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tional Mock-up Interface, a free standard for dynamic models exchange. Each major
system of a power plant is assigned to a Functional Moch-up Unit which collects
standardized data to give an output of the remaining useful life of the equipment.
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Abstract
Digitalization has opened the opportunity for a fourth industrial revolution and the
hydropower industry is taking charge of enabling digitalization in their operation.
There are a lot of studies on predictive maintenance, however, there are, to our
knowledge no studies on system-specific predictive maintenance for hydropower. To
bridge this gap, the idea of system-specific, Machine Learning driven Predictive Main-
tenance is explored. Two systems are chosen as a use-case for this thesis: valves and
servomotors. With the increasing amount of intermittent renewable energy resources
entering the power system, the need for flexibility in the power grid is unequivocal.
Valves and servomotors are key components of hydropower control and thus will play
a pivotal role in securing flexibility to the grid.

The first system assessed is the main valve. In order to make this analysis easily
applicable, the data that is already being collected at Nore 1 hydropower plant is
analyzed in order to assess the possibility of maintenance prediction from limited
data. Unfortunately, this did not achieve the desired results for the data collected
from the valve sensors. This is due to the fact that only one variable was measured,
in this case, the opening and closing time-lag of the valve. However, this thesis
presents a framework for data collection that allows the use of Machine Learning for
predictive maintenance. Various sensors are suggested based on several published
works on predictive maintenance.

The second system assessed is the servomotor that controls the guiding vanes in a
Francis turbine. Servomotors are key components of hydropower control. Due to the
data not being collected by Statkraft at the time of the study, this data was provided
by one of Statkrafts suppliers. By making use of the historical data of pressure as a
function of the piston position, a boundary for where new values should be expected is
computed by making use of One Class Support Vector Machine. Another embodiment
of this case is presented where force is given as a function of piston position, which
yielded better results. When new values are being measured, the data is presented as
a bullet chart that visualizes the distance of new values compared to the boundary
computed by the One Class Support Vector Machine. This tool could easily be applied
to other servomotors which perform other tasks such as controlling water injection
to a Pelton turbine or opening and closing of the valve, whether they are butterfly
or ball valves. Suggestions for further data collection are presented in order to make
use of more data for the use of Machine Learning in Predictive Maintenance.
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Sammendrag
Digitalisering har ledet frem til en fjerde industriell revolusjon og vannkraft bransjen
er i ferd med å digitalisere sin operasjon. Under literaturstudien er det ikke funnet
noen publiseringer innen systemspesifikk maskinlæringsdrevet predikativ vedlikehold.
I denne masteroppgaven blir muligheten for bruk av systemspesifikk, maskinlæring-
drevet predikativ vedlikehold innen vannkraftverk utforsket for å vekke interesse innen
dette feltet. To av vannkraftverkenes maskiner er brukt som eksempler og utforsket:
ventiler og servomotor. Økende mengder uregulerbar strøm er introdusert i kraft-
nettet og behovet for fleksibilitet øker. Ventiler og servomotor er nøkkeldeler av
vannkraftverk regulering og spiller en stor rolle i å sikre flexibilitet til strømnettet.

Det første systemet som ble analysert er ventiler. For å gjøre analysen og resultatene
enkelt anvendbare, blir data som allerede er innsamlet analysert for å utforske mu-
ligheten for predikativ vedlikehold med begrenset data. Analysene basert på data
samlet inn fra sensorne montert på ventilene ble dessverre ikke konklusive. Det er
utfordrende å forutsi fremtiden når man bare har en variabel å ta utgangspunkt i.
Likevel presenteres det et prinsipielt rammeverk for innsamling av data som gjør det
mulig å ta i bruk maskinlæring for predikativ vedlikehold. Ulike sensorer er fores-
lått, basert på relevant litteratur innen ventiler og maskinlæring drevet predikativ
vedlikehold.

Det andre systemet analysert under studien er servomotorer som styrer vannet i en
Francis turbin ved å regulere vinklingen til skovlene. Dataen innsamlet om servomo-
toren er en god indikator på tilstanden til servomotoren. Ettersom dataen var ikke
samlet inn av Statkraft da studien ble utført, ble dataen hentet fra en av Statkraft
sine leverandører. En One Class Support Vector Machine ble brukt for å beregne
foventet verdi av di�eransetrykk over stempelkamrene, som funksjon av stempel po-
sisjon. En kulegraf som viser avstanden mellom grensen og nye verdier er visualisert.
En annen metode er også presentert hvor man regner ut kraft på begge sider av
stempelkamrene gjennom trykk for å vise kraft som funksjon av stempel posisjon.
Dette ga bedre valideringsresultater i forventet di�eransekraft over tempelkamrene.
Verktøyet kan enkelt bli anvendt til andre servomotorer som styrer vannmengden i
en Pelton turbin eller åpning og lukking av ventilene, uavhengig av om det er spjeld-
eller kuleventiler. Forslag til videre data innsamling er presentert for å ta i bruk
maskinlæring for predikativ vedlikehold.
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Chapter 1

Introduction

1.1 Background

Around 52 billion tons of greenhouse gases (GHG) are being emitted every year
[1]. According to the latest IPCC Assessment Report (The Physical Science Basis),
it is unequivocal that the human influence has increased the temperature of land,
atmosphere, and ocean [2]. Antonio Gueterres, the Secretary General of the UN,
stated that this report is a "code red" for humanity and that the world is getting close
to the point of no return [3]. IEA has established a Net Zero Emissions scenario,
in order to cut emissions and keep global warming below 2 degrees [4]. In order
to reach the aims of this scenario, renewable energy resources will play a key role.
However, most of these resources have variable production. With the increasing
amount of intermittent renewable energy sources entering the power systems, the
need for flexibility in power generation is unequivocal. In the past decade or so,
the amount of installed intermittent renewable energy sources (IRES) has increased
exponentially [5].

Hydropower plants have been around for a long time. Harnessing the potential energy
stored in water dates back to 13 B.C. [6]. According to the executive director of IEA,
Fatih Birol [7], hydropower is a forgotten clean electricity giant that needs to be put
back on the climate and energy agenda, in order to meet the net zero goals.

Reservoir Hydropower Plants store potential energy in water reservoirs at a certain
height. When needed, the water is then led down through the tunnels and penstock
to a turbine. The potential energy of the water is turned into kinetic and pressure
energy which is later transformed into rotating, mechanical energy through turbines
and finally later transformed to electrical energy by generators. Reservoir Hydropower
Plants (RHPP) have played and will play, a pivotal role in regulating the intermittent
power produced by IRES [8]. However, the increasing irregularity of production will
generally lead to a reduced lifetime of the equipment.

Industries and governments have an increasing focus on refurbishment [9] and circu-
larity1 [10] in the recent years. It is important to increase the lifetime of equipment,
as well as provide circularity to the equipment that are already in use at the end of
their lifetime.

Although Predictive Maintenance has long been a goal for the industry, it is today
often based on set frequency condition assessments. Condition monitoring presents

1Circularity means extending, or giving new life to products by refurbishing and recycling prod-
ucts.
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information continuously and helps visualize faults without the need for frequent in-
spection. Predictive Maintenance gives the opportunity to have just-in-time mainte-
nance based on the tools provided by the recent advances in sensor technology, IoT2

and Machine Learning. This way one can provide maintenance when it is needed
without the need for unnecessary waste of materials and expenses.

1.2 Thesis Aim and Structure

RHPPs are robust construction and have a long life cycle, however, there are various
mechanical equipment that need to be maintained often. This thesis will go into the
use of Machine Learning for the Predictive Maintenance of valves and servomotors.
There is a huge amount of studies on the use of Machine Learning in Predictive Main-
tenance, as it will be shown in Chapter 2. To our knowledge, there are no studies
on the use of Machine Learning driven Predictive Maintenance on valves and servo-
motors. This thesis aims to fill the gap in these studies by using Machine Learning
as a tool for hydropower system-specific Predictive Maintenance by presenting two
use-cases valves and servomotors.

For the valve use-case, data from Nore 1 hydropower plant is collected. The aim is to
check if there is any way to notice previous maintenance performed based on historic
data on the opening and closing time-lag of the valve. Later predictive algorithms
are to be assessed and compared on their predictive accuracy based on the collected
data.

Servomotor use-case data is obtained from one of Statkrafts suppliers. This use-case
aims to present a condition monitoring mechanism based on the data obtained.

Finally, the thesis will present a framework for data collection that enables the use
of Machine Learning driven Predictive Maintenance.

In Chapter 2 a review of relevant work will be presented, both on the mechanical
equipment and Predictive Maintenance, including Machine Learning.

The theory of the mechanical equipment and Machine Learning models used during
the data analysis and framework will be presented in Chapter 3

The methods for data analysis are presented in Chapter 4.

The analysis and results will be presented in Chapter 5. Challenges with the lack of
data obtained so far will be discussed, as well as a framework for data collection and
use of various sensors will be presented.

Finally, Chapter 6, will present the thesis’ conclusions and introduce further work to
be carried out.

2The term IoT represents the connectivity of equipment to internet, enabling communication
between equipment and humans, thus making them ”smart” [11].
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Chapter 2

Literature Review

Various publications have been assessed in order to gather knowledge on both the
mechanical equipment and the Machine Learning (ML) techniques that can be applied
in the already acquired data as well as state-of-the-art techniques for future work.

The literature review can be divided into two main sections; mechanical equipment
and Predictive Maintenance (PdM) combined with ML.

2.1 Mechanical Equipment

There is unfortunately little information that can be found on valves, probably due
to their robustness and long lifespan. However, there are a few technical papers, like
one by Arne Kjølle [12] which goes through various mechanical equipment in a HPP
and one by Crane Company [13] that describes the various types of valves and some
of their use cases.

Even though the valves analyzed in this thesis are butterfly valves, both spherical
and butterfly valves are researched in order to see if measurements taken in spherical
valves can be applied to butterfly valves. The operating systems and the physical
properties are similar, so that makes it easier to compare and apply methods used in
one type of valve to the other.

Shrivastava et Patel [14] present a Finite Element Method analysis for a large butterfly
valve. A detailed description of the common pressure points and displacement of the
valve housing is shown as well in this report [14]. High values of stress are noticed
in the area between the support rib and disc area [14]. According to Azad et al [15],
vortices are formed behind the valve disc during the opening in a CFD analysis. The
results from the CFD analysis show that the opening angle has a huge impact on total
head loss [15]. In an article by Fei Zhang et al. [16], a summary of several publications
about the in-situ observations and test methods of spherical valve hydrodynamic
closure is presented. The results show that vibrations and pressure pulsations are
at their highest level when the valve is opened 34% [16]. The knowledge provided
in these three publications [14]–[16] is useful in order to know what happens during
the closing and opening process of the valve as well as help consider where to place
sensors needed for further work.

