

Master’s Thesis 2022 30 ECTS

Faculty of Science and Technology

Evaluation of Machine Learning

Approaches for Prediction of

Protein Coding Genes in

Prokaryotic DNA Sequences

Yva Jacob Sandvik

Data Science

Preface

This thesis finalises my master’s degree in Data Science at the Norwegian University of Life
Sciences (NMBU). The topic was introduced by Kristian Hovde Liland, associate professor in
Data Science at NMBU. A preliminary literature review was written during the autumn of 2021,
also supervised by Kristian Hovde Liland. The work on this thesis started in January 2022 and
is a continuation of the results obtained from the review. In hindsight, it has been a challenging
semester, with some hurdles along the way, but also surprisingly fun, with some unforeseen new
friendships at TF1-212. Most of all, it has been extremely educational.

There are several people I would like to thank for helping me through the different stages of
writing this thesis. I wish to express my deepest appreciation to my supervisor, Kristian Hovde
Liland, and my co-supervisor, Lars Snipen, for their knowledge, advice and time, throughout
the whole process. It has been a pleasure to be guided by them, and all our meetings and
discussions have both motivated me and contributed greatly to this thesis. I would also like to
thank my family, for their encouragement and proofreading. A special thanks to my brother
Yohann, for his remarkable willingness to help and guide, and my boyfriend Ola, for his patience
and support.

Finally, I would like to thank everyone else who has made the last six years at NMBU an
unforgettable experience.

Yva Jacob Sandvik
Ås, June 13, 2022

i

Abstract

According to the National Human Genome Research Institute the amount of genomic data
generated on a yearly basis is constantly increasing. This rapid growth in genomic data has
led to a subsequent surge in the demand for efficient analysis and handling of said data. Gene
prediction involves identifying the areas of a DNA sequence that code for proteins, also called
protein coding genes. This task falls within the scope of bioinformatics, and there has been
surprisingly little development in this field of study, over the past years. Despite there being
sufficient state-of-the-art gene prediction tools, there is still room for improvement in terms
of efficiency and accuracy. Advances made within the field of gene prediction can, among
other things, aid the medical and pharmaceutical industry, as well as impact environmental and
anthropological research.

Machine learning techniques such as the Random Forest classifiers and Artificial Neural Net-
works (ANN) have proved successful at the task of gene prediction. In this thesis one deep
learning model and two other machine learning models were tested. The first model imple-
mented was the established Random Forest classifier. When it comes to the use of ensemble
methods, such as the Random Forest classifier, feature engineering is critical for the success of
such models. The exploration of different feature selection and extraction techniques under-
pinned its relevance. It also showed that feature importance varies greatly among genomes,
and revealed possibilities that can be further explored in future work. The second model tested
was the ensemble method Extreme Gradient Boosting (XGBoost), which served as a good
competitor to the Random Forest classifier. Finally, a Recurrent Neural Network (RNN) was
implemented. RNNs are known to be good with handling sequential data, therefore it seemed
like a good candidate for gene prediction.

The 15 prokaryotic genomes used to train the models were extracted from the NCBI genome
database. Each model was tasked with classifying sub-sequences of the genomes, called open
reading frames (ORFs), as either protein coding ORFs, or non-coding ORFs. One challenge
when preparing these datasets was that the number of protein coding ORFs was very small
compared to the number of non-coding ORFs. Another problem encountered in the dataset
was that protein coding ORFs in general are longer than non-coding ORFs, which can bias the
models to simply classify long ORFs as protein coding, and short ORFs as non-coding. For
these reasons, two datasets for each genome were created, taking each imbalance into account.
The models were trained, tuned and tested on both datasets for all genomes, and a combination
of genomes. The models were evaluated with regard to accuracy, precision and recall.

The results show that all three methods have potential and attained somewhat similar perfor-
mance scores. Despite the fact that both time and data were limited during model develop-
ment, they still yielded promising results. Considering there are several parameters that have
not yet been tuned in all models, many possibilities for further research remain. The fact that
a relatively simple RNN architecture performed so well, and has no requirement for feature
engineering, shows great promise for further applications in gene prediction, and possibly other
fields in bioinformatics.

iii

Contents

Preface i

Abstract iii

List of Figures vi

List of Tables ix

Abbreviations and Acronyms x

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Structure . 2

2 Theory 3
2.1 Gene Prediction . 3

2.1.1 The Genetic Code . 4
2.2 Machine Learning . 5

2.2.1 Decision Trees . 6
2.2.2 Random Forest . 8
2.2.3 XGBoost . 9
2.2.4 Training and Validation . 10
2.2.5 Hyperparameter Tuning . 11
2.2.6 Feature Selection . 11

2.3 Deep Learning . 11
2.3.1 Perceptron . 12
2.3.2 Multi-layer Perceptrons . 13
2.3.3 Activation Functions . 13
2.3.4 Training . 15
2.3.5 Recurrent Layers . 17

2.4 Evaluation Metrics . 18
2.5 Related Work . 19

2.5.1 GeneRFinder: Random Forest Classifier 19
2.5.2 CNN-MGP: Convolutional Neural Network Classifier 20

iv

3 Data Exploration 21
3.1 Selecting Genomes . 21
3.2 Description of the Data . 21
3.3 Data Preprocessing . 22

4 Methods 26
4.1 Feature Engineering . 26
4.2 Random Forest Classifier . 29

4.2.1 The Input Datasets . 30
4.2.2 Hyperparameter Tuning . 31
4.2.3 Feature Selection . 32

4.3 XGBoost . 33
4.4 Recurrent Neural Network . 33

4.4.1 Preprocessing . 33
4.4.2 Architecture . 34
4.4.3 Tuning . 34

4.5 Combining Genomes . 36

5 Results 37
5.1 Random Forest Classifier . 37

5.1.1 Comparing Datasets . 37
5.1.2 Default vs. Tuned Random Forest Classifier 38
5.1.3 Feature Importance . 39
5.1.4 Feature Selection Techniques . 42

