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Abstract 

As the European power mix transitions towards higher shares of variable renewable energy 

(VRE), such as wind and solar power, the power system becomes increasingly weather 

dependent. The weather follows seasonal and geographical patterns caused by the earth’s 

rotation and position to the sun. Increased weather dependence presents challenges in 

maintaining a safe, reliable, and affordable power system. This thesis investigates the wind and 

solar resources in Europe, both on a spatial and temporal scale. A case study is conducted where 

modern portfolio theory is used to find optimal allocations for wind and solar power capacities 

in Europe and to investigate the impact that different time resolutions have on the structure of 

optimal portfolios.  

The weather analysis shows that wind and solar resources have a large negative correlation of 

-0.64 with a monthly time resolution. However, this relationship decreases as we move towards 

an hourly time resolution where the correlation coefficient becomes -0.05, indicating no 

statistical relationship. This is also the trend when comparing the volatility of wind and solar 

resources. There is a strong negative correlation for the occurrence of high and low volatility 

between wind and solar resources on a monthly time resolution, with a decreasing relationship 

as the time resolution increases. 

The portfolio optimization shows that the existing fleet of wind and solar capacities is not the 

optimal distribution, given the assumptions in this study. Additionally, the portfolio 

optimization favors the regions in Portugal and Greece, which both have significantly higher 

wind output during summer months than the European average. By introducing significant 

wind power capacities in these regions, Europe will potentially have a more stable wind power 

output year-round. 

The optimal portfolios outperform the existing fleet in both hourly, daily, weekly, and monthly 

time resolutions, with the most significant improvement at an hourly time resolution. 

Furthermore, the portfolios with lower time resolutions tend to favor higher shares (52%) of 

solar PV relative to portfolios with high time resolutions, receiving only 13% solar PV, 

indicating that solar PV is relatively more favorable in systems concerned about long-term 

volatility. At the same time, high shares of wind power are more beneficial in systems 

concerned about short-term volatility. 



   

 

 

 

 

 

 

Sammendrag 

Etter hvert som den Europeiske kraftmiksen beveger seg mot høyere andeler av variabel 

fornybar energi, som vind- og solkraft, blir kraftsystemet stadig mer væravhengig. Været følger 

sesongmessige og geografiske mønstre forårsaket av jordens rotasjon og posisjon til solen. Økt 

væravhengighet kan by på utfordringer med å opprettholde et trygt, pålitelig og rimelig 

kraftsystem. Denne oppgaven undersøker vind- og solressursene i Europa, både i romlig og 

tidsmessig skala. Det gjennomføres en casestudie hvor moderne porteføljeteori brukes for å 

finne optimale allokeringer for vind- og solkraftkapasiteter i Europa og hvilken innvirkning 

ulike tidsoppløsninger har på strukturen til de optimale porteføljene. 

Væranalysen viser at vind- og solressurser har en negativ korrelasjon på -0.64 med månedlig 

tidsoppløsning. Imidlertid avtar dette forholdet når vi beveger oss mot en timebasert 

tidsoppløsning hvor korrelasjonskoeffisienten blir -0.05, noe som indikerer ingen 

sammenheng. Dette er også trenden når man sammenligner volatiliteten til vind- og 

solressurser. Det er en sterk negativ korrelasjon for når høy og lav volatilitet oppstår mellom 

vind- og solressurser på en månedlig tidsoppløsning, med avtagende sammenheng ettersom 

tidsoppløsningen øker. 

Porteføljeoptimaliseringen viser at den eksisterende flåten av vind- og solkapasitet ikke er den 

optimale fordelingen, gitt forutsetningene i denne studien. I tillegg favoriserer 

porteføljeoptimaliseringen regionene i Portugal og Hellas, som begge har betydelig mer vind i 

sommermånedene enn det europeiske gjennomsnittet. Ved å ha store mengder 

vindkraftkapasitet i disse regionene vil Europa som helhet ha en mer stabil vindkraftproduksjon 

året rundt. 

De mest optimale porteføljene utkonkurrerer den eksisterende flåten i både times-, daglig, 

ukentlig og månedlig tidsoppløsning, hvor den mest betydelige forbedringen ved timebasert 

tidsoppløsning. Videre har porteføljer med lavere tidsoppløsninger en tendens til å favorisere 

høyere andeler (52%) av solenergi i forhold til porteføljer med høy tidsoppløsning, som bare 

mottar 13% solenergi. Dette indikerer at høy andel solkraft er relativt mer gunstig i systemer 

som er bekymret for langsiktig volatilitet. Samtidig er høye andeler vindkraft mer fordelaktig 

i systemer som er opptatt av kortsiktig volatilitet. 
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1 Introduction 

Europe is planning to minimize fossil fuels for energy purposes and replace them with 

renewable energy. This is to tackle climate change, mitigate emissions, and make the green 

transition. In line with the Paris agreement and as part of the European Green Deal, the 

European Union (EU) has proclaimed to achieve carbon neutrality by mid-century. In this 

agreement, a clean energy transition is described as critical. The Green Deal highlights three 

fundamental principles for the energy transition: (1) Ensuring a secure and affordable EU 

energy supply. (2) Developing a fully integrated, interconnected, and digitalized EU energy 

market. (3) Prioritizing energy efficiency, improving the energy performance of buildings and 

developing a power sector based largely on renewable sources (European Commision, 2019). 

Wind and solar power are forecasted to be the primary source of power production by 2050 

(DNV, 2021). Both these energy sources have weather dependency in common, resulting in 

substantial production output volatility. This volatility of production output brings challenges 

in terms of balancing the power system. According to Kirchhoff’s first law, the power system 

requires a continuous balance between the production and consumption of electricity. If the EU 

and its surrounding nations are to achieve a secure, integrated, and renewable-based power 

market, these balancing challenges must be addressed and solved. 

As of today, energy planning and energy security are not always factors judged together. While 

energy planning is mainly considered nationally and locally, it has never been clearer that 

energy security should be visioned in an international context, despite the turmoils of the 

current geopolitical situation. Therefore, energy planning should focus less on individual 

optimal alternatives and focus more on finding the combination of power production 

technologies and spatial distribution that is efficient and ensures energy security. 

Huber et al. (2014) analyzed the flexibility requirements depending on the penetration of 

variable renewable energy (VRE). They discovered that flexibility requirements increased 

strongly when the share of VRE increased. Similar results have also been reported by Olsen et 

al. (2020) and Guerra et al. (2022). 

Flexibility can be provided by numerous sources, both from the supply and demand side of the 

power system. Demand-side flexibility attracts attention with solutions that shift demand from 

high to low demand. Storage solutions such as batteries, hydrogen, pumped hydro, or other 
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mechanical devices are also potential sources of flexibility in the future energy system. 

However, the flexibility needed depends on the time scale in question. Some solutions are more 

suitable for short-term frequency or ramping flexibility, and others for more long-term stability 

measures. Regardless, flexibility resources all have in common that an increased need for 

flexibility leads to higher costs.  

Huber et al. (2014) found that the flexibility requirements decreased with the geographical 

power system size, especially in high wind power penetration systems. This coincides with 

Waldo Tobler’s first law of geography, stating that “everything is related to everything else, 

but near things are more related than distant things” (Tobler, 1970).  

Conclusively, decision- and policy-makers need a more holistic approach to their energy 

planning. One potential method could use modern portfolio theory in regional allocation 

planning for power capacities. While modern portfolio theory is a well-established 

methodology within finance, it has also gained traction in energy planning (Awerbuch & 

Berger, 2003). By focusing on how one asset of power production affects the power system as 

a whole, Europe could potentially get a more secure and balanced power system with less need 

for flexibility resources. This study examines the weather resources in Europe and the optimal 

spatial distribution of wind and solar capacity in Europe by using modern portfolio theory. 

Additionally, the optimization will be conducted in different time resolutions in order to 

analyze its effect on the optimal allocation of wind and solar power. 

 

1.1  Existing literature 

Wind-solar complementarity 

Several studies have analyzed the variability and intermittency of wind and solar energy and 

the complications these sources bring in the energy system. In fact, Europe is the region with 

the highest number of wind-solar complementarity studies in the world (Weschenfelder et al., 

2020). For example, Bett & Thornton (2016) analyzed the monthly climatological relationship 

between wind and solar irradiance in Great Britain. They discovered that solar irradiance and 

wind are negatively correlated, with correlation coefficients between -0,4 and -0,2 on a daily 

basis. Similarly, Koivisto et al. (2019) analyzed the correlation between onshore wind and solar 

power on an hourly basis in northern Europe, which resulted in a negative correlation of -0.24. 

Additionally, Bett & Thornton (2016) found that daily variability decreased in all months of 

the year by incorporating solar capacity. Bett & Thornton emphasizes in their study, the 
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importance of analyzing short-term correlations rather than monthly, which is more prevalent. 

However, Bett & Thornton (2016) argued that correlation patterns between wind and solar 

power in Great Britain are not reliable enough to secure a well-balanced energy supply. 

Monforti et al. (2014) investigated the complementarity of wind and solar resources in Italy. 

They analyzed 100 potential complementary production sites of wind and solar power using a 

Monte Carlo simulation. The results revealed some cases where monthly correlation 

coefficients reached lower values than -0,8. In contrast, nationwide monthly correlation 

coefficients showed values between -0,65 and -0,6. 

Furthermore, Kapica et al. (2021) analyzed the temporal complementarity of wind and solar 

resources globally. They suggested that the theoretical maximum, regarding the monthly 

temporal correlation of wind and solar resources, is found in the interval between -0,70 and -

0,75 using Kendall’s Tau correlations.  