Spherical valve behavior on a pumped storage hydropower plant (PSH) is investigated
and modeled by Junginger et al. [17]. The models were simulated at various operation
points. According to the simulations [17], the shaft torque was subject to overloads.
The paper presents a closing law optimization and simultaneous closing process in
order to avoid load rejection [17]. Even though the article focuses on two PSH power
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plants with spherical valves, the principles can easily be implemented on a butterfly
valve.

A computational model of the servomotor that operates the valve computed in a
MATLAB/Simulink-based software, is presented in an article by Fang et al. [18], in
order to compute the accuracy and e�ectiveness of the simulation system. The article
describes thoroughly the physical principles of the servomotor and its relation to the
valve. MATLAB [19] has developed its own toolbox within Predictive Maintenance
for condition monitoring and remaining useful life (RUL) estimation.

2.2 Predictive Maintenance and Machine Learning

2.2.1 Maintenance Costs

An overview of costs related to maintenance is presented in order to inspire further
work in this field due to cost reduction from PdM. For large hydropower plants,
maintenance costs are assumed to be 2% to 2.5% according to IRENA [20]. However,
in a decision making support paper by Heggset et al. [21], it is underlined that there
are other hidden costs in maintenance planning due to the costs of choosing not to
produce due to maintenance which might exceed the assumptions by IRENA [20], in
times when power prices are high.

Other examples from the energy sector are o�shore wind power and oil and gas.
Maintenance costs account for 57%-71% for the o�shore wind power sector according
to an assessment by NREL in 2010 [22], while for the oil and gas industry these costs
can vary from 15% to 70% [23]. Even though these costs might have come down
in recent years due to continuous improvement of the technology, the materials price
experienced an increase in 2021 [24], thus might have led to an increase in maintenance
costs.

Downtime can give a good picture of maintenance costs due to failure. A survey from
Uptime Institute [25] discovered that the costs of data center outages were between
100 000 and 1 million dollars for 47% of the companies and more than 1 million dollars
for 15% of the companies surveyed. Another survey conducted by Nielsen Research
[26], in 2005, showed that downtime costs in the automotive industry had an average
of 22 000 dollars per minute.

2.2.2 Predictive Maintenance

The concept of Predictive Maintenance has been around for a long time. However,
with the development of Industry 4.01, IoT and sensor technology, implementing
Predictive Maintenance methods has become cheaper and more accessible [30]. These
technologies have made condition monitoring, maintenance plans, fault prognosis, and
diagnosis much more easy [31]. Ran et al. [32] present a good review of the latest
development within the various systems and approaches for Predictive Maintenance.
The report’s [32] structure is easy to follow and groups the various Machine Learning
algorithms in a simple way. The sources of this review [32] and the summary of

1The fourth industrial revolution, also known as Industry 4.0 is a product of a new way for the
industry to manufacture, improve and distribute products [27]. The first industrial revolution came
as a result of mechanization in 1733 [28]. New energy sources like electricity and synthetic products
such as plastics, as well as mass production mark the second industrial revolution by the end of the
19th century [28]. The third industrial revolution is marked by a rise in electronics and automation
[29].
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the di�erent methods for Predictive Maintenance have heavily influenced and helped
research during this thesis.

The industry has also taken a big interest in Predictive Maintenance. Companies like
Seebo Interactive [33] and LimbleCMMS [34] have established guides for Predictive
Maintenance. Even Microsoft [35], has developed a playbook on Predictive Mainte-
nance for the use on their own platform, Azure. Recently, came EDR & Medeso with
their approach to Predictive Maintenance with limited data by combining physical
principles with digital twins [36]. Unlike other companies, EDR & Medeso explores
the reasons for failure and maintenance in order to build the algorithms according to
the specific issues [36]. A publication by Eker et al. [37] illustrates the drawbacks
and advantages of the data-driven models and physical models. More methods are
further described in books [38]–[42] which go into more detail on various assessments,
vibration analysis, and decision support tools for Predictive Maintenance in various
branches of the industry. The guides provided in these articles and the examples
have heavily inspired the work on the framework that is presented in this thesis (see
Section 5.3).

Predictive Maintenance is well established. However, real-world data is often stored
in multiple formats, machines, and systems, thus making it extremely hard to make
use of their data. Bekar et al. [43] presented an unsupervised ML technique for data
pre-processing to structure the data using real-world data from the manufacturing
industry. However the results from the study are very sensitive and in need of further
work [43], thus this studies aim is to increase the use of ML in the industry, rather
than present an actual solution. This is, unfortunately, the case for either the use-
cases analyzed, where data collected is not enough for the use of ML-driven PdM.

A study by Zhang et Zhang [44] uses an LSTM-based model to predict the RUL of
deteriorating systems, with data provided by NASA, and the predicted values are
very close to the actual failures. A data-driven condition-based monitoring (DCBM)
framework is also established for imperfect inspections in order to give probabilistic
forecasting for maintenance decision making, as well as a regressor for performance
evaluation, using a stacked autoencoder LSTM [44]. Figure 2.1 illustrates how the
DCBM framework uses historical data in order to predict future failure.

Figure 2.1: The DCBM process for the deteriorating equipment [44].

The information needed for Predictive Maintenance is often time dependent. Simple
statistical algorithms, like ARIMA, have widely been used for time series prediction
[45]–[46], however due to advances in computing, other deep learning algorithms, like
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LSTM, seem to outperform ARIMA by 84%-87% [45]. Jason Brownlee [47] describes
various deep learning tools for time series forecasting like MLP, CNN, LSTM [48] and
a combination of these in order to increase accuracy. Brownlee [47], Hota et al. [49]
and Wang et al. [50] have combined the Sliding Window Method with these deep
learning tools in order to increase the accuracy further. Figure 2.2 by Kotu et al. [46]
gives a nice illustration di�erent pathways for time series forecasting.

Figure 2.2: The taxonomy of time series (adapted from Kotu et al. [46]
with permission from Elsevier).

Within the field of HPP, Jiang [51] attempted to apply a Multi-Agent System (MAS)
and Artificial Neural Network (ANN) for Predictive Maintenance of the whole HPP
based on data from several sensors. The model was applied in two HPPs [51]. How-
ever, this type of PdM introduces the Black Box issue. The Black Box issue is a term
used in data science, to represent the lack of explanation of the results from an ML
model. In the example by Jiang [51], one only knows that there is a need for main-
tenance in the power plant but not where or what type of maintenance. In a study
led by Energy Norway [52], pressure data from the servomotor was analyzed and One
Class SVM was used for data classification, which presented acceptable results. This
inspired further work on the use of One Class SVM in this thesis (see Section 5.2).

2.3 Key Take-Aways

No cases of the use of system-specific ML-driven PdM within the hydropower industry
were found during the literature review.

Research and modeling show that there are high-stress levels in various parts of the
valve, as well as pressure pulsations. These issues generally lead to a reduced lifetime
of the components.

Data gathered seems to be insu�cient in most industries and there lacks a standard-
ization for data collection. Multiple data-storage systems with various data formats
present further challenges. Even high-performance algorithms have issues producing
reliable results with such issues as lack of data and standardization.

Articles reviewed during the literature study show that Machine Learning models such
as LSTM outperform conventional statistical models such as ARIMA. The Sliding
Window Method combined with deep learning increases the prediction confidence of
time series forecasting.

One Class SVM yields good results for condition monitoring of the servomotor.
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Chapter 3

Theory

3.1 Mechanical Equipment

3.1.1 Valves

The conduits in most RHPP are provided with shut-o� devices, valves [12]. Accord-
ing to the ISO/TS 81346-10:2015 standard, also known as the RDS standard, the
main valve is part of the production unit (class A) and is defined as the system for
controlling the water flow between the penstock and the turbine and is defined under
class KA [53]. There are many di�erent types of valves, depending on their function
and requirements. According to Kjølle [12], the most relevant types of valves for
hydropower are spherical, butterfly, gate, and ring valves.

In butterfly valves, the servomotor controls the opening of the valve. From measure-
ments, at Nore 1 it takes around 60 seconds to open the valve. The first step of the
opening process is to pressurize the downstream side of the valve. A by-pass pipe fills
the downstream side of the waterway with water, as is shown in Figure 3.1.

Figure 3.1: Illustration of a butterfly valve. Similar construction as the
ones installed at Nore 1 HPP.

When the downstream side of the valve is filled with water, and the pressure is the
same on both sides of the valve, the servomotor is pressurized and starts lifting the
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counter weight, thus opening the gate. During the closing process, the pressure in
the servomotor is reduced and the counter weight closes the valve. Figure 3.2 shows
pressure measurements at an open valve at Nore 1 HPP, as earlier mentioned, pressure
is equal on both sides when the valve is opened.

Figure 3.2: Pressure measurements downstream and upstream of valve 1
at Nore 1 HPP.

A flow meter is installed in the penstock, next to the valve, in order to detect anoma-
lies in the flow so that emergency closure valves can close automatically in case of
unexpected flow rise or penstock rupture.

There are two usual damages to be found on valves; normal wear and mechanical dam-
ages [12]. Valve inspection is di�cult on the upstream side and its frequency should
be determined on the base of material choice, probability of cavitation, vibrations or
mechanical wear from sand, erosion, and so on [12].

According to interviews with operators at Nore 1 HPP, leakage inspection is issued
every week. If the valve is not opened within five minutes, an error message is
produced, however, it takes 30 minutes for an error message to come up in the SCADA
system1. Maintenance on valves is initiated in case of failure.

3.1.2 Servomotor

Even though the valves might have di�erent shapes, the operating mechanism is often
a hydraulic servomotor operated either by water or oil pressure [12]. In butterfly
valves the servomotor is pressurized in order to open the valve and lift the counter
weight after the downstream side of the valve is filled with water. During the closing
process the servomotor is depressurized and the counter weight closes the valve.

