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Abstract

Structural variants have a considerable impact on human genomic diversity. However, their evolutionary history remains
mostly unexplored. Here, we developed a new method to identify potentially adaptive structural variants based on a
similarity-based analysis that incorporates genotype frequency data from 26 populations simultaneously. Using this
method, we analyzed 57,629 structural variants and identified 576 structural variants that show unusual population
differentiation. Of these putatively adaptive structural variants, we further showed that 24 variants are multiallelic and
overlap with coding sequences, and 20 variants are significantly associated with GWAS traits. Closer inspection of the
haplotypic variation associated with these putatively adaptive and functional structural variants reveals deviations from
neutral expectations due to: 1) population differentiation of rapidly evolving multiallelic variants, 2) incomplete sweeps,
and 3) recent population-specific negative selection. Overall, our study provides new methodological insights, documents
hundreds of putatively adaptive variants, and introduces evolutionary models that may better explain the complex
evolution of structural variants.
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Introduction
Emerging technologies have recently revealed hundreds of
thousands of genomic structural variants (SVs), including
polymorphic duplications, deletions, inversions, and mobile
transposable elements in the human genome (Hurles et al.
2008; Conrad et al. 2010; Pang et al. 2010; Mukamel et al.
2021). Unlike single-nucleotide variants, each SV affects a
continuous block in the genome and thus is more likely to
result in a phenotypic effect (Hurles et al. 2008; Weischenfeldt
et al. 2013; Sudmant, Rausch, et al. 2015). Several SVs have
been documented to have considerable effects on human
disease and evolution (Dennis and Eichler 2016; Payer et al.
2017; Hsieh et al. 2019; Ho et al. 2020; Mukamel et al. 2021).
Some of these functional variants reach >20% allele fre-
quency in human populations, and some affect the copy
number variation (CNV) of entire protein-coding genes
(McCarroll et al. 2005; Handsaker et al. 2015).

The poster child for adaptive structural variation in
humans is the CNV of the amylase gene. Several studies
put forward evidence for positive selection of higher amylase
gene copy numbers in the human lineage, and further in high

starch-consuming human populations (Perry et al. 2007).
Another striking example of potentially adaptive SVs is the
deletion of LCE3B and LCE3C. This variant is one of the leading
susceptibility markers to psoriasis (de Cid et al. 2009). This
deletion was shown to be retained in the human lineage since
Human–Neanderthal divergence under balancing selection
(Pajic et al. 2016), arguably maintaining a balance between
protection against pathogens and facilitating immune-
mediated disorders. Recently, a genome-wide analysis identi-
fied several Neanderthal- and Denisovan-introgressed SVs
that show strong signatures of adaptation (Hsieh et al.
2019; Yan et al. 2021). Collectively, these studies, along with
others (see Saitou and Gokcumen [2020] for a detailed re-
view), imply that several common SVs contribute to human
phenotypic variation and may have evolved under diverse
adaptive scenarios.

Despite the increasing appreciation of their role in human
adaptive evolution, SVs have not been scrutinized as much as
single-nucleotide variants due to technical difficulties. From a
methodological perspective, SVs are more challenging to dis-
cover and genotype due to their localization in highly
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repetitive sections of the genome. In addition, they are gen-
erated through complex mutational mechanisms, often in-
volving gene conversions and unequal recombination events
(Kidd et al. 2010; Handsaker et al. 2011; Lupski 2015; Carvalho
and Lupski 2016; Sekar et al. 2016). As a result, SVs are usually
harbored by complex haplotypes, and they often are not
tagged perfectly with flanking variants (Sudmant, Mallick,
et al. 2015). The complexity of haplotypic architecture har-
boring SVs complicates analyses of neutrality and integration
of SVs to genome-wide association studies. Most studies pri-
marily interrogate single-nucleotide variants and SVs are of-
ten considered if only a “tag” single-nucleotide variant can be
found. For example, our work has resolved the complex evo-
lutionary history of the common deletion of the metabolizing
GSTM1 gene (Saitou, Satta, and Gokcumen 2018). Locus-
specific studies showed a strong association between this
deletion and bladder cancer (The GSTM1 deletion is the
risk allele, P¼ 4� 10�11) (Rothman et al. 2010). A
haplotype-based analysis of the locus suggested that this de-
letion has formed multiple times through independent mu-
tation events and undergone gene conversion events (Saitou,
Satta, Gokcumen, et al. 2018). Thus, due to the lack of single-
nucleotide variants tagging this deletion, most genome-wide
association studies and traditional selection scans did not
include this deletion. Investigating individual haplotypes
that harbor the deletion led us to identify one particular
haplotype associated with the deletion that has been subject
to a recent selective sweep in the East Asian populations
(Saitou, Satta, and Gokcumen 2018).

A second factor that complicates the evolutionary study of
SVs is that some are multiallelic (Quinlan and Hall 2012;
Handsaker et al. 2015). For example, the haptoglobin locus
harbors two large multiallelic and recurrent SVs that are not
tagged by any single-nucleotide variant. Only after careful,
locus-specific resolution of haplotypic variation were they
shown to be associated with cholesterol levels (Boettger
et al. 2016). Similarly, AMY1 (Perry et al. 2007), as we noted
above, and DMBT1 (Polley et al. 2015) loci harbor multiallelic
structural variations that were associated with dietary and
metabolic traits. However, even for amylase gene CNV, argu-
ably the best-studied SV in the human genome from an
evolutionary perspective, the timing and existence of putative
adaptive forces remain elusive (Mathieson and Mathieson
2018). In fact, SVs are often consciously left out from most
selection scans along with segmental duplications and other
repetitive regions due to the complications that we described
above (Schrider and Kern 2017). In sum, we argue that the full
impact of SVs on human evolution has not been understood
and may explain some of the most exciting, yet to be de-
scribed, adaptive variation in humans.

Given the complexity of haplotypes that harbor a con-
siderable number of SVs, measures that depend on accurate
genotyping of haplotypic variation, such as allele frequency
spectra (e.g., Tajima’s D; Tajima 1993) or linkage-
disequilibrium/homozygosity (e.g., iHS, Voight et al. 2006;
XP-EHH, Sabeti et al. 2007) are often underpowered.
Instead, direct population differentiation metrics may be
the most appropriate and unbiased way to identify

putatively adaptive SVs among human populations.
Population differentiation-based methods are robust to
haplotype disruption due to gene conversion, recurrence,
or the presence of multiple alleles. Most studies that identify
adaptive SVs have employed population differentiation-
based methods (Redon et al. 2006; Xue et al. 2008;
Sudmant, Mallick, et al. 2015; Almarri et al. 2020;
Bergström et al. 2020). Deviations from expected allele fre-
quency distribution can provide information on several
types of selection (positive, negative, or stabilizing), and dif-
ferential selection with complex histories (selection on
standing variation, recent geography-specific negative selec-
tion, oscillating selective forces such as dynamic environ-
mental change; Key et al. 2014). This is important because
it has been shown that “classical” sweeps were rare
(Hernandez et al. 2011) and selection on standing variants
are likely to be the major force of human genomic adapta-
tion (Schrider and Kern 2017), as recently shown for multi-
ple alleles shaping skin color (Crawford et al. 2017; Martin
et al. 2017).

To measure the population differentiation of genetic var-
iants, FST statistics (Weir and Cockerham 1984) and VST sta-
tistics for CNVs (Redon et al. 2006) are commonly used. More
recent research has developed methods to compare multiple
populations, primarily for admixture analysis (e.g., F3 statistics;
Reich et al. 2009). However, these methods can only compare
two or three populations to each other. Recently, (Duforet-
Frebourg et al. 2016) developed a PCA-based method to
identify single-nucleotide variants with population differenti-
ation by analyzing ten populations simultaneously, confirm-
ing well-known targets for positive selection, and discovered
new candidate genes. Here, we developed a new, similarity-
based method to identify adaptive SVs with unusual allele
frequency distribution with which one can analyze: 1) multi-
allelic variants and 2) the distribution of genotype frequency
in multiple populations collectively.

Results and Discussion

Structural Variants with Unusual Population
Differentiation
Inspired by the emerging work that integrates all available
population differentiation information to understand de-
mographic and adaptive trends (Duforet-Frebourg et al.
2016), we developed a new method based on the
Bhattacharyya similarity metric specifically to identify pu-
tatively adaptive outliers among SVs (Bhattacharyya 1943;
Materials and Methods, fig. 1A–F, and supplementary fig.
S1, Supplementary Material online).