5.2 XGBoost . 44
5.2.1 Feature Selection . 44
5.2.2 Default XGBoost vs. Default Random Forest Classifier 45

5.3 Recurrent Neural Network . 45
5.3.1 Nucleotide Sequence Data vs. Amino Acid Sequence Data 45
5.3.2 Comparing Datasets . 47

5.4 Comparing the Methods . 47
5.4.1 Combined Genomes . 49

6 Discussion 51
6.1 Random Forest Classifier . 51

6.1.1 Comparing Datasets . 51
6.1.2 Feature Importance . 52
6.1.3 Feature Selection . 53

6.2 XGBoost . 53
6.3 Recurrent Neural Network . 54

6.3.1 Maximum Sequence Lengths . 54
6.3.2 Comparing Datasets . 54

6.4 Comparing Machine Learning Methods . 55
6.4.1 Combined genomes . 56

6.5 Other Future Work . 56

7 Conclusion 58

Page v of 63

List of Figures

2.1 Illustration of how two polynucleotide chains are intertwined to form a double
helix DNA strand. The complementary base pairing between A-T and G-C are
responsible for the coiling of the two chains. The figure is taken from NIH [7]. . . 4

2.2 Illustration of how a single decision tree works. The goal is to separate CDS from
n-LORFs based on the distinguishing characteristics’ ”length” and ”GC-content”. 6

2.3 Simple illustration of how a Random Forest classifier is built up of multiple deci-
sion trees that classify the data as either class A or class B. The final prediction
is given by a majority voting. The figure is inspired by Tran [16]. 8

2.4 Illustrative figure of the logic behind the gradient boosting method. Decision
trees are added in an iterative manner, in order to reduce the error of the model. 10

2.5 Illustration of the splitting of training data in a 5-fold cross validation. The figure
is inspired by Koehrsen [18]. 11

2.6 Sketch of a perceptron. It receives an input (x), makes a weighted (w) summation
of the inputs, adds a bias (b). Finally, the activation function (f) computes an
output (y). 12

2.7 Example of a simple MLP consisting of an input layer with three input units plus
a bias unit. Two hidden layers with three and four hidden units plus each their
bias unit respectively. Finally, there is a single output layer. 13

2.8 Overview of activation functions that are common to use for hidden layers de-
pending on the network type. The figure is inspired by Brownlee [20]. 14

2.9 Overview of activation functions that are common to use for output layers de-
pending on the problem type. The figure is inspired by Brownlee [20]. 14

2.10 Illustration of the training process for a multi-layer perceptron. 16
2.11 Comparison of a simple MLP and RNN. The networks consist of an input layer

x, a single hidden layer h and an output layer y. The t in the RNN denotes the
time step of each input, and the unfolded version of the RNN illustrates how
input is received from both the input at the current time step as well as from the
hidden layer of the previous time step. 17

2.12 Illustration of an LSTM layer and how it is controlled by a memory cell, a forget
gate, a input gate, a output gate and the respective activation functions. The
input from the current time step to the cell is denoted by xt. ct−1 is the cell state
from past time steps, ht−1 is the input from past time steps, ct is the cell state
output, and ht is the layers output. The figure is inspired by Graves, Mohamed,
and Hinton [25]. 18

vi

3.1 Histogram plots featuring the length and number distribution of all CDS and
n-LORFs extracted from the genome of species M. tuberculosis. The length is
measured in number of base pairs [bp]. Notice that the y-axis is not the same in
both plots. 23

3.2 Histogram plot featuring the length and number distribution of CDS and n-
LORFs in dataset 1, from the genome of species M. tuberculosis. The length is
measured in number of base pairs [bp]. 24

3.3 Histogram plot featuring the length and number distribution of CDS and n-
LORFs in dataset 2, from the genome of species M. tuberculosis. The length is
measured in number of base pairs [bp]. 25

4.1 Features engineered from LORFs in 15 different genome datasets, which are to
be used as input in the machine learning models Random Forest and XGBoost. . 26

4.2 Density plot showing the difference in the density distribution between CDS and
n-LORFs in 5 genomes given their overall GC-content which includes all frames. 27

4.3 Density plot showing the length distribution of CDS and n-LORFs in 5 different
genomes, after data preprocessing. The length is measured in number of base
pairs [bp]. 28

4.4 Illustration of the stages during the implementation of a Random Forest classifier,
from raw sequence data and until a final model. The figure is inspired by Fig.1
by Al-Ajlan and El Allali [35]. 30

4.5 a) A single raw base input sequence. b) The same input sequence, but translated
to its respective amino acids. 34

4.6 Simple illustration of the layers in the final RNN model. Layers coloured in red
(embedding layer and dense layer) contain parameters that have not been tuned.
Layers coloured in green (LSTM layer and dropout layer) contain parameters
that have been tuned. 35

5.1 Comparison of the accuracy, precision and recall score for the Random Forest
classifier given dataset 1 and dataset 2 as input for each of the 15 genomes. The
x-axis for both plots are the same genomes, in the same order. 38