These studies all found a negative temporal correlation between wind speed and solar radiation 

and found that the generation pattern in these energy sources is suitable to complement each 

other to achieve an overall more balanced energy system. On the spatial scale, most studies 

typically find a smoothening effect of wind power with spatial distancing, resulting in lower 

positive correlations of wind speeds or wind power output with increased distance. In contrast, 

the spatial effect of solar power is more limited due to lower variability across distances for 

solar resources. On the other hand, the spatial distancing of solar power has some effect on 

mitigating the risk of cloud cover (Perez et al., 2016).  

However, most complementarity studies focus on relatively small areas at a time and at a single 

time resolution.  

Complementarity over larger areas  

Heide et al. (2010) analyzed the optimal seasonal mix of wind and solar power in a highly 

renewable Europe. Similar to the more area-restrictive studies, they found that wind and solar 

power could counterbalance and smooth the seasonal power curve in Europe, with more wind 

power during winter months and more solar during summer months. However, Heide et al. 

(2010) did not consider the spatial distribution of wind and solar power, only the allocation of 

each power source.  
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Koestler et al. (2020) from The Norwegian Energy Regulatory Authority (NVE) studied the 

challenges of high shares of renewable energy in the Nordic power system. Their analysis 

included hydropower, one of the dominant power sources in northern Europe. Their results 

showed that wind power has significant variations in output within the country of Norway, as 

the country is highly elongated. Furthermore, their results showed that while solar power and 

load demand have a distinct daily output profile, wind power has no such regularity. In the 

same study, NVE also analyzed the typical weather patterns in northern Europe. NVE stated 

that countries in close proximity are primarily affected by the same weather systems and that 

flexible solutions will increasingly be necessary when the share of intermittent renewables 

increases.  

Koivisto et al. (2018) also considered northern Europe when analyzing how the spatial 

allocation of offshore and onshore wind and solar power could minimize the aggregate 

generated output variability. They also found negative correlations between wind and solar 

power and that in a minimization scenario, there would be clear benefits of a spatially spread 

allocation and a mixture of VRE technologies. 

Portfolio optimization in energy planning  

Portfolio methodologies have been applied in energy planning concerning energy prices for 

some time. Awerbuch and Berger (2003) used portfolio theory to evaluate efficient portfolios 

in Europe from a cost perspective. Similarly, deLlano-Paz et al. (2017) analyzed the efficient 

cost-risk frontier and modern portfolio theory in energy planning. 

Reichenberg et al. (2017) investigated the geographic distribution of wind power to avoid 

periods of low output. They used a multi-objective optimization model to improve the 

performance of aggregated wind power output in Europe. The results showed that an optimal 

allocation of wind power substantially reduced the frequency of low outputs. However, 

Reichenberg et al. (2017) only considered wind power and did not consider the 

complementarity of solar power or other technologies in the optimization model.   

Zappa & van den Broek (2018) conducted a highly detailed optimization analysis of the spatial 

allocation of wind and solar power in a fully integrated European energy system, intending to 

minimize the residual load on an hourly basis. Surprisingly, their results showed that spatial 

optimization did not significantly reduce peak residual demand nor total residual demand. 

While the objective of Zappa & van den Broek’s study was to shape the power output so that 
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it corresponds to the load demand, Miglietta et al. (2017) focused solely on smoothening the 

power output of wind and solar.  

1.2 Contribution to existing literature 

Previous studies suggest a significant negative correlation between wind speed and solar 

irradiation and that this meteorological complementarity can be exploited. Furthermore, spatial 

optimization models that consider wind power suggests that there are specific weather patterns 

in Europe and that there is an optimal spatial distribution of wind power. This thesis will consist 

of a wind and solar resource mapping and a portfolio optimization to find the optimal 

distribution of wind and solar power capacities in Europe. Unlike methods found in existing 

literature, the portfolio optimization in this thesis is conducted with different time resolutions 

to analyze its effect on the optimal portfolio allocation. Additionally, unlike Zappa & van den 

Broek’s (2018) study, this thesis will not consider the demand. The optimization model will 

exclusively consider the weather resources available in Europe, and how optimal distributions 

and allocations of wind and solar power can get as high and smooth output as possible. Further 

justification for not including demand will be discussed in chapter 7. 

1.3 Problem statement 

The objective of this thesis is to analyze how decision-makers in energy planning could utilize 

portfolio optimization to allocate and distribute production capacities of wind and solar power 

in Europe. The aim is to find combinations of areas in Europe that can provide higher power 

output and less volatility. The portfolio optimization will be conducted with different time 

resolutions in order to analyze its effect on the optimal portfolio.  This is done using modern 

portfolio theory, commonly used in finance, for energy planning purposes. More specifically, 

the thesis is divided into the following questions: 

1. What are the key characteristics of wind and solar resources in Europe? 

2. How should wind and solar capacities be distributed to achieve a higher total 

capacity factor and lower volatility than the existing fleet? 

3. How do different time resolutions affect the allocation of wind and solar power 

capacities in an optimal portfolio? 
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1.4 Boundaries and assumptions 

The geographical boundaries in this thesis are restricted to the 27- EU member nations, the 

UK, and the EFTA countries. Furthermore, due to lack of data, only the offshore regions of 

Belgium, Denmark, Germany, Netherlands, and the United Kingdom are included. 

In the analysis of this thesis, several assumptions are made, including: 

1. No transmission loss or bottlenecks in the transmission grid 

2. No area restrictions. All regions are suitable for wind and solar PV capacities 

3. The future average weather is equal to the historical average weather 

The implications and justification of these assumptions will be discussed in chapter 7. 

1.5 Thesis structure 

The remainder of this thesis is structured through seven chapters, from chapter 2 to chapter 8. 

Chapter 2 contains the background for the thesis, including an introduction to the European 

power mix and to which degree high shares of intermittent renewables can affect the power 

market. Furthermore, the background also contains an introduction to weather systems and the 

characteristics of European weather. 

Chapter 3 contains the main theory used in this study, including Modern portfolio theory, 

efficient frontiers, portfolio selection, and an introduction to Monte Carlo simulation. Chapter 

4 presents the data used for the analysis, where it is collected from, and known issues associated 

with the data. Further in chapter 5, the thesis presents the methods that are used in the portfolio 

optimization and how the data are used in the analysis. The analysis is shown in chapter 6 and 

is split into two main parts. Part one analyzes the general characteristics of wind and solar 

resources in Europe, while part two uses the portfolio optimization model described in chapter 

5 to model optimal portfolios of wind and solar capacities in Europe.  

The discussion, in chapter 7, contains discussions of the characteristics of wind and solar 

resources in Europe, the optimization model, issues with the datasets, and potential further 

work. Lastly, chapter 8 presents the conclusion of this study. 
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2 Background 

2.1 The European power market 

A key aspect of the energy transition is to electrify the economy while having the power 

production as renewable as possible. Historically, 

the power mix in Europe has been mainly based on 

coal, nuclear, gas, and hydro. At the same time, 

intermittent renewables like wind and solar have 

experienced a steep increase in capacity in recent 

years, especially wind power (IEA, 2022). As of 

2020, western Europe has the highest share of 

installed wind power capacity in Europe, with 

Denmark being the country with the highest relative 

share of wind power. Germany has the highest total 

capacity with 63 Gigawatt (GW), followed by Spain 

and the UK with 27 and 24 GW, respectively 

(WindEurope, 2021). Germany also has the highest installed capacity of solar PV with 

approximately 50 GW installed capacity, followed by Italy and the UK with about 21 and 14 

GW, respectively (IRENA, 2022).  

With the declining prices of wind and solar, more or less all prognoses point to these 

technologies being the dominant electricity source towards mid-century. As shown in Figure 

1, DNV estimates that offshore and onshore wind will stand for 48% of electricity production, 

while solar PV and solar plus storage will stand for 25%. This brings the combined total of 

wind and solar to a share of 73% of electricity production by 2050 (DNV, 2021).  

With a power system mainly based on two intermittent power sources, it is essential to 

understand the characteristics of these power sources and, therefore, because of their weather 

dependence, to understand the weather itself.  

Balancing costs and grid-complementarity of wind and solar 

As described previously, wind and solar resources are intermittent in their production output 

and solely dependent on weather conditions. The output volatility ranges from minutes to years. 

This imposes challenges for the grid operators. Balancing costs occur when power is either 

used or curtailed to restore the supply-demand equilibrium. These costs tend to increase when 

the power source is inflexible, such as wind and solar. The power supply from wind and solar 

Figure 1: Estimated electricity mix in 2050. Source: 

DNV, 2021. 
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for the next period is forecasted using weather forecasts. As in all forecasting, weather forecasts 

have uncertainties, and there are usually some deviations between the supply forecast and the 

actual production of wind and solar.  Balancing market designs is different across Europe. 

However, the essence includes that transmission system operators need to either add or curtail 

production within a short notice to restore balance and maintain system frequency within a 

predefined range. Therefore, the transmission system operators need to procure these additional 

balancing capacities in advance through balancing markets. These capacities can either be 

generators, demand response facilities, or storage operators, which in their own way can 

provide some form of balancing service. In general, the greater the need for balancing services, 

the higher the costs to maintain a balanced system (ENTSO-E, 2018). 

In the more traditional power systems, most of the flexibility has been provided by the 

conventional generators themselves, which can ramp production up and down on-demand. 