Briefly, we characterize each locus (‘) as an N�N similarity
matrix S‘ based on the genotype frequency of the N¼ 26
populations in the 1000 Genomes Project phase 3 data set
(Sudmant, Rausch, et al. 2015). We measure a modified
Bhattacharyya similarity metric between each pair of popu-
lations based on the transformed probability distribution (for
the original Bhattacharyya metric, see Bhattacharyya 1943;
Cha and Srihari 2002). To increase the sensitivity to identify
the population differentiation of variants with many alleles,

Saitou et al. . doi:10.1093/molbev/msab313 MBE

2

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/3/m
sab313/6413645 by guest on 14 July 2022

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab313#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab313#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msab313#supplementary-data


we use a weighted variant of the Bhattacharyya similarity
metric. Overall, we analyzed M¼ 58,644 variants, including
57,629 SVs, 1,008 uniformly randomly chosen single-nu-
cleotide polymorphisms (SNPs), as well as seven SNPs
that were reported to be under adaptive evolution (six
SNPs under positive selection and one SNP under balanc-
ing selection) (Norton et al. 2006; Mou et al. 2008; Kimura
et al. 2009; Smith et al. 2009; Basu Mallick et al. 2013; Ding
et al. 2013; Ko et al. 2013; Wilde et al. 2014; Wu et al. 2016;
Deng and Xu 2018). We constructed a distance matrix for
each of the M loci and compared the similarity matrix S‘
across all these loci (‘¼ 1, . . ., M). We define the distance
between S‘ (at one locus) and S‘0 (at another locus) by the
Frobenius norm, denoted by dF. The M�M Frobenius dis-
tance matrix, denoted by F, tabulates the difference be-
tween each pair of loci, and its (‘, ‘0) entry is given by

dF(S‘, S‘0). These steps provided us with a matrix indicat-
ing how SVs relate to each other based on their global
genotype frequency distribution.

We assumed, based on previous literature (Conrad et al.
2010), that the majority of SVs will be evolving under neu-
trality or near neutrality. Therefore, population differentiation
should primarily be driven by genetic drift. We then reasoned
that SVs that have unusual allele frequency distribution
among the 26 populations compared with the genome-
wide observations are likely to have evolved under nonneutral
conditions. To visualize the relationships between SVs based
on their global allele frequency distribution, we ran a multi-
dimensional scaling (MDS) algorithm. To empirically measure
these relationships, we calculated the distance between the
origin and each variant in the MDS space and defined it as
“Measure of Unusualness (MU),” or degree of the unusual

FIG. 1. An overview of the calculation of “MU” (see Materials and Methods for details). (A) For each population and each locus, we have a 9�9
matrix representing the genotype. The row and column of the matrix represent one of the two chromosomes each. The cells contain the
frequencies of specific genotype combinations. (B) We calculate the similarity in the 9�9 matrices exemplified in panel A between each pair of
populations. The similarity value ranges between 0 and 1. (C) In this manner, for each locus, we obtain a 26�26 matrix representing the similarity
between different pairs of populations. The diagonal entries of the similarity matrix are equal to 1 because any population is identical to itself,
yielding the largest possible value of the similarity, which is 1. (D) We calculate the distance between the 26�26 matrices for each pair of loci. (E) In
this manner, we obtain a distance matrix representing the distance between the different pairs of loci. (F) We carry out the MDS to project the
obtained distance matrix into the 2D embedding space. Each circle represents a locus. The distance between the locus and the origin in the
embedding space defines MU for each locus. (G) The general results from our pipeline.
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allele frequency distribution (Materials and Methods, fig. 1F).
This measure informs on the unusualness of global popula-
tion differentiation of a given SV, as compared with the en-
tirety of the data set.

Simulation and Empirical Confirmation
To validate the accuracy and sensitivity, we conducted for-
ward simulations using SLiM 3.6 (Messer 2013; Haller and
Messer 2019) (Materials and Methods). We modeled stepwise
copy number gains or losses in each locus under different
mutation rates/selection coefficients in three populations
(YRI, CEU, and CHB) for which the demographic parameters
were previously established (Gravel et al. 2011). In each sim-
ulation, we generated 2,970 potentially variable neutral loci,
and 10�3 potentially variable loci under population-specific
selection in each population (with a range of selection coef-
ficients). We used these data to calculate MU and assess the
accuracy and sensitivity of our approach (supplementary fig.
S2, Supplementary Material online). Our results suggest that
our approach is unable to distinguish between drift and se-
lection if the mutation rate is higher than 10�7 mutations per
locus per generation. Further, we found that the population
for which the selection is acting is an important parameter in
determining the power and accuracy of MU. Specifically, we
found that if the selection is acting on the YRI population, our
power to detect selection increases, possibly because the ef-
fect of drift is lower in African populations due to their higher
effective population sizes (Tenesa et al. 2007). Although these
simulations are useful in the general assessment of our ap-
proach, they have two major limitations. First, we were not
able to simulate MU for all 26 populations because the de-
mographic parameters for most of these populations were
not established. Thus, it is likely that MU is more powerful
when applied to a larger number of populations. Second, the
mutation rates of SVs are highly variable (Lin and Gokcumen
2019). Thus, without having a better sense of the mutation
rates of SVs, it is difficult to assess the power of MU for the
whole range of SVs in the human genome. Thus, we argue
that an empirical comparison to known variants with well-
established population-selection signatures may be currently
a better benchmark than simulation-based methods for un-
derstanding the power of MU.

To assess the accuracy of our approach empirically, we
calculated MU for 1,008 random SNPs (supplementary table
S1, Supplementary Material online; Materials and Methods).
We reasoned that the control SNPs will provide an additional
marker set whereby differentiation is determined by near-
neutral forces. Using this data set, we confirmed that the
distribution of MU measured for SVs is not significantly dif-
ferent from that measured for the uniformly randomly cho-
sen SNPs from the 1000 Genome Phase 3 data set (Sudmant,
Rausch, et al. 2015) (P¼ 0.88, Mann–Whitney test, supple-
mentary fig. S3A, Supplementary Material online), suggesting
that similar to single-nucleotide variants, the overall distribu-
tion of MU for SVs is neutral-like. We replicated this analysis
using 5,000 neutral SNPs reported in (Pouyet et al. 2018)
(supplementary fig. S3B, Supplementary Material online)

and found similar results (P¼ 0.41, Mann–Whitney test, sup-
plementary fig. S3C, Supplementary Material online).

Next, we investigated the sensitivity of our method by
measuring MU from six SNPs that have repeatedly been
reported to be under population-specific positive selection
and their functional relevance was well established (Materials
and Methods). Thus, they provide an appropriate gold stan-
dard to test the sensitivity of our method. We found that all
of these six positively selected SNPs were shown to be in the
top 5% of the MU distribution (fig. 2A), improving our con-
fidence in our method. In addition to those six SNPs, we also
included in our analysis rs1129740, which resides in the HLA
locus and has been one of the handfuls of variants in humans
that are thought to have evolved under long-term balancing
selection (Teixeira et al. 2015). This allowed us to observe how
MU behaves for such variants even though MU was not
designed to test balancing selection. We found that this non-
synonymous mutation shows low MU values when consider-
ing its allele frequency (fig. 2B). We found it noteworthy that a
SV, LCE3BC gene deletion, that we speculated previously to
have evolved under balancing selection (Pajic et al. 2016)
shows similarly low MU values despite their high allele fre-
quency (fig. 2B). Thus, it is plausible that high allele frequency
SVs that may have been evolving under balancing selection
may exhibit unusually low MU values (supplementary table
S2, Supplementary Material online).

To understand the differences between more traditional
methods of measuring population differentiation and our
method, we compared MU with direct allele frequency-based
FST between representative continental populations (fig. 2C
and supplementary fig. S4, Supplementary Material online).
As expected, we found a significant correlation between these
two measures (Spearman rank correlation coefficient >0.49
and P< 10�15 for all comparisons). However, we also found
notable discrepancies. We noted 125 variants that are in the
top 1st percentile for MU, but show FST < 0.2 in any pairwise
comparison of European (CEU), East Asian (CHB), and
African (YRI) populations (supplementary table S3,
Supplementary Material online). Closer inspection of these
variants suggests that MU captures multiallelic variations and
within-continent variation, which fell below the detection
threshold of standard pairwise population comparisons. In
addition, we noted SVs that have large values of FST but do
not stand out in terms of MU. When we investigated the
allele frequency distribution of SVs with high FST (>0.25) but
low MU (<1), we consistently observed a clinal distribution of
allele frequencies across the continents (supplementary fig.
S5, Supplementary Material online), likely due to serial
founder effects that define human genetic variation as de-
scribed previously (Ramachandran et al. 2005). In other
words, we argue that variants that have high among-
continental differences that the standard FST detects often
reflect the effects of major bottleneck/drift events, such as
out-of-Africa migrations, rather than adaptive sweeps. That
suggests that a gradual population differentiation may not
lead to a high MU value. Instead, our method is sensitive to
deviations from such expected clinal allele frequency changes,
including unusually low or high allele frequency in a single
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population as compared with its neighbors. This is an advan-
tage of our method because local ecological and cultural
variation often underlies adaptive evolution in humans
(Rees et al. 2020). Thus, our method shows promise in cap-
turing hundreds of novel putatively adaptive variants that
have not been captured by traditional SNP-based pairwise
population comparisons.

