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Abstract 

In this thesis we aimed to find the best methods for short-term load forecasting in the Norwegian 

electricity market during times of unprecedented price movements. We answered three 

questions related to this aim. The first was which model achieved the most accurate forecast. 

The second was whether our proposed models outperform the official forecasts published on 

the Entso-E platform. The third question asked was if the price movements had any effect on 

the accuracy of the load forecast.  

We constructed two SARIMAX models, a Gradient boosted decision tree, a Random Forest, 

and a Multilayer perceptron model. Our findings show the two SARIMAX models to be most 

accurate. These models outperformed the forecasts published on the Entso-E platform in four 

out of the five Norwegian bidding zones, measured in MAPE and RMSE. Finally, we have 

shown that forecasting load with and without price information did not result in significant 

differences in accuracy. Our findings did not indicate an increase in difficulty of forecasting 

2021 compared to 2019, neither for the three southern bidding zones with higher price increase 

nor the northern two zones.    
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Sammendrag 

I denne masteroppgaven har vi forsøkt å finne den beste metoden for kortsiktig prognostisering 

av elektrisitets-etterspørsel i perioder med ekstreme prisbevegelser. Vi har besvart tre spørsmål 

knyttet til denne problemstillingen. Det første var hvilken modell som oppnår høyest 

nøyaktighet. Det andre var om våre modeller presterer bedre enn de publiserte prognosene på 

Entso-Es offentlig tilgjengelige data-plattform. Det tredje spørsmålet var om de ekstreme 

prisbevegelsene hadde noen effekt på nøyaktigheten av prognosene.  

Vi har laget to SARIMAX modeller, en Gradient boosting decision tree-, en Random Forest og 

en Multilayer perceptron-modell. Gjennom arbeidet har vi vist at de to SARIMAX-modellene 

presterer best. Disse modellene er mer nøyaktig enn prognosene publisert på Entso-Es plattform 

for fire av de fem norske strømregionene, målt i MAPE og RMSE. Til slutt har vi vist at 

prognoser gjort både med og uten prisinformasjon ikke gir signifikante forskjeller i nøyaktighet. 

Det ble heller ikke påvist en klar forskjell i vanskelighetsgraden av å prognostisere 2021 

sammenlignet med 2019, verken for de sørlige prissonene med høy prisvekst eller de nordlige 

sonene med en lavere prisvekst.  
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1. Introduction 

The power grid and the supply of electricity is one of the highly critical infrastructures of the 

modern world, and in the years to come the importance of electric power will only grow further. 

As we aim to reduce the share of high-emission energy sources in the total energy production 

globally, the share of renewable electric power is set to increase. The two largest areas of growth 

in the production of renewable power are, according to the IEA (2021), solar- and wind power. 

These are variable renewable energy (VRE) sources dependent on the weather conditions, 

meaning the production capacity will vary out of the producer’s control. With a larger share of 

the global supply of energy dependent on the whims of the weather, proper planning is 

paramount. 

We aim to contribute to the power production planning by researching how best to forecast day-

ahead load in the Norwegian market. The forecasting of load plays a role in the price formation 

in the physical and financial power market, and thus a more accurate forecast will benefit 

market participants on both the buy- and sell-side. The accuracy of the forecast is also of 

importance to the Transmission System Operators (TSO) to ensure the electricity infrastructure 

security and reliability, by balancing the supply and demand of the physical market. 

We will focus on times of greater than usual price movements, represented in our testing by the 

period of abnormally high electricity-prices which occurred during the fall of 2021. The interest 

for this period specifically, comes partly from the deeply rooted assumption that the price 

sensitivity of demand in the electricity markets is close to zero. As such, we would expect to 

find that the price increase will not be a significant factor in load forecasting. All else equal, the 

methods of load forecasting should be no less accurate during the fall of last year, as the price-

factor which changed significantly should make little difference in the demand. 

The aim of the thesis is to find the best model to forecast load in the Norwegian electricity 

market when the price is higher than usual. To answer this, the work is centered around three 

more detailed questions. The first question is designed to find the best forecasting model. In 

answering the second question, we find whether our two best models add anything to the 

forecasting work, by comparing them to the officially published forecasts. The third question 

asked is if the recent price increase had any impact on the quality of the forecast. 

The first question is regarding the best method of load forecasting for the timespan selected. 

We will approach this question by utilizing two different, but related types of methodologies. 

The first of which is the more traditional way of analyzing time series data, by using statistical 
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regression-based methods. For the second type of methods, we will use a rapidly emerging way 

of analysis in the finance field, a set of different machine learning models. The thesis will not 

discuss the inner workings of machine learning and artificial intelligence in great depth, as the 

basis for the work is in the financial aspect of load forecasting, not the technical programming 

aspect of machine learning. The aim is to compare the methods, and to analyze whether the use 

of machine learning techniques provides better results for short-term load forecasting, or if the 

statistical methods prove to be the superior forecasters. 

The second question is whether it is possible to improve today’s official forecasts published on 

the Entso-E Transparency Platform. This will be evaluated by the performance of the forecasts 

developed in this thesis measured by two main metrics. The first of which is the overall 

performance of the forecast compared to the official forecast over the time periods in question. 

This will be measured as the average error of the forecast. The second metric will be the size 

of the outlier forecasting residuals. The argument for both metrics to be used being that the 

average forecasting performance best describes the models fit. However, the average error 

should be seen in accordance with large errors, to account for outlier risk in the forecast. 

The third question is whether the forecasting performance is significantly affected by the price 

increase in the autumn of 2021. The last half of 2021 is a period with larger than usual price 

increase compared to previous years, meanwhile the autumn of 2019 experienced prices at more 

normal levels. The first test is to compare the forecasting accuracy of models including a price 

variable, to the accuracy of the same model blind to the price. If the model with price performs 

different to the one without price, the price variable is providing either information or noise, 

depending on whether the accuracy is better or worse. The second test, is a comparison of the 

accuracy in the autumn of 2019 to the autumn of 2021, using the two best models without price 

information. Again, if the price increase has influenced the load, we would expect a model not 

accounting for price changes to perform poorer in 2021 than 2019. We would also expect to see 

the three southernmost bidding zones where the price increase was steepest, to be comparatively 

more difficult to forecast in 2021 than the two northern zones with a lower price increase. As 

such, the two northern zones should be closer in forecasting accuracy between 2019 and 2021 

than the southern three. 

The forecasts will be made as rolling 24-hours in ahead predictions. This means that the 

predictions made for the first hour of any given day, is made using all information observable 

at the latest 24 hours in advance. To evaluate the forecasting performance two benchmarks is 

selected. The first of which is a seasonal naïve forecast. If forecasting models are unable to 
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outperform the seasonal naïve forecasts, assuming the load is equal to the load 24 hours in 

advance, we would argue it provides no value to the forecasting work. The second benchmark 

is the official forecasts gathered from the Entso-E Transparency Platform data bank. Using this 

benchmark, we will be able to see whether the models designed in this thesis provides 

informational value exceeding what the established forecast does. 

The thesis will be organized in 9 chapters, the first of which is this introduction. Chapter two 

contains background information about the markets relevant for the thesis and practical aspects 

of load forecasting. In chapter three a review of load forecasting in previous literature can be 

found. Chapter four describes the theoretical framework of the thesis, including the relevant 

models and evaluation metrics. Chapter five contains information on the data used in building 

the forecasting models. Chapter six is a model description, where the decisions of relevant 

variables and the model construction for all models used are described. In chapter seven the 

forecasting results will be presented, before they are discussed in chapter eight. Chapter nine 

will provide a conclusion to the questions the thesis aims to answer. 
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2. Background 

In this chapter, background information about the Norwegian power market and the Entso-E 

platform is provided. There will be a short description of the key concepts of the power market. 

The chapter concludes with some general information regarding load forecasting. 

2.1. The Norwegian power markets 

While most European countries have one internal bidding zone for their power market, the 

Norwegian power market consists of five different bidding zones. The power markets in 

Norway have internal bottlenecks and can thus experience different power prices between the 

zones, as it has in the autumn of 2021. During the latter part of the year the prices has reached 

record highs in the three southernmost zones driven in part by power prices in the European 

markets, while the two northern zones have experienced a lower price increase. This has 

sparked a heated debate over the export of power to other European nations through cross-

border interconnectors. 

One of the reasons why the population of Norway has been so appalled by the rise in the price 

of electricity to households, is that the Norwegian power market has traditionally had some of 

the cheapest electricity in Europe. While other European nations has relied on a power mix 

consisting of a range of energy sources, Norway gets a large part of its electricity from 

hydroelectric powerplants. Electricity production using hydropower plants remains one of the 

cheapest forms of power production. Due to the favorable weather conditions and topography 

of Norway for utilizing impoundment and diversion hydropower facilities, the Norwegian 

households has been able to rely on this renewable and cheap power for many years. 

In the coming decades, the rest of Europe is in dire need of access to renewable power if we are 

to reach the zero emission climate goals. The Norwegian hydropower production capacity will 

prove to be important for balancing the peak hours of supply and demand for the neighboring 

countries relaying in larger parts on variable renewable energy sources. Countries such as 

Denmark and Germany, where a larger part of the total power production comes from wind 

power will need an alternative source of electric power during the off-peak hours for wind. 

The reason why the Norwegian reservoir-based hydropower production will be important is the 

storable nature of the production method. While it is expected that wind- and solar power 

becomes a larger part of the total electricity production in the future, the production capacities 

fluctuate with the weather conditions. As electricity-storage in large quantities is difficult, the 

electricity demand during the off-peak production hours needs to be covered by alternative 
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production methods. Currently, this is achieved in too large part by fossil fuels such as natural 

gas and coal in many countries. These sources, like impoundment hydropower, can produce 

electricity at the time of need, when the wind or solar production is insufficient. If we are to 

reach the net-zero emissions goals we do however need to phase out much of the non-renewable 

power, especially coal. 

This is where the cross-border connections and power trading capacities between nations will 

be crucial. To balance the power supply and demand during all hours of the day and all days of 

the year, with different geographical locations being suited for different production methods, 

we need to be able to exchange power. The Norwegian market currently has 17 cross-border 

connections, according to Entso-E (s.a.), the first of which started operating in the 1960s for 

just this reason. In years of heavy precipitation, where water would be sent passed the 

hydropower plants unused, it was now possible to utilize some of the excess waterflow to 

produce electricity which was exchanged over the border to Sweden. In years of low 

precipitation, where the 1950s had seen power rationing, this opened the opportunity to 

purchase power from the Swedish network. The same reasoning applies for the future, where 

the balancing of production and demand across Europe will require a network of complimentary 

power production. 

2.2. Entso-E 

The Entso-E system was created to ease the cooperation between European nations in their grid-

to-grid power exchange and claims to promote a competitive pan-European market, (Entso-E, 

s.a., b). It was given legal mandate in 2009 by the EU in a push for liberalization of the power 

markets within the EU-area. The organizations consist of a larger set of key departments and 

areas of work, but we will limit the scope of explanation to the two most important factors for 

this thesis. 

One of the areas of Entso-E’s work is the integration of renewable energy sources in the 

European power grid. To get the European power markets ready for the future of power 

production, they work on both system development and market design to ensure best integration 

of renewable power production in line with the EU’s 2030 energy policy. This integration will 

require flexible generation, demand response and interconnections between national grids. The 

reliability of the power supply using flexible production and demand across Europe will be built 

on good forecasts, both for the supply- and demand-side. 
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Another area of importance for this thesis, and for the function of Entso-E as an integration-

system for European nations, is the transparency platform. The data-platform is essential for 

the creation of an internal pan-European marketplace for electricity. The member nations are 

required to submit information on amongst other things; electricity production, load, and 

transmission to a transparent data-bank open to all market participants. This limits the potential 

informational inefficiencies and promotes an efficient and competitive market. In addition, the 

transparent load and production information allows better planning of future systems and 

capacities across the continent. 

2.3. Power market characteristics 

The supply and demand of electricity is made up of the power producers on the supplier side 

and the greater society on the demand side. This includes everyday home consumption, 

industry, and everything in between. The modern world runs on electricity, and the consumption 

is critical for most of the day-to-day operations of our lives and to produce goods and services. 

Due to the importance of electricity, Hofmann & Lindberg (2019) has found that the short-term 

price elasticity is close to zero in the Norwegian power market. As such, the consumption of 

electricity, or the load, is generally not affected in the same way as other commodities might be 

by changing prices. This means the markets for electricity behaves somewhat different from 

other commodity markets. In this section we will define some key concepts in the power market. 

The suppliers of electricity are dependent on balancing the supply with the load in the market, 

which makes the avoidance of under- and oversupply a vital part of the electricity markets. If 

the power-grids are not balanced efficiently by the Transmission System Operators at all times, 

it causes shutdowns and incurs large costs. For this reason, the act of forecasting and planning 

load is of importance to both producers and TSOs. 

The production methods of electricity can be divided into two categories, renewable and non-

renewable production. The non-renewable production of electricity includes nuclear power and 

burning fossil fuels, which is generally depletable power production resources. Among the 

largest sources of renewable power today are wind-, solar-, and hydroelectric power. While the 

world is run in large parts on the power from the burning of fossil fuels, the future of power 

production looks to be in the renewable sources of energy. These production methods, however, 

are often variable. The variable renewable power production creates new challenges for the 

balancing of electricity, where an increased part of the production is limited by uncontrolled 
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weather factors, which is why we argue the forecasting of load will be important in a greener 

future. 

The electricity load is driven by a multitude of factors, some of which can be described as daily 

and seasonal variations in power demand. We can divide it into base- and peak load based on 

either the time of day or time of year. By base load we mean the lows of observed load over a 

period, which can be viewed as the minimum load needed to keep society running during the 

period. The peak load is the highs of power consumption over the same period. The peak load 

on a daily basis in Norway is typically during the morning and afternoon, while on a yearly 

basis the peak is during winter. 

Load peaks during winter times is caused by one of the large power consuming activities in the 

Norwegian market being heating, and the time of day coincides with when a sizeable part of 

society is aligned before and after working hours in using electric appliances and running their 

water heaters. With heating being one of the biggest electricity consumptions for Norwegian 

households, the weather is one of the main drivers of load. Cold periods increase load, while 

mild winters sees the power consumption peak lowered. In warmer climates, the cooling of 

buildings has an effect on load we do not see much of in Norway as the temperature rarely rises 

above threshold levels for wider air condition use. 

2.4. Load forecasting 

Load forecasting is often divided into three categories based on the forecast horizon, short-, 

medium- and long-term forecasting, as described by (Hammad et al., 2020). Short-term 

forecasts predict the load from minutes to days ahead, the medium-term horizon ranges from a 

week to a year and long-term forecasts are any horizon further in the future than a year. 

With the different forecasting spans, so comes differences in what drives load. In shorter terms, 

the biggest impact on load comes from factors such as seasonality and weather, while long-term 

forecasts can benefit from including factors as economic growth and the implementation of 

power saving measures. While we can assume that the economic situation of the country can 

change in the coming months, it has a low influence on the electricity consumption in the short 

term.  When forecasting over multiple years, these factors increase in importance. 

There are multiple of popular methods for load forecasting, both in literature and practice. In 

this thesis the methods are split into two groups. The first is what could be described as the 

traditional method of statistical methods, while the second is machine learning- or artificial 

intelligence methods. While the statistical methods are still very much in use, the field of data 
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science and use of machine learning is gaining popularity in finance for time-series analysis 

and forecasting. 
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3. Literature review 

In this chapter, forecasting work in previous literature will be reviewed. Provided is a review 

of load forecasting in general, and of previous literature findings and results using different 

statistical methods and machine learning to forecast electricity load. Furthermore, in 

continuation of this chapter, an in-depth description is included in chapter 4, where we outline 

the theoretical framework for the specific methods used to forecast in this thesis. 

The literature on electricity load forecasting (ELF) can be split into three or four categories 

depending on the time horizon according to (Hammad et al., 2020). The categories are long-, 

medium- and short-term load forecasting referred to as LTLF, MTLF and STLF respectively. 

The STLF category consists of forecasting intervals from one hour to a week. This category is 

important for daily operations for utility managers and have implications for generation and 

transmission scheduling. Some researchers also include a fourth class called ultra/very short-

term load forecasting (VSTLF). VSTLF is for forecasting less than an hour ahead and are used 

for real-time control. 

Hong & Fan (2016) provide a tutorial review on probabilistic electric load forecasting. In their 

review they argue that some of the empirical reviews comparing different STLF technique are 

misleading. They state that STLF techniques can be set at a disadvantage depending on the 

researcher’s expertise and/or the case study setup. Therefore, there is no clear answer to which 

techniques performs best. 