However, as the share of VRE increases, supply-side flexibility decreases, leading to a 

flexibility gap. Additionally, the increased weather-dependent power mix further increases the 

need for more flexible resources (Papaefthymiou et al., 2018). Consequently, new sources of 

flexibility are needed to fill the gap, as illustrated in Figure 2.  

 
 
Figure 2: The increasing need of flexibility with higher shares of VRE. Source: (papaefthymiou et al., 2015) 
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The European transmission system 

A continent-wide, fully integrated European power system is one of the goals of the European 

Green Deal. According to the European Network of Transmission System Operators for 

Electricity (ENTSO-E), Europe already has the largest interconnected electrical grid in the 

world. However, ENTSO-E argues that there is a substantial need for additional cross-border 

capacity in Europe. Towards 2025, there is 35 GW of cross-border capacity planned but studies 

show that an additional 93 GW is necessary by 2040 (ENTSO-E, 2021). This corresponds to 

an annual investment need of about 3.4 bn Euros from 2025 to 2040. Despite this substantial 

need for investments, Tröndle et al. (2020) argue that expanding cross-border transmission and 

renewable electricity supply on a continental scale has lower costs than regional or national 

scale supply.  

 

Indirect costs of implementing wind and solar energy 

The theoretical marginal cost of VRE is, by 

all practicality, zero. There is no additional 

cost of producing one more unit of power 

for a wind or solar power plant that is 

already operational. There are, however, 

integration costs involved. Studies have 

shown three critical characteristics of 

intermittent renewable energy that bring 

integration costs to the power system. (1) 

intermittent renewable energy production is 

variable and cannot follow load demand. Due to costly storage solutions, integration costs 

occur when accommodating production to demand, illustrated as “Profile costs” in Figure 2. 

(2) Production is uncertain until actual realization. Balancing costs occur when forecasted 

production deviates from actual production, illustrated as “Balancing costs” in Figure 3. (3) 

Production is location-specific and sometimes far from demand—resulting in transmission 

costs due to the distance between generator and demand, illustrated as “Grid related costs” in 

Figure 3 (Hirth et al., 2015). 

Figure 3: Integration costs of VRE. Source: Hirth et al. (2015) 
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Profile costs and merit-order effect 

Hirth et al. (2013) investigated the market value of wind and solar power in relation to their 

market share. Market value in this context is described as the relative price compared to the 

system base price, also known as a value factor. The results revealed that the market value of 

wind and solar power declines as market share increases. Hirth et al. (2013) explain these 

results through two mechanisms. Firstly, the “correlation-effect” explains the correlation 

between production and demand characteristics. A positive correlation will result in a higher 

market value. Secondly, the “merit-order effect” is a result of low or non-marginal costs for 

wind and solar. When the wind blows or the sun shines, these production technologies have 

the lowest marginal costs and will always produce, shifting the supply curve to the right, 

resulting in lower system base prices.  

Combined, Hirth et al. (2013) discovered that 

wind experiences value factors over one in 

low market share areas due to the correlation 

between wind and power prices during the 

winter months. At the same time, sun power 

experienced value factors below one because 

of the correlation between high sun 

irradiation and low power prices during the 

summer months. As market shares increased, 

Hirth et al. (2013) discovered that the value 

factor decreased substantially for both 

production technologies due to the merit-order 

effect, as illustrated for wind power in Figure 4. The decline in value factor for wind and solar 

power due to high penetration and market share is also found by Mills et al. (2012), which 

discovered similar results from a case study in California.  

Conclusively, the EU plans to significantly increase the market shares of wind and solar power 

by 2050, which massively changes the dynamics in the power market. By being heavily 

dependent on two sources of power that both are intermittent in their production output, the 

power market is largely weather dependent. The increasing shares of wind and solar will, 

without a doubt, lead to increased needs for both short-term and long-term flexibility measures.  

Figure 4: Value factor in relation to market share. Source: 

Hirth et al. (2013) 
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While literature argues the complementarity of wind and solar power, there are still significant 

challenges when planning to implement large shares of intermittent renewable energy to the 

existing power system. 

2.2 European weather 

Introduction to European weather 

As random as it may seem, the weather follows specific patterns through time and space. For 

the most part, the weather is formed from the rotational tilt of the earth in relation to the sun 

and at what angle sunlight hits different parts of the globe. The most direct angle of sunlight is 

found around the equator and the lowest angle near 

the poles. In addition, elements such as elevation 

and heat capacity of different surface materials 

contribute to different pressure systems, with hot 

air rising resulting in low pressure and vice versa. 

It is the air moving from high-pressure systems to 

low-pressure systems that is wind (MetOffice, 

n.a.). The air circulation takes the form of three 

atmospheric cells in both the northern and southern 

hemispheres, as illustrated in Figure 5. Europe is 

primarily placed in the latitudinal interval of the Ferrel-circulation cell, indicated by number 

two in Figure 5, which is between the Polar cell and the Hadley cell. These cells give us semi-

permanent areas of low and high pressure. Northern Europe is in a low-pressure area, resulting 

in a wetter climate. Opposite, Southern Europe is in a high-pressure area resulting in a dryer 

climate with largely clear skies.  

Earth’s rotation does also play a significant role in the global wind systems. The earth rotates 

from a western to eastern direction and at a higher speed at the equator than towards the poles 

due to the difference in circumference. Because of the difference in rotational speed at different 

latitudes, the air moving in the atmospheric cells does not move in a straight latitudinal line but 

rather in a curved line relative to the earth’s surface, as illustrated by the curved red lines in 

Figure 5. This effect is called the Coriolis effect. As seen by the red lines in the Ferrel 

circulation, air moves in a north-eastward direction. In Europe, known as the prevailing 

westerly winds (ESA, n.a.). 

 

Figure 5: Atmospheric cells and prevailing winds. 

Source: (National Weather Services., n.a.) 
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European regional weather variability 

Looking at the more regional resolution in Europe, the sub-seasonal variability in weather is 

characterized by recurrent circulation anomalies, also known as weather regimes. Grams et al. 

(2017)  define weather regimes as variability in weather in the spatial scale of about 1000 km 

that occurs for more than five days. The weather regimes can be divided into two sub-groups, 

three regimes are so-called cyclonic regimes, and four are so-called blocking regimes. These 

regimes contain differences in surface weather and timescales. Blocked regimes are 

characterized by high surface pressure having cold and foggy conditions with strongly reduced 

winds during winter, illustrated by the yellow, green, dark green, and blue bars, with blue text 

in Figure 6. Opposite, cyclonic regimes are characterized by strong winds and mild conditions, 

illustrated by the purple, red, and orange bars with red text in Figure 6.  

Due to the patterns of the weather regimes, grams et al. argue that Europe is divided into three 

sub-areas for wind-power output. These are the western Mediterranean, southeastern Europe, 

and northern Europe. The analysis conducted by Grams et al. shows that these sub-regions have 

different wind-power outputs within the different regimes during winter days.  

As seen in Figure 6, in blockage 

regimes, the northern countries 

face underproduction, while 

southeastern Europe and partly 

western Mediterranean have 

higher production during winter. 

However, during some of the 

blockage regimes, Grams et al. 

discovered that certain peripheral 

areas like northern Scandinavia 

and the Balkans experienced an 

increase in mean wind speed. This 

is caused by cyclonic activity 

occurring on the flanks of the 

blockage regime due to winds 

pushed from the outside of the 

regime. 

Figure 6: Country-specific relative change of CF during weather regimes.  

Source: Grams et al., 2017 
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Opposite, northern Europe faces overproduction under cyclonic regimes, while southeastern 

Europe experiences underproduction parts of the time during winter. On average, cyclone 

regimes lead to overproduction, and blockage regimes lead to underproduction in Europe. 

Grams et al. argue that the European energy system would strongly benefit from exploiting the 

weather-regime patterns with a planned spatial distribution of energy production.  

 

3 Theory 

3.1 Portfolio optimization 

Modern portfolio theory 

Modern portfolio theory (MPT) is a highly accepted methodology derived from financial 

economics, which is also useful outside the economic sphere. By dealing with energy planning 

for specific areas or regions as an investment problem, MPT gives a more holistic approach to 

energy planning and provides decision-makers with a sounder foundation (deLlano-Paz et al., 

2017). 

Harry Markowitz, awarded a Nobel Prize for his work on modern portfolio theory, created a 

methodology emphasizing that assets risk and return should not be viewed in silos, but be 

analyzed together to see how individual assets affect the overall portfolio. In energy planning, 

assets can be translated to specific areas and or technologies for production, while return can 

be viewed as production output and risk as production volatility. MPT is thus a theoretical 

framework to analyze the inter-relationship of risk and return. The risk and return of each asset 

are unique to that asset, and by conducting a portfolio optimization, one can get a combination 

of assets that fully or partly meet the desired characteristics of risk and output. By combining 

multiple assets, also known as diversification, it is the covariance between the assets that are 

of interest, not the individual asset alone.  

In MPT, the risk is divided into two components: systematic risk and unsystematic risk. 

Systematic risk is a risk at a macro-level and is a risk that is not possible to diversify away. In 

the context of this study, risk is equivalent to the natural meteorological deviations of wind 

speed and solar irradiation around its mean. This is the risk that is not confined to one area but 

to some degree to a larger region. Opposite, unsystematic risk is a micro-level form of risk that 

is limited to a single asset or a small group of assets. In this study, micro-level risk corresponds 

to local weather patterns that are to some degree unique for that area but do not impact the total 
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meteorological system in Europe. Accordingly, systematic risk can, for the most part, be 

mitigated by simply not choosing assets with unsatisfactory characteristics or by diversification 

of assets in a portfolio, exploiting the covariance of different assets (Mangram, 2013).  

