened and intrinsic 
cancer suppressor mechanism have failed, this is illustrated in (a) where normal tissue goes through carcinogenesis where 
the cancer cells have tumor antigens and can produce IFN signal that will recruit cells from the immune systems. (b) The 
cells that pass to the first phase of the immunoediting will therefore be exposed to cells from both the innate and adaptive 
immune system where the cancer cells are destroyed. (c) Some of the cancer cells can escape this immune destruction enter 
the equilibrium phase where the tumor is kept in dormancy and editing of the TME can occur. Cells from the adaptive 
immune system including T-cells, IL-12 and IFN-γ are necessary to keep the tumor in a state of dormancy. (d) Some of the 

cancer cells evolve due to the high immune selection pressure and develop properties that make them unrecognizable by the 
immune system, favour an immunosuppressive area within the TME or be insensitive to immune mechanisms. These cancers 
are the ones that are clinically visible.  

 

If the tumor consists of cancer cells which have survived the elimination process, they enter 

the second phase, equilibrium illustrated in figure 9c. In this phase cells from the adaptive 

immune system are the most abundant, which includes T cells, and cytokines derived from T 

cells such as IL-12, and IFN-γ. The T cells can keep the tumor cells in dormancy and editing 

of the cancer immunogenicity can occur. Potentially, cancer cells can be kept in dormancy 

and never evolve to the final phase. When genetically unstable cancer cells are kept in the 

equilibrium phase over time there will be a lot of immune selection pressure, where the cancer 

cells can evolve and avoid immune system recognition (49-51).  

 

 



28 

 

Some of these cells can pass through to the last phase where they escape the immune 

surveillance, this is illustrated in figure 9d. This can be cancer cells that are not recognized by 

the adaptive immune cells due to downregulation of cancer antigens, cells that are insensitive 

to the effector mechanisms of the immune cells by downregulation of MHC I/II or cells that 

construct an immunosuppressive environment within the TME. Cancer cells can induce an 

immunosuppressive state in several ways, one, through production of immunosuppressive 

cytokines such as galectin, TGF-β, VEGF and indoleamine 2,3-dioxygenase. Another 

mechanism is the recruitment of Tregs and MDSCs. Tregs are mainly CD4+ T cells with 

CD25 and Foxp3 expression. Such cells will inhibit the tumor specific T lymphocytes by the 

production of CTLA-4, PD-1 and PD-L1 which induces the production of the 

immunosuppressive cytokines IL-10 and TGF-β. MDSCs are immature myeloid cells with the 

ability to inhibit lymphocytes by induction of Tregs, they also decrease the amount of several 

amino acids important for T cell function (49, 51).After the immunoediting the TME will call 

for Tregs and macrophages with the ability to suppress other immune cells. Some cancer cells 

can actively supress T cells by expressing PD-L1 that binds to PD-1 on CTLs and deactivate 

them, this is also an example of an immune checkpoint (49-51).  
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1.8 Tumor microenvironment 

Breast cancer cells have dynamic interactions with both resident and infiltrating cells such as 

immune cells, stromal cells, and secreted factors, that together form the TME illustrated in 

figure 10. The TME shapes the cancer progression and patient outcome, which includes the 

response to treatment (61). The tumor stroma consists of non-cellular proteins, fibroblasts, 

endothelial cells, mesenchymal cells and pericytes. The TME also consists of cancer cells that 

are the drivers of the disease with mutations described as one of the hallmarks of cancer. The 

cancer cells show high heterogeneity and differ greatly in their attributes such as their 

capacity to interact with the immune system, response to therapy and gene expression. The 

TME has a great molecular and cellular heterogeneity as proven by the high diversity of cell 

types. The different cells found in the TME may modulate tumor promotion and/or prohibit 

the cancer growth (62). The TME can consist of several niches such as an immune niche 

consisting of mostly immune cells that often are found in the periphery of the TME and a 

hypoxic niche that will have low pH and favour immune escape and are often a characteristic 

of aggressive cancers (63).  

 

 

Figure 10. An illustration of some of the various cells composing the TME. Tumors recruit many cells from the immune 
system including macrophages, NKs, Tregs, DCs, CTLs, B cells and MDSC. They can also recruit the stromal fibroblasts 
which can obtain a cancer associated phenotype. During the cancer progression there will be formed a hypoxic core due to 
the high demand of energy in the cancer cells, one way to get energy and nutrients to the TME is by angiogenesis.  
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The breast cancer TME are often organized into the cellular, soluble, or physical components. 

The cellular component is again divided into the intratumoral, regional and metastatic 

categories. The intratumoral compartment includes cancer cells and recruited cells such as 

lymphocytes, DCs, macrophages, and neutrophils. Tumor-infiltrating lymphocytes that are 

present in breast cancer are mostly T cells, but there are also found some B cells. There are 

several subclasses of T cells with different influence on the TME as described earlier (58, 64).  

 

The regional compartment includes stromal cells such as fibroblasts, adipocytes, 

myoepithelial cells, and endothelial cells. These cells will be described further below. 

The metastatic compartment includes distant organs where new TME is forming, lymph 

nodes, blood, and immune cells. The metastatic compartment will not be described in further 

detail since we focus on the primary cancer site in this thesis. The soluble components include 

secreted factors such as enzymes, proteinases, cytokines, IFN, IL, growth factors, TGF-β and 

VEGF. Physical factors include pH and oxygen levels which can induce hypoxic conditions 

(58, 64).  

 

The interactions between cells in the tumor microenvironment are caused by factors like 

chemokines, cytokines, growth factors, matrix remodelling enzymes, inflammatory mediators, 

exosomes and circulating tumor cells (58, 64). Some examples of factors important for the 

cell interactions in the TME are colony-stimulating factors (CSF) and cytokines such as 

CXCL2 and CCL22 which promote the recruitment of the immune suppressive MDSCs to the 

TME. Another example is TGF-β which have anti-tumor properties in premalignant cells but 

change to have protumor properties in more advanced cancer cells. TGF-β also suppresses the 

expression of IL-2 which is necessary for T cell functions, the molecule also recruit Tregs 

which will help the tumor to proliferate (62). Understanding these interactions is of great 

importance and a study of all the different specialized cells in the tumor is needed to properly 

understand the biology of cancers. It would be of great interest to investigate which subtypes 

of the different recruited cells that are present in the TME. This insight can provide new 

possible targets for immunotherapy and other treatment options.   
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1.8.1 Fibroblasts 

Cancer-associated fibroblasts (CAFs) are an important component of the TME as they have 

been associated with invasion, metastasis, proliferation, and immune escape of the cancer 

cells (65). They are the most prominent stromal cells in the TME and are found in the regional 

microenvironment. CAFs can secrete tumor growth signals such as VEGF and TGF-β when 

they are activated. When fibroblasts are recruited to the TME, which consists of damaged 

cells and tissue, they can become hyper-activated leading to tissue fibrosis. Tissue fibrosis has 

been observed to be an important driver of breast cancer progression and a crucial part of 

creating “the wound that never heal” in breast cancer (52, 53, 58, 66).   

 

CAFs can regulate the recruited immune cells by secreting molecules such as chemokines, 

cytokines, and inflammatory mediators. As they are a component of the stroma, they also 

have a prominent function of remodelling of the ECM that in turn manage the intratumoral 

infiltration. The immunosuppressive fibroblasts can collaborate with Tregs and promote 

tumor growth. They have also been observed to promote differentiation of M2 macrophages 

and inflammation by secretion of factors such as glycoprotein chitinase-3-like-1 (52, 53, 58, 

66).  

