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Abstract 

Genome annotation is a process of identifying functional elements along a genome. By 

correctly locating and finding the information stored within a sequence, knowledge about 

structural features and functional roles can be revealed. With the number of sequences 

doubling approximately every 18 months, there is a severe need for automatic annotation of 

genomes. Today there are many different annotation software tools available, however they 

produce far from perfect results.  

 

Here a new project, DeepGene, is presented. Using data from the RefSeq prokaryotic database 

we have started an effort to improve on the prokaryotic genome annotation process.  

This thesis presents the initial efforts of said improvement with a focus on discerning between 

coding and non-coding sequences using upstream sequence data from open reading frames. 

Using the 15 prokaryotic genomes available in the RefSeq database, upstream data was 

retrieved and processed into two datasets, and were then trained using several popular 

classification models. The performance of the models was compared with a standard 

annotation tool to create a general baseline for our model. The models created from the 

datasets show many similarities in terms of metrics. With the K-mer data having a mean 

precision at 0.22 and mean recall of 0.74, and the sequential data having a mean precision at 

0.30 and mean recall at 0.77. Both the datasets performed worse than our standard annotation 

software with a mean recall and precision of, respectively, 0.83 and 0.82. As far as upstream 

sequences are concerned, the models managed to pull all the information available from both 

datasets. The initial results gave limited information in terms of classification and motif 

presence indicating that other attributes surrounding the genome should be looked at for a 

possible improvement on the annotation problem. An ideal step forward is to expand into a 

pipeline so that the complex false negative classifications may be explained. 
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Sammendrag 

Genomannotering er en prosess som skal identifisere funksjonelle elementer langs et genom. 

Ved å finne informasjonen lagret i en sekvens kan man avsløre kunnskap rundt strukturelle og 

funksjonelle roller. Ettersom antall sekvenser dobler rundt hver 18. måned er det et sterkt 

behov for automatisk gjenkjenning av genomer. I dag er det mange tilgjengelige 

annoteringsverktøy, men de produserer langt fra perfekte resultater. 

 

Et nytt prosjekt ved navn DeepGene er her presentert. Ved hjelp av data fra RefSeq 

prokaryotiske database har vi startet et forsøk på å forbedre den prokaryotiske 

annoteringsprosessen. I denne oppgaven presenteres begynnelsen på forbedringen. 

Hovedfokuset var å skille mellom kodende og ikke-kodende sekvenser ved hjelp av 

sekvensdata oppstrøms for åpne leserammer. Ved å benytte seg av de 15 prokaryotiske 

genomene tilgjengelig i RefSeq databasen, ble oppstrømsdata hentet og prosessert til to 

datasett. Disse datasettene ble videre trent ved hjelp av populære klassifiseringsmodeller. 

Ytelsen til disse modellene ble sammenlignet med et standard annoteringsverktøy for å lage et 

generelt utgangspunkt til vår modell. Modellene trent av datasettet viser mange likheter når 

det kommer til ytelse. K-mer datasettet hadde en gjennomsnittlig presisjon på 0.22 og 

nøyaktighet på 0.74. Videre hadde det sekvensielle datasettet en gjennomsnittlig presisjon på 

0.30 og en nøyaktighet på 0.77. Begge datasettene hadde dårligere resultater enn vårt standard 

annoteringsverktøy som hadde en gjennomsnittlig nøyaktighet og presisjon på henholdsvis 

0.83 og 0.82. Når det kommer til oppstrømssekvenser klarer modellene å hente ut all 

informasjon tilgjengelig fra datasettene. Resultatene ga begrenset med informasjon når det 

kommer til klassifisering og motif-tilstedeværelse. Denne begrensningen indikerer at andre 

attributter rundt genomet bør undersøkes for en mulig forbedring rundt annoteringsproblemet. 

Et ideelt steg videre er å utvide modellene til en «pipeline» slik at komplekse falske negative 

klassifiseringer kan bli forklart.  
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1. Introduction 

1.1 Finding Genes 

Prokaryotes are the most primitive and ancient form of life. They are also the most abundant 

and diverse empire on earth. No other organisms are as adaptable, and they are to be observed 

everywhere, even places humans cannot travel. From hydrothermal vents that can reach a 

temperature as high as 464 ℃ to frozen wastelands that can reach as low as -98,6 ℃. The 

current discovered temperature that microbial life can survive extends from -25 ℃ to 130 ℃ 

(Martinez-Cano et al., 2014), underlining the diversity present in the prokaryotic genome. 

 

The Human Genome project marked a milestone within the biological world after its 

completion around 20 years ago (Lander et al., 2001). Not only has the project given 

enormous contributions to science, it has also started a revolutionary development in the 

world of bioinformatics. Today, sequencing is performed near continuously, and many 

genomes (finished and unfinished) are easily available.  

 

Public databases are the medium in which genome sequences are published. The databases are 

important resources in biosciences. The public access allows researchers to utilize the data in 

research allowing greater innovation and information surrounding genomes. Newer 

sequencing technology has made it cheaper and more available to sequence the genome, 

making it even easier to generate new data. Figure 1.1.1 illustrates the cost per raw megabase 

of DNA sequence over the course of 20 years.  
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Figure 1.1.1 Sequencing cost per megabase retrieved from (NHGRI, 2022).  

 

The amount of information does not seem to stagnate. Figure 1.1.2 illustrates the high amount 

of sequencing data available in GenBank, one of the largest DNA-sequence databases in the 

world. From 1982 to present data, the number of bases in GenBank has doubled 

approximately every 18 months (NCBI, 2022). 

 

Figure 1.1.2 The growth of the GenBank database over the past decades. Red line shows the 

whole genome shotgun (WGS) projects, the blue line is GenBank sequences. Figure retrieved 

from (NCBI, 2022). 
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With the increase of high throughput sequencing, a bigger demand for automating the 

annotation of these sequences is required. Annotation of genomes is a multi-level process that 

involves prediction of protein-coding genes and other elements (Abril, 2019). A very basic, 

but essential part of annotation is to locate the start and end position of the coding genes.  

 

There are currently many existing software tools that automates the annotation process. These 

tools mainly focus on homology-based methods to classify gene products (Armstrong et al., 

2019; Galperin et al., 2019; Tatusova et al., 2016). An issue with these types of tools is their 

limitation in discovering novel genes (Anders et al., 2021).  

 

The existing annotation tools also produce far from perfect results, with several both false 

positives and negatives (Dong et al., 2021). Some tools have self-stated error rates at around 4 

– 6% per sequence (Lomsadze et al., 2018). When analyzing multiple sequences at a time this 

error rate can quickly increase, leading to many false annotations. With an error rate of 4%, a 

prokaryotic genome with 3000 genes gives 120 errors per genome. For a single genome, this 

may not seem as much, but if applied to many genomes, the databases can quickly be filled 

with false annotations. Especially when considering the already available sequences 

illustrated in figure 1.1.2.  

 

The large part of the issue lies within the classification of correct start position for the genes. 

Because of overlapping Open Reading Frames some software have difficulties finding the 

correct frame (Palleja et al., 2008). Using modern methods from Data Science the DeepGene 

project has started an effort to improve on the prokaryotic genome annotation process.  
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1.2 Aim of study 

The aim of this study is to investigate if sequences upstream of a start codon in an ORF is 

informative enough to discern between coding and non-coding ORFs, and in the long run 

locate the start position of a coding sequence in prokaryotic DNA.  

 

This meant creating and processing a dataset based on the RefSeq prokaryotic genomes and 

retrieving upstream sequences from all genomes respective fasta file. The final process 

consisted of turning the sequence data into a numerical one for each genome and train a 

machine learning model.  

 

In this thesis we will initially focus on finding the correct start position of a coding gene by 

utilizing existing theory from molecular biology. Firstly, we will see how well an existing 

prokaryotic genome annotation software can find the correct start codon.  

 

Afterwards we will attempt to establish a set of training data i.e., a set of genomes where we 

have the most reliable information on where genes are found. We have started out with the 15 

NCBI Reference genomes for prokaryotes. These being the best manual annotations we have 

as of today. Using the training data, we will use multiple modern classification machine 

learning models to see if there is any information to gather from the upstream sequence data. 

The information being whether it is possible to recognize the start of a gene based on their 

respective upstream sequence.  
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2. Background 

2.1 The Prokaryotic Genome 

In this subchapter certain molecular characteristics surrounding the prokaryotic genome will 

be addressed. Specifically, the more general existing theories surrounding upstream sequences 

will be described in detail, as well as some general characteristics surrounding prokaryotic 

DNA. The upstream sequences play an important part in the prokaryotic metabolic process, 

with many elements present a few bases upstream of a start codon. 

 

The prokaryotic genome is primarily a circular, double stranded piece of DNA. DNA consist 

of four bases: Adenine, Cytosine, Guanine and Thymine, which together form the information 

of the genome. The backbone that supports the bases consists of every other phosphate and 

the sugar deoxyribose. The combination of the sugar molecule, the phosphate group and a 

nitrogen-containing base is called a nucleotide.  

 

The blend of the four bases creates sequences, where some contain information. The 

sequences coding for information or Coding Sequence (CDS) are partitioned into three bases 

at a time. These three bases together are called a codon and codes for an amino acid. The 

length of genomes varies but is in general a few million base pairs long (Land et al., 2015). 

The information present in the sequences are so diverse, but many prokaryotes also share 

common CDS’. Small variations in the CDS allow them to thrive in different locations yet 

retain elements of the same machinery that gave them life. 

 

Processing the information from the CDS to a polypeptide chain requires multiple steps. 

Firstly, the information from a CDS must be read and transcribed to a messenger information 

sequence. This messenger information sequence is called the mRNA strand, and the process is 

called transcription. mRNA are linear molecules with an open reading frame that codes for 

protein sequence(s). A single stranded RNA is transcribed from double stranded DNA. 

Bacterial mRNAs can have one (monocitronic) or several (polycitronic) genes. This means 

that bacterial mRNAs can have information for more than one polypeptide on a sequence. The 

mRNAs are read as triplets (codons) from 5’ to 3’ of the DNA strand. The first codon is 

always AUG (Methionine), but for some bacteria GUG and UUG have been observed 

(Watson, 1965/2014).  
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The mRNA strand is translated into an amino acid by a process called translation. The 

ribosome is an enzyme that facilitates the translation from mRNA to protein by attaching 

itself on the mRNA strand. From there transporter RNAs or tRNAs (complementary to the 

codon in the mRNA transcript) elongates a growing peptide chain one codon at a time inside 

the ribosome. When a stop codon is reached, the elongation terminates leaving behind the 

finished peptide chain.  

2.1.1 Promoters 

Promoters are found upstream of a coding sequence. Their function is to facilitate the 

transcription from DNA to mRNA. In the prokaryotic genome only one factor protein (sigma) 

is involved in the initiation process of transcription. The sigma factors aid RNA polymerase to 

recognize promoters. There exist multiple sigma factors, where the sigma-70 is the most 

common one (Mejia-Almonte et al., 2020).  

 

The promoters recognized by the sigma-70 containing holoenzyme are defined by two 

hexamer sequences. Namely the -35 and the -.10 boxes. They are separated by spacing region 

of +/- 17 nucleotides (nt). The consensus sequence for the sigma-70 has been determined to 

be consensus-sequence (1) (Brenner, 2001).  

 

 TTGACA–N17–TATAAT  (1) 

 

From the middle of the -10 box to the middle of the -35 box the sequence (1) forms almost 

two complete DNA helical turns. The sequences are in other words located on the same side 

of the helix, and they are more easily recognized by the sigma factor of the holo RNA 

polymerase.  
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Table 2.1.1 Sigma factors of Escherichia coli retrieved from (Brenner, 2001). Nx indicates 

any nucleotide (N) x times.   

Factor Gene Consensus binding site Genes regulated 

σ70  rpoD TTGACA–N17–TATAAT Housekeeping 

σ54  rpoN (ntrA) CTGGCAC–N5–TTGCA Nitrogen metabolism 

σS rpoS (katF) TTGACA–N12–TGTGCTATACT Stationary phase 

σ32  rpoH (htpR) CTTGAA–N14–CCCCATNT Heat shock 

σF  fliA TAAA–N15–GCCGATAA Flagellar proteins 

σE rpoE GAACTT–N16–TCTGA Extreme heat shock 

σfecI fecI GGAAAT–N17–TC Iron transport 

 

The promoters of the different sigma units have different consensus sequences. A consensus 

sequence is by definition the most frequent nucleotide or amino acid found at each position in 

a given alignment (Watson, 1965/2014).  Examples of sigma factors present in Escherichia 

coli can be seen in table 2.1.1.1. These sequences are mainly conserved although some 

deviations exist. The sequences of binding sites are in other words not always the same.  

2.1.2 The ribosomal binding site 

The upstream of the start codon usually contains a purine-rich sequence that pairs with a 

complementary sequence in the 16S rRNA component of the small ribosomal unit (Kozak, 

1999). Initiation of translation is regulated by the purine-rich sequence with the consensus 

5’AGGAGG3’. The sequence is also called the Shine Dalgarno (SD) sequence.  Various 

Shine Dalgarno sequences have been found in prokaryotic mRNAs. Common for them is that 

they lie around 10 nucleotides upstream from the AUG start codon (ThermoFisher, n.d).  

 

The Ribosomal Binding Site (RBS) is located within the 5’ untranslated region of mRNA and 

encloses the SD sequence, start codon and a short spacer in-between (Volkenborn et al., 

2020). An example of an RBS can be seen in table 2.1.1 An Omatojo et. al argues that the 

length of the spacer enclosed in the RBS plays a role in the initiation of translation (Omotajo 

et al., 2015). Another article from 2020 estimated the optimal spacer length to be at least 7 to 

12 nucleotides (Volkenborn et al., 2020). The results were sequence-dependent, and not a 

universal result.  
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Figure 2.1.1 Illustration of the beginning of a typical mRNA transcript. The 16srRNA binding 

site is a complementary sequence of the 16S rRNA component of the small ribosome unit and 

is located upstream of the coding sequences’ start codon. 

 

As for the promoter sequences, the RBS is not always the same set of sequence. In fact, they 

are highly degenerated with a great variation in base composition and localization. Because of 

this, any conventional similarity search methods may have a very high error rate in their 

predictions (Oliveira, 2004). 

2.1.3 The Operon 

Some genes in the prokaryotic genome assemble in clusters called operons.  These genes have 

the same promoter and terminator and are usually related either metabolically or functionally. 

