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Abstract 

In this thesis we aimed to find the best methods for short-term load forecasting in the Norwegian 

electricity market during times of unprecedented price movements. We answered three 

questions related to this aim. The first was which model achieved the most accurate forecast. 

The second was whether our proposed models outperform the official forecasts published on 

the Entso-E platform. The third question asked was if the price movements had any effect on 

the accuracy of the load forecast.  

We constructed two SARIMAX models, a Gradient boosted decision tree, a Random Forest, 

and a Multilayer perceptron model. Our findings show the two SARIMAX models to be most 

accurate. These models outperformed the forecasts published on the Entso-E platform in four 

out of the five Norwegian bidding zones, measured in MAPE and RMSE. Finally, we have 

shown that forecasting load with and without price information did not result in significant 

differences in accuracy. Our findings did not indicate an increase in difficulty of forecasting 

2021 compared to 2019, neither for the three southern bidding zones with higher price increase 

nor the northern two zones.    
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Sammendrag 

I denne masteroppgaven har vi forsøkt å finne den beste metoden for kortsiktig prognostisering 

av elektrisitets-etterspørsel i perioder med ekstreme prisbevegelser. Vi har besvart tre spørsmål 

knyttet til denne problemstillingen. Det første var hvilken modell som oppnår høyest 

nøyaktighet. Det andre var om våre modeller presterer bedre enn de publiserte prognosene på 

Entso-Es offentlig tilgjengelige data-plattform. Det tredje spørsmålet var om de ekstreme 

prisbevegelsene hadde noen effekt på nøyaktigheten av prognosene.  

Vi har laget to SARIMAX modeller, en Gradient boosting decision tree-, en Random Forest og 

en Multilayer perceptron-modell. Gjennom arbeidet har vi vist at de to SARIMAX-modellene 

presterer best. Disse modellene er mer nøyaktig enn prognosene publisert på Entso-Es plattform 

for fire av de fem norske strømregionene, målt i MAPE og RMSE. Til slutt har vi vist at 

prognoser gjort både med og uten prisinformasjon ikke gir signifikante forskjeller i nøyaktighet. 

Det ble heller ikke påvist en klar forskjell i vanskelighetsgraden av å prognostisere 2021 

sammenlignet med 2019, verken for de sørlige prissonene med høy prisvekst eller de nordlige 

sonene med en lavere prisvekst.  
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1. Introduction 

The power grid and the supply of electricity is one of the highly critical infrastructures of the 

modern world, and in the years to come the importance of electric power will only grow further. 

As we aim to reduce the share of high-emission energy sources in the total energy production 

globally, the share of renewable electric power is set to increase. The two largest areas of growth 

in the production of renewable power are, according to the IEA (2021), solar- and wind power. 

These are variable renewable energy (VRE) sources dependent on the weather conditions, 

�P�H�D�Q�L�Q�J���W�K�H���S�U�R�G�X�F�W�L�R�Q���F�D�S�D�F�L�W�\���Z�L�O�O���Y�D�U�\���R�X�W���R�I���W�K�H���S�U�R�G�X�F�H�U�¶�V���F�R�Q�W�U�R�O�����:�L�W�K���D���O�D�U�J�H�U���V�K�D�U�H���R�I��

the global supply of energy dependent on the whims of the weather, proper planning is 

paramount. 

We aim to contribute to the power production planning by researching how best to forecast day-

ahead load in the Norwegian market. The forecasting of load plays a role in the price formation 

in the physical and financial power market, and thus a more accurate forecast will benefit 

market participants on both the buy- and sell-side. The accuracy of the forecast is also of 

importance to the Transmission System Operators (TSO) to ensure the electricity infrastructure 

security and reliability, by balancing the supply and demand of the physical market. 

We will focus on times of greater than usual price movements, represented in our testing by the 

period of abnormally high electricity-prices which occurred during the fall of 2021. The interest 

for this period specifically, comes partly from the deeply rooted assumption that the price 

sensitivity of demand in the electricity markets is close to zero. As such, we would expect to 

find that the price increase will not be a significant factor in load forecasting. All else equal, the 

methods of load forecasting should be no less accurate during the fall of last year, as the price-

factor which changed significantly should make little difference in the demand. 

The aim of the thesis is to find the best model to forecast load in the Norwegian electricity 

market when the price is higher than usual. To answer this, the work is centered around three 

more detailed questions. The first question is designed to find the best forecasting model. In 

answering the second question, we find whether our two best models add anything to the 

forecasting work, by comparing them to the officially published forecasts. The third question 

asked is if the recent price increase had any impact on the quality of the forecast. 

The first question is regarding the best method of load forecasting for the timespan selected. 

We will approach this question by utilizing two different, but related types of methodologies. 

The first of which is the more traditional way of analyzing time series data, by using statistical 



2 
 

regression-based methods. For the second type of methods, we will use a rapidly emerging way 

of analysis in the finance field, a set of different machine learning models. The thesis will not 

discuss the inner workings of machine learning and artificial intelligence in great depth, as the 

basis for the work is in the financial aspect of load forecasting, not the technical programming 

aspect of machine learning. The aim is to compare the methods, and to analyze whether the use 

of machine learning techniques provides better results for short-term load forecasting, or if the 

statistical methods prove to be the superior forecasters. 

The second question is whether it is possible to improve �W�R�G�D�\�¶�V official forecasts published on 

the Entso-E Transparency Platform. This will be evaluated by the performance of the forecasts 

developed in this thesis measured by two main metrics. The first of which is the overall 

performance of the forecast compared to the official forecast over the time periods in question. 

This will be measured as the average error of the forecast. The second metric will be the size 

of the outlier forecasting residuals. The argument for both metrics to be used being that the 

average forecasting performance best describes the models fit. However, the average error 

should be seen in accordance with large errors, to account for outlier risk in the forecast. 

The third question is whether the forecasting performance is significantly affected by the price 

increase in the autumn of 2021. The last half of 2021 is a period with larger than usual price 

increase compared to previous years, meanwhile the autumn of 2019 experienced prices at more 

normal levels. The first test is to compare the forecasting accuracy of models including a price 

variable, to the accuracy of the same model blind to the price. If the model with price performs 

different to the one without price, the price variable is providing either information or noise, 

depending on whether the accuracy is better or worse. The second test, is a comparison of the 

accuracy in the autumn of 2019 to the autumn of 2021, using the two best models without price 

information. Again, if the price increase has influenced the load, we would expect a model not 

accounting for price changes to perform poorer in 2021 than 2019. We would also expect to see 

the three southernmost bidding zones where the price increase was steepest, to be comparatively 

more difficult to forecast in 2021 than the two northern zones with a lower price increase. As 

such, the two northern zones should be closer in forecasting accuracy between 2019 and 2021 

than the southern three. 