 

1.8.2 Epithelial cells 

Epithelial cells are the main cells that construct the lobules of the mammary ducts and are 

commonly described as the luminal epithelial cells and the myoepithelial cells. During the 

early stage of breast cancer development, myoepithelial cells function as natural tumor 

suppressors as they make a protective barrier between the luminal epithelial layer and the 

stroma, as well as inhibiting invasion and angiogenesis. One of the steps in breast cancer 

progression is therefore an alteration or loss of the normal myoepithelial cells. It is seen that 

myoepithelial cells in DCIS have an upregulation of genes that promote proliferation, 

invasion, and angiogenesis such as CXCL12, CXCL14, and matrix metalloproteinases that 

degrades the basement membrane and facilitates tumor invasion. They also show a lower 

expression of genes related to normal myoepithelial cell function such as laminin-1 which is 

important for the basement membrane, oxytocin receptor and proteinase inhibitors that 

suppresses proliferation of cancer cells (17, 64).  
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1.8.3 Endothelial cells 

Endothelial cells are part of the tumor stroma, these cells have high heterogeneity and are 

involved in angiogenesis and are building blocks of new blood vessels, thereby supporting the 

growth and proliferation of the primary tumor. The process of angiogenesis is promoted by 

growth factors such as VEGF. Tumor endothelial cells also provide inter-signalling pathways 

and promote metastasis and resistance to drugs, due to the disorganization of the tumor 

endothelial cells leading to the characteristic leaky vascular system in solid cancers (67). 
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1.9 Single Cell Analyses 

The traditional method for transcriptome analyses is through the lysis and analysis of the 

RNA obtained from all cells from a tissue sample, this is often called bulk RNA-seq. After 

bulk RNA-seq the gene expression is therefore the average of all cells in the tissue sample, 

which is sufficient for some analyses but usually does not allow the description of the tissue 

heterogeneity at the molecular level and detection of novel cell subtypes (68).  

 

Single-cell RNAseq (scRNA-seq) is a method which allow to analyse the transcriptome of 

single cells in a tissue and is an improvement of bulk RNA-seq. scRNA-seq was first 

performed in 2009 by Tang et al. (69). In cancer research this method has the potential to 

detect novel and rare cell populations and depict the heterogeneity of the TME, by providing a 

modelling of the transcriptional states in individual cells from tissue samples (61, 70). T 

lymphocytes are an example of a cell population with high heterogeneity, recently many 

subtypes of T lymphocytes have been reported in cancers using scRNA-seq (71). The gene 

expression profile from the single cells gives information of gene regulatory networks, co-

expression and regulation, and the cellular states. This gives the opportunity to analyse the 

transcriptomics of the single cells in a high definition and help to characterise complex tissue 

heterogeneity and how the cells in the TME differentiate, grow, and metastasise during tumor 

progression and treatment (68, 72). An early study from a Korean group reports scRNA-seq 

on 515 cells from 11 patients with different types of breast cancer and found that ER/HER2-

positive breast cancers could have a high ER expression and a low HER2 expression, 

indicating that the patients should receive hormonal treatment to inhibit the cancer growth and 

not have the HER2 positive cells as a main target (73). Another study performed by Lee et al. 

found high molecular intra-heterogeneity in cells that were not observed in bulk RNA-seq of a 

metastatic breast cancer cell line. Cell-specific RNA variants promoted survival of  cells 

capable of evolving a drug-resistant phenotype (74). This points out that many of the cancer 

cells within a tumor can be killed by targeted therapy, but that some specific subtypes can 

survive and continue the tumor progression. As scRNA-seq unravels the heterogeneity of the 

TME it can be a useful method to discover better treatment targets for rare cancer cell types, 

as intratumoral heterogeneity can cause drug resistance. The characterization and phenotyping 

of the different cell types found in a tumor is of great importance for future individualized 
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therapy and provide new information of how the TME responds to current treatment options 

(72). 

 

1.9.1 scRNA-seq pipeline 

There are different protocols for scRNA-seq analysis, and the sensitivity and specificity can 

vary between them. All scRNA-seq pipelines start with the isolation of single cells from 

dissociated tissue samples. There are different options for isolation of single intact cells, 

single nuclei, or a combination. It is important that the isolation of the single cells take place 

not long after tissue resection as cells will start to die and change when taken out of their 

systemic context. There are several methods that are compatible with the downstream analysis 

for the isolation of single cells one of them are flow-activated cell sorting (FACS). In this 

method up to seventeen markers of fluorescently labelled antibodies can be used to sort and 

isolate cells based on targeted cell-surface markers. This method is user friendly and cost 

effective, but requires a large sample volume and is therefore not well suited for samples from 

needle biopsies and aspirates (75). Another method for the isolation of single cells is a 

droplet-based technology. 10x Genomics is one of the providers of such technology. After the 

tissue dissociation the single cells will be embedded in a droplet and brought in presence with 

a unique bead coated with a unique barcode, which will provide a traceback from the 

transcripts to the single cells (76).  

 

After the isolation of the singe cells the polyadenylated mRNA molecules are captured 

succeeding lysis of the cells. By targeting the polyadenylated mRNA the most informative 

RNAs will be kept while the less informative mRNAs such as tRNA and rRNA are left out of 

the analysis (75). As sequencing requires DNA, a cDNA library is constructed using the 

reverse transcriptase enzyme. Then an amplification of the cDNA libraries is performed, 

amplification is commonly done by template-switching on PCR, which favours full-length 

transcripts and strand specificity, the strand specificity are kept even after fragmentation by 

selective PCR (selecting 3’ ends) (75). After this samples standard library preparation 

methods are used to obtain samples ready for NGS. Then the results are analysed by the help 

of computational analysis and bioinformatics. Some of the scRNA-seq methods have full-
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length counting while others have counting of only the 3’-end, the full-length counting are 

shown to have a higher sensitivity (68, 76).  
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2. Thesis aims 

Single-cell RNA sequencing can uncover the phenotype of each cell and, help to refine the 

molecular subtypes, detect novel and rare cell populations, and depict the heterogeneity of the 

tumor microenvironment. This paves the way for the investigation of how tumor infiltrating 

cells and the cancer cells synergises and evolves during treatment, which gives a deep 

understanding of the patient’s response to the given drugs.  

 

The samples in this thesis are from patients enrolled in the NeoLetRib clinical trial, consisting 

of women with ER-positive, HER2-neagtive, locally advanced breast cancer. They are treated 

with a combination of aromatase and CDK4/6 inhibitors (Letrozole and ribociclib 

respectively).  

 

Main aims is therefore to use the information from single cell RNA sequencing to assess how 

the cells within the tumor microenvironment respond and evolve during neoadjuvant 

treatment. The main question we aim at answering is: Are some specific and specialized 

immune cells quantities within the tumor changing during treatment? Our work studies the 

tumor microenvironment of ER-positive breast cancer in a very detailed and systematic 

manner.  

  



37 

 

3. Materials and methods 

3.1 Patient information 

The patients included in the NeoLetRib trial have locally advanced, ER-positive (>50% ER-

positive cancer cells), HER2-negative, low proliferative breast cancer. Locally advanced is 

defined as large primary breast cancers with stage T2 or T3/T4, or N2-3. The patients receive 

neoadjuvant therapy with a combination of letrozole and ribociclib for at least 6 months 

before surgery. All patients are postmenopausal women.  

 

Patients receive 2.5 mg letrozole once a day, and 600 mg ribociclib for 21 days, followed by 7 

days without ribociclib. A needle-core biopsy is taken before treatment, 21 days after 

treatment initiation and after 6 months. As this thesis lasts 5 months, the last timepoint will 

not be analysed.  

 

3.2 Tissue preparation 

To prepare single cells suspension from core needle biopsies a dissociation of the tissue is 

performed. All biopsies were collected at Akershus University Hospital and were dissociated 

immediately upon arrival in our lab at Ullevål. The tumor was first cut in small pieces on a 

petri dish placed on ice. The small tissue pieces in the petri dish were collected using 2.5 ml 

pre-heated dissociation solution (Appendix 1). The solution containing most of the tumor 

fragments was transferred to a polystyrene tube. A second wash of the petri dish with 2.5 ml 

pre-heated dissociation mix was performed to collect any remaining tumor pieces. The 

remaining tumor pieces were transferred to a second polystyrene tube. Both tubes were 

incubated in a water bath at 37oC for maximum 20 minutes. After 10 minutes the tissue 

fragments were pipetted carefully to add mechanical pressure and enhance tissue dissociation, 

the pipette tip was trimmed to remove some of the force.  

 

After the dissociation the samples were filtered through 70 µM and 40 µM filters into two 

clean polystyrene tubes. The two tubes containing the filtered dissociated cells were then 

centrifuged at 350g for 10 min 4oC. After centrifugation the supernatant was removed without 

disturbing the pellet. The smallest pellet was then resuspended in 250 µL of buffer 2 
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(Appendix 1) and transferred to the tube containing the largest pellet. The first tube was then 

washed with another 250 µL of buffer 2 before it was transferred to the second tube with the 

largest pellet. In total, all cells were resuspended in 500 µL of buffer 2. To remove red blood 

cells 25-50 µL of RBC beads were added according to size and colour of the pellet. The tube 

without lid was then placed in a magnet for 3 min. After this the cells were transferred to a 

cold low-bind 1,5 mL Eppendorf tube by inversion.  