5.2 The confusion matrices present the results when using dataset 1 and dataset 2
from the genome of species L. monocytogenes, as input to the default Random
Forest classifier. ”0” corresponds to predicting a n-LORF, and ”1” corresponds
to predicting a CDS. 38

5.3 Plot presenting the accuracy score of the default Random Forest classifier com-
pared to the tuned model, trained and tested on all genomes, one at a time. . . . 39

5.4 Plots showing how the number of trees in a Random Forest classifier affects the
accuracy (left plot) and the training time (right plot) of the Random Forest
classifier. The blue points in the left plot is the accuracy score of the training
data and the green points are the accuracy scores for the validation data. 39

5.5 Plots showing the feature importance scores for all 17 feature sets, computed
during training of the Random Forest classifier on the genome of species M.
tuberculosis. The first plot computes the mean score of all features in a set, while
the lower plot takes a sum. 40

5.6 Plots presenting feature importance scores for all 17 feature sets computed using
the ”mean score” approach, for the four genomes of species M. tuberculosis, S.
enterica, C. jejuni, and S. flexneri. 41

5.7 Plot presenting how increasing the number of features affect the three evaluation
metrics. The features are selected based on the best feature importance score. . . 42

Page vii of 63

5.8 Plot presenting the accuracy score of the tuned Random Forest classifier with
features selected using the scikit-learn technique, compared to manual feature
selection. 42

5.9 Plot presenting the accuracy score of the tuned Random Forest classifier with all
features, compared to the tuned Random Forest classifier with only the selected
best features. 43

5.10 Plot presenting the accuracy score of the tuned Random Forest classifier with
all features compared to a tuned model that is trained and tested without the
feature ”length”. 43

5.11 Plot presenting the accuracy score of the default XGBoost classifier with all
features, compared to the default XGBoost classifier with only a selection of
features. 44

5.12 Plot comparing the accuracy score of the default Random Forest classifier with
the default XGBoost classifier. 45

5.13 Training and validation accuracy for an RNN model using nucleotide sequences
as input (left plot), compared to a model using amino acid sequences as input
(right plot). 46

5.14 Plot comparing the accuracy score of the RNN model given dataset 1 and dataset
2 as input for each of the 15 genomes. 47

5.15 Plot presenting the difference in accuracy score between the best performing
Random Forest, XGBoost and RNN model. The models were trained and tested
on all 15 genomes. 48

5.16 The confusion matrices display the results from the Random Forest, XGBoost
and RNN model, after classifying data from the genome of species C. vibriodes.
”0” corresponds to predicting a n-LORF, and ”1” corresponds to predicting a
CDS. 48

5.17 Confusion matrices for each of the three models when classifying data from the
genome of species C. jejuni. ”0” corresponds to predicting a n-LORF, and ”1”
corresponds to predicting a CDS. 49

5.18 Plot presenting a to-way comparison of the accuracy score for the Random Forest
classifier, XGBoost classifier and RNN model when trained and tested on four
different combinations of genomes (fully coloured bars). As well as their average
score when trained on the same genomes individually (lightly coloured bars). . . 50

Page viii of 63

List of Tables

2.1 Table of amino acids, their symbols and the respective codons they are encoded
by. The codons highlighted in bold are prokaryotic start codons. 5

3.1 Descriptive table of the 15 genomes used in this thesis. Including their latin name,
number of CDS, number of n-LORFs, number of total LORFs extracted from the
genomes, and the percentages of CDS and n-LORFs. The percentages are simply
the number of CDS or n-LORFs divided by the total number of LORFs found in
each genome. 22

3.2 CDS arranged according to the given length categories. 24
3.3 n-LORFs arranged according to the given length categories. 24

4.1 Representation of the hyperparameters tuned using RandomizedSearchCV, the
span of values tested for each parameter, and the optimal hyperparameters (re-
sults) found during tuning. 31

4.2 Representation of the hyperparameters tuned by Keras Tuner and the span of
values tested for each parameter. The optimal hyperparameters chosen for the
final model are presented in the last column labelled as ”results”. 36

5.1 Metrics for the RNN model using nucleotide sequences as input and different
number of training epochs. 46

5.2 Metrics for the RNN model using amino acid sequences as input and different
number of training epochs. 46

5.3 Metrics for the RNN model using nucleotide sequences as input and different
number of maximum lengths. 46

5.4 Metrics for the RNN model using amino acid sequences as input and different
number of maximum lengths. 46

5.5 Presents the performance metrics for the Random Forest classifier when classi-
fying genome data from species M. tuberculosis and S. enterica. The column
”Trained” indicates whether the Random Forest classifier was trained on a com-
bination of the genome data from the two species, or individually. 50

A.1 R-packages used during data exploration, data processing, feature selection and
feature engineering, the respective version used as well as the purpose of use. . . 62

A.2 Python libraries used during the implementation of the Random Forest, XG-
Boost, and RNN models, as well as the version used, and a short description of
the purpose of use. 62

B.1 Links and commit hashes for some of the source code created during data explo-
ration, feature engineering and model implementation. All source code created
during the work on this thesis can be found on GitHub[47]. 63

ix

Abbreviations and Acronyms

XGBoost Extreme Gradient Boosting

RNN Recurrent Neural Network

ORF Open Reading Frame

CDS Protein Coding Genes (CoDing Sequences)