 

Efficient frontier 

If each portfolio has a unique combination of assets, it will contain a unique portfolio expected 

return and standard deviation. The figure below illustrates this by plotting the unique assets’ 

risk and return. Each colored dot is one asset. However, the black dotted line shows the so-

called efficient frontier. The efficient frontier is the set of asset combinations with the highest 

return for a defined level of risk. All portfolios that are not on the efficient frontier are thus 

sub-optimal and do not provide the optimal expected returns for the given level of risk. As seen 

in the figure, no individual asset has an equally low standard deviation as the front part of the 

efficient frontier. This is due to the covariance between assets, which makes the aggregated 

standard deviation of some portfolios to be low. 

 

Figure 7: Efficient frontier illustration. Created with Rstudio (ggplot2), Authors own 

The point on the efficient frontier with the lowest standard deviation, the global minimum, 

gives the portfolio with the lowest possible standard deviation. All portfolios below this point, 

illustrated by grey dots, are seen as irrelevant, as you could always get a portfolio with a higher 

expected return and lower standard deviation. However, it is important to mention that it is 

impossible to know that your portfolio is on the efficient frontier, as you will never know your 

future return (Kenton, 2022). The optimization model uses averaged historical data, with the 

assumption that the future will be like the past. Obviously, this is a bold assumption that is not 
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likely to hold. Translated to energy planning, it is doubtful that the weather in the coming years 

will be exactly as the historical 30-year average as we cannot accurately predict weather far 

into the future. However, the notion that the next 30 years of weather is to some degree similar 

to the last 30 years is not that hard to imagine.  

 

Conversion from finance to energy 

The application of a methodology originally developed for financial purposes with financial 

data into energy planning is not straightforward. Modern portfolio theory is based on several 

assumptions that, to some extent, hold in efficient financial markets. That these assumptions 

also hold in the case of weather patterns and variability is, at best, doubtful. In the application 

to spatial energy planning, however, some of these assumptions are more important to consider 

than others.  

The assumptions include that there exist perfect markets for trading assets with low or no 

transaction costs. Translated to energy planning, this could be like transmission loss and 

bottlenecks in the grid. While the transmission loss and bottlenecks are significant in the power 

system, these issues are not considered in this study, and the assumption of Europe as a copper 

plate makes the perfect market assumption hold.  

Portfolio selection 

Portfolio selection is the process where you define what the optimal portfolio is or what the 

objective function for your optimization is. Portfolio selection is, in that sense, quite 

individualistic, based on several factors. If you are a risk-averse investor, you would probably 

choose a portfolio with a low standard deviation and vice versa if you are a risk-taker. The 

following approaches are some of the most common in financial portfolio management.  
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Max Sharpe 

The Sharpe ratio, created by William Sharpe in 1966, is by far one of the most used risk/return 

measures in finance (Lioudus, 2021). The ratio describes the amount of excess return one 

receives for the amount of volatility one must endure by holding a risky asset. The Sharpe ratio 

is given by the excess return of an asset divided by its standard deviation: 

 

𝑆(𝑥) =  
𝑟𝑥 −  𝑟𝑓

𝑠𝑡𝑑𝐷𝑒𝑣(𝑟𝑥)
 

Where: 

rx = The average rate of return for x 

rf = The risk-free rate 

stdDev(rx) = The standard deviation of rx  

The risk-free rate refers to investment returns that hold zero risk. In practice, this is a theoretical 

measure as all investment holds some sort of risk. In finance, T-bills or other governmental bill 

interest rates are usually used as proxies (Lioudus, 2021). In energy planning, however, the 

risk-free rate is not relevant. Thus, the measure used in this study is by the correct definition, 

not a Max Sharpe measure. 

 

Value At Risk 

Value at risk is a common measure and approach in portfolio investment to control the 

portfolio's risk exposure. As the risk in financial terms is defined as variance and standard 

deviation, it also includes upwards variance. However, in finance, upwards variation is not 

necessarily a negative feature, it’s rather the opposite. In Value at Risk, one only measures the 

potential for downside loss and the probability of occurrences for a given amount of loss. This 

way, one can order the losses, from high to low, and compute the likelihood of those losses to 

occur. Further, you could choose the portfolio with the lowest possible loss within a threshold 

value or confidence level α ∈ (0, 1). This will result in a portfolio with the highest values at its 

1-α lower quantile (Kenton, 2021). By using this method in energy planning, you can find a 

portfolio of production sites that will, within a confidence level, have a capacity factor above 
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a certain value. However, this portfolio neglects the challenges of high variability and considers 

only the risk of low output. In addition, the measure says nothing about the risk below the 

quintile value. 

Minimum Variance 

The Minimum Variance portfolio is the combination of assets that provides the lowest possible 

variance among all possible combinations of risky assets. Therefore, one should never accept 

a portfolio that has lower expected return than the Minimum Variance portfolio (Clarke et al., 

2011).  

3.2 Monte Carlo methods 

Monte Carlo methods have a long history in mathematical problem solving, including 

optimization problems. The methods are computational techniques for solving or getting an 

approximation of a solution to mathematical problems using random samples. The basic idea 

is to propose a random change in the variables for each iteration and look at how it affects the 

objective function. 

While there are numerous different Monte Carlo methods, it will in this study be used to 

generate random portfolios by substituting wind and solar power market shares in different 

regions with random shares. The distribution of the weights is uniform, meaning that there is 

an equal chance of receiving all weights. This results in each iteration having a portfolio of 

regions, each with its random market share. In order to get the sum of each iteration to one, the 

market shares are scaled down proportionate to the sum of each portfolio. 

 

4 Data  

The data is mainly collected from the open dataset named EMHIRES, created by the European 

Commission Joint Research Center (JRC). EMHIRES is the first publicly available dataset that 

derives wind and solar power generation from meteorological datasets at relatively high 

resolutions. The dataset is available at national and NUTS-2 resolution levels, with hourly 

observations ranging over 30 years from 1986 to 2015 for onshore wind and solar PV. Offshore 

wind is only available for Belgium, Denmark, Germany, the Netherlands, and the United 

Kingdom. Additionally, geographical information datasets are collected for each type of power 

generation dataset, as shown in the table below.  
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Table 1: Datasets 

Datasets 

Type Name of downloaded datasets 

Onshore wind capacity factors EMHIRES_WIND_NUTS2_June2019_2.csv 

Offshore wind capacity factors TS.CF.OFFSHORE.30yr.date.txt 

Solar PV capacity factors EMHIRESPV_TSh_CF_Country_19862015.xlsx 

NUTS-2 geometry coordinates NUTS_RG_20M_2021_4326.shp 

Economic zone geometry coordinates EEZ_land_union_v3_202003/EEZ_Land_v3_202030.shp 

Country-centroid coordinates country_id.csv 

Existing wind power capacities Rystad internal dataset 

 

All the datasets above are publicly available, with the exception of Rystad’s dataset containing 

existing wind power capacities and their coordinates. 

4.1 Wind data 

The EMHIRES hourly wind data is extracted from the NASA-MERRA reanalysis dataset with 

meteorological observations, covering the whole world at a 60km x 70km grid. Wind speed is 

measured as U and V-components, measuring wind speed and direction. The general wind 

speed, disregarding direction, is calculated from the two components. Furthermore, the wind 

speed is vertically interpolated to hub heights to get the wind speed at different hub heights. 

The wind speed is then converted to wind power through a power curve for each region 

(Gonzalez-Aparicio et al., 2021). The region-specific power curves are derived from the 

existing fleet of wind farms that generated power in 2015.   

The dataset initially consisted of 301 different regions. However, three areas are removed due 

to relevance or lack of data. These are IS00 (Iceland), LI00 (Lichtenstein), and MT00 (Malta).  

4.2 Solar radiation 

Solar PV capacity factors are also collected from the EMHIRES dataset. Originally consisted 

of 35 countries. However, Cyprus is removed due to a lack of data. The reason for choosing 

nationally aggregated data, not NUTS-2 regions, for solar PV capacity factors, is regarding 

data size management. For computational speed, reducing the number of variables, in this 

context, the number of regions, has a significant impact. However, low spatial resolution indeed 

brings with it higher uncertainty. The variability of solar irradiation over large areas is 
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relatively low, which results in a high correlation in Solar PV capacity factors over long 

distances, as shown in the figure below. 

 

Figure 8: Hourly correlation-pair coefficient vs. distance between pairs. Created with Rstudio (ggplot2), Authors own 

The figure shows the hourly correlation between capacity factors from different sites in Europe 

and the distances between each correlation pair. The figure clearly indicates that wind speed is 

highly correlated for sites closely situated but that the correlation strongly reduces the further 

apart they are. For solar irradiation, however, one can see that the correlation between sites 

stays relatively high even for areas that are more than 2 000 km apart. Note that the distances 

used are between the region centroid for wind resources and the country centroid for solar 

resources. These results indicate that the added uncertainty of low spatial resolution of solar 

PV capacity factors is limited. The solar resources within a given country are, to a large extent, 

similar. 