The forecasts will be made as rolling 24-hours in ahead predictions. This means that the 

predictions made for the first hour of any given day, is made using all information observable 

at the latest 24 hours in advance. To evaluate the forecasting performance two benchmarks is 

selected. The first of which is a seasonal naïve forecast. If forecasting models are unable to 
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outperform the seasonal naïve forecasts, assuming the load is equal to the load 24 hours in 

advance, we would argue it provides no value to the forecasting work. The second benchmark 

is the official forecasts gathered from the Entso-E Transparency Platform data bank. Using this 

benchmark, we will be able to see whether the models designed in this thesis provides 

informational value exceeding what the established forecast does. 

The thesis will be organized in 9 chapters, the first of which is this introduction. Chapter two 

contains background information about the markets relevant for the thesis and practical aspects 

of load forecasting. In chapter three a review of load forecasting in previous literature can be 

found. Chapter four describes the theoretical framework of the thesis, including the relevant 

models and evaluation metrics. Chapter five contains information on the data used in building 

the forecasting models. Chapter six is a model description, where the decisions of relevant 

variables and the model construction for all models used are described. In chapter seven the 

forecasting results will be presented, before they are discussed in chapter eight. Chapter nine 

will provide a conclusion to the questions the thesis aims to answer. 
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2. Background 

In this chapter, background information about the Norwegian power market and the Entso-E 

platform is provided. There will be a short description of the key concepts of the power market. 

The chapter concludes with some general information regarding load forecasting. 

2.1. The Norwegian power markets 

While most European countries have one internal bidding zone for their power market, the 

Norwegian power market consists of five different bidding zones. The power markets in 

Norway have internal bottlenecks and can thus experience different power prices between the 

zones, as it has in the autumn of 2021. During the latter part of the year the prices has reached 

record highs in the three southernmost zones driven in part by power prices in the European 

markets, while the two northern zones have experienced a lower price increase. This has 

sparked a heated debate over the export of power to other European nations through cross-

border interconnectors. 

One of the reasons why the population of Norway has been so appalled by the rise in the price 

of electricity to households, is that the Norwegian power market has traditionally had some of 

the cheapest electricity in Europe. While other European nations has relied on a power mix 

consisting of a range of energy sources, Norway gets a large part of its electricity from 

hydroelectric powerplants. Electricity production using hydropower plants remains one of the 

cheapest forms of power production. Due to the favorable weather conditions and topography 

of Norway for utilizing impoundment and diversion hydropower facilities, the Norwegian 

households has been able to rely on this renewable and cheap power for many years. 

In the coming decades, the rest of Europe is in dire need of access to renewable power if we are 

to reach the zero emission climate goals. The Norwegian hydropower production capacity will 

prove to be important for balancing the peak hours of supply and demand for the neighboring 

countries relaying in larger parts on variable renewable energy sources. Countries such as 

Denmark and Germany, where a larger part of the total power production comes from wind 

power will need an alternative source of electric power during the off-peak hours for wind. 

The reason why the Norwegian reservoir-based hydropower production will be important is the 

storable nature of the production method. While it is expected that wind- and solar power 

becomes a larger part of the total electricity production in the future, the production capacities 

fluctuate with the weather conditions. As electricity-storage in large quantities is difficult, the 

electricity demand during the off -peak production hours needs to be covered by alternative 
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production methods. Currently, this is achieved in too large part by fossil fuels such as natural 

gas and coal in many countries. These sources, like impoundment hydropower, can produce 

electricity at the time of need, when the wind or solar production is insufficient. If we are to 

reach the net-zero emissions goals we do however need to phase out much of the non-renewable 

power, especially coal. 

This is where the cross-border connections and power trading capacities between nations will 

be crucial. To balance the power supply and demand during all hours of the day and all days of 

the year, with different geographical locations being suited for different production methods, 

we need to be able to exchange power. The Norwegian market currently has 17 cross-border 

connections, according to Entso-E (s.a.), the first of which started operating in the 1960s for 

just this reason. In years of heavy precipitation, where water would be sent passed the 

hydropower plants unused, it was now possible to utilize some of the excess waterflow to 

produce electricity which was exchanged over the border to Sweden. In years of low 

precipitation, where the 1950s had seen power rationing, this opened the opportunity to 

purchase power from the Swedish network. The same reasoning applies for the future, where 

the balancing of production and demand across Europe will  require a network of complimentary 

power production. 

2.2. Entso-E 

The Entso-E system was created to ease the cooperation between European nations in their grid-

to-grid power exchange and claims to promote a competitive pan-European market, (Entso-E, 

s.a., b). It was given legal mandate in 2009 by the EU in a push for liberalization of the power 

markets within the EU-area. The organizations consist of a larger set of key departments and 

areas of work, but we will limit the scope of explanation to the two most important factors for 

this thesis. 

One of the areas of Entso-�(�¶�V�� �Z�R�U�N�� �L�V�� �W�K�H�� �L�Q�W�H�J�U�D�W�L�R�Q of renewable energy sources in the 

European power grid. To get the European power markets ready for the future of power 

production, they work on both system development and market design to ensure best integration 

of renewable power production in line wit�K���W�K�H���(�8�¶�V�������������H�Q�H�U�J�\���S�R�O�L�F�\�����7�K�L�V���L�Q�W�H�J�U�D�W�L�R�Q���Z�L�O�O��

require flexible generation, demand response and interconnections between national grids. The 

reliability of the power supply using flexible production and demand across Europe will be built 

on good forecasts, both for the supply- and demand-side. 
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Another area of importance for this thesis, and for the function of Entso-E as an integration-

system for European nations, is the transparency platform. The data-platform is essential for 

the creation of an internal pan-European marketplace for electricity. The member nations are 

required to submit information on amongst other things; electricity production, load, and 

transmission to a transparent data-bank open to all market participants. This limits the potential 

informational inefficiencies and promotes an efficient and competitive market. In addition, the 

transparent load and production information allows better planning of future systems and 

capacities across the continent. 

2.3. Power market characteristics 

The supply and demand of electricity is made up of the power producers on the supplier side 

and the greater society on the demand side. This includes everyday home consumption, 

industry, and everything in between. The modern world runs on electricity, and the consumption 

is critical for most of the day-to-day operations of our lives and to produce goods and services. 

Due to the importance of electricity, Hofmann & Lindberg (2019) has found that the short-term 

price elasticity is close to zero in the Norwegian power market. As such, the consumption of 

electricity, or the load, is generally not affected in the same way as other commodities might be 

by changing prices. This means the markets for electricity behaves somewhat different from 

other commodity markets. In this section we will define some key concepts in the power market. 

The suppliers of electricity are dependent on balancing the supply with the load in the market, 

which makes the avoidance of under- and oversupply a vital part of the electricity markets. If 

the power-grids are not balanced efficiently by the Transmission System Operators at all times, 

it causes shutdowns and incurs large costs. For this reason, the act of forecasting and planning 

load is of importance to both producers and TSOs. 