LORF Longest ORF

n-LORFs Negative LORFs

DNA Deoxyribonucleic acid

A Adenine

T Thymine

G Guanine

C Cytosine

ANN Artificial Neural Network

MLP Multi-layer Perceptron

CNN Convolutional Neural Network

TP True Positive

TN True Negative

FP False Positive

FN False Negative

IG Information Gain

GD Gradient Descent

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

RMSProp Root Mean Square Propagation

ADAM Adaptive Moment Estimation

NLP Natural Language Processing

LSTM Long Short-Term Memory

GRU Gated Recurrent Units

x

Chapter 1
Introduction

A genome is the entire set of genetic material found in an organism. Genomics is a field within
biology that studies the structure, function and the evolution of genomes [1]. The field aims to
characterise and quantify genes, determine how a genome makes up an organism, and how ge-
netic material may be affected by the environment. There are several different types of genomics
such as functional genomics, structural genomics, meta-genomics, etc. All these interdisciplinary
fields have in common that they produce large amounts of data. This data requires statistical
and computational tools and knowledge to be processed, stored and interpreted. The task of
handling such data falls within the field of Bioinformatics. Bioinformatics can be described as
a combination of statistics, biology and computer science. These are skills that are increasingly
in demand as a result of the rapid technological development and Big data production that has
occurred over the past decade.

Genomic analysis involves preparing DNA samples, sequencing these samples, and then
analysing and interpreting the sequenced DNA. Gene prediction takes place during the analysis
step, and involves identifying the areas of DNA that encode a gene. A gene product can be
either RNA or protein. The genes that code for proteins are referred to as the protein coding
genes, while the genes that code fore RNA are non-coding genes. There are also areas of a DNA
sequence that are purely regulatory or contain no genes at all. These regions are called the
intergenic regions. Identifying and distinguishing these different regions from one another is a
challenging task that often requires the use of computational tools. Many of the state-of-the-art
gene prediction tools rely on the use of Hidden Markov Models, while the tools developed in
more recent years are largely based on machine learning methods.

1.1 Motivation

Gene prediction is a crucial step in most genomics pipelines. By identifying which areas of a
genome’s DNA that are protein coding genes, one may proceed with decoding them and figure
out what proteins they code for. This in turn can give us information about structural and
functional properties of an organism. Genomics can be applied in several fields such as medicine,
pharmaceutical industry, epidemiology, environmental surveys and anthropology. Advances in
gene prediction can, for instance, aid in genetic disorder detection, treatments involving directed
therapy, and identifying particular species in metagenome samples. Despite the importance of
gene prediction, research regarding computational tools that address this stage in the genomics
pipeline has stagnated over the last few years.

The papers written by Silva et al. [2] and Al-Ajlan and El Allali [3] confirm that machine
learning and deep learning models are applicable for the purpose of gene prediction. The
results from both papers are promising, although the GeneRFinder tool, which makes use of
the Random Forest classifier, so far shows the best performance. In addition to these two
studies there are other published papers and tools that make use of machine learning methods

1

such as Support Vector Machines [4], Artificial Neural Networks (ANN) [5], Generalised Linear
Models [6] and other ensemble methods. Even though several machine learning methods have
been tried already, there are still a number of untested methods and unanswered analytical
questions.

1.2 Objectives

The main objective of this thesis has been to evaluate the performance of three machine learning
methods, for the prediction of protein coding genes in prokaryotic DNA sequences, when trained
on the same datasets. This was done to determine whether the implemented models have
potential to perform as well as, or better than, tools such as GeneRFinder or other state-of-the
art gene prediction tools.

The first model implemented was a Random Forest classifier, heavily inspired by the
GeneRFinder tool detailed in Silva et al. [2]. The incentive for implementing this model was to
explore different feature engineering and feature selection techniques and see how the model
responded to different training datasets. The second model implemented was the popular
ensemble method Extreme Gradient Boosting (XGBoost). The final model implemented is a
Recurrent Neural Network (RNN). RNNs are known to be particularly effective when working
with sequential data. Despite this, it does not seem to have been explored yet for the purpose
of gene prediction.

The objectives of this thesis can be summarised in the form of three questions:

1. What selection of predefined and engineered features yield the highest performance
of a Random Forest classifier?

2. How does the XGBoost classifier perform at predicting protein coding genes in
prokaryotic DNA?

3. Are RNNs applicable for predicting protein coding genes in prokaryotic DNA, and
how do they compare to the ensemble methods Random Forest and XGBoost?

1.3 Structure

The remaining chapters will be arranged in the following manner: Chapter 2 will cover the
theory of gene prediction and machine learning models and summarise related work considered
particularly relevant. Chapter 3 presents the genome data used to develop the machine learning
models, how this data was selected, and a description of the datasets. Chapter 4 details how
the models were implemented, trained and tested. Chapter 5 presents and compares the results
of each model. Finally, Chapter 6 and 7 discusses and draws a conclusion from the results.

Page 2 of 63

Chapter 2
Theory

This chapter will cover theory on gene prediction, the genetic code, the machine learning models
implemented, and a brief review of literature considered particularly relevant for this thesis. A
preliminary literature review was done in preparation for this thesis. It involved reviewing liter-
ature on state-of-the-art gene prediction methods, identifying their differences and challenges,
and reflecting around future directions. The conclusion to the literature review was the starting
point for the work on this thesis, and the literature review can therefore be found in Appendix
C. Theory regarding DNA sequencing, genes, state-of-the-art gene prediction tools and other
structures surrounding the genetic code is explained in greater detail in the preliminary study
and will therefore only briefly be explained in this theory chapter.