Numerous statistical time series models, artificial intelligence (AI) and hybrid models have 

been used to develop STLF’s the last decades. Nti et al. (2020) has reviewed 77 articles within 

ELF published over nine years (2010-2020). They found that AI-based models were most 

commonly used, where 9 out of the 10 most popular models being AI. The exception being 

Autoregressive Integrated Moving Average (ARIMA) models, which is the third most used. 

Among the AI-based models, artificial neural networks (ANN) are the most popular 

representing 28% of AI models used in the electricity load forecasting work. 

A number of studies in the last decades has been applying novel approaches to improving the 

STLF accuracy of the conventional Box & Jenkins (1976) ARIMA approach. Lee & Ko (2011) 

proposed an approach, embedding a lifting scheme into the ARIMA model. Simulation results 

showed the proposed algorithm superior to a back-propagation network (BPN) algorithm and a 

traditional ARIMA model. 
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A study by Tarsitano & Amerise (2017) proposes using a two-stage SARIMAX model, a 

combination of a linear regression and ARMA models for STLF. The study did not conclude 

on whether the proposed model achieved an improved forecasting ability, but the residual 

autocorrelation is reduced, shown by a reduction of the Ljung-Box test statistic. The reduction 

of autocorrelation in the residuals indicate an improved model fit. 

Elamin & Fukushige (2018) used a SARIMAX model to perform STLF on a region in Japan. 

Their goal was to compare a SARIMAX model with main effects to a SARIMAX model with 

interactions. The model with interactions included cross effects in addition to main effects, as 

proposed by Hong et al. (2010). The SARIMAX model with interactions resulted in an 

improvement in MAPE by 22,2% compared to the SARIMAX model with main effects. 

With the rise in computational power in the early 1990s, artificial intelligence-based methods 

have been widely studied and used to forecast electric load. One of probably the most popular 

AI-based methods, the artificial neural network (ANN) has according to Weron (2006) risen in 

popularity, because it requires no prior modeling experience to obtain reasonable load forecast. 

Another set of machine learning models made popular by their ease of use are the decision tree-

based regression models, including simple regression trees, gradient boosted regression trees 

and random forests. 

The comparison between statistical models and machine learning models have been made a 

number of times in previous literature. Papadopoulos & Karakatsanis (2015) compared the day-

ahead forecasting performance of two statistical methods, one SARIMA and one SARIMAX, 

and two decision tree models, a Random Forest (RF) and a Gradient Boosting Regression Tree 

(GBRT). With hourly data from the ISO New England Control Area (ISO-NE CA) from 2009 

to 2012, they found the GBRT to produce the most accurate 24 hours ahead load predictions. 

Measured in Mean Absolute Percentage Error (MAPE) the GBRT had errors of 1,32% 

compared to the RF errors of 1,96%, SARIMAX errors of 2,54% and SARIMA errors of 2,62%. 

While this represents a notable outperformance, the authors attribute the larger SARIMA and 

SARIMAX errors to their failure to model the multiple seasonality’s in the data due to software 

limitations. For further work the authors suggests the inclusion of additional exogenous 

variables such as humidity or direct solar irradiation. 

Another review of short-term load forecasting methods was done by Zor et al. (2017). In their 

publication they compare the accuracy of an Artificial neural network (ANN), a Support vector 

machine (SVM), and an Adaptive neuro-fuzzy inference system. Of the three methods, the 
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artificial neural network and the support vector machine is applied to the bidding zone of New 

England, USA, while the adaptive neuro-fuzzy inference system was used for the bidding zone 

of New South Wales, Australia. The two directly comparable methods, the ANN and the SVM 

performed with an accuracy measured in MAPE of 1,95% and 1,79% respectively, with the 

authors arguing both methods being valuable for load forecasting work.  

One of the important factors for the short-term load forecasting work is the ability to capture 

the different seasonalities and calendar effects on the electricity demand. Bakirtzis et al. (1996) 

noted the improvements of including the holiday effects in their artificial neural networks model 

for predicting the 24 hours ahead load in the Greek market for 1993. In their proposed model 

including the holidays effect they found a small improvement in the forecasting performance 

on the holiday, and interestingly a 30% improved accuracy over the two days following 

holidays. 

Khwaja et al. (2015) shows the effect of bagging in the use of artificial neural networks. Their 

work shows the single artificial neural network model achieving accuracies in the range of 1,8 

to 2,8 measured in MAPE. In comparison, the bagging neural network was shown to have 

accuracies in the range of 1,74 to 1,8 MAPE. While a single artificial neural network has the 

capability to achieve good results, the authors argue that the act of creating a set of uncorrelated 

learners should reduce the variation range of forecasting models.    
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4. Theoretical framework 

In this chapter the theoretical framework of the thesis is explained. The chapter starts by looking 

at the theory behind the statistical methods. In the following part the architecture of the machine 

learning methods is described. The third part of the chapter contains general theoretical 

elements relevant to forecasting, including evaluating metrics for model fit and forecast 

accuracy. 

4.1. Statistical methods 

In this subchapter, we will outline the theoretical framework behind ARMA models. The 

theoretical framework is background for the work presented in chapter 6. In chapter 6 we are 

constructing three statistical models, a seasonal naïve autoregressive (SAR) and two extended 

ARMA models.  

4.1.1. ARMA models 

It was Box & Jenkins (1976) who first popularized the autoregressive process of predicting a 

variable based on previous values of the same variable. They did so when they introduced the 

ARMA model and the Box-Jenkins methodology for forecasting time series. The forecasting 

methodology consists of three steps: model identification, estimation of parameters, and 

prediction and validation.  

ARMA models uses previous values and errors of the dependent variable to forecast. The model 

consists of two parts, the Autoregressive process (AR) and the Moving Average process (MA). 

Stationarity is also a requirement for ARMA models and in the case of non-stationary, the data 

series can be differenced to achieve stationarity. This results in an Autoregressive Integrated 

Moving Average (ARIMA) model. 

Brooks (2014) states that one of the reasons why ARMA models do well compared to other 

statistical approaches is due to the use of previous values of the dependent variable, also referred 

to as “lags”. This approach is especially effective in the case of electricity load forecasting 

where the load for a specific hour of the day, is often similar to the load the same hour the 

previous day. Therefore, a simple AR model with no more than a few lags, often called a naïve 

model, is used as a benchmark for more complex models. 

An autoregressive process is as mentioned when the current value of a variable, y, only depends 

on the value of previous values of y, and an error term. The process can be denoted AR(p), 

where the (p) expresses the lag length. The model can be expressed as 
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𝑦𝑡 = 𝜇 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝑢𝑡 Eq: 1 

where 𝑦𝑡 is the estimated dependent variable in period t, 𝜇 is the constant, 𝜙𝑝 is the coefficient 

determining the weight of the observation p, 𝑦𝑡−𝑝 is the lagged dependent variable for period t-

p and 𝑢𝑡 is a white noise disturbance term. 

The moving average process also uses lagged values, but instead of a variable it uses previous 

forecasting errors. The model is a linear combination of white noise processes, where the 

current value of y, depends on the current and previous values of the errors. The white noise 

process has a constant and expected zero mean, 𝐸(𝑢𝑡) = 0, a constant variance, 𝑣𝑎𝑟(𝑢𝑡) = 𝜎2 

and zero autocovariance, except when not lagged. The process can be denoted MA(q), with q 

expressing the lag length. The model can be express as 

 
𝑦𝑡 = 𝜇 + 𝑢𝑡 + 𝜃1𝑢𝑡−1 + 𝜃2𝑢𝑡−2 + ⋯ + 𝜃𝑞𝑢𝑡−𝑞 Eq: 2 

 

where 𝑦𝑡 is the estimated dependent variable in period t, 𝜇 is the constant, 𝜃𝑞 is the coefficient 

determining the weight of the observation q, 𝑢𝑡 𝑎𝑛𝑑 𝑢𝑡−𝑞 is the current and lagged dependent 

variable for period t and t-q. 

The combination of AR(p) and MA(q) processes results in an ARMA (p, q) model, where 𝑦𝑡 is 

linearly dependent of its on previous values and a combination of current and previous white 

noise disturbance terms. By combining and shortening the equations from AR(p) and MA(q) 

we get the ARMA (p, q) model express below: 

 

𝑦𝑡 = 𝜇 + ∑ 𝜙𝑖

𝑝

𝑖=1

𝑦𝑡−𝑖 + ∑ 𝜃𝑖

𝑞

𝑖=1

𝑢𝑡−𝑖 + 𝑢𝑡 Eq: 3 

 

Identifying the relevant number of lags (p, q) can be done by interpreting the output from the 

autocorrelation function (ACF) and the partially autocorrelation function (PACF), or by using 

and comparing versions of an information criterion, (Brooks, 2014). The ACF determines 

whether the dependent variable and the lag(s) are autocorrelated. Autocorrelation occurs when 

values of a time series is correlated with previous values over time. The difference between 
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ACF and PACF is that PACF shows the correlation with one specific lag, while AFC also 

include correlation between previous lags. When determining the correlation for the second lag, 

the value of the ACF will be determined by the correlation between 𝑦𝑡 and 𝑦𝑡−1, and between 

𝑦𝑡−1 and 𝑦𝑡−2. Therefore, assume the only correlation in the dataset is 0.9 for the first lag, which 

also means a 0.9 correlation between  𝑦𝑡−1 and 𝑦𝑡−2. This results in an AFC value for the second 

lag of 0.9 𝑥 0.9 =  0.81. PACF on the other hand, control for the correlation between 𝑦𝑡−1 and 

𝑦𝑡−2 when determining the correlation for the second lag, thus resulting in a correlation of zero 

and some random error for the second lag. With this being the only difference, the ACF and 

PACF gives the same value for the first lag. 

According to Brooks (2014), researchers use the AFC and PACF to find patterns that 

characterizes a time series. The usual patterns for an AR (1) process are a significant spike in 

PACF at lag one, followed by a number of near-zero values at higher lags. While for ACF there 

is usually a high value at lag one and then geometrically declining for higher lags. The 

interpretation of this pattern is that there’s only a correlation between today’s value and 

yesterday’s value in the time series. If this pattern is reversed for the PACF and ACF, it suggests 

that we are dealing with an MA (1) process. Furthermore, a combination of both an AR and 

MA process usually has a geometrically declining PACF and ACF. 

A fourth pattern can occur where the ACF never decay all the way to zero or it does so very 

slowly. This can indicate that the times series has a trend, which would make the series non-

stationary. An ARMA model requires a stationary time series, which will be discussed in the 

next section. 

Stationarity 

Determining whether a series is stationary or non-stationary is important because it can strongly 

influence the series behavior and properties, (Brooks, 2014). An example of this, is the pattern 

observed in the previous section when determining the relevant lags in an AR and MA process. 

A stationary time series inhibits the characteristics of a constant mean, constant variance and a 

constant autocovariance structure. These requirements are expressed beneath, respectively: 
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𝐸(𝑦𝑡)  =  𝜇 Eq: 4 

 
𝐸(𝑦𝑡 − 𝜇)(𝑦𝑡 − 𝜇) = 𝜎2 < ∞ Eq: 5 

 
𝐸(𝑦𝑡1

− 𝜇)(𝑦𝑡2
− 𝜇) =  𝑦𝑡2−𝑡1

      ∀ 𝑡1, 𝑡2 Eq: 6 

A stationary series possesses a mean-reverting process which can be observed as a time series 

which frequently crosses its mean value. This characteristic can be illustrated when unexpected 

changes occur, often referred to as “shocks”. For stationary series, a shock will gradually go 

away. This is because the effect of a shock occurring at time 𝑡, has a smaller effect at time 𝑡 +

2 than at time 𝑡 + 1. In contrast, a shock will have an infinite effect in a stochastic non-

stationary series with a unit root, as the effect of the shock has an equally large effect at time 

𝑡 + 1, 𝑡 + 2… and so on. This non-stationary effect can be observed as discussed in the 

previous section, with an ACF value of close to one which is slowly declining. A trend-

stationary process, also known as deterministic non-stationarity, is also mean reverting, but it 

doesn’t fulfill the requirement of a constant mean. 

In Brooks (2014) it is stated that cases of non-stationary in a time series with a trend, is a 

negative quality which can cause spurious regressions. Regressing two unrelated non-stationary 

variables which are trending over time, can result in a high R-square and significant coefficient 

estimates. This is of course valueless since they are unrelated. In contrast, two independent 

stationary variables regressed on the other will be expected to have non-significant coefficients 

and a low R-square. A non-stationary variable in a regression model will also make the standard 

assumptions for asymptotic analysis invalid, resulting in t-ratios and f-statistics not following 

their respective distributions. As a result, it is not possible to validly undertake hypothesis tests 

about the regression with non-stationary variables. 

In order to apply an ARMA model to a non-stationary series, the series can be integrated of 

order d to achieve stationarity. Stochastic non-stationary series have been found to describe 

financial and econometric times series best, and this type can be differenced d times, equal to 

the number of unit roots to become stationary. The first difference is taken by subtracting the 

previous from the current observation: ∆𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1. Transforming a non-stationary data 

series to a stationary series result in an ARIMA (p, d, q) model. 
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Extending ARIMA models 

The ARIMA model can further be extended with seasonality and exogenous variables. When 

performing electric load forecasting with time series over longer periods, a seasonal or periodic 

component should be included, (Soliman & Al-Kandari, 2010). Extending the ARIMA with 

seasonality, results in a SARIMA (p, d, q) (P, D, Q)S
 model. Whereas P is the seasonal AR 

process, denoting lags from previous seasons, D denotes seasonal integration, Q denotes the 

number of MA processes from previous seasons and S denotes the number of observations in 

the seasonal pattern. This approach is useful as yearly, weekly, and daily seasonality is common 

in electricity load time series, (Weron, 2006). 

Researchers using AR methods have usually dealt with these patterns in demand by using 

dummy variables. Seasonality can occur in many ways and for variables like hourly electricity 

load there is a daily, weekly, and yearly seasonality. Accounting for the seasonality helps the 

model adjust for the patterns and can increase accuracy. 

Seasonality can also be dealt with by using a similar-day approach, or similar hour when dealing 

with hourly data. Weron & Misiorek (2005) divided all 24 hours into separate models, which 

was generally favored over the multi-model specification for STLF. Another irregular 

seasonality is holidays, which are often idiosyncratic and have caused significant forecasting 

errors, (Myung, 2013). Holiday seasonality is often dealt with using dummy variables for all 

public holidays or divided into multiple dummies based on the holiday’s characteristics. 

In a review by Soliman & Al-Kandari (2010), they argue that the lack of exogenous variables 

affecting load in SARIMA models as temperature, wind speed, humidity, and illumination in 

time series models, limits their forecasting ability. SARIMA models should be extended to 

include exogenous input variables also known as transfer functions in (Weron, 2014). By 

including exogenous input variables into the model, we now have an SARIMAX model. In this 

model the current value of the dependent variable is expressed linearly in terms of its previous 

values, past values of the noise, and in terms of the current and previous values of the exogenous 

variables. 
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4.2. Machine learning 

Machine learning is defined as the use of computer algorithms which are able to improve 

performance in a task by gaining experience through the input of data on which to train. As a 

subset of artificial intelligence, it is a way of mimicking the natural intelligence of living 

creatures in their ability to implement prior experiences in their decision-making process. The 

goal of machine learning in the analysis and predictions of time-series data, is to create 

algorithms with the ability to find relationships in large sets of data, which would prove too 

time consuming to do manually. 

Machine learning can be divided into three categories based on the type of feedback given to 

the algorithm. There are supervised-, unsupervised and reinforcement learning, where 

supervised learning is what is used for time series forecasting. Supervised learning is defined 

by labeled data with a set of inputs and output values, as described by Zhao & Liu (2007). The 

algorithm has a targeted designated output value for each set of inputs in the training data and 

works by learning the relationships between inputs and the target value, assigning weights of 

importance to the individual input values provided. 

For times series analysis there are many different models of machine learning techniques 

available. In the following sub-chapters, the theoretical framework of relevant models for this 

thesis will be presented. 

4.2.1. Artificial Neural Networks 

Artificial neural networks are inspired by the neural network of the human brain with its many 

biological neurons and connections between them. It is first proposed by McCulloch & Pitts 

(1943) who developed the computational model for neural networks decisions, based on 

threshold logic algorithms. Artificial neural networks were constructed of a certain number of 

neurons which are either activated or not activated, just like biological neurons. Today there 

exists many versions of neural networks logic models, built on signaling through a set of nodes. 