The operons are usually under the control of a single promoter. This promoter is controlled by 

some regulatory elements called the operator that respond to external factors such as a 

substance concentration. Some operons have regulatory genes upstream of the operon that 

produce repressors. This regulator can either block transcription, leading to less protein 

product, or function as an activator when removed (Britannica, 2018).  

 

The polymerase RNA-enzyme transcribes all the coding sequences present in the operon as a 

single RNA strand. Thus, only one ribosomal binding site upstream of the first coding 

sequence in the operon exists (see figure 2.1.2).   
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Figure 2.1.2 illustration of the operon clusters. The operon consists of regulatory genes that 

either activate or repress the transcription process. The transcript from the operon is a 

polycitronic template that when translated creates multiple proteins. 

2.2 Open reading frames 

Proteins are encoded in open reading frames (ORF). Contained within an ORF are a span of 

three nucleotides at a time between the start and stop codon (Mir et al., 2012). The open 

reading frame starts with a start codon (ATG, GTG or TTG) and ends with a stop codon (e.g., 

TAA, TGA or TAG). For every stop-codon in the genome there are usually many different 

start codons, and it gives rise to overlaps of ORFs.  

 

DNA is partitioned into three nucleotides (codons) and contains two anti-parallel strands. 

Because of the nature of the DNA, there are six possible frame translations. For a coding gene 

however, only one is considered open.  

 

In an open reading frame, there can exist multiple ORFs that share the same stop codon. 

These ORFs are also called nested ORFs. The ORF that is found the furthest upstream from 

the shared stop codon is defined as the “Longest Open Reading Frame” or LORF. This 

reading frame is the longest reading frame and has a start-codon found upstream of the other 

nested reading frames. An example of the overlapping sequences can be seen in figure 2.2.1. 
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Figure 2.2.1 illustrating a long open reading frame. Green letters are a potential START with 

a shared STOP (red). 

 

Because of these nested ORFs, many software tools have issues with finding the correct start 

sequence of the genes. A study made in 2008 found that genomic overlap plays an important 

role in the annotation of genes, specifically for weak start codons (Palleja et al., 2008). Some 

argue that overlapping of ORFs is a way to reduce genome size (Cebrat et al., 1997). Overlap 

compresses the information into short sequences. However, it also makes exact prediction of 

prokaryotic genes difficult.  Not all ORFs are coding sequences. These alternative ORFs can 

misguide some annotation software to give a false start point of a coding gene.  

 

The correct annotation of the start codon is crucial. It is crucial because a correct mapping of 

the start codon in an ORF reveals accurate information about the proteome and can reveal 

important biological functions. The functions can give us a more complete picture of the 

organism, and in turn provide a better understanding of the organisms that exist around us. By 

better understanding the metabolism of a beneficial microorganism, the knowledge can aid us 

in improving its efficiency.  

2.3  Sequence characterization - annotations 

Currently there exists several different prediction software tools focused on prokaryotic 

genome finding. One of these tools is Prodigal, a genome annotation software that utilizes 

many elements like start codon usage, RBS motif usage and GC frame bias for gene 

prediction (Hyatt et al., 2010). Prodigal’s focus when released was reducing false positives in 

prokaryotic genome annotation.  

 

Genomes are usually spaced into coding and non-coding regions, where the issue lies in 

classification of those two. Currently the characterization of unknown sequences involves 

comparing it to known genomes or protein domains. This is usually done by comparing the 

sequences directly using external databases like BLAST or other homology search tools.  
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Identification of homologous sequences are mainly done using sequence similarity searching. 

The concept of homology is a common evolutionary ancestry and is central to computational 

analysis of proteins and DNA sequences (Pearson, 2013). Motifs are patterns that often 

repeats itself more often than expected. However, a pattern cannot be formed before multiple 

observations have been made, making homology search tools reliant on experimental data. 

 

A separate method for annotation of genomes is finding genes from scratch. This method 

requires utilization of already established theories surrounding genes and transcription. Unlike 

searching for homologous sequences, one can search for ORFs, or map RNA-sequencing data 

to the genome. In many existing software, homology search methods and “manual” searching 

of genes are combined.  

2.4  The RefSeq reference genomes 

The current sequencing data consists of many contigs and few complete genomes as the 

sequencing technology is not yet fully perfected. The NCBI database has a wide range of 

genomes available, a subgroup of this being reference genomes. The reference genomes are 

assemblies annotated and updated by some submissions chosen by a curatorial staff in RefSeq 

(NCBI, 2021b). RefSeq uses tailored data models and consists of a single annotation pipeline 

called Prokaryotic Genome Annotation Pipeline (PGAP) (Haft et al., 2018). A reference 

genome is a collection of digital nucleic acid sequences stored in a sequence database. The 

annotation of these references requires the assembly of multiple databases that combines 

prediction algorithms and homology-based methods (NCBI, 2021b). The annotation of the 

genome is a lengthy process with many levels, and includes a prediction of protein-coding 

genes as well as other genome units like tRNAs, RNAs, pseudogenes, control regions, 

repeats, mutations, and mobile elements (NCBI, 2021a). 

 

The most recent, well used algorithms for the classification of proteins to a given gene uses 

Hidden Markov Models (HMMs). The hidden Markov Model intelligently guesses the 

sequence of genes based on their different statistical properties. Each state (one for each label) 

has its unique emission probabilities stating the probability that it generates an A, C, G or T 

(Eddy, 2004). This, however, requires pre-based probabilities. NCBI is therefore constantly 

creating new HMMS and pipelines according to new findings in the field of genomics (NCBI, 

2021b). 
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In 2016 Tatusova et al. in collaboration with Georgia Tech and NCBI created a new 

automated pipeline for annotation of genomes. This included alignment-based methods of 

predicting protein-coding and RNA genes, as well as other elements directly from sequence 

(Tatusova et al., 2016). Another update was made in 2018 by Haft et al. which included a new 

development of a hierarchical evidence scheme, as well as re-annotation of RefSeq 

prokaryotic genomes. 

 

The annotation of the genomes in the prokaryotic reference genomes are not always complete, 

which is why it is continuously being worked on. The algorithm searches for potential 

genome sequences having start and stop codons, and the given sequence in between is then 

cross-referenced in a database for protein sequence similarity. An overview of the latest 

hierarchical workflow for annotation can be seen in figure 2.4.1. 

 

For new proteins that the PGAP cannot name by any method, and proteins below 40% 

identity to protein-clusters, fall in an annotation called “hypothetical proteins” (Haft et al., 

2018). This annotation is a zero-annotation with no value and small credibility. A better 

annotation would be hypothetical conserved protein which is an annotation that has been 

predicted but has a lack of experimental evidence for (Galperin, 2001). Whereas another step 

above would be an annotation like “putative” followed by a specific function.  

 

The pipeline cross-references genome sequences to protein sequence databases.  These 

sequence databases are updated regularly with new sequences. Pfam for instance, base its 

clustering on the MMseqs2 software (Mistry et al., 2021), making it heavily reliant on 

experimental data.  

 

The decreasing cost of sequencing and increasing number of reads means it is important to 

automate the annotation progress. The current rate growth of sequencing data produced 

doubles approximately every 18 months (NCBI, 2022). This vast availability and increase of 

data leads to a big need for effective automation of genomic annotation.   
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Figure 2.4.1 retrieved from (Haft et al., 2018). Newest workflow for structural annotation. 

Computational processes are shown in blue, data is in white or gray (Haft et al., 2018). It is 

important to note that this pipeline detects “disrupted genes” and some uncommon ones. 

According to (Li et al., 2021) GeneMarkS-2+ replaced GeneMarkS+ in PGAP November 

2018. 
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2.5 Machine learning 

With the increase of sequencing data, there is an increased need for automation of analysis. 

Machine learning is a process that allows for automation of analytical model building. A 

machine learning method can learn from data and apply what they have learned to new data.  

2.5.1 Classification 

Classification is the process of categorizing something into a certain group based on some 

characteristics. An example of classification is discerning whether a person is ill or not. In this 

example we have characteristics such as temperature and blood pressure. This is dependent on 

the sickness we are dealing with. For annotation of genes, we usually discern between gene 

(0) and no gene (1). This type of classification is called a binary classification. Some 

classifiers have continuous output, for instance a probabilistic output estimating a target 

probability. Other models produce a discrete output that only indicates the predicted class. 

2.5.2 Preprocessing 

There are many things to consider before feeding a dataset into a classifier. The data fed into a 

machine learning model must consist of numerical values for the model to retrieve any 

information. Text and sequences cannot be fed directly into a machine learning model and 

needs to be preprocessed. There are many ways to process text, some examples are dummy 

encoding and K-mer count.  

 

In dummy encoding a set of categorical variables are converted into binary variables (also 

called dummy variables). A nucleotide sequence of length 2 for instance, would result in a 

matrix consisting of 4 * 2 variables. The output given would be a binary output (0 or 1) 

indicating at which position the nucleotide was found. If we have a list of 3 sequence 

observations (AG, TA, and GC) the dummy encoded matrix would appear as seen in table 

2.5.1. 
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Table 2.5.1 an example of dummy-encoded sequence data for the three observations AG, TA 

and GC. The column names indicate the nucleotide base as well as their possible locations in 

the sequence. 

Sequence A_1 A_2 C_1 C_2 G_1 G_2 T_1 T_2 

AG 1 0 0 0 0 1 0 0 

TA 0 1 0 0 0 0 1 0 

GC 0 0 0 1 1 0 0 0 

 

K-mer retrieval and analysis from sequences are quite common in nucleotide sequence 

analysis. The frequency of K-mers are often of great importance when attempting to 

differentiate between certain genes according to their codon-bias (Iriarte et al., 2021). K-mer 

frequencies can also be applied on other genomic fragments, as nucleotide composition varies 

a great deal between genomes (Perry & Beiko, 2010).  

 

K-mers are substrings of a string with a length k.  A sequence of length L will have L- k + 1 

K-mers and a total of nk possible K-mers where n is the number of possible monomers (four 

monomers in DNA). The total number of possible K-mers increases with an increase of sub-

string length (k). An example of different K-mers for the sequence ACTGAATCC can be seen 

in table 2.5.2. 

 

Table 2.5.2 an example of K-mer sequence data for the sequence ACTGAATCC. Shown here 

are monomer to five-mer 

K K-mer 

1 A, C, T, G, A, A, T, C, C 

2 AC, CT, TG, GA, AA, AT, TC, CC 

3 ACT, CTG, TGA, GAA, AAT, ATC, TCC 

4 ACTG, CTGA, TGAA, GAAT, AATC, ATCC 

5 ACTGA, CTGAA, TGAAT, GAATC, AATCC 

 

When dealing with DNA sequences a K-mer of 6 gives rise to 46 different combinations or 

1024 combinations. For a potential training data this means 1024 features if only 6-mers are 

considered. The shorter the sequence at hand, and the longer the K-mers, the more zero-

sparseness will be observed.  For instance, A 6-mer nucleotide count on a sequence of 30 
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gives rise to 25 possible K-mers per sequence. With the number of unique 6-mers at 1024, at 

least 999 possibilities have a count of zero.   

 

Highly correlated features may appear and are often redundant. For these cases a 

dimensionality reduction technique may be applied, and ultimately leads to the model running 

faster. The reduction can also decrease the signal-to-noise ratio (Raschka, 2019). 

For multivariate data, sometimes a features variance is in a much larger scale than another 

feature in the same dataset. The features may for instance have been measured in different 

units of measure. The element that has a larger scale may dominate other elements in the 

dataset and may lead to biased prediction outcome for many machine learning methods. A 

solution to the different scaling of a multivariate dataset would be to scale the data prior to 

modelling. A scaling technique commonly used is standardization (2). This scaling would be 

done column-wise.  

𝑧 =
𝑋−𝜇

𝜎
  (2) 

In (2) the X is the specific value or observation. Mu (𝜇) is the mean of the variable and sigma 

(𝜎) is the standard deviation. Calculation of a standardized value is the same as finding the z-

score. 

 

Standardization allows for comparison between different types of variables. The 

standardization technique creates variables with a mean of zero and a unit variance of 1 

(Raschka, 2019).   

 

Raw data is seldom optimal for training a learning algorithm. Preprocessing data is a crucial 

step in any machine learning application before moving on to the modelling part.  

2.5.3 Hyperparameter optimization and cross validation  

A machine learning algorithm’s objective is to find a function that best explains some samples 

that follow a grand truth. Very often, a learning algorithm produces the function through an 

optimization of a training criterion with respect to a set of parameters (Bergstra, 2010). 

 

A hyperparameter is a parameter one can change before model training. The tunable 

parameters are manually set, meaning they are iterated through and compared using a certain 
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metric (see Section 2.5.10 evaluation for more about metrics). The most common way of 

performing a hyperparameter tuning is through a grid search. A grid search is a systematic 

search of all possible hyperparameters of a parameter by training and testing the machine 

learning algorithm. The training and testing can be measured by cross validation on the 

training set or evaluating a hold-out validation set. (Chicco, 2017).  

 

Cross validation is a resampling method that randomly partitions data to test and train a 

model. The data is partitioned into k folds where the training of a model is performed on the 

k-1 partitions. The remaining partition is tested after training. The training and testing are 

performed k times where the resulting metric is presented as the mean of all k runs (Arlot, 

2010). See figure 2.5.1 for an illustration of a cross validation. 

 

 

 

 

Figure 2.5.1 an illustration of a 3-fold cross validation. The training data is here divided into 

three sets. 
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2.5.4 Logistic Regression 

Logistic Regression is a commonly used model in statistics. This regression model estimates 

the probability of one event (out of two) by using the logarithm of the odds. It is one of the 

most widely used algorithms for classification in the machine learning industry (Raschka, 

2019). In general, it performs well on linearly separable classes. For a binary classification, 

this is a linear model.  

 

The logistic regression model is a probabilistic model for binary classification. This means the 

output given is a continuous variable giving a probabilistic output of how likely it is that an 

observations falls under class 1. For the activation function (the logistic regression function) 

to fall into a binary classifier, the probability is converted using a threshold function. A 

common threshold is one where results below 0.5 fall into class 0 and results above 0.5 falls 

into class 1.  

2.5.5 Partial Least Squares reduction and Linear Discriminant Analysis 

Partial Least Squares Analysis (PLS) is a multivariate dimensionality reduction tool (Wold, 

2001), and an adaption of PLS regression methods for supervised clustering. The PLS aims to 

maximize covariance between independent variables and class information.  It is particularly 

useful for multivariate datasets. 

 

The features created are referred to as principal components (PC) in PCA and just 

components in PLS (Pearson, 1901). In PCA the first PCs contain as much variance as 

possible, whereas PLS preserves as much covariance as possible between the original data 

and its labelling (Ruis-Perez, 2020).  

