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Abstract

Genome annotation is a process of identifying functional elements along a genome. By
correctly locating and finding the information stored within a sequence, knowledge about
structural features and functional roles can be revealed. With the number ofcgsque

doubling approximately every 18 months, there is a severe need for automatic annotation of
genomes. Today there are many different annotation software tools available, however they

produce far from perfect results.

Here a new project, DeepGene, iegented. Using data from the RefSeq prokaryotic database
we have started an effort to improve on the prokaryotic genome annotation process.

This thesis presents the initial efforts of said improvement with a focus on discerning between
coding and noitodng sequences using upstream sequence data from open reading frames.
Using the 15 prokaryotic genomes available in the RefSeq database, upstream data was
retrieved and processed into tdatasets, andere then trained using several popular
classificationmodels. The performance of the models was compared with a standard
annotation tool to create a general baseline for our modemodels created from the

datasets show many similarities in termsnaftrics With the kmer data having a mean

precision at @2 and mean recall of 047 and the sequential data having a mean precision at
0.30 and mean recall at 0. Both the datasetgerformed worse than our standard annotation
softwarewith a mean recall and precision of, respectivelg3 and B2. As far & upstream
sequences are concerned, the models managed to pull all the information available from both
datasets. The initial results gave limited information in terms of classification and motif
presence indicating that other attributes surrounding thengeishould be looked at for a
possible improvement on the annotation probldmideal step forward is to expand into a
pipeline so that the complex false negative classifications may be explained.



Sammendrag

Genomannotering er emgsess som skal identifisere funksjonelle elementer langs et genom.
Ved & finne informasjonen lagret i sakvenkan man avslare kunnskap rundt strukturelle og
funksjonelle roller. Ettersom antall sekvenser dobler rundt hver 18. maned er det et sterkt
belov for automatisk gjenkjenning av genomer. | dag er det mange tilgjengelige

annoteringsverktgy, men de produserer langt fra perfekte resultater.

Et nytt prosjekt ved navn DeepGene er her presentert. Ved hjelp av data fra RefSeq
prokaryotiske database har vi startet et forsgk pa a forbedre den prokaryotiske
annoteringsprosessdrdenne oppgaven presenteres begynnelsen pa forbedringen.
Hovedfokusevar & skille mellom kodende og ikkeodende sekvenser ved hjelp av
sekvensdata oppstrams for apne leseramiviesr a benytte seg av de 15 prokaryotiske
genomene tilgjengelig i RefSeq databasen, ble oppstremsdata hentet og prosessert til to
datasett. Disseafasettene ble videre trent ved hjelp av populeere klassifiseringsmodeller.
Ytelsen til disse modellene ble sammenlignet meslamdard annoteringsverktgy for a lage et
generelt utgangspuntt var modell. Modellene trent av datasettet viser mange #khéar

det kommer til ytelse. Kner datasettet hadde en gjennomsnittlig presisjon [2200.2
nayaktighet pa 04 Videre hadde det sekvensielle datasettet en gjennomsnittlig presisjon pa
0.30 og en ngyaktighet pa 0.77. Begge datasettene hadde darligkateresnn varstandard
annoteringsverktgy som hadde en gjennomsnittlig ngyaktighet og presisjon pa henholdsvis
0.83 og 0.82. Nar det kommer til oppstramssekvenser klarer modellene a hente ut all
informasjon tilgjengelig fra datasettene. Resultatene geehset med informasjon nar det
kommer til klassifisering og mottilstedeveerelse. Denne begrensningen indikerer at andre
attributter rundt genomet bgr undersgkes for en mulig forbedring rundt annoteringsproblemet.
Et ideelt steg videre er & utvide modek til en «pipeline» slik at komplekse falske negative

klassifiseringer kan bli forklart.
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1.Introduction

1.1Finding Genes

Prokaryotes are the most primitive and ancient form of life. They are also the most abundant

and diverse empire on earth. No other organisms are as adaptable, and they are to be observed
everywhere, even places humans cannot travel. From hydrothermathatraan reach a
WHPSHUDWXUH DV KLJK DV * WR IUR]JH@ ZDVW/HKGDQGV WK
currentdiscoveredemperature that microbial life can survive extends from+ WR .

(MartinezCano et al., 2014underlining the diversity present in the prokaryotic genome.

The Human Genome project marked a milestone within the biological world after its
completion around 20 years ai@ander et al., 2001)Not only has the project given
enormous contributions to science, it has also started a revolutionary development in the
world of bioinformatics. Today, sequencing is performed near continuously, and many

genomes (finished and unfinished) are easilylalbs.

Public databases are the medium in which genome sequences are published. The databases are
important resources in biosciences. The public access allows researchers to utilize the data in
research allowing greater innovation and information sudimgngenomes. Newer

sequencing technology has made it cheaper and more available to sequence the genome,
making it even easier to generate new data. Figure 1.1.1 illustrates the cost per raw megabase

of DNA sequence over the course of 20 years.



Cost per Raw Megabase of DNA Sequence

10,000.000
1,000.000

100000 Moore’s Law
10.000

1.000

National H Gen
Resleamhl::;ia:ne ™

genome gov/sequencingcosts

0001 © T—— " " " —— R —
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Figure 1.1.1 Sequencing cost per megabase retrieved {fdHGRI, 2022).

The amount of information does not seem to stagnate. Figure 1.1.2 illustrates the high amount
of sequencing data available in GenBank, orta@fargest DNAsequence databases in the
world. From 1982 to present data, the number of bases in GenBank has doubled

approximately every 18 montNCBI, 2022)

Sequences
10,000,000,000 Gen...
—_ WGS
100,000,000
1,000,000
10,000
0
15890 2000 2010 2020

Figure 1.1.2 The growth of the GenBank database over the past decades. Red line shows the
whole genome shotgun (WGS) projects, the blue line is GenBank seq&enaestetrieved
from (NCBI, 2022).



With the increase of high throughput sequencing, a bigger demaadtfonating the
annotation othese sequencesrequired Annotation of genomes is a mulével process that
involves prediction of protewsoding genes and other elemef#bril, 2019) A very basic,

but essential part of annotation is to locate the start and end position of the coding genes.

There are cuently many existing software tools that automates the annotation process. These
tools mainly focus on homologyased methods to classify gene prodgatsnstrong et al.,
2019; Galpen et al., 2019; Tatusova et al., 20180 issue with these types of tools is their

limitation in discovering novel genéadnders et al., 2021)

The existingannotatiortoolsalso produce far from perfect results, with several both false
positives and negativéPong et al., 2021 Some tools have sedtated error rates at around 4
6% per sequendéomsadze et al., 2018When analyzing multiple sequences at a time this
error rate can quickly increase, leading to many false annotations. With an error rate of 4%, a
prokaryotic genome with 3000 genes gives 120 errors per genome. For a single genome, this
may not seem as mhicbut if applied to many genomes, the databases can quickly be filled
with false annotations. Especially when considering the already available sequences

illustrated in figure 1.1.2.

The large part of the issue lies within the classification of costact position for the genes.
Because of overlapping Open Reading Frames some software have difficulties finding the
correct framgPalleja et al., 2008)Jsing modern mthods from Data Scientiee DeepGene

projecthas started an effort to improve on the prokaryotic genome annotation process.



1.2 Aim of study

The aim of this study is to investigate if sequences upstream of a start codon in an ORF is
informative enough to discern between coding andauaiing ORFs, and in the long run
locate the start position of a coding sequence in prokaryotic DNA.

This mearn creating and processing a dataset based on the RefSeq prokaryotic genomes and
retrieving upstream sequences from all genomes respective fasthélénal process
consisted of turning the sequence data into a numericdborach genome and train a

machine learning model.

In this thesis we will initially focus on finding the correct start position of a coding gene by
utilizing existing theory from molecular biology. Firstly, we will see how well an existing

prokaryotic genome annotation software ¢iad the correct start codon.

Afterwards we will attempt to establish a setraining datai.e., a set of genomes where we

have the most reliable information on where genes are found. We have started out with the 15
NCBI Reference genomes fprokaryotes These being the best manual annotations we have

as of today. Using the training data, we will use multiptalernclassification machine

learning models to sekthere is any information to gather from the upstream sequence data
The information being whether it is possible to recognize the start of a gene based on their

respective upstream sequence.



2.Background

2.1 The Prokaryotic Genome

In this subchapter certain molecular characteristics surrounding the prokaryotic genome will
beaddressedSpecifically, the more general existing theories surrounding upstream sequences
will be described in detail, as well as some general characteristics surrounding prokaryotic
DNA. The upstream sequences play an important part in the prokarngiabatic process,

with many elements present a few bases upstream of a start codon.

The prokaryotic genome is primarily a circular, double stranded piece of DNA. DNA consist
of four bases: Adenine, Cytosine, Guanine and Thymuméch together form the fiarmation

of the genomeThe backbone that supports the bases consists of every other phosphate and
the sugar deoxyribose. The combination of the sugar molecule, the phosphate group and a

nitrogencontaining base is called a nucleotide.

The blend of théour bases creates sequences, where some contain information. The

sequences coding for information or Coding Sequence (CDS) are partitioned into three bases

at a time. These three bases together are called a codon and codes for an amino acid. The

length ofgenomes varies but is in general a few million base pairs(lamyl et al., 2015)

The information present in the sequenaesso diverse, but many prokaryotes also share
FRPPRQ &'6 6PDOO YDULDWLRQV LQ WKH &'6 DYetORZ WKHP

retainelements ofthe same machinery that gave them life.

Processing the information from the CDS to a polypeptide ckginres multiple steps.

Firstly, the information from a CDS must be read and transcribed to a messenger information
sequence. This messenger information sequence is called the mRNA strand, and the process is
called transcription. mRNA are linear moleaulgith an open reading frame that codes for

protein sequence(s). A single stranded RNA is transcribed from double stranded DNA.

Bacterial mRNAs can have one (monocitronic) or several (polycitronic) genes. This means

that bacterial mMRNAs can have informatifmr more than one polypeptide on a sequence. The
P51%$V DUH UHDG DV WULSOHWV FRGRQV IURP  WR T RI V
always AUG (Methionine), but for some bacteria GUG and UUG have been observed

(Watson, 1965/2014)



The mRNA strand is translated into an amino acid by a process called translation. The
ribosome is amnzyme that facilitates the translation from mRNA to protein by attaching

itself on the mRNA strand. From there transporter RNAs or tRNAs (complementary to the
codon in the mRNA transcript) elongates a growing peptide chain one codon at a time inside
theribosome. When a stop codon is reached, the elongation terminates leaving behind the

finished peptide chain.

2.1.1 Promoters

Promogtrs are found upstream of a coding sequence. Their function is to facilitate the
transcription from DNA to mRNA. In the prokaryotic genome only one factor protein (sigma)
is involved in the initiation process of transcription. The sigma factors aid RNA podge to
recognize promoters. There exist multiple sigma factors, where the-gl@madhe most

common onéMejia-Almonte et al., 2020)

The promoters recogred by the sigm&0 containing holoenzyme are defined by two
hexamer sequences. Namely {88 and the.10 boxes. They are separated by spacing region
of +/- 17 nucleotides (nt). The consensus sequence for the-giginas been determined to

be consensusequence (1(Brenner, 2001)

TTGACA N17 HATAAT (1)

From the middle of thelO box to the middle of th&5 box the sequence (1) forms almost
two complete DNA helical turns. The sequences are in other words located on the same side
of the helix, and they are more easily recognized by the sigma factorhaflthBRNA

polymerase.



Table 2.1.1 Sigma factors of Escherichia coli retrieved f(Brenner, 2001)Nx indicates
any nucleotide (N) x times.

Factor Gene Consensus binding site Genes regulated

10 rpoD TTGACA N7 #ATAAT Housekeeping

P4 rpoN (ntrA) CTGGCAC#Ns A TGCA Nitrogen metabolism
£ rpoS (katF) TTGACA N2 AGTGCTATACT Stationary phase

2 rpoH (htpR) CTTGAA 14 £CCCATNT Heat shock

iy fliA TAAA N5 -5CCGATAA Flagellar proteins

£ rpoE GAACTT !N1s ACTGA Extreme heat shock
fec! fecl GGAAAT N7 8C Iron transport

The promoters of the different sigma units have different consensus seqéeocesensus
sequence iby definition the most frequent nucleotide or amino acid found at each position in
a given alignmenfWatson, 1965/2014)Examples of sigma factors presentischerichia

coli can be seen in table 2.1.1.1. These sequences are mainly conserved although some

deviations existThe sequences of binding sites iarether wordshot always he same.

2.1.2 The ribosomal binding site
The upstream of the start codasuallycontains a puringich sequence that pairs with a
complementary sequence in the 16S rRNA component of the small riboson{#&aznaik,
1999) Initiation of translation is regulated by the purmeh sequence with the consensus

1$**$** @9 7KH VHTXHQFH LV DOVR FD Gaue¢zeWMatibus KLQH 'DOJ
Shine Dalgarno sequences have been found in prokaryotic mMRNAs. Common for them is that

they lie around 10 nucleotides upstream from the AUG start cd@dmrmoFisher, n.d)

7KH S5SLERVRPDO %LQGLQJ 6LWH 5%6 LV ORFDWHG ZLWKLQ
encloses the SD sequence, start codon and a short spheév@enVVolkenborn et al.,

2020) An example of an RBS can be seen in table 2.1.Owatojo et. abrgues that the

length of the spacer enclosed in the RBS plays a role in the initiation of tran§@nartajo

et al., 2015)Another article from 2020 estimated the optimal spacer length to be at least 7 to

12 nucleotidegVolkenborn et al., 2020)T'he results were sequengependent, and not a

universal result.



5' 3'
AAAGACAGGAGGAGGGGCUUGAUGCGUAGCUACGAAU

: Start

P

16s rRNA binding
site

Figure 2.1.1 lllustration of the beginning of a typical mMRNA transcript. The 16srRNA binding
site is a complementary sequence of the 16S rRNA component of the small ribosome unit and
LV ORFDWHG XSVWUHDP RI WKH FRGLQJ VHTXHQFHVY VWDU

As for thepromotersequences, the RBS is not always the same set of sequence. In fact, they
are highly degenerated with a great variation in base composition and localization. Because of
this, any conventional similarity search methods may have a very high error rate in the
predictions(Oliveira, 2004)

2.1.3 The Operon

Some @nes in the prokaryotic genome assembleustels called operons. These genes have
the same promoter and terminator and are usually related either metabolically or functionally.
The operons are usually under the control of a single promoter. This promoter is controlled by
some regulatory elementalled the operatdhat respond to external factors such as a
substance concentratioBome operons have regulatory genes upstream of the operon that
produce repressorghis regulator can either block transcription, leading to less protein

product, or function as an activatavhen removed@Britannica, 2018)

The polymerase RNA&nzyme transcribes all the coding sequences present in the operon as a
single RNA strand. Thus, only one ribosomal binding site upstream of the first coding
sequence in the operon exists (see figure 2.1.2).



operon

promoter operator structural genes

regulatory gene |
1 transcription

MRNA | |

L L] e

protein protein protein protein
1 2 3 4

Figure 2.1.2 illustration of the operon clusters. The operon consists of regulatory genes that
either activate or repress the transcription process. The trguisfrom the operon is a
polycitronic template that when translated creates multiple proteins.

2.20penreadingframes

Proteins are encoded in open reading frames (ORF). Contained within an ORF are a span of
three nucleotides at a time between the start and stop @ddtoet al., 2012) The open

reading framestarts with a start codon (ATG, GTG or TTG) and endhk wistop codon (e.g.,
TAA, TGA or TAG). For every stojgodon in the genome there are usually many different

start codons, and it gives rise to overlaps of ORFs.