Figure 3.1 shows the placement of the servomotor in a the butterfly valves installed
at Nore 1 HPP and Figure 3.3a) shows the operating system of the servomotor, also

1SCADA is a system of software and hardware elements that allows industrial organisations to
record events, to interact with devices such as sensors, valves, pumps, and so on, control processes
and gather real time data [54].
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known as the hydraulic power unit (HPU). The HPU shown in Figure 3.3a) operates
two servomotors at the same time. This pairing mechanism is in all the valves at
Nore 1 HPP. The HPU is equipped with oil tanks, pumps, and an accumulator. The
accumulator operates like a battery. Pressure, provided by the pumps is stored in the
accumulator in order to be ready for use in the valve’s piston when it’s time for the
valve to open.

Figure 3.3: Pictures were taken at Nore 1 HPP. a) The servomotor’s HPU
with pressure sensors. b) A control cabinet for the valve on the upper part
and monitoring system for oil amount and pressure in the servomotor in the

lower part.

The amount of pressure per unit of time being provided to the accumulator is smaller
than the amount of pressure per unit of time that the accumulator provides to the
piston. Figure 3.3b) shows the control cabinet. On the upper part of the control cab-
inet the valve parameters, like pressure, are monitored. In case of pressure di�erence,
an error message is sent to the SCADA system. In the lower part of Figure 3.3b),
one can see that the oil amount and pressure are monitored.

At Nore 1 HPP, oil leakage in servomotors is inspected every month, while main-
tenance is issued every two years. During this maintenance oil and oil filters are
changed and replaced. A detailed inspection of leakage is performed.

The servomotor is a key part of the hydro-turbine governing system [55]. In Pelton
turbines, the servomotor controls the amount of water that is injected into the turbine.
Figure 3.4 shows pictures taken from Nore 1. Figure 3.4a) shows how the controlling
system is mounted on the turbine casing, while in Figure 3.4b), maintenance was
being issued at the time so one could see inside the casing. Within the marked area,
one can see the servomotors accumulators for the water injecting mechanism to the
Pelton turbines.
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Figure 3.4: Pictures taken from Nore 1 HPP. a) Pelton turbine with pres-
sure sensors and injecting mechanism. b) Pelton turbines under mainte-

nance. Servomotor accumulators can be seen on the back.

Similarly, servomotors are also used to control the guide vanes in a Francis turbine.
An illustration of the servomotors that control the guide vanes in a Francis turbine
is shown in Figure 3.5. During this project, data from a similar servomotor was
gathered for analysis.

Figure 3.5: Illustration the servomotors that controls the guiding vanes of
a Francis turbine. (Courtesy of Statkraft.)
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3.2 Predictive Maintenance and Machine Learning Tech-

niques

There are two methods used to predict a deteriorating system, physical-based methods
and data-driven methods, also known as Machine Learning based methods [37]. This
thesis will focus mainly on data-driven methods. Thus, in order to make it easy to
follow, Predictive Maintenance (PdM) and Machine Learning (ML) methods will be
presented together.

3.2.1 Predictive Maintenance

In various literature, maintenance strategies are divided into preventive, predictive,
and breakdown maintenance or R2F. In the European Standard EN 13306:2017 [56],
maintenance includes more definitions and thus is more complex. PdM is allocated
under Condition based maintenance, which is allocated under Preventive Maintenance
(PvM), as shown in Figure 3.6, inspired by EN 13306:2017 [56]. As shown in the
literature review (in publications such as Ran et al. [32]) Corrective maintenance (also
known as R2F in various literature) and predetermined maintenance are outdated
maintenance methods and in this fourth industrial revolution, one should make use
of sensors, IoT and Machine Learning in order to schedule maintenance when it is
needed.

Figure 3.6: Maintenance methods and definitions. (Printed with permis-
sion from Standard Norway [56].)

Corrective maintenance, according to EN 13306:2017 [56], is issued after fault recog-
nition. This leads to an unscheduled production stop and both material and water
value2 expenses.

Predetermined maintenance is a type of PvM, issued according to established inter-
vals, either in intervals of time or the amount of unit of use [56]. Predetermined
maintenance is done on critical equipment in order to avoid unexpected failure, how-
ever, this might lead to unnecessary costs (e.g. material, labor, and transportation
costs) as well as material replacement.

2The water value is the estimated value of the water at any given time in the di�erent reservoirs.
RHPP can choose not to produce when the power prices are low but wait until the prices exceed the
estimated water value (i.e. producing at a profit). Unexpected shutdowns may hinder production
when profits would have been high. In a worst-case scenario, water could overflow the reservoir and
its production value would be lost.
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Predictive Maintenance [is] condition-based maintenance carried out fol-
lowing a forecast derived from repeated analysis or known characteristics
and evaluation of the significant parameters of the degradation of the
item.

-EN 13306:2017 [56]

Predictive Maintenance gives the possibility to schedule maintenance just before fail-
ure. Various Machine Learning techniques can be used to learn from past experiences
and extrapolate this data in order to predict maintenance or failure. The following
sections will go briefly through the theory of relevant techniques used for Predictive
Maintenance.

3.2.2 Autoregressive Integrated Moving Average

Developed by Box et Jenkins [57] back in 1970, ARIMA has widely been used for time
series forecasting. Having been around for a while, the implementation of ARIMA is
relatively straightforward in most statistical tools and programming languages. Kotu
et al. [46] expresses the ARIMA model as:

yÕ
t = I + –1yÕ

t≠1 + –2yÕ
t≠2 + ... + –pyÕ

t≠p + et + ◊1et≠1 + ◊2et≠2 + ... + ◊qet≠q, (3.1)

where:

yÕ
t is the regression function at the time t

I shows that the data values have been replaced with di�erenced values to ob-
tained stationary data

– represents the smoothing parameter

◊ represents the weighted moving average

p is the predictor for the autoregressive part

q is the lagged error for the moving average part

et is the is the forecast error at a given time t

d is a hidden parameter in equation 3.1 but is coded in the model and represents
the order of di�erencing.

Another embodiment is Seasonal ARIMA, better known as SARIMA, which can take
into account the seasonality of the data.

3.2.3 Multilayer Perceptron

Multilayer Perceptrons, also known as MLP, approximate a mapping function from
input variables to output variables [47]. The neurons in an MLP are called percep-
trons3 [59]. MLPs are robust to noise and nonlinear models [47], giving MLPs a big
advantage in the field of time series prediction, since the data is often nonlinear and
the sensors are often faulty, thus generating noise in the data. According to Brownlee

3The perceptron combines the inputs with weights in order to compute the net input, which is
passed on to the threshold function; after the error is calculated the weights are then updated in
order to minimize the misclassification errors [58].
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[47], a simple feed-forward NN, like MLP, should be evaluated as a base case for
more advanced models. In time series forecasting MLPs take previous observations
as input features in order to predict future time steps [47].

3.2.4 Long Short-Term Memory

LSTMs are a type of RNN and part of a complex area of Deep Learning [48]. LSTM
was introduced by Hochreiter and Schmidhuber [60] back in 1997, to overcome the
vanishing gradient problem. The study found out that LSTMs outperformed other
RNNs at the time and managed to solve tasks that hadn’t been solved so far, at that
time [60].

... LSTM add the explicit handling of order between observations when
learning a mapping function from inputs to outputs, not o�ered by MLPs
or CNNs.

-J. Brownlee, Long Short-Term Memory Networks With Python, 2017 [48]

The computational unit of LSTM, shown in Figure 3.7, is often called memory cell,
memory block or just cell [47]. LSTM cells are comprised of weights and three types
of gates. The forget gate, which decides which information goes through; the input
gate, which updates the cell states and the output gate which allows for the updating
of the hidden units [58], as shown in Figure 3.7. The structures of LSTM cells are
complex, however, TensorFlow4 has established easy methods in order to call LSTM
cells [58], so more theory on LSTM is outside the scope of this study.

Figure 3.7: Representation of the LSTM memory cell. x
t refers to the

input data at time t, C is the cell state, w is the weight, f is the forget gate,
i is the input gate, h indicates the units and o is the output gate. (Printed

with permission from Packtpub [58].)

LSTMs have various advantages compared to other time series estimators like their
robustness to noise as well as the ability to work with nonlinear and multivariate
data [48]. Compared to other RNNs, LSTMs lack the scaling problems, as well as
vanishing gradient problems [62].

4TensorFlow is an open source platform for Machine Learning, developed by Google, with a
comprehensive and flexible ecosystem of tools, libraries, and other resources [61].
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3.2.5 Convolutional Neural Network

CNN is a type of ANN that mostly focus on pattern recognition and image processing.
These types of NNs are compromised of convolutional layers, pooling layers and fully-
connected layers [63]. CNN model operates directly on raw data and learn how to
extract features from raw data which can be useful for the problem to be solved [58].

CNNs are composed of several convolutional layers and subsampling layers, known as
pooling layers, which are connected in the end by a Dense layer [58]. The convolution
is done on two vectors, one for the input data and one for the weights, and produces
a third vector [58]. The problem in the mathematical expression for convolution is
that it goes from negative infinity to positive infinity [64], while a finite amount of
data is always used. In order to solve this problem, padding is introduced, where one
adds a certain amount of zeroes on both sides of the input [58]. Subsampling is done
by the means of pooling which reduce the size of the features and introduce some sort
of variance [58].

Qiao et al. [65] and Brownlee [48] explore the idea of using CNN for time series
prediction as well as combining CNN with LSTM in order to increase the confidence
of time series prediction.

3.2.6 Support Vector Machine

Pattern recognition dates back to 1936 [66], by Ronald A. Fisher who described the
first algorithm for pattern recognition. This work has been under continuous improve-
ment ever since. Work done by Cortes and Vapnik at the AT&T Bell Laboratories
presents another milestone in pattern recognition with the development of SVM [67].

SVMs are supervised5 Machine Learning algorithms used for classification, regres-
sion, and outlier detection [68], which can be seen as a further development of the
perceptron. Unlike the perceptron, the idea behind SVMs is to maximize the margin,
while incurring a faulty observation when a sample is misclassified as illustrated in
Figure 3.8.

Proof of work for several SVM embodiments can be found in Cortes’ introduction
of SVM [67], as well as recent work in handwriting recognition as well as image
recognition [69].