 

The LDA method aims to find a linear combination that can separate two or more classes. The 

combination found could then be used as a linear classifier. LDA’s primary purpose is to 

project high-dimensional data onto a low-dimensional space whilst achieving maximum class 

separability (Barker, 2002). 

 

PLS is a common feature reduction tool and is often used in preprocessing data. For a two-

class problem the PLS dimensionality reduction is to be preferred over PCA (Barker, 2002; 

Liu, 2007). After dimension reduction using PLS one can then use LDA in the truncated 

score-space for classification. 
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2.5.6 K-nearest neighbors 

K-nearest neighbors is dubbed a lazy learning algorithm. This is because it does not learn a 

discriminative function from the training data. Instead, it memorizes the training data set. 

Based on the training data, any new point introduced to the model is assigned to a class based 

on majority voting among its nearest neighbors (Cover, 1968). The number of nearest 

neighbors used is tunable. For the nearest neighbor parameter this means the number (n) 

neighbors that an observation is compared to is a manual input.  Same applies to the distance 

calculation, where one can either choose a Minkowski, Manhattan, or a Euclidian distance 

calculation. See figure 2.5.2 for an illustration of the difference between these distances.   

 

Figure 2.5.2 illustration of the path taken for computation of the distance between two points 

for the three methods; Euclidean, Manhattan and Minkowski. 

The Minkowski can be thought of as a generalization of the Euclidean and Manhattan 

distance. The distance calculations (Euclidean and Manhattan) are part of an exponent in the 

Minkowski-formula. The Minkowski distance is typically used with the exponent p set at 

either 1 or 2, which correspond to the Manhattand and Euclidean, respectively (Gabbay, 

2005). The illustration of Minkowski seen in Figure 2.5.2 is a p of around 1.5. 

2.5.7 Decision Tree 

Decision tree is a supervised learning method used for both classification and regression 

problems. The decision trees are based on the best way to split the observations into their 

target groups based on the features given. When it is time to split a node in a decision tree, 

every feature is considered before choosing the feature that causes the best separation between 

the different classes, this is called the information gain or entropy (Raschka, 2019).  
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Decision trees start at the root node where all the information from the dataset is stored and is 

from there split into branches. An illustration of a decision tree can be seen in figure 2.5.3 

Each decision node represents a test on an attribute where each branch represents the outcome 

of said test. Each leaf node represents a class label. In summary, the path from root node to 

leaf node represent a set of classification rules needed to classify the observations of a dataset. 

 

Figure 2.5.3 Illustration of the topography of decision tree. Each decision tree consists of a 

decision node that branch either into leaf nodes or decision nodes. 

 

Typical hyperparameter for a decision tree classifier is max depth. The max depth is here the 

max depth a tree can have. If max depth is infinity, the nodes are expanded until all leaves are 

pure, that means the samples split contain only a given target (sklearn, N.Y).  

2.5.8 Random Forest 

The random forest ensemble is built on creating many decision trees (with number of trees 

being a hyperparameter). For random forest, only a subset of these features, as well as a 

subset of samples, are chosen at a time. This forces more variation to pass during training and 

leads to lower correlation across trees and more diversification (Breiman, 2001). By 

averaging all the trees in a random forest, the final model can discern better in the final 
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feature subspace. The information about which features are most important can thus be 

retrieved after ensemble.  

 

For an imbalanced dataset the training in Random Forest may be biased towards the majority 

classes. A way to counterbalance this is by randomly down sample the majority class to the 

same number of samples as the minority class. This forces random forest to negate any 

unnecessary variation that occurs in the majority class and allows it to discern between the 

majority and minority class potentially better. This method of Random Forest is also called a 

Balanced Random Forest. 

 

In the random forest ensemble, the trees have split features based on information gain. If there 

is high correlation however, one feature may be ranked highly, and the relationship may not 

be fully captured (developers, 2007-2022).  

2.5.9 Gaussian Naïve Bayes  

The gaussian naïve bayes is a classification model that assumes normally distributed data. The 

gaussian naïve bayes takes the training data sets’ and estimates the mean and standard 

deviations for each variable according to their target label (for binary classification, label 0 or 

1) (Webb, 2005).  

 

When classifying a new observation, the model considers the log (base e) of the prior 

probability of classification as well as the log-likelihood of variables present. The calculation 

yields the posterior probability of belonging to a given class (Minsky, 1961). The lower the 

log score, the less likely the observation belongs to the given class.  

2.5.10 Evaluation 

When training a model, the machine learning methods used usually have many different 

parameters. An example can be different distance measurements. These parameters are called 

tunable parameters and is adaptable to each training data. To find the best parameter, we need 

to have a measure of closeness. One can create a contingency table called a two-class 

confusion matrix (table 2.5.1). This matrix shows the elements that are correctly predicted, 

and which were not. This allows the models trained to have a universal comparison of fit. 

This is comparable not only when training the same model with different parameters, but also 

for the comparison of different models. 
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Table 2.5.1: General confusion matrix. The classification is correct if both the predicted and 

actual classes are positive or negative. 

 Actual 

Positive Negative 

Predicted Positive True Positive False Positive 

Negative False Negative True Negative 

 

Precision is defined as a measure of quality (3).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (3) 

Where TP is the total true positives and FP is the total false positives.  

 

Recall is defined as a measure of quantity where the formula is (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (4) 

Here FN is the number of false negatives and TP is true positives.  

 

A balance between the precision and recall metric is the F1-score (5). It is deemed as the 

harmonic mean of precision and recall. Its values range from 0 to 1, where 1 is perfect 

classification.  

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
   (5) 

When evaluating binary classification with real numbers (∈ R) a cutoff threshold is needed to 

discriminate between positive and negative classification. Commonly, the confusion matrix is 

computed for all possible cut-offs and then these matrices can be used to create a Receiver 

Operating Characteristics (ROC) curve.  

 

The Receiver Operating Characteristic or ROC curve is a plot of true positives versus false 

positive rates at some classification thresholds. The true positive rate is here the recall, and the 

false positive rate is 1 – specificity (6). 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
     (6) 

The ROC curve shows the connection between recall and specificity for every possible cut-off 

for a classification model. This allows a graphical overview for finding a classification 

threshold suitable for the issue at hand (Fawcett, 2006). An illustration of an ROC graph with 

4 discrete classifiers can be seen in figure 2.5.4. 

 

Figure 2.5.4 a basic ROC graph showing 4 discrete (binary) classifiers 

 

Classifiers on the left-hand side of an ROC graph are thought of as conservative. This is 

because they make positive classifications with strong evidence resulting in few false positive 

errors. However, it results in a low true-positive rate as well. Classifiers on the upper right-

hand side often make positive classifications with weak evidence, meaning they classify 

nearly all positives correctly, but with high false positive rates. The latter are deemed as 

liberal.   

 

In figure 2.5.4 the diagonal line shows the strategy of randomly guessing a class. At the point 

C (0.5, 0.5), C’s performance is virtually random, guessing the positive class 50% of the time. 

Point C can be thought to have no information about the class, whereas any classifier that falls 
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below the diagonal may be said to have useful information, but is not applying it correctly 

(Flach, 2002). By reversing point D’s classifications, it produces a point in the upper left 

triangle.  

 

The area under the ROC curve or AUC measures the two-dimensional area underneath the 

ROC-curve. It ranges between the values 0 to 1. The area is useful for comparison of different 

classifiers, but also yields the probability that a random observation of the positive class is 

ranked higher than a randomly chosen negative instance (Hanley, 1982). 

The F1, recall and precision metrics only include three out of four confusion matrix categories 

(TP, TN, FP). With a highly imbalanced dataset where the positive class is in minority, a 

small change in the positive direction may shift the score significantly. Matthew’s correlation 

coefficient (7) measures the correlation of the true positive classes c with the predicted labels 

l:  

 

𝑀𝐶𝐶 =  
𝐶𝑜𝑣(𝑐,𝑙)

𝜎𝑐𝜎𝑙
=  

𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)

   (7)

   

Where the worst value is -1 and the best value is +1. Cov(c,l) is the covariance of the true 

classes c and predicted labels l whereas σc and σl are the standard deviations respectively 

(Chicco et al., 2021). TN is here the number of True Negatives. In a software like prodigal, 

the focus lies solely on the positive rate, and thus it is not possible to retrieve the true negative 

rate, making it difficult to classify its true correlation.  
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3. Method 

This chapter will present the steps taken from retrieval of raw data to the running of a 

machine learning model. The methods described here are based on existing theories described 

in Section 2.  

 

Data analysis and wrangling was carried out using Rstudio 4.1.0 (R Development Core Team, 

2010). Machine learning was carried out using Scikit-learn in Python 4 (Pedregosa, 2011), 

except for PLS+LDA that was carried out using the mpda package in Rstudio 4.1.0 (Snipen, 

2017). Some figures are made with the ggplot2 package in R (Wickham, 2016), and some 

with the matplotlib package in Python (Hunter, 2007).  

3.1  Data 

The retrieval of raw data is an imperative first step towards making a training dataset.  This 

section will present the gathering of annotated genomic data for use in the final training 

dataset, as well as some qualitative processing.  

 

Data was downloaded from (NCBI, 2021c). RefSeq FTP files with data containing the 

genomic sequence was downloaded for each reference sequence in the database (15 in total), 

an overview of the different genomes can be seen in table 3.1.1. The genomes presented will 

be referred to by their respective species name. For supplicate species, the strain is attached to 

separate them.  
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Table 3.1.1: Overview of the reference genomes from the RefSeq prokaryotic database. The 

respective columns are organism name, their genomic size in megabytes, their GC base 

content in percent, how many scaffolds there are in the genome, and the number of coding 

sequences (CDS).  

Organism Name Size (Mb) GC% Scaffolds CDS 

Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819 1.64 30.5 1 1572 

Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 4.95 52.2 2 4548 

Staphylococcus aureus subsp. aureus NCTC 8325 2.82 32.9 1 2767 

Listeria monocytogenes EGD-e 2.94 38 1 2867 

Mycobacterium tuberculosis H37Rv 4.41 65.6 1 3906 

Escherichia coli str. K-12 substr. MG1655 4.64 50.8 1 4285 

Shigella flexneri 2a str. 301 4.83 50.67 2 4313 

Pseudomonas aeruginosa PAO1 6.26 66.6 1 5572 

Chlamydia trachomatis D/UW-3/CX 1.04 41.3 1 888 

Coxiella burnetii RSA 493 2.03 42.64 2 1833 

Bacillus subtilis subsp. subtilis str. 168 4.22 43.5 1 4237 

Klebsiella pneumoniae subsp. pneumoniae HS11286 5.68 57.14 7 5779 

Caulobacter vibrioides NA1000 4.04 67.2 1 3886 

Acinetobacter pittii PHEA-2 3.86 38.8 1 3599 

Escherichia coli O157:H7 str. Sakai 5.59 50.4 3 5155 

 

General feature formats (GFF files) were also downloaded for the 15 reference genomes. GFF 

describes the genes and contains nine informative columns for coding sequences. The GFF 

data was decompressed for all genomes. Using GFFread from Microseq version 1.0, the 

annotated data was read and converted into a table with 9 columns. Information about the 

columns can be seen in table 3.1.2.  
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Table 3.1.2 Information from the nine columns in any given GFF file. Description retrieved 

from (Stein, 2006).  

Column name Description 

Seqid Name of the chromosome or scaffold 

Source The software that generated the feature 

Type 
Type name, contains a Sequence Ontology 

(SO) accession number. 

Start Start position of the feature 

End End position of the feature 

Score Floating point value. 

Strand Either + (forward) or - (reverse) 

Phase 

Indicates where the next codon begins 

relative to the given CDS feature. Contains 

integer 0, 1, 2 where 0 indicates a codon 

beginning on the first nucleotide. 

Attributes 
A list of feature attributes, among them a 

string of protein information 

 

The columns Start, End, Seqid, Type and Attributes were selected for future use. Attributes 

were then filtered so that only the protein product remained listed as a string. The final table 

was dubbed the reference GFF file and would be the reference for all coding sequences 

present in all genomes. For it to be comparable genome-wise, another column was added, 

namely the genome column. This column reveals which rows belongs to which genomes.  

 

All the GFF files downloaded from RefSeq consists of 9 variables and a summed total of 

55 538 observations, each observation being details about a protein product from a given 

reference genome. 

 

After importing and sorting of the table, counting of uncertain proteins was implemented. The 

counting was performed to assess the quality of the raw data. Uncertain proteins are here 

defined as all the observations with the words “putative”, “hypothetical”, and “hypothetical 

conserved” attached to their attribute column.  
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3.2 Comparison with a gene prediction software 

It was desirable to compare the RefSeq annotations with Prodigal predictions of the reference 

genomes. This comparison was made to illustrate a standard software’s issue in locating the 

correct start-codon. After using the genome fasta files for prodigal prediction, a common 

signature for each reference-genome was created. The signature consisted of sequence-ID, 

end-position for the gene, and strand type. These signatures were then compared to the 

reference-annotations using the precision and recall metrics. The comparison was made 

genome-wise. 

 

After the first comparison, an inquiry was made to compare the prodigal-annotation and 

reference-annotation with a signature having both the start and stop location. The same 

metrics as for the signature containing Seqid, strand and end was used (precision and recall). 

A figure showcasing the two different signatures and what they illustrate is showcased in 

figure 3.2.1. 
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Figure 3.2.1 illustrates signatures used for similarity measurements for a positive strand. The 

LORF signature consists of 3 different concatenated attributes and the ORF signature 

consists of 4 different attributes. The red font is an indication for end position, black is 

sequence ID and brown is strand type. The different start positions contain differrent colors 

to separate between them. 

 

To compare the ORF mapping with the prodigal output, the prodigal GFF files were further 

filtered to only include the LORF predictions that match the reference LORF. The attributes 

column in the GFF file contains information about whether an RBS motif has been found 

upstream of the potential CDS. It was desirable to compare the number of ORFs that had an 

RBS motif, both coding and non-coding, in the same LORF as a reference CDS. 

3.3 Modelling 

Using information from an upstream sequence, we wanted to classify between gene (target 1) 

and no gene (target 0) with respect to the different start positions present in a long open 

reading frame (LORF). To classify a sequence of letters, it needs to be converted to numerical 

data. For this data, the upstream sequences retrieved after ORF-mapping and comparison was 

converted into K-mer count data and one-hot encoded data. One-hot encoded data is from 

here on dubbed “sequential data”.   
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3.3.1 ORF-mapping and comparison 

Another method of annotation is to search for open reading frames and investigate whether a 

pattern or motif can be enough to distinguish between a coding sequence and a non-coding 

sequence. The general idea between retrieval of ORFs and not LORFs is to be able to discern 

between the alternative start codons in a long open reading frame. By fetching all the 

alternative ORFs present, the hope for a machine learning model is to find a pattern between 

the coding and non-coding ORFs. By finding a pattern, a more precise annotation with respect 

to the start position of genes can be achieved.   