 

At this stage cell numbers were evaluated by counting. 12.5 µL of cell suspension which was 

added to an Eppendorf tube with 37.5 µL PBS and 50 µL of buffer A. Then the sample was 

vortexed before adding 50 µL buffer B, a second vortex was performed giving a dilution of 

1:12 of the alive cells. Another 12.5 µL cell suspensions was added to another Eppendorf tube 

containing 87.5 µL PBS for the dead cell count with a dilution of 1:8. The cells were counted 

using a NecleoCounter. After this the samples in the cold low-bind tube were centrifuged at 

350g for 10 min at 4oC. The supernatant was removed, and the pellet resuspended in 

PBS+BSA 0.04% (Appendix 1) for a second counting. The volume of PBS+BSA 0.004% was 

evaluated after the first counting to target a final concentration of 1000 cells/µL. To count the 

alive cells 10 µL cells was added to an Eppendorf tube containing 40 µL PBS and 50 µL 

buffer A, then the sample was vortexed. 50 µL buffer B was the added and the sample was 

vortexed again giving a dilution of 1:15. The dead cells were counted by adding 10 µL cells to 

90 µL PBS in another Eppendorf tube giving a dilution of 1:10. If the second count gave 

>1800 cells/µL the sample was diluted by adding PBS-BSA 0.004% to target 1000 cells/µL. 

 

3.3 Analysation of gene expression by 10x Genomics 

Analyses of the gene expression and the immune repertoire of the single cells was done by 

using 10x Genomics Chromium Single Cell 5’ protocol with reagent kit v2. The method is 

divided into six steps and illustrated in figure 11; the first step is the generation of Gel beads-

in-EMulsion (GEMs) seen in figure 11a. This is done by merging the cells, master mix, 10x 

Barcoded beads and imbedded them in an oil emulsion performed by the Chromium Next 

GEM Chip. Where the single cells are introduced to a stream of beads in a limited dilution 

resulting in 1-9% of the GEMs containing a single cell, this is illustrated in figure 11b. The 

gel beads inside the GEMs are dissociated and oligonucleotides are formed containing an 
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Illumina R1 sequence, a 16 nt 10x Barcode, a 10 nt long unique molecular identifier (UMI) 

and a template switch oligo (TSO) of 13 nt. These are mixed with the master mix, reverse 

transcription reagents, poly(dT) RT primers, and the cell lysate. After incubation of the GEMs 

the fully barcoded cDNA are constructed, this process is shown in figure 11c. The 10x 

Barcode gives a traceback for all cDNAs within one GEM. 

 

Following the GEM incubation, clean-up is the next step where the GEMs are dissociated, 

pooled, and purified from all primers and biochemical reagents. This was done by the 

application of silane magnetic beads. Then the full-length cDNA is amplified by template 

switch on PCR to obtain enough material to construct gene expression libraries for 5’ gene 

expression, T-cell receptors, and B-cell receptors from the same cell. After this sample 

indexes and Illumina R2 sequence are added by the help of end-repair, A-tailing, adaptor 

ligation and sample index PCR, this is shown in figure 11d. The libraries were then sequenced 

on a NovaSeq 6000 Illumina sequencer using 150 bp paired end sequencing. The sequencing 

was performed by the Norwegian Sequencing Centre.  
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Figure 11. 10x Genomics workflow. (a) The method is based on a droplet technology where Single Cell VDJ 5’ gel beads 
with oligonucleotides consisting of Illumina R1 sequence, 16nt 10x Barcode, 10nt UMI and 13nt TSO. (b) GEMs contain 10x 
Barcoded Gel Beads and cells, which are imbedded in oil droplets, this is performed on a Chromium Next GEM Chip K. (c) 

Inside each individual GEM the cell lysate, a master mix containing reverse transcriptase and poly(dT)primers allows 
reverse transcription in each droplet and template switch priming. Followed by template switch amplification of cDNA by 
PCR. After this a clean-up of biochemical reagents and primers are executed, and enough cDNA are amplified for library 
construction. (d) The final dual libraries contain the P5, i5 and P7, i7 sample indexes and Illumina read 2. After library 
construction the sample is ready for NGS. Figures are modified (77).  
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3.4 Computational analysis 

10X genomics have developed pipelines for analysis of the raw data from the sequencing. The 

pipeline aligns the reads and map them to the human reference genome hg38 followed by the 

production of a feature-barcode matrix. The pipeline is called Cell Ranger and was applied by 

the Norwegian Sequencing Centre. The output from Cell Ranger are count matrices and were 

then processed further in downstream analyses in this thesis (78).  

 

Seurat is a package designed for analysing scRNA-seq data. Gene expression matrices from 

Cell Ranger were loaded into R using the Read10X() function from the Seurat (v4.0.2) 

package, this will transform the data into a “Seurat object” which contains both matrixes and 

metadata for the dataset. Seurat objects are S4 type of objects containing many slots which are 

filed in downstream analyses. The sparce matrices available as ‘slots’ in the Seurat object 

contain the genes in rows and cells in columns. 

 

Several bioinformatic quality control steps such as thresholds for the library size, fraction of 

mitochondrial genes, doublets and empty drops was applied. First, empty droplets and 

droplets containing two cells were filtered out using the EmpyDrops (79) and scDblFinder 

(80) algorithms respectively. In addition, cell barcodes with < 500 UMIs, <300 expressed 

genes, >5000 expressed genes or >15% of reads mapping to mitochondrial RNA were filtered 

out. The gene expression of the remaining good quality cells was normalized.  

  

The normalization was performed with a scale factor of 10 000, this normalized the gene 

expression value in each cell by the expression seen in the overall expression and gave a more 

accurate gene expression profile. The scale factor was multiplied with the normalized gene 

expression and log transformed. This was done by the function NormalizeData() included 

in the Seurat package. After this a scaling and centring of the genes was done by the function 

ScaleData(). Then a reduction of dimensionality was performed by a linear dimensional 

reduction method called Principal component analysis (PCA), where 35% of the genes with 

highest variability was included. Thirty-five principal components (PCs) were included in the 

downstream analysis. This was chosen based on an evaluation of an JackStrawPlot where 
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the distribution of p-values is compared, in this plot the PCs with highest influence on the 

dataset will have the lowest p-value. Another method used for the evaluation was an 

ElbowPlot, examples of these are found in Appendix 2, where the PCs was ranked by the 

percentage of variance. In the ElbowPlot there will be an “elbow” where the variance 

flattens out and indicates that the PCs in this area are explaining less variance of the dataset 

(81). After the reduction of the dimensionality, where one gene was a new dimension, the 

cells was clustered based on their similarity in transcriptional profile (76). 

 

The clusters were visualized by uniform manifold approximation and projection (UMAP), 

which applies a non-linear dimensional reduction of the dataset, and placed the clusters with 

cells similar to each other in a low dimensional space. An example code to go from count 

matrices to clustering and UMAP plotting is shown in Appendix 3. 

 

3.5 Own contributions 

The last five months I have performed all the above-mentioned methods, from tissue 

preparation to computational analysis, with the exception of the Cell Ranger pipeline which 

was performed by the Norwegian Sequencing Centre. The scripts used in the computational 

analysis were mainly written by Xavier Tekpli based on Seurat vignette: 

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html, but I have made alterations for the 

downstream analysis to fit my dataset.   

  

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
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4. Results 

4.1 Clustering and annotation of all cells 

All cells from the scRNA-seq data were clustered and visualised by the application of the R 

package Seurat and UMAP, which performs a non-linear dimensionality reduction of the high 

dimensional dataset. The nine doublets from patient samples comprises a total of 104 728 

cells and were separated in 51 clusters shown in figure 12a. The annotation of the clusters 

obtained was performed by plotting the expression of established marker genes for the main 

cell types expected to be found in breast tumors (70, 82, 83). Log-normalised marker genes’ 

expression are projected to the UMAP in figure 12b and illustrate how the 51 clusters 

represent different cell types. Figure 12c shows the average expression and percentage of cells 

expressing three marker genes for each cell type. A full overview of the marker genes used to 

annotate the clusters are given in Appendix 4. Following careful inspection of the set of 

seventy-three marker genes, we obtained the final annotation shown in figure 12d. The 

number and proportion of each cell type identified is given in table 1.  