MU Identifies Dozens of SVs Invisible to Traditional
Selection Scans
There are several outstanding questions concerning the en-
richment of specific properties of adaptive SVs, including their
functional relevance, the mutation mechanisms through
which the variants are generated, and their size distribution.
However, there are tremendous technical biases inherent in
the short-read sequencing-based characterization of these
variants, especially concerning extremely high false-negative
rates in the discovery of certain types of SVs, such as tandem
and dispersed duplications and inversions (Kronenberg et al.
2015). Thus, instead of searching for general trends in our
data set (e.g., adaptively evolving SVs are larger or smaller
than neutrally evolving ones), we focused on resolving the
evolutionary forces shaping individual SVs with functional
implications.

In this spirit, we first investigated SVs that overlap with
coding sequences. We identified 39 SVs with the top 1% MU
value that contain one or more entire exon (fig. 3A and sup-
plementary table S4, Supplementary Material online).
Regardless, many of these exonic SVs were associated with
metabolic traits and diseases in previous locus-specific anal-
yses and include members of cytochrome p450 (CYP3A43,
CYP2D6), solute carrier (SLC30A9, SLC51A), olfactory receptor
(OR2T27, OR52E8) gene families. For example, DMBT1 gene
copy number was noted for its population differentiation and
associated with dietary subsistence strategies (Polley et al.
2015). Similarly, the CNV affecting the CES1 (Zhu and
Markowitz 2013), CYP2D6 (Candiotti et al. 2005), HS3ST3B1
(Kim et al. 2010), and SULT1 (Hebbring et al. 2008) are asso-
ciated with differences in metabolizing of xenobiotic substan-
ces, primarily described within a pharmacogenomics context.
Interestingly, we found that 24 (�65%) of these exonic SVs
are multiallelic (fig. 3B and table 1), more than five times
higher than genome-wide expectations (P¼ 0.0005, v2 test).
We found that intervals that overlap with multiallelic SVs are
enriched for “defense response to Gram-negative bacterium”
function (FDR Q value¼ 1.09�10�3), concordant with pre-
vious literature linking adaptive SVs with immune-related
functions.

FIG. 2. An overview of the study pipeline and results. (A) The histogram of MU of the 1,008 randomly selected SNPs and the six positively selected
SNPs that were found to be under selection in previous studies (see Materials and Methods). The latter group was indicated by blue vertical dashed
lines on the histogram, and the genes affected by these variants were labeled. The 95th percentile of the distribution was marked by a black vertical
line. (B) The relationship between allele frequency and MU. The horizontal axis indicates the global alternative allele frequency. The vertical axis
indicates the logarithm of the MU value. The exonic SVs with MU>5 or global allele frequency>0.25 are labeled, as well as the six positively selected
SNPs and one HLA SNP which was shown to have evolved under balancing selection. Some gene names are shown multiple times (e.g., HP, KANSP1,
and PDXDC1); this happens because multiple SVs overlapping these genes were reported in the 1000 Genomes Project Phase 3 data set. Colors
represent different types of variants. The abbreviation is from the 1000 Genome Project phase 3 SVs data set. CNV, copy number variants
(multiallelic variants); DEL, deletion; DUP, duplication, Known; SNP, SNPs from previous studies (see Materials and Methods); Other SVs, insertion,
inversion, Alu, Long interspersed nuclear element, SINE-VNTR retrotransposons. (C) Comparison of FST (Weir and Cockerham 1984) between CEU
and CHB populations and MU. Biallelic SVs with FST (between CEU and CHB) >0.4 and MU>5 were labeled. The shade in blue represents the
density of the SVs (see supplementary fig. S4, Supplementary Material online).
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The exonic SVs with the highest MU have been invisible to
previous genome-wide association studies and selection scans.
We argue that this is primarily because the current GWAS
pipelines interrogate single-nucleotide variants. Single-nucleo-
tide variants may not tag multiallelic SVs due to gene conver-
sion, recurrence, and potential genotyping errors, as discussed
in the introduction. This phenomenon was diligently dissected
by Boettger et al. (Boettger et al. 2016) for the haptoglobin
(HP) locus, which harbors two recurrent and multiallelic ex-
onic CNVs that we found to show unusually high MU. They
described a novel way to use a combination of single-nucle-
otide variants to impute these SVs in the locus. Their rean-
alysis of the genome-wide association studies revealed a
previously hidden association between CNV affecting HP
gene function and blood cholesterol levels. Based on our
results, we argue that the effects of multiallelic SVs on human
evolution and phenotypic variation remain underappreciated.

Multiallelic SVs are often genotyped inaccurately (Mills
et al. 2011). If such inaccuracies are systemic to given pop-
ulations, it may lead to errors in identifying spurious genome-
wide signals pertaining to population differentiation
(Anderson-Trocm�e et al. 2020). Thus, some of our observa-
tions of unusual allele frequency distribution may be due to
such batch effects and genotyping errors inherent in the 1000

Genomes Phase 3 data set. To address this issue, we used
mrCaNaVaR (https://github.com/BilkentCompGen/mrcana-
var, last accessed March 23, 2020) to estimate the copy num-
ber of individual genes using new high-coverage (�30�)
sequencing data from the same samples in the 1000
Genomes Phase 3 data set (Byrska-Bishop et al. 2021).
These new gene copy number estimates are different from
the SV calls from the 1000 Genomes in three ways. First, the
gene copy number is estimated for individual samples and no
population-level SV discovery or genotyping was performed,
eliminating batch effects. Second, it provides continuous val-
ues of normalized read depth, rather than discrete categories
of different types of SVs as was reported from the 1000
Genomes Phase 3 data set. This allows us to measure, for
each gene, the distance between arbitrary two populations
directly by the earth mover’s distance, which directly uses the
difference between the normalized read-depth value for an
individual in one population and that for an individual in the
other population. In this manner, we can avoid technical
biases in the 1000 Genomes Phase 3 data set introduced by
the categorization of SVs into discrete types (Materials and
Methods). Third, this new data set allowed us to estimate
CNVs in genes that were not discovered by the conservative
discovery pipeline of 1000 Genomes Phase 3.

FIG. 3. Unusually distributed structural variants with exonic contents. (A) The relative ratio of bi-allelic structural variants and multiallelic copy
number variants in each grouping based on exonic overlap (structural variants that contain at least one exon vs. those that do not) and MU values
(top 1% vs. the rest). Bi-allelic SV: biallelic structural variants. CNV: multiallelic copy number variants with three or more alleles. (B) Manhattan
plots of MU of structural variants. The horizontal axis shows the chromosomal location of structural variants, and the vertical axis shows the MU
value. The exonic variants with the top 1% MU (>4.23) were labeled.
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This approach allowed us to conduct a parallel assessment
of the MU approach in detecting putatively adaptive SVs
(supplementary table S5 and fig. S6, Supplementary
Material online). We were able to assess 21 copy number
variable genes (see Materials and Methods) that we identified
to show unusually high MU in our original pipeline and found
that 8 (�38%) and 13 (�62%) of these also have unusually
high MU values in the mrCaNaVaR database at the 99th and
95th percentile, respectively. These include CNVs of KANSL1,
HP, and DMBT1 genes with well-described likely adaptive
functions. We individually investigated the remaining genes
for which the CNV showed disparate MU percentiles in our
original analysis and mrCaNaVaR analysis. We found that all
of them are large (18–259 kb) and relatively rare (<7.5%
global allele frequency) variants that fall into regions rich in
segmental duplications. These regions are prone to both gen-
otyping errors and recurrence. In addition, using the
mrCaNaVaR data set, we were able to identify several addi-
tional candidates exonic SVs, including AMY1, SIGLEC14, and

multiple CCL genes, among others, that were not included in
the 1000 Genomes Phase 3 SV data set but were noted be-
cause of their relevance to human evolution (Hollox et al.
2022). Thus, our results confirm that the MU provides a ro-
bust and reliable approach to identify putatively adaptive SVs.
However, genotyping errors are a considerable factor in de-
termining the false-positive and -negative rates in our ap-
proach and we argue that it is imperative to conduct
follow-up analyses of the candidate adaptive SVs to validate
deviations from neutrality at the haplotype level. We provide
examples for such analysis below.

Resolving the Haplotypes of Putatively Adaptive SVs
The complex evolutionary dynamics of SVs often do not fit
classical population genetics expectations, such as complete
classical sweeps. Thus, we argue that careful investigation of
the evolutionary histories of a few examples can provide valu-
able insights that can later be generalized at the genome-wide
scale. Therefore, we wanted to resolve the haplotypes that

Table 1. Twenty-Four Multiallelic Exonic SVs (CNV, Copy Number Variation in fig. 2C) with the Top 1% MU (>4.23).