4.3 Geographical data 

The geographical data consist of three different datasets. National centroid coordinates for 

visualizing solar production by country, NUTS-2 geometry coordinates to visualize wind 

power by NUTS-2 region, and offshore economic zone geometry coordinates to visualize 

offshore wind. The figures are made with the “rnaturalearth”- and “sf”-packages in R. The 

figure below illustrates Europe and how it is divided into areas. The figure to the left is split 

into NUTS-2 areas with also the offshore economic zones of Belgium, Denmark, Germany, 

Netherlands, and the United Kingdom. The figure to the right shows the national borders in 

Europe, with points that represent the country centroid of each country.  
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Figure 9: Geographical areas. Created with Rstudio (ggplot2), Authors own 

4.4 The existing fleet of wind and solar  

In order to compare and benchmark the optimal portfolios of wind and solar capacities and 

their measured results, one also needs to analyze the existing fleet and distribution of wind and 

solar capacities in Europe. A detailed dataset of all wind farms in Europe with their installed 

capacity and their coordinates are provided by Rystad, while solar PV capacities are collected 

from IRENAs online data query tool. The capacities of all areas are summarized to find the 

unique market share for each individual area. 

 

Figure 10: The current distribution of wind and solar capacities. Created with Rstudio (ggplot2), Authors own  
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As shown in the figure, Germany has installed roughly 14% of the power capacity in Europe 

in solar PV, which amounts to about 50 GW. As the distribution of solar PV is at a lower 

resolution than for wind power, the visualization must be interpreted accordingly. Additionally, 

even though it looks like the offshore region of the UK has huge amounts of wind power, it is 

actually not as much relative to the size of the area. Germany is the country with the highest 

share of wind power, but due to the small sizes of the NUTS-2 areas relative to the offshore 

areas, this is not as clear in Figure 10. 

 

5 Method 

5.1 Optimization model 

The optimization model consists of the seven input files covered in the previous chapter. The 

three capacity factor datasets are first joined, making it a dataset consisting of 330 variables, 

not including metadata columns, and 30 years of hourly observations. Further, the mean for 

each hour in a year is calculated, aggregating the observation to 8760 (Appendix 1). Note that 

observations on the 29. of February are removed. In addition, all the different geographical 

information datasets are joined to one dataset, as seen in Figure 11. The entire model and data 

wrangling is computed in the free software R through Rstudio.  

The optimal portfolio gets calculated in the portfolio optimization model that will be further 

explained below. From the portfolio, the location codes, in the form of NUTS-2 and ISO-A2 

codes, get compared to the joined geographical information dataset to only filter the optimal 

portfolio areas (Appendix 2). Lastly, the chosen areas are mapped to visualize the optimal 

distribution of onshore and offshore wind and solar PV in Europe. 
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Figure 11: Method visualization, created with Miro.com. Authors own. 

The portfolio model is based on Monte Carlo simulation methods, where 2 million iterations, 

each with changing variables, result in varying outcomes. The changing variable in this context 

is the market share of power generation for each area. For example, a random market share in 

NO2 relative to the entire portfolio of wind power in Europe or the market share of solar PV 

in Spain. For each iteration, the output gives a random portfolio of market shares in the 330 

areas, totaling 100% (Appendix 4). Furthermore, to give the model a starting point, the existing 

fleet of wind and solar power capacities is used. From this, the model will randomly change 

between 10-200 variables, with random weights between 0-10%. The reason to cap the number 

of shares to 10% is due to the realism of higher market shares in a single area. These market 

shares are multiplied by the area’s respective average capacity factor. Further, the portfolio 

standard deviation is calculated by multiplying the market shares by the area’s individual 

covariance with the other areas, as illustrated in Figure 12 below.  
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Figure 12: Portfolio model visualization, created with Miro.com. Authors own 

The portfolio output PR is the weighted average capacity factor 

 𝑃𝑅 =  ∑ 𝑤𝑖𝑐𝑓𝑖   

Where wi is the area’s market share, cfi is the area’s 30-year average hourly capacity factor. 

Market share is defined as: 

∑ 𝑤𝑖 = 1      0 ≤ 𝑤𝑖 ≤ 0.1

𝑁

𝑖=1

 

Meaning that no single area can have more than 10% of the total share of wind and solar power 

capacity in Europe. This assumption is made both because of the realism of how much capacity 

there is room for in one area and to reduce the number of possible unique portfolios. 

 Further, the portfolio variance is calculated from the covariance matrix, 𝐶𝑜𝑣(𝑐𝑓𝑖 , 𝑐𝑓𝑗)  between 

each area in the portfolio. 
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𝜎𝑝
2 = ∑ ∑ 𝑤𝑗𝑤𝑖 

𝑛

𝑖=1

𝐶𝑜𝑣(𝑐𝑓𝑖 , 𝑐𝑓𝑗)

𝑛

𝑗=1

 

The final result from the portfolio model is 2 million unique portfolios, each with a different 

combination of areas with different market shares and with an associated mean capacity factor, 

standard deviation, Sharpe ratio, and value at risk metric (Appendix 3). Lastly, the model 

extracts the best-performing portfolios based on the different portfolio selection criteria 

explained in chapter 3.1.  

 

6 Analysis and results 

The analysis is split into two main parts. Part one will analyze wind and solar resources in 

Europe within both temporal and spatial characteristics. Secondly, part two will contain an 

analysis using the portfolio optimization model as described in chapter 5.1. 

6.1 European wind and solar resource characteristics 

The spatial distribution of wind resources is, for the most part, spread out amongst the north-

western coastal areas of Europe. Note here that the wind resources in Norway are not correctly 

specified, and the interior parts of Norway have less wind resources than pictured. 

Additionally, note that the only offshore regions in the dataset are concentrated around the 

North Sea and that there are substantial offshore wind conditions elsewhere as well, such as 

outside of the Iberian Peninsula, which are not included. Conclusively, while the figure below 

shows the results from the data available through the EMHIRES dataset, it does not completely 

describe the full picture in Europe and should therefore be interpreted accordingly. 

Not surprisingly are, the solar resources highly influenced by the latitude of the country. The 

further south, the higher the average capacity factor each area seems to be.  
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Figure 13: Wind and solar resources in Europe, from the EMHIRES dataset. Created with Rstudio (ggplot2), Authors own 

By plotting the duration curves for the hourly mean capacity factors for wind and solar 

resources across Europe, Figure 14 clearly illustrates that there is always wind somewhere in 

Europe, as the capacity factor never reaches 0.  However, Solar PV has 0 capacity factor just 

under 50% of the time, which of course comes from night-time. 

 

Figure 14: Duration curve, wind and solar capacity factors, 30 years of hourly observations. Created with Rstudio (ggplot2), 

Authors own 
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As discussed in chapter 3.2, the weather follows specific patterns due to seasonality and the 

Coriolis effect. In Figure 15, all areas in Europe are aggregated in order to get an overview of 

the resource profiles on a monthly basis from a sample period between 2009 and 2015. The 

figure shows high power capacity factors for wind in the winter months and high power 

capacity factors for solar PV in the summer months. This clearly illustrates the compatibility 

of wind and solar power over longer periods. The monthly mean capacity factor for wind and 

solar resources across Europe is also illustrated with a dotted line. This shows how the 

combination of wind and solar resources dramatically reduces the overall volatility relative to 

each resource's individual volatility. 

 

Figure 15: Mean wind and solar capacity factor in Europe on a monthly basis between 2009-2015. Created with Rstudio 

(ggplot2), Authors own 

Although the monthly compatibility of wind and solar is promising in regards to minimizing 

the need for flexibility, higher temporal resolution shows that in the short-term, the correlation 

coefficients move towards 0, as seen in the table below. This indicates that the wind-solar 

compatibility could give a smoothening effect and reduce the need for flexibility, but that the 

impact is more significant for long-term variability than short-term variability. The correlation 

coefficients are calculated using the average capacity factors across Europe while using 

different time resolutions. Correlation coefficients close to zero indicate no relationship for 

hourly capacity factors between wind and solar resources. 
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Table 2: Wind and solar resources correlation 

Aggregate wind and solar resources correlations 

Type Kendall’s Tau Correlation 

Monthly average -0.64 

Weekly average -0.46 

Daily average -0.38 

Hourly average -0.05 

 

Further, the variability in wind and solar capacity factors shows significant volatility on 

monthly, weekly, daily and hourly timescales (Figure 16). However, while wind seems to have 

the most significant change in capacity factor from one month, week, and day to the next, solar 

PV capacity factors have noticeably greater hourly change than wind power capacity factors, 

as seen in the figure below. This is probably a result of the large increases and decreases in 

solar PV capacity factors during sunrise and sunset, and possibly from changes caused by cloud 

cover.  

Further, it seems that the short-term variation is higher than the long-term variation, with 

monthly change in capacity factor for the most part ranging between +-0.05 for solar and +-

0.15 for wind. For daily time resolution, the volatility for wind varies between seasons, but for 

the most part observing changes in the range of +- 0.2, while solar seems to experience changes 

below +-0.05. However, looking at hourly capacity factor changes, solar experience seasonal 

fluctuations and have, as mentioned, larger hourly variations than wind in the +-0.2 range, 

while wind experience hourly variations in the +-0.05 range. Furthermore, the figures reveal 

that there are some differences in when wind and solar resources show distinct profile 

regularity.  