The production methods of electricity can be divided into two categories, renewable and non-

renewable production. The non-renewable production of electricity includes nuclear power and 

burning fossil fuels, which is generally depletable power production resources. Among the 

largest sources of renewable power today are wind-, solar-, and hydroelectric power. While the 

world is run in large parts on the power from the burning of fossil fuels, the future of power 

production looks to be in the renewable sources of energy. These production methods, however, 

are often variable. The variable renewable power production creates new challenges for the 

balancing of electricity, where an increased part of the production is limited by uncontrolled 
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weather factors, which is why we argue the forecasting of load will be important in a greener 

future. 

The electricity load is driven by a multitude of factors, some of which can be described as daily 

and seasonal variations in power demand. We can divide it into base- and peak load based on 

either the time of day or time of year. By base load we mean the lows of observed load over a 

period, which can be viewed as the minimum load needed to keep society running during the 

period. The peak load is the highs of power consumption over the same period. The peak load 

on a daily basis in Norway is typically during the morning and afternoon, while on a yearly 

basis the peak is during winter. 

Load peaks during winter times is caused by one of the large power consuming activities in the 

Norwegian market being heating, and the time of day coincides with when a sizeable part of 

society is aligned before and after working hours in using electric appliances and running their 

water heaters. With heating being one of the biggest electricity consumptions for Norwegian 

households, the weather is one of the main drivers of load. Cold periods increase load, while 

mild winters sees the power consumption peak lowered. In warmer climates, the cooling of 

buildings has an effect on load we do not see much of in Norway as the temperature rarely rises 

above threshold levels for wider air condition use. 

2.4. Load forecasting 

Load forecasting is often divided into three categories based on the forecast horizon, short-, 

medium- and long-term forecasting, as described by (Hammad et al., 2020). Short-term 

forecasts predict the load from minutes to days ahead, the medium-term horizon ranges from a 

week to a year and long-term forecasts are any horizon further in the future than a year. 

With the different forecasting spans, so comes differences in what drives load. In shorter terms, 

the biggest impact on load comes from factors such as seasonality and weather, while long-term 

forecasts can benefit from including factors as economic growth and the implementation of 

power saving measures. While we can assume that the economic situation of the country can 

change in the coming months, it has a low influence on the electricity consumption in the short 

term.  When forecasting over multiple years, these factors increase in importance. 

There are multiple of popular methods for load forecasting, both in literature and practice. In 

this thesis the methods are split into two groups. The first is what could be described as the 

traditional method of statistical methods, while the second is machine learning- or artificial 

intelligence methods. While the statistical methods are still very much in use, the field of data 
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science and use of machine learning is gaining popularity in finance for time-series analysis 

and forecasting. 
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3. Literature review 

In this chapter, forecasting work in previous literature will be reviewed. Provided is a review 

of load forecasting in general, and of previous literature findings and results using different 

statistical methods and machine learning to forecast electricity load. Furthermore, in 

continuation of this chapter, an in-depth description is included in chapter 4, where we outline 

the theoretical framework for the specific methods used to forecast in this thesis. 

The literature on electricity load forecasting (ELF) can be split into three or four categories 

depending on the time horizon according to (Hammad et al., 2020). The categories are long-, 

medium- and short-term load forecasting referred to as LTLF, MTLF and STLF respectively. 

The STLF category consists of forecasting intervals from one hour to a week. This category is 

important for daily operations for utility managers and have implications for generation and 

transmission scheduling. Some researchers also include a fourth class called ultra/very short-

term load forecasting (VSTLF). VSTLF is for forecasting less than an hour ahead and are used 

for real-time control. 

Hong & Fan (2016) provide a tutorial review on probabilistic electric load forecasting. In their 

review they argue that some of the empirical reviews comparing different STLF technique are 

misleading. They state that STLF techniques can be set at a disadvantage depending on the 

�U�H�V�H�D�U�F�K�H�U�¶�V���H�[�S�H�U�W�L�V�H���D�Q�G���R�U��the case study setup. Therefore, there is no clear answer to which 

techniques performs best. 

Numerous statistical time series models, artificial intelligence (AI) and hybrid models have 

�E�H�H�Q���X�V�H�G���W�R���G�H�Y�H�O�R�S���6�7�/�)�¶�V the last decades. Nti et al. (2020) has reviewed 77 articles within 

ELF published over nine years (2010-2020). They found that AI-based models were most 

commonly used, where 9 out of the 10 most popular models being AI. The exception being 

Autoregressive Integrated Moving Average (ARIMA) models, which is the third most used. 

Among the AI-based models, artificial neural networks (ANN) are the most popular 

representing 28% of AI models used in the electricity load forecasting work. 

A number of studies in the last decades has been applying novel approaches to improving the 

STLF accuracy of the conventional Box & Jenkins (1976) ARIMA approach. Lee & Ko (2011) 

proposed an approach, embedding a lifting scheme into the ARIMA model. Simulation results 

showed the proposed algorithm superior to a back-propagation network (BPN) algorithm and a 

traditional ARIMA model. 
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A study by Tarsitano & Amerise (2017) proposes using a two-stage SARIMAX model, a 

combination of a linear regression and ARMA models for STLF. The study did not conclude 

on whether the proposed model achieved an improved forecasting ability, but the residual 

autocorrelation is reduced, shown by a reduction of the Ljung-Box test statistic. The reduction 

of autocorrelation in the residuals indicate an improved model fit. 

Elamin & Fukushige (2018) used a SARIMAX model to perform STLF on a region in Japan. 

Their goal was to compare a SARIMAX model with main effects to a SARIMAX model with 

interactions. The model with interactions included cross effects in addition to main effects, as 

proposed by Hong et al. (2010). The SARIMAX model with interactions resulted in an 

improvement in MAPE by 22,2% compared to the SARIMAX model with main effects. 

With the rise in computational power in the early 1990s, artificial intelligence-based methods 

have been widely studied and used to forecast electric load. One of probably the most popular 

AI -based methods, the artificial neural network (ANN) has according to Weron (2006) risen in 

popularity, because it requires no prior modeling experience to obtain reasonable load forecast. 

Another set of machine learning models made popular by their ease of use are the decision tree-

based regression models, including simple regression trees, gradient boosted regression trees 

and random forests. 

The comparison between statistical models and machine learning models have been made a 

number of times in previous literature. Papadopoulos & Karakatsanis (2015) compared the day-

ahead forecasting performance of two statistical methods, one SARIMA and one SARIMAX, 

and two decision tree models, a Random Forest (RF) and a Gradient Boosting Regression Tree 

(GBRT). With hourly data from the ISO New England Control Area (ISO-NE CA) from 2009 

to 2012, they found the GBRT to produce the most accurate 24 hours ahead load predictions. 

Measured in Mean Absolute Percentage Error (MAPE) the GBRT had errors of 1,32% 

compared to the RF errors of 1,96%, SARIMAX errors of 2,54% and SARIMA errors of 2,62%. 