DNA is partitioned into three nucleotides (codons) and contains twardgilel strands.
Because of the nature of the DNA, there are six possible frame translations. For a coding gene

however, only one is considered open.

In an open reading frame, there can exist multiple ORFs that share the same stop codon.

These ORFs are also called nest&®FS. The ORF that is found the furthest upstream from

WKH VKDUHG VWRS FRGRQ LV GHILQHG DV WKH 3/RQJHVW 2¢
reading frame is the longest reading frame and has acethoh found upstream of the other

nested reading frames. Axample of the overlapping sequences can be seen in figure 2.2.1.



5" ATGTCAAGTTTGAGAATGTCCCAGCACGAATGTGGCCAACTTAG 3
' TACAGTTCAAACTCTTACAGGGTCGTGCTTACACCGGTTGAATC 5

Figure 2.21 illustrating a long open reading frame. Green letters are a potential START with
a shared STORred).

Because of these nested ORFs, many softteatshave issues with finding the correct start
sequence of the genes. A study made in 2008 found that genomic overlap plays an important
role in the annotation of genepecifically for weak start cods (Palleja et al., 200850me
arguethat overlapping of ORFs is a way to reduce genomgGelerat et al., 1997Pverlap
compresses the information into short sequences. However, it also makes exact prediction of
prokaryotic genes difficult. dt all ORFs are coding sequesc These alternative ORFs can

misguide some annotation software to give a false start point of a coding gene.

The correct annotation of the start codon is cruttiéd.crucial becausa correct mapping of

the start codon in an ORF reveals accuratarimétion about the proteome and can reveal
important biological functionsrhe functions can give us a more complete picture of the
organism, and in turn provide a better understanding of the organisms that exist around us. By
better understanding the mietdism of a beneficial microorganism, the knowledge can aid us

in improving its efficiency.

2.3 Sequencecharacterization - annotations

Currently there exists several different prediction softwaoésfocused on prokaryotic
genome findingOne of these tools Brodigal] agenome annotation softwatteat utilizes

many elements likstart codon usag&BS motifusage and GC frame bias for gene
prediction(Hyatt et al., 2010)3 U R G LfdcDOvh&h released was reducing false positives in

prokaryotic genome annotation.

Genomes are usually spaced into coding andaooimg regons, where the issue lies in
classification of those two. Currently the characterization of unknown sequences involves
comparing it to known genomes or protein domains. This is usually done by comparing the

sequences directly using external database$8lileST or other homology search tools.

10



Identification of homologous sequences are mainly done using sequence similarity searching.
The concept of homology is a common evolutioremgestry and is central to computational
analysis of proteins and DNA sequen(f@sarson, 2013Motifs are patterns that often

repeats itself more often than expected. However, a pattern cannot be formed before multiple

observations have been made, making homology search tools reliant on experimental data.

A separate method for annotation of genomédmding genes from scratch. This method

requires utilization of already established theories surrounding genes and transcription. Unlike
searching for homologous sequences, one can search for ORFs, or mag@Ri¢Acing data

to the genomdn many exisNLQJ VRIWZDUH KRPRORJ\ VHDUFK PHWKRG

of genes are combined.

2.4 The RefSeq reference genomes

The current sequencing data consists of many contigs and few complete genomes as the
sequencing technology is not yet fully perfected. TRBNdatabase has a wide range of
genomes available, a subgroup of this being reference genomes. The reference genomes are
assemblies annotated and updated by some submissions chosen by a curatorial staff in RefSeq
(NCBI, 2021b) RefSeq uses tailored data models and consists of a single annotation pipeline
called Prokaryotic Genome Annotati®ipeline (PGAPJHaft et al.,2018) A reference

genome is a collectioof digital nucleic acid sequens stored in a sequence database. The
annotation of these references requires the assembly of multiple databases that combines
prediction algorithms and homolodgpased methoddNCBI, 2021b) The annotation of the

genome is a lengthy process with many levels, and includes a prediction of-poatig

genes as well as other genome unks tRNAs, RNAs, pseudogenes, control regions,

repeats, mutations, and mobile eleméNSBI, 2021a)

The most recent, well used algorithms for the classification of proteins to a given gene uses
Hidden Markov Models (HMMs). The hidden Markov Model intelligently guesses the
sequence of genémsedon their different statistical properties. Each statee(for each label)
has its unique emission probabilities stating the probability that it generatesan A, C, Gor T
(Eddy, 2004)This, however, requires prieased probabilities. NCBI is therefore constantly
creating new HMMS and pipelines according to new findings in the field of genON @&,
2021b)
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In 2016 Tatusovat al.in collaboration with Georgia Tech and NCBI created a new
automated pipeline for annotation of genomes. This included aligdmasati methods of
predicting proteircoding and RNA genes, as well as other elements directly from sequence
(Tatusova et al., 2016Another update was made in 2018 by Hafal.which included a new
development of ai@rarchical evidence scheme, as well aanmgotation of RefSeq

prokaryotic genomes.

The annotation of the genomes in the prokaryotic reference genomes are not always complete,
which is why it is continuously being worked on. The algorithm searches tiemtgzd

genome sequences having start and stop codons, and the given sequence in between is then
crossreferenced in a database for protein sequence similarity. An overview of the latest

hierarchical workflow for annotation can be seen in figure 2.4.1.

For new proteins that the PGAP cannot name by any method, and proteins below 40%

identity to proteirFOXVWHUYV IDOO LQ DQ DQQRWD WMaftRtalFDOOHG 3K
2018) This annotation is a zewnnotation with no value and small credibilifybetter

annotatiorwould be hypothetical conserved protein which is an annotation that has been

predicted but has a lack of experimental evidencéGaiperin, 2001)Whereas another step

DERYH ZRXOG EH DQ DQQRWDWLRQ OLNH 3SXWDWLYH”  IROO

The pipeline crosseferences genomemeences to protein sequence databases. These
sequence databases are updated regularly with new sequences. Pfam for bestaritse
clustering on the MMseqs2 softwaidistry et al., 2021)making it heavily reliant on

experimental data.

The decreasing cost of sequencing and increasing number of reads means it is important to
automate the annotation progrebse current rate growth of sequencing data produced
doubles approximately every b8onths(NCBI, 2022) This vast availability and increase of

data leads to a big need for effective automation of m@nannotation.
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Figure 2.4.1 retrieved from (Haft et al., 2018Newestvorkflowfor structural annotation.

Computational processes are shown in blue, data is in white or gray (Haft et al., 2018). It is
LPSRUWDQW WR QRWH WKDW WKLY SLSHOLQHOBEWHFWYV 3Gl
According to(Li et al., 2021)GeneMark&2+ replaced GeneMarkS+ in PGAP November

2018.
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2.5Machine learning

With the increase of sequencing data, there is an increased need for automation of analysis.
Machine learning is a process that allows for automation of analytical model bufding.
machine learning methazhnlearn from dat and apply what they have learned to new data.

2.5.1 Classification

Classification is the process of categorizing something into a certain group based on some
characteristics. An example of classification is discerning whether a person is ill orthet. In
example we have characteristics such as tempeatdidood pressure. This is dependent on
the sickness we are dealing with. For annotation of genes, we usually discern between gene
(0) and no gene (1). This type of classification is callbahary classification Some

classifiers have continuous output, for instance a probabilistic output estimating a target
probability. Other models produce a discrete output that only indicates the predicted class.

2.5.2 Preprocessing

There are many things tmnsider before feeding a dataset into a classiftezdata fed into a
machine learning model must consist of numerical values for the model to retrieve any
information. Text and sequences cannot be fed directly into a machine learning model and
needs tde preprocessedhere are many ways to process tertneexamples aredummy

encodingandK-mercount

In dummy encoding a set of categorical variables are converted into binary variables (also
called dummy variables). Aucleotide sequence of length 2 for instance, would result in a
matrix consisting of 4 * 2 variables. The output given would be a binary output (0 or 1)
indicating at which position the nucleotide was found. If we have a list of 3 sequence
observations (AGTA, and GC) the dummy encoded matrix would appear as seen in table
2.5.1.
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Table 2.5.1 an example of dunyemycoded sequence data for the three observations AG, TA
and GC. The column names indicate the nucleotide base as well as their possibladanatio
the sequence.

Sequence A 1 A 2 C1 C2 G 1 G 2 T1 T2

AG 1 0 0 0 0 1 0 0
TA 0 1 0 0 0 0 1 0
GC 0 0 0 1 1 0 0 0

K-mer retrieval and analysis from sequences are quite common in nucleotide sequence
analysis. The frequency of-iers are often of great importance when attempting to

differentiate between certain genes according to their cbdm{lriarte et al., 2021)K-mer
frequencies can also be applied on other genomic fragments, as nucleotide composition varies

a greaddeal between genom@erry & Beiko, 2010Q)

K-mers are substrings of a string with a lerigthA sequence of lengthwill havelL- k + 1
K-mers and a total af possible Kmers where n is the numberpissible monomers (four
monomers in DNA). The total number of possibleri€rs increases with an increase of-sub
string length K). An example of different Kmers for the sequence ACTGAATCC can be seen
in table 2.5.2.

Table 2.5.2 an example ofidersequence data for the sequence ACTGAATCC. Shown here

are monomer to fivener

K K-mer

ACTGAATCC

AC, CT, TG, GA, AA AT, TC, CC

ACT, CTG, TGA, GAA, AAT, ATC, TCC
ACTG, CTGA, TGAA, GAAT, AATC, ATCC
ACTGA, CTGAA, TGAAT, GAATC, AATCC

a b~ W N

When dealing with DNA sequences anier of 6 gives rise td° different combinations or
1024 combinations. For a potential training data this means 1024 features ifroalg @re
considered. The shorter the sequence at hand, and the longemttrs Kthe more zero

sparseness will be observed. For instance;idebnucleotide count on a sequence of 30
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gives rise to 25 possible-Kers per sequence. With the number of uniqueeés at 1024, at

least 999 possibilities have a count of zero.

Highly correlated features may appear anebften redundant. For thesesea a

dimensionality reduction technique may be applied, and ultimately leads to the model running
faster. The reduction can also decrease the signalise ratioqRaschka, 2019)

For multivariate data, sometimes a features variance is in a much larger scale than another
feature in the same dataset. The features may for imskeaave been measured in different

units of measure. The element that has a larger scale may dominate other elements in the
dataset and may lead to biased prediction outcome for many machine learning methods. A
solution to the different scaling of a multiete dataset would be to scale the data prior to
modelling. A scaling techniqgue commonly used is standardization (2). This scaling would be

done columrwise.
N?
VL — @)

In (2) theX is the specific value or observatidviu ( &;is the mean of the viable and sigma
( & is the standard deviation. Calculation of a standardized value is the same as finding the z

score.

Standardization allows for comparison between different types of variables. The
standardization technique creates variables with anrokaero and a unit variance of 1
(Raschka, 2019)

Raw data is seldonptimal for training a learning algorithm. Preprocessing data is a crucial
step in any machine learning applicatlmefore moving on to the modelling part.

2.5.3 Hyperparameter optimization and cross validation
$ PDFKLQH OHDUQLQJ D GoXiRdaLfukdtiéhlthat Best\ipains Isohte damiples
that follow a grand truth. Very often, a learning algorithm produces the function through an

optimization of a training criterion with respect to a set of param@ergstra, 2010)

A hyperparameter is a parameter one can change before model traimarignable

parameters are manually set, meaning they are iterated through and compared using a certain
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metric (see Section 2.5.10 evaluation for more about meffioe)most common wayf o
performing a hyperparameter tuninghsough a grid search. A grid search is a systematic
search of all possible hyperparameters of a parameter by training and testing the machine
learning algorithm. The training and testing can be measured by crimioal on the

training set or evaluating a hetait validation set(Chicco, 2017)

Cross validation is a resampling method that randomly partitions data to test and train a
model. The data is partitioned inkdfolds where the training of a model is performed on the
k-1 partitions. The remaining partition is tested after training. The training and testing are

performedk times where the resulting metric is presented as the ofedhk runs(Arlot,
2010) See figure 2.5.1 for an illustration of a cross validation.

Training sets Test set

.

Figure 2.5.1 an illustration of a 3fold cross validation. The training data is here divided into

three sets.
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2.54 Logistic Regression

Logistic Regression is a commonly used model in statistics. This regression model estimates
the prolability of one event (out of two) hysingthe logarithm of the odds. It is one of the

most widely used algorithms for classification in the machine learning indschka,

2019) In general, it performs well on linearly separable classes. For a binary classification,

this is a linear model.

The logistic regression model is a probabilistic model for binary classificdtosmeans the
output given is a continuous variable giving a probabilistic output of how likely it is that an
observations falls under class 1. For the activation functimnl@gistic regression function)

to fall into a binary classifier, the probability is converted using a threshold function. A
common threshold is one where results below 0.5 fall into class 0 and results above 0.5 falls
into class 1.

2.55 Partial Least Squaresreduction and Linear Discriminant Analysis

Partial LeasSquares Analysis (PLS) is a multivariate dimensionality reduction(\féold,

2001) and an adaption of PLS regression methods for supervised clustering. The PLS aims to
maximize covariance between independent variables and class information. It is particularly

useful for multivariate datasets.

The featires created are referred to as principal componentsifHRCA and just

components in PL8earson, 1901)n PCA the first PCs contain as much variance as
possble, wherea PLS preserves as much covariance as possible between the original data
and its labellingRuis-Perez, 2020)

The LDA method aims to find a linear combination that can separate two or more classes. The
FRPELQDWLRQ IRXQG FRXOG WKHQ EH XVHG DV D OLQHDU F
project highdimensional data onto a ledimensional space whilst achievingaximum class
separability(Barker, 2002)

PLS is a common feature reduction tool and is often used in preprocessing data. For a two
class problem the PLS dimensionality reduction is to be preferred ove(B¥tier, 2002;
Liu, 2007) After dimension reduction using PLS one can therLs%& in the truncated

scorespace for classification.
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2.56 K-nearest neighbors

K-nearest neighbors is dubbed a lazy learning algorithm. This is because it does not learn a
discriminative function from the training data. Instead, it memorizes the traiatagset.

Based on the training data, any new point introduced to the model is assigned to a class based
on majority voting among its nearest neighb@sever, 1968) Thenumber of nearest

neighbors used is tunableor the nearest neighbor parameter this means the number (
neighbors that an observation is compared to is a manual i8pate applies to the distance
calculation where one can either choose a Minkowskinkkttan, or a Euclidian distance
calculation See figure 2.5.2 for an illustration of the difference between these distances.

Euclidean Manhattan MinkowskKi

Figure 2.5.2 illustration of the path taken for computationtbé distance between two points

for the three methods; Euclidean, Manhattan and Minkowski.

TheMinkowski can beéhoughtof as ageneralization of the Euclideamd Manhattan

distance. The distance calcutats (Euclidean and Manhattan) are part of an exponent in the
Minkowski-formula. The Minkowski distance is typically used with the exporneset at

either 1 or 2, which correspond to the Manhattand and Euclidean, respe@iabbay,

2005) The illustration of Minkowski seein Figure 2.5.2 is @ of around 1.5.

