

Master’s Thesis 2022 30 ECTS

Faculty of Chemistry Biotechnology and Food Sciences

DeepGene – Gene finding based on

upstream sequence data

Trude Haug Almestrand

M- KB Bioinformatics

i

ii

Abstract

Genome annotation is a process of identifying functional elements along a genome. By

correctly locating and finding the information stored within a sequence, knowledge about

structural features and functional roles can be revealed. With the number of sequences

doubling approximately every 18 months, there is a severe need for automatic annotation of

genomes. Today there are many different annotation software tools available, however they

produce far from perfect results.

Here a new project, DeepGene, is presented. Using data from the RefSeq prokaryotic database

we have started an effort to improve on the prokaryotic genome annotation process.

This thesis presents the initial efforts of said improvement with a focus on discerning between

coding and non-coding sequences using upstream sequence data from open reading frames.

Using the 15 prokaryotic genomes available in the RefSeq database, upstream data was

retrieved and processed into two datasets, and were then trained using several popular

classification models. The performance of the models was compared with a standard

annotation tool to create a general baseline for our model. The models created from the

datasets show many similarities in terms of metrics. With the K-mer data having a mean

precision at 0.22 and mean recall of 0.74, and the sequential data having a mean precision at

0.30 and mean recall at 0.77. Both the datasets performed worse than our standard annotation

software with a mean recall and precision of, respectively, 0.83 and 0.82. As far as upstream

sequences are concerned, the models managed to pull all the information available from both

datasets. The initial results gave limited information in terms of classification and motif

presence indicating that other attributes surrounding the genome should be looked at for a

possible improvement on the annotation problem. An ideal step forward is to expand into a

pipeline so that the complex false negative classifications may be explained.

iii

Sammendrag

Genomannotering er en prosess som skal identifisere funksjonelle elementer langs et genom.

Ved å finne informasjonen lagret i en sekvens kan man avsløre kunnskap rundt strukturelle og

funksjonelle roller. Ettersom antall sekvenser dobler rundt hver 18. måned er det et sterkt

behov for automatisk gjenkjenning av genomer. I dag er det mange tilgjengelige

annoteringsverktøy, men de produserer langt fra perfekte resultater.

Et nytt prosjekt ved navn DeepGene er her presentert. Ved hjelp av data fra RefSeq

prokaryotiske database har vi startet et forsøk på å forbedre den prokaryotiske

annoteringsprosessen. I denne oppgaven presenteres begynnelsen på forbedringen.

Hovedfokuset var å skille mellom kodende og ikke-kodende sekvenser ved hjelp av

sekvensdata oppstrøms for åpne leserammer. Ved å benytte seg av de 15 prokaryotiske

genomene tilgjengelig i RefSeq databasen, ble oppstrømsdata hentet og prosessert til to

datasett. Disse datasettene ble videre trent ved hjelp av populære klassifiseringsmodeller.

Ytelsen til disse modellene ble sammenlignet med et standard annoteringsverktøy for å lage et

generelt utgangspunkt til vår modell. Modellene trent av datasettet viser mange likheter når

det kommer til ytelse. K-mer datasettet hadde en gjennomsnittlig presisjon på 0.22 og

nøyaktighet på 0.74. Videre hadde det sekvensielle datasettet en gjennomsnittlig presisjon på

0.30 og en nøyaktighet på 0.77. Begge datasettene hadde dårligere resultater enn vårt standard

annoteringsverktøy som hadde en gjennomsnittlig nøyaktighet og presisjon på henholdsvis

0.83 og 0.82. Når det kommer til oppstrømssekvenser klarer modellene å hente ut all

informasjon tilgjengelig fra datasettene. Resultatene ga begrenset med informasjon når det

kommer til klassifisering og motif-tilstedeværelse. Denne begrensningen indikerer at andre

attributter rundt genomet bør undersøkes for en mulig forbedring rundt annoteringsproblemet.

Et ideelt steg videre er å utvide modellene til en «pipeline» slik at komplekse falske negative

klassifiseringer kan bli forklart.

iv

Acknowledgements

The work presented in this thesis is the first part of a larger project dubbed DeepGene at the

faculty of chemistry and biotechnology, NMBU.

I would like to thank my main supervisor Lars Snipen, and co-supervisor Kristian Liland for

allowing me to be the groundbreaker in this exciting new project. I would also like to thank

them for the many good discussions, as well as their great feedback and guidance.

Trude Haug Almestrand

v

Table of contents

Abstract .. ii

Acknowledgements ... iv

List of figures ... vii

List of Abbreviations ... viii

1. Introduction ... 1

1.1 Finding Genes .. 1

1.2 Aim of study .. 4

2. Background ... 5

2.1 The Prokaryotic Genome ... 5

2.1.1 Promoters .. 6

2.1.2 The ribosomal binding site ... 7

2.1.3 The Operon ... 8

2.2 Open reading frames ... 9

2.3 Sequence characterization - annotations ... 10

2.4 The RefSeq reference genomes ... 11

2.5 Machine learning ... 14

2.5.1 Classification .. 14

2.5.2 Preprocessing .. 14

2.5.3 Hyperparameter optimization and cross validation .. 16

2.5.4 Logistic Regression .. 18

2.5.5 Partial Least Squares reduction and Linear Discriminant Analysis 18

2.5.6 K-nearest neighbors .. 19

2.5.7 Decision Tree ... 19

2.5.8 Random Forest ... 20

2.5.9 Gaussian Naïve Bayes .. 21

2.5.10 Evaluation ... 21

3. Method .. 25

3.1 Data ... 25

3.2 Comparison with a gene prediction software .. 28

3.3 Modelling .. 29

3.3.1 ORF-mapping and comparison ... 30

3.3.2 Upstream sequence retrieval ... 31

3.3.3 K-mer data .. 32

3.3.4 Sequential data ... 33

3.3.5 Classification Models ... 33

vi

3.3.6 Feature Selection .. 35

3.4 Chi square test ... 37

4. Results ... 38

4.1 Overview of data ... 38

4.2 Comparison with a gene prediction software .. 40

4.3 Chi square test ... 44

4.4 Modelling .. 45

4.4.1 The open reading frames .. 45

4.4.2 The Receiver Operating Characteristics ... 47

4.4.4 Four selected methods .. 49

4.4.5 Balanced Random Forest classification .. 51

4.4.6 Feature importances.. 54

5. Discussion ... 55

5.1 Data ... 55

5.2 Comparison with a gene prediction software .. 56

5.3 Classification based on upstream sequences ... 57

5.4 Motif importances in K-mer data .. 61

5.5 Limitations and further research .. 62

6. Conclusion .. 65

Bibliography ... 66

Attachments ... 70

Attachment 1 ... 70

Attachment 2 ... 73

vii

List of figures

Figure 1.1.1 Sequencing cost per megabase. ... 2

Figure 1.1.2 The growth of the GenBank database over the past decades. 2

Figure 2.1.1 Illustration of the beginning of a typical mRNA transcript. 8

Figure 2.1.2 Illustration of the operon clusters. 9

Figure 2.2.1 Illustrating of a long open reading frame. .. 10

Figure 2.4.1 The PGAP workflow for structural annotation. ... 13

Figure 2.5.1 An illustration of a 3-fold cross validation. T17

Figure 2.5.2 Euclidean, Manhattan and Minkowski distances. .. 19

Figure 2.5.3 Illustration of the topography of decision tree. .. 20

Figure 2.5.4 A basic ROC graph showing 4 discrete (binary) classifiers 23

Figure 3.2.1 Signature Illustration .. 29

Figure 4.1.1 Count overview of different uncertain annotations present in the RefSeq

annotated GFF files. ... 38

Figure 4.1.2 Dotplot showing the fraction of uncertain proteins for each genome. 39

Figure 4.4.1 ROC curve for multiple classification models trained on K-mer data. 47

Figure 4.4.2 ROC curve for multiple classification models trained on sequential data………48

Figure 4.4.3 Random forest feature importance for the K.mer data. 54

https://eduumb-my.sharepoint.com/personal/kristian_liland_nmbu_no/Documents/Veiledning/Genprediksjon/Trude%20Haug%20Almestrand/Master_Trude.docx#_Toc103246010
https://eduumb-my.sharepoint.com/personal/kristian_liland_nmbu_no/Documents/Veiledning/Genprediksjon/Trude%20Haug%20Almestrand/Master_Trude.docx#_Toc103246010

viii

List of Abbreviations

CDS Coding sequence

DNA Deoxyribonucleic acid

GFF General Feature Formats

KNN K Nearest Neighbors

LDA Linear Discriminant Analysis

LORF Long open reading frame

nt Nucleotides

ORF Open Reading Frame

PC Principal component

PGAP Prokaryotic Genome Annotation Pipeline

PLS Partial Least Square

PLS + LDA Partial Least-Squares + Linear Discriminant Analysis

RBS Ribosomal Binding Site

RNA Ribonucleic acid

SD Shine-Dalgarno

ix

1

1. Introduction

1.1 Finding Genes

Prokaryotes are the most primitive and ancient form of life. They are also the most abundant

and diverse empire on earth. No other organisms are as adaptable, and they are to be observed

everywhere, even places humans cannot travel. From hydrothermal vents that can reach a

temperature as high as 464 ℃ to frozen wastelands that can reach as low as -98,6 ℃. The

current discovered temperature that microbial life can survive extends from -25 ℃ to 130 ℃

(Martinez-Cano et al., 2014), underlining the diversity present in the prokaryotic genome.

The Human Genome project marked a milestone within the biological world after its

completion around 20 years ago (Lander et al., 2001). Not only has the project given

enormous contributions to science, it has also started a revolutionary development in the

world of bioinformatics. Today, sequencing is performed near continuously, and many

genomes (finished and unfinished) are easily available.

Public databases are the medium in which genome sequences are published. The databases are

important resources in biosciences. The public access allows researchers to utilize the data in

research allowing greater innovation and information surrounding genomes. Newer

sequencing technology has made it cheaper and more available to sequence the genome,

making it even easier to generate new data. Figure 1.1.1 illustrates the cost per raw megabase

of DNA sequence over the course of 20 years.

2

Figure 1.1.1 Sequencing cost per megabase retrieved from (NHGRI, 2022).

The amount of information does not seem to stagnate. Figure 1.1.2 illustrates the high amount

of sequencing data available in GenBank, one of the largest DNA-sequence databases in the

world. From 1982 to present data, the number of bases in GenBank has doubled

approximately every 18 months (NCBI, 2022).

Figure 1.1.2 The growth of the GenBank database over the past decades. Red line shows the

whole genome shotgun (WGS) projects, the blue line is GenBank sequences. Figure retrieved

from (NCBI, 2022).

3

With the increase of high throughput sequencing, a bigger demand for automating the

annotation of these sequences is required. Annotation of genomes is a multi-level process that

involves prediction of protein-coding genes and other elements (Abril, 2019). A very basic,

but essential part of annotation is to locate the start and end position of the coding genes.

There are currently many existing software tools that automates the annotation process. These

tools mainly focus on homology-based methods to classify gene products (Armstrong et al.,

2019; Galperin et al., 2019; Tatusova et al., 2016). An issue with these types of tools is their

limitation in discovering novel genes (Anders et al., 2021).

The existing annotation tools also produce far from perfect results, with several both false

positives and negatives (Dong et al., 2021). Some tools have self-stated error rates at around 4

– 6% per sequence (Lomsadze et al., 2018). When analyzing multiple sequences at a time this

error rate can quickly increase, leading to many false annotations. With an error rate of 4%, a

prokaryotic genome with 3000 genes gives 120 errors per genome. For a single genome, this

may not seem as much, but if applied to many genomes, the databases can quickly be filled

with false annotations. Especially when considering the already available sequences

illustrated in figure 1.1.2.

The large part of the issue lies within the classification of correct start position for the genes.

Because of overlapping Open Reading Frames some software have difficulties finding the

correct frame (Palleja et al., 2008). Using modern methods from Data Science the DeepGene

project has started an effort to improve on the prokaryotic genome annotation process.

4

1.2 Aim of study

The aim of this study is to investigate if sequences upstream of a start codon in an ORF is

informative enough to discern between coding and non-coding ORFs, and in the long run

locate the start position of a coding sequence in prokaryotic DNA.

This meant creating and processing a dataset based on the RefSeq prokaryotic genomes and

retrieving upstream sequences from all genomes respective fasta file. The final process

consisted of turning the sequence data into a numerical one for each genome and train a

machine learning model.

In this thesis we will initially focus on finding the correct start position of a coding gene by

utilizing existing theory from molecular biology. Firstly, we will see how well an existing

prokaryotic genome annotation software can find the correct start codon.

Afterwards we will attempt to establish a set of training data i.e., a set of genomes where we

have the most reliable information on where genes are found. We have started out with the 15

NCBI Reference genomes for prokaryotes. These being the best manual annotations we have

as of today. Using the training data, we will use multiple modern classification machine

learning models to see if there is any information to gather from the upstream sequence data.

The information being whether it is possible to recognize the start of a gene based on their

respective upstream sequence.

5

2. Background

2.1 The Prokaryotic Genome

In this subchapter certain molecular characteristics surrounding the prokaryotic genome will

be addressed. Specifically, the more general existing theories surrounding upstream sequences

will be described in detail, as well as some general characteristics surrounding prokaryotic

DNA. The upstream sequences play an important part in the prokaryotic metabolic process,

with many elements present a few bases upstream of a start codon.

The prokaryotic genome is primarily a circular, double stranded piece of DNA. DNA consist

of four bases: Adenine, Cytosine, Guanine and Thymine, which together form the information

of the genome. The backbone that supports the bases consists of every other phosphate and

the sugar deoxyribose. The combination of the sugar molecule, the phosphate group and a

nitrogen-containing base is called a nucleotide.

The blend of the four bases creates sequences, where some contain information. The

sequences coding for information or Coding Sequence (CDS) are partitioned into three bases

at a time. These three bases together are called a codon and codes for an amino acid. The

length of genomes varies but is in general a few million base pairs long (Land et al., 2015).

The information present in the sequences are so diverse, but many prokaryotes also share

common CDS’. Small variations in the CDS allow them to thrive in different locations yet

retain elements of the same machinery that gave them life.

Processing the information from the CDS to a polypeptide chain requires multiple steps.

Firstly, the information from a CDS must be read and transcribed to a messenger information

sequence. This messenger information sequence is called the mRNA strand, and the process is

called transcription. mRNA are linear molecules with an open reading frame that codes for

protein sequence(s). A single stranded RNA is transcribed from double stranded DNA.

Bacterial mRNAs can have one (monocitronic) or several (polycitronic) genes. This means

that bacterial mRNAs can have information for more than one polypeptide on a sequence. The

mRNAs are read as triplets (codons) from 5’ to 3’ of the DNA strand. The first codon is

always AUG (Methionine), but for some bacteria GUG and UUG have been observed

(Watson, 1965/2014).

6

The mRNA strand is translated into an amino acid by a process called translation. The

ribosome is an enzyme that facilitates the translation from mRNA to protein by attaching

itself on the mRNA strand. From there transporter RNAs or tRNAs (complementary to the

codon in the mRNA transcript) elongates a growing peptide chain one codon at a time inside

the ribosome. When a stop codon is reached, the elongation terminates leaving behind the

finished peptide chain.

2.1.1 Promoters

Promoters are found upstream of a coding sequence. Their function is to facilitate the

transcription from DNA to mRNA. In the prokaryotic genome only one factor protein (sigma)

is involved in the initiation process of transcription. The sigma factors aid RNA polymerase to

recognize promoters. There exist multiple sigma factors, where the sigma-70 is the most

common one (Mejia-Almonte et al., 2020).

The promoters recognized by the sigma-70 containing holoenzyme are defined by two

hexamer sequences. Namely the -35 and the -.10 boxes. They are separated by spacing region

of +/- 17 nucleotides (nt). The consensus sequence for the sigma-70 has been determined to

be consensus-sequence (1) (Brenner, 2001).

 TTGACA–N17–TATAAT (1)

From the middle of the -10 box to the middle of the -35 box the sequence (1) forms almost

two complete DNA helical turns. The sequences are in other words located on the same side

of the helix, and they are more easily recognized by the sigma factor of the holo RNA

polymerase.

7

Table 2.1.1 Sigma factors of Escherichia coli retrieved from (Brenner, 2001). Nx indicates

any nucleotide (N) x times.

Factor Gene Consensus binding site Genes regulated

σ70 rpoD TTGACA–N17–TATAAT Housekeeping

σ54 rpoN (ntrA) CTGGCAC–N5–TTGCA Nitrogen metabolism

σS rpoS (katF) TTGACA–N12–TGTGCTATACT Stationary phase

σ32 rpoH (htpR) CTTGAA–N14–CCCCATNT Heat shock

σF fliA TAAA–N15–GCCGATAA Flagellar proteins

σE rpoE GAACTT–N16–TCTGA Extreme heat shock

σfecI fecI GGAAAT–N17–TC Iron transport

The promoters of the different sigma units have different consensus sequences. A consensus

sequence is by definition the most frequent nucleotide or amino acid found at each position in

a given alignment (Watson, 1965/2014). Examples of sigma factors present in Escherichia

coli can be seen in table 2.1.1.1. These sequences are mainly conserved although some

deviations exist. The sequences of binding sites are in other words not always the same.