Each node in the network implements all input from the previous layer using a weight for each 

connection. The weight represents a single inputs importance, relative to all inputs. In addition 

to weighted inputs, all nodes contain a bias, representing a constant term. The internal value of 

each node can thus be expressed as 
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𝑧 = ∑ 𝑋𝑖 ∗ 𝑊𝑖 +

𝑁

𝑛=𝑖

𝐵 ∗ 1 Eq: 7 

where X represents input i from the previous layer, W is the weighting of the respective input 

i, and B is the bias of the node. This value is put into what is called an activation function, 

which determine the output of each node. There are several different activation functions, some 

of the most popular in the literature being the Sigmoid, Tanh and Rectified Linear unit 

expressed as: 

 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑:    𝑓(𝑧) =  
1

1 + 𝑒−𝑧
 Eq: 8 

 

𝑇𝑎𝑛ℎ:    𝑓(𝑧) =  
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 Eq: 9 

 

𝑅𝑒𝐿𝑈:    𝑓(𝑧) = max (0, 𝑧) Eq: 10 

The Sigmoid and Tanh activation functions are characterized by s-shaped output ranges, 

ranging from 0 to 1 for the sigmoid function and -1 to 1 for the Tanh function. The Rectified 

Linear Unit has a linear output for values above zero, but a given node will not be activated for 

negative values. The non-activation of negative nodes makes the Rectified Linear Unit 

activation function computationally more efficient than the sigmoid and Tanh functions. 

A frequently utilized way of learning for a neural network is called backpropagation, as was 

first proposed by Rumelhart et al. (1986). In the backpropagation process, the algorithm 

calculates the gradient of the errors for each weighting. The goal of the backpropagation process 

is to update the weights for both inputs and the bias, to find the local minimum of the loss 

function. The loss function will be specifically defined in chapter 4.3.1, here we limit the 

explanation to that it is a function representing the output errors of the predicting model. 

A multi-layer perceptron network is a type of feed forward neural networks model. What makes 

it a feed forward network, is that the layers are connected unidirectionally from the input to 

output layer. This is different to some neural networks such as the recurrent neural networks, 

which is using bidirectional connections or loops linking the output back to the inputs of layers 

and nodes in the network. 
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Figure 1: Neural network consisting of two hidden layers of four and three nodes 

The most basic variant of the neural networks, the feed forward neural network consists of 

minimum three layers of nodes. One input layer, which is often called the visible layer. The 

reason for this is that the input layer is simply the variables fed into the model. The hidden layer 

or layers, consists of the nodes which takes the input variables and process them as explained 

in the previous section. The final layer, the output layer, is where the model’s output is 

calculated. For a regression problem there is usually one output node, as we are looking for one 

output value, while classification problems often have multiple nodes in the output layer 

representing different output targets. 

4.2.2. Decision Trees and Random Forests 

A decision tree model is another way of analyzing regression type problems using machine 

learning. The model operates by creating a set of questions regarding the input variables, before 

running each observation in the dataset though the model, resembling a tree of decision points. 

It starts at what is often called the root node, the singular node at the start of the model. In a 

regression type problem, the nodes contain a question regarding a numerical value, or a Boolean 

represented by 1 or 0 for true or false. At every node the model poses a true or false question, 

in the style of: 

 

𝑉𝑎𝑙𝑢𝑒 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒 Eq: 11 
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When answering this question the model creates two branches, one for observations where the 

answer is true and one where it is false. This is the method of work from the root node until the 

model reaches what is often called the leaf node, the point at which splitting the data further 

gives no more accurate output value. When reaching the leaf node, the model’s output is the 

mean observed target values of the data points in the training set, which fits into this final node 

of the decision tree.  For training the decision tree, the gradient of the loss function is calculated 

when splitting the data differently at each node, optimizing for a local minimum. 

 

 

Figure 2: Decision tree model 

 

An improved version of the simple decision tree is found in the Gradient Boosted Decision Tree 

model. What differentiates a gradient boosted tree from the regular version is that the boosted 

tree model constructs a series of sequential trees, each new tree aiming to account for the 

residuals of the former. This method of stagewise prediction of the former learners’ residuals 

was discussed by Friedman (2001) and should improve model accuracy, especially in cases 

needing more complex data mining. 

As another method building on the decision tree learning algorithms, Ho (1995) introduced 

Random Decision Forests. Decision tree models have a known tendency to overfit, defined as 

having very low bias, meaning errors in the training data, but high variance, meaning large 

errors in the validation data. To combat the tendency of overfitting, Random forests were built 

on the random subspace method popularly called “feature bagging”, to reduce the feature 

correlation effects on the final prediction. The act of bagging is to rather than create one learner, 
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several learners are created and assigned random parts of the dataset. In the case of feature 

bagging, they are assigned different features of the dataset. By using the average predictions of 

the set of uncorrelated learners, the random forest models aim to reduce the effects of noise in 

the training data and thus the model’s variance. 

4.3. Forecasting 

Time series forecasts can be generated to predict both in-sample and out-of-sample. In-sample 

forecasts makes a prediction on the same dataset used to estimate the parameters in the model. 

Meanwhile, out-of-sample forecasts is estimated on one part of the dataset or time horizon and 

then used to forecast another part of the dataset or another time horizon. In-sample forecasts 

are expected to perform better, as the estimated model is fit to the exact dataset which it predicts, 

(Brooks, 2014). In this thesis we will forecast the future load, which means we are unable to 

train on the same data we are forecasting. Therefore, we are performing out-of-sample forecasts 

in this thesis. 

Furthermore, there is two methods, Dynamic and Static forecasting. The dynamic method 

forecasts multiple steps ahead starting from the first period in the forecasting sample. This 

model does not add new information to the model for each forecasted step. Furthermore, 

depending on the number of steps and model design, a dynamic forecast uses forecasted values 

to forecast further than one step ahead. The Static method forecasts one-step-ahead, while 

rolling the actual data sample forwards. In this case, new information is added to the model for 

each step it forecasts, as it uses actual data to forecast further. In this thesis the goal is to forecast 

the day-ahead load in which the static method is the best fit to our purpose. 

4.3.1. In-sample model fit  

In this subchapter we outline the numerous criteria for evaluating to what degree a model fit 

the training data.  

Specifying the correct number of lags and variables in ARMA models can be done in a number 

of ways. As previously outlined, we can use the ACF and PACF and use the patterns to specify 

the number of lags, but this isn’t easy, as real-world datasets rarely exhibits the patterns 

described. A more popular technique is what is known as an information criterion (IC). One of 

the benefits with IC techniques is the removal of some of the subjectivity of interpreting 

patterns. There are multiple variants of the IC, but the general factors are the logarithm of the 

likelihood function and a penalty for adding extra parameters, also referred to variables. By 

adding an extra parameter, the IC increases if the parameter fails to increase the log likelihood 
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function more than the penalty. The goal is to reduce the IC as much as possible. The different 

ICs presented below vary by how strict the penalty term is. The three IC used in EViews follows 

the conventions of Akaike’s (1987), Schwarz’s (1978), and Hannan-Quinn (HQIC), which are 

expressed respectively as: 

 

𝐴𝐼𝐶 = −2(
𝑙𝑜𝑔(𝐿)

𝑇
) +

2𝑘

𝑇
 Eq: 12 

 

𝑆𝐼𝐶 = −2(
𝑙𝑜𝑔(𝐿)

𝑇
) +

𝑘𝑙𝑜𝑔(𝑇)

𝑇
 Eq: 13 

 

𝐻𝑄𝐼𝐶 = −2(
𝑙𝑜𝑔(𝐿)

𝑇
) +

2𝑘𝑙𝑜𝑔(𝑙𝑜𝑔(𝑇))

𝑇
 Eq: 14 

 

Where log(L) is the log of the likelihood function divided by the number of observations, k is 

equal to the total number of parameters estimated 𝑘 = 𝑝 + 𝑞 + 1 and T is the sample size. Of 

the three IC, SIC is the stricter one in term of the penalty term, then HQIC and at last AIC. 

There is no clear answer to which model is the superior, but according to Brooks (2014) SIC 

will more often deliver the correct model, while AIC tent to deliver a too large a model. 

For machine learning models, the in-sample model fitting is performed by adjusting the model 

to minimize a given loss function. While a loss function could, in theory, be any function which 

measures the errors of the fit between the target value and the in-sample predictions, there are 

two functions most commonly used. These are the L1 and L2 loss functions. The L1 loss 

function measures the absolute errors, while the L2 loss measures the squared errors. 

 

𝐿1 =  ∑|𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒|  

𝑛

𝑖=1

 Eq: 15 

 

𝐿2 =  ∑(𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒)2 

𝑛

𝑖=1

 Eq: 16 

 

The main difference to note when deciding between which of the two functions to select is for 

when the data containing large outliers. The L2 loss function, being the sum of squaring the 
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errors, will punish larger errors more severely than the L1 would. One has to consider whether 

the outlier errors should be of more significance to the model, or if the model is best served by 

using the absolute errors measure in the L1 loss function. 

4.3.2. Out of sample forecast performance 

Forecast evaluation is an important part of forecasting. It allows forecasters to test and select 

what models perform better, and it allows stakeholders to understand the performance of the 

forecasts, (Hong & Fan, 2016). Evaluating a model’s forecasting performance, is often done by 

comparing error metrics with a baseline and to other models. To determine the forecasts 

accuracy, the whole out of sample forecast period are compared to actual value, and the 

difference is aggregated in an error metric. The model with the lowest measured error is argued 

to be the most accurate model. There are multiple error metrics that can be used to evaluate 

forecasts; Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error 

(RMSE) and Mean Absolute Percentage Error (MAPE). MAE is the simplest metrics, 

measuring the mean absolute forecast error. MAE can be express as 

 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑡

𝑛

𝑡=1

−  𝑓𝑡| Eq: 17 

where n is total forecasting steps, yt is the actual value at time t and ft is the forecast value at 

time t. The MSE metric squares the difference between the forecast and the actual value in time 

t, and then takes the average over the period. This metric values large errors disproportionally 

more serious than small errors. Forecasts with large errors will be put at a disadvantage using 

MSE, which is a useful property if large errors are more serious than small errors. Transforming 

MSE back to the original scale while keeping the properties of MSE, is achieved with RMSE. 

MSE and RMSE can be expressed as 

 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑡

𝑛

𝑡=1

− 𝑓𝑡)2     ,       𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑡

𝑛

𝑡=1

−  𝑓𝑡)2 Eq: 18, 19 

 

Lastly, MAPE measures the absolute error like MAE, but presents the absolute error in 

percentage of the actual value. MAPE is a good metric to compare forecasts of different scales, 

or when a forecasted value change scales over the forecast horizon. It also has the attractive 

property that it can be interpreted as a percentage error. MAPE can be expressed as: 
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𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝑦𝑡 − 𝑓𝑡|

|𝑦𝑡|

𝑛

𝑡=1

 Eq: 20 

 

According to a study by Nti et al. (2020) the most common error metrics in load forecasting are 

RMSE and MAPE used in 38% and 35% of studies, respectively. Hyndman & Koehler (2006) 

states that MAPE is a widely used metric in load forecasting, because of its simplicity and 

transparency. The MAPE’s weaknesses are data of very different scales and data values close 

to zero or negative. The weaknesses of MAPE are not very relevant for load forecasting, as few 

level load series are close to zero and a negative load is not possible. Following the norms of 

previous STLF research, forecasting errors in this thesis are presented in MAPE and RMSE. 
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5. Data description 

This chapter consists of a description of the time series data collected and how the datasets are 

pre-processed if that is the case. There is a description of the characteristics of historical load 

demand, temperature, humidity, and the price development used it the models designed. 

5.1. Electricity load  

The electricity load data are collected from Entso-E’s transparency platform. The dataset 

consists of hourly observations for all five bidding zones in Norway from 01.01.2015 to 

31.12.2021. The dataset used consists of an insignificant number of missing values and are not 

adjusted for any extreme values. The load data are also adjusted for changes between summer 

and wintertime. 

 

Figure 3: Hourly aggregated electricity load in Norway from 01.01.2015 to 31.12.2021 

Norway’s hourly aggregated electricity load used in this thesis is shown in figure 3. The annual 

seasonality in load can be observed, as the electricity load is higher in the winter months and 

higher during summer. The load does not appear to be trending over the period. The data is 

fairly regular, having very few extreme outlier values, except for shorter periods of very high 

demand during the winter of 2016 and 2021. To observe the weekly and daily seasonality in the 

load demand, we can reduce the resolution to the average load for all hours the week, displayed 

in an hourly frequency in figure 4. 
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Figure 4: Hourly average load for all hours of the week in Norway from 01.01.2015 to 31.12.2021 

The load curve indicates that on average Monday to Thursday have the same load 

characteristics, while Friday, Saturday and Sunday are unique. For the workdays the load curve 

increases rapidly from 05:00 and reaches its peak at 08:00. Meanwhile, in the weekend the load 

increase begins later in the morning. Friday resamples the other workdays up to midday but 

have a lower load in the afternoon and evening. Saturday and Sunday have a lower consumption 

throughout the day, and a later morning peak load at around 10:00, and then another peak at 

18:00.  

The load consumption varies throughout the day depending largely on human activity. As the 

normal work hours approaches the consumption increases rapidly. This can largely be explained 

by increased heating of air and water, and start-up in production facilities. This continues 

throughout workhours and as they end there is a slight increase around 16:00. After 16:00 

consumption decreases to a daily low around 02:00. The pattern of hours with high and low 

demand is often referred to as a peak hours and off-peak hours. Peak hours being the hours of 

high demand and off-peak hours of low demand. 

5.2. Weather data 

Weather data is collected through the Norwegian meteorological institute, using one weather 

station for each bidding zone. We have collected hourly data on air temperature and relative 

humidity which have the highest influence on load apart from time factors according to Weron 

(2006). There are few missing values in the dataset for temperature and humidity over the 

period, and thus not compromising the dataset in any significant way. To smooth the data inputs 

at the points of missing values, a strategy of mean replacing has been adopted. The weather 

stations used for each bidding zone is shown in table 1. 
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Table 1: Weather station overview 

Bidding zone Weather station Location 

NO1 SN18700 Oslo 

NO2 SN44300 Sandnes 

NO3 SN69150 Stjørdal 

NO4 SN90400 Tromsø 

NO5 SN50540 Bergen 

 

The weather stations are selected based on the quality of their data and by location, being in 

close proximity to the most inhabited place in the region. Using weather stations closest to the 

most inhabited areas are more likely to fit load demand better, as this is place account for the 

highest consumption. Hong et al. (2015) states that choosing weather station is important for 

load forecasting and can have an impact on forecasting accuracy. They also propose an 

algorithm from selecting the best weather station selection, which would be of interest as further 

work. 

 

Figure 5: Average hourly temperature and relative humidity in Norway from 01.01.2015 to 31.12.2021 

Figure 5 shows the hourly average temperature and relative humidity for the five weather 

stations chosen to represent the five bidding zones in Norway. As expected, there is a 

seasonality in the temperature. Relative humidity is the relationship between the absolute 

humidity and the maximum humidity. Maximum humidity is when the air no longer can hold 

more humidity without creating clouds or cause rainfall, given the temperature. Warm air can 

hold more humidity than cold air. As the relative humidity varies with temperature, we can also 

observe that the relative humidity tends to be lower more frequently in summer than winter. 
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5.3. Price history 

The price data are gathered from Nord Pool and are only adjusted for the change between 

summer and winter time. Throughout 2021, the Norwegian power prices have increased 

tremendously. For most of the period considered in this thesis, the power prices have been low 

compared to the current Norwegian power prices. Especially in the three most southern bidding 

zones of Norway where the prices have increased more than for NO3 and NO4, which is the 

middle and northern part of Norway. From the beginning of 2015 to the end of 2021, prices in 

the southern parts of Norway NO1, NO2 and NO5 have been closely connected. The bidding 

zones of the middle and northern part of Norway are also closely connected, but the three 

southern and two northern bidding zones are not as closely connected as seen in table 2. This is 

due to a bottle neck in the power transmission system between the southern and middle part of 

Norway, which at times result in a price difference. 

Table 2: Correlogram for all Norwegian bidding zones in the period 01.01.15 to 31.12.21 

 NO1 NO2 NO5 NO3 NO4 

NO2 0,99 1    

NO5 0,99 0,99 1   

NO3 0,65 0,64 0,64 1  

NO4 0,64 0,62 0,63 0,94 1 

 

In figure 6 a graph of the hourly price development from 2015 to the end of 2021 for the bidding 

zones NO1 and NO4. For the greater part of this period, all prices were low and close to equal. 