2.1 Gene Prediction

When referring to genes one means sequences of Deoxyribonucleic acid (DNA) found within a
DNA strand that either encodes protein or RNA. The DNA sequences that code for protein are
referred to as coding DNA or protein coding genes (CoDing Sequences - CDS). The remaining
part of the DNA is referred to as non-coding DNA. This includes genes that code for RNA or
regulatory regions for instance. Only prokaryotic genomes are used in this thesis, and these
genomes are much smaller than eukaryotic genomes. The coding genes in prokaryotic genomes
are found close to each other, and often even overlap in a sequence. There are no introns
in prokaryotic DNA, as opposed to eukaryotic DNA. Introns are large non-coding regions of
eukaryotic DNA found between the coding regions that are referred to as exons. In this case
one is only interested in identifying the protein coding genes in prokaryotic DNA.

The term gene prediction refers to the process of identifying CDS in genetic material.
Methods used to identify genes in DNA sequences can be divided into extrinsic and intrinsic
approaches. The extrinsic approach, also called similarity based searches, is simply an approach
that involves comparing sequenced DNA fragments to a database of already annotated genes.
By relying only on existing gene databases to make new gene predictions there is a risk of being
affected by historic biases. However, this method can be efficient when wishing to identify RNA
genes as they tend to be well conserved across organisms. Protein coding genes on the other
hand, evolve fast and tend to be quite different from one organism to the other.

The intrinsic approaches, also called ab-initio methods, identify genes by signal detection
and by using gene structure to create rules and patterns for classification. These methods do
not rely on external databases while finding the genes, but they do require a database of already
annotated genes to control the accuracy of the gene prediction methods. Hence, the problem
of historic bias is hard to avoid.

State-of-the-art gene prediction tools are intrinsic approaches based on methods such as
Hidden-Markov models and dynamic programming. Newer tools make use of machine learning

3

models such as Random Forest and Neural Networks. So far the Random Forest model seems
to be the strongest competitor to popular state-of-the-art tools such as Prodigal [2].

2.1.1 The Genetic Code

A DNA strand is a double helical structure, composed of two intertwined polynucleotide chains,
carrying all the genetic material for organisms and many viruses. Each polynucleotide chain
is made up of nucleotides. A single nucleotide consists of a sugar molecule that is attached to
a phosphate group and a nitrogen-containing base. These nucleotides are then bound together
to form a sugar-phosphate backbone, which forms the polynucleotide chain. There are four
different nucleotide bases in DNA: adenine (A), cytosine (C), guanine (G) and thymine (T).
The polynucleotide chains in DNA are held together by the bonds between the bases. A forms
a complementary base pair with T, and G forms a complementary base pair with C. Figure 2.1
shows the structure of a double helix DNA strand, and how the chains are bound together by
complementary base pairs.

Figure 2.1: Illustration of how two polynucleotide chains are intertwined to form a double helix
DNA strand. The complementary base pairing between A-T and G-C are responsible for the
coiling of the two chains. The figure is taken from NIH [7].

The genetic code is the term used to explain how sequences of the bases A, T, C and G in genetic
material, determine if a DNA sequence codes for proteins or not. During protein synthesis the
information given by a DNA sequence is read three bases at a time. A triplet of consecutive
base pairs are called a codon. Each codon codes for a particular amino acid, which are the
building blocks of a protein. However, different codons can correspond to the same amino acid,
as seen in Table 2.1. Since there are four bases and three of them make up a codon, there exists
64 unique combinations of these. All 64 codons are found in Table 2.1.

When trying to identify CDS one often starts by identifying the open reading frames (ORFs)
in a genome. An open reading frame is a DNA sequence that is enclosed by a start and stop
codon in the same reading frame. A DNA sequence’s reading frame is the set of consecutive
and non-overlapping codons that follow a given starting point. A start codon can mark the
beginning of a gene and a stop codon marks the termination. An ORF can contain multiple
start codons, but only one stop codon. A single ORF can contain several shorter ORFs within
itself, that all share the same stop codon. A start codon can also simply function as any other
codon by coding for an amino acid, without necessarily indicating the start of a new gene.
The stop codon on the other hand always codes for termination and not an amino acid. In
prokaryotes there are three possible start codons, these are marked in bold in Table 2.1. In

Page 4 of 63

Table 2.1: Table of amino acids, their symbols and the respective codons they are encoded by.
The codons highlighted in bold are prokaryotic start codons.

Amino Acid Symbol DNA Codons

Alanine A GCA GCC GCG GCT

Cystenine C TGC TGT

Aspartic Acid D GAC GAT

Glutamic Acid E GAA GAG

Phenylalanine F TTC TTT

Glycine G GGA GGC GGG GGT

Histidine H CAC CAT

Isoleucine I ATA ATC ATT

Lysine K AAA AAG

Leucine L CTA CTC CTG CTT TTA TTG

Methionine M ATG

Asparagine N AAC AAT

Proline P CCA CCC CCG CCT

Glutamine Q CAA CAG

Arginine R AGA AGG CGA CGC CGG CGT

Serine S AGC AGT TCA TCC TCG TCT

Threonine T ACA ACC ACG ACT

Valine V GTA GTC GTG GTT

Tryptophan W TGG

Tyrosine Y TAC TAT

STOP * TAA TAG TGA

eukaryotes there is only one: ATG. Since prokaryotic genome data is used in this case, all
three start codons are relevant. There does exist rare examples of annotated genes that have
alternative start codons to these three [8], but in this thesis however, we will only focus on what
we expect to see in most sequences.