 

The microseq package in R has a built-in function called findORFs that scans through a 

FASTA file. The function locates “Open Reading Frames” or ORFs in a fasta file. When 

locating the ORFs the function will find all subsequences in the fasta sequences that start with 

a start codon (ATG, GTG or TTG) followed by a number of triplets (codons) and ending with 

a stop-codon (TAA, TGA or TAG) (Snipen & Liland, 2017). The findORFs function was used 

to scan through the 15 reference .fna files. As in 3.2, a common signature was created for both 

the ORF and the reference annotation to investigate the precision and recall for the ORF-hits.  

The signature is a concatenation of sequence ID, strand type, and end position. Assumption a 

priori is that all genes are an ORF. A different number (50, 90, 150) of minimum ORF lengths 

were tried out. 

 

If all ORFs had been included in the final dataset we would have a more skewed target 

balance between gene coding ORFs and non-gene coding ORFs, where all the non-coding 

ORFs would have been in majority. Therefore, the focus was shifted to alternative ORFs for 

the reference annotations. This meant filtering all alternative ORFs in the reference longest 

open reading frame. Only the ORFs that share the same LORF as a CDS in the reference file 

is included in the final dataset.  

 

The ORF-hits table was further annotated with a target variable declaring if there was a match 

with the reference annotation genome-wise or not. For all ORFs in the respective genome a 

sequence of 30 bases upstream was found. It was desirable to compare the sequences of each 

ORF to see if there was a way to classify the start position of genes based on their upstream 

sequence. 
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The upstream sequences also had a variant with the start codon included as it may give a bias 

toward start-codons in coding sequences. This in combination with the different ORF length 

was tried in model training.  

3.3.2 Upstream sequence retrieval 

There are multiple elements surrounding upstream data that could be beneficial in a machine 

learning model. Ribosomal binding sites and promoters are said to be present upstream of 

some coding genes as presented in Section 2.1.1 and 2.1.2. The idea behind upstream 

sequence retrieval for every ORF is a test to see if the information present is enough to 

separate the coding and non-coding ORFs.  

 

After obtaining and assigning target variables to the nested ORFs present in a LORF, the 

columns start, end and strand was used to fetch upstream data. A custom function called 

“Upstream finder” was used to achieve this. The function reads the specific genomes’ fasta 

file and retrieves a self-defined number of bases upstream of all observations in a data frame 

with a GFF format. 

 

The function has four arguments. The first is the given GFF data frame from which you have 

the given start and end position of a possible open reading frame. The second is the genome 

sequence itself, input here is expected to be a path to a fasta file. The third argument, length, 

is the number of bases upstream of the start position desired. Input is here an integer. The last 

argument called orf_bases inputs an integer, this argument indicates how many bases in the 

ORF sequence that is included. If integer is set to three, the start codon is included in the final 

upstream column. The default for the orf_bases argument is zero. The output from the 

function is a column containing the upstream sequence.  

 

The functions first step is to read a given fasta file. This was achieved using the function 

readFasta() from microseq (Snipen & Liland, 2016). The function returns a table containing 

two columns of text. The “header” that contains header lines, and then the sequence itself.  

 

Afterwards the GFF data frame defined is filtered according to strand type. The strand type is 

a key factor as the “End” position in strand type “- “indicates the start position of the open 

reading frame, and vice versa. From there the start position was set at 30 bases upstream from 
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the open reading frames start position, and the end position was set at one base upstream of 

the start position.  

 

With the new start and end defined, the function Gff2fasta from microseq (Snipen & Liland, 

2016) was utilized. This function takes the start and end position of a general feature 

formatted table (GFF) and retrieves the sequences in-between from a fasta file. The sequence 

retrieved here will then be in a fasta format, existing of the column’s header and sequence. In 

the upstream_finder function the column “sequence” is returned.  

3.3.3 K-mer data 

K-mer count data of a sequence can be useful for discerning between target groups. The idea 

is that the mean count and variance is different enough between targets. The difference may 

allow any model to retrieve useful information during training. 

 

The sequence data from 3.3.2 that was made for all open reading frames was used to create K-

mer data. The creation of K-mer data was achieved using the KmerCount function in the 

microclass package (Vinje et al., 2016).  

 

Different K-mers were tried out. The sequence length and four possible nucleotides gives 4K 

possible combinations of K-mers affecting runtime and memory usage. An upper cap was 

therefore set at K = 6, to capture all the variance in the dataset, and without affecting 

computational time excessively. As there are only four unique letters present in the sequence 

data, a low K-mer count may not be as helpful information-wise. The lower cap was 

consequently set at K = 3. The different K-mers were assembled into a common feature space.  

Further on, because of the natural genomic variation present in the prokaryotic genomes, one 

K-mer dataset was created for each unique genome. 

 

The frequency of K-mers was overdispersed with a variance larger than the mean, and the 

feature space was vast. The initial data for the Escherichia coli O157:H7 str sakai K-mer data 

had a total of 79 504 rows and 5442 columns.  

 

The final training dataset then consisted of 3 to 6-mers of the open reading frames’ upstream 

sequences located 30 bases upstream as well as the variable length and the target class. The 
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variable length was added to the final dataset as it may be a significant explanatory variable in 

classification.  

3.3.4 Sequential data 

After the initial training and creation of the K-mer data, another possible training data was 

made. The initial K-mer dataset contained information in form of counts of K-mers available 

upstream of ORFs but does not contain information about the order of the nucleotides. To 

capture the sequence structure, the sequence data was one-hot encoded creating a total of 120 

features. This training dataset thus consisted of 120 features (4 bases possible in 30 different 

positions: 120 different combinations) as well as the target class variable. This dataset is much 

smaller than the K-mer dataset and is therefore computationally cheaper.  

3.3.5 Classification Models 

There exists a multitude of classification models and thus many ways to classify data. Based 

on this, seven models were run with tuning to find the better model. The models in question 

are seen in table 3.2.1. To account for result randomness during hyperparameter tuning, each 

model was run with a cross validation of 3.    

 

To get an overview of different classification models performances, they were run on one 

genome. Escherichia coli O157:H7 str sakai had the highest number of coding sequences as 

seen in Table 2.1.1, as well as the genome with the median GC content, and was therefore a 

first choice for model training.  
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Table 3.3.4.1: Overview of the different classifier models used to distinguish the upstream 

sequence data between gene and no gene. The classifiers description as well as tunable 

parameters are defined her.  

Classifier Description Tunable parameters 

Logistic regression 

 

Classification algorithm that 

predicts the probability of a 

categorical dependent  

variable. Predicts P(Y=1) as a 

function of X.  

 

Regularization strength, 

penalty (l1, l2) 

Gaussian naïve 

bayes 

 

For continuous data, useful 

for high dimensional data. 

 

Variance Smoothing 

 

K neighbors 

classifier 

 

Distance based lazy 

algorithm. Places all 

observations in n-dimensions 

and finds the k – nearest 

neighbors using a likeness 

score. The class is given by 

majority voting. 

 

Number of neighbors and 

distance metric (Manhattan, 

Minkowski or Eucledian) 

 

Decision tree 

classifier 

 

Uses information from 

features and target in a dataset 

to discern where to best split 

the data in different classes. 

 

Max depth 

 

Random forest 

classifier 

 

Ensemble classification 

method consisting of many 

decision trees. 

 

Number of trees, max depth, 

and max features 

 

Balanced random 

forest classifier 

 

For imbalanced data, this 

classifier undersamples the 

majority class randomly to 

match the number of samples 

in the minority class. This is 

done for each decision tree. 

 

Number of trees, max depth, 

and max features 

 

PLS+LDA 

LDA is a common feature 

reduction technique often 

paired with PLS for 

categorical data 

Number of components for 

PLS 

 

All the model trainings performed, using the classifiers seen in table 3.2.1, were trained using 

the scikit-learn tool (Campbell). With the exception of PLS + LDA that was run using the 

mpda R package (Snipen, 2017). The validation of the models was performed using an 

independent dataset (test-set). A prediction of the test dataset was run with all trained 
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classifiers seen in table 3.2.1. From the predictions the resulting false positive and true 

positive rate were plotted together in an ROC curve for visualization of all classifiers. 

 

The creation of the test-set was achieved by randomly partitioning 25% of the data’s 

observations into the test set. This left 75% of the data for training. 

 

After the initial overview of classifiers, four common classifications were run on four selected 

genomes separately. These genomes were deemed to best represent the variety in genome 

content, with respect to their GC%. See table 2.1.1 for their respective GC%. The low GC% 

representative is Campylobacter jejuni, medium representative is Escherichia coli O157:H7 

str. Sakai, and high GC% representative is Caulobacter vibriodes. The last genome; Bacillus 

subtilis subsp. subtilis str. 168, was selected due to their status as a model organism of the 

gram-positive lineage (Errington & Aart, 2020). The classifications were tuned for each 

genome, as we already assume they are independent.   

 

The classifications in question are the Balanced random forest classifier, logistic regression, 

PLS + LDA and KNN. The balanced random forest was chosen due to the datasets imbalance 

and because the initial classifier showed promising results. The remaining three classifiers 

were chosen as they are very simple, but popular classifiers. 

 

Finally, the classifier that had the highest ROC score was further utilized by training a model 

for all RefSeq genomes. The training on all genomes was done to get an overview of the 

variation between the 15 genomes present, as well as to see if the initial result was 

representative. 

3.3.6 Feature Selection 

The number of features with all K-mers available, plus the variable length, was at 5457. To 

reduce the complexity of a model and avoid overfitting, feature selection was applied. The 

feature selection does not only seek to avoid overfitting but can also give valuable 

information about feature importance.  

 

To check for feature importance in the K-mer dataset two methods were run, namely random 

forest feature permutation and chi squared test. 
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3.3.5.1 Random Forest 

The scikit-learn package has a permutation-importance function with a trained random forest 

model as input. The function shuffles features randomly during prediction and computes 

changes in its performance. The features that impact performance the most are deemed to be 

the most important ones. After tuning a Random Forest classifier, this function was run on the 

E. coli O157:H7 str. Sakai K-mer dataset. 

 

3.3.5.2 Near-zero variance predictors 

Variables with very few numerical values can cause errors or unexpected results. Near-zero 

variable predictors are predictors with very few unique values. This is very common in a K-

mer dataset as well as a sequential one. 

Table 3.3.6.1 Overview of number (n) of observations per genome in the final dataset with an 

ORF-length of 90 or above. 

Genome n 

Acinetobacter pittii 46078 

Bacillus Subtilis 55581 

Campylobacter jejuni 17626 

Caulobacter vibriodes 55681 

Chlamydia trachomatis 12491 

Coxiella burnetiid 24882 

Escherichia coli K-12 68620 

Escherichia coli O156H7 

sakai 
79504 

Klebsiella pneumoniae 81887 

Listeria monocytogenes 34993 

Mycobacterium tuberculosis 80707 

Pseudomonas aeruginosa 93489 

Salmonella enterica 70091 

Shigella flexneri 60889 

Staphylococcus aureus 28597 

 

The number of columns present, as well as the overrepresentation of 0’s, may make it difficult 

for any classification model to retrieve useful information from training. Therefore, any 
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columns with varying sums less than a given quantity (500, 1000 and 1500) were attempted 

removed to see if it affects the final model training. An overview of the number of 

observations per genome can be seen in table 3.3.6.1. Numbers were chosen according to the 

number of observations present in the minimum genome (Chlamydia trachomatis). The idea 

behind the removal is that the variables that fall below that number are useless in modelling.  

3.4 Chi square test 

The chi square test was run on the E. coli O157:H7 str. Sakai K-mer dataset. The test was run 

between each feature in the dataset and the response (target) to determine if the association 

between the categorical variables reflects the association population-wise. It was also 

interesting to see if the feature selection using random forest and a statistical test found 

common important variables. The sklearn package in Python has a function chi2 that 

computes chi-squared stats between each non-negative feature and class (Michel, 2021).  
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4. Results 

4.1 Overview of data 

In this subsection the raw annotated data from the RefSeq database is presented. Here a 

mapping of the uncertain annotations is shown. The uncertain annotations are from most 

uncertain to least uncertain the proteins marked as “hypothetical”, “hypothetical conservative” 

and “putative”. 

The table 4.1.1 displays the count of different uncertain annotations per genome. The results 

were mapped using ggplot2 version 3.3.2 into bar plots showing the number of different 

uncertain protein types for each reference sequence. The hypothetical protein count appears to 

be the most prominent uncertain annotation in all genomes except E. coli K-12 and B. subtilis. 

For these genomes, the uncertain annotations that appear the most is the “putative protein” 

count.  

Figure 4.1.1 Count overview of different uncertain annotations present in the RefSeq annotated GFF files. 

The three figures are an overview of the three degrees of uncertain annotations present. A table with the 

total number of annotated genes in the different reference genomes are provided as a table in the bottom 

right corner. 



 

39 

 

 

Figure 4.1.2 Dotplot showing the fraction of uncertain proteins for each genome. Black line 

exhibits mean percentage over all genomes. 

 

The scatterplot, shown in figure 4.1.2, shows the fraction of uncertain proteins for each genus 

from the RefSeq fasta files. The results were mapped as a point graph with y being percentage 

(from 0 to 1), and the x value being different genera. The results give us the fraction of 

uncertain protein counts as well as the count and fraction of the individual uncertain proteins 

for each Genus. The mean of uncertain proteins is at around 0.3 with the minimum value 

being at 0.1 with Bacillus subtilis and maximum being at around 0.6 for Staphylococcus 

aureus.   

 

There does not seem to be a trend for the fraction of uncertain proteins, there are also small 

differences species-wise as the K-12 and O156H7 sakai subspecies of E. coli are not too far 

apart (0.1) fraction-wise.  
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4.2 Comparison with a gene prediction software 

This segment presents an annotation tool’s performance on the RefSeq sequence files. It was 

desirable to compare the RefSeq annotations with Prodigal predictions of the reference 

genomes. This comparison was made to illustrate a standard software’s issue in locating the 

correct start-codon 

 

In total Prodigal predicted 56 210 coding genes from the 15 different fasta files. The reference 

.gff file had a total of 55 538 observations leading to an overprediction of 672 observations. 