ID MU chr Start End Size Allele Freq. Gene Name OMIM

esv3640680; esv3640681 8.75 chr17 44230893 44262697 31,804 0.22723629 KANSL1 Chromatin Modification
esv3640677; esv3640678 7.34 chr17 44165338 44211686 46,348 0.1453675 KANSL1 Chromatin Modification
esv3638992; esv3638993;

esv3638994; esv3638995;
esv3638996; esv3638997

7.08 chr16 72094527 72110961 16,434 0.02515976 HP Glycoprotein

esv3606964; esv3606965;
esv3606966; esv3606967;
esv3606968; esv3606969;
esv3606970

6.43 chr5 140554408 140558942 4,534 0.287539932 PCDHB7 Protocadherin

esv3624777; esv3624778;
esv3624779; esv3624780

6.38 chr10 124344431 124353237 8,806 0.24580733 DMBT1 Brain Tumor

esv3640025; esv3640026 6.11 chr17 14224374 14483419 259,045 0.078474481 HS3ST3B1 Heparan Sulfate
esv3616116; esv3616117;

esv3616118; esv3616119
5.78 chr8 7212582 7227421 14,839 0.36841027 ZNF705G Zing Finger

esv3607012; esv3607013 5.56 chr5 142263109 142447062 183,953 0.074480842 ARHGAP26 Leukemia
esv3638989; esv3638990;

esv3638991
5.33 chr16 72080868 72098986 18,118 0.04572683 HP Glycoprotein

esv3603782; esv3603783;
esv3603784; esv3603785

5.22 chr5 814446 825367 10,921 0.18250742 ZDHHC11 Zing Finger

esv3647809; esv3647810;
esv3647811; esv3647812

5.09 chr22 42523949 42533891 9,942 0.160942323 CYP2D6 Metabolism

esv3608531; esv3608532 5.07 chr6 31131451 31272307 140,856 0.069289142 POU5F1 Transcription Factor
esv3638688; esv3638689;

esv3638690
5.04 chr16 55832207 55864521 32,314 0.202276441 CES1 Metabolism

esv3624140; esv3624141 4.98 chr10 90551092 90632203 81,111 0.061900981 LIPM Signal Peptide
esv3638686; esv3638687 4.69 chr16 55798890 55822423 23,533 0.20127776 CES1P1 Metabolism
esv3621839; esv3621840 4.68 chr9 132463983 132648102 184,119 0.062899361 PRRX2 Homeobox
esv3644233; esv3644234 4.61 chr19 35851718 35863310 11,592 0.12879353 FFAR3 Fatty Acid
esv3585247; esv3585248;

esv3585249
4.50 chr1 12901370 12921250 19,880 0.149361003 LOC649330 Unknown

esv3608684; esv3608685 4.46 chr6 35521984 35568895 46,911 0.03674116 FKBP5 Binding
esv3638338; esv3638339;

esv3638340; esv3638341;
esv3638342

4.40 chr16 28614507 28626916 12,409 0.26936938 SULT1A1 Metabolism

esv3641584; esv3641585 4.38 chr18 3200017 3415245 215,228 0.064696481 MYOM1 Muscle
esv3599276; esv3599277 4.30 chr3 195954431 196022808 68,377 0.060303542 SLC51A Solute Carrier
esv3599572; esv3599573;

esv3599574
4.26 chr4 9418201 9457405 39,204 0.05271566 DEFB131 Defensin

esv3607010; esv3607011 4.24 chr5 142174919 142260351 85,432 0.061701281 ARHGAP26 Leukemia

NOTE.—Variant information is retrieved from the 1000 Genomes Project phase 3 data set (Sudmant, Rausch, et al. 2015). Start and End refer to the starting and ending locations
of variants on the chromosome, respectively. We described the gene name if the SV contains one or more entire exon(s) of UCSC Genes. Gene function was retrieved from
OMIM (https://www.omim.org/).
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harbor SVs in order to investigate functional associations,
coalescence times, and signatures of selection concerning
these variants in more detail. There are 344 biallelic SVs
that are in the 1st percentile in terms of MU (>4.23) and
have strong linkage disequilibrium with nearby single-nucle-
otide variants (R2 > 0.95) (supplementary table S6,
Supplementary Material online).

Among these, we identified 20 haplotypes that are signif-
icantly associated with phenotypes (nominal P< 10�9;
GWAS Atlas; https://atlas.ctglab.nl/; last accessed March 23,
2020) (table 2). The selected 20 loci provided us with a means
to further investigate the evolutionary and functional effects
of SVs that show unusual geographical distribution.

Using the linked haplotypic variation for the 20 SVs, we
retrieved allele ages from the Human Genome Dating database
(Albers and McVean 2020) (https://human.genome.dating; last
accessed, March 3, 2020). Under neutrality, an allele’s age is
expected to positively correlate with its allele frequency
(Patterson 2005). Given that we are explicitly investigating
variants that are putatively evolving under population-
specific adaptive forces, we expect deviations from this expec-
tation. Figure 4A–C shows the estimated age of the allele and its
frequency in European, East Asian, and African populations,
respectively. If a variant has emerged recently, but its frequency
is common (left upper side) in a given population, it suggests a
potential recent selective sweep (i.e., a new allele is rapidly
favored and increases its frequency). In contrast, if a variant is
old and its frequency is rare, these are candidates for recent
negative selection against the allele in that particular popula-
tion. To more formally interrogate this line of inquiry, we cal-
culated how long it takes for a new allele to reach a given
frequency in each population under neutrality using formula
(15) in (Kimura and Ohta 1973) assuming previously published
demographic parameters (Schaffner et al. 2005) (supplemen-
tary fig. S7, Supplementary Material online). In a manner similar
to allele frequency expectations, the age estimate of a variant
older than the neutral estimation may suggest a faster increase
in allele frequency and a recent selective sweep (fig. 4A–C). In
parallel, we calculated Tajima’s D scores of 5 kb upstream and
downstream regions of the 20 SVs of interest and the iHS scores
of the tag single-nucleotide variants of the target SVs (Materials
and Methods). We summarized these values in figure 4D.

We found that the flanking haplotypes of putatively adap-
tive SVs predicted by MU do not show consistent trends of
haplotypic variation, extended homozygosity, or population
differentiation. Rather, our observations fit the emerging con-
sensus in evolutionary genomics that the adaptive SVs are
shaped by complex evolutionary trajectories that change over
time and space (M�erot et al. 2020). As an example of the
complicated nature of the evolutionary histories of adaptive
SVs, we highlight esv3642017. This variant is recorded as a
deletion compared with the reference genome in the 1000
Genomes Phase 3 data set. However, a closer inspection
reveals that this variant is a human-specific retro-insertion
of the DHFR gene (Anagnou et al. 1988; Conrad et al. 2010;
Schrider et al. 2013). The haplotype that harbors this insertion
is associated with decreased height (P< 10�16). Even though
deletion seems to be predominantly found in Africa, the

derived retrogene inserted is predominantly found in
Eurasia. The locus that harbors the insertion shows unusually
low Tajima’s D in the European population and unusually low
genetic diversity in another European-ancestry cohort as
reported in Schrider et al. (2013), which altogether suggest
a Eurasian-specific sweep of a recent insertion. Based on such
locus-specific analyses, we identified incomplete population-
specific sweeps and recent population-specific negative selec-
tion as the two main drivers for shaping the allele frequency
distribution of putatively adaptive SVs.

Incomplete, Population-Specific Sweeps: The Example
of the Propionyl-CoA Carboxylase Gene
The classical scenario for population-specific adaptive evolu-
tion is characterized by: 1) high frequency of the variant in the
specific population compared with other populations, 2) devi-
ations in the site frequency spectrum suggesting rapid expan-
sion of the selected allele, resulting in an excess of rare variants
in the locus, 3) lower than expected allele age, and 4) long
haplotype homozygosity suggesting rapid expansion of the
selected allele (Rees et al. 2020). We look for signatures of this
scenario among the 20 haplotypes that we highlight because
they harbor SVs with unusual allele frequency distributions
(MU in the 1st percentile, >4.23) and because they are asso-
ciated with GWAS traits (table 2). We found that 12 (60%) of
them fit the scenario of a recent population-specific adaptive
sweep (fig. 4D).