Similar to what is mentioned in the existing literature, it turns out that solar resources show 

specific daily patterns, while wind does not. On the contrary, wind resources seem to have 

higher seasonal patterns in their daily volatility relative to solar resources. This might suggest 

that the optimal market share allocation of wind and solar power depends on the time resolution 

used in the optimization model.  
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Figure 16: Wind and solar monthly, weekly, daily and hourly volatility illustration (Sample period from 1986). Average 

absolute change calculated from full dataset (1986-2015). Created with Rstudio (ggplot2), Authors own 

Figure 16 also shows the absolute average volatility for each time resolution. The results show 

that the absolute average change is higher for wind resources than for solar resources in all 

time resolutions, except on an hourly basis. Additionally, the results show that the absolute 

average change is at its absolute highest for wind resources at a weekly time resolution. In 

simple terms, the average change is at its largest when looking at weekly time resolutions. 
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Similar to the monthly correlation for wind power and solar PV capacity factors, the monthly 

changes have a relatively strong negative correlation coefficient, as seen below. Meaning that, 

on average, significant variability in solar PV and wind power capacities is not likely to happen 

simultaneously, which is preferable from a flexibility perspective. However, the effect is 

reduced with higher temporal resolution. Indicating that there is little to no correlation between 

the variability of wind and solar in the short term. As also mentioned previously, this might 

indicate that the optimal portfolio will change with different time resolutions used in the 

optimization model. 

 

Table 3: Wind and solar resource volatility correlation 

Aggregate wind and solar resources volatility correlation 

Type Kendall’s Tau Correlation 

Monthly change -0.36 

Weekly change -0.13 

Daily change -0.08 

Hourly change 0.07 

 

 

6.2 The existing fleet of wind and solar power  

By comparing the wind and solar resources to the existing market shares of production seen in 

Figure 17 below, there is no direct relationship between good resource conditions and high 

capacities, especially for solar PV. For example, Germany holds over 15% of aggregate 

production capacity solely in solar PV.  Note that this is nationally aggregated data, which 

means that while it looks like Germany has more solar PV capacity than wind, this is not the 

case. However, the figure shows how it appears that it is not pan-European considerations that 

are used as a basis for power development but rather national considerations. Additionally, 

local incentives, political will, and cost profiles are major factors for where capacities are built. 

As in Norway, which seems to have some of the best wind resources in Europe, has very low 

wind capacities, which could be traced back to high competitiveness with hydropower and lack 

of local and political will. Similarly, Portugal, which seems to have great potential in solar 

power, has small amounts of solar power capacities. 
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Figure 17: Existing fleet of capacities compared to wind and solar resources. Created with Rstudio (ggplot2), Authors own 

 

6.3 Portfolio optimization 

By simulating 2 million random portfolios, Figure 18 below pictures the efficient frontier, with 

a global minimum, the Max Sharpe, and the Value at Risk portfolio. Additionally, the 

performance of the existing fleet per 2020 is added. The graph clearly indicates that by planning 

for areas that should have wind and solar production using a portfolio optimization approach, 

one can identify portfolios that have significantly lower standard deviation with the same or 

higher expected average capacity factor. The reason for the poor performance of the existing 
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portfolio is probably due to the extremely high share of solar PV in Germany, which gives the 

existing portfolio a low average capacity factor. Not surprisingly do we find the minimum 

variance portfolio furthest to the left, as the portfolio with the lowest possible standard 

deviation. However, the Minimum variance portfolio also has an average capacity factor that 

is relatively low, at just under 0.20. The Max Sharpe portfolio awards high capacity factors and 

penalizes high standard deviations, which places this optimal portfolio above the Minimum 

variance portfolio but with higher standard deviations. The Value at Risk portfolio does not 

take standard deviations into consideration but rather the probability of low outputs. This puts 

the Value at Risk portfolio with the highest average capacity factor but with a higher standard 

deviation than the two other optimal portfolios. However, even the Value at Risk portfolio 

experiences a lower standard deviation than the Existing fleet. 

 

Figure 18: Efficient frontier optimal portfolios. Created with Rstudio (ggplot2), Authors own 

 

While the figure shows significant improvements relative to the existing fleet, it is clear that 

the frontier is not as smooth as expected. This is probably due to the infinite number of 

theoretical combinations of wind and solar capacities in Europe. There is, therefore, no way of 

telling if the selected portfolios are the true optimal.  
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6.4 Optimal portfolio performance 

The table below summarizes the mean capacity factors and the standard deviation for all the 

optimal portfolios, as well as the Existing fleet portfolio. The existing fleet of wind and solar 

capacities in Europe has both a higher standard deviation (0.078) and lower mean capacity 

factor (0.210) than the Max Sharpe portfolio and the Value at Risk portfolio, with standard 

deviations of 0.070 and 0.071, respectively. Further, the Max Sharpe portfolio and the Value 

at Risk portfolio have mean capacity factors of 0.241and 0.246, respectively. 

Table 4: Optimal portfolio performances 

Portfolio optimization, hourly time resolution 

  Existing 

fleet 

Max Sharpe Value At 

Risk 

Minimum 

Variance 

MEAN CAPACITY FACTOR 0.210 0.241 0.246 0.202 

STANDARD DEVIATION 0.078 0.07 0.071 0.063 

MEDIAN 0.198 0.219 0.227 0.186 

VAR (𝜶 = 𝟎. 𝟗𝟗) 0.028 0.080 0.081 0.055 

WIND SHARE 0.589 0.869 0.848 0.823 

SOLAR SHARE 0.411 0.131 0.152 0.177 

 

For the respective aggregated wind and solar power shares, the optimal portfolios receive 

significantly higher shares of wind power than solar power compared to the existing fleet. The 

existing fleet has a wind power share of about 59% and 41% solar PV. While all the optimal 

portfolios with hourly time resolution receive shares of about 82-86% wind power. 

The density plot in Figure 19 shows the probability distribution of capacity factors for the 

Existing fleet portfolio (red), Max Sharpe portfolio (green), and the Value at Risk portfolio 

(blue). The distribution is calculated by applying the given portfolio weights to the historically 

observed capacity factors for each site.  

The distributions show that the Existing fleet historically has the highest chance of 

experiencing capacity factors less than 0.1, while the Value at Risk has the lowest probability 

of low outputs overall. The Max Sharpe portfolio has the probability distribution, which is the 
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most centered, compared to the Value at Risk portfolio. This indicates that the Max Sharpe 

portfolio has more consistency in its outputs and, therefore, could be the most suitable portfolio. 

All the measured portfolios are right-skewed, meaning that the tails of the distribution are 

longest on the right-hand side, as also mentioned in the table above. Depending on the 

skewness, we know that the mean of the distribution is greater than the median. Therefore, the 

mean observations mentioned above could be biased due to extreme right-tail values. 

 

Figure 19: Density plot capacity factors, 30 years of hourly observation between 1986-2015. Created with Rstudio (ggplot2), 

Authors own 

 

The Max Sharpe portfolio also shows significant improvements in terms of volatility relative 

to the Existing fleet, as shown in the figure below. Volatility is measured here using the 

absolute difference from one to the next. The absolute difference is an intuitive way of picturing 

volatility. However, it does not provide any information about the relative magnitude of the 

difference. The reason for not using relative difference is because of the frequent levels at zero 

for solar PV during nighttime. Relative difference from zero is, by most accounts, meaningless.  
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Figure 20: Hourly change for optimal portfolio and existing fleet, sample period starting from 1. January 1986. Created with 

Rstudio (ggplot2), Authors own 

In Figure 21 below, the spatial distribution of wind and solar capacities in the Max Sharpe 

portfolio are mapped. Showing wind capacities to the left, with dark blue indicating high 

market shares of wind. On the map to the right, the spatial distribution of solar PV is mapped, 

with dark red areas indicating a high market share of solar PV. 

The figure shows that no region has more than about 4% of the aggregated capacity. This leads 

to wind and solar capacities that are quite spread out. More so for wind power than solar PV, 

which shows significantly higher shares of solar PV in the areas around Spain and Portugal, 

and more surprisingly, in the Netherlands. On the other hand, Germany, which has the most 

solar power capacities to date, receives almost no solar power in the optimal portfolio. 
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However, as described earlier, the differences between output and standard deviations of solar 

resources are minor, which could lead to optimal portfolios with sub-optimal solar capacities.  

 

Figure 21: Optimal allocation of wind and solar capacities, hourly time resolution. Created with Rstudio (ggplot2), Authors 

own 

As mentioned in chapter 6.1, there is a bug with the Norwegian wind resources which originates 

from the EMHIRES dataset. This means that the results for Norway cannot be trusted. For 

example, it seems strange that the south-eastern parts of Norway should be assigned as high 

wind shares as it has been in the optimal portfolio depicted in Figure 21. However, the bug 

only means that the southern parts of Norway have received the capacity factors for western 

Norway. Meaning that the results from this optimal portfolio could indicate that western 

Norway should have high shares of wind power, not the south-eastern parts.  

Additionally, the results show that a large part of the wind power capacities in the optimal 

portfolio is based around the North Sea but also in more peripheral parts of Europe. For 

example, the results show that some of the regions with the most wind power in the optimal 

portfolio are SK03 in Slovakia and NO07 in northern Norway, two regions with small 

amounts of wind power today. 
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6.5 Best performing regions 

Because of the instabilities in the model due to the infinite number of possible portfolios, the 

1000 best-performing portfolios are extracted and analyzed. This is done by ranking all 

portfolios by the Max Sharpe ratio and calculating the mean market share for each area in the 

1000 best portfolios. This should give more robust insight into individual areas that consistently 

perform well in the portfolio optimization.  

The table below shows the five regions that have the highest average market share in the 1000 

best portfolios, rated by the Max Sharpe criteria.  