During the spring, summer and autumn of 2020 Norway experienced very low prices compared 

to the previous years. Some price peaks in both NO1 and NO4 are observable over the period, 

whereas the other zone’s price did not follow. A few months into 2021 the prices in both areas 

increase dramatically and the prices disconnect. The disconnection between the prices is due to 

the bottleneck which unable the zones from sustaining equal prices. 

 

Figure 6: Price history for bidding zone NO1 and NO4 in the period 01.01.15 to 21.12.21 
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6. Model description 

In this chapter of the thesis, the steps of model selection are outlined. Six models based on four 

methods will be created. Three of the models are based on a statistical approach: SAR and 

SARIMAX, and the three remaining are based on a machine learning approach: Decision Tree, 

Random Forest, and Artificial Neural Network. 

6.1. Naïve model 

To create a baseline for comparing the more complex models we introduce a seasonal 

autoregressive (SAR) model. This model consists of one SAR part, a 24-hour lag. This model 

can be written as a SARIMA(0,0,0)(1,0,0)24. This model will be able to capture the daily 

seasonality as it uses the same hour from the previous day, but it will be unable to capture any 

of the weekly and annual seasonality. The model will predict the hour 24 hours ahead within 

the same season, and its weakness is that it will for example be unable to know whether the 

current season is autumn or spring. The naïve model can be expressed as: 

 

𝑦 ̂  = 𝑦𝑡−24 Eq: 21 

6.2. SARIMAX model selection 

In this section we outline every step of deriving the SARIMAX model. The model selection 

steps displayed in this chapter is done for NO1 in the estimation period from 01.01.2015 to 

30.06.2019 with the aim to forecast the last half of 2019. This process is also done for all bidding 

zones and forecasting horizons resulting in the same model design. The forecasts for the last 

half of 2021 are also trained on the 4,5 prior and not from the start of 2015, as a shorter training 

period reduced computational runtime with no reduction in the accuracy. This process is based 

on Box & Jenkins’s (1976) approach which consists of model identification, estimation of 

parameters, validation, and predictions. The first two parts of the process are outlined in this 

chapter and the predictions are displayed in chapter 7. 

6.2.1. Model identification 

The first step involves determining the order of the model required to fit the features of the time 

series. The first step is to investigate what AR and MA order fits the load series. As we outlined 

in chapter 5, the load demand for Norway has an annual, weekly, and daily seasonality. The 

same is observed for all five bidding zones, as we can observe for NO1 in figure 7. 
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Figure 7: Hourly load demand for NO1 from 01.01.2015 to 31.12.2021 

To achieve a meaningful interpretation from plotting the ACF and PACF, the series has to be 

stationary. Seeing the seasonal patterns of the level series we assume a seasonally stationarity 

series, as it has a slow mean-reverting effect and no apparent trend. The first and/or seasonal 

difference can be taken in the attempt to achieve stationary. The first difference is taken and 

graphed in figure 8. The series is centered around a mean, but it seems to not have a constant 

variance as there is a higher variation in load in the winter than in the summer. 

 

Figure 8: First difference of the hourly load demand in NO1 from 01.01.2015 to 31.12.2021 

To reduce the impact of heteroscedasticity in the series, the logarithmic values of the series is 

used. Figure 9 displays the log first differenced and figure 10 displays the series after taking the 

first and seasonal difference (s = 24). By taking the logarithmic values of the series the change 

in variation between summer and winter is reduced, and by visual inspection the series looks 

stationary after both taking the first and seasonal difference. 
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Figure 9: Log first difference of the hourly load demand in NO1 from 01.01.2015 to 31.12.2021 

 

Figure 10: First and seasonal difference of the log hourly load demand in NO1 from 01.01.2015 to 31.12.2021 

To formally verify that the series in stationary we apply a unit root tests. Both the Augmented 

Dickey-Fuller (ADF) (Dickey & Fuller, 1979) and Kwiatkowski, Phillips, Schmidt, and Shin 

(KPSS) (Kwiatkowski et al. 1992) are tested on the series. The ADF test’s null hypothesis is 

non-stationary, and the alternative is stationarity. The 5% critical value for ADF test is -2,86. 

The KPSS test’s null hypothesis is a trend-stationary series, and the alternative is non-

stationarity. If the KPSS test indicate trend-stationarity in the level series, the correct approach 

is to remove the trend instead of differencing. The KPSS critical value at 5% is 0,46. Testing is 

performed on the training dataset which ranges from 01.01.15 to 01.07.19 and 01.01.17 to 

01.07.21. The lag length in the two test is specified by AIC and Schwert (1989) for the ADF 

and KPSS test respectively. Both criteria result in a lag length of 54. 

 

 

-0,2

-0,1

0,0

0,1

0,2

2015 2016 2017 2018 2019 2020 2021 2022

-0,2

-0,1

0

0,1

0,2

2015 2016 2017 2018 2019 2020 2021 2022



32 

 

Table 3: ADF and KPSS test statistic on NO1 load from 01.01.2015 to 31.06.2019 

 

 

 

       *Significant at the 1% level 

The level series is stationary according to the ADF test, and trend-stationary according to KPSS 

at the 1% level. The suggested method to deal with a trend-stationary series is detrending. Since 

there is no trend in the series, but seasonality, we also tested the differenced series. Testing the 

both the first and first and seasonally differenced series shows a stationary series with no trend 

as the ADF test is significant and the KPSS test shows non-significant results. To visually 

display the seasonal autocorrelation, we plot the ACF in figure 11. 

 

Figure 11: ACF plot of the level NO1 series for all hours of the week 

According to Brooks (2014) a trend can display itself on a ACF plot by never going to zero, or 

by doing so slowly. In this instance the ACF goes up and down in 24 hours intervals in line 

with the daily seasonality. In conformity with previous test, it is not indicative of a trend, but 

seasonality in the dataset. Therefore, the first and seasonal difference (s=24) of the series is the 

correct approach, instead of detrending. After obtaining a stationary series, the next step is to 

plot the ACF and PACF and determine the ARMA order. 
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Figure 12: ACF plot of the first and seasonal differenced NO1 series for all hours of the week 

 

Figure 13: PACF plot of the first and seasonal differenced NO1 series for all hours of the week 

The ACF plot of the first and seasonally differenced series suggests that we have multiple 

relevant MA and SMA parts. Since we are forecasting 24 hours ahead, we cannot use more 

recent lags than t-24. In the ACF plot there is significant spikes around the seasonal MA lags 

24, 48, 120 and 168. The same goes for the PACF plot where we have significant seasonal AR 

spikes around the lags 24, 48, 72, 96, 120, 144 and 168. To determine the number of ARMA 

parts that best fit the load, we perform further tests in the next step of the Box-Jenkins approach. 

Feature selection 

The next step is to determine the best exogenous variable that fit load demand best. We divide 

the exogenous variables into two categories: main effects and cross effects. Main effects consist 

of weather variables and dummy variables for calendar effects. Cross effects are both dummy 

and weather variables created by two variables interacting. 

Weather variables: Temperature and humidity are the most used weather variables used as 

load predictors according to Arora & Taylor (2013). As discussed in chapter 5, weather data 

from a reliable source in the respective bidding zone is used. Although humidity is not as 

extensively studied in the literature, Elamin & Fukushige (2018) has shown in to be useful for 
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load forecasting. In the SARIMAX model we include hourly temperature in Celsius degrees 

and relative humidity as exogenous variables. We are using actual data at time t, and t-1 instead 

of forecasted weather for the day ahead. This is to ease the data gathering process and the impact 

is low due to the assumption of unsystematic weather forecasting errors. 

 

Figure 14: Average hourly temperature and load from 01.01.2015 to 31.12.2021 

Temperature is closely related to power consumption in Norway, as electricity is the main utility 

for heating. Plotting temperature against load in figure 14 shows a non-linear relationship with 

a negative correlation. As the air temperature rises, the demand for electricity declines, except 

for temperatures above about 16 degrees. Beyond this point the load peak flattens and the 

minimum load starts to increase. This can be explained by the increased demand for electricity 

to air-condition instead. The latter effect is often observed clearly in countries with a warmer 

climate, where the load increases when the temperature rises beyond about 30 degrees. To 

capture this nonlinear relationship between load and temperature we introduce the variables 

heating degrees and temperature squared. Through testing we find that temperature squared 

performed best of the two. To capture the influence of temperature and humidity has on load, 

we introduce the weather variables:  tempt, tempt-1, tempt-24, temp2
t, temp2

t-1, temp2
t-24, humit 

humit-1. 

Annual seasonality: To capture the annual seasonality, we tested the inclusion of monthly and 

weekly dummies. In theory the 52 weeks in a year should be able to capture the gradually 

change in seasonality better than monthly dummies, but at the same time, weekly dummies are 

more sensitive to variations. To avoid overparameterizing we decided to opt for monthly 
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dummy variables. Eleven dummy variables are used: Month(k), k=1, 2...,11 from February to 

December and January are left as the reference. 

Furthermore, we want to take public holidays into consideration. One approach would be to 

create one dummy variable for each holiday, or by grouping the different types of holidays. We 

decide to take a simple approach and make one dummy variable for all holidays, where Holiday 

is set to 1 for public holidays and 0 otherwise. 

Weekly seasonality: The load demand also varies by the day of the week. Workdays differs 

from the weekend and the occasional holiday. To capture this seasonality, we have multiple 

approaches. We can group the workdays, except from Friday as they have a similar load curve 

on average, (figure 15). Saturday and Sunday have different load curves and thus grouping them 

can reduce the model fit. Through testing we decide on creating one separate dummy variable 

for all days, introducing dummy variable Days(j), 1,2…,6 from Tuesday to Sunday leaving 

Monday as the reference. Dummy Day(1) = Tuesday takes value 1 for Tuesday and 0 otherwise. 

 

Figure 15: Hourly average load for each weekday in Norway from 01.01.2015 to 31.12.2021 

Daily seasonality: Figure 15 also shows the daily seasonality, as the load varies depending on 

the hour of the day. To determine how to capture the daily seasonality best, we experimented 

with grouping the hours and with one dummy for each hour. We grouped the hours into peak 

hours and off-peak hours and compared it to having one dummy for all hours. One dummy for 

each hour resulted in a better fit, thus we introduce 23 dummies, Hour(i) 1,2...23 where the 

reference hour is from 23:00 to 00:00. For example, the dummy Hour(1)  takes value 1 for hour 

00:00 to 01:00 and 0 otherwise. 
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Price*: Lastly, the hourly actual price at time t is added in some models. The actual price is 

used as a proxy for ahead price. This will not affect the performance, assuming the forecasting 

errors of the day-ahead price is unsystematic. 

Cross effects 

In our model we also include interaction variables between weather variables and calendar 

variables as proposed in Hong et al. (2010). The interaction variables are created by simply 

multiplying two existing variables. The interaction between for example temperature and the 

hour of day lets the model variate by how much the temperature affects the load demand at a 

specific hour. This is beneficial as the demand for heating based on temperature can differ 

during the night versus in the morning. The same principle applies to the other cross effects. 

We firstly introduce the interaction variable day(j) * hour(i). In this variable we add every hour 

of the week except Sunday from 23:00 to 00:00. This allows for every hour of the week to be 

considered independently. 

Furthermore, we add the interaction variable holiday * hour(j) to allow for every hour of public 

holidays to be considered independently. Holidays primarily affect the load demand during 

workhours and can resemble the weekend. This indicate that the off-peak hours are less affected 

by holidays. 

We also add three temperature and calendar interaction variables; tempt * hour(j), tempt-1 * 

hour(j), tempt * month(k) and two interaction variables for relative humidity and calendar 

variables; hour(j), humit * hour(j), humit * month(k). These interaction variables allow for 

temperature and humidity to have a different effect on load, based on the current hour and 

month. Lastly, we introduce an interaction between temperature and humidity; tempt * humit, 

as the humidity varies between seasons based on air temperature. 

6.2.2. Parameter estimation and diagnostic testing 

This subchapter consists of estimating and testing the SARIMAX model. The most common 

methods to determine ARMA parts are by interpreting the ACF and PACF plots, minimizing 

IC as AIC and SIC, the maximum likelihood and choosing variables resulting in the lowest 

forecasting error. We decided to select the best AR and MA parts based on what results in the 

lowest AIC. Through extensive testing we found that the model SARIMA (0,0,0) (7,0,7)24 

achieved the lowest score on all IC measurements. As denoted in the model, the seasonal 

difference of the load series for forecasting is not taken, as differencing resulted in a higher 
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forecasting error. According to Hyndman & Khandakar (2008) it is best to make as few 

differences as possible because over-differencing harms forecasts. 

Table 4: Estimation output for SARIMA(0,0,0)(7,0,7)24 for NO1 from 01.01.15 to 30.06.19 

Variable Coefficient Std, Error t-Statistic 

C 4123,563 75,463 54,6 

SAR(24) -0,0153 0,00008 -193,1 

SAR(48) -0,0153 0,00005 -260,6 

SAR(72) -0,0158 0,00008 -189,6 

SAR(96) -0,0151 0,00007 -209,9 

SAR(120) -0,0156 0,00006 -244,0 

SAR(144) -0,0156 0,00007 -217,7 

SAR(168) 0,9844 0,00000 136339,5 

SMA(24) 0,9479 0,00673 140,7 

SMA(48) 0,9434 0,00490 192,2 

SMA(72) 0,9447 0,00661 142,9 

SMA(96) 0,9460 0,01381 68,5 

SMA(120) 0,9470 0,01535 61,7 

SMA(144) 0,9462 0,00984 96,1 

SMA(168) -0,0499 0,00392 -12,8 

R-squared 0,967 SIC 13,871 

AIC 13,867 HQIC 13,868 

 

All the SAR and SMA parts of the equation are significant at the 1% level. To check if the 

model captures all the autocorrelation, we plot a correlogram of the residuals. Of the ACF and 

PACF plot, we can observe that the residual autocorrelation is reduced, but still present. 

Although determining if there is any residual autocorrelation do not need any formal testing, 

the Ljung-Box statistic at lag 168 is 270 768 for comparison with later models. 

 

Figure 16: ACF plot of SARIMA(0,0,0)(7,0,7)24 estimation residuals for all hours of the week 
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Figure 17: PACF plot of SARIMA(0,0,0)(7,0,7)24 estimation residuals for all hours of the week 

Of the ACF and PACF plot there is clearly substantial part of autocorrelations left in the 

residuals. The residual autocorrelation after lag 24 in the PACF plot is in the few lags following 

the seasonal lag. Since we are unable to take the first difference and use more recent lags prior 

to t-24 and chose not to take the seasonal difference, we are unable to capture more of the 

autocorrelation with a simple SARMA model. If we could manage to remove all the 

autocorrelation, the residuals would be unsystematic, also referred to as white noise. From 

figure 18, there seems to be a yearly seasonality, with larger residuals during the winter months. 

 

Figure 18: Graph of SARIMA(0,0,0)(7,0,7)24 estimation residuals 

Higher residuals in the winter months indicates that the model is unable to capture the yearly 

seasonality. Another explanation is that the residuals are in absolute terms which causes higher 

errors as the load increases in the winter. Turning the residuals into percentages reduce the 

seasonal variation and shows that the model misses equally much in the summer and winter. In 

attempt to capture the yearly seasonality, we introduce monthly dummy variables in later 

models. 

The next step is to fit the model with the exogenous variables. The main effects consist of the 

weather variables; tempt, tempt-1, tempt-24, temp2
t, temp2

t-1, temp2
t-24, humit humit-1 and 

dummy variables for daily hours, weekdays, months, and holidays. 
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The first model, herby referred to as “SARIMAX main” is estimated with only the main effects. 

The estimation period is 4,5 years prior to the second half of 2019 and 2021. Table 5 shows the 

model estimated for NO1 prior to the second half of 2019. Insignificant variables are omitted; 

thus, the table only shows the significant parameters at the 1% level. 