Out of these observations 53 505 observations matched the reference signature containing 

only end position, and 46 934 matched the reference signature containing both start and end 

position.  
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Table 4.2.1: Recall and precision between prodigal annotated genomes and known RefSeq 

genomes, panel A contains the results with SeqID, Strand type and end position (LORF), 

panel B with SeqID, Strand type, start and end position (ORF). 

Genomes Recall Precision 

Panel A: Signature for LORF 

Acinetobacter pittii 0.9814 0.9863 

Bacillus subtilis 0.9600 0.9832 

Campylobacter jejuni 0.9867 0.9397 

Caulobacter vibriodes 0.9506 0.9919 

Chlamydia trachomatis 0.9865 0.9766 

Coxiella burnetii 0.8833 0.7867 

Escherichia coli K-12 0.9578 0.9711 

Escherichia coli O156H7 sakai 0.9853 0.9677 

Klebsiella pneumoniae 0.9258 0.9808 

Listeria monocytogenes 0.9927 0.9899 

Mycobacterium tuberculosis 0.9703 0.9278 

Pseudomonas aeruginosa 0.9957 0.9768 

Salmonella enterica 0.9747 0.9579 

Shigella flexneri 0.9573 0.8253 

Staphylococcus aureus 0.9270 0.9749 

   

Panel B: Signature for ORF 

Acinetobacter pittii 0.7774 0.7813 

Bacillus subtilis 0.8688 0.8897 

Campylobacter jejuni 0.9151 0.8715 

Caulobacter vibriodes 0.7607 0.7938 

Chlamydia trachomatis 0.8896 0.8807 

Coxiella burnetii 0.6765 0.6025 

Escherichia coli K-12 0.8913 0.9037 

Escherichia coli O156H7 sakai 0.9679 0.9506 

Klebsiella pneumoniae 0.8131 0.8614 

Listeria monocytogenes 0.9279 0.9353 

Mycobacterium tuberculosis 0.7496 0.7168 

Pseudomonas aeruginosa 0.9142 0.8968 

Salmonella enterica 0.8591 0.8442 

Shigella flexneri 0.7714 0.6650 

Staphylococcus aureus 0.8218 0.8643 
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The results for the prodigal comparison are shown in table 4.2.1. Panel A, with a signature 

that only contains SeqID, End position and Strand type, has a higher precision and recall 

overall when compared to panel B with end and start position included in the signature. For 

all genomes the precision and recall are higher when only end position is included in the 

signature.  

 

The observations following the Prodigal annotation contained information about motifs. The 

software scans upstream information to see if any upstream sequences such as the Shine-

Dalgarno are present. If they are found specified actions are taken, and the motif found is 

stored in the attribute’s column of the output GFF files created. Results containing the 

frequency of a motif present can be seen in table 4.2.2. The comparison was made genome-

wise, and the frequency shown is the total observations of motif x, for target y, genome z. The 

table shows the five possible Shine-Dalgarno RBS Motifs that Prodigal deems to have the 

highest score (Hyatt et al., 2010), as well as no RBS seat present.  
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Table 4.2.2: Shine-Dalgarno RBS motifs presence in upstream Prodigal annotated ORFs. The 

table shows the relative frequency of selected motifs present for four genomes of different 

targets. Panel A shows the relative frequency for target 1 (CDS) whereas panel B shows the 

relative frequency for target 0 (not CDS). NP means not present, as there are no 

observations.  

Genome AGGAGG AGGAG AGGA GGAGG 
AGGA/GG

AG/GAGG 
None 

Panel A: Gene 

B. subtilis  0.2035 0.1484 0.0457 0.1295 0.0212 0.0165 

C.  jejuni 0.0007 0.1674 0.3156 0.0069 NP 0.1287 

C. vibriodes NP 0.076 0.0575 0.0903 0.0182 0.1556 

E. coli 

O157:H7 

str. Sakai 

0.0107 0.1400 0.1190 0.0588 0.0170 0.1084 

Panel B: not gene 

B. subtilis  0.0608 0.1139 0.0987 0.0810 0.0278 0.0861 

C. jejuni NP 0.1239 0.2743 0.0047 NP 0.2389 

C. vibriodes NP 0.0664 0.0556 0.0908 0.0203 0.1707 

E. coli 

O157:H7 

str. Sakai 

0.0109 0.0652 NP 0.0217 0.0109 0.5 
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4.3 Chi square test 

The Chi square test results are presented in table 4.3.1. The test was run on the K-mer data to 

test for enrichment in one class against the other.  

 

Table 4.3.1 The twenty highest scores retrieved after running a chi square test for all K-mer 

features of the E. coli O157:H7 str. Sakai genome from 3-mer to 6-mer.  

K-mer Chi2 score p-values 

AGGA 1450.003 0.00E+00 

GGAG 1287.984 4.62E-282 

AGGAG 1252.086 2.92E-274 

GAGG 1226.583 1.02E-268 

GAG 1068.289 2.58E-234 

AGG 1008.004 3.27E-221 

TAA 998.0757 4.70E-219 

AAGGA 988.911 4.62E-217 

AAGGAG 674.4939 1.05E-148 

TAAGG 608.5353 2.33E-134 

GAGGT 606.1369 7.74E-134 

GGAGA 604.307 1.94E-133 

ATAA 582.1802 1.26E-128 

GAGGA 550.4231 1.02E-121 

GAGA 531.6311 1.25E-117 

TAAG 526.679 1.49E-116 

TAAGGA 525.6371 2.51E-116 

GGA 524.6199 4.18E-116 

AGGAGA 517.5854 1.42E-114 

GGAGG 514.9453 5.32E-114 

 

A chi square test was run for all K-mer data, and the twenty highest scores can be seen in 

table 4.3.1. This test was run between each feature and the response (target) to determine if 

the association between the categorical variables and target (gene or no gene) coincided. 

Based on the p-values presented, these 20 features are not independent from the response 
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variable and are thus deemed to be important factors for separating between gene and no gene 

in the upstream sequence data.  

4.4 Modelling 

In this subsection, the creation of training datasets and their attributes as well as the modelling 

performances are revealed. Information surrounding feature importance is also included in 

this segment.  

4.4.1 The open reading frames 

The reference table consisted of 55 538 observations, whereas the ORF table had 2 794 615 

observations. After filtering the ORF table to only include the ORFs in the same longest 

reading frame as the reference table – the final dataset had a size of 1 107 520 observations. 

Out of these observations 55 234 were found to match the reference. Overall, this gives an 

average of 20 different reading frames per LORF.  
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Table 4.4.1 Overview of ORFs from reference and found from all genomes. This includes the 

false positives as well as true positives. Percentage of codings sequence loss (CDS loss) are 

also presented, as well as the number of uncertain proteins for each filtered length. 

Type Number of observations CDS loss 

Reference CDS’ 55 538  

All ORFs that are CDS 55 234 
0% 

All ORFs that are not CDS  1 052 286 

Uncertain proteins 16 386  

CDS found with minimum 

ORF length 50 
54 009 

2,8% 
ORFs that are not CDS 

minimum length 50 
892 810 

Uncertain annotations of 

minimum length 50 
16 376  

CDS found with minimum 

ORF length 90 
50 226 

9,6% 
ORFs that are not CDS 

minimum length 90 
760 890 

Uncertain annotations of 

minimum length 90 
16 344  

CDS found with minimum 

ORF length 150 
42 282 

24% 

ORFs that are not CDS 

minimum length 150 
586 821 

Uncertain annotations of 

minimum length 150 
15 459  

  

The loss of coding sequences when choosing an ORF length of 90 are at 9,6% as can be seen 

in table 4.4.1. By increasing the search space (lowering minimum ORF length) to 50, an 

increase of around 132 000 ORFs are observed. The minimum length of 90 bases was 

therefore selected for the final training datasets, to avoid more imbalanced datasets.  
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4.4.2 The Receiver Operating Characteristics 

In total, seven models were trained on the E. coli O1567:H7 sakai genome. These models 

were the Balanced random forest classifier, the random forest classifier, logistic regression, 

gaussian naïve bayes, decision tree classifier, partial-least squares reduction followed by a 

linear discriminant analysis and the K-nearest neighbor classifier. As there are two training 

datasets (the K-mer dataset and the dummy-encoded dataset) the models were run on both 

datasets. The resulting ROC curves following the training can be seen in figure 4.4.1 and 

4.4.2. 

 

Figure 4.4.1 ROC curve for multiple classification models. The plot shows true positive rate 

versus false positive rate for the seven classifiers on the K-mer dataset for the E. coli 

O156:H7 sakai genome seen in table 3.3.4.1. AUC score is shown in the lower right quadrant 

of the figure. 

 

The figure 4.4.1 shows the Receiver Operating Characteristics curve for the 7 different 

models trained in 2.4.3 on the Escherichia coli O157:H7 sakai genome. Based on the AUC 

scores, it appears the Balanced random forest classifier from imblearn had the most correct 
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classifications. The highest was at 0.71 and the lowest was the Decision trees classifiers at 

0.541. There is little difference in AUC score between the top three classifiers, and the three 

may be fine classifiers for our training dataset.  

 

Figure 4.4.2 ROC curve for multiple classification models. The plot shows true positive rate 

versus false positive rate for the seven tuned classifiers on the one hot encoded dataset for the 

E. coli O156:H7 sakai genome. AUC score is shown in the lower right quadrant of the figure 

 

The figure 4.4.2 shows the Receiver Operating Characteristics curve for the 7 different 

models trained in 2.4.3 on the Escherichia coli O157:H7 sakai genome. The dataset used was 

the sequential dataset that takes the order of nucleotides into account. Based on the AUC 

scores, it appears the Balanced random forest classifier from imblearn had the most correct 

classifications. The highest was at 0.727 and the lowest was the Decision trees classifiers at 

0.577. There is little difference in AUC score between the top three classifiers, and all may be 

fine classifiers for our training dataset.  
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4.4.4 Four selected methods 

This section presents the results from the four different classifiers trained on four 

representative genomes. The balanced random forest classifier as well as three common 

classifiers were chosen to better give an overview of the general training results. The 

classifiers were LDA+PLS, KNN and logistic regression. The models were tuned to best fit 

for each genome, and some selected metrics for four genomes can be seen in table 4.4.2 and 

4.4.3. For the entire table see attachment 1 for the K-mer dataset and 2 for the sequential 

dataset. Training was performed with a hyperparameter tuning and a cross validation of 3. 

The resulting metrics are from the prediction of a validation test set. 

 

Table 4.4.2 results from a hyperparameter tuned selection of four genomes. These values are 

selected according to the highest recall (panel A) and MCC score (panel B) from the table 

present in attachment 1. The classifier used is present in the column “Classifier” as is the 

minimum sum for a feature required before training (Reduction).  

Genome Precision Recall MCC Classifier Reduction 

Panel A 

B. subtilis 0.31 0.93 0.49 
Balanced 

random forest 
0.0 

C. 

vibriodes 
0.23 0.79 0.36 

Balanced 

random forest 
0.0 

C. jejuni 0.32 0.78 0.43 
Balanced 

random forest 
1500.0 

E. coli 

O156H7 

sakai 

0.13 0.6 0.19 
Balanced 

random forest 
0.0 

Panel B 

B. subtilis 0.68 0.48 0.55 
logistic 

regression 
500.0 

C. jejuni 0.72 0.44 0.53 
logistic 

regression 
1000.0 

C.  

vibriodes 
0.6 0.27 0.37 

logistic 

regression 
500.0 

E. coli 

O156H7 

sakai 

0.13 0.6 0.19 
Balanced 

random forest 
0.0 

 

Table 4.4.2 shows the best results by Recall and MCC for the models trained using the K-mer 

dataset. Based on the results, the logistic regression scored highest in terms of MCC (panel 
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B), but the Balanced random forest classifier scored highest in terms of recall (panel A). The 

recall, when compared to the prodigal results are a little lower for all genomes except for 

Bacillus subtilis which has a higher recall rate than the prodigal ORF output (Table 4.1.1 

panel B). For the most part, the reduction did not yield much difference score wise for the 

balanced random forest but proved to be an asset for the logistic regression classifier.  

 

Table 4.4.3 results from a hyperparameter tuned selection of four genomes using the 

sequential dataset. These values are selected according to the highest recall and MCC score 

for each of the four genomes from the table present in attachment 2. The classifier used is 

present in the column “Classifier” as is the minimum sum for a feature required before 

training (Reduction).  

Genome Precision Recall MCC Classifier Reduction 

Panel A 

B. subtilis 0.48 0.92 0.64 
Balanced 

random forest 
0.0 

C. vibriodes 0.31 0.9 0.48 
Balanced 

random forest 
0.0 

C.  jejuni 0.51 0.85 0.62 
Balanced 

random forest 
1000.0 

E. coli 

O156H7 

sakai 

0.15 0.58 0.22 
Balanced 

random forest 
1000.0 

Panel B 

B. subtilis 0.83 0.68 0.73 
logistic 

regression 
0.0 

C.  jejuni 0.79 0.63 0.68 
logistic 

regression 
0.0 

C. vibriodes 0.31 0.9 0.48 
Balanced 

random forest 
0.0 

E. coli 

O156H7 

sakai 

0.15 0.58 0.22 
Balanced 

random forest 
1000.0 
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As for the K-mer dataset, logistic regression and the Balanced random forest classifier proved 

to be the best classification models for the sequential dataset. When sorting by highest recall 

for the four respective genomes (panel A), the Balanced Random Forest proved to give the 

highest scores, outdoing the prodigal scores for Bacillus subtilis and Caulobacter vibriodes in 

terms of recall for ORFs.  The recall proved to be an asset for the random forest model for C. 

jejuni and E. coli with a reduction of 1000, which is a contrast to the K-mer dataset.   

4.4.5 Balanced Random Forest classification 

Because the Balanced Forest classifier had the highest AUC score in the ROC-curve analysis 

for the E. coli O157:H7 str. Sakai genome (Figures 4.4.1 and 4.4.2), this model was chosen 

for the remainder of the genomes.  

 

The Balanced Random Forest model was run on all genomes in the dataset to get an overview 

of the variation between genomes. Table 4.4.4 and 4.4.5 shows the results following a 

balanced random forest classification on test data for respectively the K-mer and sequential 

dataset. Training was performed with a hyperparameter tuning and a cross validation of 3. 

The resulting metrics are from the prediction of a validation test set. 
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Table 4.4.4 results from a hyperparameter tuned Balanced random forest classifier for each 

genome in the reference genome database using K-mer data. The metrics Precision, Recall, 

MCC and F1 show their respective results. The column N trees show the optimal number of 

trees per genome. 