2.1.2 The ribosomal binding site

The upstream of the start codon usually contains a purine-rich sequence that pairs with a

complementary sequence in the 16S rRNA component of the small ribosomal unit (Kozak,

1999). Initiation of translation is regulated by the purine-rich sequence with the consensus

5’AGGAGG3’. The sequence is also called the Shine Dalgarno (SD) sequence. Various

Shine Dalgarno sequences have been found in prokaryotic mRNAs. Common for them is that

they lie around 10 nucleotides upstream from the AUG start codon (ThermoFisher, n.d).

The Ribosomal Binding Site (RBS) is located within the 5’ untranslated region of mRNA and

encloses the SD sequence, start codon and a short spacer in-between (Volkenborn et al.,

2020). An example of an RBS can be seen in table 2.1.1 An Omatojo et. al argues that the

length of the spacer enclosed in the RBS plays a role in the initiation of translation (Omotajo

et al., 2015). Another article from 2020 estimated the optimal spacer length to be at least 7 to

12 nucleotides (Volkenborn et al., 2020). The results were sequence-dependent, and not a

universal result.

8

Figure 2.1.1 Illustration of the beginning of a typical mRNA transcript. The 16srRNA binding

site is a complementary sequence of the 16S rRNA component of the small ribosome unit and

is located upstream of the coding sequences’ start codon.

As for the promoter sequences, the RBS is not always the same set of sequence. In fact, they

are highly degenerated with a great variation in base composition and localization. Because of

this, any conventional similarity search methods may have a very high error rate in their

predictions (Oliveira, 2004).

2.1.3 The Operon

Some genes in the prokaryotic genome assemble in clusters called operons. These genes have

the same promoter and terminator and are usually related either metabolically or functionally.

The operons are usually under the control of a single promoter. This promoter is controlled by

some regulatory elements called the operator that respond to external factors such as a

substance concentration. Some operons have regulatory genes upstream of the operon that

produce repressors. This regulator can either block transcription, leading to less protein

product, or function as an activator when removed (Britannica, 2018).

The polymerase RNA-enzyme transcribes all the coding sequences present in the operon as a

single RNA strand. Thus, only one ribosomal binding site upstream of the first coding

sequence in the operon exists (see figure 2.1.2).

9

Figure 2.1.2 illustration of the operon clusters. The operon consists of regulatory genes that

either activate or repress the transcription process. The transcript from the operon is a

polycitronic template that when translated creates multiple proteins.

2.2 Open reading frames

Proteins are encoded in open reading frames (ORF). Contained within an ORF are a span of

three nucleotides at a time between the start and stop codon (Mir et al., 2012). The open

reading frame starts with a start codon (ATG, GTG or TTG) and ends with a stop codon (e.g.,

TAA, TGA or TAG). For every stop-codon in the genome there are usually many different

start codons, and it gives rise to overlaps of ORFs.

DNA is partitioned into three nucleotides (codons) and contains two anti-parallel strands.

Because of the nature of the DNA, there are six possible frame translations. For a coding gene

however, only one is considered open.

In an open reading frame, there can exist multiple ORFs that share the same stop codon.

These ORFs are also called nested ORFs. The ORF that is found the furthest upstream from

the shared stop codon is defined as the “Longest Open Reading Frame” or LORF. This

reading frame is the longest reading frame and has a start-codon found upstream of the other

nested reading frames. An example of the overlapping sequences can be seen in figure 2.2.1.

10

Figure 2.2.1 illustrating a long open reading frame. Green letters are a potential START with

a shared STOP (red).

Because of these nested ORFs, many software tools have issues with finding the correct start

sequence of the genes. A study made in 2008 found that genomic overlap plays an important

role in the annotation of genes, specifically for weak start codons (Palleja et al., 2008). Some

argue that overlapping of ORFs is a way to reduce genome size (Cebrat et al., 1997). Overlap

compresses the information into short sequences. However, it also makes exact prediction of

prokaryotic genes difficult. Not all ORFs are coding sequences. These alternative ORFs can

misguide some annotation software to give a false start point of a coding gene.

The correct annotation of the start codon is crucial. It is crucial because a correct mapping of

the start codon in an ORF reveals accurate information about the proteome and can reveal

important biological functions. The functions can give us a more complete picture of the

organism, and in turn provide a better understanding of the organisms that exist around us. By

better understanding the metabolism of a beneficial microorganism, the knowledge can aid us

in improving its efficiency.

2.3 Sequence characterization - annotations

Currently there exists several different prediction software tools focused on prokaryotic

genome finding. One of these tools is Prodigal, a genome annotation software that utilizes

many elements like start codon usage, RBS motif usage and GC frame bias for gene

prediction (Hyatt et al., 2010). Prodigal’s focus when released was reducing false positives in

prokaryotic genome annotation.

Genomes are usually spaced into coding and non-coding regions, where the issue lies in

classification of those two. Currently the characterization of unknown sequences involves

comparing it to known genomes or protein domains. This is usually done by comparing the

sequences directly using external databases like BLAST or other homology search tools.

11

Identification of homologous sequences are mainly done using sequence similarity searching.

The concept of homology is a common evolutionary ancestry and is central to computational

analysis of proteins and DNA sequences (Pearson, 2013). Motifs are patterns that often

repeats itself more often than expected. However, a pattern cannot be formed before multiple

observations have been made, making homology search tools reliant on experimental data.

A separate method for annotation of genomes is finding genes from scratch. This method

requires utilization of already established theories surrounding genes and transcription. Unlike

searching for homologous sequences, one can search for ORFs, or map RNA-sequencing data

to the genome. In many existing software, homology search methods and “manual” searching

of genes are combined.

2.4 The RefSeq reference genomes

The current sequencing data consists of many contigs and few complete genomes as the

sequencing technology is not yet fully perfected. The NCBI database has a wide range of

genomes available, a subgroup of this being reference genomes. The reference genomes are

assemblies annotated and updated by some submissions chosen by a curatorial staff in RefSeq

(NCBI, 2021b). RefSeq uses tailored data models and consists of a single annotation pipeline

called Prokaryotic Genome Annotation Pipeline (PGAP) (Haft et al., 2018). A reference

genome is a collection of digital nucleic acid sequences stored in a sequence database. The

annotation of these references requires the assembly of multiple databases that combines

prediction algorithms and homology-based methods (NCBI, 2021b). The annotation of the

genome is a lengthy process with many levels, and includes a prediction of protein-coding

genes as well as other genome units like tRNAs, RNAs, pseudogenes, control regions,

repeats, mutations, and mobile elements (NCBI, 2021a).

The most recent, well used algorithms for the classification of proteins to a given gene uses

Hidden Markov Models (HMMs). The hidden Markov Model intelligently guesses the

sequence of genes based on their different statistical properties. Each state (one for each label)

has its unique emission probabilities stating the probability that it generates an A, C, G or T

(Eddy, 2004). This, however, requires pre-based probabilities. NCBI is therefore constantly

creating new HMMS and pipelines according to new findings in the field of genomics (NCBI,

2021b).

12

In 2016 Tatusova et al. in collaboration with Georgia Tech and NCBI created a new

automated pipeline for annotation of genomes. This included alignment-based methods of

predicting protein-coding and RNA genes, as well as other elements directly from sequence

(Tatusova et al., 2016). Another update was made in 2018 by Haft et al. which included a new

development of a hierarchical evidence scheme, as well as re-annotation of RefSeq

prokaryotic genomes.

The annotation of the genomes in the prokaryotic reference genomes are not always complete,

which is why it is continuously being worked on. The algorithm searches for potential

genome sequences having start and stop codons, and the given sequence in between is then

cross-referenced in a database for protein sequence similarity. An overview of the latest

hierarchical workflow for annotation can be seen in figure 2.4.1.

For new proteins that the PGAP cannot name by any method, and proteins below 40%

identity to protein-clusters, fall in an annotation called “hypothetical proteins” (Haft et al.,

2018). This annotation is a zero-annotation with no value and small credibility. A better

annotation would be hypothetical conserved protein which is an annotation that has been

predicted but has a lack of experimental evidence for (Galperin, 2001). Whereas another step

above would be an annotation like “putative” followed by a specific function.

The pipeline cross-references genome sequences to protein sequence databases. These

sequence databases are updated regularly with new sequences. Pfam for instance, base its

clustering on the MMseqs2 software (Mistry et al., 2021), making it heavily reliant on

experimental data.

The decreasing cost of sequencing and increasing number of reads means it is important to

automate the annotation progress. The current rate growth of sequencing data produced

doubles approximately every 18 months (NCBI, 2022). This vast availability and increase of

data leads to a big need for effective automation of genomic annotation.

13

Figure 2.4.1 retrieved from (Haft et al., 2018). Newest workflow for structural annotation.

Computational processes are shown in blue, data is in white or gray (Haft et al., 2018). It is

important to note that this pipeline detects “disrupted genes” and some uncommon ones.

According to (Li et al., 2021) GeneMarkS-2+ replaced GeneMarkS+ in PGAP November

2018.

14

2.5 Machine learning

With the increase of sequencing data, there is an increased need for automation of analysis.

Machine learning is a process that allows for automation of analytical model building. A

machine learning method can learn from data and apply what they have learned to new data.

2.5.1 Classification

Classification is the process of categorizing something into a certain group based on some

characteristics. An example of classification is discerning whether a person is ill or not. In this

example we have characteristics such as temperature and blood pressure. This is dependent on

the sickness we are dealing with. For annotation of genes, we usually discern between gene

(0) and no gene (1). This type of classification is called a binary classification. Some

classifiers have continuous output, for instance a probabilistic output estimating a target

probability. Other models produce a discrete output that only indicates the predicted class.

2.5.2 Preprocessing

There are many things to consider before feeding a dataset into a classifier. The data fed into a

machine learning model must consist of numerical values for the model to retrieve any

information. Text and sequences cannot be fed directly into a machine learning model and

needs to be preprocessed. There are many ways to process text, some examples are dummy

encoding and K-mer count.

In dummy encoding a set of categorical variables are converted into binary variables (also

called dummy variables). A nucleotide sequence of length 2 for instance, would result in a

matrix consisting of 4 * 2 variables. The output given would be a binary output (0 or 1)

indicating at which position the nucleotide was found. If we have a list of 3 sequence

observations (AG, TA, and GC) the dummy encoded matrix would appear as seen in table

2.5.1.

15

Table 2.5.1 an example of dummy-encoded sequence data for the three observations AG, TA

and GC. The column names indicate the nucleotide base as well as their possible locations in

the sequence.

Sequence A_1 A_2 C_1 C_2 G_1 G_2 T_1 T_2

AG 1 0 0 0 0 1 0 0

TA 0 1 0 0 0 0 1 0

GC 0 0 0 1 1 0 0 0

K-mer retrieval and analysis from sequences are quite common in nucleotide sequence

analysis. The frequency of K-mers are often of great importance when attempting to

differentiate between certain genes according to their codon-bias (Iriarte et al., 2021). K-mer

frequencies can also be applied on other genomic fragments, as nucleotide composition varies

a great deal between genomes (Perry & Beiko, 2010).

K-mers are substrings of a string with a length k. A sequence of length L will have L- k + 1

K-mers and a total of nk possible K-mers where n is the number of possible monomers (four

monomers in DNA). The total number of possible K-mers increases with an increase of sub-

string length (k). An example of different K-mers for the sequence ACTGAATCC can be seen

in table 2.5.2.

Table 2.5.2 an example of K-mer sequence data for the sequence ACTGAATCC. Shown here

are monomer to five-mer

K K-mer

1 A, C, T, G, A, A, T, C, C

2 AC, CT, TG, GA, AA, AT, TC, CC

3 ACT, CTG, TGA, GAA, AAT, ATC, TCC

4 ACTG, CTGA, TGAA, GAAT, AATC, ATCC

5 ACTGA, CTGAA, TGAAT, GAATC, AATCC

When dealing with DNA sequences a K-mer of 6 gives rise to 46 different combinations or

1024 combinations. For a potential training data this means 1024 features if only 6-mers are

considered. The shorter the sequence at hand, and the longer the K-mers, the more zero-

sparseness will be observed. For instance, A 6-mer nucleotide count on a sequence of 30

16

gives rise to 25 possible K-mers per sequence. With the number of unique 6-mers at 1024, at

least 999 possibilities have a count of zero.

Highly correlated features may appear and are often redundant. For these cases a

dimensionality reduction technique may be applied, and ultimately leads to the model running

faster. The reduction can also decrease the signal-to-noise ratio (Raschka, 2019).

For multivariate data, sometimes a features variance is in a much larger scale than another

feature in the same dataset. The features may for instance have been measured in different

units of measure. The element that has a larger scale may dominate other elements in the

dataset and may lead to biased prediction outcome for many machine learning methods. A

solution to the different scaling of a multivariate dataset would be to scale the data prior to

modelling. A scaling technique commonly used is standardization (2). This scaling would be

done column-wise.

𝑧 =
𝑋−𝜇

𝜎
 (2)

In (2) the X is the specific value or observation. Mu (𝜇) is the mean of the variable and sigma

(𝜎) is the standard deviation. Calculation of a standardized value is the same as finding the z-

score.

Standardization allows for comparison between different types of variables. The

standardization technique creates variables with a mean of zero and a unit variance of 1

(Raschka, 2019).

Raw data is seldom optimal for training a learning algorithm. Preprocessing data is a crucial

step in any machine learning application before moving on to the modelling part.

2.5.3 Hyperparameter optimization and cross validation

A machine learning algorithm’s objective is to find a function that best explains some samples

that follow a grand truth. Very often, a learning algorithm produces the function through an

optimization of a training criterion with respect to a set of parameters (Bergstra, 2010).

A hyperparameter is a parameter one can change before model training. The tunable

parameters are manually set, meaning they are iterated through and compared using a certain

17

metric (see Section 2.5.10 evaluation for more about metrics). The most common way of

performing a hyperparameter tuning is through a grid search. A grid search is a systematic

search of all possible hyperparameters of a parameter by training and testing the machine

learning algorithm. The training and testing can be measured by cross validation on the

training set or evaluating a hold-out validation set. (Chicco, 2017).

Cross validation is a resampling method that randomly partitions data to test and train a

model. The data is partitioned into k folds where the training of a model is performed on the

k-1 partitions. The remaining partition is tested after training. The training and testing are

performed k times where the resulting metric is presented as the mean of all k runs (Arlot,

2010). See figure 2.5.1 for an illustration of a cross validation.

Figure 2.5.1 an illustration of a 3-fold cross validation. The training data is here divided into

three sets.

18

2.5.4 Logistic Regression

Logistic Regression is a commonly used model in statistics. This regression model estimates

the probability of one event (out of two) by using the logarithm of the odds. It is one of the

most widely used algorithms for classification in the machine learning industry (Raschka,

2019). In general, it performs well on linearly separable classes. For a binary classification,

this is a linear model.

The logistic regression model is a probabilistic model for binary classification. This means the

output given is a continuous variable giving a probabilistic output of how likely it is that an

observations falls under class 1. For the activation function (the logistic regression function)

to fall into a binary classifier, the probability is converted using a threshold function. A

common threshold is one where results below 0.5 fall into class 0 and results above 0.5 falls

into class 1.

2.5.5 Partial Least Squares reduction and Linear Discriminant Analysis

Partial Least Squares Analysis (PLS) is a multivariate dimensionality reduction tool (Wold,

2001), and an adaption of PLS regression methods for supervised clustering. The PLS aims to

maximize covariance between independent variables and class information. It is particularly

useful for multivariate datasets.

The features created are referred to as principal components (PC) in PCA and just

components in PLS (Pearson, 1901). In PCA the first PCs contain as much variance as

possible, whereas PLS preserves as much covariance as possible between the original data

and its labelling (Ruis-Perez, 2020).

The LDA method aims to find a linear combination that can separate two or more classes. The

combination found could then be used as a linear classifier. LDA’s primary purpose is to

project high-dimensional data onto a low-dimensional space whilst achieving maximum class

separability (Barker, 2002).

PLS is a common feature reduction tool and is often used in preprocessing data. For a two-

class problem the PLS dimensionality reduction is to be preferred over PCA (Barker, 2002;

Liu, 2007). After dimension reduction using PLS one can then use LDA in the truncated

score-space for classification.

19

2.5.6 K-nearest neighbors

K-nearest neighbors is dubbed a lazy learning algorithm. This is because it does not learn a

discriminative function from the training data. Instead, it memorizes the training data set.