2.5.7 Decision Tree

Decisim treeis a supervised learning method used for both classification and regression
problemsThe decision trees are based on the best way to split the observations into their

target groups sed on the features given. When it is time to split a node in a decision tree,

every feature is considered before choosing the feature that causes the best separation between

the different classes, this is called the information gaientropy(Raschka, 2019)
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Decision trees start at the root node where alirtfeemation from the dataset is stored and is

from there split into branches. An illustration of a decision tree can be seen in figure 2.5.3

Each decision node represents a test on an attribute where each branch represents the outcome
of said test. Each & node represents a class label. In summary, the path from root node to

leaf node represent a set of classification rules needed to classify the observations of a dataset.

Root node
Decision Node

Decision Node Decision Node

| |
\ 2 4 A

Leaf node

Sub tree

Leaf node Leaf node

Leaf node Leaf node

Figure 2.5.3 lllustration of the topography of decision tree. Each decision tree consists of a

decision node that branch either into leaf nodes or decision nodes.

Typical hyperparameter for a decision tree classifier is max depth. &eepth is here the
max depth a tree can have. If max depth is infinity, the nodes are expanded until all leaves are

pure, that means the samples split contain only a given {akdearn, N.Y)

2.58 Random Forest

The random forest ensemble is built on creating many decisionwitesiumber of trees

being a hyperparametefor random forest, only a subset of these feaj@®svell as a

subset of samples, athosen at a time. This forces more variation to pass during training and
leads to lower correlation across trees and more diversifig@@mman, 2001)By

averagng all the trees in a random forest, the final model can discern better in the final
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feature subspace. The information about which features are most important can thus be

retrieved after ensemble.

For an imbalanced dataset the training in Random Faragte biased towards the majority
classes. A way to counterbalance this is by randomly down sample the majority class to the
same number of samples as the minority class. This forces random forest to negate any
unnecessary variation that occurs in theangj class and allows it tdiscern between the
majority and minority class potentially bett&his method of Random Forest is also called a

Balanced Random Forest.

In the random forest ensemble, the trees have split features based on informatibthgaen.
is high correlation however, one feature may be ranked highly, and the relationship may not
be fully captureddevelopers, 2062022)

2.5.9 Gaussian Naive Bayes

The gaussian naive bayes is a classification model that assumes normally distributed data. The
gaussian naive bayes tdV/ WKH WUDLQLQJ GDWD VHWVY DQG HVWLPD\
deviations for each variable according to their target label (for binary classification, label O or

1) (Webb, 2005)

When classifying a new observation, the model considers the log (base e) of the prior
probability of classification as well as the lbkelihood of variables present. The calculation
yields the posterior probability of belonging to a given c(d&issky, 1961) The lower the

log score, the less likely the observation belongs toitrenglass.

2.510 Evaluation

When training a model, the machine learning methods used usually have many different
parameters. An example can be different distance measurements. These parameters are called
tunable parameters and is adaptable to eachrigagiata. To find the best parameter, we need

to have a measure of closend&3secan create a contingency table called a-tfass

confusion matriXtable 2.5.1) This matrix shows the elements that are correctly predicted,

and which were nofhis allowsthe models trained to have a universal comparison of fit.

This is comparable not only when training the same model with different parameters, but also

for the comparison of different models
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Table 2.5.1: General confusion matrix. The classification isemiif both the predicted and

actual classes are positive or negative.

Actual
Positive Negative
Predicted Positive True Positive | False Positive
Negative False Negativd True Negative

Precision is defined as a measure of quéllly
2NA?E QBT o
|E>¢ E
Where TP is the total true positives and FP is the total false positives.

Recall is defined as a measure of quantity where the form(# is
" _ | E
4 A7?=lHH— @
|E>¢ C
Here FN is the number of false negatives and TP is true positives.

A balance between the precision and recall metric is thecbte(5). It is deemed as the
harmonic mean of precision and recall. Its values range from 0 to 1, where 1 is perfect

classification.
66 EA0O0OUEDAOORNR
) JA\
(s5?KNA LT T

When evaluating binary classification with real numbédR] a cutoff threshold is needed to

(5)

discriminate between positive and negative classificaGmmmonly, the confusion matrix is
computed for all possible cuofffs and then these matrices can be used to create a Receiver

Operating Characteristics (ROC) curve.

The Receiver Operating Characteristic or ROC curve is a plot of true postrges false
positive rates at some classification thresholds. The true positive rate is here the recall, and the

false positive rate is kspecificity (6).
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(6)

The ROC curve shows the connection betweeall and specificity for every possible @it

for a classification model. This allows a graphical overview for finding a classification
threshold suitable for the issue at h@Rdwcett, 2006)An illustration ofan ROC graph with

4 discrete classifiers can be seen in figure 2.5.4.
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Figure 2.5.4 a basic ROC graph showing 4 discrete (binary) classifiers

Classifiers on the lefhand side of an ROC graph are thoudgraoconservative. This is

because they make positive classifications with strong evidence resulting in few false positive

errors. However, it results in a low trpesitive rate as well. Classifiers on the upper right

hand side often make positive clagsifions with weak evidence, meaning they classify

nearly all positives correctly, but with highlsepositive rates. The latter are deemed as

liberal.

In figure 2.5.4 the diagonal line shows the strategy of randomly guessing a class. At the point
&MV SHUIRUPDQFH LV YLUWXDOO\ UDQGRP JXHVVL

Point C can be thought to have no information about the class, whereas any classifier that falls

C (0
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below the diagonal may be said to have useful information, bot igpplying it correctly
(Flach, 2002) %\ UHYHUVLQJ SRLQW 'YV FODVVLILFDWLRQV LW S

triangle

The area under the ROC curve or AUC measures thalitwensional area underneath the

ROCGC-curve. It ranges between the values 0 tdHe area is useful for comparison of different
classifiers, but also yields the probability that a random observdtibe positive class is

ranked higher than a randomly chosen negative ins{atardey, 1982)

The F1, recall and precision metrics only include three out of four confusion matrix categories

(TP, TN, FP). With a highly imbalanced dataset where the positive cliassisority, a

VPDOO FKDQJH LQ WKH SRVLWLYH GLUHFWLRQ PD\ VKLIW W
coefficient(7) measures the correlation of the true positive classes ¢ with the predicted labels

I:

1, 8 R 1 [EGC?2¢ B C
Tox §:1E>¢ EQIE>¢ GUIC>¢ EQIC>¢ G

[ % %

(7)

Where the worst value ¥4 and the best value is +1. Cov(c,l) is the covariance of the true
classes c and predicted labels | wherBag « 1P are the standard deviations respectively

(Chicco et al., 2021)IN is here the number of Truesyatives. In a software like prodigal,

the focus lies solely on the positive rate, and thus it is not possible to retrieve the true negative

rate making it difficult to classify its true correlation.
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3.Method

This chapter will present the steps taken from retrieval of raw data to the running of a
machine learning model. The methods described here are based on existing theories described

in Section 2.

Data analysis and wrangling was carried out using Rstuili6 @R Development Core Team,
2010) Machine learning was carried out using Sel&érn in Python 4Pedregosa, 2011)
except for PLS+LDA that was carried out using tingdapackage in Rstudio 4.1(&nipen,
2017) Some figures are made with thgplot2package in RWickham, 2016)and some

with thematplotlib package in Pytho(Hunter, 2007)

3.1 Data

The retrieval of raw data is an imperative first step towaraking a training dataset. This
section will present the gathering of annotated genomic data for use in the final training

dataset, as well as some qualitative processing.

Data was downloaded frohNCBI, 2021c) RefSeq FTP files with data containing the

genomic sequence was downloaded for each reference sequence in the (Hiahaséal),

an overview of the different genomes can be seen in 3ahle. The genomes presented will

be referred to by their respective species name. For supplicate species, the strain is attached to

separate them.
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Table3.1.1: Overview of theeference genomes from the RefSeq prokaryotic databhse
respective columns are organism name, their genomic size in megabytes, their GC base
content in percent, how many scaffolds there are in the genome, and the number of coding
sequences (CDS).

Organism Name Size(Mb) GC%  Scaffolds CDS
Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700 1.64 30.5 1 1572
Salmonella enterica subsp. enterica serovar Typhimuriunb 2. 4.95 52.2 2 4548
Staphylococcus aureus subsp. aureus NCTC 8325 2.82 32.9 1 2767
Listeria monocytogenes EG® 2.94 38 1 2867
Mycobacterium tuberculosis H37Rv 441 65.6 1 3906
Escherichia coli str. KL2 substrMG1655 4.64 50.8 1 4285
Shigella flexneri 2a str. 301 4.83 50.67 2 4313
Pseudomonas aeruginosa PAO1 6.26 66.6 1 5572
Chlamydia trachomatis D/UVB/CX 1.04 41.3 1 888

Coxiella burnetii RSA 493 2.03 42.64 2 1833
Bacillus subtilis subsp. subtilis str. 168 4.22 43.5 1 4237
Klebsiella pneumoniae subsp. pneumoniae HS11286 5.68 5714 7 5779
Caulobacter vibrioides NA1000 4.04 67.2 1 3886
Acinetobacter pittii PHEA? 3.86 38.8 1 3599
Escherichia coli 0157:H7 stSakai 5.59 50.4 3 5155

General feature formats (GFF files) were also downloaded for the 15 reference genomes. GFF
describes the genes and contains nine informative columns for coding sequences. The GFF
datawas decompressed for all genomes. Using GFFread from Microseq vegsithre 1.

annotated data was read and converted indblawith 9 columns. Information about the

columns can be seen in taBla.2.
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Table3.1.2 Information from the nine columns in any given GFF file. Description retrieved
from (Stein, 2006)

Column name Description
Seqid Name of the chromosome or scaffold
Source The software that generated the feature
Type name, contains a Sequence Ontoloc
Type .
(SO) accession number.
Start Start position of the feature
End End position of théeature
Score Floating point value.
Strand Either + (forward) or (reverse)
Indicates where the next codon begins
relative to the given CDS feature. Contain
Phase _ -
integer 0, 1, 2 where 0 indicates a codon
beginning on the first nucleotide.
_ A list of feature attributes, among them a
Attributes

string of protein information

The columns Start, End, Seqid, Type and Attributes were selected for future use. Attributes
were then filtered so that only the protein product remained listed asga $timfinal table

was dubbed the reference GFF file and would be the reference for all coding sequences
present in all genomes. For it to be comparable gemwise another column was added,

namely the genome column. This column reveals which rows belongsich genomes.

All the GFF files downloaded from RefSeq consists of 9 variables anchmedotal of
55538 observations, each observation being details about a protein product from a given

reference genome.

After importing and sorting of the tableounting of uncertain proteins was implemeniét
counting was performed to assess the quality of the rawldiatartain proteins are here
defined as all thebservations with the word¥utative’, $hypothetical, and $hypothetical

conserved attachedo their attribute column
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3.2 Comparison with a gene prediction software

It was desirable to compare the RefSeq annotations with Prodigal predictions of the reference
JHQRPHV 7KLV FRPSDULVRQ ZDV PDGH WR loCaingth& UDWH D
correct starcodon. After using the genome fasta files for prodigal prediction, a common

signature for each referengenome was created. The signature consisted of segliznce
endposition for the gene, and strand type. These signaturestiaar compared to the
referenceannotations using the precision and recall metrics. The comparison was made

genomewise.

After the first comparison, an inquiry was made to compare the premhgattation and
referenceannotation with a signature havingtb the start and stop location. The same

metrics as for the signature containing Seqid, strand and end was used (precision and recall).
A figure showcasing the two different signatures and what they illustrate is showcased in
figure 3.2.1.
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SeqlD: NC_016603.1
Strand type:

Start End

79 586

Signature LORF: SeqlD + End + Strand type
NC_016603.1586

Signature ORF: SeqlD + Start + End + Strand type

1. NC_016603.179586
2. NC_016603.1109586
3. NC_016603.1 586

Figure 3.21 illustrates signatures used for similarity measurements for a positive strand. The
LORF signature consists of 3 different concatenated attributes and the ORF signature
consists of 4 different aiibutes. The red font is an indication for end position, black is
sequence ID and brown is strand type. The different start positions contain differrent colors
to separate between them.

To compare the ORF mapping with the prodigal output, the prodigafi@&ERvere further
filtered to only include the LORF predictions that match the reference LORF. The attributes
column in the GFF file contains information about whether an RBS maotif has been found
upstream of the potential CDS. It was desirable to conthareumber of ORFs that had an

RBS motif, both coding and nesoding, in the same LORF as a reference CDS.

3.3Modelling

Usinginformation from an upstream sequenee wantedo classify between gene (target 1)

and no gene (target 0) with respect to theedgiit start positions present in a long open

reading frame (LORF). To classify a sequence of letters, it needs to be converted to numerical
data. For this data, the upstream sequences retrieved aftem@btfing and comparison was
converted intd<-mercourt dataand onehot encoded dat®nehot encoded data is from

KHUH RQ GXEEHG 3VHTXHQWLDO GDWD~
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3.3.1 ORFmapping and comparison

Another method of annotation is to search for open reading frames and investigate whether a
pattern or motif can be enoughdistinguish between a coding sequence and aodimg
sequenceThe general idea between retrieval of ORFs and not LORFs is to be able to discern
between the alternative start codons in a long open reading frame. By fetching all the
alternative ORFs pisent, the hope for a machine learning model is to find a pattern between
the coding and nenoding ORFs. By finding a pattern, a more precise annotation with respect

to the start position of genes can be achieved.

The microseq package in R has a builfunction calledindORFsthat scans through a

)$673% ILOH 7KH IXQFWLRQ ORFDWHY 32SHQ 5HDGLQJ )UDPH\
locating the ORFs the function will find all subsequences in the fasta sequences that start with

a start codon (ATG, GTG or TTG) followed by a numbgtriplets (codons) and ending with

a stopcodon (TAA, TGA or TAG)(Snipen & Liland, 2017)ThefindORFsfunction was used

to scan through the 15 reference .fna files. As in 3.2, a common signature was created for both

the ORFand the reference annotation to investigate the precision and recall for theit®RF
Thesignaturds a concatenation of sequence ID, strand type, and end position. Assumption a

priori is that all genes are an ORF. A different number (50, 90, 150)nfomn ORF lengths

were tried out.

If all ORFs had been included in theal dataset we would have a more skewed target

balance between gene coding ORFs andgeare coding OREsvhere all the nowoding

ORFs would have been in majorifjherefore, the fous was shifted to alternative ORFs for

the reference annotations. This meant filtering all alternative ORFs in the reference longest
open reading frame. Only the ORFs that share the same LORF as a CDS in the reference file

is included in the final dataset

The ORFhits table was further annotated with a target variable declaring if there was a match
with the reference annotation genoemise or not. For all ORFs in the respective genome a
sequence of 30 bases upstream was found. It was desirable to etingpsequences of each
ORF to see if there was a way to classify the start position of genes based on their upstream

sequence.

30



The upstream sequences also had a variant with the start codon included as it may give a bias
toward starcodons in coding sequences. This in combination with the different ORF length

was tried in model training.

3.3.2 Upstream sequence retrieval

There ae multiple elements surrounding upstream data that could be beneficial in a machine
learning model. Ribosomal binding sites and promoters are said to be present upstream of
some coding genes as presented in Section 2.1.1 and 2.1.2. The idea behinu upstrea
sequence retrieval for every ORF is a test to see if the information present is enough to

separate theoding and noftoding ORFs

After obtaining and assigning target variables to the nested ORFs present in ah®©RF

columns start, end and strandsaesed to fetch upstream data. A custom function called
38SVWUHDP ILQGHU” ZDV XVHG WR DFKLHYH WKLV 7KH IXQF
file and retrieves a setfefined number of bases upstream of all observations in a data frame

with a GFF fomat.