Genome Precision Recall  MCC F1 N trees 

A. pittii 0.23 0.77 0.35 0.36 600 

B.  Subtilis 0.31 0.93 0.49 0.47 100 

C. jejuni 0.31 0.77 0.43 0.44 800 

C. vibriodes 0.23 0.79 0.36 0.35 300 

C. trachomatis 0.16 0.72 0.24 0.26 100 

C. burnetii 0.11 0.63 0.24 0.14 200 

E. coli K-12 0.25 0.85 0.41 0.39 800 

E. coli O156H7 

sakai 
0.13 0.59 0.18 0.21 500 

K. pneumoniae 0.13 0.59 0.17 0.21 800 

L. monocytogenes 0.40 0.91 0.55 0.55  500 

M. tuberculosis 0.13 0.70 0.23 0.22 200 

P. aeruginosa 0.23 0.84 0.39 0.37 400 

S. enterica 0.13 0.61 0.18 0.21 900 

S. flexneri 0.14 0.58 0.19 0.23 900 

S. aureus 0.38 0.88 0.53 0.53 400 

 

Table 4.4.4 shows the results from a hyperparameter tuned Balanced Random Forest classifier 

trained on the K-mer dataset. The genome with the highest performance in terms of MCC is 

L. monocytogenes with an optimal number of 500 trees and an MCC of 0.55.  
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Table 4.4.5 results from a hyperparameter tuned Balanced random forest classifier for each 

genome in the reference genome database using the sequential data. The metrics Precision, 

Recall, MCC and F1 show their respective results. The column N trees show the optimal 

number of trees per genome. 

Genome Precision Recall MCC F1 N trees 

A. pittii 0.3 0.8 0.43 0.43 700 

B. subtilis 0.49 0.92 0.64 0.64 600 

C. jejuni 0.51 0.85 0.62 0.63 700 

C. vibriodes 0.31 0.9 0.48 0.46 600 

C. trachomatis 0.21 0.82 0.34 0.34  600 

C. burnetii 0.1 0.55 0.12 0.17  900 

E. coli K-12 0.38 0.87 0.54 0.53 400 

E. coli O156H7 

sakai 
0.15 0.58 0.21 0.24 900 

K. pneumoniae 0.14 0.55 0.19 0.23 900 

L. monocytogenes 0.59 0.92 0.71 0.72  800 

M. tuberculosis 0.2 0.83 0.35 0.32 800 

P. aeruginosa 0.35 0.92 0.54 0.51 800 

S. enterica 0.15 0.59 0.21 0.24 800 

S. flexneri 0.16 0.55 0.2 0.25 900 

S.  aureus 0.53 0.86 0.64 0.66 300 

 

Table 4.4.5 shows the results from a hyperparameter tuned Balanced Random Forest classifier 

trained on the sequential dataset. The genome with the highest performance in terms of MCC 

is L. monocytogenes with an optimal number of trees at 800 and an MCC of 0.72.   
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4.4.6 Feature importances 

 

 

Figure 4.4.3 random forest feature importance. This barplot showcases the 20 most important 

features when constructing the random forest model for the genome of E. coli O156:H7 sakai. 

The importance is shown as fraction of importance. 

 

Figure 4.4.3 highlights the random forest feature importance decisions. This feature 

importance displays what the random forest model considers as having the most information 

when classifying between gene (1) and no gene (0).  The figure shows to 20 most important 

features in the training of the random forest model. The top variable appears to be the column 

length with a fraction of importance at 0.025, followed by the 3-mer TAA with an importance 

of around 0.004. 
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5. Discussion 

5.1 Data 

In this subsection the RefSeq data will be presented as well as certain aspects surrounding 

them. It is necessary to discuss the source of data as well as their unique attributes to 

understand the final classification results.  

 

Figures 4.1.1 and 4.1.2 shows a count of the three different uncertain proteins for each 

genome. C. jejuni has the lowest fraction of uncertain proteins, indicating a nearly complete 

and accurate genome annotation. In figure 4.1.2 it appears that the fraction of uncertain 

proteins for C. jejuni is at 0,05 or 5%. In contrast the genome with the highest percentage of 

uncertain proteins is S. aureus at around 0,6 or 60%. It appears near all uncertain protein 

counts for S. aureus are hypothetical conserved proteins, which gives a little more credibility 

than just a hypothetical protein.  

 

The annotation of the different genomes shows a wide variety in uncertain protein prediction 

and can be explained by individual characteristics of the genome, and the Genus. Different 

genera have different elements of variability. This variability can be explained by the different 

research focus’ in the field. As some genera in the RefSeq database are model organisms, 

others are not. Due to some genera’s status as model organisms there are often more 

experimental and manual annotation data available. 

 

 There also appears to be a difference between different strains. E. coli K-12 and O157:H7 are 

different in their count of protein. Where K-12 has 20% count of uncertain protein, O157:H7 

has 15% (see figure 4.1.2). K-12 has a high putative count (see figure 4.1.1) which gives more 

credibility than O157:H7 with a higher hypothetical count. The difference between these is 

that the K-12 strain is classified as a model organism and therefore has a high count of 

experimental data available in different databases. A quick search in the nucleotide database 

of GenBank yielded 6988 results for K-12 and 643 results for O157:H7. K-12 was also one of 

the first microorganisms targeted for genome sequencing (Perna, 2002), whereas the E. coli 

O157:H7 is a strain associated with hemolytic-uremic syndrome and is not as commonly used 

as a model organism (Ameer, 2021). This may give an explanation as to why most protein 

counts of O157:H7 is purely hypothetical and give insight into the differences among strains. 
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The RefSeq annotations are, as stated in the introduction, the best manual annotations we 

have as of today. These manual annotations are continuously being worked on and may 

contain errors as well. In the past, all RefSeq genome assemblies were reannotated once every 

few years to ensure that the older genomes benefit from the improvements in PGAP (Li et al., 

2021). The latest publication from the RefSeq project at NCBI talks about the culling of bad 

proteins and the shrinking of the homology search space. There is, in other words, a great 

possibility that some CDS marked as genes in the current training dataset may be wrongly 

annotated and that some observations might be removed in the future.  

 

Another aspect of the RefSeq annotated genomes is that the localization of the start-codon 

may not be certain. As stated, some software struggle with start site prediction in protein-

coding genes. The PGAP uses GeneMarkS-2+ for start-site recognition. This software has a 

self-stated error rate of 4.4% compared to Prodigal which has 6.2% (Lomsadze et al., 2018). 

These self-stated errors can be thought of more as a minimum than a mean. Improvements on 

the error rate for GeneMarkS-2+ will lead to a more error-free training dataset in the future 

and may result in changes to the current start-positions of annotated genes. 

5.2 Comparison with a gene prediction software 

This section will discuss the Prodigal result. The Prodigal results presented the initial problem 

statement regarding annotation errors. By analyzing the annotation from the Prodigal result 

more insight into an annotation software’s function is accomplished. The Prodigal annotation 

precision and recall creates a baseline for the final machine learning model. 

 

Prodigal predicted 53 505 observations that matched the signature LORF (that contains only 

end position) and 46 934 matched the signature ORF (containing start and end). This gives an 

accuracy over the positive class to respectively 0,963 and 0,845. The accuracy is in other 

words reduced quite substantially when trying to estimate the correct start position of a coding 

sequence.  

 

In table 4.2.1 the drop in recall and precision can be seen for all genomes when going from 

the signature for LORF (panel A) to signature for ORF (panel B). Indicating that the issue 

does not only lie in a few selected genomes.  The results vary amongst the different genomes. 

The lowest precision and recall were found for the genome: Coxiella burnetii for both panel A 
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and B. The highest precision and recall were found for E. coli O156H7 sakai in 4.2.1 for the 

ORF signature (panel B). In panel A the genome with the highest precision was found to be 

Pseudomonas aeruginosa, and for recall Listeria monocytogenes.  

 

There are two more motifs not present in panel B compared to panel A of table 4.2.2. Table 

4.2.2 only contains ribosomal motif frequencies for four selected genomes, namely E. coli 

O157:H7 sakai, B. subtilis, C. jejuni and C. vibriodes. Panel B contains the relative frequency 

for motifs per genome present in non-coding ORFs whereas panel A contains the relative 

frequency of motif per genome for coding sequences. For the genomes, there is a lack of 

motif for non-coding ORFs.  For E. coli O157:H7 50% of observations in panel B does not 

contain an upstream motif recognized by Prodigal. In contrast only 10.8% of observations for 

actual genes do not contain a motif for the same genome. There are, in general a higher 

relative percentage of motifs in panel A compared to panel B, apart from the three motifs 

AGGA/GGAG/GAGG.  

 

The prodigal paper states to have distance-based scores when searching for ribosomal binding 

sites (Hyatt et al., 2010). When comparing the prodigal article with the output-data from 

prodigal, no distance-based score was discovered. It would have been more informative to 

retrieve a comparison of the motif AGGAGG with the length of spacer between the 16sRNA 

binding site and the start-codon as that was their top-scorings motifs, but no such information 

was found. 

 

5.3 Classification based on upstream sequences 

The machine learning classification model presented here is not as complex as any given 

annotation software. Given the time constraint on this thesis only a small part of what would 

be considered annotation has been investigated. Namely, the localization of the start position 

of genes based on upstream sequence data. This subsection presents points around the 

classification results. 

 

The Balanced random forest classifier was deemed to be the best for both our datasets (K-mer 

an sequential) for the E. coli sakai genome as seen in Figure 4.4.1 and 4.4.2. However, there 

are multiple classification models that had an AUC score very similar to the balanced random 

forest one. Amongst them was the logistic regression model with an AUC of exactly 0.03 
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below the balanced random forest model for the K-mer dataset and 0.04 below for the 

sequential one. The ROC curves show more than which model has a better fit, it can also give 

insight into false positive and true positive rate. For an annotation process, an ideal step given 

the number of observations is to have as little false positives as possible. In other words, a 

conservative model is desired if this were the entire annotation model.  

 

The need for a conservative model is dependent on its purpose. Usually, an annotation process 

consists of many models divided into a pipeline. The first model usually weeds out some false 

positives, but still manage to hold onto as many true positives as possible (a high recall score). 

Ultimately the goal is to retain only the true positives. When moving down the pipeline the 

need for a higher precision grows, as one needs to filter away the false positives. To retrieve a 

higher precision, the threshold can be raised to only retain what the model deems as very 

certain true positives. This balance can be hard to achieve, however, as the true labels are not 

always known. Especially when new data is involved.  

 

The ROC curves for the Balanced random forest classifier are quite similar in terms of cutoff 

for the two different datasets, with the sequential proving to be more conservative in their 

classification of genes. The respective ROC curves seen in Figures 4.4.1 and 4.4.2 show the 

tradeoffs in false positive and false negative rates for different cutoffs in all the classification 

models. When looking at the curves for the balanced random forest, the optimal cutoff was 

observed at 0.6 positive rate and 0.2 false positive rate for Figure 4.1.1 (the K-mer data). For 

the sequential data, the optimal cutoff for the Balanced random forest classifier was at 0.52 

true positive rate and around 0.13 for the false positive rate. For the sequential data this means 

they classify a positive observation as positive 52% of the time and a negative as positive 

13% of the time. In general, this means both datasets produce similar results when used in 

training. In fact, there is a 71% chance that the random forest model produced from the K-mer 

dataset will be able to distinguish between a coding and a non-coding ORF, whereas the 

sequential has a 72,7% chance. The classification metrics presented here also coincide with 

the results for E. coli sakai in Tables 4.4.3 and 4.4.5. 

 

Table 4.4.4 and 4.4.5 show metrics for respectively the K-mer and sequential dataset run for 

each genome using a Balanced random forest classifier with tuning. As stated in 5.1 the 

different strains of E. coli differ in number of sequences available. Thus, some annotations 

present in the O157 sakai genome may not be as plausible. The K-12 strain performs better 
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than the sakai strain in the final modelling for both the sequential and the K-mer dataset, on 

all metrics. On the other hand, for the Prodigal ORF comparison, the sakai data had the 

highest precision and recall. Classification based purely on upstream data may prove to be a 

better fit for the K-12 genome than for the sakai, since the Prodigal results are based on more 

than only the upstream sequence of each start codon. 

 

The models trained and presented in Tables 4.4.4 and 4.4.5 all had a big false positive rate. 

The tables showed the results from a Balanced random forest classifier for all genomes 

trained on K-mer and sequential data. The precision metric returned yielded a minimum value 

of 0.1 and 0.11 for C. burnetii for the K-mer and sequential datasets respectively. The 

maximum precision was 0.40 and 0.59 both for L. monocytogenes. The results for L. 

monocytogenes are highly uncertain given that the genome has a fraction of uncertain protein 

count at 0.35, it is in other words not possible to decide if the score is close to the truth. In 

general, a low precision is an indication of the machine learning model easily overpredicting 

not-genes as genes. In an annotation process it is more desirable to have many false positives 

than negatives, as software usually have many more steps in the annotation process than just a 

single model. The issue with a large false positive rate, may, in other words not a problem if 

the model trained in this thesis were the first of many models. 

 

In Table 4.4.2B and 4.4.3B the classifiers that gave the highest MCC score by genome was a 

mix between logistic regression and Balanced random forest classifier. For the genomes that 

had the logistic regression classifier as the highest MCC score, their other metrics are quite 

balanced. The genomes in question are B. subtilis, C. jejuni and C. vibriodes for the K-mer 

data and B. subtilis and C. jejuni for the sequential data. The precision for the genomes is 

much higher than for the Balanced random forest classifier, indicating a conservative model. 

Moreover, the logistic regression models had much better results for the sequential dataset 

and with no reduction of observations (see table 4.4.3 panel B), in contrast to the K-mer 

dataset that performed best when the minimum sum needed in a feature was at around 500 

(table 4.4.2 panel B).  

 

The sequential data proved to be faster and give better results, however patterns were easier 

seen with the K-mer dataset and may prove to be more valuable-information wise. The 

sequential data contains information about the order of bases upstream of a given ORF. When 

looking at sequences it is often more desirable to look at subsequences than positions. The 
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reasoning behind this is that it is easier for an individual to retrieve the context from a given 

K-mer rather than the positioning of the bases. Further on, most of already existing theory has 

evolved around substrings of genomes, which is what a K-mer fundamentally is.  