The haplotype harboring esv3597888 provides an informa-
tive example of the population-specific incomplete sweep
scenario. The haplotype has a lower than 5% allele frequency
in most African populations but reaches near 75% allele fre-
quency in East Asian populations (fig. 5A). Further, the
Median Joining network of the haplotypic variation in this
locus shows a dramatic reduction of haplotypic diversity be-
yond the expected reduction due to drift in the East Asian
population as compared with the African population, which
is consistent with a recent selective sweep (fig. 5B). The
Tajima’s D values retrieved from the flanking sequences of
the deletion are lower than genome-wide expectations in all
three continental populations (fig. 5C). Last but not least, the
estimated age of the allele is much more recent than what is
expected based on its frequency, especially in the East Asian
population (fig. 4B and supplementary fig. S7, Supplementary
Material online). Collectively, these results suggest a recent
selective sweep in Eurasian populations. However, even for
this locus, not all the neutrality tests capture this sweep. For
example, in a traditionally defined recent sweep, we expect to
find high iHS values. Instead, for this locus, the iHS is relatively
low, mirroring the surprisingly high overall haplotypic varia-
tion in this locus. Regardless, esv3597888 remains one of the
best candidates for a derived SV that has recently been swept
to higher allele frequency in a population-specific manner.

The phenotypic effects of the haplotype harboring this var-
iant further support the potential adaptive relevance of
esv3597888. This 5.4-kb deletion overlaps with the intronic
region of the propionyl-CoA carboxylase (PCC) gene, which
encodes for an enzyme that metabolizes specific amino acids
and lipid species (Wongkittichote et al. 2017). The haplotype
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FIG. 4. Neutrality tests on the 20 SVs with phenotypic effects. (A–C) Age and frequency of the SVs in African (A), East Asian (B), and European (C)
populations. The variant’s ID is the same as table 2. The blue dots represent the tag SNPs associated with the 20 SVs. The gray dots represent 599
random SNPs. The horizontal axis shows the age of allele in the Human Genome Dating database; the vertical axis is the alternative allele frequency
in each population. (D) A heatmap summarizing neutrality tests of the 20 SVs in each population. It shows allele frequency, the allele age difference
between haplotype-based estimation in the Human Genome Dating database (Albers and McVean 2020) and neutral expectation based on the
allele frequency (Kimura and Ohta 1973), iHS value, Tajima’s D, and if the allele is observed in the Denisovan genome. (We did not observe these
variants in the Neanderthal genomes.) Warmer colors indicate higher values. Similarly, for the allele age difference, colder and warmer colors show
that the allele is older and newer than neutral expectation, respectively. For the archaic genome, blue shows that the allele is shared with the
Denisovan. The asterisk indicates that the value is less than five percentile or more than 95 percentile when compared with at least 500 uniformly
randomly selected variants or windows across the genome (see Materials and Methods for detail). Two variants highlighted by the arrows (7 and
20) are discussed specifically as examples.
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harboring esv3597888 (tagged by rs556788) is associated with
the expression of the PCCB gene in the adrenal gland
(P¼ 7.8�10�10 in the GTEx Analysis Release V8; GTEx
Consortium 2013). Moreover, the haplotype is associated
with total bilirubin, a cardiometabolic signaling molecule
(P¼ 6.6� 10�16), and neuroticism (P¼ 1.5� 10�12)
(fig. 5D). We argue that it is likely that the 5.4-kb deletion
esv3597888 is the causal variant in these associations, given
its size and that it overlaps with a well-documented binding
site for the abundant transcription factor CTCF (supplemen-
tary fig. S8, Supplementary Material online). The haplotype has
pleiotropic functional effects, and thus the exact reasons why it
confers an adaptive advantage in East Asia particularly remains
to be seen.

Recent Population-Specific Negative Selection: The
DAP3 Gene
Among the haplotypes that we highlighted, we noticed that
some show unexpectedly low allele frequency in Eurasian
populations compared with the expectation based on their
estimated age. We hypothesize that these haplotypes, and by
proxy the SVs that they harbor, may have been subjected to
recent, population-specific negative selection, favoring the
ancestral allele. Variations that have emerged early in human
evolution and remain in extant populations are often found
at high allele frequencies in all extant human populations
under neutrality (Lin et al. 2015). Thus, if recent negative se-
lection on the derived SV is acting in a population-specific
manner, we expect to observe in that population: 1) an

unusual reduction in allele frequency of the variant that can-
not be explained by drift alone and 2) a shift in the allele
frequency spectrum toward rare variants in the locus.

A striking example of population-specific negative selec-
tion is provided by the haplotypes harboring esv3587631,
which shows one of the highest MU values in the genome
(MU¼ 8.50). This deletion is the major allele (i.e.,>50% allele
frequency) in most sub-Saharan African populations but al-
most absent in non-African populations (fig. 6A). Human
Genome Dating database estimates the age of a single-nucle-
otide variant tagging esv3587631 to be 1.1–1.3 My old (Albers
and McVean 2020). Thus, the deletion has emerged prior to
human–Neanderthal divergence. Consistent with this result,
we found that Denisovan but not Altai Neanderthal carries
this deletion (fig. 6B). The haplotype network showed that the
haplotypes harboring the deletion are similar to those from
archaic hominins, consistent with our observation that this
deletion is present in archaic human genomes (fig. 6C).
Collectively, it is clear that the deletion has evolved before
Human Neanderthal divergence and increased in allele fre-
quency in African populations to more than 75%, harbored
by diverse haplotypes. However, none of the haplotypes that
harbor the deletion is found in Eurasian populations.
Furthermore, the locus shows significantly negative Tajima’s
D values in the East Asian population, further supporting
nonneutral forces acting on the deletion (fig. 4D).

Functionally, this �4.8-kb deletion overlaps with one
of the introns of the well-studied and highly conserved
DAP3 gene (supplementary fig. S8, Supplementary

Table 2. Structural Variants with the Top 1% MU Value and Observed Phenotypic Effects through Tag SNP (R2>0.95) in GWAS Atlas.

ID esv number Trait MU Exon Afr. Freq. EAsia. Freq. Eur. Freq. Selection

1 esv3592798 Age started wearing glasses or contact lenses 4.91 0.08620 0.6478 0.4245 Positive
2 esv3587652 White blood cells 5.92 0.08090 0.5913 0.3956 Positive
3 esv3647661 Height, waist–hip ratio (adjusted for BMI) 6.78 0.07190 0.5238 0.6809 Positive
4 esv3590788 Hot drink temperature 5.14 0.04920 0.5317 0.3231 Positive
5 esv3634671 Height, fat, vertical cup-disc ratio, weight, sexual maturity 4.60 0.02800 0.4573 0.2227 Positive
6 esv3626213 BMI, alcohol intake, neuroticism, walking pace 5.23 0.08400 0.4375 0.4314 Positive
7 esv3597888 Total bilirubin, schizophrenia, worry 6.38 0.05750 0.7857 0.4493 Positive
8 esv3629184 Heart pulse rate, morning person 5.44 0.02800 0.0347 0.3827 Positive
9 esv3629182 Heart pulse rate, morning person 5.44 0.02800 0.0347 0.3827
10 esv3629434 Hematocrit, hemoglobin concentration, red blood cell count 6.35 0.01890 0.0109 0.326
11 esv3591931 Hair type, platelet volume 4.88 0.23220 0.0238 0.4016 Positive
12 esv3616249 Heel bone mineral density, platelet, red cell 6.30 0.74050 0.0208 0.3887 Negative
13 esv3639698 Height 4.85 0.03100 0.4851 0.2823
14 esv3640666 Red blood cell, bone mineral density, baldness, brain volume, 4.62 ARL17A 0.01510 0.001 0.2416
15 esv3636701 Heel bone mineral density 4.24 0.08700 0.623 0.1421
16 esv3625336 Water intake 4.33 0.07870 0.3194 0.4523
17 esv3609042 Gamma-glutamyl-transferase 5.70 0.09080 0.5089 0.674
18 esv3636957 FEV1/FVC ratio, impedance, height 5.90 0.06880 0.3056 0.6759
19 esv3642017a Height 4.29 0.69820 0.2817 0.0984 Positive
20 esv3587631 White blood cells 8.50 0.52120 0.002 0 Negative

NOTE.—All the SVs in the table are deletions. ID is the same as figure 4. We described the GWAS traits in the “Trait” column if the SV shows phenotypic effects through tag SNPs
on GWAS Atlas. We described the gene name in the “Exon” column if the SV contains one or more entire exons of UCSC Genes. “Afr/EAsia/Eur.freq” are the frequency of the
alternative allele in each population, Africa, East Asia, and Europe. The “Selection” column describes estimated natural selection based on the neutrality tests (fig. 4). Specifically,
“negative” indicates cases where we found recent selection favoring the ancestral allele, whereas “positive” indicates cases where we found recent selection favoring the derived
alleles.
aThis “deletion (esv3642017)” found in the 1000 Genomes samples as compared with the reference genome is actually a derived insertion that happens to be represented in the
reference genome (Anagnou et al. 1988; Conrad et al. 2010; Schrider et al. 2013). Thus, even though the putative action of selection is on the nondeleted haplotypes, given that
this haplotype carries the derived allele, we categorized the selection as “positive” in this case. Two variants highlighted in yellow are discussed specifically as examples. Green
color gradient indicates the allele frequency in each population.
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Material online). DAP3 is a mitoribosome protein that
regulates apoptosis at the cellular level and is linked to
multiple developmental, immune-related, and biomedi-
cally relevant phenotypes at the organismal level (Greber
and Ban 2016; Kim et al. 2017). Specifically, the deletion
overlaps with a conserved regulatory region comprising
multiple transcription factor binding sites. Consistent
with these observations, the haplotypes harboring the
deletion (tag variant, rs348195) were strongly associated
with the increased expression of the DAP3 gene in various
tissues (P< 10�6), with the effect size exceeding 0.4 in
some cases. Moreover, the deletion (through the analysis
of tag SNP rs348195) is strongly associated with decreased
levels of white blood cells (nominal P¼ 2.1�10�37,
fig. 6D). Collectively, these results are consistent with a
scenario where an ancient deletion variant that has been
either neutral or beneficial in African populations has

become detrimental to fitness in Eurasian populations,
perhaps due to adaptive constraints concerning immune
function.