Table 5: Estimation output for SARIMAX(0,0,0)(7,0,7)24 main  for NO1 from 01.01.15 to 30.06.19 

Variable Coefficient t-Statistic Variable Coefficient t-Statistic Variable Coefficient t-Statistic 

C 
4178,749 

16,24 Hour8 
949,217 

3,03 Mar 
99,894 

6,51 
(257,343) (313,165) (15,342) 

SAR(24) 
-0,010 

-10,95 Hour9 
1019,386 

3,09 May 
-76,476 

-4,33 
(0,001) (329,803) (17,660) 

SAR(48) 
-0,007 

-7,90 Hour10 
1051,285 

3,11 Jun 
-119,786 

-5,28 
(0,001) (338,405) (22,689) 

SAR(72) 
-0,009 

-9,25 Hour11 
1065,477 

3,15 Jul 
-145,045 

-4,79 
(0,001) (338,558) (30,296) 

SAR(96) 
-0,008 

-8,73 Hour12 
1067,197 

3,16 Aug 
-143,197 

-4,79 
(0,001) (338,183) (29,911) 

SAR(120) 
-0,008 

-8,70 Hour13 
1060,390 

3,16 Sep 
-150,663 

-6,07 
(0,001) (335,792) (24,816) 

SAR(144) 
-0,010 

-10,89 Hour14 
1053,618 

3,16 Oct 
-110,353 

-5,73 
(0,001) (333,946) (19,270) 

SAR(168) 
0,986 

1126,96 Hour15 
1075,264 

3,26 Nov 
-134,108 

-10,44 
(0,001) (330,017) (12,843) 

SMA(24) 
0,639 

164,04 Hour16 
1110,720 

3,37 Dec 
-90,405 

-13,85 
(0,004) (329,976) (6,526) 

SMA(48) 
0,583 

143,94 Hour17 
1096,523 

3,25 Temp 
-37,240 

-29,47 
(0,004) (336,990) (1,264) 

SMA(72) 
0,578 

132,86 Hour18 
1048,310 

3,03 Tempt-1 
-43,489 

-34,52 
(0,004) (345,494) (1,260) 

SMA(96) 
0,564 

126,91 Hour19 
971,209 

2,76 Tempt-24 
-27,137 

-98,07 
(0,004) (352,476) (0,277) 

SMA(120) 
0,528 

120,32 Sat 
-374,613 

-12,37 Temp2 
0,742 

14,81 
(0,004) (30,288) (0,050) 

SMA(144) 
0,565 

129,56 Sun 
-423,332 

-21,82 Temp2
t-1 

0,807 
16,12 

(0,004) (19,402) (0,050) 

SMA(168) 
-0,341 

-83,81 Holiday 
-253,527 

-108,17 Temp2
t-24 

0,569 
33,85 

(0,004) (2,344) (0,017) 

Hour7 
812,310 

2,64 Feb 
74,280 

6,84 Humt 
1,728 

9,14 
(308,063) (10,856) (0,189) 

 
 

  
 

 Humt-1 
-1,249 

-6,54 
  (0,191) 

R-square 0,988  SIC 12,842     

AIC 12,828  HQIC 12,832     

 

Estimating the SARIMAX with main effects results in an AIC of 12,828, compared to the 

SARIMA’s model AIC of 13,867. This indicates that the model has improved its fit more than 

the punishment for introducing 49 new variables. This is also supported by an improvement in 

the adjusted R-square from 0,967 to 0,988, showing that SARIMAX is able to explain more of 

the observed variation in the load demand. This is expected as we introduce dummy variables 

to capture the seasonality and the effect of temperature and relative humidity on load. 
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Furthermore, SARIMAX main’s residuals are observably lower in the estimation period than 

the residuals of the SARIMA. The yearly seasonality is still evident but significantly decreased. 

The model seems unable to capture the higher variation in load during the winter than summer. 

The Ljung-Box test statistic for the SARIMAX main model is 145 874, dramatically lower than 

for SARMA, indicating that the model has improved. 

 

Figure 19: Graph of SARIMAX(0,0,0)(7,0,7)24 main estimation residuals 

Extending the SARIMAX main model further we add the cross effects in a new model herby 

referred to as “SARIMAX interaction”. The cross effects consist of the interaction terms: day(j) 

* hour(i), holiday * hour(i), tempt * hour(i), tempt-1 * hour(i), humt * hour(i), tempt * month(k), 

humt * month(k) and tempt * humt. 

In addition to introducing all the interaction variables and letting variables as holiday, 

temperature and humidity vary by hour and month, we remove the dummy series day(i) and 

hour(j) to avoid multicollinearity with day(i) * hour(j). This change opens up to not only letting 

the hour of day and weekdays to be modeled independently, but every hour of the week. 

Table 6 display the SARIMAX interaction model’s R-squared, and ICs for NO1 in the 

estimation prior to the second half of 2019. The estimation output is shown in appendix 1, where 

insignificant variables are omitted, and the table only shows the significant parameters at the 

1% level.  

Table 6: SARIMAX(0,0,0)(7,0,7)24 interaction IC and R-square for NO1 from 01.01.15 to 30.06.19 

Test Value 

R-squared 0,9905 

AIC 12,61 

SIC 12,68 

HQIC 12,64 
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Compared to the SARIMAX main model the number of variables is increased by 254. The 

addition of a large number of variables is punished by all the IC, but all IC for the SARIMAX 

interaction model is about 0,2 lower compared to SARIMAX main. The AIC of SARIMAX 

main was 12,828 and is improved to 12,68 by adding the cross effects. Graphing the residuals 

in figure 20, there still seems to be a seasonal change in the residuals, but significantly reduced 

compared to the SARIMA model. 

 

Figure 20: Graph of SARIMAX(0,0,0)(7,0,7)24 interaction estimation residuals 

Testing the residual autocorrelating formally with a the Ljung-Box test, the SARIMAX 

interaction model’s test statistic is 143 667, improving slightly compared to the SARIMAX 

main model. 

6.3. Multilayer perceptron regressor 

To create a feed forward neural network model we use the Multi-Layer Perceptron Regressor 

(MLPRegressor) from the library of scikit-learn, (Pedregosa et al. 2011). This is a supervised 

learning version of a multilayer perceptron neural network. The model is built in Python. 

The first step of building the model is importing and adapting the data. For this thesis, 

predictions for two separate timespans are made. One set of predictions are made using a model 

trained on data from 01.01.2015 to 30.06.2019, and the second set of predictions are made using 

training data from 01.01.2015 to 30.06.2021. The validation period for both models are 01.07. 

to 31.12, in their respective end-of-training years. Apart from the differing length of training 

data timespan, each model is built using the same steps as follows. 

First, the datasets are scanned for missing- and non-numerical values. Each variable is adapted 

as to be a float value. For true false variables the value is set as a Boolean 0 or 1 representation. 

The datasets contain a small number of missing values in some exogenous variables which is 

replaced by the mean value of the variable. For larger sets of missing values, the replacement 
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strategy should be reassessed. However, because of how few missing values the dataset 

contained the mean replacement strategy proved not to compromise the final results and is thus 

selected. 

The multilayer perceptron model often benefits from normalizing or standardizing the data. 

This is done by using scaling functions from the scikit-learn (Pedregosa et al. 2011) library. To 

properly scale data, the training and validation data is separately scaled, not allowing 

information leakage between the two sets of data. The scaler functions are fit on the training 

data before the same scale is applied to the validation data. Fitting the scaler being the process 

of the function learning how to scale the data to the given range. The predictions are made on 

the scaled data before the results are inverted to actual values. This process of scaling data 

shows no improved results and is consequently not used for the final predicating model of the 

thesis. 

The structure and parameters of the MLPRegressor are selected by extensive testing. The best 

results are found using three hidden layers with 64, 32 and 16 nodes. The solver used is ‘adam’, 

the activation function ‘ReLU’ and maximum iterations of 1000 although the model mostly 

converge well before this. 

The selection of exogenous variables is made on the basis of previous literature, as well as the 

statistical analysis of the load time series shown in previous chapters. 

From the literature we know that weather variables are common inputs in load forecasting 

models. For the machine learning models, temperature and humidity are used. In addition to 

these, heating degrees are computed. While the SARIMAX models benefited more from 

squared temperature, the machine learning models marginally prefer heating degrees. Heating 

degrees are defined here as the number of degrees Celsius below 15,5. The final weather 

variables used are a set of minimum and maximum temperature over the past 24- and 48 hours 

values. 

From the analysis in previous chapters, we have shown a yearly, weekly, and daily seasonality 

in the load data. This is represented in the input values by dummy variables for months, 

weekdays and for the hour of the day. Additionally, there is a dummy variable for the year, and 

one for public holidays. The load-series are also found to have autoregressive properties. To 

account for the predictive value of previous timesteps, lagged load variables is added to the 

model. After testing, the effects are best captured using the load 24, 48, and 168 hours in 

advance. The maximum and minimum load of the past day is also used, by this we mean the 
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period starting 48 ending 24 hours before the predicted timepoint. This gives us the final inputs 

of the model, shown in the table 7 below. 

Table 7: Overview of exogenous variables used in ML models 

Variable Input type 

Year Dummy 

Month Dummy 

Day Dummy 

Hour Dummy 

Holiday Dummy 

Temperature Value 

Humidity Value 

Price* Value 

Heating Degrees Value 

Max temp - 24 hours Value 

Max temp - 48 hours Value 

Min temp - 24 hours Value 

Min temp - 48 hours Value 

Average temp - 24 hours Value 

Max load - day before Value 

Min load - day before Value 

Load - t-24 Value 

Load - t-48 Value 

Load - t-168 Value 

* Price only used for a selection of forecasts 

 

6.4. Decision Tree- and Random Forest regressor 

The decision tree and random forest models both use the same set of input variables as described 

in the multilayer perceptron regression method, and which are found in table 7. The data 

processing is also the same, to ensure comparable results. The only difference being that the 

decision tree and random forest models does not benefit from scaling the data, meaning the 

scaling step is skipped. This is one of the arguments for these types of models, the ease of use, 

where the model can take most input data as is. 

For the decision tree model, scikit-learns (Pedregosa et al. 2011) ‘LBGMRegressor’ is used. 

This is a gradient boosting decision tree model, which has been known to outperform the 
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bagging method of optimizing of random forests that was described in chapter 4.2.2. The 

boosting type used is ‘gbdt’, a gradient boosted decision tree. For the number of gradient-

boosted trees parameter, the ‘n_estimators’, the model uses 100. 

The random forest model utilizes the ‘RandomForestRegressor’ from scikit-learn (Pedregosa 

et al. 2011). This model is constructed using the number of estimators, or number of trees in 

the decision forest, of 1000. 
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7. Results 

In this chapter the results of the forecasting results will be presented. The chapter is divided in 

three main parts. 

In the first part the results of the six models developed in this thesis will be displayed, with one 

subpart for each of the five Norwegian bidding zones. In the second part, two overall best 

performing forecasts, one statistical and one machine learning method will be compared to the 

official forecast of Entso-E. The comparison is done for all bidding zones and areas. The third 

part shows the results from the analysis of the power price’s influence on forecasting 

performance. Two analyses are performed, one where the day-ahead price is used as a variable 

in two models, compared to the same models without price as a variable. In the second analysis 

we compare the forecasting performance of the two best models in the second half of 2019 with 

2021. 

7.1. Comparison of forecasting methods 

In this subchapter the forecasting results for the autumn of 2019 and 2021 for all models 

developed in this thesis are displayed. The models are compared and evaluated in terms of 

average accuracy and an evaluation of the model’s errors. The metrics shown are the average 

performance of each model measured in both MAPE and RMSE, and the error range of each 

model measured in the extreme points of error in both directions. The best statistical and the 

best machine learning models measured in average performance for the autumn of 2021 period 

will be used to present a graph of the forecast residuals. Residuals for models not shown in this 

chapter can be found in appendix 2. The last element is a comparison of the best two models to 

the actual load, over two selected weeks. The weeks selected are the first full week of July, 

Monday through Sunday 05.07.21 – 11.07.21, and the first full week of December, Monday 

through Sunday 06.12.21 – 12.12.21. The weeks are selected to showcase the model 

performance under different seasonal circumstances. 

7.1.1. Forecasting results for NO1 

The forecasting results for NO1 is displayed in table 8 which shows the average error metrics 

for all forecasts both in MAPE and RMSE. All models perform better than the naïve model 

indicating that the more complex models are able capture more information. Both in terms of 

MAPE and RMSE the SARIMAX model with interaction performed the best of the models 

designed in this thesis, while SARIMAX with only main effects is second. Of the machine 

learning methods, the Decision tree model achieves the best accuracy, closely behind 
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SARIMAX main. The ANN model MLPRegressor performed by far the poorest for 2021, but 

not as far behind the rest of the methods for 2019. A noteworthy point for the MLPRegressor 

is that it is the only method for which the forecast accuracy was worse in 2021 compared to the 

2019 results. 

Table 8: Forecasting accuracy for NO1, 01.07. – 31.12. of 2019 and 2021. 

 Autumn 2019 Autumn 2021 

Model MAPE RMSE MAPE RMSE 

Naive 6,15 % 345,51 5,61 % 303,18 

SARIMAX main 2,93 % 147,11 2,56 % 128,05 

SARIMAX interaction 2,60 % 131,37 2,40 % 125,27 

Decision tree 2,97% 158,50 2,67% 145,34 

Random forest 3,31% 179,34 2,83% 151,38 

MLPRegressor 3,24% 163,21 3,92% 212,71 

 

In table 9 the extreme errors of the models are presented. The Decision tree model is the best 

performing model measured by the smallest range of errors in 2021. The largest negative error 

was 14,63% below the actualized load and the largest positive error of 13,95% above the 

actualized load, resulting in a range of 28,58 percentage points (pp). The ranges of the other 

four complex models are at similar levels in the low- to mid-thirties, while the naïve model has 

the widest error range by some margin. The most interesting point to take note of is that the 

SARIMAX with interactions which was the best model measured by average forecasting 

accuracy over the period was not the model with the smallest error range. 

Table 9: Extreme forecasting errors NO1 for 2021 

Model Low High Range 

Naive -33,13 % 35,91 % 69,03 pp 

SARIMAX main -21,13 % 12,94 % 34,08 pp 

SARIMAX interaction -18,49 % 14,76 % 33,24 pp 

Decision tree -14,63 % 13,95 % 28,58 pp 

Random forest -16,19 % 19,65 % 35,85 pp 

MLPRegressor -13,93 % 21,76 % 35,69 pp 

 

The extreme errors are however, only one part of the picture. To provide a more complete view 

of the error distribution the residuals of the two best models, the SARIMAX with interactions- 

and the Decision tree model, are graphed in figure 21 and 22. What is evident looking at the 

residuals graph is that the SARIMAX interactions suffers in the extreme errors measure from a 
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small number of larger outlier errors. The overall distribution of the errors however is better 

than the Decision tree model, as previously shown by the lower root mean squared error. 

 

Figure 21: Residuals from SARIMAX interactions forecast of load in NO1 01.07.21 - 31.12.21 

 

Figure 22: Residuals from Decision tree forecast of load in NO1 01.07.21 - 31.12.21 

From the graphing of both models, it is shown there is an increase in the residuals towards the 

end of the period. This is due to the effect of higher absolute levels of load during the winter 

months of the end of the period compared to the summer months at the beginning. As figure 23 

shows, the residuals measured in percentage of actual load sees a more consistent distribution 

throughout the complete period. 

 

Figure 23: Percentage residuals for Decision tree and SARIMAX interaction 01.07.21 - 31.12.21 
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Figures 24 and 25 shows the load prediction for SARIMAX interactions and Decision tree, the 

first full weeks of July and December of 2021. For the July week in figure 24 the visualization 

shows that both the SARIMAX interactions- and Decision tree models manage to capture the 

trends well throughout the working days, while the Decision tree model miss the peak hours of 

the weekend in a larger degree than the SARIMAX interactions model. 

For the selected December week in figure 25 both the SARIMAX interactions- and the Decision 

tree model have a larger error term during Tuesday through Thursday, while improving during 

the weekend. Interestingly, the SARIMAX interactions model undershoots the observed load 

more, while the Decision tree model overshoots it. However, both models seem to capture the 

general directions and trends of the week. 

 

Figure 24: Actual load and forecasted load for one week in July 2021 (05.07.21 - 11.07.21) 

 

Figure 25: Actual load and forecasted load for one week in December 2021 (06.12.21 - 12.12.21) 
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7.1.2. Forecasting results for NO2 

The forecasting results for NO2 is somewhat similar to the results for NO1. The SARIMAX 

models are still performing among the best, but the difference between the two models is 

smaller than for NO1. In this case the cross effects added in SARIMAX interactions seems to 

have a small positive effect in 2019 and a negative influence on the performance in 2021. 