While this represents a notable outperformance, the authors attribute the larger SARIMA and 

SARIMAX errors to their failure to model the multiple �V�H�D�V�R�Q�D�O�L�W�\�¶�V in the data due to software 

limitations. For further work the authors suggests the inclusion of additional exogenous 

variables such as humidity or direct solar irradiation. 

Another review of short-term load forecasting methods was done by Zor et al. (2017). In their 

publication they compare the accuracy of an Artificial neural network (ANN), a Support vector 

machine (SVM), and an Adaptive neuro-fuzzy inference system. Of the three methods, the 
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artificial neural network and the support vector machine is applied to the bidding zone of New 

England, USA, while the adaptive neuro-fuzzy inference system was used for the bidding zone 

of New South Wales, Australia. The two directly comparable methods, the ANN and the SVM 

performed with an accuracy measured in MAPE of 1,95% and 1,79% respectively, with the 

authors arguing both methods being valuable for load forecasting work.  

One of the important factors for the short-term load forecasting work is the ability to capture 

the different seasonalities and calendar effects on the electricity demand. Bakirtzis et al. (1996) 

noted the improvements of including the holiday effects in their artificial neural networks model 

for predicting the 24 hours ahead load in the Greek market for 1993. In their proposed model 

including the holidays effect they found a small improvement in the forecasting performance 

on the holiday, and interestingly a 30% improved accuracy over the two days following 

holidays. 

Khwaja et al. (2015) shows the effect of bagging in the use of artificial neural networks. Their 

work shows the single artificial neural network model achieving accuracies in the range of 1,8 

to 2,8 measured in MAPE. In comparison, the bagging neural network was shown to have 

accuracies in the range of 1,74 to 1,8 MAPE. While a single artificial neural network has the 

capability to achieve good results, the authors argue that the act of creating a set of uncorrelated 

learners should reduce the variation range of forecasting models.    
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4. Theoretical framework 

In this chapter the theoretical framework of the thesis is explained. The chapter starts by looking 

at the theory behind the statistical methods. In the following part the architecture of the machine 

learning methods is described. The third part of the chapter contains general theoretical 

elements relevant to forecasting, including evaluating metrics for model fit and forecast 

accuracy. 

4.1. Statistical methods 

In this subchapter, we will outline the theoretical framework behind ARMA models. The 

theoretical framework is background for the work presented in chapter 6. In chapter 6 we are 

constructing three statistical models, a seasonal naïve autoregressive (SAR) and two extended 

ARMA models.  

4.1.1. ARMA models 

It was Box & Jenkins (1976) who first popularized the autoregressive process of predicting a 

variable based on previous values of the same variable. They did so when they introduced the 

ARMA model and the Box-Jenkins methodology for forecasting time series. The forecasting 

methodology consists of three steps: model identification, estimation of parameters, and 

prediction and validation.  

ARMA models uses previous values and errors of the dependent variable to forecast. The model 

consists of two parts, the Autoregressive process (AR) and the Moving Average process (MA). 

Stationarity is also a requirement for ARMA models and in the case of non-stationary, the data 

series can be differenced to achieve stationarity. This results in an Autoregressive Integrated 

Moving Average (ARIMA) model. 

Brooks (2014) states that one of the reasons why ARMA models do well compared to other 

statistical approaches is due to the use of previous values of the dependent variable, also referred 

�W�R�� �D�V�� �³�O�D�J�V�´���� �7�K�L�V�� �D�S�S�U�R�D�F�K�� �L�V�� �H�V�S�H�F�L�D�O�O�\�� �H�I�I�H�F�W�L�Y�H�� �L�Q�� �W�K�H�� �F�D�V�H�� �R�I�� �H�O�H�F�W�U�L�F�L�W�\�� �O�R�D�G�� �I�R�U�Hcasting 

where the load for a specific hour of the day, is often similar to the load the same hour the 

previous day. Therefore, a simple AR model with no more than a few lags, often called a naïve 

model, is used as a benchmark for more complex models. 

An autoregressive process is as mentioned when the current value of a variable, y, only depends 

on the value of previous values of y, and an error term. The process can be denoted AR(p), 

where the (p) expresses the lag length. The model can be expressed as 
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�U�ç 
L �ä
E�ö�5�U�ç�?�5 
E�ö�6�U�ç�?�6 
E�®
E�ö�ã�U�ç�?�ã 
E�Q�ç Eq: 1 

where �U�ç is the estimated dependent variable in period t, �ä is the constant, �ö�ã is the coefficient 

determining the weight of the observation p, �U�ç�?�ã is the lagged dependent variable for period t-

p and �Q�ç is a white noise disturbance term. 

The moving average process also uses lagged values, but instead of a variable it uses previous 

forecasting errors. The model is a linear combination of white noise processes, where the 

current value of y, depends on the current and previous values of the errors. The white noise 

process has a constant and expected zero mean, �' �:�Q�ç�; 
L �r, a constant variance, �R�=�N�:�Q�ç�; 
L �ê�6 

and zero autocovariance, except when not lagged. The process can be denoted MA(q), with q 

expressing the lag length. The model can be express as 

 
�U�ç 
L �ä
E�Q�ç
E�à�5�Q�ç�?�5 
E�à�6�Q�ç�?�6 
E�®
E�à�ä�Q�ç�?�ä Eq: 2 

 

where �U�ç is the estimated dependent variable in period t, �ä is the constant, �à�ä is the coefficient 

determining the weight of the observation q, �Q�ç���=�J�@���Q�ç�?�ä is the current and lagged dependent 

variable for period t and t-q. 

The combination of AR(p) and MA(q) processes results in an ARMA (p, q) model, where �U�ç is 

linearly dependent of its on previous values and a combination of current and previous white 

noise disturbance terms. By combining and shortening the equations from AR(p) and MA(q) 

we get the ARMA (p, q) model express below: 

 
�U�ç 
L �ä
E
Í �ö�Ü

�ã

�Ü�@�5

�U�ç�?�Ü
E
Í �à�Ü

�ä

�Ü�@�5

�Q�ç�?�Ü
E�Q�ç Eq: 3 

 

Identifying the relevant number of lags (p, q) can be done by interpreting the output from the 

autocorrelation function (ACF) and the partially autocorrelation function (PACF), or by using 

and comparing versions of an information criterion, (Brooks, 2014). The ACF determines 

whether the dependent variable and the lag(s) are autocorrelated. Autocorrelation occurs when 

values of a time series is correlated with previous values over time. The difference between 
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ACF and PACF is that PACF shows the correlation with one specific lag, while AFC also 

include correlation between previous lags. When determining the correlation for the second lag, 

the value of the ACF will be determined by the correlation between �U�ç and �U�ç�?�5, and between 

�U�ç�?�5 and �U�ç�?�6. Therefore, assume the only correlation in the dataset is 0.9 for the first lag, which 

also means a 0.9 correlation between  �U�ç�?�5 and �U�ç�?�6. This results in an AFC value for the second 

lag of �r�ä�{���T���r�ä�{��
L ���r�ä�z�s. PACF on the other hand, control for the correlation between �U�ç�?�5 and 

�U�ç�?�6 when determining the correlation for the second lag, thus resulting in a correlation of zero 

and some random error for the second lag. With this being the only difference, the ACF and 

PACF gives the same value for the first lag. 