In conclusion these results show that we were able to identify and annotate eight different 

main cell types that have been reported previously by performing scRNA-seq. Our results also 

show that our analytic pipeline of single cell clustering groups cells according to their 

phenotype while avoiding batch effects.  
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Figure 12. (a) UMAP of 104 728 cells from 9 ER-positive, HER2-negative breast cancer patients before and after treatment. 

The cells were grouped in 51clusters. (b), Illustrates log-normalized expression of marker genes for epithelial cells (ESR1), T 
cells (CD3D), macrophages (CD68), B cells (CD79A), endothelial cells (VWF), fibroblasts (C1R), DCs (LILRA4) and mast 
cells (CPA3). (c) Dot plot for 3 marker genes, average gene expression, and percentage of expression for the different cell 
types. (d)Annotated UMAP showing the 9 main cell types identified in breast cancer biopsies.      

 

Table 1 shows the proportions of the different cell types from the dataset. In this thesis the T 

cells, Macrophages and fibroblasts was selected for further analysis as they are important cells 

for the tumor progression.  
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Table 1. A table with the 8 cell types identified by scRNA-seq and a cluster annotated as doublets, with their proportion in the 

dataset as a percentage.   

Cell type Proportion (%) 

B cells 4,60 
Dendritic cells 0,27 
Doublets (DB) 0,68 
Endothelial cells 11,25 
Epithelial cells  23,13 
Fibroblasts 24, 04 
Macrophages 9,96 
Mast cells 0,80 
T cells 25,26 

 

4.2  NK and T cell cluster annotation 

The NK and T cells which represented 21 435 cells were clustered independently to identify 

more specialised and specific T cell types. After clustering we obtained a UMAP with 

eighteen clusters (Appendix 5). To carefully annotate these eighteen clusters, we used set of 

genes which have previously allowed to identify T cell types in scRNA-seq data (70, 82). To 

assess the expression of these marker genes in the clusters, we averaged the expression of 

each gene in the clusters and plotted them in heatmaps (Appendix 5). Based on the co-

expression of marker genes for specific cell types, we identified a total of ten T and NK cell 

types. Included regulatory T cells (CD4+ reg), naïve T cells (CD4+ n and CD8+ n), exhaused T 

cells (CD4+ ex), effector/memory T cells (CD4+ em and CD8+ em), tissue-resident memory T 

cells (CD8+ rm), recently activated effector/memory T cells (CD8+ emra), resting NK cells 

(NK rest) and cytotoxic NK cells (NK cyto).  

 

Feature plots with log normalised expression of marker genes for the given phenotypes shown 

in figure 13a confirms the annotation of the clusters. The T cell types showcased in the feature 

plots are CD4 effector/memory, regulatory and exhausted cells with respective marker genes 

being CD40LG, FOXP3 and CXCL13. CD8 phenotypes for tissue-resident memory T cells, 

effector/memory and recently activated effector/memory are marked by ZNF683, GZMK and 

GZMH respectively. Marker genes for resting and cytotoxic NK cells are also illustrated with 

AREG and FCGR3 being the markers of choice respectively. All marker genes used to 

initially annotate and identify NK and T cell types are shown in the heatmap in figure 13c. 
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Following careful inspection of marker genes using heatmap, violin plots an UMAP, we 

settled on the final annotation of T cells and NK cells shown in figure 13b. To visualise how 

the different patients T cell composition at baseline (before treatment) may vary, we plotted 

the proportion of the different T cell type using barplots figure 13d. The four subtypes with 

highest representation are the effector/memory T cells (CD4+ em and CD8+ em), tissue-

resident T memory T cells (CD8+ rm) and naïve CD8+ T cells. The T cell composition in the 

samples varies and confirms a high intra-tumoral heterogeneity of the T cell 

microenvironment. In conclusion, our results show that the clustering of T cells and NKs 

allow a detailed annotation of ten subtypes.  
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Figure 134. (a)A selection of a few marker genes for specific T and NK cell subtypes is used to illustrate the repartition of 

CD4 effector/memory, regulatory and exhausted cells as well as resting and cytotoxic NK cells and different subtypes of CD8 
cells. (b) The final annotated clustering of 21 435 T cells and NK cells into 10 phenotypes. Two clusters represent cytotoxic 
and resting NK cells (NK_rest and NK_cyto), regulatory T cells (CD4_reg), naïve T cells (CD4_n and CD8_n), experienced 
T cells (CD4_ex), effector/memory T cells (CD4_em and CD8_em), tissue-resident memory T cells (CD8_rm) and recently 
activated effector/memory T cells (CD8_emra). (c)Heatmap showing the expression of the marker genes across the ten 
phenotypes of NK cells and T cells. (d) Barplot representing the tumor T cell composition of biopsies at baseline, before 
treatment.  
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4.3 Macrophage cluster annotation 

The first cluster of the macrophages is shown in figure 14a. Annotation of the different 

clusters obtained was done using marker genes as previously published by Qian et al. (70, 82). 

The annotated macrophages include eleven types of myeloid cell types based on different 

gene expression profiles. Three groups were classified as monocytes being classical, non-

classical and normal tissue-specific monocytes (Mono_CD14, Mono_CD16 and 

Mono_normal respectively). The macrophages were divided into five main groups based on 

the features being early stage (Mf_CCR2 and Mf_CCL2), tumor-associated (Mf_CCL18, 

Mf_MMP9 and Mf_CX3CR1), perivasculature-resident (Mf_LYVE1), redox-related 

(Mf_MT1G) and hypoxic (Mf_SLC2A1). One cluster had an expression pattern with 

correlation to both MMP9 and CCR2 phenotypes and was annotated as a mix.   

 

Some of the clusters did not correspond to myeloid cell types including cluster 9, 12 and 15. 

A differential expression analysis of the genes in each of these clusters was performed to ease 

their annotation. Cluster 9 had a high expression of CD1A, TACSTD2, HLA-DGB2 and 

CD207 genes related to DC Langerhans cells, which is an immature DC and associate with 

tumor promoting features as they stabilize the tumor antigen tolerance and T Cell immunity 

(84, 85). Looking at the ten genes with highest expression, we observed them to be strongly 

associated with lymphocytes, indeed, genes such as CD79 which is related to B cells, HLA-

DRA and HLA-DPA1 were found overexpressed. Cluster 12 contained very few cells which 

expressed genes related to lymphocytes (CD3D, CD3E, GZMM, LCK, GSMK and 

PTPRCAD). By investigating the ten genes with highest expression in cluster 12 it was 

mostly observed housekeeping genes but also CD74 which is correlated to B cells. Cluster 15 

also expressed genes related to lymphocytes such as XCR1, GCSAM, BTLA, CLNK, and 

IDO1. After inspection, and differential expression analyses cluster 12 and 15 were 

considered to belong to other cell types than macrophages due to their expression profile and 

were removed before performing a new clustering. The remaining 33 452 cells are shown in 

figure 14b with all marker genes used for the annotation. The UMAP of the macrophages and 

monocytes are shown in figure 14c. The macrophage and monocyte composition in the 

different baseline samples are shown in figure figure 14d, which showed a high degree of 

heterogeneity. The most abundant phenotypes are the tumor-associated macrophages 
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(Mf_CCL18 and Mf_CX3CR1), the redox-related (Mf_MT1G), the perivasculature-resident 

macrophage (Mf_LYVE1) and monocytes (Mono_CD14).  