Among the machine learning models, The Decision tree model also performs best in this 

bidding zone. In terms of both MAPE and RMSE the Decision tree model performs as well as 

the worst performing SARIMAX in both periods. The MLPRegressor also perform better in 

comparison to the other models for NO2, than it did for NO1. The interpretation of these results 

can also be seen in relation to the performance of the naïve model. Compared to NO1 the naïve 

model has a 2 percentage points lower MAPE, indicating that the average change in load from 

one day to another is lower for NO2. 

Table 10: Forecasting accuracy for NO2 

 Autumn 2019 Autumn 2021 

Model MAPE RMSE MAPE RMSE 

Naive 4,01 % 227,52 3,89 % 222,94 

SARIMAX main 2,38 % 130,75 2,43 % 132,90 

SARIMAX interaction 2,31 % 125,27 2,55 % 144,74 

Decision tree 2,40% 129,14 2,54% 139,16 

Random forest 2,66% 143,43 2,74% 149,73 

MLPRegressor 2,66% 143,32 2,67% 146,07 

 

The extreme errors in the predicted load of each model for NO2 shows that the smallest range 

belongs to SARIMAX main. Unlike the results for NO1, it is the model with the best results on 

average over the period, which also performs best measured in extreme errors. The difference 

between the ranges of the complex methods, however, are small and arguably negligible in 

NO2. The lower average error of the naïve model also clearly shows in the error range, with the 

model being far closer to the error ranges of the complex models in NO2 than it was for NO1. 

As the naïve model is built by assuming the load is equal to the load 24 hours before, the error 

range of the naïve model is a measure of the largest changes of load of the same hour from day 

to day during the period. 
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Table 11: Extreme forecasting errors NO2 for 2021 

Model Low High Range 

Naive -20,32 % 28,29 % 48,61 pp 

SARIMAX main -19,91 % 12,87 % 32,78 pp 

SARIMAX interaction -20,19 % 14,37 % 34,56 pp 

Decision tree -21,08 % 12,65 % 33,73 pp 

Random forest -20,11 % 14,00 % 34,12 pp 

MLPRegressor -20,19 % 14,53 % 34,72 pp 

 

From the graphing of the SARIMAX main- and Decision tree models in figures 26 and 27, it 

looks as though the prediction series for NO2 is less defined by a small number of extreme 

errors. Both models do show a larger than usual point of error at the start of the prediction 

series. 

 

Figure 26: Residuals from SARIMAX main forecast of load in NO2 01.07.21 - 31.12.21 

 

Figure 27: Residuals from Decision tree forecast of load in NO2 01.07.21 - 31.12.21 
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hours. This might be a sign of factors not included in the models, which affect the load during 

the daily peaks. Both models also predict lower loads the Saturday in question. For the 

December week in figure 29 the models cannot explain the peak of Monday, and the night-time 

load of Saturday to Sunday. For the remaining days of the week both models capture the general 

trends and shape of the load curve quite closely. 

 

Figure 28: Actual load and forecasted load for one week in July 2021 (05.07.21 - 11.07.21) 

 

Figure 29: Actual load and forecasted load for one week in December 2021 (06.12.21 - 12.12.21) 
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7.1.3. Forecasting results for NO3 

The forecasting results for NO3 resembles the results for NO1 and 2 in terms of ranking the 

model’s performance. Again, the SARIMAX models are on top with both the lowest MAPE 

and RMSE, but this time the SARIMAX with interaction performs best in both periods. Among 

the machine learning models the Decision tree and MLPRegressor perform the best, closely 

behind the SARIMAX main model. Furthermore, The Random Forest model is the least 

accurate in both periods, in terms of MAPE and RMSE. For all models, the consistent 

relationship between MAPE and RMSE in both periods is an indication that no model has 

abnormally large outlier errors. The naïve model’s forecast performs poorer than the complex 

models, with a MAPE of about one percentage point higher than the complex models. 

Table 12: Forecasting accuracy metrics for NO3 

 Autumn 2019 Autumn 2021 

Model MAPE RMSE MAPE RMSE 

Naive 3,95 % 153,58 4,26 % 171,33 

SARIMAX main 2,76 % 103,98 3,07 % 119,39 

SARIMAX interaction 2,75 % 103,90 2,96 % 116,38 

Decision tree 2,82 % 106,68 3,10 % 122,74 

Random forest 2,99 % 114,54 3,43 % 136,11 

MLPRegressor 2,77 % 105,30 3,12 % 124,02 

 

For the extreme errors, the SARIMAX main has the lowest range despite performing worse on 

average than the SARIMAX interaction model. Once again, it is shown that the error ranges of 

the five complex models are comparable in size, from 34 to 38 percentage points. The naïve 

model has a range not much higher, showing that, just as for NO2, the load of the same hour 

the day before was at all times during the period in somewhat close approximation of the load. 

Table 13: Extreme forecasting errors NO3 for 2021 

Model Low High Range 

Naive -19,73 % 23,69 % 43,42 pp 

SARIMAX main -12,76 % 21,18 % 33,95 pp 

SARIMAX interaction -13,49 % 21,72 % 35,21 pp 

Decision tree -13,68 % 23,47 % 37,15 pp 

Random forest -16,50 % 21,09 % 37,58 pp 

MLPRegressor -13,41 % 21,08 % 34,48 pp 
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Figures 30 and 31 shows that there was for neither series a small number of abnormally large 

errors. It rather shows that the extreme error range is a more representative measure of the range 

of errors throughout the full period, than it was for the NO1 and NO2 predictions. As for the 

other prediction series, the residuals are larger during the latter part of the forecasting period, 

which is due to the higher levels of absolute load as shown in the NO1 section (figure 23). 

 

Figure 30: Residuals from SARIMAX interaction forecast of load in NO3 01.07.21 - 31.12.21 

 

Figure 31: Residuals from Decision tree forecast of load in NO3 01.07.21 - 31.12.21 
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SARIMAX interactions- and the Decision tree model capture the daily variations, while having 

some issues with predicting the variations at peak times of day. The SARIMAX interactions 

model outperforms the Decision tree model for the prediction of the Saturday, where the 

Decision tree err on the low side. For the December week in figure 33, the performance is 

reversed, where the Decision tree model seems to be a good forecast, while the SARIMAX 

interactions model has some more pronounced errors for Wednesday and Thursday. 
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Figure 32: Actual load and forecasted load for one week in July 2021 (05.07.21 - 11.07.21) 

 

Figure 33: Actual load and forecasted load for one week in December 2021 (06.12.21 - 12.12.21) 
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7.1.4. Forecasting results for NO4 

The forecasting performance in NO4 do somewhat deviate from the previously shown bidding 

zones. The similarities are the ranking of forecast, which is in line with previous bidding zones, 

where the SARIMAX models and Decision tree are the top performing models. In this bidding 

zone, the SARIMAX with main effects is more accurate than the SARIMAX with interactions 

in both periods. 

In contrast to the previous bidding zones, there is a large increase in the error metrics across all 

models from 2019 to 2021. The 2021 forecasts for NO4 have the worst average performance 

out of all bidding zones forecasted. This indicates that the training period prior to 2019 

resembles the autumn of 2019 closer than what the respective training period does for the 

autumn of 2021. This results in models that is fitted less accurate to predict the load in the 

autumn of 2021 than for 2019. Furthermore, the relationship between MAPE and RMSE looks 

to be inherently the same for both periods. This indicates that the cause of the increase is not 

likely to result from an increase in a few large deviations from the actual load, but higher errors 

on average across the period. 

Table 14: Forecasting accuracy metrics for NO4 

 Autumn 2019 Autumn 2021 

Model MAPE RMSE MAPE RMSE 

Naive 3,91 % 106,79 4,92 % 132,53 

SARIMAX main 2,79 % 74,36 3,61 % 94,73 

SARIMAX interaction 2,83 % 74,82 3,69 % 97,75 

Decision tree 2,75 % 74,05 3,74 % 97,18 

Random forest 2,87 % 77,63 3,95 % 101,26 

MLPRegressor 2,95 % 77,95 3,81 % 97,71 

 

With the average accuracy of the models in 2021 suffering, there is also a markedly higher 

extreme errors range as well. The range of errors in NO4 is higher than for any other bidding 

zone. Interestingly, the most accurate forecasting models on average was not the ones with the 

lower error ranges. The MLPRegressor while being only fourth best on average, is the model 

with the smallest range. 

 

 



56 

 

Table 15: Extreme forecasting errors NO4 for 2021 

Model Low High Range 

Naive -37,83 % 53,02 % 90,85 pp 

SARIMAX main -28,01 % 31,40 % 59,41 pp 

SARIMAX interaction -28,01 % 28,97 % 56,97 pp 

Decision tree -19,47 % 35,68 % 55,14 pp 

Random forest -19,17 % 38,42 % 57,59 pp 

MLPRegressor -17,34 % 34,38 % 51,72 pp 

 

The graphing of the residuals for the SARIMAX main- and Decision tree models in figure 34 

and 35 shows no marked period of higher errors. The accuracy is stable, but lower than for the 

other zones throughout. The errors are also in line with the relationship between MAPE and 

RMSE showing very few abnormally large errors. Keep in mind that NO4, the zone covering 

northern Norway, has the lowest average load of all five zones. As such the residuals for NO4, 

while lower, are when measured in percentage higher than for other zones. 

 

Figure 34: Residuals from SARIMAX main forecast of load in NO4 01.07.21 - 31.12.21 

 

Figure 35: Residuals from Decision tree forecast of load in NO4 01.07.21 - 31.12.21 
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load, while the actual load was falling, as is usual at nighttime. Nothing in the preceding days 

load or the weather data seem to explain this deviation. For the rest of the week the predicted 

movements are not as pronounced in the opposite direction, but the models seem unable to 

capture the changes in load still. For the December week shown in figure 37, both models are 

markedly better. While there still are some errors, the predicted load follows the actual load in 

direction throughout the week, providing reason to believe that the models are working albeit 

worse for some weeks of the period. 

 

Figure 36: Actual load and forecasted load for one week in July 2021 (05.07.21 - 11.07.21) 

 

Figure 37: Actual load and forecasted load for one week in December 2021 (06.12.21 - 12.12.21) 
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7.1.5. Forecasting results for NO5 

Once again, the rankings of the models are consistent with previous bidding zones, with the 

SARIMAX models performing best, followed by MLPRegressor and Decision tree. The 

Random Forest model is again among the worst performing models. Furthermore, interestingly 

all models have about 1 percentage point higher MAPE in 2019 compared to 2021. This is the 

opposite of the results in NO4. 

Table 16: Forecasting accuracy metrics for NO5 

 Autumn 2019 Autumn 2021 

Model MAPE RMSE MAPE RMSE 

Naive 5,11 % 114,48 4,07 % 104,12 

SARIMAX main 3,85 % 81,51 2,84 % 68,69 

SARIMAX interaction 3,78 % 80,66 2,75 % 69,21 

Decision tree 4,11 % 85,81 3,06 % 74,03 

Random forest 4,11 % 87,01 3,27 % 79,93 

MLPRegressor 3,99 % 83,94 3,01 % 73,92 

 

For the extreme errors measure of NO5 table 17 indicates that the fluctuations have been large. 

The ranges are not as large as they were for NO4, while still being high compared to the first 

three zones. Again, we see that the best performing model on average, the SARIMAX 

interactions was beaten in the extreme errors measure. For NO5 the top three is comprised of 

the machine learning models.  

Table 17: Extreme forecasting errors NO5 for 2021 

Model Low High Range 

Naive -26,78 % 34,20 % 60,98 pp 

SARIMAX main -17,93 % 37,38 % 55,31 pp 

SARIMAX interaction -15,32 % 36,21 % 51,52 pp 

Decision tree -15,80 % 30,37 % 46,18 pp 

Random forest -19,69 % 29,38 % 49,06 pp 

MLPRegressor -16,44 % 30,01 % 46,45 pp 

 

The residuals in figure 38 and 39 indicates no clear period of larger errors, except the increase 

of residuals with higher levels of load at the latter part of the series. There does however seem 

to be some error spikes at the start of August and mid-September, as well as during the 

December month for both models. 
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Figure 38: Residuals from SARIMAX interaction forecast of load in NO5 01.07.21 - 31.12.21 

 

Figure 39: Residuals from MLPRegressor forecast of load in NO 01.07.21 - 31.12.21 

Figures 40 and 41 shows that the models are closely fit to the actual load for the most part of 

both the July and December week. There is however an unusual load spike the Tuesday of the 

December week and a larger nighttime drop, in addition to a dip in the peak hours of Friday, 

which both models are unable to account for. 

 

Figure 40: Actual load and forecasted load for one week in July 2021 (05.07.21 - 11.07.21) 
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Figure 41: Actual load and forecasted load for one week in December 2021 (06.12.21 - 12.12.21) 
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7.2. Forecast compared to Entso-E 

This subchapter presents the forecasting results of the overall best statistical and machine 

learning model in comparison to the Entso-E’s Day-ahead forecast. Our findings are surprising 

as the official forecast Entso-E performs consistently poor in NO2-NO5 for both periods. 

Comparing results for the other biding zones is of little value as Entso-E perform poorer than 

the naïve benchmark. The reason for this is unknow, and any attempt at unfolding the reason 

this would be speculative. In table 18 the results are displayed for all bidding zones, time periods 

and models. 

Table 18: Entso-E, SARIMAX interaction and Decision tree forecast performance 

  Autumn 2019 Autumn 2021 

Bidding 

zone 
Model MAPE RMSE MAPE RMSE 

N
O

1
 

SARIMAX interaction 2,60 % 131,37 2,40 % 125,27 

Decision tree 2,97 % 158,5 2,67 % 145,34 

ENTSO-E 1,94 % 164,32 1,79 % 105,61 

N
O

2
 

SARIMAX interaction 2,31 % 125,27 2,55 % 144,74 

Decision tree 2,40 % 129,14 2,54 % 139,16 

ENTSO-E 7,44 % 326,17 14,25 % 641,47 

N
O

3
 

SARIMAX interaction 2,75 % 103,9 2,96 % 116,38 

Decision tree 2,82 % 106,68 3,10 % 122,74 

ENTSO-E 6,44 % 201,5 8,77 % 304,63 
N

O
4

 

SARIMAX interaction 2,83 % 74,82 3,69 % 97,75 

Decision tree 2,75 % 74,05 3,74 % 97,18 

ENTSO-E 7,18 % 194,8 6,38 % 148,08 

N
O

5
 

SARIMAX interaction 3,78 % 80,66 2,75 % 69,21 

Decision tree 4,11 % 85,81 3,06 % 74,03 

ENTSO-E 7,92 % 193,92 14,22 % 293,93 

 

For NO1 the Entso-E forecast perform significantly better in terms of MAPE than the best 

models designed in this thesis. For the last half of 2019, Entso-E’s forecast has a lower MAPE 

of 0,66pp and 1,03pp compared to the SARIMAX interactions and Decision tree, respectively. 

The only exception to this is accuracy measured in RMSE, where both the SARIMAX and 

Decision tree perform better. This indicates that Entso-E does have some large errors and are 

being punished by RMSE. In the last half of 2021 Entso-E’s forecast perform better in both 

metrics measured, with a lower absolute MAPE of 0,61% and 0,88% compared SARIMAX 

interactions and Decision tree.  
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Figure 42: Forecasting errors for SARIMAX interactions and Entso-E, NO1 – 2019 

Inspecting the forecasting errors of SARIMAX and Entso-E in NO1 for the last half of 2019 

enlightens the reason behind our results. In figure 42 we can observe Entso-Es forecast having 

large residuals on few occasions, resulting in a high RMSE. The largest errors in the end of 

October 2019 occurs on Tuesday evening the 29th, as Entso-E severely underpredicts the load 

for multiple hours, whereas the load for the same period follows the usual pattern. The errors 

of SARIMAX interaction are one average somewhat higher than that of Entso-E, but its biggest 

errors are smaller than those of Entso-E. Interestingly, the SARIMAX has consistently sized 

errors over the whole period, while Entso-E’s errors increase over time.  

In the five figures below, we show the residuals of the forecast published on Entso-E for the 

autumn of 2021, compared to our SARIMAX interactions model. Similarly, to what was shown 

for the autumn of 2019 in NO1, the Entso-E published forecast for NO1 is accurate on average 

while containing some points of extreme errors. For the bidding zones of NO2 to NO5 the 

graphing of residuals tells a different story. These four zones have no such pronounced outlier 

errors. However, the forecast is far inferior to the SARIMAX interactions predictions for the 

complete period.     
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Figure 43: Forecasting errors for SARIMAX interactions and Entso-E, NO1 – 2021 

 

Figure 44: Forecasting errors for SARIMAX interactions and Entso-E, NO2 - 2021 

 

Figure 45: Forecasting errors for SARIMAX interactions and Entso-E, NO3 – 2021 
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Figure 46: Forecasting errors for SARIMAX interactions and Entso-E, NO4 – 2021 

 

Figure 47: Forecasting errors for SARIMAX interactions and Entso-E, NO5 – 2021 
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7.3. The effect of price change 

This subchapter presents the results regarding our assessment of whether the price increase in 

2021 has had an influence on forecasting performance. In this thesis there is conducted two 

analyses to examine this relationship. The first analysis is to determine if adding the day-ahead 

price to the model improves the out of sample forecast performance. The result from this 

analysis performed with the SARIMAX main and Decision tree model is displayed in table 19. 