According to Brooks (2014), researchers use the AFC and PACF to find patterns that 

characterizes a time series. The usual patterns for an AR (1) process are a significant spike in 

PACF at lag one, followed by a number of near-zero values at higher lags. While for ACF there 

is usually a high value at lag one and then geometrically declining for higher lags. The 

�L�Q�W�H�U�S�U�H�W�D�W�L�R�Q�� �R�I�� �W�K�L�V�� �S�D�W�W�H�U�Q�� �L�V�� �W�K�D�W�� �W�K�H�U�H�¶�V�� �R�Q�O�\�� �D�� �F�R�U�U�H�O�D�W�L�R�Q�� �E�H�W�Z�H�H�Q�� �W�R�G�D�\�¶�V�� �Y�D�O�X�H�� �D�Q�G��

�\�H�V�W�H�U�G�D�\�¶�V���Y�D�O�X�H���L�Q���W�K�H���W�L�P�H���V�H�U�L�H�V�����,�I���W�K�L�V���S�D�W�W�H�U�Q���L�V���U�H�Yersed for the PACF and ACF, it suggests 

that we are dealing with an MA (1) process. Furthermore, a combination of both an AR and 

MA process usually has a geometrically declining PACF and ACF. 

A fourth pattern can occur where the ACF never decay all the way to zero or it does so very 

slowly. This can indicate that the times series has a trend, which would make the series non-

stationary. An ARMA model requires a stationary time series, which will be discussed in the 

next section. 

Stationarity  

Determining whether a series is stationary or non-stationary is important because it can strongly 

influence the series behavior and properties, (Brooks, 2014). An example of this, is the pattern 

observed in the previous section when determining the relevant lags in an AR and MA process. 

A stationary time series inhibits the characteristics of a constant mean, constant variance and a 

constant autocovariance structure. These requirements are expressed beneath, respectively: 
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L ���ä Eq: 4 

 
�' �:�U�ç
F �ä�;�:�U�ç
F �ä�; 
L �ê�6 
O�» Eq: 5 

 
�' �:�U�ç�- 
F �ä�;�:�U�ç�. 
F �ä�; 
L���U�ç�. �?�ç�- �������������Ê���P�5�á�P�6 Eq: 6 

A stationary series possesses a mean-reverting process which can be observed as a time series 

which frequently crosses its mean value. This characteristic can be illustrated when unexpected 

�F�K�D�Q�J�H�V���R�F�F�X�U�����R�I�W�H�Q���U�H�I�H�U�U�H�G���W�R���D�V���³�V�K�R�F�N�V�´�����)�R�U���V�W�D�W�L�R�Q�D�U�\���V�H�U�L�H�V, a shock will gradually go 

away. This is because the effect of a shock occurring at time �P, has a smaller effect at time �P
E

�t than at time �P
E�s. In contrast, a shock will have an infinite effect in a stochastic non-

stationary series with a unit root, as the effect of the shock has an equally large effect at time 

�P
E�s, �P
E�t�«�� �D�Q�G�� �V�R�� �R�Q���� �7�K�L�V�� �Q�R�Q-stationary effect can be observed as discussed in the 

previous section, with an ACF value of close to one which is slowly declining. A trend-

stationary process, also known as deterministic non-stationarity, is also mean reverting, but it 

�G�R�H�V�Q�¶�W���I�X�O�I�L�O�O���W�K�H requirement of a constant mean. 

In Brooks (2014) it is stated that cases of non-stationary in a time series with a trend, is a 

negative quality which can cause spurious regressions. Regressing two unrelated non-stationary 

variables which are trending over time, can result in a high R-square and significant coefficient 

estimates. This is of course valueless since they are unrelated. In contrast, two independent 

stationary variables regressed on the other will be expected to have non-significant coefficients 

and a low R-square. A non-stationary variable in a regression model will also make the standard 

assumptions for asymptotic analysis invalid, resulting in t-ratios and f-statistics not following 

their respective distributions. As a result, it is not possible to validly undertake hypothesis tests 

about the regression with non-stationary variables. 

In order to apply an ARMA model to a non-stationary series, the series can be integrated of 

order d to achieve stationarity. Stochastic non-stationary series have been found to describe 

financial and econometric times series best, and this type can be differenced d times, equal to 

the number of unit roots to become stationary. The first difference is taken by subtracting the 

previous from the current observation: �¿�U�ç 
L �U�ç
F �U�ç�?�5. Transforming a non-stationary data 

series to a stationary series result in an ARIMA (p, d, q) model. 
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Extending ARIMA models 

The ARIMA model can further be extended with seasonality and exogenous variables. When 

performing electric load forecasting with time series over longer periods, a seasonal or periodic 

component should be included, (Soliman & Al-Kandari, 2010). Extending the ARIMA with 

seasonality, results in a SARIMA (p, d, q) (P, D, Q)S
 model. Whereas P is the seasonal AR 

process, denoting lags from previous seasons, D denotes seasonal integration, Q denotes the 

number of MA processes from previous seasons and S denotes the number of observations in 

the seasonal pattern. This approach is useful as yearly, weekly, and daily seasonality is common 

in electricity load time series, (Weron, 2006). 

Researchers using AR methods have usually dealt with these patterns in demand by using 

dummy variables. Seasonality can occur in many ways and for variables like hourly electricity 

load there is a daily, weekly, and yearly seasonality. Accounting for the seasonality helps the 

model adjust for the patterns and can increase accuracy. 

Seasonality can also be dealt with by using a similar-day approach, or similar hour when dealing 

with hourly data. Weron & Misiorek (2005) divided all 24 hours into separate models, which 

was generally favored over the multi-model specification for STLF. Another irregular 

seasonality is holidays, which are often idiosyncratic and have caused significant forecasting 

errors, (Myung, 2013). Holiday seasonality is often dealt with using dummy variables for all 

public holidays or divi�G�H�G���L�Q�W�R���P�X�O�W�L�S�O�H���G�X�P�P�L�H�V���E�D�V�H�G���R�Q���W�K�H���K�R�O�L�G�D�\�¶�V���F�K�D�U�D�F�W�H�U�L�V�W�L�F�V�� 

In a review by Soliman & Al-Kandari (2010), they argue that the lack of exogenous variables 

affecting load in SARIMA models as temperature, wind speed, humidity, and illumination in 

time series models, limits their forecasting ability. SARIMA models should be extended to 

include exogenous input variables also known as transfer functions in (Weron, 2014). By 

including exogenous input variables into the model, we now have an SARIMAX model. In this 

model the current value of the dependent variable is expressed linearly in terms of its previous 

values, past values of the noise, and in terms of the current and previous values of the exogenous 

variables. 
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4.2. Machine learning 

Machine learning is defined as the use of computer algorithms which are able to improve 

performance in a task by gaining experience through the input of data on which to train. As a 

subset of artificial intelligence, it is a way of mimicking the natural intelligence of living 

creatures in their ability to implement prior experiences in their decision-making process. The 

goal of machine learning in the analysis and predictions of time-series data, is to create 

algorithms with the ability to find relationships in large sets of data, which would prove too 

time consuming to do manually. 