Conclusion
Although several putatively adaptive SVs have been reported
in previous studies, a genome-wide selection scan of SVs has
remained challenging. In this study, we built a network-based
analysis of population differentiation among 26 populations
in the 1000 Genome Project data set to identify putatively
adaptive SVs including multiallelic variants. Our method
assumes that drift is the major force that shapes the distri-
butions of genomic variants among human populations as
articulated by others (Ramachandran et al. 2005; Coop et al.
2009). In identifying the most common allele frequency dis-
tribution combinations across the 26 populations, our

FIG. 5. The evolutionary analysis of esv3597888, the deletion overlapping the intronic region of the PCC gene. (A) The geographic distribution of
the esv3597888. (B) Haplotype networks constructed from the 5 kb upstream and downstream sequences from the esv3597888 location of three
modern human populations (Yoruban [YRI], Han Chinese [CHB], and European [CEU]), the Altai Neanderthal sequence (Prüfer et al. 2014), and
the Denisovan sequence (Reich et al. 2010) that are mapped to hg19 reference genome, and the chimpanzee reference genome (panTro4). The
haplotypes that harbor the deletion are indicated by white and those that do not are indicated by blue. (C) Tajima’s D value in the 5 kb upstream
and downstream regions of esv3597888 (10 kb in total) (Tajima 1993). Asterisk shows that Tajima’s D of the esv3597888 flanking region is lower
than the bottom five percentile of Tajima’s D of 5,000 random regions. The asterisk shows that the mean value of esv3597888 tag region is lower
than the five percentile of the control region. (D) The PheWAS result of rs556788, which tags esv3597888 (supplementary table S4, Supplementary
Material online). Each dot indicates a trait. The vertical axis shows the�log10 P value of the association between the genotype and phenotype. The
color indicates the phenotype category in GWAS ATLAS.
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method parallels the recent variant-centric integrative analy-
sis method proposed by Biddanda et al. (2020). We argue that
such direct, empirical scrutiny of the geographical distribution
of variants will provide a valuable and relatively unbiased
picture of demographic and nonneutral trends that shape
human genetic variation.

Our method is designed to identify SVs with population
differentiation that deviate from neutral expectations with-
out any a priori adaptive model. It identified hundreds of
putatively adaptive SVs with unusual genotype frequency
distributions in humans. The majority of these SVs were hid-
den from traditional selection scans which mainly focus only
on single-nucleotide variants. Our study identified 24 puta-
tively adaptive exonic multiallelic SVs, the majority of which
were not discussed within an adaptive context in humans. In
addition to incomplete sweeps of derived SVs, we found that
recent population-specific negative selection is a considerable
force shaping the geographic distribution of functional
SVs in humans. Overall, our study supports the emerging
notion that SVs significantly contribute to nonneutral and
biomedically relevant phenotypic variation in humans (Radke

and Lee 2015; M�erot et al. 2020) and highlight specific trajec-
tories underlying the evolution of such variants.

From an evolutionary genomics perspective, the promi-
nence of exonic multiallelic CNVs among the putatively adap-
tive SVs is not surprising. Cross-species analyses have
repeatedly revealed the outsized role of recurrent gain and
losses in gene families in shaping phenotypic characteristics in
a variety of species, with recurrent evolution of caffeine in
plants (Denoeud et al. 2014), salivary amylase in mammals
(Pajic et al. 2019), and venom in snakes (Casewell et al. 2020)
providing notable examples. Moreover, studies in humans
reported that multiallelic CNVs have seven times more effect
on gene dosage than the combined effect of biallelic deletions
and duplications (Handsaker et al. 2015). The same multi-
allelic SVs, however, are hidden in the majority of GWAS and
selection analyses. Multiallelic variants are not necessarily
tagged by nearby single-nucleotide variants, and they often
reside in the genomic regions with enriched segmental dupli-
cations where identifying variants can be problematic. Thus,
we expect that better genotyping of multiallelic SVs with
long-read sequencing platforms will dramatically increase

FIG. 6. The evolutionary analysis of esv3587631, the intronic deletion polymorphism of the death-associated protein gene3 (DAP3). (A) The
geographic distribution of the esv3587631. (B) esv3587631 in modern and ancient hominin genomes. These Integrated Genome Browser snap-
shots show the genome assembly (Hg19) of a human with the ancestral, homozygous nondeleted genotype and another with a homozygous
deleted genotype that shows no reads mapping to the deletion region (top two rows). Similarly, sequences from Neanderthal and Denisovan
genomes were mapped to this region. The Denisovan genome shows a clear signature of the deletion with breakpoints indistinguishable from the
deletion observed in modern humans. (C) A haplotype network of three modern human populations, Yoruba (YRI), Han Chinese (CHB), European
(CEU), as well as Altai Neanderthal and the Denisovan, and Chimpanzee, constructed from the flanking sequences from the esv3587631 location.
(D) The Phewas result of rs348195, the tag SNP of esv3587631 at GWAS Atlas. Each dot indicates a trait and the y axis shows the�log10 P value of
the association between the genotype and phenotype.
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our ability to identify multiallelic SVs and their previously
unknown adaptive roles.

A surprising result from our study is the identification of
recent negative selection favoring ancestral alleles as a notable
force determining the allele frequency distribution of puta-
tively adaptive SVs. Selective sweeps are often thought to
increase the allele frequency of the derived and not ancestral
variant. In this work, we found that at least 10% of the puta-
tive adaptive SVs show recent sweeps favoring the ancestral
allele. It is plausible that recent human adaptive evolution
involves repeated adaptation to similar environmental con-
ditions across time and geography as reported in (Bergey et al.
2018). Thus, an ancestral adaptive variant that confers a
smaller fitness advantage than the derived variant may be-
come adaptively beneficial again if environmental pressures
revert back to an earlier state. This scenario is particularly
applicable to immune system-related traits within the con-
text of an evolutionary arms race as articulated previously
(Key et al. 2014). Similarly, adaptive landscapes concerning
metabolic traits have drastically changed multiple times for
human populations due to technological advances (e.g., ag-
ricultural transition) (Hancock et al. 2010) and migrations to
new ecologies (e.g., arctic populations) (Marciniak and Perry
2017). Thus, under the assumption that neither the ancestral
nor derived alleles are fixed, it is not surprising that ancestral
SVs are favored in certain geographies and instances. Such
cases will appear as negative selection against the derived
allele. We reported in detail one such case involving the ex-
onic deletion of the growth hormone receptor in another
study (Saitou et al. 2021). The current study identifies several
other cases, suggesting that recent, geography-specific nega-
tive selection is a considerable force shaping allele frequency
distribution and population differentiation of functional SVs.