Based on the training data, any new point introduced to the model is assigned to a class based

on majority voting among its nearest neighbors (Cover, 1968). The number of nearest

neighbors used is tunable. For the nearest neighbor parameter this means the number (n)

neighbors that an observation is compared to is a manual input. Same applies to the distance

calculation, where one can either choose a Minkowski, Manhattan, or a Euclidian distance

calculation. See figure 2.5.2 for an illustration of the difference between these distances.

Figure 2.5.2 illustration of the path taken for computation of the distance between two points

for the three methods; Euclidean, Manhattan and Minkowski.

The Minkowski can be thought of as a generalization of the Euclidean and Manhattan

distance. The distance calculations (Euclidean and Manhattan) are part of an exponent in the

Minkowski-formula. The Minkowski distance is typically used with the exponent p set at

either 1 or 2, which correspond to the Manhattand and Euclidean, respectively (Gabbay,

2005). The illustration of Minkowski seen in Figure 2.5.2 is a p of around 1.5.

2.5.7 Decision Tree

Decision tree is a supervised learning method used for both classification and regression

problems. The decision trees are based on the best way to split the observations into their

target groups based on the features given. When it is time to split a node in a decision tree,

every feature is considered before choosing the feature that causes the best separation between

the different classes, this is called the information gain or entropy (Raschka, 2019).

20

Decision trees start at the root node where all the information from the dataset is stored and is

from there split into branches. An illustration of a decision tree can be seen in figure 2.5.3

Each decision node represents a test on an attribute where each branch represents the outcome

of said test. Each leaf node represents a class label. In summary, the path from root node to

leaf node represent a set of classification rules needed to classify the observations of a dataset.

Figure 2.5.3 Illustration of the topography of decision tree. Each decision tree consists of a

decision node that branch either into leaf nodes or decision nodes.

Typical hyperparameter for a decision tree classifier is max depth. The max depth is here the

max depth a tree can have. If max depth is infinity, the nodes are expanded until all leaves are

pure, that means the samples split contain only a given target (sklearn, N.Y).

2.5.8 Random Forest

The random forest ensemble is built on creating many decision trees (with number of trees

being a hyperparameter). For random forest, only a subset of these features, as well as a

subset of samples, are chosen at a time. This forces more variation to pass during training and

leads to lower correlation across trees and more diversification (Breiman, 2001). By

averaging all the trees in a random forest, the final model can discern better in the final

21

feature subspace. The information about which features are most important can thus be

retrieved after ensemble.

For an imbalanced dataset the training in Random Forest may be biased towards the majority

classes. A way to counterbalance this is by randomly down sample the majority class to the

same number of samples as the minority class. This forces random forest to negate any

unnecessary variation that occurs in the majority class and allows it to discern between the

majority and minority class potentially better. This method of Random Forest is also called a

Balanced Random Forest.

In the random forest ensemble, the trees have split features based on information gain. If there

is high correlation however, one feature may be ranked highly, and the relationship may not

be fully captured (developers, 2007-2022).

2.5.9 Gaussian Naïve Bayes

The gaussian naïve bayes is a classification model that assumes normally distributed data. The

gaussian naïve bayes takes the training data sets’ and estimates the mean and standard

deviations for each variable according to their target label (for binary classification, label 0 or

1) (Webb, 2005).

When classifying a new observation, the model considers the log (base e) of the prior

probability of classification as well as the log-likelihood of variables present. The calculation

yields the posterior probability of belonging to a given class (Minsky, 1961). The lower the

log score, the less likely the observation belongs to the given class.

2.5.10 Evaluation

When training a model, the machine learning methods used usually have many different

parameters. An example can be different distance measurements. These parameters are called

tunable parameters and is adaptable to each training data. To find the best parameter, we need

to have a measure of closeness. One can create a contingency table called a two-class

confusion matrix (table 2.5.1). This matrix shows the elements that are correctly predicted,

and which were not. This allows the models trained to have a universal comparison of fit.

This is comparable not only when training the same model with different parameters, but also

for the comparison of different models.

22

Table 2.5.1: General confusion matrix. The classification is correct if both the predicted and

actual classes are positive or negative.

 Actual

Positive Negative

Predicted Positive True Positive False Positive

Negative False Negative True Negative

Precision is defined as a measure of quality (3).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3)

Where TP is the total true positives and FP is the total false positives.

Recall is defined as a measure of quantity where the formula is (4)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4)

Here FN is the number of false negatives and TP is true positives.

A balance between the precision and recall metric is the F1-score (5). It is deemed as the

harmonic mean of precision and recall. Its values range from 0 to 1, where 1 is perfect

classification.

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5)

When evaluating binary classification with real numbers (∈ R) a cutoff threshold is needed to

discriminate between positive and negative classification. Commonly, the confusion matrix is

computed for all possible cut-offs and then these matrices can be used to create a Receiver

Operating Characteristics (ROC) curve.

The Receiver Operating Characteristic or ROC curve is a plot of true positives versus false

positive rates at some classification thresholds. The true positive rate is here the recall, and the

false positive rate is 1 – specificity (6).

23

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (6)

The ROC curve shows the connection between recall and specificity for every possible cut-off

for a classification model. This allows a graphical overview for finding a classification

threshold suitable for the issue at hand (Fawcett, 2006). An illustration of an ROC graph with

4 discrete classifiers can be seen in figure 2.5.4.

Figure 2.5.4 a basic ROC graph showing 4 discrete (binary) classifiers

Classifiers on the left-hand side of an ROC graph are thought of as conservative. This is

because they make positive classifications with strong evidence resulting in few false positive

errors. However, it results in a low true-positive rate as well. Classifiers on the upper right-

hand side often make positive classifications with weak evidence, meaning they classify

nearly all positives correctly, but with high false positive rates. The latter are deemed as

liberal.

In figure 2.5.4 the diagonal line shows the strategy of randomly guessing a class. At the point

C (0.5, 0.5), C’s performance is virtually random, guessing the positive class 50% of the time.

Point C can be thought to have no information about the class, whereas any classifier that falls

24

below the diagonal may be said to have useful information, but is not applying it correctly

(Flach, 2002). By reversing point D’s classifications, it produces a point in the upper left

triangle.

The area under the ROC curve or AUC measures the two-dimensional area underneath the

ROC-curve. It ranges between the values 0 to 1. The area is useful for comparison of different

classifiers, but also yields the probability that a random observation of the positive class is

ranked higher than a randomly chosen negative instance (Hanley, 1982).

The F1, recall and precision metrics only include three out of four confusion matrix categories

(TP, TN, FP). With a highly imbalanced dataset where the positive class is in minority, a

small change in the positive direction may shift the score significantly. Matthew’s correlation

coefficient (7) measures the correlation of the true positive classes c with the predicted labels

l:

𝑀𝐶𝐶 =
𝐶𝑜𝑣(𝑐,𝑙)

𝜎𝑐𝜎𝑙
=

𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝐹𝑁)

 (7)

Where the worst value is -1 and the best value is +1. Cov(c,l) is the covariance of the true

classes c and predicted labels l whereas σc and σl are the standard deviations respectively

(Chicco et al., 2021). TN is here the number of True Negatives. In a software like prodigal,

the focus lies solely on the positive rate, and thus it is not possible to retrieve the true negative

rate, making it difficult to classify its true correlation.

25

3. Method

This chapter will present the steps taken from retrieval of raw data to the running of a

machine learning model. The methods described here are based on existing theories described

in Section 2.

Data analysis and wrangling was carried out using Rstudio 4.1.0 (R Development Core Team,

2010). Machine learning was carried out using Scikit-learn in Python 4 (Pedregosa, 2011),

except for PLS+LDA that was carried out using the mpda package in Rstudio 4.1.0 (Snipen,

2017). Some figures are made with the ggplot2 package in R (Wickham, 2016), and some

with the matplotlib package in Python (Hunter, 2007).

3.1 Data

The retrieval of raw data is an imperative first step towards making a training dataset. This

section will present the gathering of annotated genomic data for use in the final training

dataset, as well as some qualitative processing.

Data was downloaded from (NCBI, 2021c). RefSeq FTP files with data containing the

genomic sequence was downloaded for each reference sequence in the database (15 in total),

an overview of the different genomes can be seen in table 3.1.1. The genomes presented will

be referred to by their respective species name. For supplicate species, the strain is attached to

separate them.

26

Table 3.1.1: Overview of the reference genomes from the RefSeq prokaryotic database. The

respective columns are organism name, their genomic size in megabytes, their GC base

content in percent, how many scaffolds there are in the genome, and the number of coding

sequences (CDS).

Organism Name Size (Mb) GC% Scaffolds CDS

Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819 1.64 30.5 1 1572

Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 4.95 52.2 2 4548

Staphylococcus aureus subsp. aureus NCTC 8325 2.82 32.9 1 2767

Listeria monocytogenes EGD-e 2.94 38 1 2867

Mycobacterium tuberculosis H37Rv 4.41 65.6 1 3906

Escherichia coli str. K-12 substr. MG1655 4.64 50.8 1 4285

Shigella flexneri 2a str. 301 4.83 50.67 2 4313

Pseudomonas aeruginosa PAO1 6.26 66.6 1 5572

Chlamydia trachomatis D/UW-3/CX 1.04 41.3 1 888

Coxiella burnetii RSA 493 2.03 42.64 2 1833

Bacillus subtilis subsp. subtilis str. 168 4.22 43.5 1 4237

Klebsiella pneumoniae subsp. pneumoniae HS11286 5.68 57.14 7 5779

Caulobacter vibrioides NA1000 4.04 67.2 1 3886

Acinetobacter pittii PHEA-2 3.86 38.8 1 3599

Escherichia coli O157:H7 str. Sakai 5.59 50.4 3 5155

General feature formats (GFF files) were also downloaded for the 15 reference genomes. GFF

describes the genes and contains nine informative columns for coding sequences. The GFF

data was decompressed for all genomes. Using GFFread from Microseq version 1.0, the

annotated data was read and converted into a table with 9 columns. Information about the

columns can be seen in table 3.1.2.

27

Table 3.1.2 Information from the nine columns in any given GFF file. Description retrieved

from (Stein, 2006).

Column name Description

Seqid Name of the chromosome or scaffold

Source The software that generated the feature

Type
Type name, contains a Sequence Ontology

(SO) accession number.

Start Start position of the feature

End End position of the feature

Score Floating point value.

Strand Either + (forward) or - (reverse)

Phase

Indicates where the next codon begins

relative to the given CDS feature. Contains

integer 0, 1, 2 where 0 indicates a codon

beginning on the first nucleotide.

Attributes
A list of feature attributes, among them a

string of protein information

The columns Start, End, Seqid, Type and Attributes were selected for future use. Attributes

were then filtered so that only the protein product remained listed as a string. The final table

was dubbed the reference GFF file and would be the reference for all coding sequences

present in all genomes. For it to be comparable genome-wise, another column was added,

namely the genome column. This column reveals which rows belongs to which genomes.

All the GFF files downloaded from RefSeq consists of 9 variables and a summed total of

55 538 observations, each observation being details about a protein product from a given

reference genome.

After importing and sorting of the table, counting of uncertain proteins was implemented. The

counting was performed to assess the quality of the raw data. Uncertain proteins are here

defined as all the observations with the words “putative”, “hypothetical”, and “hypothetical

conserved” attached to their attribute column.

28

3.2 Comparison with a gene prediction software

It was desirable to compare the RefSeq annotations with Prodigal predictions of the reference

genomes. This comparison was made to illustrate a standard software’s issue in locating the

correct start-codon. After using the genome fasta files for prodigal prediction, a common

signature for each reference-genome was created. The signature consisted of sequence-ID,

end-position for the gene, and strand type. These signatures were then compared to the

reference-annotations using the precision and recall metrics. The comparison was made

genome-wise.

After the first comparison, an inquiry was made to compare the prodigal-annotation and

reference-annotation with a signature having both the start and stop location. The same

metrics as for the signature containing Seqid, strand and end was used (precision and recall).

A figure showcasing the two different signatures and what they illustrate is showcased in

figure 3.2.1.

29

Figure 3.2.1 illustrates signatures used for similarity measurements for a positive strand. The

LORF signature consists of 3 different concatenated attributes and the ORF signature

consists of 4 different attributes. The red font is an indication for end position, black is

sequence ID and brown is strand type. The different start positions contain differrent colors

to separate between them.

To compare the ORF mapping with the prodigal output, the prodigal GFF files were further

filtered to only include the LORF predictions that match the reference LORF. The attributes

column in the GFF file contains information about whether an RBS motif has been found

upstream of the potential CDS. It was desirable to compare the number of ORFs that had an

RBS motif, both coding and non-coding, in the same LORF as a reference CDS.

3.3 Modelling

Using information from an upstream sequence, we wanted to classify between gene (target 1)

and no gene (target 0) with respect to the different start positions present in a long open

reading frame (LORF). To classify a sequence of letters, it needs to be converted to numerical

data. For this data, the upstream sequences retrieved after ORF-mapping and comparison was

converted into K-mer count data and one-hot encoded data. One-hot encoded data is from

here on dubbed “sequential data”.

30

3.3.1 ORF-mapping and comparison

Another method of annotation is to search for open reading frames and investigate whether a

pattern or motif can be enough to distinguish between a coding sequence and a non-coding

sequence. The general idea between retrieval of ORFs and not LORFs is to be able to discern

between the alternative start codons in a long open reading frame. By fetching all the

alternative ORFs present, the hope for a machine learning model is to find a pattern between

the coding and non-coding ORFs. By finding a pattern, a more precise annotation with respect

to the start position of genes can be achieved.

The microseq package in R has a built-in function called findORFs that scans through a

FASTA file. The function locates “Open Reading Frames” or ORFs in a fasta file. When

locating the ORFs the function will find all subsequences in the fasta sequences that start with

a start codon (ATG, GTG or TTG) followed by a number of triplets (codons) and ending with

a stop-codon (TAA, TGA or TAG) (Snipen & Liland, 2017). The findORFs function was used

to scan through the 15 reference .fna files. As in 3.2, a common signature was created for both

the ORF and the reference annotation to investigate the precision and recall for the ORF-hits.

The signature is a concatenation of sequence ID, strand type, and end position. Assumption a

priori is that all genes are an ORF. A different number (50, 90, 150) of minimum ORF lengths

were tried out.

If all ORFs had been included in the final dataset we would have a more skewed target

balance between gene coding ORFs and non-gene coding ORFs, where all the non-coding

ORFs would have been in majority. Therefore, the focus was shifted to alternative ORFs for

the reference annotations. This meant filtering all alternative ORFs in the reference longest

open reading frame. Only the ORFs that share the same LORF as a CDS in the reference file

is included in the final dataset.

The ORF-hits table was further annotated with a target variable declaring if there was a match

with the reference annotation genome-wise or not. For all ORFs in the respective genome a

sequence of 30 bases upstream was found. It was desirable to compare the sequences of each

ORF to see if there was a way to classify the start position of genes based on their upstream

sequence.

31

The upstream sequences also had a variant with the start codon included as it may give a bias

toward start-codons in coding sequences. This in combination with the different ORF length

was tried in model training.

3.3.2 Upstream sequence retrieval

There are multiple elements surrounding upstream data that could be beneficial in a machine

learning model. Ribosomal binding sites and promoters are said to be present upstream of

some coding genes as presented in Section 2.1.1 and 2.1.2. The idea behind upstream

sequence retrieval for every ORF is a test to see if the information present is enough to

separate the coding and non-coding ORFs.

After obtaining and assigning target variables to the nested ORFs present in a LORF, the

columns start, end and strand was used to fetch upstream data. A custom function called

“Upstream finder” was used to achieve this. The function reads the specific genomes’ fasta

file and retrieves a self-defined number of bases upstream of all observations in a data frame

with a GFF format.

The function has four arguments. The first is the given GFF data frame from which you have

the given start and end position of a possible open reading frame. The second is the genome

sequence itself, input here is expected to be a path to a fasta file. The third argument, length,

is the number of bases upstream of the start position desired. Input is here an integer. The last

argument called orf_bases inputs an integer, this argument indicates how many bases in the

ORF sequence that is included. If integer is set to three, the start codon is included in the final

upstream column. The default for the orf_bases argument is zero. The output from the

function is a column containing the upstream sequence.

The functions first step is to read a given fasta file. This was achieved using the function

readFasta() from microseq (Snipen & Liland, 2016). The function returns a table containing

two columns of text. The “header” that contains header lines, and then the sequence itself.

Afterwards the GFF data frame defined is filtered according to strand type. The strand type is

a key factor as the “End” position in strand type “- “indicates the start position of the open

reading frame, and vice versa. From there the start position was set at 30 bases upstream from

32

the open reading frames start position, and the end position was set at one base upstream of

the start position.