Machine learning can be divided into three categories based on the type of feedback given to 

the algorithm. There are supervised-, unsupervised and reinforcement learning, where 

supervised learning is what is used for time series forecasting. Supervised learning is defined 

by labeled data with a set of inputs and output values, as described by Zhao & Liu (2007). The 

algorithm has a targeted designated output value for each set of inputs in the training data and 

works by learning the relationships between inputs and the target value, assigning weights of 

importance to the individual input values provided. 

For times series analysis there are many different models of machine learning techniques 

available. In the following sub-chapters, the theoretical framework of relevant models for this 

thesis will be presented. 

4.2.1. Artificial Neural Networks 

Artificial neural networks are inspired by the neural network of the human brain with its many 

biological neurons and connections between them. It is first proposed by McCulloch & Pitts 

(1943) who developed the computational model for neural networks decisions, based on 

threshold logic algorithms. Artificial neural networks were constructed of a certain number of 

neurons which are either activated or not activated, just like biological neurons. Today there 

exists many versions of neural networks logic models, built on signaling through a set of nodes. 

Each node in the network implements all input from the previous layer using a weight for each 

connection. The weight represents a single inputs importance, relative to all inputs. In addition 

to weighted inputs, all nodes contain a bias, representing a constant term. The internal value of 

each node can thus be expressed as 
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where X represents input i from the previous layer, W is the weighting of the respective input 

i, and B is the bias of the node. This value is put into what is called an activation function, 

which determine the output of each node. There are several different activation functions, some 

of the most popular in the literature being the Sigmoid, Tanh and Rectified Linear unit 

expressed as: 
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�4�A�.�7�ã���������B�:�V�; 
L �•�ƒ�š���:�r�á�V�; Eq: 10 

The Sigmoid and Tanh activation functions are characterized by s-shaped output ranges, 

ranging from 0 to 1 for the sigmoid function and -1 to 1 for the Tanh function. The Rectified 

Linear Unit has a linear output for values above zero, but a given node will not be activated for 

negative values. The non-activation of negative nodes makes the Rectified Linear Unit 

activation function computationally more efficient than the sigmoid and Tanh functions. 

A frequently utilized way of learning for a neural network is called backpropagation, as was 

first proposed by Rumelhart et al. (1986). In the backpropagation process, the algorithm 

calculates the gradient of the errors for each weighting. The goal of the backpropagation process 

is to update the weights for both inputs and the bias, to find the local minimum of the loss 

function. The loss function will be specifically defined in chapter 4.3.1, here we limit the 

explanation to that it is a function representing the output errors of the predicting model. 

A multi-layer perceptron network is a type of feed forward neural networks model. What makes 

it a feed forward network, is that the layers are connected unidirectionally from the input to 

output layer. This is different to some neural networks such as the recurrent neural networks, 

which is using bidirectional connections or loops linking the output back to the inputs of layers 

and nodes in the network. 
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Figure 1: Neural network consisting of two hidden layers of four and three nodes 

The most basic variant of the neural networks, the feed forward neural network consists of 

minimum three layers of nodes. One input layer, which is often called the visible layer. The 

reason for this is that the input layer is simply the variables fed into the model. The hidden layer 

or layers, consists of the nodes which takes the input variables and process them as explained 

in the previous section���� �7�K�H�� �I�L�Q�D�O�� �O�D�\�H�U���� �W�K�H�� �R�X�W�S�X�W�� �O�D�\�H�U���� �L�V�� �Z�K�H�U�H�� �W�K�H�� �P�R�G�H�O�¶�V�� �R�X�W�S�X�W�� �L�V��

calculated. For a regression problem there is usually one output node, as we are looking for one 

output value, while classification problems often have multiple nodes in the output layer 

representing different output targets. 

4.2.2. Decision Trees and Random Forests 

A decision tree model is another way of analyzing regression type problems using machine 

learning. The model operates by creating a set of questions regarding the input variables, before 

running each observation in the dataset though the model, resembling a tree of decision points. 

It starts at what is often called the root node, the singular node at the start of the model. In a 

regression type problem, the nodes contain a question regarding a numerical value, or a Boolean 

represented by 1 or 0 for true or false. At every node the model poses a true or false question, 

in the style of: 

 
�8�=�H�Q�A
R�6�D�N�A�O�D�K�H�@���R�=�H�Q�A Eq: 11 
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When answering this question the model creates two branches, one for observations where the 

answer is true and one where it is false. This is the method of work from the root node until the 

model reaches what is often called the leaf node, the point at which splitting the data further 

gives no more accurate output value. When reaching the leaf node, the �P�R�G�H�O�¶�V output is the 

mean observed target values of the data points in the training set, which fits into this final node 

of the decision tree.  For training the decision tree, the gradient of the loss function is calculated 

when splitting the data differently at each node, optimizing for a local minimum. 

 

 

Figure 2: Decision tree model 

 

An improved version of the simple decision tree is found in the Gradient Boosted Decision Tree 

model. What differentiates a gradient boosted tree from the regular version is that the boosted 

tree model constructs a series of sequential trees, each new tree aiming to account for the 

residuals of the former. This method of stagewise prediction of the former �O�H�D�U�Q�H�U�V�¶ residuals 

was discussed by Friedman (2001) and should improve model accuracy, especially in cases 

needing more complex data mining. 

As another method building on the decision tree learning algorithms, Ho (1995) introduced 

Random Decision Forests. Decision tree models have a known tendency to overfit, defined as 

having very low bias, meaning errors in the training data, but high variance, meaning large 

errors in the validation data. To combat the tendency of overfitting, Random forests were built 

on the random subspace method popularly called �³feature bagging� ,́ to reduce the feature 

correlation effects on the final prediction. The act of bagging is to rather than create one learner, 
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several learners are created and assigned random parts of the dataset. In the case of feature 

bagging, they are assigned different features of the dataset. By using the average predictions of 

the set of uncorrelated learners, the random forest models aim to reduce the effects of noise in 

the training data and thus the �P�R�G�H�O�¶�V variance. 

4.3. Forecasting 

Time series forecasts can be generated to predict both in-sample and out-of-sample. In-sample 

forecasts makes a prediction on the same dataset used to estimate the parameters in the model. 