The function has four arguments. The first is the given GFF data frame from which you have
the given start and end position of a possible open reading frame. The second is the genome
sequence itself, input here is expected to be a path to a fastehi@ third argument, length,

is the number of bases upstream of the start position desired. Input is here an integer. The last
argument called orf_bases inputs an integer, this argument indicates how many bases in the
ORF sequence that is included. lfager is set to three, the start codon is included in the final
upstream column. The default for the orf_bases argument isTzerautput from the

function is a column containing the upstream sequence.

The functions first step is to read a given fdgéa This was achieved using the function
readFasta() from microségnipen & Liland, 2016)The function returns g&ablecontaining
WZR FROXPQV RI WH[W 7KH 3KHDGHU" WKDW FR®WDLQV KHI

Afterwards the GFF data frame defined is filtered according to strand type. The strand type is

D NH\ IDFWRU DV WKH 3(QG* 3 RO\GLLW DRWH ¥ QVKW U/DAQDEU W\S R VAL \

reading frame, and vice versa. From there the start positionetvas30 bases upstream from
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the open reading frames start position, and the end position was set at one base upstream of

the start position.

With the new start and end defined, the function Gff2fasta from mic{&epen & Liland,

2016)was utilized. This function takes the start and end position of a general feature

formatted table (GFF) and retrieves the sequenebstimeen from a fasta file. The sequence
UHWULHYHG KHUH ZLOO WKHQ EH LQ D IDVWD IRUPDW HJ[LV
WKH XSVWUHDPBILQGHU IXQFWLRQ WKH FROXPQ 3VHTXHQFH

3.33 K-mer data

K-mer count data of a sequence can be useful for discerning between target groups. The idea
is that the mean count and variance is different enough between targets. The difference may

allow any model to retrieve useful information during tiragn

The sequence data from 3.3.2 that was made for all open reading frames was usedKe create
merdata. The creation ¢f-merdata was achieved using the KmerCount function in the

microclass packag@/inje et al., 2016)

Different K-mers were tried out. The sequence lénghd four possible nucleotides givés 4
possible combinations &-mers affecting runtime and memory usage. An upper cap was
therefore set at K = 6, to capture all the variance in the dataset, and without affecting
computational time excessively. As thare only four unique letters present in the sequence
data, a lowK-mercount may not be as helpful informatianse. The lower cap was
consequently set at K = 3. The differéxiners were assembled into a common feature space.
Further on, because of thatural genomic variation present in the prokaryotic genomes, one

K-merdataset was created for each unique genome.
The frequency oK-mers was overdispersed with a variance larger than the mean, and the
feature space was vast. The initial data forBksherichia coli O157:H7 str sakdd-merdata

had a total of 7804 rows and 5442 columns.

The final training dataset then consisted of 3-tadés's of the open reading franfgpstream

sequence®cated30 bases upstream as well as the variable lengtthartdrget class. The
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variable length was added to the final dataset as it may be a significant explanatory variable in

classification.

3.3.4 Sequential data

After the initial training and creation of tikemerdata, another possible training data was

mack. The initialk-merdataset contained information in form of count&efers available
upstream of ORFs but does not contain information about the order of the nucleotides. To
capture the sequence structure, the sequence data whast@reoded creatingtotal of 120
features. This training dataset thus consisted of 120 features (4 bases possible in 30 different
positions: 120 different combinations) as well as the target class variable. This dataset is much

smaller than th&-merdataset and is there®computationally cheaper.

3.3.5 Classification Models

There exists a multitude of classification models and thus many ways to classify data. Based
on this,severmodels were run with tuning to find the better model. The models in question
are seen in table 3.2.1. To account for result randonthesygy hyperprameter tuningeach

model was runvith a cross validation of 3.

To get an overview of different classification models performances, they were run on one
genomekEscherichia coli 0157:H7 str sakhiad the highest number of coding sequences as
seen inTable 2.1.1as well as the genome with the median GC condewtwashereforea

first choice for model training.
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Table 3.3.4.1: Overview of the different classifier models used to distinguish the upstream
sequence data between gene and no gdmeclassifies description as well as tunable
parameters are defined her.

Classifier Description Tunable parameters
Classification algorithm that
predicts the probability of a

Logistic regression categorical dependent Regularization strength,
variable. Predicts P(Y=1) as penalty (I1, 12)
function of X.

Gaussian naive For continuous data, useful . :
. . . Variance Smoothing
bayes for high dimensional data.
Distance based lazy
algorithm. Places all
observations in4imensions Number of neighbors and

K ne|_g_hbors and finds the ktnearest distance metric (Manhattan,

classifier . . ) ) . ;
neighbors using a likeness  Minkowski or Eucledian)
score. The class @given by
majority voting.
Uses information from

Decision tree features and target in a datas

" . .- Max depth
classifier to discern where to best split

the data in different classes.

Random forest Ensemble classification Number of trees, max depth,

iy method consisting of many
classifier L and max features
decision trees.

For imbalanced data, this

classifier undersamples the
Balanced random majority clasgandomly to Number of trees, max depth,
forest classifier match the number of sample: and max features

in the minority class. This is

done for each decision tree.

LDA is a common feature

reduction technique often Number of corponents for
paired with PLS for PLS

categorical data

PLSH.DA

All the model trainings performed, using the classifiers seen in table 3.2.1, were trained using
the scikitlearn tool(Campbell) With the exception of PLS + LDA that was rusing the
mpda R packagé&nipen, 2017)The validation of the models was performed using an

independent dataset (tesdt). A prediction of the test dataset was run with all trained
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classifiers seen in té3.2.1. From the predictions the resulting false positive and true

positive rate were plotted together in an ROC curve for visualization of all classifiers.

The creation of thetest HW ZDV DFKLHYHG E\ UDQGRPO\ SDUWLWLRQL

observation into the test set. This left 75% of the data for training.

After theinitial overviewof classifiersfour common classifications were run on four selected
genomes separatelhese genomeseredeemed to best represent the variety in genome
content, wih respect to their GC%. See table 2.1.1 for their respective GC%. The low GC%
representative i€ampylobacter jejuninedium representative sscherichia coli O157:H7

str. Sakai,and high GC% representative is Caulobact@rodes The last genomdacillus
subtilis subsp. subtilis str. 16®&as selected due to their status as a model organism of the
grampositive lineagéErrington & Aart, 2020)The classifications were tuned for each

genomeas we already assume they are independent

The classifications in question are the Balanced random forest classifier, logistic regression,
PLS + LDA and KNN. The balanced random forest was chosen due to the datasets imbalance
and because the initial classifier showed promising results. The reméireegclassifiers

were chosen as they are very simple, but popular classifiers.

Finally, the classifier that had the highest ROC score was further utilized by training a model
for all RefSeq genomes. €tiraining on all genomegas done to get an overviewthe
variation between the 15 genomes present, as well as to see if the initial result was

representative.

3.3.6 Feature Selection

The number of features with &lmeis available, plus the variable length, was at 5457. To
reduce the complexity of a model and avoid overfitting, feature selection was applied. The
feature selection does not only seek to avoid overfitting but can also give valuable

information about featurenportance.

To check for feature importance in tiemerdataset two methodsarerun, namely random

forest feature permutation and chi squared test.
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3.3.5.1 Random Forest

The sckit-learn package has a permutatiorportance function with a trainedndom forest

model as input. Téfunction shuffles features randonduring predictiorand computes

changes in its performance. The features that impact performance the most are deemed to be
the most important ones. After tuning a Randeémnest classifierthis function was ruon the

E. coli O157:H7 str. Sakd-mer dataset

3.3.5.2 Nearzero variance predictors

Variables with very few numerical values can cause errors or unexpected resulzefdear
variable predictors are predictors with very few waigyalues. This is very common in a K

mer dataset as well as a sequential one.

Table 3.3.6.1 Overview of number (n) of observations per genome in the final dataset with an
ORFlength of 90or above

Genome n
Acinetobacter pittii 46078
Bacillus Subtilis 55581
Campylobacter jejuni 17626
Caulobacter vibriodes 55681
Chlamydia trachomatis 12491
Coxiella burnetiid 24882
Escherichia coli K12 68620
Escherichia coli O156H7

sakai 79504
Klebsiella pneumoniae 81887
Listeriamonocytogenes 34993

Mycobacterium tuberculosis 80707

Pseudomonas aeruginosa 93489

Salmonella enterica 70091
Shigella flexneri 60889
Staphylococcus aureus 28597

The number of columns present, as well as therepegsentatiorR1 VvV PD\ PDNH LW GL|

for any classification model to retrieve useful information from training. Therefore, any
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columns with varying sums less than a given quantity (500, 1000 and 150(tteenpted
removed to see if it affects the final modwiining.An overview of the number of
observations per genome can be seen in table 3.Bl@nibers were chosen according to the
number of observations present in the minimum gen@h&Mmydia trachomat)s The idea

behind the removal is that the variables that fall below that number are useless in modelling.

3.4 Chi square test

The chi square test was run on Ehecoli O157:H7 str. Sakd{-merdataset. The test was run
between each feature in the datasettherdesponse (target) to determine if the association
between the categorical variables reflects the association popwlasenit was also
interesting to see if the feature selection using random forest and a statistical test found
common important vaables. The sklearn package in Python has a function chi2 that

computes chgquared stats between each-negative feature and cla@dichel, 2021)
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4.Results

4.1 Overview of data

In this subsection the raw annotated data from the RefSeq database is presented. Here a
mapping of the uncertaennotations is showihe uncertain annotations are from most
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Shigella_flexneri - _ Salmonella enterica subsp. enterica serovar Typhimurium sir. LT2 4548
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Figure 4.1.1 Count overview of different uncertain annotations present in the RefSeq annotated GFF
The three figures are an overview of the three degrees of uncertain annotations present. A tétde wi
total number of annotated genes in the different exfee genomes are provided as a table in the botto
right corner.

The table 4.1.1 displays the count of different uncertain annotations per gér@mesults

were mapped usinggplot2version 3.3.2 into bar plots showing the number of different

uncertain protein types for each reference sequence. The hypothetical protein count appears to
be the most prominent uncertain annotation in all genomegptceoli K-12 andB. subtilis

For these genomes, the uncertain annotations that appear the mospigatiee protein

count.
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Fraction of uncertain proteins for each Genus' Genus
. Acinetobacter_pittii
Bacillus_subtilis
Campylobacter_jejuni
Caulobacter_vibriodes
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Shigella_flexneri
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Figure 4.1.2 Dotplot showing the fraction of uncertain proteins for egenome. Black line

exhibits mean percentage over all genomes.

The scatterplot, shown in figure 4.1.2, shows the fraction of uncertain proteins for each genus
from the RefSeq fasta files. The results were mapped as a point graph with y being percentage
(from 0 to 1), and thevalue being differengeneraThe results give us the fraction of

uncertain protein counts as well as the count and fraction of the individual uncertain proteins
for each Genus. The mean of uncertain proteins is at around 0.3 witimiheum value

being at 0.1 witlBacillus subtilisand maximum being at around 0.6 &aphylococcus

aureus
There does not seem to be a trend for the fraction of uncertain proteins, there are also small

differences speciaesise as th&-12andO156H7 sakasubspecies dE. coliare not too far

apart (0.1) fractiofwise.
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4.2 Comparison with a gene prediction sdfvare

7KLY VHIPHQW SUHVHQWY DQ DQQRWDWLRQ WRtRMasTV SHUIR
desirable to compare the RefSeq annotations with Prodigal predictions of the reference
JHQRPHYVY 7KLV FRPSDULVRQ ZDV PDGH 3$4UR ilGcé@tikgtné UDWH D

correct starcodon

In total Prodigal predicted 5510 coding genes from the 15 different fasta files. The reference
.gff file had a total of 5538 observations leading to an overprediction of 672 observations.
Out of these observatis 53505 observations matched the reference signature containing
only end position, and 4834 matched the reference signature containing both start and end

position.
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Table 42.1: Recall and precision between prodigal annotated genomes and knowq RefSe
genomes, panel A contains the results with SeqID, Strand type and end position (LORF),
panel B with SeqID, Strand type, start and end position (ORF).

Genomes Recall Precision
Panel A: Signature for LORF
Acinetobacter pittii 0.9814 0.9863
Bacillus subtilis 0.9600 0.9832
Campylobacter jejuni 0.9867 0.9397
Caulobacter vibriodes 0.9506 0.9919
Chlamydia trachomatis 0.9865 0.9766
Coxiella burnetii 0.8833 0.7867
Escherichia coli K12 0.9578 0.9711
Escherichia coli O156H7 sakai 0.9853 0.9677
Klebsiella pneumoniae 0.9258 0.9808
Listeria monocytogenes 0.9927 0.9899
Mycobacterium tuberculosis 0.9703 0.9278
Pseudomonas aeruginosa 0.9957 0.9768
Salmonella enterica 0.9747 0.9579
Shigella flexneri 0.9573 0.8253
Staphylococcus aureus 0.9270 0.9749

Panel B: Signature for ORF

Acinetobacter pittii 0.7774 0.7813
Bacillus subtilis 0.8688 0.8897
Campylobacter jejuni 0.9151 0.8715
Caulobacter vibriodes 0.7607 0.7938
Chlamydia trachomatis 0.8896 0.8807
Coxiella burnetii 0.6765 0.6025
Escherichia coli K12 0.8913 0.9037
Escherichia coli O156H7 sakai 0.9679 0.9506
Klebsiella pneumoniae 0.8131 0.8614
Listeria monocytogenes 0.9279 0.9353
Mycobacterium tuberculosis 0.7496 0.7168
Pseudomonageruginosa 0.9142 0.8968
Salmonella enterica 0.8591 0.8442
Shigella flexneri 0.7714 0.6650
Staphylococcus aureus 0.8218 0.8643
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The results for the prodigal comparison are shown in taBlé.fanel A, with a signature

that only contains SeqlEnd position and Strand typeas a higher precision and recall

overall when compared to panel B with end and start position included in the signature. For
all genomes the precision and recall are higher when only end position is included in the

signature.

The observations following the Prodigal annotation contained information about motifs. The
software scans upstream information to see if any upstream sequences such as-the Shine
Dalgarno are present. If they are found specified actions are taketheamatif found is

VWRUHG LQ WKH DWWULEXWHYV FROXPQ RI WKH RXWSXW *)
frequency of a motif present can be seen in tal@d@ 4The comparison was made geneme

wise, and the frequency shown is the total observationstf x, for targety, genomez. The

table shows the five possible ShiDalgarno RBS Motifs that Prodigal deems to have the

highest scoréHyatt et al., 201Q)as well as no RBS seat present.
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Table 42.2: ShineDalgarno RBS motifpresence in upstream Prodigal annotated ORFs. The

table shows the relative frequency of selected motifs present for four genomes of different

targets. Panel A shows the relative frequency for target 1 (CDS) whereas panel B shows the

relative frequency forarget O (not CDS). NP means not present, as there are no

observations.

AGGA/GG
Genome AGGAGG AGGAG AGGA GGAGG None

AG/GAGG

Panel A: Gene
B. subtilis 0.2035 0.1484 0.0457 0.1295 0.0212 0.0165
C. jejuni 0.0007 0.1674 0.3156 0.0069 NP 0.1287
C. vibriodes NP 0.076 0.0575 0.0903 0.0182 0.1556
E. coli
O157:H7 0.0107 0.1400 0.1190 0.0588 0.0170 0.1084
str. Sakai
Panel B:not gene

B. subtilis 0.0608 0.1139 0.0987 0.0810 0.0278 0.0861
C. jejuni NP 0.1239 0.2743 0.0047 NP 0.2389
C. vibriodes NP 0.0664 0.0556 0.0908 0.0203 0.1707
E. coli
O157:H7 0.0109 0.0652 NP 0.0217 0.0109 0.5
str. Sakai
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4.3 Chi square test

The Chi square test results are presented in table 4.3.1. The test was run-omethedi to

test for enrichment in one class against the other.