An important distinction is that all ORFs found in strands of sequenced DNA are not
necessarily genes. In a given ORF there may exist many nested ORFs within the same reading
frame. Nested ORFs arise due to the possibility of there being many start-codons to a given
stop-codon. The start-codon which is at the most upstream position to the matching stop-codon
is considered the longest ORF (LORF). LORFs can either contain coding genes or they can
be non-coding. Non-coding LORFs make up the intergenic regions of the genome, and coding
LORFs are what one commonly refers to as protein coding genes. In this thesis, non-coding
LORFs will be referred to as negative LORFs (n-LORFs) and coding LORFs as CDS.

2.2 Machine Learning

Machine learning is a subset of artificial intelligence, and deep learning is a subset of machine
learning. In this thesis, two machine learning models and one deep learning model have been

Page 5 of 63

implemented. The machine learning models will be presented and explained in this section.
Artificial intelligence is the most general term of the three and refers to intelligence demon-

strated by machines that mimic aspects of human intelligence. Machine learning involves the
ability of machines to learn from data, then classify and predict outcomes without the use of
predefined rules. The algorithms instead use training data to build models by inferring their
own rules which are used to make predictions. Machine learning has a wide application basis
and can, for example, be used for image analysis, speech recognition, language processing, and
for making predictions within the fields of big data analysis and medicine [9].

There are three main categories within machine learning, and these are supervised learning,
unsupervised learning, and reinforcement learning. In this thesis, the focus will be on supervised
machine learning methods. Supervised learning requires the input data to be labelled to make
a classification or numerical estimation. This means a manual job of labelling datasets must
be done before feeding the data to a model. Unsupervised learning on the other hand are
methods that can discover patterns and distinguishing characteristics without the need of a
labelled dataset [10]. Reinforcement learning involves training a model based on rewarding
and/or punishing the models behaviours in a given environment. In simpler words, it is a
method that learns from its mistakes. It does not rely on labelled training data, but instead
makes sequential decisions based on the models ”reinforcement agent”.

Scikit-learn

The scikit-learn version used to implement the machine learning models is 0.23.2 [11]. Scikit-
learn is an open source python software library used to implement various machine learning
models. Each version can include different parameter updates and default values.

2.2.1 Decision Trees

Since both Random Forest and XGBoost rely heavily on the use of decision trees, it is necessary
to have a good understanding of how the decision tree algorithm works. Figure 2.2 is a simple
illustration of a decision tree. At each step in the tree one wishes to find a feature that can
be used to partition the data in such a way that it minimises the entropy of the data at the
next step. This is called a greedy algorithm, as it uses a local optimisation criteria instead of a
global one.

Figure 2.2: Illustration of how a single decision tree works. The goal is to separate CDS from
n-LORFs based on the distinguishing characteristics’ ”length” and ”GC-content”.

The decision tree in Figure 2.2 is a simple illustration of the logic behind a decision tree. It
attempts to split the input data into pure nodes containing either CDS or n-LORFs, based

Page 6 of 63

on distinguishing characteristics. The two features that were chosen to separate the ORFs by
are sequence ”length” and ”GC-content”. At the root node, the input data is split into two
groups depending on whether or not the sequence has a length greater than 2000 bases. After
this split, one of the resulting two nodes is a pure leaf node, containing only n-LORFs. The
other resulting node contains two CDS and one n-LORF, so it is not pure yet. Separating the
two sequences based on ”length” turned out to be quite efficient. The node that is not pure
is split again based on a another feature, ”GC-content”. This time both the resulting nodes
are pure leaf nodes, and one has successfully separated the input data into CDS and n-LORFs.
When the decision tree is given new data it uses the features (length and GC-content) and
thresholds specified during training to classify the data. Real datasets are much more complex,
and the decision trees will have many more nodes. As long as the tree has not yet achieved
only pure leaf nodes it will continue to generate nodes until it has reached the maximum depth.
The maximum depth is a limiting parameters that control how many splits the tree can make
before it has to stop. There are other limiting parameters such as minimum sample split and
the minimum number of samples required to be at a leaf node, which control the splitting of
nodes in a decision tree. These will be described more in Chapter 4. It is important to control
these type of parameters in order to avoid overly complex models and overfitting, or too simple
models and underfitting.

The goal at each node of a decision tree is to identify a feature that will give a split resulting
in two new nodes that are as different from each other as possible, while the members of each
node are as similar to each other as possible. Decision trees evaluate different features’ ability
to obtain this by comparing the potential information gain (IG) after a split. Information
gain is calculated based on the impurity measures. There are two impurity measures often
used in binary decision trees called Gini impurity and entropy. After calculating the impurity
measure for features at a given node, this value can be used to calculate the information gain
and determine which feature is more appropriate for making the split.

Gini Impurity

The default impurity measure in a decision tree classifier implemented using scikit-learn, is Gini
impurity. Since this was the library used to implement the Random Forest model, the logic
behind Gini impurity will be explained briefly. Equation 2.1 shows how one calculates the Gini
impurity at an arbitrary node. D denotes the input dataset which has k number of classes. The
probability of samples belonging to class i at a particular node is denoted as pi [12].

Gini(D) = 1 −
k∑

i=1

p2i (2.1)

The features that have the smallest Gini impurity are the ones selected for splitting a node. In
other words, situations where there are large differences between the probabilities are favoured.
Equation 2.2 shows how one calculates the Gini impurity if dataset D is split by feature A into
two leaf nodes with the datasets D1 and D2, of size n1 and n2 respectively. n denotes the size
of the parent node dataset D, before the split. In other words, one simply adds the weighted
average of the Gini impurity at each new leaf node to get the overall Gini impurity provided by
feature A [12].

GiniA(D) =
n1

n
Gini(D1) +

n2

n
Gini(D2) (2.2)

Finally Equation 2.3 shows how one calculates information gain for feature A. This is simply
done by subtracting the weighted Gini impurities from each leaf node, GiniA(D), from the Gini
impurity of the parent node, Gini(D).