There are caveats to our study and to the investigation of
adaptive SVs in general. First, it is clear from existing litera-
ture that the current data sets suffer from significant false-
positive rates, potentially missing up to 80% of the SVs
(Mahmoud et al. 2019). Moreover, current technologies
can discover certain types of SVs (e.g., large biallelic deletions)
much more sensitively than other types of variants (e.g.,
duplications, inversions). It is telling that one of the SVs
most relevant to human evolution, amylase CNV, are not
cataloged by the 1000 Genomes Phase 3 data set because of
alignment issues in the locus. Even when such multiallelic
variants are discovered, it is not uncommon that their exact
genotypes (e.g., exact copy number) may not be accurately
documented. Second, the genotyping platforms commonly
used in genetic association studies mostly focus on biallelic
single-nucleotide variants only. In fact, even this study, which
is aware of these limitations, highlighted biallelic variants,
for which the haplotype can be readily resolved, and thus
trait associations can be investigated. The true contribution
of most SVs, including multiallelic variants, to phenotypic
variation, remains mostly unknown. Third, most SV maps,
including the data set we use in our study are not an
ideal representation of human variation. For example, a
more powerful and adequate sampling would involve
hypothesis-driven efforts where specific adaptive pressures

are in mind (Scheinfeldt and Tishkoff 2013; Rees et al. 2020).
Further, ascertainment bias in GWAS studies (Sirugo et al.
2019), which still comprise primarily European cohorts, limits
our power to link evolutionary trends shaping the SV allele
frequency distributions to their functional effects. Overall,
the current picture of the evolutionary effects of SVs, includ-
ing those revealed in this study, remains incomplete and
should be treated as a theoretical and methodological frame-
work for future studies with more comprehensive data sets.
We believe that as long-read sequencing-based discovery
and later genotyping become affordable, the full impact of
SVs on human evolution and diversity will be better revealed.

Materials and Methods

1000 Genomes Phase 3 Data Set
As the input data set, we used 1000 Genome Project phase 3
data sets (Sudmant, Rausch, et al. 2015) for the following
three reasons. First, the genotyping is based on whole-
genome sequencing and multiple detection methods such
as Delly (Rausch et al. 2012), which combines short insert
paired-ends, long-range mate pairs, and split-read alignments,
and GenomeSTRiP (Handsaker et al. 2011), which uses read
depth and read pairs for SV identification to improve accu-
racy. Thus, this data set provides a highly accurate SV geno-
type. Second, it contains approximately 100 individuals from
each population. Therefore, one can increase the power to
detect geographically differentiated SVs due to population-
specific adaptation by assessing deviations from expected
population differentiation. Third, it provides phased genotype
information not only of the SVs but also of the SNPs from the
same individuals. This allows us to apply our methods for
identifying population differentiation to known SNPs to as-
sess their performance and to carry out the subsequent
haplotype-based analysis on a subset of SVs.

Preprocessing SVs and Selection of Known SNPs in the
Analysis
We selected 57,629 autosomal SVs with annotations in the
1000 Genomes project phase 3 data set (Sudmant, Rausch,
et al. 2015) since variants in sex chromosomes are differently
described from autosomes due to the smaller number of the
observed number of chromosomes and cannot be analyzed
in the same pipeline as autosomal variants. As controls, we
also used 1,008 uniformly randomly selected single-nucleotide
variants from the same data set and six single-nucleotide
variants that have undergone putative natural selection, in-
cluding rs334 in HBB (Ding et al. 2013), rs73885319 in APOL
(Ko et al. 2013), rs4988235 in LCT (Smith et al. 2009),
rs12913832 in OCA (Wilde et al. 2014), rs3827760 in EDAR,
which is common in East Asian populations and associated
with hair and dental traits (Mou et al. 2008; Kimura et al. 2009;
Wu et al. 2016), rs1426654 in SLC24A5, which is associated
with skin color (Norton et al. 2006; Basu Mallick et al. 2013;
Deng and Xu 2018). In addition to these SNPs, we included
rs1129740 that falls into HLA-DQA1, which is one of the few
variants in the human genome that showed classical signa-
tures of balancing selection (Teixeira et al. 2015). This HLA
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allele showed unusually low MU (0.22) despite the global
allele frequency of 0.52 (fig. 2).

To verify that 1,008 randomly chosen SNPs indeed repre-
sent a neutral data set, we redid our analysis with 5,000 SNPs
shown to be evolving under near-neutrality by Pouyet et al.
(2018). Briefly, we calculated MU in the same manner as our
previous analysis, where we include all the SVs and the 5,000
neutral SNPs. We found that this reanalysis did not change our
results. Specifically, we found that the MU values calculated
with the additional SNP data set remain nearly identical to
those that were calculated with our initial data set
(Spearman’s correlation¼ 0.997) (supplementary fig. S3B,
Supplementary Material online). Further, we replicated our
finding that the MU values for all SVs are not significantly
different from those calculated for the neutral SNPs (P¼ 0.41,
Mann–Whitney test, supplementary fig. S3C, Supplementary
Material online), indicating that the majority of SVs are evolv-
ing neutrally.

Calculation of the MU and MDS Plot
We characterize each locus ‘ as an N�N similarity matrix,
denoted by S‘, where N¼ 26 is the number of populations
in the 1000 Genome Project Phase 3 data set (fig. 1A). The
entries of matrix S‘ represent the similarity between pairs
of populations in terms of the frequency of each allele at a
locus. Specifically, for each locus ‘ and population i, the
genotype count is given by the 1000 Genome Project Phase
3 data set. In general, variant call format (VCF), genotype
(i.e., the allele status of a pair of chromosomes of one in-
dividual) is denoted by x1jx2. Genotypes 1j0 and 0j1 in
general VCF are effectively the same and mean that one
individual has one reference (i.e., 0) allele and one alterna-
tive (i.e., 1) allele at the locus. Therefore, we summarized
both 1j0 and 0j1 into 0j1 in the following analysis. The
maximum (alternative þ reference) allele number at a lo-
cus was nine, in which case the allele number ranges from 0
to 8 (supplementary fig. S9, Supplementary Material on-
line). Therefore, in general, we summarized x1jx2 and x2jx1

into x1jx2, where x1, x2¼ 0,1, . . ., 8 and x1� x2. We denote
the frequency of genotype x1jx2 at locus ‘ and population
i by p‘,i(x1jx2), where 0 � x1 � x2 � 8. Note thatP8

x1¼0

P8
x2¼x1

p‘;iðx1jx2Þ ¼ 1. To increase the sensitivity

to identify the population differentiation of multiallelic
variants (i.e., variants with more than two alleles), espe-
cially, with large CNV (such as a multiallelic variant with
copy number one to eight, even if the frequency of copy
number eight is rare), we use a weighted variant of
the Bhattacharyya similarity metric, which modifies the
Bhattacharyya similarity metric (Bhattacharyya 1943; Cha
and Srihari 2002), as follows (fig. 1B).

First, we transform the original distribution,
fp‘;iðx1jx2Þ; 0 � x1 � x2 � 8g to
f~p‘;iðx1jx2Þ; 0 � x1 � x2 � 8g, where:

~p‘;iðx1jx2Þ ¼ Cðx1 þ x2 þ 0:5Þp‘;iðx1jx2Þ (1)

and

C ¼ 1

P8
x1¼0

P8
x2¼x1

ðx1 þ x2 þ 0:5Þp‘;iðx1jx2Þ
: (2)

This transformation magnifies the frequency of genotype
and its differences between populations at large x1 and x2

values (i.e., large CNV). Second, we measure the
Bhattacharyya metric between each pair of populations i and
j based on the transformed probability distribution, that is:

s‘ði; jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X8

x1¼0

X8

x2¼x1

~p‘;iðx1jx2Þ~p‘;jðx1jx2Þ

vuut : (3)

If the two distributions ~p‘;i and ~p‘;j are identical, then
s‘(i,j)¼ 1, which is the largest value of s‘(i, j). In this manner,
for each locus ‘, we obtain an N�N similarity matrix S‘ whose
(i, j) entry is given by equation (3).

To analyze the organization of M¼ 58,644 loci (which is
composed of 57,629 SVs, 1,008 random SNPs, and seven SNPs
under adaptive evolution), we constructed a distance matrix
for the M loci by comparing similarity matrix S‘ across the
loci. We define the distance between S‘ and S‘0 using the
Frobenius norm, denoted by dF, which is given by

dFðS‘; S‘0 Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

XN

j¼1

½ðS‘Þij � ðS‘0 Þij�
2

vuut : (4)

Note that ðS‘Þij ¼ s‘ði; jÞ. Also note that one can replace

the summation by
PN

i¼1

PN
j¼iþ1 without loss of generality

because the similarity matrix S‘ is symmetric and all of its
diagonal elements are equal to 1. The M�M Frobenius dis-
tance matrix, denoted by F, tabulates the difference between
each pair of loci, and its (‘, ‘0) entry is given by dF(S‘,S‘0).
Finally, we ran a MDS algorithm on F to map out relationships
between the M loci on a 2D space. We used the Python
package manifold, which is part of scikit-learn (Pedregosa
et al. 2011), to estimate the MDS. To empirically measure
these relationships, we calculated the distance between the
origin and each variant in the MDS space and defined it as
“MU,” or the degree of unusual allele frequency distribution
(Materials and Methods, fig. 1). This measure informs on the
unusualness of global population differentiation of a given SV,
as compared with the entirety of the data set. We only used
one initial condition for the MDS due to the long time re-
quired for the computation. The analyses have been done on
the server of the University at Buffalo Center for
Computational Research (http://www.buffalo.edu/ccr.html).