Table 43.1 The twenty highest scores retrieved after running a chi square test Kenadr

features of the E. coli O157:H7 str. Sakai genome frameBto 6mer.

K-mer Chi2 score p-values

AGGA 1450.003 0.00E+00
GGAG 1287.984 4.62E282
AGGAG 1252.086 2.92E274
GAGG 1226.583 1.02E268
GAG 1068.289 2.58E234
AGG 1008.004 3.27E221
TAA 998.0757 4.70E219
AAGGA 988.911 4.62E217
AAGGAG 674.4939 1.05E148
TAAGG 608.5353 2.33E134
GAGGT 606.1369 7.74E134
GGAGA 604.307 1.94E133
ATAA 582.1802 1.26E128
GAGGA 550.4231 1.02E121
GAGA 531.6311 1.25E117
TAAG 526.679 1.49E116
TAAGGA 525.6371 2.51E116
GGA 524.6199 4,18E116
AGGAGA 517.5854 1.42E114
GGAGG 514.9453 5.32E114

A chi square test was run for &tmerdata, and the twenty highest scores can be seen in
table 43.1. This test was run between each feature and the response (target) to determine if
the association between the categorical variadolelstarget (gene oo gene) coincided

Based on the-palues presented, these 20 features are not independent from the response
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variable and are thus deemed to be important factors for separating between gene and no gene

in the upstream sequence data

4.4Modelling

In this subsction, the creation of training datasets and their attributes as well as the modelling
performances are revealed. Information surrounding feature importance is also included in

this segment.

4.4.1 The open reading frames

The reference table consisted of 55 538 observations, whereas the ORF table had 2 794 615
observations. After filtering the ORF table to only include the ORFs in the same longest
reading frame as the reference tahthe final dataset had a size 0127520 observations.

Out of these observations 55 234 were found to match the reference. Overall, this gives an

average of 20 different reading frames per LORF.
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Table 44.1 Overview of ORFs from reference and found from all genomes. This includes the
false positives as well as true positives. Percentage of codings sequence loss (CDS loss) are
also presentedas well as the number of uncertain proteins for each filtered length.

Type Number of observations CDS loss
5HIHUHQFH &'6Y 55538

All ORFs thatare CDS 55 234
0%
All ORFs that are not CDS 1052286
Uncertain proteins 16 386
CDS found with minimum
54 009
ORF length 50
2.8%
ORFs that are not CDS
. 892810
minimum length 50
Uncertain annotations of
o 16 376
minimum length 50
CDS found withminimum
50 226
ORF length 90
9,6%
ORFs that are not CDS
o 760890
minimum length 90
Uncertain annotations of
. 16 344
minimum length 90
CDS found with minimum
42 282
ORF length 150
24%
ORFs that are not CDS
. 586 821
minimum length 150
Uncertainannotations of
15 459

minimum length 150

The loss of coding sequences when choosing an ORF length of 90 are at 9,6% as can be seen
in table 44.1. By increasing the search space (lowering minimum ORF length) to 50, an
increase of around 130 ORFs are observed. The minimum length of 90 bases was

therefore selected for the final training datasets, to avoid more imbalanced datasets.
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4.4.2 TheReceiver Operating Characteristics

In total, seven models were trained onEheoli O1567:H7 sakajenome. These models

were the Balanced random forest classifier, the random forest classifier, logistic regression,
gaussian naive bayes, decision treesifeer, partialleast squares reduction followed by a
linear discriminant analysis and then¢arest neighbor classifier. As there are two training
datasets (the Hner dataset and the dumyagicoded dataset) the models were run on both
datasets. The resuity ROC curves following the training can be seen in figuéel 4and

44.2.

ROC Curve Analysis
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Figure 4.4.1 ROC curve for multiple classification models. The plot shows true positive rate
versus false positive rate for the seven classifiers oK-tmerdataset for the E. coli
0156:H7 sakai genome seen in table 3.3.4.1. AUC score is shown in the loweuadytang

of the figure.

The figure 44.1 shows the Receiver Operating Characteristics curve for the 7 different
models trained in 2.4.3 on tlsscherichia coli O157:H7 sakgienome. Based on the AUC

scores, it appears tiBalanced random forest classiffesm imblearn had the most correct
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classifications. The highest was at 0.71 and the lowest was the Decision trees classifiers at
0.541. There is little difference in AUC sedbetween the top three classifiers, tredthree

may be fine classifiers for our training dataset.

ROC Curve Analysis for one-hot encoded data
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Figure4.42 ROC curve for multiple classification models. The plot shows true positive rate
versus fate positive rate for the seven tuned classifiers on the one hot encoded dataset for the

E. coli O156:H7 sakai genome. AUC score is shown in the lower right quanfrtdre figure

The figure 44.2 shows the Receiver Operating Characteristics curve far diféerent

models trained in 2.4.3 on tlsscherichia coli O157:H7 sakgienome. The dataset used was

the sequential dataset that takes the order of nucleotides into account. Based on the AUC
scores, it appears tiBalanced random forest classiffesm imblearn had the most correct
classifications. The highest was at 0.727 and the lowest was the Decision trees classifiers at
0.577. There is little difference in AUC score between the top three classifiers, and all may be

fine classifiers for our trainingataset.
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4.4.4 Four selected methods

This section presents the results from the four diffeckssifiersrained on four

representative genomebhe balanced random forest classifier as welheeetcommon
classifiers were chosen to better giveoaerview of the general training results. The
classifiers were LDA+PLS, KNN and logistic regression. The models were tuned to best fit
for each genome, and some selected metrics for four genomes can be seen in2atid 4.4.
4.4.3. For the entire tabkeeattachment 1 for thK-mer dataset and 2 for the sequential
datasetTraining was performed with a hyperparameter tuning and a cross validation of 3.
The resulting metricare from the prediction of a validation test.

Table 4.42 results from a hyperparameter tuned selection of four genomes. These values are
selected according to the highest re¢athnel A)and MCC scorépanel B)from the table
present imttachment 1.7KH FODVVLILHU XVHG LV SUHVHQW LQ WKH FF

minimum sum for a feature requiredfore training (Reduction).

Genome Precision Recall MCC Classifier Reduction
Panel A
. Balanced

B. subtilis 0.31 0.93 0.49 0.0
random forest

c 0.23 0.79 0.36 Balanced 0.0

vibriodes random forest

C.jejuni  0.32 0.78 0.43 Balanced 1500.0
random forest

E. coli

0156H7  0.13 0.6 0.19 Balanced 0.0

] random forest
sakai
Panel B

B. subtilis  0.68 0.48 0.55 logistic 500.0
regression

C.jejuni  0.72 0.44 0.53 logistic 1000.0
regression

c 0.6 0.27 0.37 logistic 500.0

vibriodes regression

E. coli

0156H7  0.13 0.6 0.19 Balanced

i random forest
sakai

Table 4.42 shows the best results by Recall and MGCthe models trained using therier
datasetBased on the resulthe logistic regression scored highest in terms of Mga@el
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B), but theBalanced random forest classifsaored highest in terms of recg@lanel A) The
recall when compared to th@odigal results are a little lower for all genomes except for
Bacillus subtiliswhich has a higher recall rate than the prodigal ORF oufjalni¢ 4.1.1

panel B). For the most part, the reduction did not yield much difference score wise for the

balancedandom forest but proved to be an asset for the logistic regression classifier.

Table 4.43 results from a hyperparameter tuned selection of four genasieg the
sequential datasefhese values are selected according to the highest recall andsei2€
for each of the four genom&em the table present mttachment 2The classifier used is
SUHVHQW LQ WKH FROXP@QiBdnOsDrv férd teatlwe réhiradioraV K H
training (Reduction).

Genome Precision Recall MCC Classifier Reduction
Panel A
N Balanced
B. subtilis 0.48 0.92 0.64 0.0
random foresi
o Balanced
C. vibriodes 0.31 0.9 0.48 0.0
random forest
S Balanced
C. jejuni 0.51 0.85 0.62 1000.0
random foresi
E. coli
Balanced
O156H7 0.15 0.58 0.22 1000.0
. random forest
sakai
Panel B
. logistic
B. subtilis 0.83 0.68 0.73 ) 0.0
regression
S logistic
C. jejuni 0.79 0.63 0.68 ) 0.0
regression
o Balanced
C. vibriodes 0.31 0.9 0.48 0.0
random foresi
E. coli
Balanced
0O156H7 0.15 0.58 0.22 1000.0
) random foresi
sakai
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As for theK-merdatasetlogistic regression and tigalanced random forest classiffgoved
to be the best classification mod#ds the sequential datas&/hen sorting by highest recall
for the four respective genom@gmanel A) the Balanced Random Forest proved to give the
highest scores, outdoing the prodigal score®#millus subtilisandCaulobacter vibriodes
terms of recall for ORFsThe recall proved to be an asset for the random forest mode! for

jejuniandE. col with a reduction of 10Q0wvhich is a contrast to the-ier dataset

4.4.5 Balanced Random Forest classification

Because th8alancedrorest classifier had the highest AUC score in the ROQe analysis
for theE. coli O157:H7 str. Sakajenome Figures 4.4.1 and 44.2), this model was chosen
for the remainder of the genomes.

The Balanced Random Forest model was run on all genomes in the dataset to get an overview
of the variation between genomes. Table#ahd 4.4.5 shows the results following a

balanced random forest classification on test data for respectivelyrtier End sequential

dataset. Training was performed with a hyperparameter tuning and a cross validation of 3.

The resulting metricare from the prediction of a validation test.
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Table 4.44 results from a hyperparameter tunBdlanced random forest classififar each
genome in the reference genome database Wsimgrdata. The metrics Precision, Recall,
MCC and F1 show their respective resulise column N trees show thygtimal number of

treesper genome.

Genome Precision Recall MCC F1 N trees
A. pittii 0.23 0.77 0.35 0.36 600
B. Subtilis 0.31 0.93 0.49 0.47 100
C. jejuni 0.31 0.77 0.43 0.44 800
C. vibriodes 0.23 0.79 0.36 0.35 300
C. trachomatis 0.16 0.72 0.24 0.26 100
C. burnetii 0.11 0.63 0.24 0.14 200
E. coli K-12 0.25 0.85 041 0.39 800
E. coli O156H7

sakai 0.13 0.59 0.18 0.21 500
K. pneumoniae  0.13 0.59 0.17 0.21 800
L. monocytogenes 0.40 0.91 0.55 0.55 500
M. tuberculosis  0.13 0.70 0.23 0.22 200
P. aeruginosa 0.23 0.84 0.39 0.37 400
S enterica 0.13 0.61 0.18 0.21 900
S. flexneri 0.14 0.58 0.19 0.23 900
S. aureus 0.38 0.88 0.53 0.53 400

Table 4.4.4 shows the results from a hyperparameter tuned Balanced Random Forest classifier
trained on the Kmer dataset. Thgenome with the highest performance in terms of MCC is

L. monocytogenesith an optimal number @00 treesand an MCC of 054
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Table 445 results from a hyperparameter tunBdlanced random forest classifitar each
genome in the reference genome database using the sequentidllgataetrics Precision,
Recall, MCC and F1 show their respective results. The column N trees shaoyptibha!

number of trees per genome.

Genome Precision Recall MCC F1 N trees
A. pittii 0.3 0.8 0.43 0.43 700
B. subtilis 0.49 0.92 0.64 0.64 600
C. jejuni 0.51 0.85 0.62 0.63 700
C. vibriodes 0.31 0.9 0.48 0.46 600
C. trachomatis 0.21 0.82 0.34 0.34 600
C. burnetii 0.1 0.55 0.12 0.17 900
E. coli K-12 0.38 0.87 0.54 0.53 400
E. coli O156H7

sakai 0.15 0.58 0.21 0.24 900
K. pneumoniae 0.14 0.55 0.19 0.23 900
L. monocytogenes 0.59 0.92 0.71 0.72 800
M. tuberculosis 0.2 0.83 0.35 0.32 800
P. aeruginosa 0.35 0.92 0.54 0.51 800
S enterica 0.15 0.59 0.21 0.24 800
S. flexneri 0.16 0.55 0.2 0.25 900
S. aureus 0.53 0.86 0.64 0.66 300

Table 4.4.5 showse results from a hyperparameter tuBadanced Random Foredassifier
trained on the sequential dataset. The genome with the highest performance in terms of MCC

is L. monocytogenesith an optimal number of trees at 800 and an MCC of 0.72.
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4.4.6 Feature importances

I
0025 A
0020 4
0015 A
0a10 1
0.005 -
0000 -
= = f =T (i L O O Y O O N I T O I P (Y A L
cE38I3FE 9L REEYP
2, I
5 y : 3

Figure 4.43 random forest feature importance. This barplot showcases the 20 most important
features when constructing the random forest model for the genome of E. coli O156:H7 sakai.

The importance is shown as fraction of importance.

Figure 44.3 highlights the random forest feature importance decisions. This feature
importance displays what the random forest model considers as having the most information
when classifying between gene (1) and no geneTb figure shows to 20 most important
featres in the training of the random forest model. The top variable appears to be the column
length with a fraction of importance at 0.025, followed by thee8 TAA with an importance

of around 0.004.
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5.Discussion

5.1Data

In this subsection the RefSeq datil be presented as well as certain aspects surrounding
them. It is necessary to discuss the source of data as well as their unique attributes to

understand the final classification results.

Figures 4.1.1 and 4.1.2 shows a count of the three differeetrtain proteins for each
genomeC. jejunihas the lowest fraction of uncertain proteingljcating a nearly complete
and accurate genome annotationfigure 4.1.2 it appears that the fraction of uncertain
proteinsfor C. jejuniis at 005 or 5%. In contrast thggenome with théaighestpercentage of
uncertainproteins isS. aureust around 0,6 or 60%. It appears near all uncepiatein

counts forS. aureusre hypothetical conserved proteins, which gives a little more credibility

than just a hgothetical protein.

The annotation of the different genomes shows a wide variety in uncertain protein prediction

and can be explained by individual characteristics of the genome, and the Genus. Different
gererahave different elements of variability. Bhvariability can be explained Ilye different

research focu§n the field.As some genera in the RefSeq database are model organisms,
RWKHUVY DUH QRW 'XH WR VRPH JHQHUDYY VWDWXV DV PRG

experimental and manual annotatttata available.

There also appears to be a difference between different skaicdi K-12 andO157:H7are
different in their count of protein. Wheke12 has 20% count of uncertain prote®157:H7

has 15% (see figure 4.1.X)-:12 has a high putativeount (see figure 4.1.1) which gives more
credibility thanO157:H7with a higher hypothetical count. The difference between these is
that theK-12 strain is classified as a model organism and therefore has a high count of
experimental data available inffidrent database#\ quick search in the nucleotide database
of GenBank yielded 6988 results #¥12 and 643 results fdd157:H7 K-12was also one of
the first microorganisms targeted for genome sequeriBiaga, 2002)whereas th&. coli
0157:H7is a strain associated witlemolyticuremic syndromeand is not as commonly used
as a model organis(@dmeer, 2021) This may give an explanation as to why most protein
counts 0f0157:H7is purely hypothetical and give insight into the differences among strains.
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The RefSeq annotations are, as stated in the introduct®bge#t manual annotations we

have as of today. These manual annotations are continuously being worked on and may
contain errors as well. In the past, all RefSeq genome assemblies were reannotated once every
few years to ensure that the older genomes befn&in the improvements in PGAR:I et al.,

2021) The latest publication frothe RefSeq project at NCBI talks about the culling of bad
proteins and the shrinking of the homology search space. There is, in other words, a great
possibility that some CDS marked as genes in the current training dataset may be wrongly

annotated and thabme observations might be removed in the future.