 

The MCC score is the preferred metric for the data given the big imbalance in both datasets 

and should therefore be the deciding metric for the “best” classifier tested. When looking at 

the relative MCC scores for the four selected genomes for each dataset (see Table 4.4.2 and 

4.4.3), the dataset with the highest MCC score was the sequential one. Table 4.4.4 panel B 

had two separate models that performed well, the Balanced random forest classifier for E. coli 

sakai and C. vibriodes and the logistic regression model for C. jejuni and B. subtilis. This 

division of classifier may initially seem like a stalemate, however given the preferences for 

annotation already stated in this subchapter, the model with the combination of high precision 

and high MCC score should be stated as the better model. A general conclusion can be made 

that a logistic regression model with a sequential dataset performed best out of the classifiers 

and datasets tested. This statement is made with regards to the method tested in this thesis 

with the selected parameters and processing. 

 

When comparing the results from both datasets with prodigal all metrics fall below the 

baseline. However, in terms of recall the average recall score for Prodigal in terms of ORF 

signature is 0.83. For the Balanced random forest classifier run on all genomes the average is 

for K-mer and sequential data respectively at 0.74 and 0.77. This means a difference of 0.09 

and 0.06 in terms of recall. Seeing as Prodigal takes more than just upstream data into 

account, the results are quite good. Considering precision score, however, the prodigal data 

yielded a precision of 0.82, whereas the K-mer model had a mean of 0.22 and the sequential 

0.3. The sequential dataset proves to yield a higher precision indicating that the order of 

sequences yields more distinguishable information than the count of substrings. However, this 

difference is negligible as the precision proves to be quite low, specifically when considering 

the uncertainness in target labelling. In summary, the upstream sequence data alone is not 

enough to discern between coding and non-coding ORFs.   
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5.4 Motif importances in K-mer data 

The K-mer data consists of several substrings, each substring being a feature in the dataset. 

The features present in the K-mer dataset may or may not be important for discerning between 

coding and non-coding ORFs. This subsection will discuss the results from both the Chi-

squared test and the random forest feature permutation. 

 

Both the feature selection method and the chi square method attempted (Table 4.3.1 and 

Figure 4.4.3) overlapped each other. The most important feature was deemed to be the 4mer 

AGGA for the chi-squared test and the feature length for random forest feature permutation. 

Continuous variables are not possible to assess in a chi-squared test and thus we assume TAA 

to be the most important categorical feature for comparison. The purine rich sequences 

(consisting of A and G) appear to be the most prominent K-mers from the feature importance 

visualization, as well as the Chi-square test. This corresponds with the upstream ribosomal 

binding site regions for CDS’. However, the feature selection does not tell us what target 

variable has the most or least amount of purine rich sequences. They only state that those K-

mers are an important variable for differing between the targets (a test of homogeneity). The 

chi-square did show enriched K-mers, but that only means they appear a little more than 

random. It does not mean there even is a signal one can use for classification. 

 

The TAA (a stop codon) is prominent in the classification of gene for the Random Forest 

Feature Permutation, along with the motifs typically found in the Ribosomal Binding site. The 

3-mer may be present in operon-gene-clusters, although the importance does not seem to 

account for much (around 0.4%) when compared to length of an ORF (around 2.5%). Another 

possibility for the TAA 3-mer is an importance as part of the promoter region. The sigma70 

holoenzyme attaches itself to the sequence seen in (1). The latter part being around 10 bases 

upstream of a CDS and containing TAA. Table 4.3.1 shows significant partial sequences from 

the sigma70 promoter sequence (ATAA), which coincides with underlying theory.  

  



 

62 

 

5.5 Limitations and further research 

There are many directions to take when it comes to genome annotation. In this thesis the focus 

was to apply theoretical knowledge concerning the start position of a gene and see if it 

coincided in general for a machine learning application. Due to constraints only one aspect 

surrounding the prokaryotic genome has been investigated, namely aspects surrounding the 

upstream sequence data. In this section some limitations and suggestions are made for further 

research.  

 

The first, most obvious limitation is the existence of operons. Operons prove to be difficult as 

they consist of gene clusters with one promoter upstream of the first gene in the cluster. This 

limits the upstream machine learning classification to genes with little to no operons, which is 

not a case in the prokaryotic genome. In fact, there is a possibility that many of the false 

negative classifications are genes in an operon cluster. A possible way to counterbalance these 

false negatives is to account for distance between LORFs in the final training dataset. A small 

distance meaning a higher chance of being in a cluster. Another possibility would be to make 

an in-depth analysis of the operon’s functions and see if there is a general pattern one can use 

to classify such operons.  

 

Ideally a generalized model trained on all coding sequences present in different genomes 

would have been a better fit for a future annotation model. The modelling results presented in 

this thesis are made genome wise to account for the variation between them. However, not all 

sequences have known species. When sequencing a metagenome, the species information is 

lost. This information loss would make the models redundant. A model that could be able to 

classify sequences without species definition would, in a metagenomic case, be beneficial.  It 

would be advantageous to map the difference in performance between a generalized model 

trained on all 15 genomes against a model trained on only one genome.  

 

Another limitation is the high dependency on the RefSeq annotations for the training datasets. 

As mentioned in the Section 5.1, the RefSeq annotation pipeline is still a work in progress and 

the data that the thesis surrounds itself around is not error-free. The fact that the annotation 

data contains errors can have led to false conclusions for the machine learning models. A 

wrong target label may lead to the supervised model making false assumptions, and if there 

are enough, lead to an entirely useless model.  For instance the LDA classifier is shown to be 
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typically inconsistent in the present of label noise unless the prior probabilities of each class 

are equal (Cannings, 2019).  

 

Some label noise could have been removed by eliminating the uncertain protein annotations. 

This would have led to a total removal of 16 344 observations of the positive class (see table 

4.4.1). This corresponds to a loss of 29,4% coding sequences. For the dataset with an ORF 

filter length of 90, the mean number of ORFs per LORF is 16. By removing the 16 344 

observations an average of 263 944 non-coding observations would have been removed as 

well. This would have resulted in a dataset of 33 882 coding ORFs and 628 866 non-coding 

ORFs. The relation would have been the same, but the information present in the sequences 

may have been less noisy and more informative.  

 

The removal of LORFs that do not match any LORFs in the RefSeq annotation data may have 

left out some true positive variation. Some may consider these “alternative LORFs” to be the 

truest of negative classes in a binary classification, as no open reading frame is said to be a 

coding sequence. In this thesis the LORFs that did not match the RefSeq LORFs were filtered 

away, leaving behind only the LORFs already present in the reference data. These true 

negatives may have contributed by explaining some variance in the dataset, but it is not 

certain. The initial problem statement regarding inclusion of the alternative LORFs was the 

balancing of skewness. The balanced random forest classifier is an ideal classifier in that 

sense as it randomly downsamples the majority class to be of same size as the minority and 

can counter this original problem. An idea is to train an unfiltered ORF dataset with the 

dataset presented in this thesis to see if the model can discern better between coding ORFs 

and non-coding ORFs. ORFs here being all the alternative start and end positions present in a 

genome.  

 

Small proteins have been left out from the model training. By lowering the minimum length 

of an ORF the false positive rate increases rapidly at the cost of some information loss. In 

Table 4.2.1 the number of false positives was found to be at 990 000 whereas the true 

positives were found to be 50 226. The total true positive rate when comparing this to the 

reference was at 55 538, meaning a loss of 5312 observations of the positive class in the 

training dataset. These small proteins are typically hidden or excluded in genome annotations 

due to the large number of false positive prediction that occurs with an increased search 

space. 
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An ideal expansion to the training dataset would be to introduce small genes shorter than 90 

bp. Smaller protein products are being recognized and can encode functional polypeptides or 

act as cis-translational regulators (Khitun et al., 2019). These small open reading frames 

(smORFs) have been overlooked in this thesis due to the issue of an imbalanced dataset in the 

training data. It is, however, a possibility to investigate the mapping of mRNA data to the 

genome to include these smORFs in the dataset (Weaver et al., 2019).  

 

An idea in terms of future work would be to implement the model presented here as part of a 

pipeline. Given the high recall and false positives present it would be ideal to utilize the 

upstream sequence model paired with a Balanced random forest classifier as the first initial 

step of an annotation process. Ideally, the model could lower its threshold to become more 

liberal in its classification. Increasing the search space and making sure actual genes are 

moved further down the pipeline while false positives are slowly chipped away using more 

conservative methods from new datasets.  
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6. Conclusion 

The initial aim of the thesis was to “investigate if sequences upstream of a start codon in an 

ORF is informative enough to discern between coding and non-coding ORFs”. Here two 

datasets with different attributes have been created, namely a K-mer and a sequential dataset. 

These datasets show many similarities in terms of results, and they both performed worse than 

Prodigal, our standard annotation software. The reasoning behind this is quite simple; 

Prodigal looks for more than just upstream sequences. As far as upstream sequences are 

concerned, the models managed to pull all the information available from both datasets, with 

very limited value. However, there is still much more information surrounding genes to base 

annotation around. 

 

Experimentally, a general understanding in biology has been uncovered. However, evolution 

creates a larger scope of possibilities that may not always be as easy to model for the current 

data. Based on the results, there appears to be a pattern pointing to specific motifs in the 

dataset, but the classification results only manage to scrape the surface. An ideal step forward 

is to expand into a pipeline so that the complex false negative classifications may be 

explained.  
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Attachments 

Attachment 1 

Complete table with metrics and best parameters for the four selected genomes after running 

of four different classifiers with the K-mer dataset 

Precision Recall F1 MCC Genome Classifier Tuning Reduction 

        

0.31 0.93 0.46 0.49 
Bacillus 

subtilis 
imblearn  ‘classifier__n_estimators’: 500   0.0 

0.61 0.48 0.54 0.51 
Bacillus 

subtilis 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=0.01), 

‘classifier__C’: 0.01   
0.0 

0.66 0.16 0.26 0.31 
Bacillus 

subtilis 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10, p=1), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

1   

0.0 

0.66 0.16 0.26 0.31 
Bacillus 

subtilis 
lda+pls  0.0 

0.31 0.93 0.47 0.49 
Bacillus 

subtilis 
imblearn  ‘classifier__n_estimators’: 300   500.0 

0.68 0.48 0.56 0.55 
Bacillus 

subtilis 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=0.01), 

‘classifier__C’: 0.01   
500.0 

0.7 0.2 0.31 0.35 
Bacillus 

subtilis 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10, p=1), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

1   

500.0 

0.7 0.2 0.31 0.35 
Bacillus 

subtilis 
lda+pls  500.0 

0.31 0.92 0.46 0.49 
Bacillus 

subtilis 
imblearn  ‘classifier__n_estimators’: 300   1000.0 

0.68 0.48 0.56 0.55 
Bacillus 

subtilis 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=0.1), 

‘classifier__C’: 0.1   
1000.0 

0.69 0.2 0.31 0.35 
Bacillus 

subtilis 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10, p=1), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

1   

1000.0 

0.69 0.2 0.31 0.35 
Bacillus 

subtilis 
lda+pls  1000.0 

0.3 0.93 0.46 0.48 
Bacillus 

subtilis 
imblearn  ‘classifier__n_estimators’: 300   1500.0 

0.68 0.47 0.55 0.54 
Bacillus 

subtilis 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=100.0), 

‘classifier__C’: 100.0   
1500.0 

0.65 0.19 0.29 0.33 
Bacillus 

subtilis 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10, p=1), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

1   

1500.0 

0.65 0.19 0.29 0.33 
Bacillus 

subtilis 
lda+pls  1500.0 

0.32 0.77 0.45 0.43 
Campylobacter 

jejuni 
imblearn  ‘classifier__n_estimators’: 300   0.0 

0.59 0.42 0.49 0.46 
Campylobacter 

jejuni 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=0.01), 

‘classifier__C’: 0.01   
0.0 

0.49 0.43 0.46 0.41 
Campylobacter 

jejuni 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10, p=1), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

1   

0.0 
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0.49 0.43 0.46 0.41 
Campylobacter 

jejuni 
lda+pls  0.0 

0.31 0.76 0.44 0.42 
Campylobacter 

jejuni 
imblearn  ‘classifier__n_estimators’: 900   500.0 

0.73 0.41 0.52 0.52 
Campylobacter 

jejuni 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=0.01), 

‘classifier__C’: 0.01   
500.0 

0.71 0.25 0.38 0.4 
Campylobacter 

jejuni 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

2   

500.0 

0.71 0.25 0.38 0.4 
Campylobacter 

jejuni 
lda+pls  500.0 

0.32 0.76 0.45 0.42 
Campylobacter 

jejuni 
imblearn  ‘classifier__n_estimators’: 900   1000.0 

0.72 0.44 0.55 0.53 
Campylobacter 

jejuni 

logistic 

regression 

 ‘classifier’: LogisticRegression(), 

‘classifier__C’: 1.0   
1000.0 

0.72 0.2 0.31 0.35 
Campylobacter 

jejuni 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10, p=1), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

1   

1000.0 

0.72 0.2 0.31 0.35 
Campylobacter 

jejuni 
lda+pls  1000.0 

0.32 0.78 0.45 0.43 
Campylobacter 

jejuni 
imblearn  ‘classifier__n_estimators’: 300   1500.0 

0.71 0.43 0.54 0.52 
Campylobacter 

jejuni 

logistic 

regression 

 ‘classifier’: LogisticRegression(), 

‘classifier__C’: 1.0   
1500.0 

0.74 0.19 0.31 0.36 
Campylobacter 

jejuni 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10, p=1), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

1   

1500.0 

0.74 0.19 0.31 0.36 
Campylobacter 

jejuni 
lda+pls  1500.0 

0.23 0.79 0.35 0.36 
Caulobacter 

vibriodes 
imblearn  ‘classifier__n_estimators’: 500   0.0 

0.48 0.3 0.37 0.35 
Caulobacter 

vibriodes 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=0.01), 

‘classifier__C’: 0.01   
0.0 

0.45 0.03 0.05 0.1 
Caulobacter 

vibriodes 
knn 

 ‘classifier’: KNeighborsClassifier(), 

‘classifier__n_neighbors’: 5, ‘classifier__p’: 2   
0.0 

0.45 0.03 0.05 0.1 
Caulobacter 

vibriodes 
lda+pls  0.0 

0.22 0.78 0.34 0.34 
Caulobacter 

vibriodes 
imblearn  ‘classifier__n_estimators’: 300   500.0 

0.6 0.27 0.37 0.37 
Caulobacter 

vibriodes 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=0.01), 

‘classifier__C’: 0.01   
500.0 

0.61 0.06 0.12 0.19 
Caulobacter 

vibriodes 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10, p=1), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