In conclusion, our results show that initial clustering of the macrophage subtypes contains 

some clusters with expression profiles of lymphocytes and DCs, these clusters was removed 

to give a subset containing only macrophages. The annotated subtypes correspond well to 

known marker genes for the macrophage subtypes, and they cover the most important 

subtypes found in breast cancer. 
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Figure 54. (a) A Annotated cluster of myeloid cells. Three of the clusters represent monocytes with different phenotypes. We 

also identified eight clusters with different phenotypes of macrophages. It was also observed three clusters annotated as low 
quality, DC Langhans cells and lymphocytes. (b) Heatmap showing the expression of the marker genes across the eleven cell 
types of myeloid cell types.  (c) The final annotated UMAP with 33 452 cells, after removal of the three clusters annotated as 
LQ, DC_Langh and Lymph. (d) A barplot representing the tumor myeloid composition of biopsies at baseline, before 
treatment.  
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4.4 Fibroblast cluster annotation 

The fibroblasts with a total of 23 368 cells were clustered and annotated using the marker 

genes defined by Wu et al. (83) who identified myoepithelial associated CAFs (myCAF), 

inflammatory associated CAFs (iCAF), differentiated perivascular-like fibroblast (dPVL) or 

immature PVLs (iPVL). Further, marker genes established by Qian et al. (70) were screened 

to provide a deeper annotation of the fibroblast phenotypes. From the myCAF phenotypes 

cluster myCAF_STAR_NF and myCAF_COMP was identified. From the iCAF phenotypes a 

cluster with high CFD expression (iCAF_CFD) which is a marker for adipcin led to the 

identification of adipogenic fibroblast. Figure 15a illustrates some marker genes for the 

different fibroblast phenotypes, COMP being the marker gene for myCAF_COMP, ITM2A is 

a marker gene for iCAFs, RERGL is a marker gene for dPVLs and CTSC is a marker gene for 

imPVLs. The annotation of the different fibroblast phenotypes described above are shown in 

figure 15b. A heatmap including three marker genes for each fibroblast phenotype is shown in 

figure 15c. A full heatmap with all marker genes used for the annotation is found in Appendix 

6. The fibroblast composition in the different baseline samples is shown in figure 15d. Again, 

a high heterogeneity in fibroblast composition between the samples was observed at baseline. 

There were no clear specific fibroblast type more prominent than others.  

In conclusion, our results show that the clustering of fibroblasts allows us to subdivide 

fibroblasts in eight subtypes which fitted well with marker genes previously used.  
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Figure 15. (a) A selection of a few marker genes for specific fibroblast subtypes is used to illustrate the repartition of 
myCAFs, iCAFs, dPVLs and imPVLS. (b) Annotated UMAP of 23 368 cells from fibroblast phenotypes was divided into three 
main categories. The first are the PVL phenotypes (dPVL and imPVL), secondly the myCAFs (myCAF_STAR_NF, myCAF 
and myCAF_COMP), and thirdly the iCAFs (iCAF and iCAF_CFD). A small island with CAF_MYH11 was also annotated. 
(c) Heatmap showing the expression of three marker genes for each fibroblast phenotype. (d) A barplot representing the 
tumor fibroblast composition in each patient baseline sample.  
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4.5 Treatment response 

For each T cell, macrophage and fibroblast type identified above, we performed a paired 

Wilcoxon signed-rank test to assess whether the proportion of a specific type significantly 

changed between the two timepoints. The statistical test is non-parametric and does not make 

assumptions about sample size or the population’s distribution. The null-hypothesis for this 

test is that there is no significant change between the paired samples, and the significance 

level alpha is set to 0,05. A full list of the statistical outcomes for the T cell phenotypes are 

found in table 2. The medians of each type at the baseline, and at 21 days are also reported. 

We found one change to be significant for CD4_reg with a p-value of 0,027.  

 

Table 2. Summary statistics for the paired Wilcoxon signed-rank test for the proportion of the different T cell phenotypes.  
The median from the baseline samples and the second timepoint (after 21 days) are shown as well as the p-value. CD4_regs 
show significant changes in proportion between the two timepoints with a p-value equal to 0,0273. This is highlighted with 
bold text.  

T cell subtype Median baseline Median 21 days P-value 
CD4_reg 4.62 7.88 0.0273 

CD8_em 22.8 27.2 0.734 
CD4_em 20.8 25.4 0.652 
CD8_rm 5.13 7.69 0.57 
CD8_n 8.15 6.95 0.359 
CD8_emra 12.8 6.36 0.652 
NK_cyto 7.26 4.38 0.426 
CD4_n 3.33 2.88 0.496 
NK_rest 3.60   3.56 1 
CD4_ex 0.238 0.859 0.441 

 

A full list if the statistical outcomes for the macrophages are given in table 3, the median at 

the baseline and after 21 days for the macrophage phenotypes are shown, and the p-value 

from the paired Wilcoxon signed-rank test. There were four phenotypes from the 

macrophages with a significant difference in quantity between the two timepoints being 

Mf_SLC2A1 with a p-value of 0,0078, Mono_CD14 with a p-value of 0,0117, Mf_MT1G 

with a p-value of 0,0195 and Mf_CCL18 with a p-value of 0,0117.  
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Table 3. The p-values from the paired Wilcoxon signed-rank test for the proportion of macrophages between the two different 
time points. Median of the proportions are also shown. The four phenotypes Mf_SLC2A1, Mono_CD14, Mf_MT1G and 
Mf_CCL18 have a significant difference in quantity between the two timepoints with p-values. 

Macrophage subtype Median baseline Median 21 days P-value 
Mf_SLC2A1 2.12 0.148 0.00781 
Mf_MMP9/CCR2 2.52 2.24 0.91 
Mf_CCL2 2.75 1.30   0.91 
Mono_CD16 5.59 2.08 0.129 
Mono_normal 0.901 0.444 1 
Mono_CD14 7.42 2.15 0.0117 

Mf_LYVE1 15.9 17.2 0.25 
Mf_CCR2 15.1 5.80 0.0547 
Mf_CX3CR1 8.90 8.33 0.129 
Mf_MT1G 16.0   20.8 0.0195 
Mf_CCL18 18.6 26.9   0.0117 

 

A full list of the statistical outcomes for the fibroblast phenotypes are given in table 4. 

Including the median at both baseline, after 21 days, and the p-values. None of the fibroblast 

phenotypes has a significant change of quantity between the timepoints. In conclusion these 

results show that 5 of the 29 cell types have a significant quantitative change after 21 days of 

treatment.  

 

Table 4. The p-values from the paired Wilcoxon signed-rank test on the proportion of fibroblasts between the two different 
time points. The median from baseline and the second timepoint (after 21 days) are shown, as well as the p-value. None of 
the fibroblasts show a significant change in proportion between the two timepoints.   

Fibroblast subtype Median baseline Median 21 days P-value 
CAF_MYH11 0.927 0.613 0.129 
myCAF_STAR_NF 2.22 2.11 0.164 
iCAF_CFD 3.78 4.85 0.82 
dPVL 3.79 5.20 0.25 
imPVL 11.2 10.8 0.301 
myCAF 11.7 13.4 1 
myCAF_COMP 15.6 23.3 0.129 
iCAF 31.5 19.4   0.652 

 

The five cell subtypes with a significant change are illustrated using boxplots in figure 16. It 

was observed an increase of CD4_regs in all patients except for one as shown in figure 16a. 

CD4_regs are associated with an immunosuppressive environment and promotion of tumor 

progression. There was also observed an increase of the macrophage subtype Mf_MT1G in all 

patients except for one, this is shown in figure 16b. The macrophage subtype Mf_CCL18 was 

also upregulated after 21 days of treatment as seen in figure 16c. There is a significant 
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decrease of the monocyte Mono_CD14 as shown in figure 16d, and the macrophage subtype 

Mf_SLC2A1 as seen in figure 16e after 21 days of treatment.  

 

In conclusion our results show significant changes of the proportion of five cell subtypes from 

the microenvironment. There was an upregulation of the cellular subtypes Tregs, Mf_CCL18 

and Mf_MT1G which are associated with an immunosuppressive microenvironment. They 

also show a significant downregulation of the cellular subtypes Mono_CD14 and 

Mf_SLC2A1.  

 

Figure 16. (a) Boxplots representing the proportion of a cell type on the y-axis at two different time points on the x-axis. The 
line within each box represents the median. Upper and lower edges of each box represent 75th and 25th percentile, 
respectively. The whiskers represent the lowest datum still within [1.5 x (75th – 25th percentile)] of the lower quartile, and the 
highest datum still within [1.5 x (75th and 25th percentile)] of the upper quartile. Each dot represents the proportion for each 
patient. The blue line across time points show an increase in proportion while the red line shows a decrease in quantity.  
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5 Discussion and future perspectives 

scRNA-seq analyses showed that TME in breast cancer is highly heterogeneous. There is 

limited understanding on how the cells of the TME evolve and respond to treatment. In this 

thesis we investigated how the TME of breast cancer patients with ER-positive, HER2-

negative lesions changed after 21 days of treatment with ribociclib and letrozole. In the study 

we found that there was high inter- and intra-heterogeneity and there were five cellular 

subtypes with a significant proportional change after 21 days of treatment.  