During this analysis, a version of SVM is used, called One Class SVM. This is an
unsupervised outlier detection algorithm and it produces a decision function that
calculates the signed distance from the separating hyperplane [68]. The signed dis-
tance function gives positive values if the point x is within the decision boundary and
negative if it is outside, as shown in the function below [70]:

x

Y
__]

__[

„ > 0, x œ W/ˆW
„ = 0, x œ ˆW
„ < 0, x œ R2/W,

(3.2)

where „ is the signed distance from the decision boundary, W is the boundary, ˆ is the
partial derivative of the function, in this case the boundary function and R represents

5Most Machine Learning models make use supervised learning, where one has some input variables
and some output variables based on input, where one can use the algorithm to learn a mapping
function from input to output [47].
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Figure 3.8: The margin is defined as the distance between the separating
positive and negative hyperplanes. (Printed with permission from Packtpub

[58].)

all the real numbers. One Class SVM will b used in order to define the required area
for future measurements of pressure in the servomotor.
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Chapter 4

Data and Methods

4.1 Time-lag of the opening and closing process of the

valve

Data is gathered from Nore 1 HPP located at Rødberg municipality, which started
producing electricity for the first time in 1928.

The opening and closing of the butterfly valve are controlled by the servomotor as has
been illustrated previously in Chapter 3, in Figure 3.1. When the valve is closed, the
disc is positioned perpendicular to the water direction. Here the positioning display
is pointing to 90 degrees, as shown in Figure 4.1. After the downstream side of the
valve is pressurized by the by-pass system, the servomotor lifts the counter weight,
opening the valve, and placing it parallel to the water stream, i.e. at zero degrees, as
shown in Figure 4.1.

Figure 4.1: Valve 3, closed (left photo), and Valve 1, open (right photo).
Photos taken by author at the Nore 1 HPP.

Two sensors are monitoring the valve position, one at fully opened and one at closed.
These sensors have binary outputs, "On" or "O�". When the valve display system1

points toward the open position and its back triggers the "Open Sensor," it gives an
"On" signal, while the inactivated "Closed Sensor" gives an "O�" signal. When the
valve position arrow moves away from the "Open Sensor", the signal is "O�" and as
the valve position arrow’s back reaches the "Closed Signal". The latter switches to
an "On" signal.

1The valve display system is mounted at the rod of the valve disc and displays the position of the
valve disc relative to the water direction.
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The other sensor in the middle of the open and closed sensor is a fault sensor which
activates in case the valve is not fully opened and sends an error message.

The data logged from these two sensors is logged in two separate tables. In order to
calculate the time-lag, these tables had to be merged in order to calculate the time
di�erence from when the "Open Sensor" turns o� until the "Closed Sensor" turns
"On", thus obtaining how long it takes the valve to close. After the time di�erence is
calculated, two tables are produced; one for the time-lag of the opening process and
one for the time-lag of the closing process, as illustrated in Figure 4.2.

Figure 4.2: Flow chart for data preparation for the valves.

After the data was prepared, six data-sets were created in total; two data-sets each
for the three valves assessed. Each of the 6 data-sets are first analyzed and then
tested in various time series forecasting methods, both simple statistical methods like
ARIMA as well as ML algorithms such as LSTM.

Models are trained for each valve for the opening and the closing process separately,
as shown in Figure 4.3.

Figure 4.3: Flow chart for model training for the valves.

For all the Machine Learning models described in Sections 4.1.3-4.1.4, an optimizer
called Adam is used. The adaptive moment estimation, better known as Adam opti-
mization algorithm, is an extension to the stochastic gradient descent that is broadly
adapted for deep learning [71]. The learning rate2 in each weight update remains the
same. Adam is used since Ruder [73] found it to have the best performance when
tested against a gradient of optimization algorithms.

The mean squared error (MSE) is used as the loss function3, calculated as follows:

MSE =
1
N

Nÿ

i=1
(y[i] ≠ ŷ[i])2, (4.1)

2The change to the model during each step of this search process is called the “learning rate” is
the most important parameter for a neural network in order to increase the performance of the model
[72].

3The loss function evaluates how well the algorithm has adapted to the data-set [74].



4.1. Time-lag of the opening and closing process of the valve 19

where N represents the number of measurements, y[i] is the value at time or cycle i
and ŷ[i] is the prediction. The activation function that is responsible for transforming
the summed weighted input from the node into the activation of the node used for
all predictive ML models is ReLU.

The rectified linear unit, usually called ReLU for short, is a piece-wise linear function
that gives an output if the input is larger than, or equal to zero, else it will return
zero, as shown in Figure 4.4. ReLu has become widely used since it is easier to train
and has a better performance compared to sigmoid and hyperbolic tangent [75].

Figure 4.4: Representation of the rectified linear unit (ReLU)

4.1.1 Validation

In order to validate the model, the data is split into a training data-set and a validation
data-set. Each valve operates at a di�erent point in time, therefore cycle amounts
vary during the 10 year time span of measurement. The training data-set is used in
order to train the model and make predictions, while the validation data-set is used
to test how well the prediction has performed. The validation data-set is set as a
default value for the last 100 measurements for the opening and closing process of
the valve. The data-sets vary from 350 to 400 data points, so the training data-set is
comprised of the first 250-300 values and the validation data-set is comprised of the
last 100 values, as shown in Figure 4.5.

In order to have a quantitative measurement of the performance RMSE is used to
measure the error in all models. RMSE is calculated as follows:

RMSE =

ı̂ıÙ 1
N

Nÿ

i=1
(y[i] ≠ ŷ[i])2, (4.2)

where N represents the number of measurements, y[i] is the value at time or cycle i
and ŷ[i] is the prediction. The lower the RMSE, the better the prediction. The RMSE
returned in the end, is the mean of all predictions for each point, so it is important
to visualize the prediction so that one can see whether the Machine Learning model
is replicating the pattern or just producing a smoothed line.

In Figure 4.6 the loss is plotted against the number of epochs. One can see that the
loss decreases as the number of epochs increases. The callback function saves the
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Figure 4.5: An example from closing time-lag of valve 1 of how the data
is split into training and validation data-set.

model with the lowest loss from the validation data (test data). This function also
looks at 100 epochs into the future to see if the loss decreases or not. If the loss does
not decrease, the model stops and returns the results with the lowest RMSE.

Figure 4.6: Example of model loss that depicts the validation of the data.
This example is extracted from the CNN-LSTM model which will be pre-

sented in the following section.

4.1.2 ARIMA

ARIMA is a statistical model which is widely used for time series prediction. This
model is usually used for univariate data, as is the case for this data-set. Since some
seasonality is noticed in the data, as will be shown in the following chapter, SARIMA
is used. It is fairly easy to add seasonality to the ARIMA model, thus enabling the
use of SARIMA. The code for the ARIMA model includes an automatic function that
chooses values for the di�erent parameters of the ARIMA function. However tests are
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done with both the automatic function and by trying various values of the di�erencing
order d, predictor p, and lagged error q. In order to achieve high performance, the
model is computed 50 times with various parameters.

4.1.3 Time-dependant LSTM

For better performance, data is scaled within a range of zero to one, with the help of
the MinMaxScaler function provided by the preprocessing library of Scikit-learn [76].
The LSTM model built for this task is Stacked LSTM, which means that there are
multiple hidden layers. In this case two LSTM cells with di�erent amount of units
are stacked and a Dense layer outputs the results as shown in the code below:

1 model = Sequential ()
2 model.add(LSTM(units =100 , activation =’relu ’,
3 return_sequences =True ,
4 input_shape =( x_train .shape [1] ,1)))
5 model.add(LSTM(units =10, activation =’relu ’))
6 model.add(Dense (1))

Listing 4.1: Time-dependant stacked LSTM model.

The units in a hidden layer are inspired by neurons in the brain, however much less
in amount and simpler than the biological brain [77]. A simple illustration of the
code above is presented in Figure 4.7. The Dense layer is a fully connected layer that
takes information from all units (see Figure 4.7) and predicts a value.

Figure 4.7: Illustration of the time-dependant stacked LSTM model.The
amount of units in the Input layer depends on the size of the training data-

set.

For each epoch4 the model saves the number of epochs with the lowest root mean
squared error (RMSE). The model has an early stopping function, which stops the
new epochs if better results are not computed. This is done with the help of two
functions in Keras’ Callback library, ModelCheckpoint, which saves the best model,
and EarlyStopping, which stops the epochs if better results are not computed [79].

4In one epoch, every sample in the data-set has updated the internal model parameters, the epoch
is compromised of batches which is the number of samples performed before the model is updated
[78]. The number of epochs is usually large, however in every ML task performed, the number of
epochs is optimized.
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4.1.4 Cycle Dependant ML

Due to the opening and closing process of the valve happening rarely within the
time span, another approach where time is removed as a variable is assessed. In this
approach, one looks only at the opening or closing cycle for a valve. Models like MLP,
simple LSTM, Bidirectional LSTM, Stacked LSTM, and CNN LSTM are tested. Just
as in the time dependent LSTM, the number of epochs and the savings, are optimized
using the Keras’ Callback functions. It is challenging to predict the future with only
one variable, however, Blownlee [47], presents a sliding window method in order to
predict future values based on previous observations.

Sliding Window Method

The sliding window is the basis for how we can turn any time series data-set into
a supervised learning problem [47]. In the sliding window method, new points are
predicted based on a given amount of previous points. The data-set is split into a
matrix and a vector, as shown in example 4.3-4.4. In the sliding window method, one
tries to turn an unsupervised learning5 to a supervised one. The size of the window
defines the size of the matrix. In example 4.3-4.4, a window of the size 10 is chosen.
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The ten first values give as output the eleventh one. Then, the next ten other values
starting from the second one result in the twelfth one and so on, as illustrated in
Figure 4.8. This mechanism turns the data-set into a supervised learning model by
teaching the model how previous values (in this case the previous 10 values) a�ect
the next one (in the first row, the 11th value). In 4.4, one can see that the last vector
predicts the future value. In this case, a batch of 15 values is used and one iterates
over each value to predict the 16th one. Various amounts of window sizes are assessed
in order to find out which could yield the best results.

5Unsupervised learning does not make use of tagged data, however, it tries to sort the data and
set probabilities based on pattern density [80].
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Figure 4.8: Illustration of the sliding window method. The first row repre-
sents the data-set. The rest of the rows illustrate the split. The green boxes
represent the data that goes into the matrix while the blue, the data in the

vector. The red box is supposed to be the predicted value.

4.2 Pressure analysis of the servomotor

The servomotors analyzed in this thesis are those which control the guiding vanes in
a Francis turbine. However, the operating mechanisms and physical principles can
be applied to other types of servomotors like those which open valves or control the
amount of water injected into a Pelton turbine.

In the analyzed servomotors, two sensors are placed on each piston in order to con-
tinuously measure the pressure from each chamber. The pressure di�erence is then
calculated for each piston. Figure 4.9 illustrates one of the pistons, with sensors at
each chamber and piston.