With the new start and end defined, the function Gff2fasta from microseq (Snipen & Liland,

2016) was utilized. This function takes the start and end position of a general feature

formatted table (GFF) and retrieves the sequences in-between from a fasta file. The sequence

retrieved here will then be in a fasta format, existing of the column’s header and sequence. In

the upstream_finder function the column “sequence” is returned.

3.3.3 K-mer data

K-mer count data of a sequence can be useful for discerning between target groups. The idea

is that the mean count and variance is different enough between targets. The difference may

allow any model to retrieve useful information during training.

The sequence data from 3.3.2 that was made for all open reading frames was used to create K-

mer data. The creation of K-mer data was achieved using the KmerCount function in the

microclass package (Vinje et al., 2016).

Different K-mers were tried out. The sequence length and four possible nucleotides gives 4K

possible combinations of K-mers affecting runtime and memory usage. An upper cap was

therefore set at K = 6, to capture all the variance in the dataset, and without affecting

computational time excessively. As there are only four unique letters present in the sequence

data, a low K-mer count may not be as helpful information-wise. The lower cap was

consequently set at K = 3. The different K-mers were assembled into a common feature space.

Further on, because of the natural genomic variation present in the prokaryotic genomes, one

K-mer dataset was created for each unique genome.

The frequency of K-mers was overdispersed with a variance larger than the mean, and the

feature space was vast. The initial data for the Escherichia coli O157:H7 str sakai K-mer data

had a total of 79 504 rows and 5442 columns.

The final training dataset then consisted of 3 to 6-mers of the open reading frames’ upstream

sequences located 30 bases upstream as well as the variable length and the target class. The

33

variable length was added to the final dataset as it may be a significant explanatory variable in

classification.

3.3.4 Sequential data

After the initial training and creation of the K-mer data, another possible training data was

made. The initial K-mer dataset contained information in form of counts of K-mers available

upstream of ORFs but does not contain information about the order of the nucleotides. To

capture the sequence structure, the sequence data was one-hot encoded creating a total of 120

features. This training dataset thus consisted of 120 features (4 bases possible in 30 different

positions: 120 different combinations) as well as the target class variable. This dataset is much

smaller than the K-mer dataset and is therefore computationally cheaper.

3.3.5 Classification Models

There exists a multitude of classification models and thus many ways to classify data. Based

on this, seven models were run with tuning to find the better model. The models in question

are seen in table 3.2.1. To account for result randomness during hyperparameter tuning, each

model was run with a cross validation of 3.

To get an overview of different classification models performances, they were run on one

genome. Escherichia coli O157:H7 str sakai had the highest number of coding sequences as

seen in Table 2.1.1, as well as the genome with the median GC content, and was therefore a

first choice for model training.

34

Table 3.3.4.1: Overview of the different classifier models used to distinguish the upstream

sequence data between gene and no gene. The classifiers description as well as tunable

parameters are defined her.

Classifier Description Tunable parameters

Logistic regression

Classification algorithm that

predicts the probability of a

categorical dependent

variable. Predicts P(Y=1) as a

function of X.

Regularization strength,

penalty (l1, l2)

Gaussian naïve

bayes

For continuous data, useful

for high dimensional data.

Variance Smoothing

K neighbors

classifier

Distance based lazy

algorithm. Places all

observations in n-dimensions

and finds the k – nearest

neighbors using a likeness

score. The class is given by

majority voting.

Number of neighbors and

distance metric (Manhattan,

Minkowski or Eucledian)

Decision tree

classifier

Uses information from

features and target in a dataset

to discern where to best split

the data in different classes.

Max depth

Random forest

classifier

Ensemble classification

method consisting of many

decision trees.

Number of trees, max depth,

and max features

Balanced random

forest classifier

For imbalanced data, this

classifier undersamples the

majority class randomly to

match the number of samples

in the minority class. This is

done for each decision tree.

Number of trees, max depth,

and max features

PLS+LDA

LDA is a common feature

reduction technique often

paired with PLS for

categorical data

Number of components for

PLS

All the model trainings performed, using the classifiers seen in table 3.2.1, were trained using

the scikit-learn tool (Campbell). With the exception of PLS + LDA that was run using the

mpda R package (Snipen, 2017). The validation of the models was performed using an

independent dataset (test-set). A prediction of the test dataset was run with all trained

35

classifiers seen in table 3.2.1. From the predictions the resulting false positive and true

positive rate were plotted together in an ROC curve for visualization of all classifiers.

The creation of the test-set was achieved by randomly partitioning 25% of the data’s

observations into the test set. This left 75% of the data for training.

After the initial overview of classifiers, four common classifications were run on four selected

genomes separately. These genomes were deemed to best represent the variety in genome

content, with respect to their GC%. See table 2.1.1 for their respective GC%. The low GC%

representative is Campylobacter jejuni, medium representative is Escherichia coli O157:H7

str. Sakai, and high GC% representative is Caulobacter vibriodes. The last genome; Bacillus

subtilis subsp. subtilis str. 168, was selected due to their status as a model organism of the

gram-positive lineage (Errington & Aart, 2020). The classifications were tuned for each

genome, as we already assume they are independent.

The classifications in question are the Balanced random forest classifier, logistic regression,

PLS + LDA and KNN. The balanced random forest was chosen due to the datasets imbalance

and because the initial classifier showed promising results. The remaining three classifiers

were chosen as they are very simple, but popular classifiers.

Finally, the classifier that had the highest ROC score was further utilized by training a model

for all RefSeq genomes. The training on all genomes was done to get an overview of the

variation between the 15 genomes present, as well as to see if the initial result was

representative.

3.3.6 Feature Selection

The number of features with all K-mers available, plus the variable length, was at 5457. To

reduce the complexity of a model and avoid overfitting, feature selection was applied. The

feature selection does not only seek to avoid overfitting but can also give valuable

information about feature importance.

To check for feature importance in the K-mer dataset two methods were run, namely random

forest feature permutation and chi squared test.

36

3.3.5.1 Random Forest

The scikit-learn package has a permutation-importance function with a trained random forest

model as input. The function shuffles features randomly during prediction and computes

changes in its performance. The features that impact performance the most are deemed to be

the most important ones. After tuning a Random Forest classifier, this function was run on the

E. coli O157:H7 str. Sakai K-mer dataset.

3.3.5.2 Near-zero variance predictors

Variables with very few numerical values can cause errors or unexpected results. Near-zero

variable predictors are predictors with very few unique values. This is very common in a K-

mer dataset as well as a sequential one.

Table 3.3.6.1 Overview of number (n) of observations per genome in the final dataset with an

ORF-length of 90 or above.

Genome n

Acinetobacter pittii 46078

Bacillus Subtilis 55581

Campylobacter jejuni 17626

Caulobacter vibriodes 55681

Chlamydia trachomatis 12491

Coxiella burnetiid 24882

Escherichia coli K-12 68620

Escherichia coli O156H7

sakai
79504

Klebsiella pneumoniae 81887

Listeria monocytogenes 34993

Mycobacterium tuberculosis 80707

Pseudomonas aeruginosa 93489

Salmonella enterica 70091

Shigella flexneri 60889

Staphylococcus aureus 28597

The number of columns present, as well as the overrepresentation of 0’s, may make it difficult

for any classification model to retrieve useful information from training. Therefore, any

37

columns with varying sums less than a given quantity (500, 1000 and 1500) were attempted

removed to see if it affects the final model training. An overview of the number of

observations per genome can be seen in table 3.3.6.1. Numbers were chosen according to the

number of observations present in the minimum genome (Chlamydia trachomatis). The idea

behind the removal is that the variables that fall below that number are useless in modelling.

3.4 Chi square test

The chi square test was run on the E. coli O157:H7 str. Sakai K-mer dataset. The test was run

between each feature in the dataset and the response (target) to determine if the association

between the categorical variables reflects the association population-wise. It was also

interesting to see if the feature selection using random forest and a statistical test found

common important variables. The sklearn package in Python has a function chi2 that

computes chi-squared stats between each non-negative feature and class (Michel, 2021).

38

4. Results

4.1 Overview of data

In this subsection the raw annotated data from the RefSeq database is presented. Here a

mapping of the uncertain annotations is shown. The uncertain annotations are from most

uncertain to least uncertain the proteins marked as “hypothetical”, “hypothetical conservative”

and “putative”.

The table 4.1.1 displays the count of different uncertain annotations per genome. The results

were mapped using ggplot2 version 3.3.2 into bar plots showing the number of different

uncertain protein types for each reference sequence. The hypothetical protein count appears to

be the most prominent uncertain annotation in all genomes except E. coli K-12 and B. subtilis.

For these genomes, the uncertain annotations that appear the most is the “putative protein”

count.

Figure 4.1.1 Count overview of different uncertain annotations present in the RefSeq annotated GFF files.

The three figures are an overview of the three degrees of uncertain annotations present. A table with the

total number of annotated genes in the different reference genomes are provided as a table in the bottom

right corner.

39

Figure 4.1.2 Dotplot showing the fraction of uncertain proteins for each genome. Black line

exhibits mean percentage over all genomes.

The scatterplot, shown in figure 4.1.2, shows the fraction of uncertain proteins for each genus

from the RefSeq fasta files. The results were mapped as a point graph with y being percentage

(from 0 to 1), and the x value being different genera. The results give us the fraction of

uncertain protein counts as well as the count and fraction of the individual uncertain proteins

for each Genus. The mean of uncertain proteins is at around 0.3 with the minimum value

being at 0.1 with Bacillus subtilis and maximum being at around 0.6 for Staphylococcus

aureus.

There does not seem to be a trend for the fraction of uncertain proteins, there are also small

differences species-wise as the K-12 and O156H7 sakai subspecies of E. coli are not too far

apart (0.1) fraction-wise.

40

4.2 Comparison with a gene prediction software

This segment presents an annotation tool’s performance on the RefSeq sequence files. It was

desirable to compare the RefSeq annotations with Prodigal predictions of the reference

genomes. This comparison was made to illustrate a standard software’s issue in locating the

correct start-codon

In total Prodigal predicted 56 210 coding genes from the 15 different fasta files. The reference

.gff file had a total of 55 538 observations leading to an overprediction of 672 observations.

Out of these observations 53 505 observations matched the reference signature containing

only end position, and 46 934 matched the reference signature containing both start and end

position.

41

Table 4.2.1: Recall and precision between prodigal annotated genomes and known RefSeq

genomes, panel A contains the results with SeqID, Strand type and end position (LORF),

panel B with SeqID, Strand type, start and end position (ORF).

Genomes Recall Precision

Panel A: Signature for LORF

Acinetobacter pittii 0.9814 0.9863

Bacillus subtilis 0.9600 0.9832

Campylobacter jejuni 0.9867 0.9397

Caulobacter vibriodes 0.9506 0.9919

Chlamydia trachomatis 0.9865 0.9766

Coxiella burnetii 0.8833 0.7867

Escherichia coli K-12 0.9578 0.9711

Escherichia coli O156H7 sakai 0.9853 0.9677

Klebsiella pneumoniae 0.9258 0.9808

Listeria monocytogenes 0.9927 0.9899

Mycobacterium tuberculosis 0.9703 0.9278

Pseudomonas aeruginosa 0.9957 0.9768

Salmonella enterica 0.9747 0.9579

Shigella flexneri 0.9573 0.8253

Staphylococcus aureus 0.9270 0.9749

Panel B: Signature for ORF

Acinetobacter pittii 0.7774 0.7813

Bacillus subtilis 0.8688 0.8897

Campylobacter jejuni 0.9151 0.8715

Caulobacter vibriodes 0.7607 0.7938

Chlamydia trachomatis 0.8896 0.8807

Coxiella burnetii 0.6765 0.6025

Escherichia coli K-12 0.8913 0.9037

Escherichia coli O156H7 sakai 0.9679 0.9506

Klebsiella pneumoniae 0.8131 0.8614

Listeria monocytogenes 0.9279 0.9353

Mycobacterium tuberculosis 0.7496 0.7168

Pseudomonas aeruginosa 0.9142 0.8968

Salmonella enterica 0.8591 0.8442

Shigella flexneri 0.7714 0.6650

Staphylococcus aureus 0.8218 0.8643

42

The results for the prodigal comparison are shown in table 4.2.1. Panel A, with a signature

that only contains SeqID, End position and Strand type, has a higher precision and recall

overall when compared to panel B with end and start position included in the signature. For

all genomes the precision and recall are higher when only end position is included in the

signature.

The observations following the Prodigal annotation contained information about motifs. The

software scans upstream information to see if any upstream sequences such as the Shine-

Dalgarno are present. If they are found specified actions are taken, and the motif found is

stored in the attribute’s column of the output GFF files created. Results containing the

frequency of a motif present can be seen in table 4.2.2. The comparison was made genome-

wise, and the frequency shown is the total observations of motif x, for target y, genome z. The

table shows the five possible Shine-Dalgarno RBS Motifs that Prodigal deems to have the

highest score (Hyatt et al., 2010), as well as no RBS seat present.

43

Table 4.2.2: Shine-Dalgarno RBS motifs presence in upstream Prodigal annotated ORFs. The

table shows the relative frequency of selected motifs present for four genomes of different

targets. Panel A shows the relative frequency for target 1 (CDS) whereas panel B shows the

relative frequency for target 0 (not CDS). NP means not present, as there are no

observations.

Genome AGGAGG AGGAG AGGA GGAGG
AGGA/GG

AG/GAGG
None

Panel A: Gene

B. subtilis 0.2035 0.1484 0.0457 0.1295 0.0212 0.0165

C. jejuni 0.0007 0.1674 0.3156 0.0069 NP 0.1287

C. vibriodes NP 0.076 0.0575 0.0903 0.0182 0.1556

E. coli

O157:H7

str. Sakai

0.0107 0.1400 0.1190 0.0588 0.0170 0.1084

Panel B: not gene

B. subtilis 0.0608 0.1139 0.0987 0.0810 0.0278 0.0861

C. jejuni NP 0.1239 0.2743 0.0047 NP 0.2389

C. vibriodes NP 0.0664 0.0556 0.0908 0.0203 0.1707

E. coli

O157:H7

str. Sakai

0.0109 0.0652 NP 0.0217 0.0109 0.5

44

4.3 Chi square test

The Chi square test results are presented in table 4.3.1. The test was run on the K-mer data to

test for enrichment in one class against the other.

Table 4.3.1 The twenty highest scores retrieved after running a chi square test for all K-mer

features of the E. coli O157:H7 str. Sakai genome from 3-mer to 6-mer.

K-mer Chi2 score p-values

AGGA 1450.003 0.00E+00

GGAG 1287.984 4.62E-282

AGGAG 1252.086 2.92E-274

GAGG 1226.583 1.02E-268

GAG 1068.289 2.58E-234

AGG 1008.004 3.27E-221

TAA 998.0757 4.70E-219

AAGGA 988.911 4.62E-217

AAGGAG 674.4939 1.05E-148

TAAGG 608.5353 2.33E-134

GAGGT 606.1369 7.74E-134

GGAGA 604.307 1.94E-133

ATAA 582.1802 1.26E-128

GAGGA 550.4231 1.02E-121

GAGA 531.6311 1.25E-117

TAAG 526.679 1.49E-116

TAAGGA 525.6371 2.51E-116

GGA 524.6199 4.18E-116

AGGAGA 517.5854 1.42E-114

GGAGG 514.9453 5.32E-114

A chi square test was run for all K-mer data, and the twenty highest scores can be seen in

table 4.3.1. This test was run between each feature and the response (target) to determine if

the association between the categorical variables and target (gene or no gene) coincided.

Based on the p-values presented, these 20 features are not independent from the response

45

variable and are thus deemed to be important factors for separating between gene and no gene

in the upstream sequence data.

4.4 Modelling

In this subsection, the creation of training datasets and their attributes as well as the modelling

performances are revealed. Information surrounding feature importance is also included in

this segment.

4.4.1 The open reading frames

The reference table consisted of 55 538 observations, whereas the ORF table had 2 794 615

observations. After filtering the ORF table to only include the ORFs in the same longest

reading frame as the reference table – the final dataset had a size of 1 107 520 observations.

Out of these observations 55 234 were found to match the reference. Overall, this gives an

average of 20 different reading frames per LORF.

46

Table 4.4.1 Overview of ORFs from reference and found from all genomes. This includes the

false positives as well as true positives. Percentage of codings sequence loss (CDS loss) are

also presented, as well as the number of uncertain proteins for each filtered length.