 

5.1 Methodological evaluation 

scRNA-seq provides high-resolution analyses of the single cell transcriptomics in complex 

tissues. It is an invaluable method to characterise cells in tumors and can give a better 

understanding of the disease development under treatment pressure. In this thesis the 

annotation of the cells was performed using first clustering with UMAP, then a manual 

inspection of the clusters obtained, and allocation of cell types to the clusters based on marker 

genes previously described (70, 82, 83). Marker genes can be expressed in more than one cell 

type which make the annotation very complex. Selecting good and unique markers for cell 

types and cellular subtypes is difficult and may lead to inaccurate annotations. In addition, 

manual annotations are time consuming and requires the analyser to have good knowledge 

about the cell types, marker genes, and functional genes. To overcome these problems several 

computational methods have been developed such as SingleR and EcoTyper. SingleR 

compares the single cell gene expression to reference genomes from pure cell types and 

thereby assign the cellular identity of the cells (86). EcoTyper is a machine learning 

algorithm and applies statistical methods and deconvolution with the machine learning 

method CIBERSORTx (87). This method can annotate cell states and multicellular 

microenvironments, as well as detecting novel cellular subtypes (88). The errors which easily 

occurs when the annotation is performed manually might be reduced by applying 

computational methods. Furthermore, the combination of manual and computational based 

annotation may allow better cell type annotation in the future. 

 

When clustering the macrophages, a cluster was identified to be DC Langerhans cells (LCs). 

This cluster was not considered to belong to the macrophage cell type and was removed. After 
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more research it is seen that LCs have gene expression profiles similar to both macrophages 

and DCs (89). These cells have a specific function in the immune system by activation of 

several immune responses including activation of CTLs, Th17 and the humoral immunity 

(85). Since they express genes from both DCs and macrophages they may cluster with DCs or 

macrophages and removing them will lead to a loss of information from LCs, which play a 

role in the immune response. We may consider keeping them in the macrophage cluster in the 

future or cluster them with the other DCs. 

  

5.2 Cell types with significant changes in proportion between the two time points 

The five cellular subtypes with a significant change were CD4_regs, Mf_MT1G, Mf_CCL18, 

Mono_CD14 and Mf_SLC2A1. CD4_regs were upregulated in all patients except for one 

after 21 days of treatment, Tregs are associated with an immunosuppressive environment and 

promotion of tumor progression. It is reported that patients receiving ribociclib have a 

decrease of Tregs after 6 months of treatment, which is the opposite of what is seen after 21 

days (90). It would be interesting to investigate the proliferation rate of Tregs. Since ribociclib 

is a CDK4/6 inhibitor and the Tregs have an increase, they might have a low proliferation rate 

and not be affected that much by ribociclib.  

Others performing bulk RNA seq to patients receiving the same treatment have observed the 

same trend as seen in this thesis, where the tumor seems to be immune cold after 21 days of 

treatment (personal communication at a conference). Surprisingly when communicating these 

results to the oncologists recruiting the patients in the clinical trial, it appeared that the 

patients analysed are actually responding well to treatment with nearly no tumor observed 

after 6 months of treatment. Further, investigation is needed to understand the biological 

significance of Tregs. To analyse a tissue sample between 21 days of treatment and 6 months 

would be of great interest to get a proper understanding of what happens to the cells during 

the last phases of the neoadjuvant treatment. 

 

The macrophage subtype Mf_MT1G was upregulated in all samples except for one after 21 

days of treatment. MT1s are metallothionein’s, meaning they are metal-binding proteins, 

induced by different stimuli such as hormones, cytokines, and growth factors (91). MT1 binds 

to zinc which can withdraw zinc from the transcription factor protein p53. This will lead to 
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inactivation and spatial remodelling of p53 and promote cancer cell proliferation. The MT1 

proteins are also seen to have a positive correlation with the proliferative marker Ki-67 and 

high grade breast cancers (92). While in breast cancer MT1G seems to be protumorigenic a 

study of the effect of MT1G on thyroid cancer by Fu et al. demonstrated a correlation between 

MT1G and tumor suppressor properties. This was done through suppression of cell growth 

and invasiveness by modulating the PI3K/Akt pathway, and promotion of cell cycle arrest and 

apoptosis by inhibition of the Rb/E2F signalling pathway (93). It has also been reported that 

the concentration of MT1s is most abundant at the G1/S phase transition in the cell cycle, at 

this stage the cells prepare for DNA synthesis, which show the effect MT1s can have on 

tumor cell proliferation (94). Therefore, it would be of great interest to investigate where in 

the cell cycle the cancer cells are after 21 days of treatment, and if ribociclib is sufficient to 

inhibit the cell cycle and uncontrolled growth. This analysis can be performed on the scRNA-

seq dataset obtained in this thesis, by finding the gene names related to the different phases of 

the cell cycle from a database, and apply the CellCycleScoring() function which is a part 

of the Seurat package (95).  

 

There was also a significant upregulation of the macrophage subtype Mf_CCL18. CCL18 is a 

cytokine produced by macrophages and is associated with promotion of metastasis of breast 

cancer, and the induction of epithelial-mesenchymal transition of the cancer cells (96). 

CCL18 is produced mainly by macrophages of the so called M2 phenotype which is the most 

dominant macrophage in breast cancer (97). It has been reported that CCL18 expressing 

macrophages recruit circulating naïve CD4+ T cells to the TME, and that the T cell receptor 

profile of the naïve CD4+ T cells and Tregs in the TME of breast cancer have a significant 

overlap. They suggest that most Tregs in the TME of breast cancer originates from naïve 

CD4+ T cells and are recruited as differentiated Tregs (98). Applying a trajectory analysis to 

investigate how the cells in the TME differentiate can be done by the toolkit Monocle (99). 

This can give a useful insight to get a better understanding of the changes observed in this 

thesis. The increase of Tregs and CCL18 could be correlated, however patient 9 and patient 8 

will go against this.  
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There was a significant decrease of the monocyte Mono_CD14, this is a classical monocyte 

with expression of CD14 and S100A8/9, they also express CCLR2 a cytokine with pro-

migratory properties (100). The decrease of monocytes is positive for the breast cancer 

progression and might be due to no new immune cells entering the TME. Indeed, it is 

assumed that most of the monocytes when reaching tissue will differentiate into macrophages, 

therefore a decrease in monocyte proportion could be due to few or no new circulating 

immune cells reaching the tumor site. Which makes the proportion of these cells decrease in 

the TME. No new immune cells entering the TME also confirms an immunosuppressive 

environment where immune cells are dead, removed, senescent or exhausted. 

  

The macrophage phenotype Mf_SLC2A1 was observed to have a significant decrease after 21 

days of treatment. SLC2A1 encodes glucose transporter 1 (GLUT1) which is found in 

malignant cells. GLUT1 provides energy to cancer cells by aerobic glycolysis, inhibition of 

GLUT1 is therefore associated with anti-proliferative effects on cancer (101). This might be 

an indication of a reduced metabolism in the cancer cells after 21 days of treatment. If the 

cancer cells loose access to energy, will they die and stop proliferate. Making them more 

manageable to be removed by surgery. 