Anotheraspect of th&®efSeq annotated genomes is that the localization of thecetioh

may not be certain. As stated, some software struggle with start site prediction in-protein
coding genes. The AP uses GeneMark3+ for starisite recognition. This software has a
self-stated error rate of 4.4% compared to Prodigal which has @.@#tsadze et al., 2018)
These selbtated errors ecabe thought of more as a minimum than a méaprovements on
the error ratdor GeneMark&2+ will lead to a more errefree training dataset in the future

and may result in changes to the currentgtasitions of annotated genes.

5.2 Comparison with agene prediction software

This section will discuss the Prodigal result. The Prodigal results presented the initial problem
statement regarding annotation errors. By analyzing the annotation from the Prodigal result

more insight into an annotatiod RIWZDUHTV IXQFWLRQ LV DFFRPSOLVKHG
precision and recall creates a baseline for the final machine learning model.

Prodigal predicted 5305 observations that matched the signature LORF (that contains only
end position) and 4834 matched the signature ORF (containing start and end). This gives an
accuracy over the positive class to respectively 0,963 and 0,845. The accuracy is in other
words reduced quite substantially when trying to estimate the correct start position of a coding

sequence.

In table 42.1 the drop in recall and precision can be seen for all genomes when going from
the signature for LORF (panel A) to signature for ORF (panel B). Indicating that the issue
does not only lie in a few selected genomeéRke results iy amongst the different genomes.

The lowest precision and recall were found for the gen@ugiella burnetiifor both panel A
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and B The highest precision and recall were foundEocoli O156H7 sakan 4.2.1 for the
OREF signature (panel Bn panel A the genomeith the highest precisiowas found to be
Pseudomonas aeruginosand for recallisteria monocytogenes.

There are two more motifs not present in panel B compared to panel A of table 4.2.2. Table
4.2.2 only contains ribosomal motrefjuencies for four selected genomes, naraeloli
0157:H7 sakai, B. subtilis, C. jejuandC. vibriodes Panel B contains the relative frequency
for motifs per genome present in nooding ORFs whereas panel A contains the relative
frequency of motif pr genome for coding sequences. For the genomes, tleelacis of

motif for noncoding ORFs ForE. coli 0157:H750% of observations panel Bdoes not
contain an upstream motif recognized by Prodigal. In contrast only 10.8% of obserf@tions
actualgenesdo not contain a motif for the same genome. There are, in general a higher
relativepercentage of motifs in panel A compared to panel B, apart from the three motifs
AGGA/GGAG/GAGG.

The prodigal paper states to have distdvased scores when seanghfor ribosomal binding
sites(Hyatt et al., 2010)When comparing the prodigal article with the outgata from

prodigal, no distanebased score was discovered. It would have been more informative to
retrieve a comparison of the motif AGGAGG with the length of spacer between the 16sRNA
binding site and the stacbdon as that was their tggorings motifs, but naugh information

was found.

5.3Classification based on upstream sequences

The machine learning classification model presented here is not as complex as any given
annotation software. Given the time constraint on this thesis only a small part of what woul
be considered annotation has been investigated. Namely, the localization of the start position
of genes based on upstream sequence data. This subsection presents points around the

classification results.

TheBalanced random forest classifigas deemetb be the bedbr both our datasets (ker
an sequential) for thi. colisakaigenome as seen in Figure 4.4.1 and 4.4.2. However, there
are multiple classification models that had an AUC score very similar to the balanced random

forest one. Amongst them was the logistic regression model with an AUC of exactly 0.03
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below the balancechndom forest model for the-Ker dataset and 0.04 below for the
sequential onelhe ROC curves show more than which model has a better fit, it can also give
insight into false positive and true positive rdter an annotation process, an ideal step given
the number of observations is to have as little false positives as possible. In other words, a

conservative model is desired if this were the entire annotation model.

The need for a conservative model is dependent on its purpose. Usually, an anpaieé&ss
consists of many models divided into a pipeline. The first model usually weeds out some false
positives, but still manage to hold onto as many true positives as possible (a high recall score).
Ultimately the goal is to retain only the true posiivé&/hen moving down the pipeline the

need for a higher precision grows, as one needs to filter away the false positives. To retrieve a
higher precision, the threshold can be raised to only retain what the model deems as very
certain true positives. This lamce can be hard to achieve, however, as the true labels are not

always known. Especially when new data is involved.

The ROC curves for the Balanced random forest classifier are quite similar in terms of cutoff
for the two different datasets, with thegsiential proving to be more conservative in their
classification of genes. The respective ROC curves seen in Figures 4.4.1 and 4.4.2 show the
tradeoffs in false positive and false negative rates for different cutoffs in all the classification
models. Wherhooking at the curves for the balanced random forest, the optimal cutoff was
observed at 0.6 positive rate and 0.2 false positive rate for Figure 4.1.%1tike data). For

the sequential data, the optimal cutoff for the Balanced random forest clagasgiat 0.52

true positive rate and around 0.13 for the false positive rate. For the sequential data this means
they classify a positive observation as positive 52% of the time and a negative as positive
13% of the time. In general, this means both datgsetduce similar results when used in
training. In fact, there is a 71% chance that the random forest model produced fromnéne K
dataset will be able to distinguish between a coding and-aaoding ORF, whereas the
sequential has a 72,7% chance. Tlasgification metrics presented here also coincide with

the results foE. coli sakain Tables 4.4.3 and 4.4.5.

Table 4.4.4 and 4.4.5 show metrics for respectively tmeek and sequential dataset run for
each genome using a Balanced random forest classifier with tuning. As stated in 5.1 the
different strains oE. colidiffer in number of sequences available. Tlammne annotations

present in th€©157 sakagenome may not be as plausible. Ka&2 strain performs better
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than thesakaistrain in the final modelling for both the sequential and thedf dataset, on

all metrics. On the other hand, for the Prodigal @Bfparison, theakaidata had the

highest precision and recall. Classification based purely on upstream data may prove to be a
better fit for theK-12 genome than for theakaj since the Prodigal results are based on more

than only the upstream sequenéeach start codon.

The models trained and presented in Tables 4.4.4 and 4.4.5 all had a big false positive rate.
The tables showed the results from a Balanced random forest classifier for all genomes
trained on Kmer and sequential data. The precisiatnu returned yielded a minimum value

of 0.1 and 0.11 fo€. burnetiifor the K-mer and sequential datasets respectively. The
maximum precision was40 and 0.9 both forL. monocytogened he results fot.
monocytogeneare highly uncertain givemat the genome hasfraction of uncertain protein
count at @5, it is in other words not possible to decide if the score is close to theltruth
general, dow precision is an indication of the machine learning model easily overpredicting
notgenes as genes. In an annotaprocess it is more desirable to have many false positives
than negatives, as software usually have many more steps in the annotation process than just a
single model. The issue with a large false positive rate, may, in other words not a problem if

themodel trained in this thesis were the first of many models.

In Table 4.4.2B and 4.4.3B the classifiers that gave the highest MCC score by genome was a
mix between logistic regression and Balanced random forest classifier. For the genomes that
had the logstic regression classifier as the highest MCC score, their other metrics are quite
balanced. The genomes in questionBarsubitilis, C. jejunandC. vibriodesfor the K-mer

data and. subtilisandC. jejunifor the sequential data. The precision fordgleaomes is

much higher than for the Balanced random forest classifier, indicating a conservative model.
Moreover, the logistic regression models had much better results for the sequential dataset
and with no reduction of observations (see table 4.4.3 ganm contrast to the Kner

dataset that performed best when the minimum sum needed in a feature was at around 500
(table 4.4.2 panel B).

The quential datproved to bdaster and give better results, however pattereeasier
seen withthe K-mer datasesand may prove to be more valuaiéormation wiseThe
sequential data contains information about the order of bases upstream of a given ORF. When

looking at sequences it is often more desirable to look at subseqtiece®sitions. The
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reasoning behind this is that it is easier for an individual to retrieve the context from a given
K-mer rather than the positioning of the bases. Further on, most of already existing theory has
evolved around substrings of genomes, Whgcwhat a Kmer fundamentally is.

The MCC score is the preferred metric for the data given the big imbalance in both datasets
DQG VKRXOG WKHUHIRUH EH WKH GHFLGLQJ PHWULF IRU WK
the relative MCC scores for tiieur selected genomes for each dataset (see Table 4.4.2 and
4.4.3), the dataset with the highest MCC score was the sequential one. Table 4.4.4 panel B
had two separate models that performed well, the Balanced random forest clasdtfieofor
sakaiandC. vibriodesand the logistic regression model forjejuniandB. subtilis This

division of classifier may initially seem like a stalemate, however given the preferences for
annotation already stated in this subchapter, the model with the combinatigh pfecision

and high MCC score should be stated as the better model. A general conclusion can be made
that a logistic regression model with a sequential dataset performed best out of the classifiers
and datasets tested. This statement is made withdsetgathe method tested in this thesis

with the selected parameters and processing.

When comparing the results from both datasets with prodigal all metrics fall below the
baseline. However, in terms of recall the average recall score for Prodigal snofe@RF
signature is 0.83. For the Balanced random forest classifier run on all genomes the average is
for K-mer and sequential data respectively a#@7d 0.77. This means a difference @&fD.

and 0.06 in terms of recall. Seeing as Prodigal takes inangust upstream data into

account, the results are quite good. Considering precision score, hothey@gdigal data
yielded a precision of 0.82, wherahas K-mer model hd a mean of 0.2and the sequential
0.3.Thesequential dataset proves to yialtiigher precision indicating that tbeder of
sequencegieldsmore distinguishable information than the count of substrings. However, this
difference is negligible as the precision proves to be quitedpecifically when considering

the uncertainnedn target labellingln summary, he upstream sequence data alone is not

enough to discern betweeading and noitoding ORFs.
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5.4 Motif importances in K-mer data

The K-mer data consists of several substrings, each substring being a feature in the dataset.
The features present in therKer dataset may or may not be important for discerning between
coding and noitoding ORFs. This subsection will discuss the results from both the Chi
squared test and the random forest feature permutation.

Both thefeature selection methauhd the chi square methattempted Table 43.1 and
Figure4.4.3) overlapped each other. The most important feature was deemed to be the 4mer
AGGA for the chisquared test and the feature length for random forest featuratpgon.
Continuous variables are not possible to assess insgjohred test and thus we assume TAA

to be the most important categorical feature for comparison. The purine rich sequences
(consisting of A and G) appear to be the most promikemiers fromthe feature importance
visualization as well as the Ckaquare testThis corresponds with the upstream ribosomal
ELQGLQJ VLWH UHJLRQV IRU &'6Yf +RZHYHU WKH IHDWXUH \
variable has the most or least amount of puiicie sequences. They only state that thése

mers are an important variable for differing between the tagetsst of homogeneityThe
chi-square did show enrichedders, but that only means they appear a little more than

random. It does not mean thenen is a signal one can use for classification.

The TAA (a stop codon) is prominent in the classification of gene for the Random Forest
Feature Permutation, along with the motifs typically found in the Ribosomal Binding site. The
3-mer may be present operongeneclusters dthough the importance does not seem to
account for much (around 0.4%) when compared to lenfgin ORHaround 2.5%). Another
possibility for the TAA 3mer is an importance as part of gremoterregion. The sigma70
holoenzyme aaches itself to the sequence seen in (1). The latter part being around 10 bases
upstream of a CDS and containing TAPable4.3.1shows significant partial sequences from

the sigma7@romotersequence (ATAA)which coincides with underlying theory.
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5.5Limitations and further research

There are many directions to take when it comes to genome annotation. In this thesis the focus
was to apply theoretical knowledge concerning the start position of a gene and see if it
coincided in general for a machine learning application. Due to cartstoaily one aspect
surrounding the prokaryotic genome has been investigated, namely aspects surrounding the
upstream sequence data. In this section some limitations and suggestions are made for further

research.

The first, most obvious limitation is tlexistence of operonQperons prove to be difficult as

they consist of gene clusters with g@remoterupstream of the first gene in the cluster. This

limits the upstream machine learning classification to genes with little to no operons, which is

not a @se in the prokaryotic genomia.fact, there is a possibility that many of the false

negative classifications are genes in an operon cldsiassible way to counterbalanttese

false negatives to account for distance betwde®RFs in the final traiing dataset. A small

distance meaning a higher chance of being in a clustether possibility would be to make
aninGHSWK DQDO\VLY RI WKH RSHURQTYTV IXQFWLRQV DQG VH!

to classify such operons.

Ideally a genel&ed model trained on all coding sequences present in different genomes
would have been a better fit for a future annotation model. The modelling results presented in
this thesis are made genome wise to account for the variation between them. Howeler, not
sequences have known species. When sequencing a metagenome, the species information is
lost. This information loss would make the models redundant. A model that could be able to
classify sequences without species definition would, in a metagenorajdealseneficial. It

would be advantageous to map the difference in performance between a generalized model

trained on all 15 genomes against a model trained on only one genome.

Another limitation is the high dependency on the RefSeq annotations toaithieg datasets.

As mentioned in the Section 5.1, the RefSeq annotation pipeline is still a work in progress and
the data that the thesis surrounds itself around is notfeeearThe fact that the annotation

data contains errors can have led to fatseclusions for the machine learning models. A

wrong target label may lead to the supervised model making false assumptions, and if there
are enough, lead to an entirely useless model. For instance the LDA classifier is shown to be
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typically inconsistenin the present of label noise unless the prior probabilities of each class

are equa(Cannings, 2019)

Some label noise could have been removed by eliminating the uncertain protein annotations.
This would have led to a total removal of 3$4 observations of the positive class (see table
4.4.1). This corresponds to a loss of 29,4%mpdequences. For the dataset with an ORF

filter length of 90, the mean number of ORFs per LORF is 16. By removing {8416
observations an average of 2884 noncoding observations would have been removed as

well. This would have resulted in a datase83882 coding ORFs and 68%6 noncoding

ORFs. The relation would have been the same, but the information present in the sequences

may have been less noisy and more informative.

The removal of LORFs that do not match any LORFs in the RefSeq aonalata may have
OHIW RXW VRPH WUXH SRVLWLYH YDULDWLRQ 6RPH PD\ FR(
truest of negative classes in a binary classification, as no open reading frame is said to be a
coding sequence. In this thesis the LORFs thahdidnatch the RefSeq LORFs were filtered
away, leaving behind only the LORFs already present in the reference data. These true
negatives may have contributed by explaining some variance in the dataset, but it is not
certain. The initial problem statemeegarding inclusion of the alternative LORFs was the
balancing of skewness. The balanced random forest classifier is an ideal classifier in that
sense as it randomly downsamples the majority class to be of same size as the minority and
can counter this aginal problem. An idea is to train an unfiltered ORF dataset with the

dataset presented in this thesis to see if the model can discern better between coding ORFs
and norcoding ORFs. ORFs here being all the alternative start and end positions present in a

genome.