Type Number of observations CDS loss

Reference CDS’ 55 538

All ORFs that are CDS 55 234
0%

All ORFs that are not CDS 1 052 286

Uncertain proteins 16 386

CDS found with minimum

ORF length 50
54 009

2,8%
ORFs that are not CDS

minimum length 50
892 810

Uncertain annotations of

minimum length 50
16 376

CDS found with minimum

ORF length 90
50 226

9,6%
ORFs that are not CDS

minimum length 90
760 890

Uncertain annotations of

minimum length 90
16 344

CDS found with minimum

ORF length 150
42 282

24%

ORFs that are not CDS

minimum length 150
586 821

Uncertain annotations of

minimum length 150
15 459

The loss of coding sequences when choosing an ORF length of 90 are at 9,6% as can be seen

in table 4.4.1. By increasing the search space (lowering minimum ORF length) to 50, an

increase of around 132 000 ORFs are observed. The minimum length of 90 bases was

therefore selected for the final training datasets, to avoid more imbalanced datasets.

47

4.4.2 The Receiver Operating Characteristics

In total, seven models were trained on the E. coli O1567:H7 sakai genome. These models

were the Balanced random forest classifier, the random forest classifier, logistic regression,

gaussian naïve bayes, decision tree classifier, partial-least squares reduction followed by a

linear discriminant analysis and the K-nearest neighbor classifier. As there are two training

datasets (the K-mer dataset and the dummy-encoded dataset) the models were run on both

datasets. The resulting ROC curves following the training can be seen in figure 4.4.1 and

4.4.2.

Figure 4.4.1 ROC curve for multiple classification models. The plot shows true positive rate

versus false positive rate for the seven classifiers on the K-mer dataset for the E. coli

O156:H7 sakai genome seen in table 3.3.4.1. AUC score is shown in the lower right quadrant

of the figure.

The figure 4.4.1 shows the Receiver Operating Characteristics curve for the 7 different

models trained in 2.4.3 on the Escherichia coli O157:H7 sakai genome. Based on the AUC

scores, it appears the Balanced random forest classifier from imblearn had the most correct

48

classifications. The highest was at 0.71 and the lowest was the Decision trees classifiers at

0.541. There is little difference in AUC score between the top three classifiers, and the three

may be fine classifiers for our training dataset.

Figure 4.4.2 ROC curve for multiple classification models. The plot shows true positive rate

versus false positive rate for the seven tuned classifiers on the one hot encoded dataset for the

E. coli O156:H7 sakai genome. AUC score is shown in the lower right quadrant of the figure

The figure 4.4.2 shows the Receiver Operating Characteristics curve for the 7 different

models trained in 2.4.3 on the Escherichia coli O157:H7 sakai genome. The dataset used was

the sequential dataset that takes the order of nucleotides into account. Based on the AUC

scores, it appears the Balanced random forest classifier from imblearn had the most correct

classifications. The highest was at 0.727 and the lowest was the Decision trees classifiers at

0.577. There is little difference in AUC score between the top three classifiers, and all may be

fine classifiers for our training dataset.

49

4.4.4 Four selected methods

This section presents the results from the four different classifiers trained on four

representative genomes. The balanced random forest classifier as well as three common

classifiers were chosen to better give an overview of the general training results. The

classifiers were LDA+PLS, KNN and logistic regression. The models were tuned to best fit

for each genome, and some selected metrics for four genomes can be seen in table 4.4.2 and

4.4.3. For the entire table see attachment 1 for the K-mer dataset and 2 for the sequential

dataset. Training was performed with a hyperparameter tuning and a cross validation of 3.

The resulting metrics are from the prediction of a validation test set.

Table 4.4.2 results from a hyperparameter tuned selection of four genomes. These values are

selected according to the highest recall (panel A) and MCC score (panel B) from the table

present in attachment 1. The classifier used is present in the column “Classifier” as is the

minimum sum for a feature required before training (Reduction).

Genome Precision Recall MCC Classifier Reduction

Panel A

B. subtilis 0.31 0.93 0.49
Balanced

random forest
0.0

C.

vibriodes
0.23 0.79 0.36

Balanced

random forest
0.0

C. jejuni 0.32 0.78 0.43
Balanced

random forest
1500.0

E. coli

O156H7

sakai

0.13 0.6 0.19
Balanced

random forest
0.0

Panel B

B. subtilis 0.68 0.48 0.55
logistic

regression
500.0

C. jejuni 0.72 0.44 0.53
logistic

regression
1000.0

C.

vibriodes
0.6 0.27 0.37

logistic

regression
500.0

E. coli

O156H7

sakai

0.13 0.6 0.19
Balanced

random forest
0.0

Table 4.4.2 shows the best results by Recall and MCC for the models trained using the K-mer

dataset. Based on the results, the logistic regression scored highest in terms of MCC (panel

50

B), but the Balanced random forest classifier scored highest in terms of recall (panel A). The

recall, when compared to the prodigal results are a little lower for all genomes except for

Bacillus subtilis which has a higher recall rate than the prodigal ORF output (Table 4.1.1

panel B). For the most part, the reduction did not yield much difference score wise for the

balanced random forest but proved to be an asset for the logistic regression classifier.

Table 4.4.3 results from a hyperparameter tuned selection of four genomes using the

sequential dataset. These values are selected according to the highest recall and MCC score

for each of the four genomes from the table present in attachment 2. The classifier used is

present in the column “Classifier” as is the minimum sum for a feature required before

training (Reduction).

Genome Precision Recall MCC Classifier Reduction

Panel A

B. subtilis 0.48 0.92 0.64
Balanced

random forest
0.0

C. vibriodes 0.31 0.9 0.48
Balanced

random forest
0.0

C. jejuni 0.51 0.85 0.62
Balanced

random forest
1000.0

E. coli

O156H7

sakai

0.15 0.58 0.22
Balanced

random forest
1000.0

Panel B

B. subtilis 0.83 0.68 0.73
logistic

regression
0.0

C. jejuni 0.79 0.63 0.68
logistic

regression
0.0

C. vibriodes 0.31 0.9 0.48
Balanced

random forest
0.0

E. coli

O156H7

sakai

0.15 0.58 0.22
Balanced

random forest
1000.0

51

As for the K-mer dataset, logistic regression and the Balanced random forest classifier proved

to be the best classification models for the sequential dataset. When sorting by highest recall

for the four respective genomes (panel A), the Balanced Random Forest proved to give the

highest scores, outdoing the prodigal scores for Bacillus subtilis and Caulobacter vibriodes in

terms of recall for ORFs. The recall proved to be an asset for the random forest model for C.

jejuni and E. coli with a reduction of 1000, which is a contrast to the K-mer dataset.

4.4.5 Balanced Random Forest classification

Because the Balanced Forest classifier had the highest AUC score in the ROC-curve analysis

for the E. coli O157:H7 str. Sakai genome (Figures 4.4.1 and 4.4.2), this model was chosen

for the remainder of the genomes.

The Balanced Random Forest model was run on all genomes in the dataset to get an overview

of the variation between genomes. Table 4.4.4 and 4.4.5 shows the results following a

balanced random forest classification on test data for respectively the K-mer and sequential

dataset. Training was performed with a hyperparameter tuning and a cross validation of 3.

The resulting metrics are from the prediction of a validation test set.

52

Table 4.4.4 results from a hyperparameter tuned Balanced random forest classifier for each

genome in the reference genome database using K-mer data. The metrics Precision, Recall,

MCC and F1 show their respective results. The column N trees show the optimal number of

trees per genome.

Genome Precision Recall MCC F1 N trees

A. pittii 0.23 0.77 0.35 0.36 600

B. Subtilis 0.31 0.93 0.49 0.47 100

C. jejuni 0.31 0.77 0.43 0.44 800

C. vibriodes 0.23 0.79 0.36 0.35 300

C. trachomatis 0.16 0.72 0.24 0.26 100

C. burnetii 0.11 0.63 0.24 0.14 200

E. coli K-12 0.25 0.85 0.41 0.39 800

E. coli O156H7

sakai
0.13 0.59 0.18 0.21 500

K. pneumoniae 0.13 0.59 0.17 0.21 800

L. monocytogenes 0.40 0.91 0.55 0.55 500

M. tuberculosis 0.13 0.70 0.23 0.22 200

P. aeruginosa 0.23 0.84 0.39 0.37 400

S. enterica 0.13 0.61 0.18 0.21 900

S. flexneri 0.14 0.58 0.19 0.23 900

S. aureus 0.38 0.88 0.53 0.53 400

Table 4.4.4 shows the results from a hyperparameter tuned Balanced Random Forest classifier

trained on the K-mer dataset. The genome with the highest performance in terms of MCC is

L. monocytogenes with an optimal number of 500 trees and an MCC of 0.55.

53

Table 4.4.5 results from a hyperparameter tuned Balanced random forest classifier for each

genome in the reference genome database using the sequential data. The metrics Precision,

Recall, MCC and F1 show their respective results. The column N trees show the optimal

number of trees per genome.

Genome Precision Recall MCC F1 N trees

A. pittii 0.3 0.8 0.43 0.43 700

B. subtilis 0.49 0.92 0.64 0.64 600

C. jejuni 0.51 0.85 0.62 0.63 700

C. vibriodes 0.31 0.9 0.48 0.46 600

C. trachomatis 0.21 0.82 0.34 0.34 600

C. burnetii 0.1 0.55 0.12 0.17 900

E. coli K-12 0.38 0.87 0.54 0.53 400

E. coli O156H7

sakai
0.15 0.58 0.21 0.24 900

K. pneumoniae 0.14 0.55 0.19 0.23 900

L. monocytogenes 0.59 0.92 0.71 0.72 800

M. tuberculosis 0.2 0.83 0.35 0.32 800

P. aeruginosa 0.35 0.92 0.54 0.51 800

S. enterica 0.15 0.59 0.21 0.24 800

S. flexneri 0.16 0.55 0.2 0.25 900

S. aureus 0.53 0.86 0.64 0.66 300

Table 4.4.5 shows the results from a hyperparameter tuned Balanced Random Forest classifier

trained on the sequential dataset. The genome with the highest performance in terms of MCC

is L. monocytogenes with an optimal number of trees at 800 and an MCC of 0.72.

54

4.4.6 Feature importances

Figure 4.4.3 random forest feature importance. This barplot showcases the 20 most important

features when constructing the random forest model for the genome of E. coli O156:H7 sakai.

The importance is shown as fraction of importance.

Figure 4.4.3 highlights the random forest feature importance decisions. This feature

importance displays what the random forest model considers as having the most information

when classifying between gene (1) and no gene (0). The figure shows to 20 most important

features in the training of the random forest model. The top variable appears to be the column

length with a fraction of importance at 0.025, followed by the 3-mer TAA with an importance

of around 0.004.

55

5. Discussion

5.1 Data

In this subsection the RefSeq data will be presented as well as certain aspects surrounding

them. It is necessary to discuss the source of data as well as their unique attributes to

understand the final classification results.

Figures 4.1.1 and 4.1.2 shows a count of the three different uncertain proteins for each

genome. C. jejuni has the lowest fraction of uncertain proteins, indicating a nearly complete

and accurate genome annotation. In figure 4.1.2 it appears that the fraction of uncertain

proteins for C. jejuni is at 0,05 or 5%. In contrast the genome with the highest percentage of

uncertain proteins is S. aureus at around 0,6 or 60%. It appears near all uncertain protein

counts for S. aureus are hypothetical conserved proteins, which gives a little more credibility

than just a hypothetical protein.

The annotation of the different genomes shows a wide variety in uncertain protein prediction

and can be explained by individual characteristics of the genome, and the Genus. Different

genera have different elements of variability. This variability can be explained by the different

research focus’ in the field. As some genera in the RefSeq database are model organisms,

others are not. Due to some genera’s status as model organisms there are often more

experimental and manual annotation data available.

 There also appears to be a difference between different strains. E. coli K-12 and O157:H7 are

different in their count of protein. Where K-12 has 20% count of uncertain protein, O157:H7

has 15% (see figure 4.1.2). K-12 has a high putative count (see figure 4.1.1) which gives more

credibility than O157:H7 with a higher hypothetical count. The difference between these is

that the K-12 strain is classified as a model organism and therefore has a high count of

experimental data available in different databases. A quick search in the nucleotide database

of GenBank yielded 6988 results for K-12 and 643 results for O157:H7. K-12 was also one of

the first microorganisms targeted for genome sequencing (Perna, 2002), whereas the E. coli

O157:H7 is a strain associated with hemolytic-uremic syndrome and is not as commonly used

as a model organism (Ameer, 2021). This may give an explanation as to why most protein

counts of O157:H7 is purely hypothetical and give insight into the differences among strains.

56

The RefSeq annotations are, as stated in the introduction, the best manual annotations we

have as of today. These manual annotations are continuously being worked on and may

contain errors as well. In the past, all RefSeq genome assemblies were reannotated once every

few years to ensure that the older genomes benefit from the improvements in PGAP (Li et al.,

2021). The latest publication from the RefSeq project at NCBI talks about the culling of bad

proteins and the shrinking of the homology search space. There is, in other words, a great

possibility that some CDS marked as genes in the current training dataset may be wrongly

annotated and that some observations might be removed in the future.

Another aspect of the RefSeq annotated genomes is that the localization of the start-codon

may not be certain. As stated, some software struggle with start site prediction in protein-

coding genes. The PGAP uses GeneMarkS-2+ for start-site recognition. This software has a

self-stated error rate of 4.4% compared to Prodigal which has 6.2% (Lomsadze et al., 2018).

These self-stated errors can be thought of more as a minimum than a mean. Improvements on

the error rate for GeneMarkS-2+ will lead to a more error-free training dataset in the future

and may result in changes to the current start-positions of annotated genes.

5.2 Comparison with a gene prediction software

This section will discuss the Prodigal result. The Prodigal results presented the initial problem

statement regarding annotation errors. By analyzing the annotation from the Prodigal result

more insight into an annotation software’s function is accomplished. The Prodigal annotation

precision and recall creates a baseline for the final machine learning model.

Prodigal predicted 53 505 observations that matched the signature LORF (that contains only

end position) and 46 934 matched the signature ORF (containing start and end). This gives an

accuracy over the positive class to respectively 0,963 and 0,845. The accuracy is in other

words reduced quite substantially when trying to estimate the correct start position of a coding

sequence.

In table 4.2.1 the drop in recall and precision can be seen for all genomes when going from

the signature for LORF (panel A) to signature for ORF (panel B). Indicating that the issue

does not only lie in a few selected genomes. The results vary amongst the different genomes.

The lowest precision and recall were found for the genome: Coxiella burnetii for both panel A

57

and B. The highest precision and recall were found for E. coli O156H7 sakai in 4.2.1 for the

ORF signature (panel B). In panel A the genome with the highest precision was found to be

Pseudomonas aeruginosa, and for recall Listeria monocytogenes.

There are two more motifs not present in panel B compared to panel A of table 4.2.2. Table

4.2.2 only contains ribosomal motif frequencies for four selected genomes, namely E. coli

O157:H7 sakai, B. subtilis, C. jejuni and C. vibriodes. Panel B contains the relative frequency

for motifs per genome present in non-coding ORFs whereas panel A contains the relative

frequency of motif per genome for coding sequences. For the genomes, there is a lack of

motif for non-coding ORFs. For E. coli O157:H7 50% of observations in panel B does not

contain an upstream motif recognized by Prodigal. In contrast only 10.8% of observations for

actual genes do not contain a motif for the same genome. There are, in general a higher

relative percentage of motifs in panel A compared to panel B, apart from the three motifs

AGGA/GGAG/GAGG.

The prodigal paper states to have distance-based scores when searching for ribosomal binding

sites (Hyatt et al., 2010). When comparing the prodigal article with the output-data from

prodigal, no distance-based score was discovered. It would have been more informative to

retrieve a comparison of the motif AGGAGG with the length of spacer between the 16sRNA

binding site and the start-codon as that was their top-scorings motifs, but no such information

was found.

5.3 Classification based on upstream sequences

The machine learning classification model presented here is not as complex as any given

annotation software. Given the time constraint on this thesis only a small part of what would

be considered annotation has been investigated. Namely, the localization of the start position

of genes based on upstream sequence data. This subsection presents points around the

classification results.

The Balanced random forest classifier was deemed to be the best for both our datasets (K-mer

an sequential) for the E. coli sakai genome as seen in Figure 4.4.1 and 4.4.2. However, there

are multiple classification models that had an AUC score very similar to the balanced random

forest one. Amongst them was the logistic regression model with an AUC of exactly 0.03

58

below the balanced random forest model for the K-mer dataset and 0.04 below for the

sequential one. The ROC curves show more than which model has a better fit, it can also give

insight into false positive and true positive rate. For an annotation process, an ideal step given

the number of observations is to have as little false positives as possible. In other words, a

conservative model is desired if this were the entire annotation model.

The need for a conservative model is dependent on its purpose. Usually, an annotation process

consists of many models divided into a pipeline. The first model usually weeds out some false

positives, but still manage to hold onto as many true positives as possible (a high recall score).

Ultimately the goal is to retain only the true positives. When moving down the pipeline the

need for a higher precision grows, as one needs to filter away the false positives. To retrieve a

higher precision, the threshold can be raised to only retain what the model deems as very

certain true positives. This balance can be hard to achieve, however, as the true labels are not

always known. Especially when new data is involved.