 

Why there is an upregulation and downregulation of the abovementioned cellular subtypes 

could be investigated further, some of the cells can have a correlation in their proportional 

change during treatment. There seem to be connections between several of them and it would 

be helpful to make a heatmap with the correlation between the different cellular subtypes.  

scRNA-seq provides a better understanding of the TME as it gives information regarding all 

the cells in the TME but as the cells are dissociated the spatial context is lost, the dissociation 

of the tissue can also induce stress to the cell’s and change their expression profile in some 

degree. Investigation of the interactions between the cells and their location within the TME 

can provide a better understanding of the treatment response, tumor evolution and how 

specific cells interact with each other. By performing spatial transcriptomics more 

information about what and how the cellular subtypes are recruited to the TME, and genes 

that are important for cellular interactions can be obtained (102, 103).  
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6 Conclusion 

We observed an immunosuppressive environment in the TME after 21 days of treatment. This 

is contrary to what has been observed by others after 6 months of treatment. It remains to be 

established how the changes we observe in the immune TME relate to patients’ response. To 

assess whether the immunosuppressive TME persist across treatment, it would therefore be of 

great interest to perform scRNA-seq on another timepoint between 21 days and 6 months of 

treatment. It will also provide a better insight to the changes in the TME and the response to 

treatment with the analysis of the last timepoint, after 6 months. Spatial transcriptomics from 

the different timepoints will also give a better understanding of the cellular interactions, 

recruitment, and position of the cellular subtypes in the tumor, and would be an interesting 

method to perform on the samples in the future. There are several bioinformatic analyses that 

can be perform on the obtained dataset from this thesis which can provide a deeper insight 

into the changes observed and changes in the tumor ecosystems over time. Trajectory 

inference analyses and cell cycle scoring are interesting parts to better understand the effects 

of the combination of aromatase and CDK4/6 inhibitors. An important part of the work of this 

thesis was identifying specific and specialized immune cell types, it would also be of great 

interest to compare the manual annotation performed here with a machine-driven annotation 

of both cells and clusters, to see if we could validate and/or improve our annotations.  
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Appendix 1; Solutions 

Dissociation solution:  

Reagents Volume per tissue sample 

DMEM 4.4 mL 

Collagenase P 50 mg/mL 

DNAse I 1 mg/mL 

 

STEM Buffer 2:  

Reagents Volume Final concentration 

PBS 48.4 mL  

FBS/FCS 1 mL 2% 

0.5M EDTA (pH 8) 600 µL  

 

PBS+BSA 0.04%: 

Reagents Volume Final concentration 

PBS 19.84 mL  

BSA (50mg/mL stock) 160 µL 0.04% 
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Appendix 2; Elbowplot  

 

Figure 6. Elbowplot used to decide how many PCs to use for further analysis.  
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Appendix 3; Example codes 

Example code for Scaling 

setwd ("/cluster/projects/nn9751k/Karoline/NR") 
 
library(Seurat) 
library(plyr) 
library(dplyr) 
library(future) 
plan("multicore", workers=10) 
options(future.globals.maxSize = 100*1024^3) 
 
load("Merged_NeoLetRib_algos_08_03_22_full.RData") 
 
 
######################################### 
##### Subset Merged1 for 9 doubletts #### 
######################################### 
 
Merged_subset <- subset(Merged1, orig.ident %in% c( 
  "NR001A",   "NR001B",    
  "NR002A",   "NR002B",  
  "NR004A",   "NR004B",    
  "NR005A",   "NR005B",   
  "NR006A",   "NR006B",    
  "NR008A",   "NR008B",  
  "NR009A",   "NR009B", 
  "NR010A",   "NR010B",   
  "NR011A",   "NR011B")) 
 
 
 
######################## 
##### Normalization #### 
########################   
 
Merged <- NormalizeData(Merged_subset, normalization.method = 
"LogNormalize", scale.factor = 10000) 
  
   
   
########################################## 
##### Scale and regress out variables #### 
########################################## 
lapply(Merged@meta.data, class) 
all.genes <- rownames(Merged) 
Scaled <- ScaleData(Merged,  
                    features = all.genes,  
                    vars.to.regress = c("percent.mt", "nCount_RNA", 
"nFeature_RNA"), split.by="orig.ident")  
load ('common_genes_long.RData') 
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############################ 
##### Save as new RData #### 
############################ 
   
library (gdata) 
keep(Scaled, common, sure=TRUE) 
save.image("Scaled_all.RData") 

 

 

Example code for Jackstraw 

setwd ("/cluster/projects/nn9751k/Karoline/NR") 
 
library(Seurat) 
library(plyr) 
library(dplyr) 
 
load ("Scaled_all.RData") 
 
#load ("common_NR.RData") 
#load ("common_genes_long.RData") 
 
 
variable <- FindVariableFeatures(Scaled, selection.method = "vst", 
nfeatures = round(dim (Scaled)[1]*35/100)) 
variable_feature <- VariableFeatures(variable) 
feature <- unique (variable_feature) 
print(length (variable_feature)) 
print (length (feature)) 
print (dim (Scaled)) 
 
 
###########################################################################
########################### 
##### Inspecting the PCA / metagene significance to set the number of 
component used to run UMAP ##### 
###########################################################################
########################### 
 
 
#Scaled <- RunPCA(Scaled, features = common, npcs = 50, ndims.print = 1:5, 
nfeatures.print = 30, weight.by.var=F) 
Scaled <- RunPCA(Scaled, features = feature, npcs = 90, ndims.print = 1:5, 
nfeatures.print = 30, weight.by.var=T) 
#Scaled <- RunPCA(Scaled, features = feature, npcs = 60, ndims.print = 1:5, 
nfeatures.print = 30, weight.by.var=T) 
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Scaled <- JackStraw(Scaled, num.replicate = 100, dims = 80)   
Scaled <- ScoreJackStraw(Scaled, dims = 1:80) 
 
## show the genes driving the different PC 
pdf(file="NR_Scaled_inspect_PCs.pdf",  paper="a4", onefile=TRUE) 
VizDimLoadings(Scaled, dims = 1:6, reduction = "pca", nfeatures=15) 
VizDimLoadings(Scaled, dims = 7:12, reduction = "pca", nfeatures=15) 
DimHeatmap(Scaled, dims = 1:20, cells = 1000, balanced = TRUE) 
DimHeatmap(Scaled, dims = 21:40, cells = 1000, balanced = TRUE) 
DimHeatmap(Scaled, dims = 41:60, cells = 1000, balanced = TRUE) 
DimHeatmap(Scaled, dims = 61:80, cells = 1000, balanced = TRUE) 
JackStrawPlot(Scaled, dims = 1:80) 
ElbowPlot(Scaled, ndims = 80, reduction = "pca") 
dev.off() 
 
 
################################################# 
##### Loop UMAP through 15 to 35 components ##### 
################################################# 
 
pdf(file="NR_Scaled_loop_NPC.pdf",  paper="a4", onefile=TRUE) 
for (i in c(80:90)){ 
  NPC=i 
  Scaled <- RunUMAP(Scaled, dims = 1:NPC, verbose = FALSE)  
  Scaled <- FindNeighbors(Scaled, dims = 1:NPC, verbose = FALSE) 
  Scaled <- FindClusters(Scaled, verbose = FALSE) 
  plot(DimPlot(Scaled, label = F, group.by='orig.ident')) 
  print (i) 
} 
dev.off() 
 
###########################################################################
######### 
##### Choose the Number of principal component and the resolution for 
clusters ##### 
###########################################################################
######### 
NPC=70 
Scaled <- FindNeighbors(Scaled, reduction = "pca", dims = 1:NPC, k.param = 
30, compute.SNN = TRUE, nn.method = "rann", nn.eps = 0) 
Scaled <- FindClusters(Scaled, resolution = c(0.8,1,1.2))  
Idents(Scaled) 
 
resol=0.8 
pdf(file="NR_Scaled_NPC70_loop_resol.pdf",  paper="a4", onefile=TRUE) 
for (i in c(1:2)){ 
  Seurat <- SetIdent(object = Scaled, value = paste('RNA_snn_res', resol, 
sep='.')) 
  Seurat <- RunUMAP(Seurat, dims = 1:NPC) 
  plot(UMAPPlot(Seurat, reduction = "umap", pt.size=0.25,label=T)) 
  print (resol) 
  resol= resol + 0.2 
} 
dev.off() 



66 

 

 
resol = 'RNA_snn_res.1.2' 
Scaled <- SetIdent(object = Scaled, value = resol) 
Scaled <- RunUMAP(Scaled, dims = 1:NPC) 
#plot(UMAPPlot(Scaled, reduction = "umap", pt.size=0.25,label=T)) 
 
library (gdata) 
keep(Scaled, common, sure=TRUE) 
save.image("Scaled_NR_all.RData") 
 
 
 