Small proteins have been left out from the model training. By lowering the minimum length
of an ORF the false positive rate increases rapidly at the cost of some information loss. In
Table 4.2.1 the number of false positives was found to beDdd@®whereas the true

positives were found to be 50 226. The total true positive rate when comparing this to the
reference was at 338, meaning a loss of 5312 observations of the positive class in the
training dataset. These small proteins are typidatlgen or excluded in genome annotations
due to the large number of false positive prediction that occurs with an increased search

space.

63



An ideal expansion to the training dataset would be to introduce small genes shorter than 90
bp. Smaller protein pradtts are being recognized and can encode functional polypeptides or

act as cigranslational regulator@hitun et al.,2019) These small open reading frames

(smORFs) have been overlooked in this thesis due to the issue of an imbalanced dataset in the
training data. It ishowever, a possibility to investigate the mapping of mMRNA data to the

genome to include these smBd&in the datas€Weaver et al., 2019)

An idea in terms of future work would be to implement the model presented here as part of a
pipeline. Given the high recall and false positives present it would be ideal to utilize the
upstream sequence model paired with a Balanced random forest classifierfirst initial

step of an annotation process. Ideally, the model could lower its threshold to become more
liberal in its classification. Increasing the search space and making sure actual genes are
moved further down the pipeline while false postiware slowly chipped away using more

conservative methods from new datasets.
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6.Conclusion

The initialaim of the thesis wat Sinvestigate if sequences upstream of a start codon in an

OREF is informative enough to discern between coding anecadimg ORFs”. Here two

datasets with different attributes have been created, namelper kind a sequential dataset.
These datasets show many similarities in terms of results, and they both performed worse than
Prodigal, our standard annotation software. The reagdehind this is quite simple;

Prodigal looks for more than just upstream sequences. As far as upstream sequences are
concerned, the models managed to pull all the information available from both datasets, with
very limited value. However, there is Etituch more information surrounding genes to base

annotation around.

Experimentallya general understandingbiology has beemncovered However, evolution

creates a larger scope of possibilities that may not always be as easy to model for the current
data. Based on the results, there apgtedne a pattern pointing to specific motifs in the

dataset, but the classification results only manage to scrape the surface. An ideal step forward
is to expand into a pipeline so that the complex false negasissifitations may be

explained.

65



Bibliography

Abril, J. F. C., S. (2019). Genome AnnotatioBntryclopedia of Bioinformatics and Computational Biology

Ameer, M. W., A. Salen, P. (2021). Escherichia Coli (E Coli 0157atP8arls
https://www.ncbi.nlm.nih.gov/books/NBK507845/

Anders, J., Petruschke, H., Jehmlich, N., Haange, S. B., von Bergen, M., & Stadler, P. F. (2021). A workflow to
identify novel proteins based on the direct mapping of peptapectrummatches to genomic
locations.BMC Bioinformatic®2(1), 277 https://doi.org/10.1186/s12859021-041598

Arlot, S. C., A. (2010). A survey of creagdation procedures

for model selectionStatistics Surveyd, 40-79. https://doi.org/http://dx.doi.org/10.1214/09-SS054

Armstrong, J., Fiddes, I. T., Diekhans, M., & Paten, B. (2019).-G/otene Alignment and Comparative
Annotation.Annu Rev Anim Bios@i 41-64. https://doi.org/10.1146/annurevanimat020518115005

Barker, M. R., W. . (2002). Partial least squares for discrimindiomnal of chemometricd7, 166173.
https://doi.org/10.1002/cem.785

Bergstra, J. B., Y. (2010). Random Search for HRgrameter Optimizationlournal of Machine Learning
Researchl3, 281-305.

Breiman, L. (2001). Random Fore#fsichine Learningd5, 5-32.
https://doi.org/https://doi.org/10.1023/A:1010933404324

Brenner, S. M., J. (200Bncyclopedia of GenetidsIsevier Science Inc.

Britannica, T. (2018Dperon Retrieved 17.04 frorhttps://www.britannica.com/science/operon

Campbell, Exploring Machine Learning : Introducing sdikrn for ML in Pytharhttps://cornell-
library.skillport.com/skillportfe/main.action?path=summary/BOOKS/130007

Cannings, T., Fan, Y. Samworth, R. (2019). Classification with imperfect training labels

https://doi.org/

https://doi.org/10.48550/arXiv.1805.11505

Cebrat, S., Dudek, M. R., Mackiewicz, P., Kowalczuk, M., & Fita, M. (1997). Asymmetry of coding versus
noncoding strand in coding sequences of different genorvéstob Comp Genomicg(4), 259268.
https://doi.org/10.1089/0mi.1.1997.2.259

Chicco, D. (2017). Ten quick tips for machine learning in computational biBio@ata Min 10, 35.
https://doi.org/10.1186/s13046017-01553

Chicco, D., Totsch, N., & Jurman, G. (2021). The Matthews correlation coefficient (MCC) is more reliable than
balanced accuracy, bookmaker informedness, aratkedness in twalass confusion matrix
evaluation.BioData Min 14(1), 13.https://doi.org/10.1186/s13046021-00244z

Cover, T. M. H., P E. (1968). The Condensed Nearest NeighbdERBI|draactions on Information Theaqry
14(3), 515516. https://doi.org/10.1109/TIT.1968.1054155

developers, sl. (20072022).Permutation feature importanceRetrieved 01.05 frorttps://scikit-
learn.org/stable/ _sources/modules/permutation_importance.rst.txt

Dong, Y., Li, C., Kim, K., Cui, L., & Liu, X. (2021). Genome annotation ofcdigssempmicroorganismBrief
Bioinform 22(2), 845854. https://doi.org/10.1093/bib/bbab004

Eddy, S. R. (2004). What is a hidden Markov mddatBiotechnql22(10), 13151316.
https://doi.org/10.1038/nbt10041315

Errington, J., & Aart, L. T. V. (2020). Microbe Profile: Bacillus subtilis: model organism for cellular development,
and industrial workhorseMicrobiology (Reading)l66(5), 425427.
https://doi.org/10.1099/mic.0.000922

Fawcett, T. (2006). An introduction to ROC analfsttern Recognition Lettera7, 861t874.
https://doi.org/doi:10.1016/j.patrec.2005.10.010

Flach, P. W., S. (2002) pR&ing Concavities in ROC Curves.
https://www.ijcai.org/Proceedings/05/Papers/0652.pdf

Gabbay, D. M. W., J. (200B)Practical Logic of Cognitive Systéial. 2). Elsevier.
https://doi.org/https://doi.org/10.1016/S18745075(05)8002-0.

Galperin, M. Y. (2001). Conserved 'hypothetical proteins: new hints and new p@aep.Funct Genomics
2(1), 1418. https://doi.org/10.1002/cfq.66

Galperin, M. Y., Kristensen, D. M., Makarova, K. S., Wolf, Y. I., & Koonin, E. V. (2019). Microbial genome
analysis: the COG approa@rief Bioinform20(4), 10631070.https://doi.org/10.1093/bib/bbx117

66


https://www.ncbi.nlm.nih.gov/books/NBK507845/
https://doi.org/10.1186/s12859-021-04159-8
https://doi.org/http:/dx.doi.org/10.1214/09-SS054
https://doi.org/10.1146/annurev-animal-020518-115005
https://doi.org/10.1002/cem.785
https://doi.org/https:/doi.org/10.1023/A:1010933404324
https://www.britannica.com/science/operon
https://cornell-library.skillport.com/skillportfe/main.action?path=summary/BOOKS/130007
https://cornell-library.skillport.com/skillportfe/main.action?path=summary/BOOKS/130007
https://doi.org/
https://doi.org/10.48550/arXiv.1805.11505
https://doi.org/10.1089/omi.1.1997.2.259
https://doi.org/10.1186/s13040-017-0155-3
https://doi.org/10.1186/s13040-021-00244-z
https://doi.org/10.1109/TIT.1968.1054155
https://scikit-learn.org/stable/_sources/modules/permutation_importance.rst.txt
https://scikit-learn.org/stable/_sources/modules/permutation_importance.rst.txt
https://doi.org/10.1093/bib/bbab004
https://doi.org/10.1038/nbt1004-1315
https://doi.org/10.1099/mic.0.000922
https://doi.org/doi:10.1016/j.patrec.2005.10.010
https://www.ijcai.org/Proceedings/05/Papers/0652.pdf
https://doi.org/https:/doi.org/10.1016/S1874-5075(05)80027-0
https://doi.org/10.1002/cfg.66
https://doi.org/10.1093/bib/bbx117

Haft, D. H., DiCuccio, M., Badretdin, A., Brover, V., Chetvernin, V., O'Neill, K., Li, W., Chitsaz, F., Derbyshire, M.
K., Gonzales, N. R., Gwadz, M., Lu, F., Marchler, Song, J. S., Thanki, N., Yamashita, R. A., Zheng,
C., ThibaueNissen, F., Geer, L. Y., . .. Pruitt, K. D. (2018). RefSeq: an update on prokaryotic genome
annotation and curationNucleic Acids Re$6(D1), D851D860.https://doi.org/10.1093/nar/gkx1068

Hanley, J. M., B. (1982). The Meaning and Use of the Area

under a Receiver Operating

Characteristic (ROC) CurfRadiology 143, 29-36.
Hunter, J. D. (2007). Matplotlib is a 2D graphics packagefas&ython for

application development, interactive scripting, and publicaterality

image generation across user interfaces and operating syst€oraputing in Science & Engineeriago0-95.
https://doi.org/10.1109/MCSE.2007.55

Hyatt, D., Chen, G. L., Locascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: prokaryotic
gene recognition and translation initiation site identificati®MC Bioinformaticsl1, 119.
https://doi.org/10.1186/1471210511-119

Iriarte, A., Lamolle, G., & Musto, H. (2021). Codon Usage Bias: An Endle3®/bhlEVqI89(9-10), 589593.
https://doi.org/10.1007/s00239021-10027z

Khitun, A., Ness, T. J., & Slavoff, S. A. (2019). Small open reading frames and cellular stress tdsponses.
Omics15(2), 108116.https://doi.org/10.1039/c8m000283e

Kozak, M. (1999). Initiation of translation in prokaryotes and eukary@esg 234(2), 187208.
https://doi.org/10.1016/s03781119(99)002168

Land, M., Hauser, L., Jun, S. R.,Kdew, |., Leuze, M. R., Ahn, T. H., Karpinets, T., Lund, O., Kora, G.,
Wassenaar, T., Poudel, S., & Ussery, D. W. (20%thts from 20 years of bacterial genome
sequencingFunct Integr Genomic$5(2), 141161.https://doi.org/10.1007/s10142015-04334

Lander, E. S, Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M.,
FitzHugh, W., Funke, R., Gage, D., Hatrjg;leaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R.,
McEwan, P., . .. International Human Genome Sequencing, C. (2001). Initial sequencing and analysis of
the human genomeNature, 4096822), 86921.https://doi.org/10.1038/35057062

Li, W., O'Neill, K. R., Haft, D. H., DiCuccio, M., Chetvernin, V., Badretdin, A., Coulouris, G., Chitsaz, F.,
Derbyshire, M. K., Durkin, A. S., Gonzales, N. R., Gwadz, M., Lanczycki, C. J., Song, J. S., Thanki, N.,
Wang, J., Yamashita, R. A., Yang, M., Zheng, C., . . . TNibaed, F. (2021). RefSeq: expanding the
Prokaryotic Genome Annotation Pipeline reach with protein family model curdtiooleic Acids Res
49(D1), D102@D01028 https://doi.org/10.1093/nar/gkaal105

Liu, Y. R., W. (2007). PLS and dimension reduction for classifi€dimputational statistic22, 183208.

Lomsadze, A., Gemayel, K., Tang, S., & Borodovsky, M. (2018). Modeling leadertesiption and atypical
genes results in more accurate gene prediction in prokary@enome Re28(7), 10791089.
https://doi.org/10.1101/gr.230615.117

MartinezCano, D. J., Rey&sieto, M., MarthezRomero, E., Partidiartinez, L. P., Latorre, A., Moya, A., &
Delaye, L. (2014). Evolution of small prokaryotic genoifesit Microbio| 5, 742.
https://doi.org/10.3389/fmich.2014.00742

Mejia-Almonte, C., Bushy, S. J. W., Wade, J. T., van Helden, J., Arkin, A. P., Stormo, G. D., Eilbeck, K., Palsson, B.
0., Galagan, J. E., & Colladides, J. (2020). Redefining fundamental concepts of transcription
initiation in bacteriaNat Rev GeneR1(11),699-714.https://doi.org/10.1038/s41576020-0254-8

Michel, V. T., B. Varoquaux, G. Gramfort, A. Duchesnay, E. Buitinck, L. Joly, A.(802t)ate selection.py
In https://github.com/scikitlearn/scikit
learn/blob/baf828cal/sklearn/feature selection/ univariate selection.py#L.170

Minsky, M. (1961). Steps TovebArtificial IntelligenceProc. IRE49, 8.30.

Mir, K., Neuhaus, K., Scherer, S., Bossert, M., & Schober, S. (2012). Predicting statistical properties of open
reading frames in bacterial genoméd_oS Oné&(9), e45103.
https://doi.org/10.1371/journal.pone.0045103

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E.,
Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families
database in 202INucleic Acids Re49(D1), D412D419.https://doi.org/10.1093/nar/gkaa913

NCBI. (2021aNCBI Prokaryotic Genome Annotation PipelRetrieved 31.01 from
https://www.ncbi.nlm.nih.gov/genome/annotation_prok/

67


https://doi.org/10.1093/nar/gkx1068
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1007/s00239-021-10027-z
https://doi.org/10.1039/c8mo00283e
https://doi.org/10.1016/s0378-1119(99)00210-3
https://doi.org/10.1007/s10142-015-0433-4
https://doi.org/10.1038/35057062
https://doi.org/10.1093/nar/gkaa1105
https://doi.org/10.1101/gr.230615.117
https://doi.org/10.3389/fmicb.2014.00742
https://doi.org/10.1038/s41576-020-0254-8
https://github.com/scikit-learn/scikit-learn/blob/baf828ca1/sklearn/feature_selection/_univariate_selection.py#L170
https://github.com/scikit-learn/scikit-learn/blob/baf828ca1/sklearn/feature_selection/_univariate_selection.py#L170
https://doi.org/10.1371/journal.pone.0045103
https://doi.org/10.1093/nar/gkaa913
https://www.ncbi.nlm.nih.gov/genome/annotation_prok/

NCBI. (2021bprokaryotic RefSeq Genomé&ECBI. Retrieved 31.01 from
https://www.ncbi.nlm.nih.gov/refseg/about/prokaryotes/

NCBI. (2021cRrokaryotic RefSeq Genomes IRétrieved 31.01 from
https://www.ncbi.nlm.nh.gov/genome/browse#!/prokaryotes/refseq_category:reference

NCBI. (2022zenBank and WGS StatistiBetrieved 05.05 from
https://www.ncbi.nlm.nih.gov/genbank/statistics/

Oliveira, M. M., BQ. Ferrari, L I. Vasconcelos, A T R. (2004). Ribosome binding site recognition using neural
networks.Genetics and Molecular Biolad7(4), 644650.https://doi.ora/
https://doi.org/10.1590/S141547572004000400028

Omotajo, D., Tate, T., Cho, H., & Choudhary, M. (2015). Distribution and diversity of ribosome binding sites in
prokaryotic genomesBMC Genomi¢4d 6, 604.https://doi.org/10.1186/s12864015-18086

Palleja, A., Harrington, E. D., & Bork, P. (2008). Large gene overlaps in prokaryotic genomes: result of functional
constraints or mispredictionsdBMC Genomi¢®, 335.https://doi.org/10.1186/147121649-335

Pearson, K. (1901). On lines and planes of closest fit to systems of points inRpksmphical Magazine,
559572 https://doi.org/https://doi.org/10.1080/14786440109462720

Pearson, W. R. (2013). An introduction to sequence similarity ("homology") searChimd?rotoc
Bioinformatics Chapter 3Unit3 1.https://doi.org/10.1002/0471250953.bi0301s42

Pedregosa, F. V., G. Gramfort, A. Michel, V. Thirion, B. Grisel, O. Blondel, M. Prettenhofer, P. Weiss, R.
Dubourg, V. Vanderplas, J. Passos, A. Cournapeau, D. Brucher, M. Perrot, M. Duchesnay, E. (2011
Scikitlearn: Machine Learning in Pythafournal of Machine Learning ReseathU T6TA>T611 X

Perna, T. G., J. Burland, V. Plunket Ill, G. (200R)ence Mechanisms of a Versatile Pathadesevier Inc.