 

Table 5: The best performing regions on average 

Country Area code Type 

Greece EL42 Wind 

Portugal PT15 Wind 

Portugal PT17 Wind 

Greece EL41 Wind 

Portugal PT16 Wind 

 

Interestingly, Greece and Portugal occupy all the top five appearing regions from the 

optimization, indicating that these two regions are highly attractive for wind power from a 

portfolio perspective.  

Looking at the 30-year average output from these two regions over a year (Figure 22), both 

EL41 and PT15 have some clear differences from the European average wind output. EL41, 

in Greece, seems to have its windiest months in the period around August, which is one of the 

least windy months in Europe, on average. Additionally, PT15 in Portugal also seems to have 

quite a stable mean wind resources year-round, compared to the European average. By 

including these two regions in an optimal portfolio, one undoubtedly gets an aggregate output 

with a lower dip through the summer months, which could make them attractive in a portfolio 

context. 
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Figure 22: Best performing regions compared to the European average wind capacity factor. 30-year average (1986-2015), 

hourly observations. Authors own 

 

6.6 Changing time resolution in the optimization model 

The results from the weather characteristics analysis showed that there are some differences in 

the output volatility in both wind and solar resources at different time resolutions. At hourly 

time resolution, solar resources seemed to have higher volatility than wind. However, with 

lower time resolutions, like daily, weekly, or monthly data, wind was the resource with the 

highest volatility.  

The optimization model is run at different time resolutions in order to analyze how the existing 

fleet performs relative to optimal portfolios. The results show that the optimal portfolios 

outperform the existing fleet in all-time resolutions, where the Minimum variance, Max Sharpe, 

and Value at Risk represent the optimal portfolios, which are marked in yellow, green, and 

blue, respectively (Figure 23). However, the possible improvement from the existing fleet, 

marked in red, is significantly larger on an hourly time resolution.  
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Figure 23: Optimal portfolios in different time resolutions. Created with Rstudio (ggplot2), Authors own. 

 

The optimization model has also been run on daily, weekly, and monthly data to investigate 

whether these differences impact the choice of optimal allocation of wind and solar PV. For 

this analysis, only the Max Sharpe portfolio is run on each time resolution. 

Table 6: Technology allocation in different time resolutions 

Wind and solar power capacity allocation in different time resolutions 

 Hourly Daily Weekly Monthly 

WIND SHARE 0.869 0.653 0.598 0.480 

SOLAR SHARE 0.131 0.347 0.402 0.520 

 

The table above shows how changing the time resolution in the portfolio optimization model 

affects the allocation of wind, and solar PV aggerated market shares. As indicated in the 

weather characteristics analysis, wind power is most suitable for short-term performance, 

giving the optimal portfolio about 87% wind power. This is probably due to the high hourly 

volatility in solar resources commented on previously. However, when shifting to lower time 

resolution, the share of wind power decreases substantially for daily averages, reducing the 

amount of wind power to 65%. While weekly averages get an optimal portfolio of about 60%. 

For monthly averages, the optimal portfolio receives a wind power share of 48%.  
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7 Discussion 

The discussion is divided into four main parts. Where the first discusses the results from the 

weather analysis and the optimization model. The second part discusses the model limitations 

and the approaches used in this thesis. The third part discusses how the results from this thesis 

could be used in further work. Lastly, the fourth part considers known issues with the data used 

in this thesis.  

7.1  The optimal allocation of wind and solar power capacities 

Key characteristics of wind and solar resources 

The weather resources in this study are analyzed in broad and general terms, which means that 

inter-annual variations and weather regimes such as described in chapter 2.2 are not included. 

There are, of course, large deviations of wind and solar resources from year to year and within 

years. This means that conclusions based on a 30-year average are uncertain. On the other hand, 

it does give some interesting insights into the broad trends in the weather system.  

The spatial and temporal characteristics of wind and solar resources are analyzed across 

Europe. Like existing literature, this analysis shows that wind and solar resources have a 

significant negative correlation on a monthly time resolution. However, when moving to higher 

time resolutions, the effect decreases to the point where there is no relationship at all. Similarly, 

the correlation between volatility in the wind and solar resources has a significant negative 

coefficient at monthly averages but experiences a decrease in the relationship as the time 

resolution increases. This means that on a monthly basis, wind and solar resources are to a large 

extent compatible, but that the compatibility decreases with higher time resolutions. However, 

while the decreasing compatibility means that the combination of wind and solar does not solve 

all problems, the general diversification of power supply is by all accounts positive. 

The wind is the most volatile resource in all the measured time resolutions except on an hourly 

basis. Additionally, wind experiences the biggest volatility on a weekly basis which also is the 

largest volatility overall, while solar experiences its highest volatility on an hourly basis. 

However, large parts of the volatility in hourly solar power are due to the differences between 

sunrise and sunset, which is highly predictable. Predictable volatility is, of course, easier to 

cope with in a power system context than the volatility that is harder to predict. This could 

potentially be dealt with by removing data from the nighttime and in the periods of sunrise and 

sunset. By doing this, you could get a better picture of volatility caused by cloud cover. 
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Given that these results are based on aggregated data for the whole of Europe, it does not 

capture the compatibility in smaller regions. There are, however, ample studies that have 

analyzed more regional compatibility and volatility of wind and solar resources in Europe. 

Optimal portfolios on an hourly basis  

The optimal portfolios in hourly time resolution are analyzed and compared to the existing fleet 

of wind and solar power capacities in Europe. The results showed that it is theoretically possible 

to allocate wind and solar capacities in a way that both increases the aggregated average 

capacity factor and decreases its standard deviation. By distributing the capacities, especially 

for wind power, over larger areas, the power system could potentially handle situations of 

regional blockage regimes, as described in Chapter 3. However, this conclusion is drawn under 

the assumption that the transmission capacity is sufficient. 

Furthermore, distributing wind power over larger areas could also be beneficial from an 

economic point of view due to the previously mentioned merit order effect, where large 

regional accumulations of capacities may lead to drops in the received power price for wind 

power plants. Implementing such effects on the received power price in the investment decision 

could lead to that previously rejected area becoming more attractive due to their 

complementary to more developed areas. Such an analysis, finding complementary sites, could 

be done with the type of model used in this study.  

The analysis of the best performing regions from a portfolio perspective shows that regions in 

Greece and Portugal have great potential for wind power. Greece shows wind profiles highly 

compatible with the European average with windy summer months when the rest of Europe 

typically has less wind. On the one hand, high wind power output during the summer months 

could also lead to overproduction, assuming that the southern parts of Europe will have 

significant solar PV capacity. On the other hand, sufficient transmission capacity between 

northern and southern Europe will mean that wind power in Greece and Portugal is highly 

attractive. 

 Optimal portfolios in different time resolutions  

The analysis showed that the time resolution of the data is crucial for the optimal allocation 

between aggregated wind and solar capacities in Europe. In general, to achieve smoother long-

term output, the share of Solar PV should be higher than in an hourly time resolution. This 

indicates that decision-makers need to consider at what time resolution flexibility is most 

difficult to maintain with a comfortable margin in order to ensure safe operations of the power 

system. For example, if short-term flexibility is easier and cheaper to obtain in a future power 
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system, it could be beneficial to plan the allocation of wind and solar capacities in a way that 

is optimal, looking at a low time resolution. However, the relationship between time resolution 

and allocation shares of wind and solar capacities is not thoroughly analyzed but could be 

interesting for further work.  

7.2 Model limitations and approach 

Variance as risk 

While modern portfolio theory is an easy and not too complicated method for energy planning 

and finding efficient portfolios, it has its limitations. One criticism is that MPT usually assesses 

portfolios based on variance and no downside risk. In finance, upside volatility is actually no 

risk at all. One way of only considering downside risk is by measuring the Value at Risk 

portfolio. However, in energy planning, upside volatility is not necessarily a positive feature. 

While wind power is a suitable asset for curtailment, this could lead to higher balancing costs. 

Upside volatility could also be dealt with through different flexibility measures, like battery 

energy storage systems (BESS) and demand response. However, regardless of the direction of 

the volatility, this will most likely increase the complexity of maintaining a balanced system. 

Therefore, variance could seem to be an adequate measure of risk in energy planning after all.  

Demand exclusion 

A limitation of the analysis is that the model does not take demand into account, which in the 

end is the parameter power generators are built to cover. A reason for focusing on the resources 

only, and not demand, is to explore the potential resources available, which demand eventually 

will have to adjust to. Assuming that demand flexibility comes at cost, it is useful to know 

more about the potential for reducing the overall supply volatility. Additionally, by designing 

a power system to fit a given demand pattern, one could make the system vulnerable to changes 

in consumption and demand patterns. This is a relevant risk to consider, given the extensive 

electrification in sectors previously dependent on other energy sources. In the long-term 

perspective, it is not given that it makes more sense to design the power supply to follow the 

current demand rather than to adapt demand to follow the weather-driven future power supply.  

On the other hand, there are some demand patterns that most likely are constant, such as higher 

demand for energy due to heating during winter months in the north and higher demand during 

summer months in the south due to cooling. It seems unrealistic to believe that flexibility can 

handle long-term demand volatility, not to mention seasonal variations. In that context, the 

optimal portfolios should, to some extent, try to match demand and not only try to maximize 

output while minimizing volatility. However, as mentioned previously, Zappa & van den 
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Broek’s (2018) results showed that spatial optimization did not significantly reduce peak 

residual demand nor total residual demand, which is strange considering that they also found 

portfolios with lower volatility than the existing fleet. However, in their study, demand is a 

fixed metric, which, in reality, is not the case.  