Figure 4.9: Simple illustration of the piston in the servomotor.

Two data-setts were provided, from one of Statkraft’s suppliers, Andritz, one for the
opening servomotor and one for the closing. The data was then merged together in
order to plot the pressure di�erence against the piston position in the servomotor
given as a percentage. The data is then processed in a One Class SVM algorithm.
This algorithm is similar to the one used in case 9 in the MonitorX project [52]. One
Class SVM defines a boundary based on the initial data. The data processing and
classification are shown in the flow chart in Figure 4.10.
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Figure 4.10: Flow chart of data processing and classification for data from
the servomotor. Pressure is analysed as a function of piston position.

Force can be plotted against piston position as well. From the pressure data the force
F can be calculated as well, as shown in the equation below:

F = P ◊ A, (4.5)

where P is pressure and A is the area of the piston. The area of the piston in Chamber
A can be calculated by its diameter which is 90mm, while for Chamber B the area is
smaller due to the piston rod (see Figure 4.9), which has a diameter of 45mm. The
area on both sides can easily be calculated as fi ◊ r2, where r is the radius. Force is
plotted against the piston position in order to compare with the results from pressure.
The flow chart in Figure 4.11 illustrates the data processing leading to the One Class
SVM computation.

Figure 4.11: Flow chart of data processing and classification for data from
the servomotor. Force is analysed as a function of piston position.

The One Class SVM is powered by a kernel6. In this case, the Gaussian kernel is used,
which is one of the most used kernels, better known as RBF kernel [58]. Two variables
are important in the One Class SVM algorithm: “ and ‹. The “ parameter can be
seen as a cut-o� parameter for the Gaussian sphere [58]. A small value of “ gives a
soft decision boundary of the RBF kernel, while an increase in “ leads to a tighter
decision boundary. The ‹ parameter fine-tunes the trade-o� between overfitting and
generalization [68]. A low value of ‹, yields a larger margin at the cost of training
accuracy, on the other hand, a high value of ‹, has a more narrow margin. Both “
and ‹ can have values between 0 and 1.

A condition monitoring key performance indicator (KPI) is the desired output of this
task. Condition monitoring is an important part of maintenance activities and is
intended to measure the parameters of the actual physical state of an item [56]. For
this task, the most relevant KPI is the signed distance between a new measurement
and the decision boundary established by One class SVM. This will be visualized by

6A kernel can be interpreted as a similarity function, where distance measure is inverted into a
similarity score which is placed in a range from 0 to 1 [58].
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the use of bullet graphs and can be integrated into the existing monitoring system or
as a Functional Mock-up Unit (FMU)7.

4.2.1 Validation

There are 18152 rows of data in the servomotor data-set. The data set is split into
a training data-set and a validation data-set. 17152 data points are used to train
the One Class SVM model and 1000 random data points in the data-set are used
to test/validate the model. The reason random data points were chosen instead of
consecutive ones is to generalize the model by having more representative test data
than consecutive data points. The errors in the training and the validation data-set
are presented in the figure output.

7The Functional Mock-up Interface is a free standard that allows the exchange of dynamic models.
The Functional Mock-up Unit is a container that holds a unique model [81]
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Chapter 5

Results and Discussion

In this chapter, the results of the analyzed data will be presented and discussed. Chal-
lenges in using the already acquired data will be introduced. As a result of these chal-
lenges, a framework for data gathering will be presented, including the implementa-
tion of other sensors that could give more information on the state of health of the vari-
ous equipment. This information combined with various Machine Learning techniques
could be essential for Predictive Maintenance of various components of a hydropower
plant. The code and models used during this thesis are uploaded on GitHub and can
be accessed via this link: https://github.com/ernesc/masters_thesis_2022.

5.1 Valve

One of this thesis’ tasks had the aim to analyze if the time-lag for the opening and
closing process could be used to predict when maintenance should be done in the
valves and to see if there is any pattern in the data that suggests that the time-lag
increases with the aging of the valve. The data was downloaded in unique files for each
year and data from di�erent sensors was in the same file. A function was therefore
defined in order to extract and merge the data in order to make it easier to use (as
shown in Figure 4.2 in Chapter 4). Figure 5.1 below shows the opening and closing
time-lag for the three valves assessed at Nore 1 HPP. There are in total eight valves
at Nore 1 HPP.

Figure 5.1: Data gathered from Nore 1 for the three valves. Data is
visualized as a scatter plot in order to show that these values are unique

and not continuous.

https://github.com/ernesc/masters_thesis_2022
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Time, in years, is plotted against the horizontal axis, while time-lag, in seconds, is
plotted against the vertical axis. The data is visualized as a scatter plot since the
values are periodical and not continuous. As shown in Figure 5.1, there are missing
data from the beginning of 2017 until the end of 2019. It is uncertain the reason for
this lack of data. In Figure 5.1, one can also see some outliers. Some outliers are
due to sensor malfunction, others for reasons unknown. The outliers were removed
before model training in order to increase the accuracy of the prediction. The closing
process of valve 3 appears to have a seasonal variation during the years. The reason
for this variation is still unclear, even after an inspection of the valve at the power
plant with the operators. All valve types showed this type of seasonality as shown
in Figure 5.2, however, the other valves do not show the same sensitivity as valve 3.
In Figure 5.2, data is visualized as a line graph in order to make it easier to notice
patterns and/or seasonality. One of the reasons for the seasonal sensitivity might be
the water temperature which can change the viscosity of the water, thus making it
harder for the counter weight to close the valve.

Figure 5.2: A closer look at the closing time-lag of the valves. A seasonality
is noticed on the data. Data is visualised as a line graph in order to notice

the seasonality in the data. Data is not continuous but periodical.

As mentioned earlier, each of the data-sets were tested in various time series fore-
casting methods, with both simple statistical methods like SARIMA as well as ML
algorithms such as LSTM, MLP, and a combination of LSTM with CNN. In the fol-
lowing sections, the results will be presented, as well as discuss the strengths and
weaknesses of each model.

5.1.1 Time dependant models

SARIMA is one of the most used tools for time series prediction, it was therefore
used as a base case for the time dependant model. The SARIMA model seems to
have a nice prediction and is on the same scale as the validation data, as we can
see in Figure 5.3. SARIMA captures, to a certain degree, some of the patterns and
seasonal variations. The root mean squared error (RMSE) obtained using SARIMA
is computed to 0.838, which is good.

As mentioned in earlier chapters, LSTM is considered to be one of the better time
series prediction algorithms. However as is shown in Figure 5.4, the prediction is of
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Figure 5.3: Results from SARIMA for the opening time-lag of valve 1. The
computed RMSE is 0.838.

the same order however the prediction does not seem to capture the pattern from
previous observations. The accuracy can be seen in the RMSE which is significantly
higher than the one obtained with the SARIMA model, 1.340.

Figure 5.4: Results from time dependant LSTM for the opening time-lag
of valve 1. The computed RMSE is 1.340.

Machine Learning (ML) algorithms perform better on large amounts of data. 200 to
300 data points are too few to be able to make an acceptable prediction using ML
models, therefore simple statistical models like SARIMA perform better than ML
algorithms such as LSTM. However, during the closing process, SARIMA did not
perform quite as well as we can see in the Figure 5.5. The RMSE value increased to
3.874, which is much higher than the one for the opening process data-set. In the
time-span from 2020 to the end of 2021 the di�erence from predicted values to the
real ones increases much more than for the first predictions, from 2016 to 2017, as
shown in Figure 5.5. This illustrates that The ARIMA model is not able to make
reliable predictions when the data has experiences too many fluctuations.
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Figure 5.5: Results from SARIMA for the closing time-lag of valve 1. The
computed RMSE is 3.874.

An increase in RMSE was noticed for the LSTM model as well. However, as is shown
in Figure 5.6, the prediction fits quite well with the validation data. This shows
that LSTM models are more robust to changes than statistical models like SARIMA.
Even-though SARIMA had a low RMSE during the opening process, during the
closing process the data had much more variation than in the opening process thus
leading to a worse prediction.

LSTM on the other hand seems to generalize the data better and manage to capture
the pattern nicely. The RMSE seems to be more stable with both predictions com-
pared to SARMIA, where the RMSE increases by 4.6 times compared to the RMSE
for the opening process. LSTM on the other hand experiences an increase of 2.7 of
the RMSE for the closing time-lag compared to the opening time-lag, however, the
prediction fits quite nice, as shown in Figure 5.6, compared to SARIMA, as shown in
Figure 5.5.

Figure 5.6: Results from time dependant LSTM for the opening time-lag
of valve 1. The computed RMSE is 3.680.
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Since these results were not satisfying, it was proposed to tackle the problem in
another angle as it will be shown in the next sub-section.

5.1.2 Cycle dependant models

Brownlee [47], overlooks time as a variable and focuses only on the variable, in this
case, opening and closing time-lag of the valve. This way the prediction is computed
for the next cycle instead of the next time the valve opens or closes. As earlier men-
tioned, the Sliding Window Method transforms the data-set into a supervised learning
data-set. This way, each window (set of data from the training data) returns the next
value. After the model has iterated over all the training data-set, the other predic-
tions are made based on previously predicted values. For each case, several window
sizes are tested in order to test the accuracy at di�erent window sizes. As shown in
Section 5.1, the closing time-lag experiences seasonal variation so it is important that
the window size captures this variation, since time is stripped as a variable.

A simple MLP model was first assessed in order to check the results with the time
dependent SARIMA and LSTM models. This simple MLP model was used as a base
case for the other tests where time dependency is taken out and we look only at
the number of cycles. The MLP seems to be very smooth compared to the previous
results and has a tendency to increase, as shown in Figure 5.7. Various MLP units
were tested, even with multiple hidden layers, however, the predictions had worse
results than the results presented in this thesis. Various window sizes were also
analyzed but had little influence on the MLP results.

Figure 5.7: Results from MLP for the time-lag of the opening time of valve
1, with RMSE of 2.315 and sliding window size of 25. 75 LSTM units in the

hidden layer.

For the closing process, a more than doubling of RMSE was noticed on the MLP,
compared to the opening process. The number of units in the hidden layer is in-
creased in order to give a better prediction. The opening process worked better with
a relatively small amount of units than the closing process, probably due to little
variation in the data during the opening process. The prediction seems to produce
a sinusoidal-like curve for the first 50 predicted values, with a high error (see Figure
5.8). For the last 50 predicted values, the curve flattens out and represents more of
a mean than an actual prediction, as shown in Figure 5.8.
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Figure 5.8: Results from MLP for the time-lag of the closing time of valve
1, with RMSE of 4.697 and sliding window size of 25. 150 LSTM units in

the hidden layer.