The ROC curves for the Balanced random forest classifier are quite similar in terms of cutoff

for the two different datasets, with the sequential proving to be more conservative in their

classification of genes. The respective ROC curves seen in Figures 4.4.1 and 4.4.2 show the

tradeoffs in false positive and false negative rates for different cutoffs in all the classification

models. When looking at the curves for the balanced random forest, the optimal cutoff was

observed at 0.6 positive rate and 0.2 false positive rate for Figure 4.1.1 (the K-mer data). For

the sequential data, the optimal cutoff for the Balanced random forest classifier was at 0.52

true positive rate and around 0.13 for the false positive rate. For the sequential data this means

they classify a positive observation as positive 52% of the time and a negative as positive

13% of the time. In general, this means both datasets produce similar results when used in

training. In fact, there is a 71% chance that the random forest model produced from the K-mer

dataset will be able to distinguish between a coding and a non-coding ORF, whereas the

sequential has a 72,7% chance. The classification metrics presented here also coincide with

the results for E. coli sakai in Tables 4.4.3 and 4.4.5.

Table 4.4.4 and 4.4.5 show metrics for respectively the K-mer and sequential dataset run for

each genome using a Balanced random forest classifier with tuning. As stated in 5.1 the

different strains of E. coli differ in number of sequences available. Thus, some annotations

present in the O157 sakai genome may not be as plausible. The K-12 strain performs better

59

than the sakai strain in the final modelling for both the sequential and the K-mer dataset, on

all metrics. On the other hand, for the Prodigal ORF comparison, the sakai data had the

highest precision and recall. Classification based purely on upstream data may prove to be a

better fit for the K-12 genome than for the sakai, since the Prodigal results are based on more

than only the upstream sequence of each start codon.

The models trained and presented in Tables 4.4.4 and 4.4.5 all had a big false positive rate.

The tables showed the results from a Balanced random forest classifier for all genomes

trained on K-mer and sequential data. The precision metric returned yielded a minimum value

of 0.1 and 0.11 for C. burnetii for the K-mer and sequential datasets respectively. The

maximum precision was 0.40 and 0.59 both for L. monocytogenes. The results for L.

monocytogenes are highly uncertain given that the genome has a fraction of uncertain protein

count at 0.35, it is in other words not possible to decide if the score is close to the truth. In

general, a low precision is an indication of the machine learning model easily overpredicting

not-genes as genes. In an annotation process it is more desirable to have many false positives

than negatives, as software usually have many more steps in the annotation process than just a

single model. The issue with a large false positive rate, may, in other words not a problem if

the model trained in this thesis were the first of many models.

In Table 4.4.2B and 4.4.3B the classifiers that gave the highest MCC score by genome was a

mix between logistic regression and Balanced random forest classifier. For the genomes that

had the logistic regression classifier as the highest MCC score, their other metrics are quite

balanced. The genomes in question are B. subtilis, C. jejuni and C. vibriodes for the K-mer

data and B. subtilis and C. jejuni for the sequential data. The precision for the genomes is

much higher than for the Balanced random forest classifier, indicating a conservative model.

Moreover, the logistic regression models had much better results for the sequential dataset

and with no reduction of observations (see table 4.4.3 panel B), in contrast to the K-mer

dataset that performed best when the minimum sum needed in a feature was at around 500

(table 4.4.2 panel B).

The sequential data proved to be faster and give better results, however patterns were easier

seen with the K-mer dataset and may prove to be more valuable-information wise. The

sequential data contains information about the order of bases upstream of a given ORF. When

looking at sequences it is often more desirable to look at subsequences than positions. The

60

reasoning behind this is that it is easier for an individual to retrieve the context from a given

K-mer rather than the positioning of the bases. Further on, most of already existing theory has

evolved around substrings of genomes, which is what a K-mer fundamentally is.

The MCC score is the preferred metric for the data given the big imbalance in both datasets

and should therefore be the deciding metric for the “best” classifier tested. When looking at

the relative MCC scores for the four selected genomes for each dataset (see Table 4.4.2 and

4.4.3), the dataset with the highest MCC score was the sequential one. Table 4.4.4 panel B

had two separate models that performed well, the Balanced random forest classifier for E. coli

sakai and C. vibriodes and the logistic regression model for C. jejuni and B. subtilis. This

division of classifier may initially seem like a stalemate, however given the preferences for

annotation already stated in this subchapter, the model with the combination of high precision

and high MCC score should be stated as the better model. A general conclusion can be made

that a logistic regression model with a sequential dataset performed best out of the classifiers

and datasets tested. This statement is made with regards to the method tested in this thesis

with the selected parameters and processing.

When comparing the results from both datasets with prodigal all metrics fall below the

baseline. However, in terms of recall the average recall score for Prodigal in terms of ORF

signature is 0.83. For the Balanced random forest classifier run on all genomes the average is

for K-mer and sequential data respectively at 0.74 and 0.77. This means a difference of 0.09

and 0.06 in terms of recall. Seeing as Prodigal takes more than just upstream data into

account, the results are quite good. Considering precision score, however, the prodigal data

yielded a precision of 0.82, whereas the K-mer model had a mean of 0.22 and the sequential

0.3. The sequential dataset proves to yield a higher precision indicating that the order of

sequences yields more distinguishable information than the count of substrings. However, this

difference is negligible as the precision proves to be quite low, specifically when considering

the uncertainness in target labelling. In summary, the upstream sequence data alone is not

enough to discern between coding and non-coding ORFs.

61

5.4 Motif importances in K-mer data

The K-mer data consists of several substrings, each substring being a feature in the dataset.

The features present in the K-mer dataset may or may not be important for discerning between

coding and non-coding ORFs. This subsection will discuss the results from both the Chi-

squared test and the random forest feature permutation.

Both the feature selection method and the chi square method attempted (Table 4.3.1 and

Figure 4.4.3) overlapped each other. The most important feature was deemed to be the 4mer

AGGA for the chi-squared test and the feature length for random forest feature permutation.

Continuous variables are not possible to assess in a chi-squared test and thus we assume TAA

to be the most important categorical feature for comparison. The purine rich sequences

(consisting of A and G) appear to be the most prominent K-mers from the feature importance

visualization, as well as the Chi-square test. This corresponds with the upstream ribosomal

binding site regions for CDS’. However, the feature selection does not tell us what target

variable has the most or least amount of purine rich sequences. They only state that those K-

mers are an important variable for differing between the targets (a test of homogeneity). The

chi-square did show enriched K-mers, but that only means they appear a little more than

random. It does not mean there even is a signal one can use for classification.

The TAA (a stop codon) is prominent in the classification of gene for the Random Forest

Feature Permutation, along with the motifs typically found in the Ribosomal Binding site. The

3-mer may be present in operon-gene-clusters, although the importance does not seem to

account for much (around 0.4%) when compared to length of an ORF (around 2.5%). Another

possibility for the TAA 3-mer is an importance as part of the promoter region. The sigma70

holoenzyme attaches itself to the sequence seen in (1). The latter part being around 10 bases

upstream of a CDS and containing TAA. Table 4.3.1 shows significant partial sequences from

the sigma70 promoter sequence (ATAA), which coincides with underlying theory.

62

5.5 Limitations and further research

There are many directions to take when it comes to genome annotation. In this thesis the focus

was to apply theoretical knowledge concerning the start position of a gene and see if it

coincided in general for a machine learning application. Due to constraints only one aspect

surrounding the prokaryotic genome has been investigated, namely aspects surrounding the

upstream sequence data. In this section some limitations and suggestions are made for further

research.

The first, most obvious limitation is the existence of operons. Operons prove to be difficult as

they consist of gene clusters with one promoter upstream of the first gene in the cluster. This

limits the upstream machine learning classification to genes with little to no operons, which is

not a case in the prokaryotic genome. In fact, there is a possibility that many of the false

negative classifications are genes in an operon cluster. A possible way to counterbalance these

false negatives is to account for distance between LORFs in the final training dataset. A small

distance meaning a higher chance of being in a cluster. Another possibility would be to make

an in-depth analysis of the operon’s functions and see if there is a general pattern one can use

to classify such operons.

Ideally a generalized model trained on all coding sequences present in different genomes

would have been a better fit for a future annotation model. The modelling results presented in

this thesis are made genome wise to account for the variation between them. However, not all

sequences have known species. When sequencing a metagenome, the species information is

lost. This information loss would make the models redundant. A model that could be able to

classify sequences without species definition would, in a metagenomic case, be beneficial. It

would be advantageous to map the difference in performance between a generalized model

trained on all 15 genomes against a model trained on only one genome.

Another limitation is the high dependency on the RefSeq annotations for the training datasets.

As mentioned in the Section 5.1, the RefSeq annotation pipeline is still a work in progress and

the data that the thesis surrounds itself around is not error-free. The fact that the annotation

data contains errors can have led to false conclusions for the machine learning models. A

wrong target label may lead to the supervised model making false assumptions, and if there

are enough, lead to an entirely useless model. For instance the LDA classifier is shown to be

63

typically inconsistent in the present of label noise unless the prior probabilities of each class

are equal (Cannings, 2019).

Some label noise could have been removed by eliminating the uncertain protein annotations.

This would have led to a total removal of 16 344 observations of the positive class (see table

4.4.1). This corresponds to a loss of 29,4% coding sequences. For the dataset with an ORF

filter length of 90, the mean number of ORFs per LORF is 16. By removing the 16 344

observations an average of 263 944 non-coding observations would have been removed as

well. This would have resulted in a dataset of 33 882 coding ORFs and 628 866 non-coding

ORFs. The relation would have been the same, but the information present in the sequences

may have been less noisy and more informative.

The removal of LORFs that do not match any LORFs in the RefSeq annotation data may have

left out some true positive variation. Some may consider these “alternative LORFs” to be the

truest of negative classes in a binary classification, as no open reading frame is said to be a

coding sequence. In this thesis the LORFs that did not match the RefSeq LORFs were filtered

away, leaving behind only the LORFs already present in the reference data. These true

negatives may have contributed by explaining some variance in the dataset, but it is not

certain. The initial problem statement regarding inclusion of the alternative LORFs was the

balancing of skewness. The balanced random forest classifier is an ideal classifier in that

sense as it randomly downsamples the majority class to be of same size as the minority and

can counter this original problem. An idea is to train an unfiltered ORF dataset with the

dataset presented in this thesis to see if the model can discern better between coding ORFs

and non-coding ORFs. ORFs here being all the alternative start and end positions present in a

genome.

Small proteins have been left out from the model training. By lowering the minimum length

of an ORF the false positive rate increases rapidly at the cost of some information loss. In

Table 4.2.1 the number of false positives was found to be at 990 000 whereas the true

positives were found to be 50 226. The total true positive rate when comparing this to the

reference was at 55 538, meaning a loss of 5312 observations of the positive class in the

training dataset. These small proteins are typically hidden or excluded in genome annotations

due to the large number of false positive prediction that occurs with an increased search

space.

64

An ideal expansion to the training dataset would be to introduce small genes shorter than 90

bp. Smaller protein products are being recognized and can encode functional polypeptides or

act as cis-translational regulators (Khitun et al., 2019). These small open reading frames

(smORFs) have been overlooked in this thesis due to the issue of an imbalanced dataset in the

training data. It is, however, a possibility to investigate the mapping of mRNA data to the

genome to include these smORFs in the dataset (Weaver et al., 2019).

An idea in terms of future work would be to implement the model presented here as part of a

pipeline. Given the high recall and false positives present it would be ideal to utilize the

upstream sequence model paired with a Balanced random forest classifier as the first initial

step of an annotation process. Ideally, the model could lower its threshold to become more

liberal in its classification. Increasing the search space and making sure actual genes are

moved further down the pipeline while false positives are slowly chipped away using more

conservative methods from new datasets.

65

6. Conclusion

The initial aim of the thesis was to “investigate if sequences upstream of a start codon in an

ORF is informative enough to discern between coding and non-coding ORFs”. Here two

datasets with different attributes have been created, namely a K-mer and a sequential dataset.

These datasets show many similarities in terms of results, and they both performed worse than

Prodigal, our standard annotation software. The reasoning behind this is quite simple;

Prodigal looks for more than just upstream sequences. As far as upstream sequences are

concerned, the models managed to pull all the information available from both datasets, with

very limited value. However, there is still much more information surrounding genes to base

annotation around.

Experimentally, a general understanding in biology has been uncovered. However, evolution

creates a larger scope of possibilities that may not always be as easy to model for the current

data. Based on the results, there appears to be a pattern pointing to specific motifs in the

dataset, but the classification results only manage to scrape the surface. An ideal step forward

is to expand into a pipeline so that the complex false negative classifications may be

explained.

66

Bibliography

Abril, J. F. C., S. (2019). Genome Annotation. In Encyclopedia of Bioinformatics and Computational Biology.
Ameer, M. W., A. Salen, P. (2021). Escherichia Coli (E Coli 0157 H7). StatPearls.

https://www.ncbi.nlm.nih.gov/books/NBK507845/
Anders, J., Petruschke, H., Jehmlich, N., Haange, S. B., von Bergen, M., & Stadler, P. F. (2021). A workflow to

identify novel proteins based on the direct mapping of peptide-spectrum-matches to genomic
locations. BMC Bioinformatics, 22(1), 277. https://doi.org/10.1186/s12859-021-04159-8

Arlot, S. C., A. (2010). A survey of cross-validation procedures

for model selection. Statistics Surveys, 4, 40-79. https://doi.org/http://dx.doi.org/10.1214/09-SS054
Armstrong, J., Fiddes, I. T., Diekhans, M., & Paten, B. (2019). Whole-Genome Alignment and Comparative

Annotation. Annu Rev Anim Biosci, 7, 41-64. https://doi.org/10.1146/annurev-animal-020518-115005
Barker, M. R., W. . (2002). Partial least squares for discrimination. Journal of chemometrics, 17, 166-173.

https://doi.org/10.1002/cem.785
Bergstra, J. B., Y. (2010). Random Search for Hyper-Parameter Optimization. Journal of Machine Learning

Research, 13, 281-305.
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.

https://doi.org/https://doi.org/10.1023/A:1010933404324
Brenner, S. M., J. (2001). Encyclopedia of Genetics. Elsevier Science Inc.
Britannica, T. (2018). Operon. Retrieved 17.04 from https://www.britannica.com/science/operon
Campbell, J. Exploring Machine Learning : Introducing scikit-learn for ML in Python. https://cornell-

library.skillport.com/skillportfe/main.action?path=summary/BOOKS/130007
Cannings, T., Fan, Y. Samworth, R. (2019). Classification with imperfect training labels

 https://doi.org/

https://doi.org/10.48550/arXiv.1805.11505
Cebrat, S., Dudek, M. R., Mackiewicz, P., Kowalczuk, M., & Fita, M. (1997). Asymmetry of coding versus

noncoding strand in coding sequences of different genomes. Microb Comp Genomics, 2(4), 259-268.
https://doi.org/10.1089/omi.1.1997.2.259

Chicco, D. (2017). Ten quick tips for machine learning in computational biology. BioData Min, 10, 35.
https://doi.org/10.1186/s13040-017-0155-3

Chicco, D., Totsch, N., & Jurman, G. (2021). The Matthews correlation coefficient (MCC) is more reliable than
balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix
evaluation. BioData Min, 14(1), 13. https://doi.org/10.1186/s13040-021-00244-z

Cover, T. M. H., P E. (1968). The Condensed Nearest Neighbor RUle. IEEE Transactions on Information Theory,
14(3), 515-516. https://doi.org/10.1109/TIT.1968.1054155

developers, s.-l. (2007-2022). Permutation feature importance. Retrieved 01.05 from https://scikit-
learn.org/stable/_sources/modules/permutation_importance.rst.txt

Dong, Y., Li, C., Kim, K., Cui, L., & Liu, X. (2021). Genome annotation of disease-causing microorganisms. Brief
Bioinform, 22(2), 845-854. https://doi.org/10.1093/bib/bbab004

Eddy, S. R. (2004). What is a hidden Markov model? Nat Biotechnol, 22(10), 1315-1316.
https://doi.org/10.1038/nbt1004-1315

Errington, J., & Aart, L. T. V. (2020). Microbe Profile: Bacillus subtilis: model organism for cellular development,
and industrial workhorse. Microbiology (Reading), 166(5), 425-427.
https://doi.org/10.1099/mic.0.000922

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.
https://doi.org/doi:10.1016/j.patrec.2005.10.010

Flach, P. W., S. (2002). Repairing Concavities in ROC Curves.
https://www.ijcai.org/Proceedings/05/Papers/0652.pdf

Gabbay, D. M. W., J. (2005). A Practical Logic of Cognitive Systems (Vol. 2). Elsevier.
https://doi.org/https://doi.org/10.1016/S1874-5075(05)80027-0.