IGA = Gini(D) −GiniA(D) (2.3)

Page 7 of 63

2.2.2 Random Forest

Random forest is a supervised machine learning method used for classification and regression,
and is categorised as an ensemble learning method. This means the method combines multiple
models or algorithms to solve a computational problem. Random forest combines numerous
decision trees and uses bagging and feature randomness when constructing trees during training
[13]. The bagging method ensures that one is not using the same data for every tree, but rather
a random sample. This helps the model to generalise beyond the training data, and combat
overfitting. The random feature selection helps to reduce the correlation between the trees. If
every feature was used for each tree, most of the trees would have the same decision nodes and
act very similarly. This would increase the variance.

Bagging is also called bootstrap aggregation and involves creating many overfitted models,
trained on subsets of the training data. These subsets of data are created from random selections
with replacement from the complete training dataset. A final prediction is made by taking an
average or choosing the majority of the predictions made, depending on if it is a regression or
classification problem. Bagging contributes to reducing variance and redundant information in
the dataset, without increasing the bias. Predictions of a single decision tree may be sensitive
to redundant information in a dataset, while the average of many trees lowers this sensitivity,
as long as the trees are not correlated [14].

By combining these techniques the Random Forest algorithm is known to avoid the com-
mon problem of overfitting. It is also a popular algorithm used by data scientist due to the
flexibility between regression and classification problems, and the ability to easily determine
feature importance. Some disadvantages on the other hand are, that Random Forest models
can be time-consuming and require a fair amount of resources when dealing with large datasets.
The model is also somewhat complex to interpret compared to single decision trees [15].

Random Forest Classifier

Figure 2.3: Simple illustration of how a Random Forest classifier is built up of multiple decision
trees that classify the data as either class A or class B. The final prediction is given by a majority
voting. The figure is inspired by Tran [16].

Since gene prediction is a classification problem, the Random Forest classifier is the model
implemented. Figure 2.3 summarises the information given above and illustrates how the clas-

Page 8 of 63

sifier consists of multiple decision tree classifiers, where each tree makes its own individual class
prediction. The class which is represented the highest number of times is the models final
prediction. A medium complex classification task can for example require hundreds of decision
trees to get a good evaluation-metric score. The default number of trees used by scikit-learn is
100 decision trees. One of the greatest strengths of the Random Forest classifier is its ability to
learn non-linear relationships and how separate trees can pick up up local nuances in different
subsets of the data. However, the Random Forest classifier is quite complex in its computations,
as it computes hundreds of different decision trees. This also makes it expensive in terms of
computing resources and training time.

2.2.3 XGBoost

XGBoost is short for eXtreme Gradient Boosted trees, and is also an ensemble method. As the
name implies XGBoost is a variant of gradient boosted decision trees, designed for increased
speed and improved performance. In order to give a basic understanding of how the XGBoost
algorithm works, the concepts of boosting and gradient boosting will be explained. Since the
methods used in the XGBoost algorithm are quite complex they will not be explained in great
detail in this thesis, due to time limitations.

Boosting is a method that involves combing many weak learners iteratively, after which
they are combined to get a stronger learner. A weak learner is defined as a model that performs
only slightly better than random guessing. Boosting is done in order to reduce bias during
training. Gradient boosting takes an ensemble of decision trees and uses a boosting method
to improve the samples that led to mis-classification of the previous trees, in order to improve
its weaknesses. This is repeated iteratively until one gets a robust and well performing model.
Gradient boosting can be explained in terms of its three main components: the loss function, a
weak learner, and being an additive model. The role of the loss function is to give an estimate
of how good the model is at predicting data, given the predicted value in comparison to the true
value. The output given by the loss function is often referred to as the loss value of a model.
The type of loss function used varies depending on the type of problem one has. Weak learners
are defined above and are typically very simple decision trees with few splits and nodes. These
decision trees are quite different from the trees used in the Random Forest classifier, which
are much more complex with several splits and nodes. Finally, the additive approach refers
to how many weak learners are trained and added together one after the other. The goal
of each iteration is to have lowered the loss value of the model [17]. New decision trees are
therefore added in a sequential manner to improve the error made by the existing model. This
is illustrated in Figure 2.4. The reason it is called ”gradient” boosting is because one uses a
Gradient Descent (GD) algorithm to calculate the gradients such that one can minimise loss
when adding new models. The GD algorithm will be explained in more detailed in Section 2.3.

The term regularisation refers to different techniques used to combat the problem of overfit-
ting when training a machine learning model (overfitting will be discussed more in the following
section). During the training of a model using gradient boosting, one can use various regular-
isation techniques to control the training and parameter updates of the model. This can for
example be as simple as adjusting the number of gradient boosting iterations or adjusting the
depth of the decision trees. XGBoost differs from the gradient boosting method in what type of
regularisation techniques are used during training. By using the regularisation methods ”L1”
and ”L2”, XGBoost has much better generalisation capabilities than more traditional gradient
boosting methods. A models ability to generalise refers to its ability to adapt to unseen data.

Other advantages with XGBoost is that it can handle missing values automatically. It is
built to do parallel processing, meaning, it can run the trees in parallel on various cores on a
CPU making it much more efficient. It can do cross validation at each iteration, which further
enables early stopping. Early stopping ends the training of a model early if there is no significant
improvement after a given number iterations, which avoids time and resource wastage. XGBoost

Page 9 of 63

Figure 2.4: Illustrative figure of the logic behind the gradient boosting method. Decision trees
are added in an iterative manner, in order to reduce the error of the model.

is also capable of incremental training. This means one can continue training an already trained
model, as one gets new data over time, compared to starting training from scratch. Finally, it
also has a feature called Tree pruning, which permits the model to simplify trees so that they
become deeper and more optimised.