1   

500.0 

0.61 0.06 0.12 0.19 
Caulobacter 

vibriodes 
lda+pls  500.0 

0.21 0.78 0.34 0.34 
Caulobacter 

vibriodes 
imblearn  ‘classifier__n_estimators’: 500   1000.0 

0.6 0.25 0.36 0.37 
Caulobacter 

vibriodes 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=0.01), 

‘classifier__C’: 0.01   
1000.0 

0.6 0.09 0.16 0.22 
Caulobacter 

vibriodes 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10, p=1), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

1   

1000.0 

0.6 0.09 0.16 0.22 
Caulobacter 

vibriodes 
lda+pls  1000.0 
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0.21 0.77 0.33 0.34 
Caulobacter 

vibriodes 
imblearn  ‘classifier__n_estimators’: 300   1500.0 

0.63 0.23 0.34 0.36 
Caulobacter 

vibriodes 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=0.01), 

‘classifier__C’: 0.01   
1500.0 

0.62 0.07 0.12 0.19 
Caulobacter 

vibriodes 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

2   

1500.0 

0.62 0.07 0.12 0.19 
Caulobacter 

vibriodes 
lda+pls  1500.0 

0.13 0.6 0.22 0.19 
E.coli O156H7 

sakai 
imblearn  ‘classifier__n_estimators’: 900   0.0 

0.34 0.08 0.13 0.14 
E.coli O156H7 

sakai 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=0.01), 

‘classifier__C’: 0.01   
0.0 

0.33 0.0 0.0 0.01 
E.coli O156H7 

sakai 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10, p=1), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

1   

0.0 

0.33 0.0 0.0 0.01 
E.coli O156H7 

sakai 
lda+pls  0.0 

0.13 0.59 0.21 0.18 
E.coli O156H7 

sakai 
imblearn  ‘classifier__n_estimators’: 600   500.0 

0.4 0.05 0.09 0.13 
E.coli O156H7 

sakai 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=0.01), 

‘classifier__C’: 0.01   
500.0 

0.45 0.0 0.01 0.04 
E.coli O156H7 

sakai 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

2   

500.0 

0.45 0.0 0.01 0.04 
E.coli O156H7 

sakai 
lda+pls 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

2   

500.0 

0.13 0.59 0.22 0.19 
E.coli O156H7 

sakai 
imblearn  ‘classifier__n_estimators’: 600   1000.0 

0.45 0.04 0.08 0.13 
E.coli O156H7 

sakai 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=0.01), 

‘classifier__C’: 0.01   
1000.0 

0.29 0.0 0.01 0.03 
E.coli O156H7 

sakai 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10, p=1), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

1   

1000.0 

0.29 0.0 0.01 0.03 
E.coli O156H7 

sakai 
lda+pls  1000.0 

0.13 0.58 0.22 0.18 
E.coli O156H7 

sakai 
imblearn  ‘classifier__n_estimators’: 900   1500.0 

0.48 0.05 0.09 0.14 
E.coli O156H7 

sakai 

logistic 

regression 

 ‘classifier’: LogisticRegression(C=0.1), 

‘classifier__C’: 0.1   
1500.0 

0.29 0.0 0.01 0.03 
E.coli O156H7 

sakai 
knn 

 ‘classifier’: 

KNeighborsClassifier(n_neighbors=10, p=1), 

‘classifier__n_neighbors’: 10, ‘classifier__p’: 

1   

1500.0 

0.29 0.0 0.01 0.03 
E.coli O156H7 

sakai 
lda+pls  1500.0 
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Attachment 2 
Complete table with metrics and parameters after running of the four different classifiers on 

the four selected genomes with the sequential dataset 

 

Precision Recall F1 MCC Genome Classifier Tuning Reduction 

0.48 0.92 0.63 0.64 Bacillus subtilis imblearn  ‘classifier__n_estimators’: 800   0.0 

0.48 0.92 0.63 0.64 Bacillus subtilis imblearn  ‘classifier__n_estimators’: 700   500.0 

0.48 0.92 0.63 0.64 Bacillus subtilis imblearn  ‘classifier__n_estimators’: 800   1000.0 

0.48 0.92 0.63 0.63 Bacillus subtilis imblearn  ‘classifier__n_estimators’: 700   1500.0 

0.51 0.85 0.64 0.62 
Campylobacter 
jejuni 

imblearn  ‘classifier__n_estimators’: 700   1000.0 

0.5 0.84 0.63 0.61 
Campylobacter 
jejuni 

imblearn  ‘classifier__n_estimators’: 600   0.0 

0.5 0.84 0.63 0.61 
Campylobacter 
jejuni 

imblearn  ‘classifier__n_estimators’: 500   500.0 

0.5 0.84 0.62 0.61 
Campylobacter 
jejuni 

imblearn  ‘classifier__n_estimators’: 500   1500.0 

0.31 0.9 0.46 0.48 
Caulobacter 
vibriodes 

imblearn  ‘classifier__n_estimators’: 600   0.0 

0.31 0.9 0.46 0.48 
Caulobacter 
vibriodes 

imblearn  ‘classifier__n_estimators’: 500   1000.0 

0.31 0.89 0.46 0.48 
Caulobacter 
vibriodes 

imblearn  ‘classifier__n_estimators’: 400   500.0 

0.3 0.89 0.45 0.47 
Caulobacter 
vibriodes 

imblearn  ‘classifier__n_estimators’: 500   1500.0 

0.15 0.58 0.24 0.22 
E. coli 
O156H7_sakai 

imblearn  ‘classifier__n_estimators’: 900   1000.0 

0.15 0.58 0.24 0.21 
E. coli 
O156H7_sakai 

imblearn  ‘classifier__n_estimators’: 800   1500.0 

0.15 0.57 0.24 0.21 
E. coli 
O156H7_sakai 

imblearn  ‘classifier__n_estimators’: 800   0.0 

0.15 0.57 0.24 0.21 
E. coli 
O156H7_sakai 

imblearn  ‘classifier__n_estimators’: 900   500.0 

0.78 0.46 0.58 0.58 Bacillus subtilis knn 
 ‘classifier’: KNeighborsClassifier(p=1), 
‘classifier__n_neighbors’: 5, 
‘classifier__p’: 1   

0.0 

0.78 0.46 0.58 0.58 Bacillus subtilis knn 
 ‘classifier’: KNeighborsClassifier(p=1), 
‘classifier__n_neighbors’: 5, 
‘classifier__p’: 1   

500.0 

0.78 0.46 0.58 0.58 Bacillus subtilis knn 
 ‘classifier’: KNeighborsClassifier(p=1), 
‘classifier__n_neighbors’: 5, 
‘classifier__p’: 1   

1000.0 

0.78 0.46 0.58 0.58 Bacillus subtilis knn 
 ‘classifier’: KNeighborsClassifier(p=1), 
‘classifier__n_neighbors’: 5, 
‘classifier__p’: 1   

1500.0 

0.88 0.49 0.63 0.64 
Campylobacter 
jejuni 

knn 

 ‘classifier’: 
KNeighborsClassifier(n_neighbors=10, 
p=1), ‘classifier__n_neighbors’: 10, 
‘classifier__p’: 1   

0.0 

0.88 0.49 0.63 0.64 
Campylobacter 
jejuni 

knn 

 ‘classifier’: 
KNeighborsClassifier(n_neighbors=10, 
p=1), ‘classifier__n_neighbors’: 10, 
‘classifier__p’: 1   

500.0 

0.88 0.49 0.63 0.64 
Campylobacter 
jejuni 

knn 
 ‘classifier’: 
KNeighborsClassifier(n_neighbors=10, 

1000.0 
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p=1), ‘classifier__n_neighbors’: 10, 
‘classifier__p’: 1   

0.9 0.48 0.62 0.63 
Campylobacter 
jejuni 

knn 

 ‘classifier’: 
KNeighborsClassifier(n_neighbors=10, 
p=1), ‘classifier__n_neighbors’: 10, 
‘classifier__p’: 1   

1500.0 

0.73 0.1 0.17 0.25 
Caulobacter 
vibriodes 

knn 
 ‘classifier’: KNeighborsClassifier(p=1), 
‘classifier__n_neighbors’: 5, 
‘classifier__p’: 1   

0.0 

0.73 0.1 0.17 0.25 
Caulobacter 
vibriodes 

knn 
 ‘classifier’: KNeighborsClassifier(p=1), 
‘classifier__n_neighbors’: 5, 
‘classifier__p’: 1   

500.0 

0.73 0.1 0.17 0.25 
Caulobacter 
vibriodes 

knn 
 ‘classifier’: KNeighborsClassifier(p=1), 
‘classifier__n_neighbors’: 5, 
‘classifier__p’: 1   

1000.0 

0.73 0.1 0.17 0.25 
Caulobacter 
vibriodes 

knn 
 ‘classifier’: KNeighborsClassifier(p=1), 
‘classifier__n_neighbors’: 5, 
‘classifier__p’: 1   

1500.0 

0.35 0.01 0.01 0.04 
E. coli 
O156H7_sakai 

knn 

 ‘classifier’: 
KNeighborsClassifier(n_neighbors=10), 
‘classifier__n_neighbors’: 10, 
‘classifier__p’: 2   

0.0 

0.35 0.01 0.01 0.04 
E. coli 
O156H7_sakai 

knn 

 ‘classifier’: 
KNeighborsClassifier(n_neighbors=10), 
‘classifier__n_neighbors’: 10, 
‘classifier__p’: 2   

500.0 

0.35 0.01 0.01 0.04 
E. coli 
O156H7_sakai 

knn 

 ‘classifier’: 
KNeighborsClassifier(n_neighbors=10), 
‘classifier__n_neighbors’: 10, 
‘classifier__p’: 2   

1000.0 

0.35 0.01 0.01 0.04 
E. coli 
O156H7_sakai 

knn 

 ‘classifier’: 
KNeighborsClassifier(n_neighbors=10), 
‘classifier__n_neighbors’: 10, 
‘classifier__p’: 2   

1500.0 

0.74 0.7 0.72 0.7 Bacillus subtilis lda+pls  0.0 

0.74 0.7 0.72 0.7 Bacillus subtilis lda+pls  500.0 

0.74 0.7 0.72 0.7 Bacillus subtilis lda+pls  1000.0 

0.74 0.7 0.72 0.7 Bacillus subtilis lda+pls  1500.0 

0.76 0.68 0.72 0.70 
Campylobacter 
jejuni 

lda+pls  0.0 

0.76 0.68 0.72 0.70 
Campylobacter 
jejuni 

lda+pls  500.0 

0.76 0.68 0.72 0.70 
Campylobacter 
jejuni 

lda+pls  1000.0 

0.76 0.68 0.72 0.70 
Campylobacter 
jejuni 

lda+pls  1500.0 

0.51 0.53 0.52 0.48 
Caulobacter 
vibriodes 

lda+pls  0.0 

0.51 0.53 0.52 0.48 
Caulobacter 
vibriodes 

lda+pls  500.0 

0.51 0.53 0.52 0.48 
Caulobacter 
vibriodes 

lda+pls  1000.0 

0.51 0.53 0.52 0.48 
Caulobacter 
vibriodes 

lda+pls  1500.0 

0.54 0.08 0.14 0.19 
E. coli 
O156H7_sakai 

lda+pls  0.0 
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0.54 0.08 0.14 0.19 
E. coli 
O156H7_sakai 

lda+pls  500.0 

0.54 0.08 0.14 0.19 
E. coli 
O156H7_sakai 

lda+pls  1000.0 

0.54 0.08 0.14 0.19 
E. coli 
O156H7_sakai 

lda+pls  1500.0 

0.83 0.68 0.75 0.73 Bacillus subtilis 
logistic 
regression 

 ‘classifier’: LogisticRegression(C=0.1), 
‘classifier__C’: 0.1   

0.0 

0.83 0.68 0.75 0.73 Bacillus subtilis 
logistic 
regression 

 ‘classifier’: LogisticRegression(C=0.1), 
‘classifier__C’: 0.1   

500.0 

0.83 0.68 0.75 0.73 Bacillus subtilis 
logistic 
regression 

 ‘classifier’: LogisticRegression(C=0.1), 
‘classifier__C’: 0.1   

1000.0 

0.83 0.68 0.75 0.73 Bacillus subtilis 
logistic 
regression 

 ‘classifier’: LogisticRegression(C=0.1), 
‘classifier__C’: 0.1   

1500.0 

0.79 0.63 0.7 0.68 
Campylobacter 
jejuni 

logistic 
regression 

 ‘classifier’: LogisticRegression(), 
‘classifier__C’: 1.0   

0.0 

0.79 0.63 0.7 0.68 
Campylobacter 
jejuni 

logistic 
regression 

 ‘classifier’: LogisticRegression(), 
‘classifier__C’: 1.0   

500.0 

0.79 0.63 0.7 0.68 
Campylobacter 
jejuni 

logistic 
regression 

 ‘classifier’: LogisticRegression(), 
‘classifier__C’: 1.0   

1000.0 

0.8 0.63 0.7 0.68 
Campylobacter 
jejuni 

logistic 
regression 

 ‘classifier’: LogisticRegression(C=0.1), 
‘classifier__C’: 0.1   

1500.0 

0.65 0.39 0.49 0.48 
Caulobacter 
vibriodes 

logistic 
regression 

 ‘classifier’: LogisticRegression(), 
‘classifier__C’: 1.0   

0.0 

0.65 0.39 0.49 0.48 
Caulobacter 
vibriodes 

logistic 
regression 

 ‘classifier’: LogisticRegression(), 
‘classifier__C’: 1.0   

500.0 

0.65 0.39 0.49 0.48 
Caulobacter 
vibriodes 

logistic 
regression 

 ‘classifier’: LogisticRegression(), 
‘classifier__C’: 1.0   

1000.0 

0.65 0.39 0.49 0.48 
Caulobacter 
vibriodes 

logistic 
regression 

 ‘classifier’: LogisticRegression(), 
‘classifier__C’: 1.0   

1500.0 

0.42 0.02 0.04 0.08 
E. coli 
O156H7_sakai 

logistic 
regression 

 ‘classifier’: LogisticRegression(C=0.1), 
‘classifier__C’: 0.1   

0.0 

0.42 0.02 0.04 0.08 
E. coli 
O156H7_sakai 

logistic 
regression 

 ‘classifier’: LogisticRegression(C=0.1), 
‘classifier__C’: 0.1   

500.0 

0.42 0.02 0.04 0.08 
E. coli 
O156H7_sakai 

logistic 
regression 

 ‘classifier’: LogisticRegression(C=0.1), 
‘classifier__C’: 0.1   

1000.0 

0.42 0.02 0.04 0.08 
E. coli 
O156H7_sakai 

logistic 
regression 

 ‘classifier’: LogisticRegression(C=0.1), 
‘classifier__C’: 0.1   

1500.0 
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