Nevertheless, lower supply output volatility should lead to lower forecast errors, improving the 

efficiency of the power system. Furthermore, the model has shown that the power system can 

get more power out of a system that is optimally distributed than one that is not, with the same 

amount of input. Additionally, the type of model used in this study is useful in the context of 

analyzing the complementarity of different production sites and how capacities in one region 

may affect the power system as a whole. 

Historical average 

Another weakness of the model is the use of historical data to make the expected output for 

each asset. This procedure assumes that historical observations are true for the future. This is, 

of course, a bold statement in finance, but also in energy planning. While there are enormous 

resources going into mapping the consequences of global warming and climate changes, this 

is beyond the scope of this study. Nevertheless, studies have found that climate change may 

decrease the output of solar PV in Europe, but not at a significant level (Jerez et al., 2015). 

Regarding wind power, Tobin et al. (2015) argue that climate change will not significantly 

change the overall production of wind power in Europe, but some regional changes in wind 

resources may occur. Conclusively, to truly analyze the weather in Europe and the future 

optimal distribution of capacities, climate change is something that should be included, but the 

overall consequences of not including it are limited. 

Furthermore, the approach used in this study uses the average of all years of data when 

calculating mean returns and variability for each asset, mainly to reduce calculation time and 

to simplify the model. In reality, there are significant differences between years and within the 

year. The weather regimes described in Chapter 2.2 show that Europe experiences large 

deviations from the overall average, which is not soundly captured in the model used in this 

study. This could, in the end, result in instabilities within the covariance matrix used in the 

model and thus the overall results. Similarly, variations in the average capacity factors will 

result in significant deviations in the model output. The model in its current state is, as a result, 

not as robust as one could hope for, and the results should be interpreted accordingly. However, 

the historical average can still give some insight into the general wind and solar resources in 

Europe and how they behave in relation to each other. 
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Area restrictions 

By not taking area restrictions and limitations into account when modeling the optimal 

portfolio, this study makes a significant simplification. This means that the model does not 

limit the number of market shares one region can receive due to factors such as high population 

density, natural reserves, and so on. While there is possible to add such constraints to the model, 

there has been a need to scale down the complexity of the model used in this study. 

Additionally, the aim of this study is not primarily to find the exact locations of sites for wind 

and solar PV capacities but rather to conduct a resource mapping and to analyze whether time 

resolution changes the optimal distribution. Furthermore, the geographical resolution used in 

this study is too low for it to be of any practical use in including such constraints. However, 

such considerations can instead be taken by more in-depth analyzes.  

Europe as a copper plate 

Another main assumption in this study is that Europe functions as a copper plate with no 

transmission loss or bottlenecks. While this assumption is highly unrealistic, this study has a 

future perspective and focuses primarily on the resources available.  

On the one hand, by including transmission capacity, the model would tend to reduce the 

overall value of spatial distribution, as resources in close proximity naturally are more 

attractive than more distant resources. On the other hand, a future power system predominantly 

based on intermittent renewables will, in any case, require a significant expansion of the 

transmission capacity, as described in chapter 2.1. Therefore, it is not given that the saved costs 

from near resources outweigh the added performance of distributed capacity. The starting point 

should thus be to find where the resources are located, regardless of the current situation. An 

analysis that combines resource mapping and grid design is outside the scope of this thesis. 

Cost profiles 

The model used in this thesis does not take any cost perspective into account. The assumption 

that wind and solar power have equal cost profiles all over Europe is by no means realistic. In 

energy planning, cost profiles in different regions would naturally be a significant factor to 

consider, and the current distribution of wind and solar power capacities depicts just that, with 

high shares in areas where there are both favorable cost profiles and political will. But again, 

as this is more a resource mapping, cost profiles are not considered relevant in this thesis. 

Additionally, cost profiles are not constant. Given that this thesis focuses on a future power 

system, current cost profiles are not necessarily adding value to the model. One could 
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potentially try to forecast cost profiles in different parts of Europe towards 2050, but this is 

outside the scope of this thesis. 

Conclusively, the results from the analysis convincingly show that the method can be used to 

increase the performance of the current allocation of wind and solar capacities in Europe. 

However, the simplification of the model and assumptions included suggest that the model 

should be used with care and not be the only knowledge base in decision situations. The 

approaches used in the model are, however, suitable for resource mapping and for evaluating 

the existing fleet performance relative to the theoretical possibilities. 

Computational limitations 

Due to the author’s lack of models that handle the number of variables used in this study, the 

optimization model uses a Monte Carlo simulation approach. Additionally, due to a lack of 

experience in machine learning and evolutionary optimization, this has resulted in every 

iteration being saved for then being considered. The computing power available has thus not 

been sufficient to assess more than 2 million portfolios for each time resolution. With the fact 

that the number of possible combinations of wind and solar power areas in Europe is almost 

infinite, the results in the “optimal” portfolios are most likely not the true optimum. However, 

as mentioned previously, the main point of this study is not to find the exact areas for wind and 

solar power but rather to analyze the potential functionality of the method in energy planning. 

7.3 Further work  

There is no question that holistic energy planning in Europe is beneficial. In a power system 

that’s increasingly weather-dependent, diversification of risk is crucial. The methods used in 

this thesis give some insights into how diversification can take place, but have some obvious 

shortcomings as mentioned above.  

There are no economic perspectives taken into account in this study. It could be interesting to 

implement cost profiles in different areas to analyze the low-hanging fruits in Europe. This 

could be done both on direct generation costs for wind and solar power or for transmission 

capacity. By penalizing capacities far away from load centers, one can find regions that do not 

necessarily have transmission capacity today but are close to where the demand is located. 

There have been conducted similar studies with the implementation of residual demand without 

managing to lower peak residual demand or total residual demand. However, there is most 

likely a need to implement demand in some form to soundly capture the power system 

dynamics.  
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Furthermore, only wind and solar power are analyzed in this study, while the future power 

system will consist of additional production technologies such as hydropower, nuclear and 

flexibility resources.  

As computing power and advanced modeling get more accessible, high-resolution models with 

additional asset classes and attributes could use modern portfolio theory and portfolio 

optimization to find higher-performing allocations and spatial distributions of the power 

system. Additionally, the results from this thesis show that the time resolution used in the 

optimization significantly influences the optimal portfolios. Further analysis into how these 

effects behave could be interesting. 

7.4 Known issues with data 

All data, except current capacities and geographical information, is based on the EMHIRES 

dataset. Through the analysis, some issues with the dataset have appeared.  

N01-NO4 has the same values. In NUTS-2 area codes, NO1-NO4 only covers the areas south 

of Trøndelag. However, this means that the results from the optimization model cannot be 

trusted in Norway, especially in the south-eastern parts.  

Furthermore, the offshore economic zone of the UK is vast and stretches all around the UK. 

This may potentially undermine the potential in some areas with better wind resources. The 

offshore regions of Germany and the Netherlands show a higher capacity factor than the 

offshore region of the UK. This is probably a result of the extent of the area.  

Additionally, geometry information on the NUTS-2 location of Kosovo is not present, resulting 

in the exclusion of this region for wind power.  

These issues surely bring with them some uncertainties in the results, especially in the 

optimization model. As mentioned previously, the model is quite sensitive to changes in the 

input, which means that small errors or issues with the data may affect the results significantly. 
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8 Conclusion 

Through this study, the complementarity of wind and solar resources has been analyzed using 

portfolio optimization of wind and solar power in Europe using different time resolutions. The 

complementarity analysis is in line with existing literature showing a high negative correlation 

between wind and solar resources on a monthly basis. The negative correlation has, however, 

a decreasing relationship with an increased time resolution. European wind resources are most 

profound in the coastal areas of north-western Europe, while solar resources are directly linked 

to latitude, with better solar resources in the south than in the north.  

Wind experiences a decrease in correlation over large distances to a greater extent than solar 

resources. This means that wind power is more applicable for spatial distribution of capacities 

in order to ensure a more stable aggregate output. Solar power does not experience large output 

variability over large distances and is therefore not as sensitive to spatial distribution.   

The portfolio optimization shows that the allocation of wind and solar capacities in Europe can 

improve the aggregated performance, with higher average output and lower standard deviation. 

While the existing fleet has an allocation of about 59% and 41% solar PV, the optimal 

portfolios receive shares of about 82-86% wind power, using an hourly time resolution. 

Furthermore, the portfolio optimization favors the regions in Portugal and Greece, which both 

have windier summer months than the European average, making these two regions attractive 

areas for wind power in the context of compatibility with the rest of Europe. 

Furthermore, the optimal aggregated share of wind and solar power changes at different time 

resolutions. The analysis shows that aggregate portfolios with lower time resolutions tend to 

favor higher shares of solar PV than portfolios with high time resolutions, moving from around 

19% solar PV with hourly time resolution to about 50% solar PV with monthly time resolution. 

This indicates that decision-makers need to take time resolutions into account when attempting 

to find optimal allocations of wind and solar power capacities. 
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10  Appendix 
 

 

 

Appendix 1: Table layout sample of 30-year average hourly capacity factors over the year for all regions. 330 regions, with 

five additional columns of metadata. 

 

 

 

Appendix 2: Illustration of how geographic information is joined with optimization results. 
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Appendix 3: Illustration of raw results from the optimization model. Each row represents one iteration, with corresponding 

random weights for all regions. The best performing iterations are later matched with the associated weights, determined 

by row indexes. 

 

 

 

Appendix 4: Sample of random weights. Each row consists of 330 columns, which each represents one region. 
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