A simple LSTM model without time dependency has a RMSE of 2.182. The model
seems to have the same pattern of the training data but not the validation data.
Figure 5.9, shows that the prediction converges with the validation data by the end,
however, experiences a spread during most of the prediction.

Figure 5.9: Results from simple LSTM for the time-lag of the opening time
of valve 1, with RMSE of 2.182 and sliding window size of 30. 150 LSTM

units in the hidden layer.

The results from the opening process of these two models show that the data is
insu�cient to provide an acceptable prediction for future values of the opening time-
lag of the cycles.

The simple LSTM outperforms MLPs prediction with a lower RMSE of 4.489, as
shown in Figure 5.10. The first 4-7 values have a high error, however, this is noticed
in both time dependant models (see Figures 5.5 and 5.6) as well as the cycle dependant
MLP model in Figure 5.8. The next values, up to the 300th cycle are well predicted,
but after that the prediction looks more like a moving average (see Figure 5.10).
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Figure 5.10: Results from simple LSTM for the time-lag of the closing time
of valve 1, with RMSE of 4.489 and sliding window size of 25. 50 LSTM

units in the hidden layer.

Bidirectional LSTM seems to perform worse than simple LSTM for the opening pro-
cess. Just like the MLP model the Bidirectional LSTM produces a smoothed line,
however in the opposite direction, predicting the time-lag to decrease in future cycles.

Figure 5.11: Results from Bidirectional LSTM for the time-lag of the
opening time of valve 1, with RMSE of 2.730 and sliding window size of 50.

100 LSTM units in the hidden layer.

During the closing process, the RMSE increased to 8.111, and as is seen in Figure
5.12 the prediction seems to get worse after a few predictions and only converges with
the validation data three times. The prediction shows that the closing time-lag of the
valves has the tendency to decrease while the validation data shows some decrease in
the closing time-lag.
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Figure 5.12: Results from Bidirectional LSTM for the time-lag of the
closing time of valve 1, with RMSE of 8.111 and sliding window size of 50.

100 LSTM units in the hidden layer.

Stacked LSTM 5.13 gave a nice performance i terms of RMSE, however, it seems to
have a tendency to fluctuate more than the validation data-set.

Figure 5.13: Results from Stacked LSTM for the time-lag of the opening
time of valve 1, with RMSE of 2.494 and sliding window size of 40. Both

hidden layers had 50 units each.

Stacked LSTM computes a prediction with a high RMSE for the closing process, just
like Bidirectional LSTM. The prediction visualized in Figure 5.14 shows that the error
for each prediction is quite high compared to the validation values.

A combination of CNN and LSTM seemed to yield good results. The model seemed
to be trained very fast compared to the other cycle dependent models. With few
units in a hidden layer, it took a small number of epochs to train the model, however,
when a large number of units was applied, the model needed a larger number of
epochs to train. the RMSE does not change much compared with the other results,
however, the prediction looks smoothed for valve 1 as shown in Figure 5.15. The
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Figure 5.14: Results from Stacked LSTM for the time-lag of the closing
time of valve 1, with RMSE of 8.039 and sliding window size of 50. Both

hidden layers had 50 units each.

spread between the predicted values and the validation values seems to get smaller
in the last 50 values.

Figure 5.15: Results from CNN-LSTM for the time-lag of the opening time
of valve 1, with RMSE of 1.939 and sliding window size of 40.

A smoothed line can be noticed in the closing process as well, however, the trend
seems to be accurate as is shown in Figure 5.16. A doubling in the RMSE is also
noticed.

Parameters such as window size, amount of units in a hidden layer, learning rate,
and batch size could be optimized by performing a grid search. This was outside of
the scope of this thesis due to time limitations, as well as a lack of any pattern for
maintenance that could be proven useful.
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Figure 5.16: Results from CNN-LSTM for the time-lag of the closing time
of valve 1, with RMSE of 3.982 and sliding window size of 40.

Table 5.1 presents results from all predictive models assessed. There are other models
that due to time limitations were not performed. These methods vary from other
simpler statistical methods to deep learning models. For example, LSTM could be
combined with other ML models such as Autoencoder, as presented in [44]. Other
common predictors are Naive Bayes models or even linear regression.

Table 5.1: Summary of the various models. O stands for the opening
process and C for the closing process. The first two models are the time

dependant ones, while the last five are the cycle dependant ones.

Model RMSE Comments
O: 0.838 Performs well in terms of RMSE for the opening process,

SARIMA C: 3.874 however experiences a lot of unnecessary fluctuations.
Does not follow the pattern of the validation data.

O: 1.340 The opening process produces a smoothed prediction that
LSTM C: 3.680 does not capture all the fluctuations. The closing process

prediction performs very good and replicates the pattern.
O: 2.315 Even though it has a low RMSE the prediction looks more

MLP C: 4.697 like a mean than an actual prediction. Experiences
a doubling of RMSE during the closing process.

O: 2.182 Performs quite well during the opening process, even
LSTM C: 4.489 though some deviation is noticed. Performs good in some

cases during the closing process.
Bidirectional O: 2.730 During the opening process the prediction is

LSTM C: 8.111 quite flattened and has a tendency to drop. An increase
in the closing time lag is predicted unlike validation data.

Stacked O: 2.494 During the opening process the prediction fluctuates
LSTM C: 8.039 more than the validation data, but during the closing

process the prediction is far o� the validation data.
O: 1.939 Performs somewhat better than the other cycle dependant

CNN-LSTM C: 3.982 models, with lower RMSE and has the same tendency
as the validation data.
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5.2 Servomotor

The data acquired from Statkraft’s suppliers was not enough to assess the possibility
of Machine Learning for Predictive Maintenance, however, a condition monitoring
system was developed for pressure analysis in the pistons.

After the two data-sets are uploaded, the needed data is extracted and merged to-
gether in a new table, as illustrated in Chapter 4 in Figure 4.10. Pressure di�erences
are plotted against the position of the servomotor piston and given as a percentage,
as shown in Figure 5.17.

Figure 5.17: Pressure di�erence plotted against the position of the piston
for both Servomotors.

One Class SVM is used in order to define a boundary from the data. Generic values
were first chosen for the “ and ‹. The results are shown in Figure 5.18.

Figure 5.18: Preliminary results from the One Class SVM classification for
pressure di�erence. The shades of blue are a visual aid in order to make the
length of new points from decision boundary easier for the reader to notice.
The size of these shapes is made arbitrarily and can be changed accordingly.
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Values within the envelope are allowed as well, however, the One Class SVM presented
in Figure 5.18 overlooks these values (as shown in the yellow point at the 40% opening
position), therefore a new boundary must be computed which takes into account
values within the envelope. Other parameters are thus chosen for “ and ‹ in order to
achieve better results. Various parameters were tested. The ones which yielded the
best results are “ = 2.6 ◊ 10≠3 and ‹ = 1.3 ◊ 10≠4, as shown in Figure 5.19.

Figure 5.19: Desired results from One Class SVM classification for pressure
di�erence.

The amount of data collected for this analysis is unfortunately too small to compute
a better boundary for the envelope, with fewer errors in both training and validation
data-set. The data analyzed is gathered during nominal operating conditions. In
order to have a better understanding of the operation of the servomotor, more data
on various operating conditions should be collected. One Class SVM gives a measure
of the length a new value is from the computed boundary. In an HPP, one can do
tests and decide the allowed outer values and define the scales of how far o� can be
allowed for new values. The green boundaries in Figure 5.19, represent the position
boundary of the piston in the servomotor during nominal operating conditions. Any
point that exceeds those green boundaries should be seen as an immediate error since
this type of error is very unexpected, during nominal conditions.

A bullet chart (see Figure 5.20) is designed in order to control how far o� new mea-
surements are from the decision boundary computed by the One Class SVM. The
bullet chart can be used in order to act as a KPI for the servomotor, and incorpo-
rated to the dashboards in order to monitor the condition of the servomotor. Various
examples of some "new" fake points are produce in order to illustrate how the bullet
chart works as shown in figures 5.20–5.23.

After some time of logging new data, the data can be assessed and analyzed in order to
see if more outliers are appearing in the data. When an increasing amount of outliers
is detected, might suggest that there is something wrong with the servomotor, thus
maintenance should be considered.
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Figure 5.20: One Class SVM classification for pressure di�erence with KPI
visualised as a bullet chart, when new value is outside of the boundary.

Figure 5.21: One Class SVM classification for pressure di�erence with
KPI visualised as a bullet chart, when new value is out of nominal position

boundary.
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Figure 5.22: One Class SVM classification for pressure di�erence with KPI
visualised as a bullet chart, when new value is within the learned frontier.

Figure 5.23: One Class SVM classification for pressure di�erence with KPI
visualised as a bullet chart, when new value is overlapping with the learned

frontier.
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After a discussion with Thor Arne Hvam Bruun, Head Engineer at Andritz Hydro,
the idea of plotting force instead of pressure was explored. Force is easy to calculate
from pressure when one has knowledge of the specific servomotor. If one knows
the area of the piston of both sides of the chamber, equation 4.5 can be used to
calculate the force. A One Class SVM is performed again with “ and ‹ parameters
and the validation results are much better compared to the previous embodiment.
The training error decreases to 303 values compared to 557 where pressure is plotted
against piston position. The validation error decreases as well to 16. As shown in
Figure 5.24, the data presented as a function of force is more linear than the one
presented as a function of pressure, therefore the One Class SVM fits more nicely.
The boundary is fitted better to the data and as one can see in Figure 5.24, there is
less need for the nominal operating boundaries (green lines) than the model where
pressure is used (see Figures 5.19–5.23). There is, however, some divergence from
the data noticed on the edges of the envelope. This is expected since pressure on
one side is experienced on a bigger area than the other due to the piston cylinder
which reduces the area. This issue is taken into account when force is calculated from
pressure.

Figure 5.24: One Class SVM classification for force di�erence with KPI
visualised as a bullet chart.

The calculating force from pressure might seem that makes the model less applicable
to other servomotors, however, this is easily done and the computation takes little
time. It could be somewhat challenging for operators to get used to working with
force instead of pressure since most of the data being presented in various equipment
is pressure data.
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5.3 A Framework for data collection that enables the use

of Machine Learning for Predictive Maintenance

This section will focus mainly on valves and servomotors since these two systems
are the main focus of this thesis. However, these principles can be applied to other
machinery in an HPP.