Galperin, M. Y. (2001). Conserved 'hypothetical' proteins: new hints and new puzzles. Comp Funct Genomics,
2(1), 14-18. https://doi.org/10.1002/cfg.66

Galperin, M. Y., Kristensen, D. M., Makarova, K. S., Wolf, Y. I., & Koonin, E. V. (2019). Microbial genome
analysis: the COG approach. Brief Bioinform, 20(4), 1063-1070. https://doi.org/10.1093/bib/bbx117

https://www.ncbi.nlm.nih.gov/books/NBK507845/
https://doi.org/10.1186/s12859-021-04159-8
https://doi.org/http:/dx.doi.org/10.1214/09-SS054
https://doi.org/10.1146/annurev-animal-020518-115005
https://doi.org/10.1002/cem.785
https://doi.org/https:/doi.org/10.1023/A:1010933404324
https://www.britannica.com/science/operon
https://cornell-library.skillport.com/skillportfe/main.action?path=summary/BOOKS/130007
https://cornell-library.skillport.com/skillportfe/main.action?path=summary/BOOKS/130007
https://doi.org/
https://doi.org/10.48550/arXiv.1805.11505
https://doi.org/10.1089/omi.1.1997.2.259
https://doi.org/10.1186/s13040-017-0155-3
https://doi.org/10.1186/s13040-021-00244-z
https://doi.org/10.1109/TIT.1968.1054155
https://scikit-learn.org/stable/_sources/modules/permutation_importance.rst.txt
https://scikit-learn.org/stable/_sources/modules/permutation_importance.rst.txt
https://doi.org/10.1093/bib/bbab004
https://doi.org/10.1038/nbt1004-1315
https://doi.org/10.1099/mic.0.000922
https://doi.org/doi:10.1016/j.patrec.2005.10.010
https://www.ijcai.org/Proceedings/05/Papers/0652.pdf
https://doi.org/https:/doi.org/10.1016/S1874-5075(05)80027-0
https://doi.org/10.1002/cfg.66
https://doi.org/10.1093/bib/bbx117

67

Haft, D. H., DiCuccio, M., Badretdin, A., Brover, V., Chetvernin, V., O'Neill, K., Li, W., Chitsaz, F., Derbyshire, M.
K., Gonzales, N. R., Gwadz, M., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Zheng,
C., Thibaud-Nissen, F., Geer, L. Y., . . . Pruitt, K. D. (2018). RefSeq: an update on prokaryotic genome
annotation and curation. Nucleic Acids Res, 46(D1), D851-D860. https://doi.org/10.1093/nar/gkx1068

Hanley, J. M., B. (1982). The Meaning and Use of the Area

under a Receiver Operating

Characteristic (ROC) Curve. Radiology, 143, 29-36.
Hunter, J. D. (2007). Matplotlib is a 2D graphics package used for Python for

 application development, interactive scripting, and publication-quality

 image generation across user interfaces and operating systems. Computing in Science & Engineering, 9, 90-95.
https://doi.org/10.1109/MCSE.2007.55

Hyatt, D., Chen, G. L., Locascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: prokaryotic
gene recognition and translation initiation site identification. BMC Bioinformatics, 11, 119.
https://doi.org/10.1186/1471-2105-11-119

Iriarte, A., Lamolle, G., & Musto, H. (2021). Codon Usage Bias: An Endless Tale. J Mol Evol, 89(9-10), 589-593.
https://doi.org/10.1007/s00239-021-10027-z

Khitun, A., Ness, T. J., & Slavoff, S. A. (2019). Small open reading frames and cellular stress responses. Mol
Omics, 15(2), 108-116. https://doi.org/10.1039/c8mo00283e

Kozak, M. (1999). Initiation of translation in prokaryotes and eukaryotes. Gene, 234(2), 187-208.
https://doi.org/10.1016/s0378-1119(99)00210-3

Land, M., Hauser, L., Jun, S. R., Nookaew, I., Leuze, M. R., Ahn, T. H., Karpinets, T., Lund, O., Kora, G.,
Wassenaar, T., Poudel, S., & Ussery, D. W. (2015). Insights from 20 years of bacterial genome
sequencing. Funct Integr Genomics, 15(2), 141-161. https://doi.org/10.1007/s10142-015-0433-4

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M.,
FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R.,
McEwan, P., . . . International Human Genome Sequencing, C. (2001). Initial sequencing and analysis of
the human genome. Nature, 409(6822), 860-921. https://doi.org/10.1038/35057062

Li, W., O'Neill, K. R., Haft, D. H., DiCuccio, M., Chetvernin, V., Badretdin, A., Coulouris, G., Chitsaz, F.,
Derbyshire, M. K., Durkin, A. S., Gonzales, N. R., Gwadz, M., Lanczycki, C. J., Song, J. S., Thanki, N.,
Wang, J., Yamashita, R. A., Yang, M., Zheng, C., . . . Thibaud-Nissen, F. (2021). RefSeq: expanding the
Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res,
49(D1), D1020-D1028. https://doi.org/10.1093/nar/gkaa1105

Liu, Y. R., W. (2007). PLS and dimension reduction for classification. Computational statistics, 22, 189-208.
Lomsadze, A., Gemayel, K., Tang, S., & Borodovsky, M. (2018). Modeling leaderless transcription and atypical

genes results in more accurate gene prediction in prokaryotes. Genome Res, 28(7), 1079-1089.
https://doi.org/10.1101/gr.230615.117

Martinez-Cano, D. J., Reyes-Prieto, M., Martinez-Romero, E., Partida-Martinez, L. P., Latorre, A., Moya, A., &
Delaye, L. (2014). Evolution of small prokaryotic genomes. Front Microbiol, 5, 742.
https://doi.org/10.3389/fmicb.2014.00742

Mejia-Almonte, C., Busby, S. J. W., Wade, J. T., van Helden, J., Arkin, A. P., Stormo, G. D., Eilbeck, K., Palsson, B.
O., Galagan, J. E., & Collado-Vides, J. (2020). Redefining fundamental concepts of transcription
initiation in bacteria. Nat Rev Genet, 21(11), 699-714. https://doi.org/10.1038/s41576-020-0254-8

Michel, V. T., B. Varoquaux, G. Gramfort, A. Duchesnay, E. Buitinck, L. Joly, A. (2021). _univariate_selection.py.
In https://github.com/scikit-learn/scikit-
learn/blob/baf828ca1/sklearn/feature_selection/_univariate_selection.py#L170

Minsky, M. (1961). Steps Toward Artificial Intelligence. Proc. IRE, 49, 8.30.
Mir, K., Neuhaus, K., Scherer, S., Bossert, M., & Schober, S. (2012). Predicting statistical properties of open

reading frames in bacterial genomes. PLoS One, 7(9), e45103.
https://doi.org/10.1371/journal.pone.0045103

Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E.,
Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A. (2021). Pfam: The protein families
database in 2021. Nucleic Acids Res, 49(D1), D412-D419. https://doi.org/10.1093/nar/gkaa913

NCBI. (2021a). NCBI Prokaryotic Genome Annotation Pipeline. Retrieved 31.01 from
https://www.ncbi.nlm.nih.gov/genome/annotation_prok/

https://doi.org/10.1093/nar/gkx1068
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1007/s00239-021-10027-z
https://doi.org/10.1039/c8mo00283e
https://doi.org/10.1016/s0378-1119(99)00210-3
https://doi.org/10.1007/s10142-015-0433-4
https://doi.org/10.1038/35057062
https://doi.org/10.1093/nar/gkaa1105
https://doi.org/10.1101/gr.230615.117
https://doi.org/10.3389/fmicb.2014.00742
https://doi.org/10.1038/s41576-020-0254-8
https://github.com/scikit-learn/scikit-learn/blob/baf828ca1/sklearn/feature_selection/_univariate_selection.py#L170
https://github.com/scikit-learn/scikit-learn/blob/baf828ca1/sklearn/feature_selection/_univariate_selection.py#L170
https://doi.org/10.1371/journal.pone.0045103
https://doi.org/10.1093/nar/gkaa913
https://www.ncbi.nlm.nih.gov/genome/annotation_prok/

68

NCBI. (2021b). Prokaryotic RefSeq Genomes. NCBI. Retrieved 31.01 from
https://www.ncbi.nlm.nih.gov/refseq/about/prokaryotes/

NCBI. (2021c). Prokaryotic RefSeq Genomes list. Retrieved 31.01 from
https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/refseq_category:reference

NCBI. (2022). GenBank and WGS Statistics. Retrieved 05.05 from
https://www.ncbi.nlm.nih.gov/genbank/statistics/

Oliveira, M. M., D Q. Ferrari, L I. Vasconcelos, A T R. (2004). Ribosome binding site recognition using neural
networks. Genetics and Molecular Biology, 27(4), 644-650. https://doi.org/
https://doi.org/10.1590/S1415-47572004000400028

Omotajo, D., Tate, T., Cho, H., & Choudhary, M. (2015). Distribution and diversity of ribosome binding sites in
prokaryotic genomes. BMC Genomics, 16, 604. https://doi.org/10.1186/s12864-015-1808-6

Palleja, A., Harrington, E. D., & Bork, P. (2008). Large gene overlaps in prokaryotic genomes: result of functional
constraints or mispredictions? BMC Genomics, 9, 335. https://doi.org/10.1186/1471-2164-9-335

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2,
559-572. https://doi.org/https://doi.org/10.1080/14786440109462720

Pearson, W. R. (2013). An introduction to sequence similarity ("homology") searching. Curr Protoc
Bioinformatics, Chapter 3, Unit3 1. https://doi.org/10.1002/0471250953.bi0301s42

Pedregosa, F. V., G. Gramfort, A. Michel, V. Thirion, B. Grisel, O. Blondel, M. Prettenhofer, P. Weiss, R.
Dubourg, V. Vanderplas, J. Passos, A. Cournapeau, D. Brucher, M. Perrot, M. Duchesnay, E. (2011).
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825−2830.

Perna, T. G., J. Burland, V. Plunket III, G. (2002). Virulence Mechanisms of a Versatile Pathogen. Elsevier Inc.
Perry, S. C., & Beiko, R. G. (2010). Distinguishing microbial genome fragments based on their composition:

evolutionary and comparative genomic perspectives. Genome Biol Evol, 2, 117-131.
https://doi.org/10.1093/gbe/evq004

R Development Core Team. (2010). R: A language and environment for statistical computing. In R Foundation
for Statistical Computing. http://www.R-project.org

Raschka, S. M., V. (2019). Python Machine Learning (3 ed.). Packt Publishing Ltd.
Ruis-Perez, D. G., H. Madhivanan, P. Mathee, K. Narasimhan, G. (2020). So you think you can PLS-DA? BMC

Bioinformatics, 21. https://doi.org/https://doi.org/10.1186/s12859-019-3310-7
sklearn. (N.Y). Decision Tree Classifier. https://scikit-

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTr
eeClassifier

Snipen, L. (2017). mpda. In https://github.com/larssnip/mpda
Snipen, L., & Liland, K. H. (2016). Basic Biological Sequence Analysis. In (Version 2.1.5) [Package].
Snipen, L., & Liland, K. H. (2017). findOrfs. https://github.com/larssnip/microseq/blob/master/R/orfs.R
Stein, L. (2006, 18.08.2020). Generic Feature Format Version 3 (GFF3). Retrieved 27.03 from

https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., Lomsadze, A., Pruitt, K.

D., Borodovsky, M., & Ostell, J. (2016). NCBI prokaryotic genome annotation pipeline. Nucleic Acids
Res, 44(14), 6614-6624. https://doi.org/10.1093/nar/gkw569

ThermoFisher. (n.d). Ribosomal Binding Site Sequence Requirements. Retrieved 26.04 from
https://www.thermofisher.com/no/en/home/references/ambion-tech-support/translation-
systems/general-articles/ribosomal-binding-site-sequence-requirements.html

Vinje, H., Snipen, L., & Liland, K. H. (2016). Methods for 16S based taxonomic classification of prokaryotes. In
(Version 1.2) [R package].

Volkenborn, K., Kuschmierz, L., Benz, N., Lenz, P., Knapp, A., & Jaeger, K. E. (2020). The length of ribosomal
binding site spacer sequence controls the production yield for intracellular and secreted proteins by
Bacillus subtilis. Microb Cell Fact, 19(1), 154. https://doi.org/10.1186/s12934-020-01404-2

Watson, J. D. B., T. Stephen, B. Alexander, G. Michael, L. Richard, L. . (1965/2014). Molecular Biology of the
Gene (7th ed.). Pearson.

Weaver, J., Mohammad, F., Buskirk, A. R., & Storz, G. (2019). Identifying Small Proteins by Ribosome Profiling
with Stalled Initiation Complexes. mBio, 10(2). https://doi.org/10.1128/mBio.02819-18

Webb, G. I. B., J R. Wang, Z. (2005). Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine
Learning, 58, 5 - 24. https://doi.org/https://doi.org/10.1007%2Fs10994-005-4258-6

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
https://ggplot2.tidyverse.org

https://www.ncbi.nlm.nih.gov/refseq/about/prokaryotes/
https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/refseq_category:reference
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://doi.org/
https://doi.org/10.1590/S1415-47572004000400028
https://doi.org/10.1186/s12864-015-1808-6
https://doi.org/10.1186/1471-2164-9-335
https://doi.org/https:/doi.org/10.1080/14786440109462720
https://doi.org/10.1002/0471250953.bi0301s42
https://doi.org/10.1093/gbe/evq004
http://www.r-project.org/
https://doi.org/https:/doi.org/10.1186/s12859-019-3310-7
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://github.com/larssnip/mpda
https://github.com/larssnip/microseq/blob/master/R/orfs.R
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://doi.org/10.1093/nar/gkw569
https://www.thermofisher.com/no/en/home/references/ambion-tech-support/translation-systems/general-articles/ribosomal-binding-site-sequence-requirements.html
https://www.thermofisher.com/no/en/home/references/ambion-tech-support/translation-systems/general-articles/ribosomal-binding-site-sequence-requirements.html
https://doi.org/10.1186/s12934-020-01404-2
https://doi.org/10.1128/mBio.02819-18
https://doi.org/https:/doi.org/10.1007%2Fs10994-005-4258-6
https://ggplot2.tidyverse.org/

69

Wold, S. S., M. Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent
Laboratory Systems, 58(2), 109-130. https://doi.org/https://doi.org/10.1016/S0169-7439(01)00155-1

https://doi.org/https:/doi.org/10.1016/S0169-7439(01)00155-1

70

Attachments

Attachment 1

Complete table with metrics and best parameters for the four selected genomes after running

of four different classifiers with the K-mer dataset

Precision Recall F1 MCC Genome Classifier Tuning Reduction

0.31 0.93 0.46 0.49
Bacillus

subtilis
imblearn ‘classifier__n_estimators’: 500 0.0

0.61 0.48 0.54 0.51
Bacillus

subtilis

logistic

regression

 ‘classifier’: LogisticRegression(C=0.01),

‘classifier__C’: 0.01
0.0

0.66 0.16 0.26 0.31
Bacillus

subtilis
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10, p=1),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

1

0.0

0.66 0.16 0.26 0.31
Bacillus

subtilis
lda+pls 0.0

0.31 0.93 0.47 0.49
Bacillus

subtilis
imblearn ‘classifier__n_estimators’: 300 500.0

0.68 0.48 0.56 0.55
Bacillus

subtilis

logistic

regression

 ‘classifier’: LogisticRegression(C=0.01),

‘classifier__C’: 0.01
500.0

0.7 0.2 0.31 0.35
Bacillus

subtilis
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10, p=1),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

1

500.0

0.7 0.2 0.31 0.35
Bacillus

subtilis
lda+pls 500.0

0.31 0.92 0.46 0.49
Bacillus

subtilis
imblearn ‘classifier__n_estimators’: 300 1000.0

0.68 0.48 0.56 0.55
Bacillus

subtilis

logistic

regression

 ‘classifier’: LogisticRegression(C=0.1),

‘classifier__C’: 0.1
1000.0

0.69 0.2 0.31 0.35
Bacillus

subtilis
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10, p=1),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

1

1000.0

0.69 0.2 0.31 0.35
Bacillus

subtilis
lda+pls 1000.0

0.3 0.93 0.46 0.48
Bacillus

subtilis
imblearn ‘classifier__n_estimators’: 300 1500.0

0.68 0.47 0.55 0.54
Bacillus

subtilis

logistic

regression

 ‘classifier’: LogisticRegression(C=100.0),

‘classifier__C’: 100.0
1500.0

0.65 0.19 0.29 0.33
Bacillus

subtilis
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10, p=1),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