Meanwhile, out-of-sample forecasts is estimated on one part of the dataset or time horizon and 

then used to forecast another part of the dataset or another time horizon. In-sample forecasts 

are expected to perform better, as the estimated model is fit to the exact dataset which it predicts, 

(Brooks, 2014). In this thesis we will forecast the future load, which means we are unable to 

train on the same data we are forecasting. Therefore, we are performing out-of-sample forecasts 

in this thesis. 

Furthermore, there is two methods, Dynamic and Static forecasting. The dynamic method 

forecasts multiple steps ahead starting from the first period in the forecasting sample. This 

model does not add new information to the model for each forecasted step. Furthermore, 

depending on the number of steps and model design, a dynamic forecast uses forecasted values 

to forecast further than one step ahead. The Static method forecasts one-step-ahead, while 

rolling the actual data sample forwards. In this case, new information is added to the model for 

each step it forecasts, as it uses actual data to forecast further. In this thesis the goal is to forecast 

the day-ahead load in which the static method is the best fit to our purpose. 

4.3.1. In-sample model fit  

In this subchapter we outline the numerous criteria for evaluating to what degree a model fit 

the training data.  

Specifying the correct number of lags and variables in ARMA models can be done in a number 

of ways. As previously outlined, we can use the ACF and PACF and use the patterns to specify 

�W�K�H�� �Q�X�P�E�H�U�� �R�I�� �O�D�J�V���� �E�X�W�� �W�K�L�V�� �L�V�Q�¶�W�� �H�D�V�\, as real-world datasets rarely exhibits the patterns 

described. A more popular technique is what is known as an information criterion (IC). One of 

the benefits with IC techniques is the removal of some of the subjectivity of interpreting 

patterns. There are multiple variants of the IC, but the general factors are the logarithm of the 

likelihood function and a penalty for adding extra parameters, also referred to variables. By 

adding an extra parameter, the IC increases if the parameter fails to increase the log likelihood 
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function more than the penalty. The goal is to reduce the IC as much as possible. The different 

ICs presented below vary by how strict the penalty term is. The three IC used in EViews follows 

the conventions of �$�N�D�L�N�H�¶�V����1987), �6�F�K�Z�D�U�]�¶�V (1978), and Hannan-Quinn (HQIC), which are 

expressed respectively as: 
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Where log(L) is the log of the likelihood function divided by the number of observations, k is 

equal to the total number of parameters estimated �G
L �L
E�M
E�s and T is the sample size. Of 

the three IC, SIC is the stricter one in term of the penalty term, then HQIC and at last AIC. 

There is no clear answer to which model is the superior, but according to Brooks (2014) SIC 

will more often deliver the correct model, while AIC tent to deliver a too large a model. 

For machine learning models, the in-sample model fitting is performed by adjusting the model 

to minimize a given loss function. While a loss function could, in theory, be any function which 

measures the errors of the fit between the target value and the in-sample predictions, there are 

two functions most commonly used. These are the L1 and L2 loss functions. The L1 loss 

function measures the absolute errors, while the L2 loss measures the squared errors. 
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The main difference to note when deciding between which of the two functions to select is for 

when the data containing large outliers. The L2 loss function, being the sum of squaring the 
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errors, will punish larger errors more severely than the L1 would. One has to consider whether 

the outlier errors should be of more significance to the model, or if the model is best served by 

using the absolute errors measure in the L1 loss function. 

4.3.2. Out of sample forecast performance 

Forecast evaluation is an important part of forecasting. It allows forecasters to test and select 

what models perform better, and it allows stakeholders to understand the performance of the 

forecasts, (Hong & Fan, 2016). Evaluating a model�¶s forecasting performance, is often done by 

comparing error metrics with a baseline and to other models. To determine the forecasts 

accuracy, the whole out of sample forecast period are compared to actual value, and the 

difference is aggregated in an error metric. The model with the lowest measured error is argued 

to be the most accurate model. There are multiple error metrics that can be used to evaluate 

forecasts; Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error 

(RMSE) and Mean Absolute Percentage Error (MAPE). MAE is the simplest metrics, 

measuring the mean absolute forecast error. MAE can be express as 
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where n is total forecasting steps, yt is the actual value at time t and ft is the forecast value at 

time t. The MSE metric squares the difference between the forecast and the actual value in time 

t, and then takes the average over the period. This metric values large errors disproportionally 

more serious than small errors. Forecasts with large errors will be put at a disadvantage using 

MSE, which is a useful property if large errors are more serious than small errors. Transforming 

MSE back to the original scale while keeping the properties of MSE, is achieved with RMSE. 

MSE and RMSE can be expressed as 
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F���B�ç�;�6 Eq: 18, 19 

 

Lastly, MAPE measures the absolute error like MAE, but presents the absolute error in 

percentage of the actual value. MAPE is a good metric to compare forecasts of different scales, 

or when a forecasted value change scales over the forecast horizon. It also has the attractive 

property that it can be interpreted as a percentage error. MAPE can be expressed as: 
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 Eq: 20 

 

According to a study by Nti et al. (2020) the most common error metrics in load forecasting are 

RMSE and MAPE used in 38% and 35% of studies, respectively. Hyndman & Koehler (2006) 

states that MAPE is a widely used metric in load forecasting, because of its simplicity and 

transparency. The �0�$�3�(�¶�V��weaknesses are data of very different scales and data values close 

to zero or negative. The weaknesses of MAPE are not very relevant for load forecasting, as few 

level load series are close to zero and a negative load is not possible. Following the norms of 

previous STLF research, forecasting errors in this thesis are presented in MAPE and RMSE. 
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5. Data description 

This chapter consists of a description of the time series data collected and how the datasets are 

pre-processed if  that is the case. There is a description of the characteristics of historical load 

demand, temperature, humidity, and the price development used it the models designed. 

5.1. Electricity load  

The electricity load data are collected from Entso-�(�¶�V transparency platform. The dataset 

consists of hourly observations for all five bidding zones in Norway from 01.01.2015 to 

31.12.2021. The dataset used consists of an insignificant number of missing values and are not 

adjusted for any extreme values. The load data are also adjusted for changes between summer 

and wintertime. 