The “original” model is without price as a variable, and the “Price incl.” model does have price 

as a variable. 

Table 19: Forecasting comparison with and without a price-variable 

Bidding 

Zone 

 Autumn 2019 Autumn 2021 

Model Original Price incl. Original Price incl. 

N
O

1
 

SARIMAX interaction 2,93% 2,93% 2,56% 2,58% 

Decision tree 2,97% 2,96% 2,67% 2,73% 

N
O

2
 

SARIMAX interaction 2,38 % 2,36 % 2,43 % 2,43 % 

Decision tree 2,40% 2,41% 2,54% 2,56% 

N
O

3
 

SARIMAX interaction 2,76 % 2,76 % 3,07 % 3,07 % 

Decision tree 2,82 % 2,82% 3,10 % 3,10% 

N
O

4
 

SARIMAX interaction 2,79 % 2,76 % 3,61 % 3,67 % 

Decision tree 2,75 % 2,73% 3,74 % 3,72% 

N
O

5
 

SARIMAX interaction 3,85% 3,83% 2,84% 2,94% 

Decision tree 4,11 % 4,16% 3,06 % 2,90% 

 

Adding price as a variable to the both the SARIMAX main and Decision tree model resulted 

for the most part in close to equally accurate forecasts. This indicate that tomorrow’s forecasted 

price does not provide any additional information. It can also be argued that the forecasted day-

ahead price does not affect demand in a way that our original models are unable to pick up.  

The second analysis is to test whether our forecast systematically performed better or worse in 

the last half of 2021 than for 2019. For this analysis we compare our forecasting results for both 

periods using the best statistical and machine learning models for all bidding zones. The results 

are presented in table 20, as the difference between the last half of 2019 and 2021. For example, 

a negative value means that the forecast for 2019 had a lower MAPE than the forecast for 2021. 
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Table 20: Difference between forecast performance in the fall of 2019 and 2021 

Bidding 

Zone 
Model MAPE RMSE 

N
O

1
 

SARIMAX interaction 0,20 pp 6,1 

Decision tree 0,30 pp 13,2 

N
O

2
 

SARIMAX interaction -0,24 pp -19,5 

Decision tree -0,14 pp -10,0 

N
O

3
 

SARIMAX interaction -0,21 pp -12,5 

Decision tree -0,28 pp -16,1 

N
O

4
 

SARIMAX interaction -0,86 pp -22,9 

Decision tree -0,99 pp -23,1 

N
O

5
 

SARIMAX interaction 1,03 pp 11,5 

Decision tree 1,05 pp 11,8 

 

The results presented in table 20 shows no systematic difference in forecasting performance 

between the fall of 2019 with no price increase and 2021 with a large price increase. The bidding 

zones with the largest price increase; NO1, NO2 and NO5 shows no clearly trending difference 

in performance for 2019 and 2021. The forecasting performance in NO1 and NO5 performs 

better in 2021, while the opposite is the case for NO2. As for NO3 and NO4 who experienced 

a lower price increase, the results show that the forecasts did perform better in 2019. The 

spurious results of this analyze provides no indication that one year is more difficult to forecast. 

The difference appears to be random and is likely caused by other factors than price.  
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8. Discussion 

In this chapter the results are discussed in relation to the research questions asked in this thesis 

and compared to earlier findings. The topics are presented in the same order as they were 

presented in chapter 7. Firstly, a discussion of what model design perform the best, then whether 

the model design in this thesis is able to outperform Entso-E’s official forecast, and lastly, 

whether or not the recent price increase affect forecast performance. 

8.1. Model performance 

In the quest to identify the method which best forecasts the electricity demand in the prize zones 

of Norway, the SARIMAX models have consistently performed among the very best on average 

accuracy. Whether adding cross effects to the SARIMAX model in addition to the main effects 

as proposed by Hong et al. (2010) resulted in a better forecast, is ambiguous. For all bidding 

zones the cross effects either improved the forecasting performance from the SARIMAX main 

or performed close to equal. The results however do not conclusively show improvement from 

adding the cross effects. Compared to the results of Elamin & Fukushige (2018) which found a 

clear improvement in MAPE by adding cross effects, our results are spurious.  

Among the machine learning models the Decision tree method consistently performs the best 

or equal to the other machine learning models. At the other end of the scale the Random Forest 

model consistently performs the worst. Following logically from the design of Random Forest 

models, consisting of a thousand decision trees, one could expect it would be able to capture 

more information and tune its predictions more accurately. However, our results are in line with 

earlier findings as the Decision tree model uses a gradient booster which has been known to 

outperform a standard Random Forest model, as noted in Caruana & Niculescu-Mizil (2006). 

Although the best average performance is achieved using the SARIMAX models, there is a 

trade-off to consider. The results of the Decision tree model are close to equal accuracy in all 

five zones and do inherent some desired qualities other than accuracy. The SARIMAX models 

require extensive preprocessing of the input data and analysis to fit the model. Meanwhile, the 

main advantage of a Decision tree model is that it handles data well as is, without differencing, 

normalizing, or standardizing. In addition, the Decision tree model proved to be the most 

computationally efficient of the complex models, requiring both the least computational power 

and having the lowest runtimes. The choice of model is thus heavily influenced by what 

constraints one operates under. With limited time or computing power, one might prefer the 
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Decision trees easy implementation and quicker runtimes. Without these constraints the 

SARIMAX models deliver the best average forecast and would be preferred.        

Another consideration is between the average accuracy and the size of the extreme errors. While 

the average accuracy is the most telling metric for the overall quality of the forecasting model, 

some users of forecasting might be more sensitive to large outlier errors. In the extreme range 

of the errors the Decision tree performs best in two, the MLPRegressor in one, while the 

SARIMAX main has the lowest range in the remaining two zones.  However, as the residual 

graphs in chapter 7.1 shows, the extreme errors are not necessarily indicative of a model with 

many large errors. While possible, the results do not show any model with large errors and near 

zero errors averaging to the best accuracy for the zone. The extreme range for the models is 

mostly at comparable sizes in each zone, and the errors of each model seems to have similar 

distributions within their respective ranges. With this in mind, we argue the results of the 

extreme errors metric do not show a model clearly outperforming the rest. 

Some differences between the statistical models and the machine learning models can also be 

found in the input features. While the base input features are the same for both sets, some 

differences developed through testing and adapting each model. All models were built using 

the base variables capturing seasonal- and weather-effects. Where they differ is in the 

adaptation of these variables to capture the effects most efficiently for each model type to 

produce the most accurate forecast. This we would argue does not hurt the comparability of the 

models, apart from the differing preprocessing needs trade-off which was discussed earlier.          

Finally, attempting to conclude on what forecasting model performs the best, can at best be 

applied to those who have the same experience with statistics and machine learning as 

ourselves. As noted by Hong & Fan (2016) empirical reviews on different STLF techniques can 

be misleading, depending on the researcher’s expertise and/or case study setup. In this thesis 

we argue that both techniques are treated equally fair in terms of case study setup, but our own 

expertise is in favor of the statistical approach. Although this is the first time we design a 

statistical forecast of this complexity, neither of us had prior knowledge or experience with 

machine learning techniques.  

With this in mind, the machine learning techniques performed close to the SARIMAX model 

and is easier to implement and run. In addition, running the SARIMAX model in Eviews is 

demanding in terms of computational power and the model had a significantly longer runtime. 
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However, the computational speed of EViews might be outperformed in a prediction setting by 

other software such as R or Python. 

8.2. Model performance compared to Entso-E 

Comparing the forecast accuracy for NO1 the last half of 2019, Entso-E’s official forecast 

perform significantly better in terms of MAPE, but poorer measured by RMSE. When 

inspecting the forecast residuals, it shows that Entso-Es forecast has lower average errors, but 

a few very large errors. Low forecasting errors is very beneficial for market participants and 

TSO’s as it provides more reliable insights, which can improve market efficiency, production 

planning and network balancing. Although a lower average error is very beneficial, so is 

minimizing few but large errors. Very large forecasting errors can reduce efficiency of the day-

ahead market and balancing of the transmission network. For the last half of 2021 Entso-E’s 

forecast performs best in NO1 measured in both MAPE and RMSE. Even with the few large 

errors in mind the forecast published on the Entso-E platform for NO1 is a very good 

approximation of the day-ahead load. The models developed in this thesis has not been able to 

match the average accuracy the forecast published on Entso-E achieves for this bidding zone.        

The accuracy of the forecast published on the Entso-E platform for NO1 raises the question of 

why zones NO2 through NO5 is predicted with much lower quality. This thesis’ models are 

shown to be applicable to all five zones with comparably accurate results, all of which clears 

the bar of being better than the naïve forecast. The day-ahead forecast published on the Entso-

E platform, however, consistently performs worse than the naïve forecast for all zones but NO1. 

Following from the fact that our models perform in all five zones, and the fact that the forecast 

published on the Entso-E platform for NO1 is accurate, one would expect it to be entirely 

possible to generalize the forecasts used to predict NO2-5 more accurately as well. Why this is 

not the case is unbeknown to us and our inquiries into the matter has not resulted in anything.   

The inaccuracy of the published forecasts for all zones excluding NO1 makes the comparison 

between the models developed in this thesis and the official forecasts difficult to interpret. 

While it is clear if one were to take the published forecasts as best effort models for the four 

zones, we have in this thesis been able to develop better forecasts outperforming the official 

forecast in four out of five zones. However, as the results seem to indicate that something other 

than lack of ability plays a part, we would exercise caution in the interpretation of zones NO2 

to 5.     
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Another consideration to make is that the forecasts developed are performed as rolling 24-hour 

predictions. This makes the forecasts not directly comparable with the forecasts gathered from 

the Entso-E Transparency Platform, as those forecasts are made for the complete following day 

at a set time the day ahead. The forecasts made in this thesis will thus have some informational 

advantage over the official forecasts for the last part of the day, while having some disadvantage 

for the first part. On balance we argue the results can be compared when keeping this in mind.   

For the models designed in this thesis to compete with Entso-E in NO1, we believe some 

improvements can be made. Firstly, a more in-depth analysis of the model errors could be 

conducted, to identify under which conditions the models can be improved. This can be useful 

in search of further optimizing feature and variable selection. By looking at the errors split into 

their seasonal components as discussed throughout the thesis, annually, weekly, and daily 

sections, it would be possible to identify whether there are seasonally dependent effects on the 

load for which our models do not account. Building on the understanding of what seasonal 

conditions the models are less optimized for, it would be possible to search for variables which 

could be affecting load under these specific conditions. 

Another improvement to be considered, of the weather variable quality, can be done by 

performing the weather station selection suggested by Hong et al. (2015). The suggestion made 

by Hong et al. is a framework design to determine how many and which weather stations to use 

for the load forecasting of a geographic area. As demonstrated by their research, this can 

increase the quality of the weather variables and lead to better forecast accuracy. No 

publications of such analysis pertaining to the forecasting of load in the Norwegian markets has 

been found. As such, it is possible improvements could be made by using a weather station 

selection more adapted to capture effects of for instance population density in combination with 

weather conditions. 

8.3. The power price’s influence on load forecasting 

The price increase seen in Norway the last year is unprecedented and might have resulted in a 

short-term demand effect. A short-term change in demand based on the power price can result 

in less accurate forecasts, because they are trained on historical data and are therefore unable to 

account for new demand patterns. In addition, the day-ahead price is traditionally not used in 

load forecasts for two reasons. Firstly, the predicted day-ahead load is used in the day-ahead 

market price formation, and secondly, the short-term price elasticity is found to be close to zero, 

(Hofmann & Lindberg, 2019). In other words, forecasts assume inelastic price sensitivity and 
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are therefore unable to react to potential short-term price responses. This is the reason for the 

work in this thesis, to find whether the price changes of the last half of 2021 have a significant 

effect on the forecasting of load in the Norwegian market. 

Thus, examining the relationship and causality between price and load is made difficult by the 

way price formation works in the electricity markets. The day-ahead prices are determined 

using amongst other factors the day-ahead load forecasts, a higher predicted load means the 

day-ahead price is increased. As such we observe a market where, counterintuitively, models 

including price as an exogenous variable will show a positive relation indicating higher prices 

leads to higher demand. This is where the age-old problem of regression analysis is apparent, 

correlation does not necessarily indicate causation. 

In light of this, and the fact that a pure price elasticity analysis was outside the scope of the 

thesis, the solution is to be a mapping of whether adding the price-information would 

significantly change the prediction quality of the models. This approach has some obvious 

weaknesses. The most important of which is the interpretation of the results. Should the 

resulting accuracy of the models change significantly when adding the price information, the 

interpretation would be limited to the fact that there is some information about day-ahead load 

to be captured in the price variable. Whether we have found changed price elasticity compared 

to what previously has been assumed, or if the difference comes from other effects will have to 

be left to further work. The strength, however, is in its practical approach. We are able to shed 

light on whether the price increase has had any implication for load which can be captured by 

the forecasting models. This would lay the groundwork for further analysis of the exact market 

impacts of the price increase. 

In our first analysis, adding price as a variable shows no improvement in forecasting 

performance for either 2019 or 2021. The accuracy, measured in MAPE rarely deviated by more 

than 0,03 percentage points when adding the price information compared to the predictions 

without price. Neither did the results change in one uniform direction. This indicates quite 

clearly only small random changes from adding a new variable. Nothing indicates the models 

was able to learn any significant new information from the price. This is in line with previously 

discussed assumptions for the electricity markets, in that the price elasticity is likely to still be 

close to zero.      

The second analysis of the price effect on load forecasting, the changes in model performance 

between 2019 and 2021, gives no reason to believe the price changes significantly changed 



72 

 

forecasting neither. Of the five zones, three shows slightly worse accuracy, while two show 

improvements from 2019 to 2021. Of the three southern zones with the largest price increase in 

2021, one improved while two worsened. Once again, the testing has failed to prove a clear and 

uniform change, which leads us to argue the forecasting of load was not made more difficult by 

the large price increases.  
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9. Conclusion 

We started the thesis attempting to answer how best to forecast load in periods of extreme price 

movements. To answer this, we divided the question into three sub-questions. The first was 

what is the best type of model for load forecasting in the period in question. The second was 

whether the best models can compete with the official forecasts published on the Entso-E 

transparency platform. The third and final question was whether the price movements changed 

the conditions for forecasting load in the Norwegian market. We offer the conclusions in the 

same order. 

In the attempt to find the best model to accurately forecast the day-ahead load in the Norwegian 

markets during the last half of 2021’s extreme price movements for southern Norway we have 

found two models to perform close to equal. While the SARIMAX model including interactions 

has the most accurate forecasts on average, the Decision tree model is not far behind. For zones 

NO1 through NO5 the SARIMAX with interactions showed accuracy measured by MAPE of 

2,40%, 2,55%, 2,96%, 3,69% and 2,75% respectively. The Decision tree models accuracy was 

2,67%, 2,54%, 3,10%, 3,74%, and 3,06% respectively. While the SARIMAX model is more 

accurate, the Decision tree model is both faster to compute and easier to set up. The best model 

is thus dependent on the need of the forecaster. For absolute performance, we have shown the 

SARIMAX with interactions to be the best model. When in need for speed and ease of 

implementation, the Decision tree model delivers adequate results.  

When comparing the models developed in this thesis to the forecasts published on the Entso-E 

platform we have shown our models to be the most accurate for four out of five zones. This 

comes with the caveat that the predictions published for all zones except NO1 are far behind 

both our models and a naïve forecast, for which we can offer no explanation. For NO1, the 

forecast published on the Entso-E platform has a MAPE of 1,79%, clearly outperforming our 

best model, the SARIMAX interactions with its 2,40%. All models developed in this thesis, 

however, are able to remain comparably accurate for the remaining four zones unlike the 

forecast published on the Entso-E platform. 