1

1500.0

0.65 0.19 0.29 0.33
Bacillus

subtilis
lda+pls 1500.0

0.32 0.77 0.45 0.43
Campylobacter

jejuni
imblearn ‘classifier__n_estimators’: 300 0.0

0.59 0.42 0.49 0.46
Campylobacter

jejuni

logistic

regression

 ‘classifier’: LogisticRegression(C=0.01),

‘classifier__C’: 0.01
0.0

0.49 0.43 0.46 0.41
Campylobacter

jejuni
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10, p=1),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

1

0.0

71

0.49 0.43 0.46 0.41
Campylobacter

jejuni
lda+pls 0.0

0.31 0.76 0.44 0.42
Campylobacter

jejuni
imblearn ‘classifier__n_estimators’: 900 500.0

0.73 0.41 0.52 0.52
Campylobacter

jejuni

logistic

regression

 ‘classifier’: LogisticRegression(C=0.01),

‘classifier__C’: 0.01
500.0

0.71 0.25 0.38 0.4
Campylobacter

jejuni
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

2

500.0

0.71 0.25 0.38 0.4
Campylobacter

jejuni
lda+pls 500.0

0.32 0.76 0.45 0.42
Campylobacter

jejuni
imblearn ‘classifier__n_estimators’: 900 1000.0

0.72 0.44 0.55 0.53
Campylobacter

jejuni

logistic

regression

 ‘classifier’: LogisticRegression(),

‘classifier__C’: 1.0
1000.0

0.72 0.2 0.31 0.35
Campylobacter

jejuni
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10, p=1),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

1

1000.0

0.72 0.2 0.31 0.35
Campylobacter

jejuni
lda+pls 1000.0

0.32 0.78 0.45 0.43
Campylobacter

jejuni
imblearn ‘classifier__n_estimators’: 300 1500.0

0.71 0.43 0.54 0.52
Campylobacter

jejuni

logistic

regression

 ‘classifier’: LogisticRegression(),

‘classifier__C’: 1.0
1500.0

0.74 0.19 0.31 0.36
Campylobacter

jejuni
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10, p=1),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

1

1500.0

0.74 0.19 0.31 0.36
Campylobacter

jejuni
lda+pls 1500.0

0.23 0.79 0.35 0.36
Caulobacter

vibriodes
imblearn ‘classifier__n_estimators’: 500 0.0

0.48 0.3 0.37 0.35
Caulobacter

vibriodes

logistic

regression

 ‘classifier’: LogisticRegression(C=0.01),

‘classifier__C’: 0.01
0.0

0.45 0.03 0.05 0.1
Caulobacter

vibriodes
knn

 ‘classifier’: KNeighborsClassifier(),

‘classifier__n_neighbors’: 5, ‘classifier__p’: 2
0.0

0.45 0.03 0.05 0.1
Caulobacter

vibriodes
lda+pls 0.0

0.22 0.78 0.34 0.34
Caulobacter

vibriodes
imblearn ‘classifier__n_estimators’: 300 500.0

0.6 0.27 0.37 0.37
Caulobacter

vibriodes

logistic

regression

 ‘classifier’: LogisticRegression(C=0.01),

‘classifier__C’: 0.01
500.0

0.61 0.06 0.12 0.19
Caulobacter

vibriodes
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10, p=1),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

1

500.0

0.61 0.06 0.12 0.19
Caulobacter

vibriodes
lda+pls 500.0

0.21 0.78 0.34 0.34
Caulobacter

vibriodes
imblearn ‘classifier__n_estimators’: 500 1000.0

0.6 0.25 0.36 0.37
Caulobacter

vibriodes

logistic

regression

 ‘classifier’: LogisticRegression(C=0.01),

‘classifier__C’: 0.01
1000.0

0.6 0.09 0.16 0.22
Caulobacter

vibriodes
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10, p=1),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

1

1000.0

0.6 0.09 0.16 0.22
Caulobacter

vibriodes
lda+pls 1000.0

72

0.21 0.77 0.33 0.34
Caulobacter

vibriodes
imblearn ‘classifier__n_estimators’: 300 1500.0

0.63 0.23 0.34 0.36
Caulobacter

vibriodes

logistic

regression

 ‘classifier’: LogisticRegression(C=0.01),

‘classifier__C’: 0.01
1500.0

0.62 0.07 0.12 0.19
Caulobacter

vibriodes
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

2

1500.0

0.62 0.07 0.12 0.19
Caulobacter

vibriodes
lda+pls 1500.0

0.13 0.6 0.22 0.19
E.coli O156H7

sakai
imblearn ‘classifier__n_estimators’: 900 0.0

0.34 0.08 0.13 0.14
E.coli O156H7

sakai

logistic

regression

 ‘classifier’: LogisticRegression(C=0.01),

‘classifier__C’: 0.01
0.0

0.33 0.0 0.0 0.01
E.coli O156H7

sakai
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10, p=1),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

1

0.0

0.33 0.0 0.0 0.01
E.coli O156H7

sakai
lda+pls 0.0

0.13 0.59 0.21 0.18
E.coli O156H7

sakai
imblearn ‘classifier__n_estimators’: 600 500.0

0.4 0.05 0.09 0.13
E.coli O156H7

sakai

logistic

regression

 ‘classifier’: LogisticRegression(C=0.01),

‘classifier__C’: 0.01
500.0

0.45 0.0 0.01 0.04
E.coli O156H7

sakai
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

2

500.0

0.45 0.0 0.01 0.04
E.coli O156H7

sakai
lda+pls

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

2

500.0

0.13 0.59 0.22 0.19
E.coli O156H7

sakai
imblearn ‘classifier__n_estimators’: 600 1000.0

0.45 0.04 0.08 0.13
E.coli O156H7

sakai

logistic

regression

 ‘classifier’: LogisticRegression(C=0.01),

‘classifier__C’: 0.01
1000.0

0.29 0.0 0.01 0.03
E.coli O156H7

sakai
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10, p=1),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

1

1000.0

0.29 0.0 0.01 0.03
E.coli O156H7

sakai
lda+pls 1000.0

0.13 0.58 0.22 0.18
E.coli O156H7

sakai
imblearn ‘classifier__n_estimators’: 900 1500.0

0.48 0.05 0.09 0.14
E.coli O156H7

sakai

logistic

regression

 ‘classifier’: LogisticRegression(C=0.1),

‘classifier__C’: 0.1
1500.0

0.29 0.0 0.01 0.03
E.coli O156H7

sakai
knn

 ‘classifier’:

KNeighborsClassifier(n_neighbors=10, p=1),

‘classifier__n_neighbors’: 10, ‘classifier__p’:

1

1500.0

0.29 0.0 0.01 0.03
E.coli O156H7

sakai
lda+pls 1500.0

73

Attachment 2
Complete table with metrics and parameters after running of the four different classifiers on

the four selected genomes with the sequential dataset

Precision Recall F1 MCC Genome Classifier Tuning Reduction

0.48 0.92 0.63 0.64 Bacillus subtilis imblearn ‘classifier__n_estimators’: 800 0.0

0.48 0.92 0.63 0.64 Bacillus subtilis imblearn ‘classifier__n_estimators’: 700 500.0

0.48 0.92 0.63 0.64 Bacillus subtilis imblearn ‘classifier__n_estimators’: 800 1000.0

0.48 0.92 0.63 0.63 Bacillus subtilis imblearn ‘classifier__n_estimators’: 700 1500.0

0.51 0.85 0.64 0.62
Campylobacter
jejuni

imblearn ‘classifier__n_estimators’: 700 1000.0

0.5 0.84 0.63 0.61
Campylobacter
jejuni

imblearn ‘classifier__n_estimators’: 600 0.0

0.5 0.84 0.63 0.61
Campylobacter
jejuni

imblearn ‘classifier__n_estimators’: 500 500.0

0.5 0.84 0.62 0.61
Campylobacter
jejuni

imblearn ‘classifier__n_estimators’: 500 1500.0

0.31 0.9 0.46 0.48
Caulobacter
vibriodes

imblearn ‘classifier__n_estimators’: 600 0.0

0.31 0.9 0.46 0.48
Caulobacter
vibriodes

imblearn ‘classifier__n_estimators’: 500 1000.0

0.31 0.89 0.46 0.48
Caulobacter
vibriodes

imblearn ‘classifier__n_estimators’: 400 500.0

0.3 0.89 0.45 0.47
Caulobacter
vibriodes

imblearn ‘classifier__n_estimators’: 500 1500.0

0.15 0.58 0.24 0.22
E. coli
O156H7_sakai

imblearn ‘classifier__n_estimators’: 900 1000.0

0.15 0.58 0.24 0.21
E. coli
O156H7_sakai

imblearn ‘classifier__n_estimators’: 800 1500.0

0.15 0.57 0.24 0.21
E. coli
O156H7_sakai

imblearn ‘classifier__n_estimators’: 800 0.0

0.15 0.57 0.24 0.21
E. coli
O156H7_sakai

imblearn ‘classifier__n_estimators’: 900 500.0

0.78 0.46 0.58 0.58 Bacillus subtilis knn
 ‘classifier’: KNeighborsClassifier(p=1),
‘classifier__n_neighbors’: 5,
‘classifier__p’: 1

0.0

0.78 0.46 0.58 0.58 Bacillus subtilis knn
 ‘classifier’: KNeighborsClassifier(p=1),
‘classifier__n_neighbors’: 5,
‘classifier__p’: 1

500.0

0.78 0.46 0.58 0.58 Bacillus subtilis knn
 ‘classifier’: KNeighborsClassifier(p=1),
‘classifier__n_neighbors’: 5,
‘classifier__p’: 1

1000.0

0.78 0.46 0.58 0.58 Bacillus subtilis knn
 ‘classifier’: KNeighborsClassifier(p=1),
‘classifier__n_neighbors’: 5,
‘classifier__p’: 1

1500.0

0.88 0.49 0.63 0.64
Campylobacter
jejuni

knn

 ‘classifier’:
KNeighborsClassifier(n_neighbors=10,
p=1), ‘classifier__n_neighbors’: 10,
‘classifier__p’: 1

0.0

0.88 0.49 0.63 0.64
Campylobacter
jejuni

knn

 ‘classifier’:
KNeighborsClassifier(n_neighbors=10,
p=1), ‘classifier__n_neighbors’: 10,
‘classifier__p’: 1

500.0

0.88 0.49 0.63 0.64
Campylobacter
jejuni

knn
 ‘classifier’:
KNeighborsClassifier(n_neighbors=10,

1000.0

74

p=1), ‘classifier__n_neighbors’: 10,
‘classifier__p’: 1

0.9 0.48 0.62 0.63
Campylobacter
jejuni

knn

 ‘classifier’:
KNeighborsClassifier(n_neighbors=10,
p=1), ‘classifier__n_neighbors’: 10,
‘classifier__p’: 1

1500.0

0.73 0.1 0.17 0.25
Caulobacter
vibriodes

knn
 ‘classifier’: KNeighborsClassifier(p=1),
‘classifier__n_neighbors’: 5,
‘classifier__p’: 1

0.0

0.73 0.1 0.17 0.25
Caulobacter
vibriodes

knn
 ‘classifier’: KNeighborsClassifier(p=1),
‘classifier__n_neighbors’: 5,
‘classifier__p’: 1

500.0

0.73 0.1 0.17 0.25
Caulobacter
vibriodes

knn
 ‘classifier’: KNeighborsClassifier(p=1),
‘classifier__n_neighbors’: 5,
‘classifier__p’: 1

1000.0

0.73 0.1 0.17 0.25
Caulobacter
vibriodes

knn
 ‘classifier’: KNeighborsClassifier(p=1),
‘classifier__n_neighbors’: 5,
‘classifier__p’: 1

1500.0

0.35 0.01 0.01 0.04
E. coli
O156H7_sakai

knn

 ‘classifier’:
KNeighborsClassifier(n_neighbors=10),
‘classifier__n_neighbors’: 10,
‘classifier__p’: 2

0.0

0.35 0.01 0.01 0.04
E. coli
O156H7_sakai

knn

 ‘classifier’:
KNeighborsClassifier(n_neighbors=10),
‘classifier__n_neighbors’: 10,
‘classifier__p’: 2

500.0

0.35 0.01 0.01 0.04
E. coli
O156H7_sakai

knn

 ‘classifier’:
KNeighborsClassifier(n_neighbors=10),
‘classifier__n_neighbors’: 10,
‘classifier__p’: 2

1000.0

0.35 0.01 0.01 0.04
E. coli
O156H7_sakai

knn

 ‘classifier’:
KNeighborsClassifier(n_neighbors=10),
‘classifier__n_neighbors’: 10,
‘classifier__p’: 2

1500.0

0.74 0.7 0.72 0.7 Bacillus subtilis lda+pls 0.0

0.74 0.7 0.72 0.7 Bacillus subtilis lda+pls 500.0

0.74 0.7 0.72 0.7 Bacillus subtilis lda+pls 1000.0

0.74 0.7 0.72 0.7 Bacillus subtilis lda+pls 1500.0

0.76 0.68 0.72 0.70
Campylobacter
jejuni

lda+pls 0.0

0.76 0.68 0.72 0.70
Campylobacter
jejuni

lda+pls 500.0

0.76 0.68 0.72 0.70
Campylobacter
jejuni

lda+pls 1000.0

0.76 0.68 0.72 0.70
Campylobacter
jejuni

lda+pls 1500.0

0.51 0.53 0.52 0.48
Caulobacter
vibriodes

lda+pls 0.0

0.51 0.53 0.52 0.48
Caulobacter
vibriodes

lda+pls 500.0

0.51 0.53 0.52 0.48
Caulobacter
vibriodes

lda+pls 1000.0

0.51 0.53 0.52 0.48
Caulobacter
vibriodes

lda+pls 1500.0

0.54 0.08 0.14 0.19
E. coli
O156H7_sakai

lda+pls 0.0

75

0.54 0.08 0.14 0.19
E. coli
O156H7_sakai

lda+pls 500.0

0.54 0.08 0.14 0.19
E. coli
O156H7_sakai

lda+pls 1000.0

0.54 0.08 0.14 0.19
E. coli
O156H7_sakai

lda+pls 1500.0

0.83 0.68 0.75 0.73 Bacillus subtilis
logistic
regression

 ‘classifier’: LogisticRegression(C=0.1),
‘classifier__C’: 0.1

0.0

0.83 0.68 0.75 0.73 Bacillus subtilis
logistic
regression

 ‘classifier’: LogisticRegression(C=0.1),
‘classifier__C’: 0.1

500.0

0.83 0.68 0.75 0.73 Bacillus subtilis
logistic
regression

 ‘classifier’: LogisticRegression(C=0.1),
‘classifier__C’: 0.1

1000.0

0.83 0.68 0.75 0.73 Bacillus subtilis
logistic
regression

 ‘classifier’: LogisticRegression(C=0.1),
‘classifier__C’: 0.1

1500.0

0.79 0.63 0.7 0.68
Campylobacter
jejuni

logistic
regression

 ‘classifier’: LogisticRegression(),
‘classifier__C’: 1.0

0.0

0.79 0.63 0.7 0.68
Campylobacter
jejuni

logistic
regression

 ‘classifier’: LogisticRegression(),
‘classifier__C’: 1.0

500.0

0.79 0.63 0.7 0.68
Campylobacter
jejuni

logistic
regression

 ‘classifier’: LogisticRegression(),
‘classifier__C’: 1.0

1000.0

0.8 0.63 0.7 0.68
Campylobacter
jejuni

logistic
regression

 ‘classifier’: LogisticRegression(C=0.1),
‘classifier__C’: 0.1

1500.0

0.65 0.39 0.49 0.48
Caulobacter
vibriodes

logistic
regression

 ‘classifier’: LogisticRegression(),
‘classifier__C’: 1.0

0.0

0.65 0.39 0.49 0.48
Caulobacter
vibriodes

logistic
regression

 ‘classifier’: LogisticRegression(),
‘classifier__C’: 1.0

500.0

0.65 0.39 0.49 0.48
Caulobacter
vibriodes

logistic
regression

 ‘classifier’: LogisticRegression(),
‘classifier__C’: 1.0

1000.0

0.65 0.39 0.49 0.48
Caulobacter
vibriodes

logistic
regression

 ‘classifier’: LogisticRegression(),
‘classifier__C’: 1.0

1500.0

0.42 0.02 0.04 0.08
E. coli
O156H7_sakai

logistic
regression

 ‘classifier’: LogisticRegression(C=0.1),
‘classifier__C’: 0.1

0.0

0.42 0.02 0.04 0.08
E. coli
O156H7_sakai

logistic
regression

 ‘classifier’: LogisticRegression(C=0.1),
‘classifier__C’: 0.1

500.0

0.42 0.02 0.04 0.08
E. coli
O156H7_sakai

logistic
regression

 ‘classifier’: LogisticRegression(C=0.1),
‘classifier__C’: 0.1

1000.0

0.42 0.02 0.04 0.08
E. coli
O156H7_sakai

logistic
regression

 ‘classifier’: LogisticRegression(C=0.1),
‘classifier__C’: 0.1

1500.0

76