In order to achieve reliable results from Machine Learning algorithms, it is necessary
to collect and store more data. On a tour at Nore 1 HPP, one can see a huge amount
of pressure sensors around various parts of the power plant. However, these sensors
are analog and are only consulted in the case of error detection. Digitalization of
these measurements needs to be in place.

5.3.1 Valves

As mentioned in section 5.1, the data collected so far by most power plant operators
is the closing and opening time. As is seen by the results, it is hard to predict the
future with univariate data.

The most interesting measurements need to be taken during the opening and closing
process of the valve. As shown by CFD analysis presented in Azad et al. [15], vortices,
and pressure pulsations are observed during the opening and closing process, thus
monitoring vibrations in several directions is important to understand what happens
during this process and how this can a�ect the valves lifetime. Zhang et al. have
installed several vibration, pressure and displacement sensors in spherical valves to
monitor the e�ects of the opening and closing process [16]. Even though the research
presented in Zhang et al. [16] is within a spherical valve, the same measurements
can be performed in butterfly valves. During a presentation of the power plant at
Nore 1, it was shown that there is some displacement of the valve housing during the
opening and closing process. Zhang et al. [16], have installed displacement sensors
on spherical valves as well.

In order to have enough data to correlate with failure, the opening time is not enough,
therefore more sensors should be installed. These sensors could be vibration sensors
installed in various positions (vertical and/or horizontal perpendicular and parallel to
the water flow as well as displacement sensors. Digitalization of the current pressure
monitors is necessary in order to monitor the pressure accurately during the opening
and closing process and store the data. The valve disc angle should be monitored
and logged in order to correlate the data with the position of the disc. The desired
data-set for ML in order to predict failure and/or maintenance should look like the
table in Figure 5.25.

Figure 5.25: A "screenshot" of how a table with the required data for the
use of Machine Learning should look like. The values are random and for

illustrative purposes.

So to summarize the data that can be logged is presented in Table 5.2, where one can
see the column description from Figure 5.25 in Table 5.2.
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Table 5.2: Column description of the table in Figure 5.25 with required
information for the use of Machine Learning.

Column name Description
Valve-id Standardized name of the valve

Date-Time Date and time of the measurement
Press-Upstream Pressure upstream from the valve

Press-Downstream Pressure downstream from the valve
Disc-Angle Rotational angle of the valve disc

Horizontal-vib-perp Horizontal vibration monitoring, perpendicular to the
water flow

Horizontal-vib-par Horizontal vibration monitoring, parallel to the
water flow

Vertical-vib Vibration monitoring on the vertical direction
Displacement Displacement of the valve housing
Failure-type Standardised failure as a numerical value
Maint-type Standardised maintenance type as a numerical value

The failure type and maintenance type, at Nore 1 HPP are being logged in an SAP
system with a detailed description of failure or maintenance. The failure and mainte-
nance which is already logged could be used to inspire some categories of maintenance
or failure types so that it could be easier to standardize and be applicable for Machine
Learning. However, there should be further assessment in this field for standardiza-
tion of failure types and maintenance types so that one can standardize the input
data in a Machine Learning algorithm. It is important that operators whom log fail-
ure and/or maintenance are heavily included during this process so that the standard
is based on their experience with failure and maintenance as well as their expertise,
desires, and wishes since at the end of the day, they are the ones going to log the
data. It is hard to standardize something without the input of the people working
hands-on with the equipment.

5.3.2 Servomotors

As mentioned earlier, servomotors have a wide range of use in an HPP. The data
assessed in section 5.2 is obtained from a servomotor that steers the guiding vanes in
a Francis turbine However the condition monitoring mechanism described in section
5.2 could easily be implemented in other types of servomotor like the ones which
control the amount of water injected to a Pelton turbine or the ones which steer the
valves.

More data could be gathered, however, from the HPU, like the state of health of the
accumulators’ pressures before and after the accumulators. Vibration sensors could
give information on the sealings’ state of health. The state of health on the oil pumps
could prove to be interesting to assess, as well as continuous, digital, monitoring of
the amount of oil in the hydraulic power unit. Table 5.3 lists some important data
that could be gathered by the help of some sensors installed on the servomotor.
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Table 5.3: Required data for the use of Machine Learning for the servo-
motor.

Data Description
Vibration of the accumulator Might indicate issues in the pressure storage

Vibration of the pump Indicator of the SoH of the pump
Piston vibration Might indicate wear of the sealing
Oil monitoring Digitalization of the amount of oil in the valve

could reduce maintenance
Pressure monitoring Both before and after the accumulator could be

interesting

5.4 Summary of results

One of the biggest drawbacks of Machine Learning is the black box explanation. The
user has no knowledge of how the model is predicting the future or what is the basis for
its predicting maintenance. Using a modular approach, i.e. using Machine Learning
for each system gives a better picture of the specific system, and with methods like
RENT [82], one can see which of the variables being measured has more of an impact
on the maintenance decision. However, this is based on the assumption that one uses
multivariate analysis instead of univariate analysis, as was the test case in this thesis.

With the valve use-case, it is shown that it is challenging to get a decent prediction
with a limited amount of data as is the case with opening and closing time-lag. The
results are also summarized in Table 5.1. The time dependent LSTM performed
much better than the cycle dependent. An explanation for these results could be that
the opening and closing processes happen so rarely within the year, that is hard to
capture the seasonal variations. Therefore, time dependant LSTM, even though it
had a relatively high RMSE value, the prediction fitted quite nicely to the data-set.

The servomotor use-case is a good example of how Machine Learning models can
be combined with physical principles to produce a nice on-time visualization of the
state of health of the servomotor. During discussions with operators at Nore 1 HPP,
this kind of visualization, as shown in Figure 5.20, could be helpful to install on all
servomotors. However one should work closely with the operators in order to qualify
the various gradients, e.g. how far o� the boundary one can expect new values and
is not an issue and the other way around.

Finally, there is a need for further research where an "excessive" amount of sensors
are installed and analysis is done in order to find out which of the information is the
most relevant and to weigh this with an economical analysis.
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Chapter 6

Conclusion

Machine Learning opens the door to new opportunities to Predictive Maintenance.
Today very little data is being collected, making it challenging to predict the future.

Digitalization of the current sensors and the installment of new sensors will exponen-
tially improve maintenance and failure prediction.

For the valve use-case, the opening and closing time-lag data by itself cannot give a
maintenance prediction. Further information is needed in order to make good pre-
dictions. Data on previous failures and maintenance should be logged and structured
according to some international standard in order to be easily assessed, analyzed, and
correlated to other sensor information.

Position and pressure values from the sensor data are a user-friendly way to monitor
live the health of the servomotors. One Class Support Vector Machine is a powerful
tool for deciding the boundary of the values. The bullet chart presented from One
Class Support Vector Machine boundary is a nice visualization tool for condition
monitoring.

Further work should be done on failure and maintenance standardization in collab-
oration with the operators. Some of these ideas are presented in Section 5.3. This
would make the data more accessible and easy to apply to Machine Learning models.
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Appendix A

Servomotor analysis and results

1 #!/ usr/bin/env python
2 # coding : utf -8
3
4 # Servo Motor Analysis
5
6 # In [1]:
7
8
9 import pandas as pd

10 import numpy as np
11 import matplotlib . pyplot as plt
12 import matplotlib . font_manager
13 from sklearn import svm
14 plt.style.use(" ggplot ")
15 from ipywidgets . widgets import interact , Layout
16
17
18 # In [2]:
19
20
21 df_servo_open = pd. read_csv (" TilSK/ servoindikeringOPEN .csv",";",

skiprows =(3))
22
23 df_servo_close = pd. read_csv (" TilSK/ servoindikeringCLOSE .csv",";",

skiprows =(3))
24
25 df_servo_v1 = pd. DataFrame ()
26 df_servo_v1 = df_servo_open [[ ’Relative Time (ms)’, ’POS; WG_PILOT ’, ’HWI

; WG_SIGNAL ’,
27 ’HWI; Servo_pressure +’, ’HWI;

Servo_pressure -’]]
28 df_servo_v1 = df_servo_v1 . rename ( columns ={’Relative Time (ms)’: ’

Relative Time ’,
29 ’POS; WG_PILOT ’: ’pos ’,
30 ’HWI; WG_SIGNAL ’: ’FCA ’,
31 ’HWI; Servo_pressure +’: ’HWI;

Servo_pressure +’,
32 ’HWI; Servo_pressure -’: ’HWI;

Servo_pressure -’})
33 df_servo_v1 = df_servo_v1 . set_index (’Relative Time ’)
34 df_servo_v1 = df_servo_v1 .iloc [1:]
35
36 df_servo_v1 = df_servo_v1 . apply ( lambda x: x.str. replace (’,’,’.’))
37
38
39
40
41
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42 df_servo_v2 = pd. DataFrame ()
43 df_servo_v2 = df_servo_close [[ ’Relative Time (ms)’, ’POS; WG_PILOT ’, ’

HWI; WG_SIGNAL ’,
44 ’HWI; Servo_pressure +’, ’HWI;

Servo_pressure -’]]
45 df_servo_v2 = df_servo_v2 . rename ( columns ={’Relative Time (ms)’: ’

Relative Time ’,
46 ’POS; WG_PILOT ’: ’pos ’,
47 ’HWI; WG_SIGNAL ’: ’FCA ’,
48 ’HWI; Servo_pressure +’: ’HWI;

Servo_pressure +’,
49 ’HWI; Servo_pressure -’: ’HWI;

Servo_pressure -’})
50 df_servo_v2 = df_servo_v2 . set_index (’Relative Time ’)
51 df_servo_v2 = df_servo_v2 .iloc [1:]
52
53 df_servo_v2 = df_servo_v2 . apply ( lambda x: x.str. replace (’,’,’.’))
54
55 df_servo_v3 = pd. concat ([ df_servo_v1 , df_servo_v2 ])
56
57
58 df_servo_v3 = df_servo_v3 . reset_index ( inplace =False)
59
60 cols = df_servo_v3 . columns
61
62 for col in cols:
63 df_servo_v3 [col] = df_servo_v3 [col ]. astype (float)
64
65 df_servo_v3 ["diff"] = df_servo_v3 [’HWI; Servo_pressure +’] - df_servo_v3