Simulations and MU Calculations
To model the evolution of CNV in humans, we modified
recipe 14.11 (modeling microsatellites) and recipe 5.4 (model
of human evolution) in SLiM 3.6 (Haller and Messer 2019).
We modeled stepwise copy number gains or losses in each
locus under different mutation rates/selection coefficients in
three populations (YRI, CEU, and CHB) for which the demo-
graphic parameters were previously established (Gravel et al.
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2011). In each simulation, we generated 2,970 potentially var-
iable neutral loci, and 10�3 potentially variable loci under
population-specific selection in each population (with a range
of selection coefficients), respectively. All the variable loci
were initially neutral, but at generation 78084, just after the
split of CEU and CHB, the ten loci became adaptive in each
population. We used 0.5, 0.05, 0.005 as selection coefficient
and 10�5, 10�6, 10�7 for mutation rate. We also ran simu-
lations with the mutation rate 10�8, however, most of them
did not produce polymorphic sites. So we did not eventually
use the mutation rate of 10�8. We simulated each model 100
times per condition (three mutation rates�three selection
coefficients). The allowed copy number range was 1–8. The
script can be found on our GitHub webpage (https://github.
com/mariesaitou/Network_humanpop_SV).

mrCaNaVaR Copy Number Estimates and MU
Calculations
We used mrCaNaVaR (https://github.com/BilkentCompGen/
mrcanavar, last accessed March 23, 2020) to estimate the
normalized read depth for each gene in the human genome
using high-coverage (�30�) sequencing data (Byrska-Bishop
et al. 2021) available for the same samples we used in our
original analysis. mrCaNaVaR remaps short reads promiscu-
ously and measures the normalized read depth of intervals
across the genome. Using this approach, we calculated the
read depth of each gene across the human genome and use
this data to calculate the MU values for each human gene as
follows. First, we discarded the genes on chrM (mitochondrial
DNA), chrX, chrY, which left us 36,486 genes. We denote by
yg,p,i the read depth associated with gene g (g¼ 1, . . ., 36,486)
in the ith individual in population p (p¼ 1, . . ., 26), from the
1000 Genome phase 3 data set. Second, for each gene, we
divided each yg,p,i by the average over all individuals and
populations. We applied this normalization to enable a
gene-to-gene comparison of the CNV in a single population
and across multiple populations without being affected by
the typical copy number, which substantially depends on the
gene. We denote the normalized yg,p,i by �yg,p,i. Third, for the
given gene g, we calculated the distance between two pop-
ulations by the earth mover’s distance (Levina and Bickel
2001; P�erez-Barber�ıa et al. 2007) as follows. The distribution
of the normalized copy number for population p is given by
assigning probability 1/np to each value of �yg,p,i that appears in
the data, where np is the number of individuals in population
p. If there are two individuals that have the same value of �yg,p,i,
for example, then the probability of this normalized copy
number is 2/np. The earth mover’s distance between popu-
lations p and p0 is the minimal cost to move the distribution
of the normalized copy number for population p to that
for population p0. The cost of moving a unit probability
mass from a location �yg,p,i in one distribution (corresponding
to population p) to another location �yg;p0;j in another distri-
bution (corresponding to population p0) is given by
j�yg;p;i � �yg;p0;jj. By calculating the earth mover’s distance be-
tween each pair of populations, for each gene g, we obtain a
26�26 distance matrix, denoted by Dg, which represents how
similar/different each pair of populations is in terms of the

copy number distribution. Fourth, we calculate the distance
between each pair of genes using the Frobenius norm
using equation (4), but with matrix Sl being replaced by ma-
trix Dg. The remaining steps for calculating MU are the same
as those for the 1000 Genome Project Phase 3 data set. The
script is available on GitHub (https://github.com/mariesai-
tou/Network_humanpop_SV). For comparing the results
from mrCaNaVaR calls and our original analysis, we identified
21 genes that are multiallelic SVs in the 1000 Genomes Phase
3 data set with high MU values (99th percentile) that are also
presented in mrCaNaVaR analysis.

Allele Frequency, MU, and SVs
Since MU is related to alternative allele frequency by defini-
tion, we categorized the variants into four groups in terms of
the allele frequency using ranges 1–0.25, 0.25–0.5, 0.5–0.75,
and 0.75–1, and investigated the distribution of MU of the
variants in each group. In intermediate allele frequency
groups, multiallelic CNV had higher MU than SNPs
(Wilcoxon test, P¼ 0.0021 and P¼ 0.00095 for allele fre-
quency ranges 0.25–0.5 and 0.5–0.75, respectively). This result
indicates that our methods may detect unusual population
differentiation due to the excess of multicopy alleles than
biallelic variants. In addition, we noticed that the small num-
ber of variants that have allele frequencies higher than 0.5
show smaller MU values than those variants that are less than
0.5. There is no mathematical reason for this observation.
Thus, this observation may be due to various other reasons,
including potential genotyping errors which may be increased
among this group of variants. We want to further acknowl-
edge here other studies that have employed tools to capture
variation at the multiallelic SV locus (e.g., VST; Redon et al.
2006) and use thoughtful hypothesis-driven population sam-
pling (Huerta-S�anchez et al. 2014). Regardless, the majority of
genome-wide scans of selection employ biallelic locus and use
available continental populations such as the 1000 Genomes
data set and almost none captures variation across dozens of
populations.

Functional Genomics Analysis
We retrieved exonic content from UCSC Genome
Browser (http://genome.ucsc.edu/; UCSC Genes, table:
knownCanonical) and examined if each SV contained one
or more entire exon using bedtools (Quinlan and Hall
2010). To find functionally relevant loci, we first calculated
linkage disequilibrium between the top 1% high MU biallelic
SVs and neighboring regions (5 kb upstream and down-
stream) with vcftools (Danecek et al. 2011). We searched
the resulting tag SNPs (r2 > 0.95) in GWAS Atlas Phewas
database (https://atlas.ctglab.nl/PheWAS, last accessed March
23, 2020), defining that P< 10�9 as a statistically significant
association. Of the 576 top 1% SVs in terms of MU, we found
that 500 variants were biallelic, which were suitable for hap-
lotype analysis. Among the 500 variants, 344 SVs showed R2

larger than 0.95 with neighboring variant(s). Of these 344 SVs,
20 of them have flanking tag SNPs that are significantly asso-
ciated with phenotypic variation (fig. 2A and table 2). Further,
we used the GTEx portal (GTEx Consortium 2013) for
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associating these SNPs to variation in gene expression levels
(supplementary fig. S4, Supplementary Material online). We
used ShinyGO (Ge et al. 2020) or GREAT (McLean et al. 2010)
to conduct functional enrichment analysis for genes and
intervals overlapping SVs with the whole genome as the back-
ground. These tools search for enrichment in multiple data-
bases and provide multiple hypotheses-corrected false
discovery rates.

Evolutionary Genomics Analysis of the Haplotypes
Harboring Putatively Adaptive SVs
We used the 344 SVs that are among the top 1% in terms of
MU and have flanking tag SNPs with R2 value larger than 0.95
for the following evolutionary analysis. We used the age esti-
mates from Human Genome Dating database (Albers and
McVean 2020) using tag SNPs as proxies to the adaptive
SVs. This database documents the allele age estimates based
on the analysis of pairwise haplotype identical tracts in 1000
Genomes (1000 Genomes Project Consortium et al. 2015)
and Simons Genome Diversity Projects (Mallick et al. 2016)
(https://human.genome.dating; last accessed, March 23,
2020). We also calculated how long it takes for a new allele
to reach a given frequency in each population under neutral-
ity using equation (15) of (Kimura and Ohta 1973). For this
calculation, we used demographic models for each popula-
tion detailed in (Schaffner et al. 2005) (fig. 3D).

For haplotype-level population genetics measures, we tar-
geted 5 kb upstream and downstream regions of the SVs and
calculated Tajima’s D scores of the tag SNP of the target SVs
using VCFTools (Danecek et al. 2011). We retrieved the iHS
score from the 1000 Genomes Selection Browser (Pybus et al.
2014). For comparative purposes, we calculated the same
scores for �500 random regions generated with bedtools
(Quinlan and Hall 2010) across the genome. Ancient human
(Altai Neanderthal and Denisovan) genomic bam files are
published on the Max-Planck Institute website (https://
www.eva.mpg.de/index.html, last accessed March 23, 2020)
(Reich et al. 2010; Prüfer et al. 2014). We used samtool-
based (Li et al. 2009) read-depth analysis to genotype dele-
tions in archaic genomes (fig. 5B). We generated haplotype
networks using VCFtoTree (Xu et al. 2017) and POPArt
(Clement et al. 2002; Leigh and Bryant 2015) by Minimum
Spanning Network method (Bandelt et al. 1999).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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