Perry, S. C., & Beiko, R. G. (2010). @jsighing microbial genome fragments based on their composition:
evolutionary and comparative genomic perspectivéenome Biol Eva, 117131.
https://doi.org/10.1093/gbe/evq004

R Development Core Team. (201R) A language and environment for statistical computindR Foundation
for Statistical Computingnttp://www.R-project.org

Raschka, S. M., V.O®).Python Machine Learnin@ ed.). Packt Publishing Ltd.

RuisPerez, D. G., H. Madhivanan, P. Mathee, K. Narasimhan, G. (2020). So you think yotD&e?BRIGS
Bioinformatics 21. https://doi.org/https://doi.org/10.1186/s12859019-3310-7

sklearn. (N.YDecision Tree Classifiétt ps://scikit-
learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTr
eeClassifier

Snipen, L. (2017mpda In https://github.com/larssnip/mpda

Snipen, L., & Lilan&. H. (2016)Basic Biological Sequence AnalysigVersion 2.1.5) [Package].

Snipen, L., & Liland, K. H. (20EiAdOrfs https://github.com/larssnip/microseqg/blob/master/R/orf&R

Stein, L. (2006, 18.08.202@eneric Feature Format Version 3 (GFR8jrieved 27.03 from
https://github.com/The SequenceOntology/Specifications/blob/masterfé3.md

Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., Lomsadze, A., Pruitt, K.
D., Borodovsky, M., & Ostell, J. (2016). NCBI prokaryotic genome annotation pilNelifeic Acids
Res44(14), 66146624.https://doi.org/10.1093/nar/gkw569

ThermoFisher. (n.dRibosomal Binding Site Sequence RequiremBetsieved 26.04 from
https://www.thermofisher.com/no/en/home/references/ambiofiech-support/translatior
systems/generahirticles/ribosomalbindingsite-sequencerequirements.html

Vinje, H., Snipen, L., & Liland, K. H. (20#&}hods for 16S based taxonomic classification of prokarybtes
(Version 1.2) [R package].

Volkenborn, K., Kuschmierz, L., BenzlBhz, P., Knapp, A., & Jaeger, K. E. (2020). The length of ribosomal
binding site spacer sequence controls the production yield for intracellular and secreted proteins by
Bacillus subtilisMicrob Cell Fa¢tl9(1), 154 https://doi.org/10.1186/s12934020-014042

Watson, J. D. B., T. Stephen, B. Alexander, G. Michael, L. Richard, L. . (19849(6td)ar Biology of the
Geng(7th ed.). Pearson.

Weaver, J., Mohammad, F., Buskirk, A. R., & SBor2019). Identifying Small Proteins by Ribosome Profiling
with Stalled Initiation ComplexemBiq 10(2). https://doi.org/10.1128/mBi0.0281918

Webb, G. I. B., J R. Wang, Z. (2006).So Naive Bayes: Aggregating @ependence EstimatordMachine
Learning 58, 5- 24. https://doi.org/https://doi.org/10.1007%2Fs10938054258 6

Wickham, H. (2016ygplot2: Elegant Graphics for Data AnalySipringefVerlag New York.
https://ggplot2.tidyverse.org

68


https://www.ncbi.nlm.nih.gov/refseq/about/prokaryotes/
https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/refseq_category:reference
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://doi.org/
https://doi.org/10.1590/S1415-47572004000400028
https://doi.org/10.1186/s12864-015-1808-6
https://doi.org/10.1186/1471-2164-9-335
https://doi.org/https:/doi.org/10.1080/14786440109462720
https://doi.org/10.1002/0471250953.bi0301s42
https://doi.org/10.1093/gbe/evq004
http://www.r-project.org/
https://doi.org/https:/doi.org/10.1186/s12859-019-3310-7
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://github.com/larssnip/mpda
https://github.com/larssnip/microseq/blob/master/R/orfs.R
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://doi.org/10.1093/nar/gkw569
https://www.thermofisher.com/no/en/home/references/ambion-tech-support/translation-systems/general-articles/ribosomal-binding-site-sequence-requirements.html
https://www.thermofisher.com/no/en/home/references/ambion-tech-support/translation-systems/general-articles/ribosomal-binding-site-sequence-requirements.html
https://doi.org/10.1186/s12934-020-01404-2
https://doi.org/10.1128/mBio.02819-18
https://doi.org/https:/doi.org/10.1007%2Fs10994-005-4258-6
https://ggplot2.tidyverse.org/

Wold, S. S., M. Eriksson, L. (2001)-regfession: a basic tool of chemomegfi€hemometrics and Intelligent
Laboratory System$&8(2), 109130. https://doi.org/https://doi.org/10.1016/S01697439(01)00158L

69


https://doi.org/https:/doi.org/10.1016/S0169-7439(01)00155-1

Attachments

Attachment 1

Completetable with metrics and best parameters for the four selected genomes after running
of four different classifies with theK-merdataset

Precision Recall F1 =~ MCC Genome Classifier Tuning Reduction
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imblearn
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glassifierq
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plassifier__n_neighbo%10, glassifier M
2

plassifier__n_estimatofs900

plassifier{ LogisticRegression(),

regression plassifier_ CY1.0

knn

Ida+pls

imblearn

logistic

glassifiery
KNeighborsClassifier(n_neighbors=10, p=1).
glassifier__n_neighbo%10, glassifier
1

glassifier __n_estimatofs300

plassifier{ LogisticRegression(),

regression plassifier_ CY1.0

knn

Ida+pls

imblearn

logistic

glassifierq
KNeighborsClassifier(n_neighbors=10, p=1),
glassifier__n_neighbo%$10, glassifier
1

glassifier__n_estimatofs500

glassifier{ LogisticRegression(C=0.01),

regression plassifier__ C0.01

knn
Ida+pls

imblearn

logistic

glassifier] KNeighborsClassifier(),
plassifier__n_neighbo%5, plassifier 2

glassifier___n_estimatofs300

glassifier{ LogisticRegression(C=0.01),

regression glassifier _ C70.01
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imblearn

logistic

glassifierq
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0.0
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0.01

0.01

0.18
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glassifier{ LogisticRegression(C=0.01),
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Attachment 2
Complete table with metrics and parameters after running dbtielifferent classifiers on
the four selected genomes with the sequential dataset

Precision Recall F1  MCC Genome Classifier Tuning Reduction

0.48 0.92 0.63 0.64 Bacillus subtilis imblearn Zlassifier__n_estimators800 0.0

0.48 0.92 0.63 0.64 Bacillus subtilis imblearn Zlassifier__n_estimatorg700 500.0

0.48 0.92 0.63 0.64 Bacillus subtilis imblearn Zlassifier__n_estimators800 1000.0

0.48 0.92 0.63 0.63 Bacillus subtilis imblearn Zlassifier__n_estimatorg700 1500.0

0.51 0.85 0.64 0.62 ;ﬁj"r‘]f’y"’bade' imblearn  Zlassifier__n_estimators700 1000.0

0.5 0.84 0.63 0.61 j(éﬁjr?“pylobacter imblearn Zlassifier__n_estimators600 0.0

0.5 0.84 063 061 ;ﬁr’r‘fy'c’ba‘:te' imblearn  Zlassifier _n_estimatorg500 500.0

0.5 0.84 062 061 ;ﬁr’r‘fy'c’ba‘:te' imblearn  Zlassifier _n_estimatorg500 1500.0

0.31 0.9 0.46 0.48 C_au_lobacter imblearn Zlassifier__n_estimators600 0.0
vibriodes

0.31 0.9 046 04g Caulobacter . .am  Zassifier n_estimators500 1000.0
vibriodes

0.31 0.89 046 04g Caulobacter . am  Zassifier n_estimators400 500.0
vibriodes

0.3 0.89 045 047 Caulobacter . am  Zassifier n_estimators500 1500.0
vibriodes
E. coli . . .

0.15 0.58 0.24 0.22 O156H7_sakai imblearn Zlassifier__n_estimatorg900 1000.0
E. coli . o .

0.15 0.58 0.24 0.21 O156H7_sakai imblearn Zassifier__n_estimators800 1500.0
E.coli . o .

0.15 0.57 0.24 0.21 O156H7_sakai imblearn Zassifier__n_estimators800 0.0

0.15 0.57 0.24 0.21 E. coli imblearn Zlassifier__n_estimatorg900 500.0

O156H7_sakai
Zassifief KNeighborsClassifier(p=1'

0.78 0.46 0.58 0.58 Bacillus subtilis knn Zlassifier__n_neighboisb, 0.0
Zassifier__d 1
Zassifieff KNeighborsClassifier(p=1,
0.78 0.46 0.58 0.58 Bacillus subtilis knn Zassifier__n_neighbois5, 500.0
Zassifier__d 1
Zassifief KNeighborsClassifier(p=1'
0.78 0.46 0.58 0.58 Bacillus subtilis knn Zlassifier__n_neighboisb, 1000.0
Zassifier__g1
Zassifieff KNeighborsClassifier(p=1
0.78 0.46 0.58 0.58 Bacillus subtilis knn Zassifier__n_neighbors5, 1500.0
Bassifier__d 1
Zlassifierf
Campylobacter KNeighborsClassifier(n_neighbors=1
0.88 0.49 0.63 0.64 jejuni knn p=1), dassifier_n_neighbors10, 0.0
Zassifier__g1
Zlassifierf
0.88 0.49 063 0.64 ng_pylobacter Kknn KL\Ieighbor;_CIassifier(p_neighbors=1 500.0
jejuni p=1), dassifier__n_neighbors10,
Aassifier__d 1
Campylobacter Zlassifierf
0.88 0.49 063 0.64 jejuni knn KNeighborsClassifier(n_neighbors=1 1000.0
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0.54
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0.72

0.72
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0.14

0.63
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0.7
0.7
0.7
0.7

0.70

0.70

0.70

0.70

0.48

0.48

048

048

0.19

Campylobacter
jejuni

Caulobacter
vibriodes

Caulobacter
vibriodes

Caulobacter
vibriodes

Caulobacter
vibriodes

E. coli
O156H7_sakai

E. coli
0156H7_sakai

E. coli
0156H7_sakai

E. coli
O156H7_sakai

Bacillus subtilis
Bacillus subtilis
Bacillus subtilis
Bacillus subtilis
Campylobacter
jejuni
Campylobacter
jejuni
Campylobacter
jejuni
Campylobacter
jejuni
Caulobacter
vibriodes
Caulobacter
vibriodes
Caulobacter
vibriodes
Caulobacter
vibriodes

E. coli
0156H7_sakai

knn

knn

knn

knn

knn

knn

knn

knn

knn

Ida+pls
Ida+pls
Ida+pls
Ida+pls

Ida+pls
Ida+pls
Ida+pls
Ida+pls
Ida+pls
Ida+pls
Ida+pls
Ida+pls

Ida+pls

p=1), dassifier _n_neighbors10,
Zlassifier__gd 1
Zlassifierf

KNeighborsClassifier(n_neighbors=1

p=1), Aassifier _n_neighborsl0,
Aassifier g1

1500.0

Zlassifielf KNeighborsClassifier(p=1,

Zassifier__n_neighbors5,
Zlassifier__gd 1

0.0

Zlassifielf KNeighborsClassifier(p=1,

Zassifier__n_neighbois5,
Aassifier g1

500.0

Zlassifief KNeighborsClassifier(p=1

Zassifier__n_neighbors5,
Zlassifier__gd 1

1000.0

Zassifieff KNeighborsClassifier(p=1,

Zassifier__n_neighbors5,
Zlassifier _ g1
Zlassifier

KNeighborsClassifier(n_neighbors=1

Zlassifier__n_neighbofsl0,
Zassifier__(d 2
Zlassifierf

KNeighborsClassifier(n_neighbors=1

Zassifier__n_neighborsl0,
Zlassifier g 2
Zlassifierf

KNeighborsClassifier(n_neighbors=1

Zassifier__n_neighborsl0,
Zassifier__(d 2
Zlassifierf

KNeighborsClassifier(n_neighbors=1

Zlassifier__n_neighbofsl0,
Zlassifier g2

1500.0

0.0

500.0

1000.0

1500.0

0.0
500.0
1000.0
1500.0

0.0

500.0

1000.0

1500.0

0.0

500.0

1000.0

1500.0

0.0
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0.73

0.73

0.73

0.68

0.68

0.68

0.68

0.48

0.48

0.48

0.48

0.08

0.08

0.08

0.08

E. coli

0156H7_sakai '93*PIS
E. coli
O156H7_sakai 9&*PIS
E. coli lda-+pls
0156H7_sakai
Bacillus subtilis 1°9/StC
regression
Bacillus subilis 1°9/StC
regression
Bacillus subtilis logistic .
regression
Bacillus subtilis logistic .
regression
Campylobacter logistic
jejuni regression
Campylobacter logistic
jejuni regression
Campylobacter logistic
jejuni regression
Campylobacter logistic
jejuni regression
Caulobacter  logistic
vibriodes regression
Caulobacter  logistic
vibriodes regression
Caulobacter logistic
vibriodes regression
Caulobacter  logistic
vibriodes regression
E. coli logistic
0156H7_sakai regression
E. coli logistic
0O156H7_sakai regression
E. coli logistic
0O156H7_sakai regression
E. coli logistic

0156H7_sakai regression

Zlassifierf LogisticRegression(C=0.1

Zlassifier__¢0.1

Zlassifierf LogisticRegression(C=0.1

Zlassifier__¢0.1

Zlassifierf LogisticRegression(C=0.1

Aassifier _ ¢0.1

Zlassifierf LogisticRegression(C=0.1

Aassifier _ ¢0.1
Zlassifierf LogisticRegression(),
Zassifier__¢1.0
Zlassifielf LogisticRegression(),
Zlassifier ¢ 1.0
Zlassifierf LogisticRegression(),
Zlassifier ¢ 1.0

dlassifierf LogisticRegression(C=0.1

Zassifier__¢0.1
Zlassifierf LogisticRegression(),
Zassifier__¢1.0
Zlassifierf LogisticRegression(),
Zlassifier ¢ 1.0
Zlassifierf LogisticRegression(),
Zlassifier ¢ 1.0
Zlassifierf LogisticRegression(),
Zassifier__¢1.0

Zassifierf LogisticRegression(C=0.1

Zassifier__¢0.1

dassifierf LogisticRegression(C=0.1

Zassifier __ §0.1

dassifierf LogisticRegression(C=0.1

Zassifier __§0.1

Zassifierf LogisticRegression(C=0.1

Zassifier__¢0.1

500.0

1000.0

1500.0

500.0

1000.0

1500.0

500.0

1000.0

1500.0
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1000.0
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