Lastly, our results show that the price changes seen during the autumn of 2021 appear to not 

have any influence on the accuracy in the forecasting of load. Forecasting with and without the 

price variable showed no significant difference in results, indicating that there was no 

information to be gained by the models from the price changes. We have also shown that the 

difficulty of load-forecasting in the three zones where we have seen the largest price increase 
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in 2021, NO1, NO2 and NO5, did not see a clearly larger change than in the two zones with 

lower price increases. This leads us to conclude that the extreme price movements likely have 

not been an important factor in the determination of the load in the five Norwegian bidding 

zones.                   
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Appendix 1: Estimation output 

 

Table 21: Estimation output for SARIMAX(0,0,0)(7,0,7)24 interaction  for NO1 from 01.01.15 to 30.06.19 

Variable Coefficient t-Statistic Variable Coefficient t-Statistic Variable Coefficient t-Statistic 

C 
4293,8 

16,09 
Wed* 

Hour1 

70,8 
3,43 

Hour17* 

Holiday 

-260,6 
-12,70 

(266,8) (20,6) (20,5) 

SAR(24) 
1,505 

26,68 
Wed* 

Hour6 

1018,1 
3,02 

Hour18* 

Holiday 

-231,0 
-10,92 

(0,056) (337,3) (21,2) 

SAR(48) 
-0,980 

-13,73 
Wed* 

Hour7 

1361,7 
4,06 

Hour19* 

Holiday 

-212,6 
-9,90 

(0,071) (335,8) (21,5) 

SAR(72) 
0,332 

4,16 
Wed* 

Hour8 

1391,9 
4,08 

Hour20* 

Holiday 

-177,3 
-8,24 

(0,080) (341,4) (21,5) 

SAR(96) 
0,292 

3,79 
Wed* 

Hour9 

1351,2 
3,79 

Hour21* 

Holiday 

-147,5 
-6,65 

(0,077) (356,1) (22,2) 

SAR(120) 
-0,780 

-12,54 
Wed* 

Hour10 

1285,9 
3,55 

Hour22* 

Holiday 

-107,5 
-4,60 

(0,062) (362,7) (23,4) 

SAR(144) 
1,144 

26,01 
Wed* 

Hour11 

1305,1 
3,62 

Hour23* 

Holiday 

-66,3 
-2,73 

(0,044) (361,0) (24,2) 

SAR(168) 
-0,520 

-14,28 
Wed* 

Hour12 

1301,3 
3,62 

Tempt* 

Hour4 

-25,0 
-3,12 

(0,036) (359,9) (8,0) 

SMA(24) 
-0,849 

-14,90 
Wed* 

Hour13 

1291,3 
3,60 

Tempt* 

Hour5 

-26,7 
-4,00 

(0,057) (358,9) (6,7) 

SMA(48) 
0,518 

12,10 
Wed* 

Hour14 

1282,3 
3,58 

Tempt* 

Hour6 

-32,2 
-5,04 

(0,043) (357,7) (6,4) 

SMA(96) 
-0,311 

-7,21 
Wed* 

Hour15 

1296,1 
3,68 

Tempt* 

Hour7 

-39,4 
-6,42 

(0,043) (352,1) (6,1) 

SMA(120) 
0,622 

19,31 
Wed* 

Hour16 

1335,4 
3,78 

Tempt* 

Hour8 

-36,2 
-5,65 

(0,032) (353,6) (6,4) 

SMA(144) 
-0,669 

-21,82 
Wed* 

Hour17 

1312,0 
3,65 

Tempt* 

Hour9 

-39,7 
-5,94 

(0,031) (359,8) (6,7) 

SMA(168) 
0,142 

8,45 
Wed* 

Hour18 

1245,3 
3,41 

Tempt* 

Hour10 

-40,9 
-5,89 

(0,02) (365,0) (6,9) 

Feb 
-157,1 

-8,27 
Wed* 

Hour19 

1162,5 
3,13 

Tempt* 

Hour11 

-44,5 
-6,73 

(19,0) (370,8) (6,6) 

Mar 
-341,9 

-18,54 
Wed* 

Hour20 

1072,4 
2,88 

Tempt* 

Hour12 

-40,1 
-5,97 

(18,4) (372,9) (6,7) 

Apr 
-391,4 

-19,44 
Thu* 

Hour1 

74,0 
3,37 

Tempt* 

Hour13 

-38,2 
-5,57 

(20,1) (21,9) (6,9) 

May 
-789,8 

-30,90 
Thu* 

Hour6 

1022,6 
3,03 

Tempt* 

Hour14 

-35,2 
-5,20 

(25,6) (337,8) (6,8) 

Jun 
-1148,0 

-33,47 
Thu* 

Hour7 

1368,7 
4,07 

Tempt* 

Hour15 

-21,5 
-3,27 

(34,3) (336,6) (6,6) 

Jul 
-1315,4 

-23,80 
Thu* 

Hour8 

1405,8 
4,11 

Tempt* 

Hour16 

-30,2 
-4,62 

(55,3) (342,4) (6,5) 

Aug 
-1222,3 

-22,02 
Thu* 

Hour9 

1367,2 
3,83 

Tempt-1* 

Hour4 

27,1 
3,27 

(55,5) (357,0) (8,3) 

Sep 
-935,4 

-22,02 
Thu* 

Hour10 

1309,2 
3,60 

Tempt-1* 

Hour5 

27,1 
3,94 

(42,5) (363,5) (6,9) 

Oct 
-600,6 

-21,10 
Thu* 

Hour11 

1323,6 
3,66 

Tempt-1* 

Hour6 

28,8 
4,38 

(28,5) (361,5) (6,6) 

Nov 
-221,5 

-9,23 
Thu* 

Hour12 

1318,3 
3,66 

Tempt-1* 

Hour7 

32,1 
5,07 

(24,0) (360,4) (6,3) 

Dec 
-165,3 

-8,78 
Thu* 

Hour13 

1312,1 
3,65 

Tempt-1* 

Hour8 

26,7 
4,04 

(18,8) (359,0) (6,6) 

Tempt-1 
-54,5 

-9,07 
Thu* 

Hour14 

1297,4 
3,62 

Tempt-1* 

Hour9 

28,4 
4,13 

(6,0) (357,9) (6,9) 

Tempt-24 -28,4 -109,01 Thu* 1308,0 3,72 28,8 4,08 
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(0,26) 
Hour15 

(352,1) 
Tempt-1* 

Hour10 
(7,1) 

Temp2 
0,26 

4,55 
Thu* 

Hour16 

1348,7 
3,81 

Tempt-1* 

Hour11 

28,6 
4,23 

(0,06) (353,8) (6,8) 

Temp2
t-1 

0,77 
15,52 

Thu* 

Hour17 

1321,7 
3,67 

Tempt-1* 

Hour12 

22,7 
3,29 

(0,05) (360,0) (6,9) 

Temp2
t-24 

0,59 
38,31 

Thu* 

Hour18 

1253,6 
3,43 

Tempt-1* 

Hour13 

18,8 
2,69 

(0,02) (365,5) (7,0) 

Hum 
-2,99 

-8,37 
Thu* 

Hour19 

1157,6 
3,12 

Humt* 

Hour9 

0,93 
2,60 

(0,36) (371,4) (0,36) 

Humt-1 
-1,41 

-8,12 
Thu* 

Hour20 

1065,1 
2,85 

Humt* 

Hour10 

1,72 
4,76 

(0,17) (373,2) (0,36) 

Mon* 

Hour6 

995,8 
2,96 

Fri* 

Hour1 

83,1 
3,88 

Humt* 

Hour11 

1,99 
5,56 

(336,3) (21,4) (0,36) 

Mon* 

Hour7 

1342,3 
4,01 

Fri* 

Hour6 

995,5 
2,94 

Humt* 

Hour12 

2,37 
6,76 

(334,5) (338,7) (0,35) 

Mon* 

Hour8 

1386,8 
4,08 

Fri* 

Hour7 

1344,1 
3,98 

Humt* 

Hour13 

2,76 
7,79 

(340,1) (337,3) (0,35) 

Mon* 

Hour9 

1361,7 
3,83 

Fri* 

Hour8 

1388,1 
4,05 

Humt* 

Hour14 

3,08 
8,74 

(355,2) (342,8) (0,35) 

Mon* 

Hour10 

1314,6 
3,63 

Fri* 

Hour9 

1359,1 
3,80 

Humt* 

Hour15 

3,24 
9,35 

(362,5) (357,3) (0,35) 

Mon* 

Hour11 

1342,4 
3,72 

Fri* 

Hour10 

1305,7 
3,59 

Humt* 

Hour16 

3,05 
8,80 

(360,8) (363,7) (0,35) 

Mon* 

Hour12 

1334,2 
3,71 

Fri* 

Hour11 

1314,0 
3,63 

Humt* 

Hour17 

2,70 
7,66 

(359,7) (361,8) (0,35) 

Mon* 

Hour13 

1324,4 
3,69 

Fri* 

Hour12 

1288,9 
3,58 

Humt* 

Hour18 

2,25 
6,25 

(358,7) (360,5) (0,36) 

Mon* 

Hour14 

1312,9 
3,67 

Fri* 

Hour13 

1261,1 
3,51 

Humt* 

Hour19 

1,95 
5,40 

(358,0) (359,0) (0,36) 

Mon* 

Hour15 

1324,7 
3,76 

Fri* 

Hour14 

1225,9 
3,43 

Humt* 

Hour20 

1,34 
3,62 

(352,4) (357,9) (0,37) 

Mon* 

Hour16 

1359,6 
3,85 

Fri* 

Hour15 

1215,0 
3,45 

Humt* 

Hour21 

1,05 
2,85 

(353,6) (352,0) (0,37) 

Mon* 

Hour17 

1330,2 
3,70 

Fri* 

Hour16 

1239,4 
3,50 

Tempt* 

Apr 

-7,37 
-6,77 

(359,8) (354,0) (1,09) 

Mon* 

Hour18 

1263,4 
3,46 

Fri* 

Hour17 

1221,7 
3,39 

Tempt* 

May 

7,53 
6,33 

(364,8) (360,6) (1,19) 

Mon* 

Hour19 

1175,6 
3,17 

Fri* 

Hour18 

1154,1 
3,16 

Tempt* 

Jun 

25,89 
17,32 

(370,7) (365,8) (1,49) 

Mon* 

Hour20 

1080,5 
2,90 

Fri* 

Hour19 

1020,4 
2,74 

Tempt* 

Jul 

32,43 
15,25 

(372,7) (372,0) (2,13) 

Tue* 

Hour1 

65,6 
4,30 

Sat* 

Hour11 

933,5 
2,58 

Tempt* 

Aug 

29,49 
12,75 

(15,3) (362,4) (2,31) 

Tue* 

Hour6 

1044,9 
3,10 

Sat* 

Hour16 

917,2 
2,59 

Tempt* 

Sep 

16,72 
8,55 

(336,8) (354,3) (1,96) 

Tue* 

Hour7 

1384,9 
4,13 

Sat* 

Hour17 

957,1 
2,65 

Tempt* 

Oct 

-3,55 
-2,99 

(335,0) (360,8) (1,19) 

Tue* 

Hour8 

1418,7 
4,16 

Hour4* 

Holiday 

-103,0 
-4,66 

Tempt* 

Nov 

-10,90 
-11,55 

(340,8) (22,1) (0,94) 

Tue* 

Hour9 

1377,9 
3,87 

Hour5* 

Holiday 

-267,6 
-13,72 

Tempt* 

Dec 

-12,47 
-15,79 

(356,0) (19,5) (0,79) 

Tue* 

Hour10 

1317,4 
3,63 

Hour6* 

Holiday 

-463,6 
-25,25 

Humt* 

Feb 

2,55 
12,49 

(362,9) (18,4) (0,20) 

Tue* 

Hour11 

1339,6 
3,71 

Hour7* 

Holiday 

-492,1 
-27,00 

Humt* 

Mar 

4,92 
27,88 

(361,0) (18,2) (0,18) 

Tue* 

Hour12 

1331,1 
3,70 

Hour8* 

Holiday 

-431,7 
-23,20 

Humt* 

Apr 

4,59 
25,36 

(360,1) (18,6) (0,18) 

Tue* 

Hour13 

1325,7 
3,69 

Hour9* 

Holiday 

-381,4 
-19,96 

Humt* 

May 

7,28 
34,10 

(359,0) (19,1) (0,21) 
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Tue* 

Hour14 

1311,3 
3,66 

Hour10* 

Holiday 

-338,1 
-17,51 

Humt* 

Jun 

7,68 
28,51 

(358,1) (19,3) (0,27) 

Tue* 

Hour15 

1325,6 
3,76 

Hour11* 

Holiday 

-324,3 
-16,74 

Humt* 

Jul 

7,50 
19,76 

(352,5) (19,4) (0,38) 

Tue* 

Hour16 

1364,8 
3,86 

Hour12* 

Holiday 

-313,4 
-15,85 

Humt* 

Aug 

7,42 
19,45 

(353,9) (19,8) (0,38) 

Tue* 

Hour17 

1341,6 
3,72 

Hour13* 

Holiday 

-314,8 
-15,82 

Humt* 

Sep 

6,19 
17,96 

(360,4) (19,9) (0,34) 

Tue* 

Hour18 

1277,2 
3,49 

Hour14* 

Holiday 

-313,8 
-15,68 

Humt* 

Oct 

5,18 
22,19 

(365,4) (20,0) (0,23) 

Tue* 

Hour19 

1186,6 
3,20 

Hour15* 

Holiday 

-306,8 
-15,38 

Humt* 

Nov 

1,29 
5,32 

(371,3) (19,9) (0,24) 

Tue* 

Hour20 

1098,3 
2,94 

Hour16* 

Holiday 

-293,6 
-14,65 

Humt* 

Dec 

1,07 
5,28 

(373,1) (20,0) (0,20) 
      Tempt* 

Humt 

-0,23 
-19,10       (0,01) 

R-squared 0,9905  SIC 12,68     

AIC 12,61  HQIC 12,64     
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Appendix 2: Residual graphs 
 

Residual graphs NO1 

 

Figure 48: Residuals from RandomForestRegressor forecast of load in NO1 01.07.21 - 31.12.21 

 

Figure 49: Residuals from MLPRegressor forecast of load in NO1 01.07.21 - 31.12.21 

 

Figure 50: Residuals from SARIMAX main forecast of load in NO1 01.07.21 - 31.12.21 
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Figure 51: Residuals from Naïve forecast of load in NO1 01.07.21 - 31.12.21 

 

Residual graphs NO2 

 

Figure 52: Residuals from RandomForestRegressor forecast of load in NO2 01.07.21 - 31.12.21 

 

Figure 53: Residuals from MLPRegressor forecast of load in NO2 01.07.21 - 31.12.21 
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Figure 54: Residuals from SARIMAX interactions forecast of load in NO2 01.07.21 - 31.12.21 

 

Figure 55: Residuals from Naïve forecast of load in NO2 01.07.21 - 31.12.21 

Residual graphs NO3 

 

Figure 56: Residuals from Random Forest forecast of load in NO3 01.07.21 - 31.12.21 
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Figure 57: Residuals from MLPRegressor forecast of load in NO3 01.07.21 - 31.12.21 

 

Figure 58: Residuals from SARIMAX main forecast of load in NO3 01.07.21 - 31.12.21 

 

Figure 59: Residuals from Naïve forecast of load in NO3 01.07.21 - 31.12.21 
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Residual graphs NO4 

 

Figure 60: Residuals from Random Forest forecast of load in NO4 01.07.21 - 31.12.21 

 

Figure 61: Residuals from MLPRegressor forecast of load in NO4 01.07.21 - 31.12.21 

 

Figure 62: Residuals from SARIMAX interaction forecast of load in NO4 01.07.21 - 31.12.21 
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Figure 63: Residuals from Naïve forecast of load in NO4 01.07.21 - 31.12.21 

Residual graphs NO5 

 

Figure 64: Residuals from Decision tree forecast of load in NO5 01.07.21 - 31.12.21 

 

Figure 65: Residuals from Random Forest forecast of load in NO5 01.07.21 - 31.12.21 
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Figure 66: Residuals from SARIMAX main forecast of load in NO5 01.07.21 - 31.12.21 

 

Figure 67: Residuals from Naïve forecast of load in NO5 01.07.21 - 31.12.21 
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MW - Megawatt 

PACF – Partial Autocorrelation Function 

pp – Percentage points 

RF – Random Forest 

RMSE – Root Mean Squared Error 
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SARMA – Seasonal Autoregressive Moving Average 

SARIMA – Seasonal Autoregressive Integrated Moving Average 
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SVM – Support Vector Machine 
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