#################### 
##### PDF files #### 
#################### 
 
pdf("clusters_orig_ident.pdf") 
DimPlot(Scaled, label = F, group.by='orig.ident') 
dev.off() 
 
pdf("clusters.pdf") 
DimPlot(Scaled, label = TRUE, group.by='RNA_snn_res.1.2')  
dev.off() 
print (table (Scaled@meta.data$RNA_snn_res.1.2)) 
 
pdf("feature Tcells.pdf") 
#Tcell 
FeaturePlot(Scaled, features = c("CD3D", "CD3E", "IL7R"),  order = T) 
#cytotoxic Tcell 
FeaturePlot(Scaled, features = c("CD8A","GZMK","GZMA"),  order = T) 
#Treg 
FeaturePlot(Scaled, features = c("FOXP3","TIGIT", "KLRC1", "CTLA4"), order 
= T) 
dev.off() 
 
pdf("feature Macrophages.pdf") 
#Macrophages 
FeaturePlot(Scaled, features = c("CD68","LYZ" , "CD14" , "AIF1"), order = 
T) 
#Macrophages-proinf 
FeaturePlot(Scaled, features = c("TNF","CCL4","IL1B"), order = T) 
dev.off() 
 
pdf("feature Bcells.pdf") 
#Plasma cell 
FeaturePlot(Scaled, features = c("IGHG1", "CD38","MZB1","IGHA2"),  order = 
T) 
#Bcell 
FeaturePlot(Scaled, features = c("CD79A","CD19","MS4A1" ,"CD83"),  order = 
T) 
dev.off() 
 
pdf("feature Fibroblast.pdf") 
#Fibroblast) 
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FeaturePlot(Scaled, features = c("COL1A1","C1R","SERPINE1","MYL9"), order = 
T) 
#Fibroblast-MYH11 
FeaturePlot(Scaled, features = c("MYH11","RGS5","NOTCH3","TFPI"), order = 
T) 
dev.off() 
 
pdf("feature Cancer.pdf") 
#Cancer cell 
FeaturePlot(Scaled, features = c("EPCAM","FOXA1","ESR1","S100A1"), order = 
T) 
FeaturePlot(Scaled, features = c("ERBB2", "MKI67", "CDK4","HES4"),order = 
T) 
dev.off() 
 
pdf("feature Mast- dendritic.pdf") 
#Mast cell 
FeaturePlot(Scaled, features = c("CPA3", "TPSAB1","TPSB2","GATA2"),order = 
T) 
#Dendritic cell 
FeaturePlot(Scaled, features = c("LILRA4","PLAC8","IRF7"), order = T) 
dev.off() 
 
pdf("feature Endothelial.pdf") 
#Endothelial cells 
FeaturePlot(Scaled, features = c("CA4", "CD36","VWF","ACKR1"), order = T) 
dev.off() 
 
 

Example code for UMAP, Heatmap and Barplot 

setwd ("/cluster/projects/nn9751k/Karoline/NR/T_cells") 
load("Final_Annotated_T-cell_clusters.RData") 
 
 
 
pdf('Final_Annotated_T_cells.pdf') 
DimPlot(Scaled, reduction = "umap", label = TRUE, pt.size = 0.2, 
label.size=5, label.box= T) + NoLegend() 
dev.off() 
 
 
 
Idents(Scaled) <- "main.ids" 
cluster.averages <- AverageExpression(Scaled, return.seurat=TRUE) 
 
 
T_cell_marker_genes <- c('LEF1', 'TCF7', 'SELL', 'IL7R', 'CD40LG', 'ANXA1', 
'FOS', 'JUN', 'FOXP3', 'SAT1', 'IL2RA', 'CTLA4', 'PDCD1', 'CXCL13', 
'CD200', 'TNFRSF18', 
                         'CCR7', 'NELL2', 'CD55', 'KLF2',  'TOB1', 
'ZNF683', 'CCL5', 'GZMK', 'EOMES', 'ITM2C', 'CX3CR1', 'GNLY', 'GZMH', 
'GZMB', 'LAG3', 'CCL4L2', 'FCGR3A', 'FGFBP2', 'TYROBP', 
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                         'AREG', 'XCL1', 'KLRC1', 'TRDV2', 'TRGV9', 
'MTRNR2L8', 'KLRD1', 'TRDV1', 'KLRC3', 'CTSW', 'CD7', 'MKI67', 'STMN1', 
'TUBA1B', 'HIST1H4C') 
 
 
 
my_levels <- c('CD4_n', 'CD4_em', 'CD4_reg', 'CD4_ex', 'CD8_n', 'CD8_rm', 
'CD8_em', 'CD8_emra', 'NK_cyto', 'NK_rest') 
levels(cluster.averages) <- my_levels 
 
 
pdf('Heatmap_T_cells.pdf') 
par(mar = c(2,2,5,2)) 
DoHeatmap(cluster.averages,features = T_cell_marker_genes, draw.lines = F, 
size = 2.5,  
          group.colors = c('#00B4F0', '#DE8C00','#00C08B', '#C77CFF', 
'#7CAE00', '#B79F00', '#F8766D', '#00BA38', '#00BFC4', '#619CFF')) +  
  scale_fill_gradientn(colors = c("darkblue", "white", "darkorange2")) 
  theme(axis.text.x=element_text(size=2),axis.text.y=element_text(size=5)) 
dev.off() 
 
 
ggplotColours <- function(n = 6, h = c(0, 360) + 15){ 
  if ((diff(h) %% 360) < 1) h[2] <- h[2] - 360/n 
  hcl(h = (seq(h[1], h[2], length = n)), c = 100, l = 65) 
} 
 
color_list <- ggplotColours(n=12) 
print(color_list) 
 
 
 
 
###################Barplot################ 
 
 
dta <- as.data.frame.matrix(prop.table(table (Scaled@meta.data$orig.ident, 
Scaled@meta.data$main.ids),1)*100) 
dta_bas <- dta [substr (rownames (dta),6,6)=="A", ] 
 
 
 
pdf ('test_barplot.pdf') 
par(mar = c(5, 5, 5, 8)) 
barplot(t(dta_bas),col = color_list, legend.text = TRUE , args.legend = 
list(x = "right",inset = c(- 0.3, 0)), las=2) 
dev.off() 
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Appendix 4; Dotplot with all marker genes 

 

 

Figure 7. Dotplot with all marker genes for the cell types used to annotate the clusters.  
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Appendix 5; UMAP and heatmap for NK and T cells 

 

 

Figure 8. UMAP of the NK and T cells after clustering. There was 18 clusters for this clustering.  
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Figure 9. Heatmap with all marker genes (70, 82) used to annotate the clusters for NK and T cells.  
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Appendix 6; Heatmaps for Fibroblast annotation 

 

Figure 10. (a) Heatmap with all functional genes (70) used to annotate the fibroblast clusters. (b) Heatmap with all marker 
genes (70) used to annotate the fibroblast clusters.  
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Figure 11. (a) Heatmap with marker genes (83) used to identify myCAFs. (b) Heatmap with marker genes used to annotate 
iCAFs. (c) Heatmap with marker genes used to annotate iPVLs. (d) Heatmap with marker genes to annotate inPVLs. 
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Appendix 7; Supplies 

Supplies Product name Company Catalogue number 

1.5 ml Eppendorf tube    

1.5 ml low-bind tube    

15 ml falcon tube    

40 µM filter EASYstrainer Greiner Bio-One 542040 

70 µM filter EASYstrainer Greiner Bio-One 542070 

NecleoCounter NucleoCounter® NC-
100™ 

 N/A 

Centrifuge   N/A 

Magnet  EasySep™ Magnet Stemcell 

technologies 

N/A 

Polystyrene tube Falcon™ Round-

Bottom Polystyrene 

Test Tubes 

fisher scientific 10100151 
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Appendix 8; Reagents 

Reagent Product name Company Catalogue 

number 

BSA UltraPure™ Bovine Serum 

Albumin 

Sigma AM2616 

Collagenase P Collagenase P Roche 11213857001 

DNase I Deoxyribonuclease I from 

bovine pancreas 

Merck DN25-10MG 

DMEM Dulbecco’s Modified 

Eagle’s Medium/Nutrient 

Mixture F-12 Ham 

Merck D-6434-500ML 

EDTA (0.5M), pH8 EDTA (0.5 M), pH 8.0, 

RNase-free 

Thermo fisher AM9260G 

PBS Dulbecco’s Phosphate 

Buffered Saline 

Merck D8537-500ML 

RBC Red Blood Cell Lysing 

Buffer Hybri-Max™ 

Sigma R7757-100M 

10x Single Cell kit 10x Chromium Single Cell 

2’ kit 

10x Genomics N/A 

70-100% 

Alcohol  
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