 

Figure 3: Hourly aggregated electricity load in Norway from 01.01.2015 to 31.12.2021 

�1�R�U�Z�D�\�¶�V���K�R�X�U�O�\���D�J�J�U�H�J�D�W�H�G���H�O�H�F�W�U�L�F�L�W�\���O�R�D�G���X�V�H�G���L�Q���W�K�L�V���W�K�H�V�L�V is shown in figure 3. The annual 

seasonality in load can be observed, as the electricity load is higher in the winter months and 

higher during summer. The load does not appear to be trending over the period. The data is 

fairly regular, having very few extreme outlier values, except for shorter periods of very high 

demand during the winter of 2016 and 2021. To observe the weekly and daily seasonality in the 

load demand, we can reduce the resolution to the average load for all hours the week, displayed 

in an hourly frequency in figure 4. 
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Figure 4: Hourly average load for all hours of the week in Norway from 01.01.2015 to 31.12.2021 

The load curve indicates that on average Monday to Thursday have the same load 

characteristics, while Friday, Saturday and Sunday are unique. For the workdays the load curve 

increases rapidly from 05:00 and reaches its peak at 08:00. Meanwhile, in the weekend the load 

increase begins later in the morning. Friday resamples the other workdays up to midday but 

have a lower load in the afternoon and evening. Saturday and Sunday have a lower consumption 

throughout the day, and a later morning peak load at around 10:00, and then another peak at 

18:00.  

The load consumption varies throughout the day depending largely on human activity. As the 

normal work hours approaches the consumption increases rapidly. This can largely be explained 

by increased heating of air and water, and start-up in production facilities. This continues 

throughout workhours and as they end there is a slight increase around 16:00. After 16:00 

consumption decreases to a daily low around 02:00. The pattern of hours with high and low 

demand is often referred to as a peak hours and off-peak hours. Peak hours being the hours of 

high demand and off-peak hours of low demand. 

5.2. Weather data 

Weather data is collected through the Norwegian meteorological institute, using one weather 

station for each bidding zone. We have collected hourly data on air temperature and relative 

humidity which have the highest influence on load apart from time factors according to Weron 

(2006). There are few missing values in the dataset for temperature and humidity over the 

period, and thus not compromising the dataset in any significant way. To smooth the data inputs 

at the points of missing values, a strategy of mean replacing has been adopted. The weather 

stations used for each bidding zone is shown in table 1. 
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Table 1: Weather station overview 

Bidding zone Weather station Location 
NO1 SN18700 Oslo 
NO2 SN44300 Sandnes 
NO3 SN69150 Stjørdal 
NO4 SN90400 Tromsø 
NO5 SN50540 Bergen 

 

The weather stations are selected based on the quality of their data and by location, being in 

close proximity to the most inhabited place in the region. Using weather stations closest to the 

most inhabited areas are more likely to fit load demand better, as this is place account for the 

highest consumption. Hong et al. (2015) states that choosing weather station is important for 

load forecasting and can have an impact on forecasting accuracy. They also propose an 

algorithm from selecting the best weather station selection, which would be of interest as further 

work. 

 

Figure 5: Average hourly temperature and relative humidity in Norway from 01.01.2015 to 31.12.2021 

Figure 5 shows the hourly average temperature and relative humidity for the five weather 

stations chosen to represent the five bidding zones in Norway. As expected, there is a 

seasonality in the temperature. Relative humidity is the relationship between the absolute 

humidity and the maximum humidity. Maximum humidity is when the air no longer can hold 

more humidity without creating clouds or cause rainfall, given the temperature. Warm air can 

hold more humidity than cold air. As the relative humidity varies with temperature, we can also 

observe that the relative humidity tends to be lower more frequently in summer than winter. 
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5.3. Price history 

The price data are gathered from Nord Pool and are only adjusted for the change between 

summer and winter time. Throughout 2021, the Norwegian power prices have increased 

tremendously. For most of the period considered in this thesis, the power prices have been low 

compared to the current Norwegian power prices. Especially in the three most southern bidding 

zones of Norway where the prices have increased more than for NO3 and NO4, which is the 

middle and northern part of Norway. From the beginning of 2015 to the end of 2021, prices in 

the southern parts of Norway NO1, NO2 and NO5 have been closely connected. The bidding 

zones of the middle and northern part of Norway are also closely connected, but the three 

southern and two northern bidding zones are not as closely connected as seen in table 2. This is 

due to a bottle neck in the power transmission system between the southern and middle part of 

Norway, which at times result in a price difference. 

Table 2: Correlogram for all Norwegian bidding zones in the period 01.01.15 to 31.12.21 

 NO1 NO2 NO5 NO3 NO4 
NO2 0,99 1    

NO5 0,99 0,99 1   

NO3 0,65 0,64 0,64 1  

NO4 0,64 0,62 0,63 0,94 1 
 

In figure 6 a graph of the hourly price development from 2015 to the end of 2021 for the bidding 

zones NO1 and NO4. For the greater part of this period, all prices were low and close to equal. 

During the spring, summer and autumn of 2020 Norway experienced very low prices compared 

to the previous years. Some price peaks in both NO1 and NO4 are observable over the period, 

whereas the other zone�¶s price did not follow. A few months into 2021 the prices in both areas 

increase dramatically and the prices disconnect. The disconnection between the prices is due to 

the bottleneck which unable the zones from sustaining equal prices. 

 
Figure 6: Price history for bidding zone NO1 and NO4 in the period 01.01.15 to 21.12.21 
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6. Model description 

In this chapter of the thesis, the steps of model selection are outlined. Six models based on four 

methods will be created. Three of the models are based on a statistical approach: SAR and 

SARIMAX, and the three remaining are based on a machine learning approach: Decision Tree, 

Random Forest, and Artificial Neural Network. 

6.1. Naïve model 

To create a baseline for comparing the more complex models we introduce a seasonal 

autoregressive (SAR) model. This model consists of one SAR part, a 24-hour lag. This model 

can be written as a SARIMA(0,0,0)(1,0,0)24. This model will be able to capture the daily 

seasonality as it uses the same hour from the previous day, but it will be unable to capture any 

of the weekly and annual seasonality. The model will predict the hour 24 hours ahead within 

the same season, and its weakness is that it will for example be unable to know whether the 

current season is autumn or spring. The naïve model can be expressed as: 

 

�U��
Ý��
L �U�ç�?�6�8 Eq: 21 

6.2. SARIMAX model selection 

In this section we outline every step of deriving the SARIMAX model. The model selection 

steps displayed in this chapter is done for NO1 in the estimation period from 01.01.2015 to 

30.06.2019 with the aim to forecast the last half of 2019. This process is also done for all bidding 

zones and forecasting horizons resulting in the same model design. The forecasts for the last 

half of 2021 are also trained on the 4,5 prior and not from the start of 2015, as a shorter training 

period reduced computational runtime with no reduction in the accuracy. This process is based 

on �%�R�[�� �	�� �-�H�Q�N�L�Q�V�¶�V�� ������������ approach which consists of model identification, estimation of 

parameters, validation, and predictions. The first two parts of the process are outlined in this 

chapter and the predictions are displayed in chapter 7. 

6.2.1. Model identification 

The first step involves determining the order of the model required to fit the features of the time 

series. The first step is to investigate what AR and MA order fits the load series. As we outlined 

in chapter 5, the load demand for Norway has an annual, weekly, and daily seasonality. The 

same is observed for all five bidding zones, as we can observe for NO1 in figure 7. 




































































































