[’HWI; Servo_pressure -’]
66
67
68 # In [3]:
69
70
71 plt. figure ( figsize =(12 ,6))
72 plt. scatter ( df_servo_v3 [’FCA ’], df_servo_v3 [’diff ’])
73 plt. xlabel (’Opening position (%) ’)
74 plt. ylabel (’Pressure difference ’)
75 plt. savefig (’servo_pressurediff_pos .png ’)
76
77
78 # In [4]:
79
80
81 from sklearn .svm import LinearSVC
82 from sklearn . pipeline import make_pipeline
83 from sklearn . preprocessing import StandardScaler
84 from sklearn . datasets import make_classification
85 from sklearn import svm
86
87
88 # In [5]:
89
90
91 # Load training data
92 X_train = np.array( df_servo_v3 [["FCA", "diff"]])
93
94 # Load test data
95 X_test = np.array( df_servo_v3 [["FCA", "diff"]]. sample (n =1000) )
96
97
98 # In [6]:
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99
100
101 X_train .shape
102
103
104 # In [7]:
105
106
107 gamma =26e-4
108 nu =1.3e-4
109
110 clf = svm. OneClassSVM ( kernel ="rbf", gamma=gamma , nu=nu , tol =.01)
111 clf.fit( X_train )
112 y_pred_train = clf. predict ( X_train )
113 y_pred_test = clf. predict ( X_test )
114 n_error_train = y_pred_train [ y_pred_train == -1]. size
115 n_error_test = y_pred_test [ y_pred_test == -1]. size
116
117 # create the grid for background colors
118 h = 0.02
119 x_min , x_max = X_train [:, 0]. min () - 10, X_train [:, 0]. max () + 30
120 y_min , y_max = X_train [:, 1]. min () - 10, X_train [:, 1]. max () + 10
121 xx , yy = np. meshgrid (np. arange (x_min , x_max , h), np. arange (y_min , y_max

, h))
122
123
124 Z = clf. decision_function (np.c_[xx.ravel (), yy.ravel ()])
125 Z_ = Z. reshape (xx.shape)
126
127
128
129 # In [8]:
130
131
132 pos1 , press1 = 85, -30
133 pos2 , press2 = 25, -20
134 pos3 , press3 = 10, -15
135 pos4 , press4 = 30, -10
136 pos5 , press5 = 45, -22
137 pos6 , press6 = 70, -44.8
138
139
140 # In [9]:
141
142
143 from decimal import Decimal
144 plt. figure ( figsize =(12 ,6))
145 plt. contourf (xx , yy , Z_ , levels =np. linspace (Z.min () +0.35 , 0, 7), cmap=

plt.cm.PuBu , alpha =0.6)
146 a = plt. contour (xx , yy , Z_ , levels =[0] , linewidths =2, colors =" darkred ")
147 plt. contourf (xx , yy , Z_ , levels =[0, Z.max ()], colors =" palevioletred ",

alpha =0.6)
148 s = 40
149 b1 = plt. scatter ( X_train [:, 0], X_train [:, 1], c="white", s=s,

edgecolors ="k")
150 b2 = plt. scatter ( X_test [:, 0], X_test [:, 1], c=" blueviolet ", s=s,

edgecolors ="k")
151 c1 = plt. axvline (x=7, c=" green")
152 c2 = plt. axvline (x=75, c="green")
153 n = plt. scatter (pos1 , press1 , c=" yellow ")
154 plt. scatter (pos2 , press2 , c=" yellow ")
155 plt. scatter (pos3 , press3 , c=" yellow ")
156 plt. scatter (pos4 , press4 , c=" yellow ")
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157 plt. scatter (pos5 , press5 , c=" yellow ")
158 plt. scatter (pos6 , press6 , c=" yellow ")
159 plt.axis("tight ")
160 plt.xlim (( x_min , x_max))
161 plt.ylim (( y_min , y_max))
162 plt. legend (
163 [a. collections [0], b1 , b2 , c1 , n],
164 [
165 " Learned frontier ",
166 " Training observations ",
167 "New regular observations ",
168 "Min&Max opening position ",
169 "New observations "
170 ],
171 loc=" upper right ",
172 prop= matplotlib . font_manager . FontProperties (size =11) ,
173 )
174 plt. xlabel (
175 " Opening Position "
176 )
177 plt.title("error train : %d /18152 ; errors novel regular : %d/1000 ; $\

gamma$ = %.2E ; $\\ nu$= %.2E"
178 % ( n_error_train , n_error_test , Decimal (gamma), Decimal (nu)))
179 plt. ylabel (’Pressure Difference ’)
180
181 plt. savefig (’OCSVM_servo_v1 .png ’)
182 plt.show ()
183
184
185 # In [10]:
186
187
188 def check_new_val (clf , position , pressure ):
189 import plotly . graph_objects as go
190 from decimal import Decimal
191 plt. figure ( figsize =(10 ,5))
192 plt. contourf (xx , yy , Z_ , levels =np. linspace (Z.min () +0.35 , 0, 7),
193 cmap=plt.cm.PuBu , alpha =0.6)
194 a = plt. contour (xx , yy , Z_ , levels =[0] , linewidths =2, colors ="

darkred ")
195 plt. contourf (xx , yy , Z_ , levels =[0, Z.max ()], colors =" palevioletred

", alpha =0.6)
196 s = 40
197 b1 = plt. scatter ( X_train [:, 0], X_train [:, 1], c=" white", s=s,

edgecolors ="k")
198 b2 = plt. scatter ( X_test [:, 0], X_test [:, 1], c=" blueviolet ", s=s,

edgecolors ="k")
199 c1 = plt. axvline (x=7, c=" green")
200 c2 = plt. axvline (x=75, c="green ")
201 n = plt. scatter (position , pressure , c=" yellow ")
202 plt.axis("tight ")
203 plt.xlim (( x_min , x_max))
204 plt.ylim (( y_min , y_max))
205 plt. legend (
206 [a. collections [0], b1 , b2 , c1 , n],
207 [
208 " Learned frontier ",
209 " Training observations ",
210 "New regular observations ",
211 "Min&Max opening position ",
212 "New observations "
213 ],
214 loc=" upper right ",
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215 prop= matplotlib . font_manager . FontProperties (size =11) ,
216 )
217 plt. xlabel (
218 " Opening Position "
219 )
220 plt.title("error train : %d /18152 ; errors novel regular : %d/1000 ;

$\ gamma$ = %.2E ; $\\ nu$= %.2E"
221 % ( n_error_train , n_error_test , Decimal (gamma), Decimal (nu)))
222 plt. ylabel (’Pressure Difference ’)
223 plt.show ()
224 plt. savefig (’OCSVM_newval1 .png ’)
225 new_val = clf. decision_function (np.c_[position , pressure ]) *100
226 if position < 7:
227 print(’Error : Possible oil leakage in the servo ’)
228 fig = go. Figure (go. Indicator (
229 mode = " number +gauge +delta ", value = 0,
230 domain = {’x’: [0, 1], ’y’: [0, 1]},
231 delta = {’reference ’: 0, ’position ’: "top"},
232 title = {’text ’:"<b>Error </b><br ><span style =’color: gray; font

-size :0.8 em ’>Piston </ span ></b><br ><span style=’color : gray; font -
size :0.8 em ’>out of </ span ></b><br ><span style=’color : gray; font -
size :0.8 em ’>range </ span >", ’font ’: {"size": 14}} ,

233 gauge = {
234 ’shape ’: " bullet ",
235 ’axis ’: {’range ’: [-15, 7]},
236 ’bgcolor ’: " white",
237 ’steps ’: [
238 {’range ’: [-15, 7], ’color ’: " crimson "}
239 ],
240 ’bar ’: {’color ’: " crimson "}}))
241 fig. update_layout ( height = 250, width = 750)
242 fig.show ()
243 elif position > 75:
244 print(’Error : Possible oil leakage in the servo ’)
245 fig = go. Figure (go. Indicator (
246 mode = " number +gauge +delta ", value = 0,
247 domain = {’x’: [0, 1], ’y’: [0, 1]},
248 delta = {’reference ’: 0, ’position ’: "top"},
249 title = {’text ’:"<b>Error </b><br ><span style =’color: gray; font

-size :0.8 em ’>Piston </ span ></b><br ><span style=’color : gray; font -
size :0.8 em ’>out of </ span ></b><br ><span style=’color : gray; font -
size :0.8 em ’>range </ span >", ’font ’: {"size": 14}} ,

250 gauge = {
251 ’shape ’: " bullet ",
252 ’axis ’: {’range ’: [-15, 7]},
253 ’bgcolor ’: " white",
254 ’steps ’: [
255 {’range ’: [-15, 7], ’color ’: " crimson "}
256 ],
257 ’bar ’: {’color ’: " crimson "}}))
258 fig. update_layout ( height = 250, width = 750)
259 fig.show ()
260 else:
261 fig = go. Figure (go. Indicator (
262 mode = " number +gauge +delta ", value = new_val [0],
263 domain = {’x’: [0, 1], ’y’: [0, 1]},
264 delta = {’reference ’: 0, ’position ’: "top"},
265 title = {’text ’:"<b>Outlier </b><br ><span style=’color : gray

; font -size :0.8 em ’>position </span ></b><br ><span style=’color: gray;
font -size :0.8 em ’>from </span ></b><br ><span style =’color: gray; font

-size :0.8 em ’>boundary </span >", ’font ’: {"size": 14}} ,
266 gauge = {
267 ’shape ’: " bullet ",
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268 ’axis ’: {’range ’: [-15, 7]},
269 ’threshold ’: {
270 ’line ’: {’color ’: "red", ’width ’: 2},
271 ’thickness ’: 0.75 , ’value ’: 0},
272 ’bgcolor ’: " white",
273 ’steps ’: [
274 {’range ’: [-15, 0], ’color ’: " crimson "},
275 {’range ’: [-10, 0], ’color ’: " darksalmon "},
276 {’range ’: [-7, 0], ’color ’: " cadetblue "},
277 {’range ’: [-5, 0], ’color ’: " royalblue "},
278 {’range ’: [-3, 0], ’color ’: " cornflowerblue "},
279 {’range ’: [-1, 0], ’color ’: "aqua"},
280 {’range ’: [0, 7], ’color ’: " lightgreen "}
281 ],
282 ’bar ’: {’color ’: " black"}}))
283 fig. update_layout ( height = 250, width = 750)
284 fig.show ()
285 return
286
287
288 # In [15]:
289
290
291 check_new_val (clf , 40, -25)
292
293
294 # In[ ]:
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