2.2.4 Training and Validation

When implementing a machine learning model, it is common practice to split the dataset into
a training dataset and a testing dataset, given that the dataset is large enough. The idea with
this is to only train the model on the training data and hold out the testing data to see how well
our trained model performs when it makes predictions or classifications on unseen data. One of
the dangers when training a machine learning model is overfitting. This can happen if too much
attention is paid to random or local variations in the dataset, that do not have much intrinsic
value. This further results in a model that does not generalise well. This means it performs
well on the training data, giving a high accuracy score, but on unseen data it performs poorly.
Splitting the data into training and testing data addresses this issue, as one makes sure that the
trained model is tested on unseen data and can confirm that the model is not heavily overfitted.
However, overfitting may still go by unnoticed. If our dataset is small, the training and test
datasets can by chance turn out to be quite similar. Meaning, the same random variations that
occur in the training dataset may occur in the test dataset as well. One way to further protect
against overfitting is cross validation.

K-fold Cross Validation

K-fold cross calidation involves splitting our training data into K randomly assigned subsets,
then repeatedly fitting our model a given number of times, while always training on K-1 folds
while validating on the Kth fold. This is repeated until all the K folds have been used once
as a validation subset. Figure 2.5 illustrates how the data is split in a 5-fold cross validation,
and how a different subset is used to validate during each repetition. K-fold cross validation is
integrated as a parameter into scikit-learn classes and models, such as the GridSearchCV class
for hyperparameter tuning, and the XGBoost model.

Page 10 of 63

Figure 2.5: Illustration of the splitting of training data in a 5-fold cross validation. The figure
is inspired by Koehrsen [18].

2.2.5 Hyperparameter Tuning

When implementing machine learning models one can think of the hyperparameters as design
choices affecting the final architecture of the model. A machine learning model has both train-
able parameters and hyperparameters. The parameters of the model are settings that can be
learned and adjusted during training, for instance the variables and thresholds used to split
each node in a decision tree. The hyperparameters on the other hand are settings that must be
set before training, such as the number of decision trees in the forest and the number of features
considered when splitting a node [18].

2.2.6 Feature Selection

The purpose of feature selection is among other things to reduce training time and improve the
performance of a machine learning model. To perform feature selection, the data must have
features that are redundant or irrelevant to the model, so that their removal does not lead to
information loss [19]. Similar to machine learning algorithms, feature selection methods can
be divided into supervised and unsupervised methods. The supervised methods involve the
target variables while the unsupervised methods do not. Instead, unsupervised methods use
other statistics such as feature correlation, and transformations such as principal component
analysis to select features. Supervised methods can further be divided into filter, wrapper and
embedded methods. Random forest has its own built in feature selection method that is tested
in this thesis, in addition to manual feature selection based on the feature importances computed
during training. This will be discussed further in Chapter 4.

2.3 Deep Learning

ANNs form the basis of deep learning and are inspired by the structure of the human brain.
Deep learning methods are distinguished from machine learning methods by their use of layered
structures of algorithms. These layers enable deep learning models to have even more sophisti-
cated learning abilities, and they can process unstructured data as well as automate the feature
engineering process. Deep learning is even more independent from human intervention than
other machine learning methods, and can directly take raw data as an input. Training can be
supervised, unsupervised or semi-supervised [10].

The deep learning model implemented is a RNN, which is trained in a supervised manner.
RNNs are a subtype of ANNs that contain recurrent layers in addition to the dense layers.
These terms will be explained in the following subsections.

Page 11 of 63

RNNs are state-of-the-art algorithms for sequential data. Sequential data is data where the
data points have an order to them and are often dependent on one another, such as time series
data, financial data or DNA sequences. RNNs can produce predictive results in these type of
data, that are more accurate and reliable than other deep learning algorithms, due to their
ability to ”memorise” the recent past inputs. This feature makes the RNN model unique as it is
one of very few models that has the capacity for internal memory. To understand the structure
of a RNN model one first needs to understand basic ANN structures such as the perceptron and
multi-layer perceptrons (MLP).

2.3.1 Perceptron

A perceptron can be thought of as a single artificial neuron, and is often referred to as a node in a
neural network. Perceptrons are the core processing units of the neural networks. Equation 2.4
is the algebraic representation of how a perceptron produces an output (O(x)) [9], and Figure
2.6 illustrates the workflow of a single perceptron. It is given data at one end, denoted by x1,
x2, to xn in the figure. Then the data inputs are multiplied with their respective weights w1,
w2 to wn, and added together. An additional bias b, is added to the weighted sum. The next
step is an activation function, denoted by f , which will be explained in more detail in Section
2.3.3. The weights that are multiplied with each data input are used to adjust the impact of
each data point on the model as a whole. The bias is used to adjust the initial level sent into the
activation function by adding a constant to the weighted sum of the input data. The activation
function determines what the output of a single perceptron is, depending on the input. The
purpose is to transform the weighted sum of the inputs and bias, to an output that can be used
to give a prediction. The activation function is a crucial part of a neural network’s ability to
learn non-linear patterns from input data. On their own perceptrons are able to classify linearly
separable inputs, and perform linear regression.

O(x) = f

(
m∑
i=1

wixi + b

)
= f (w1x1 + w2x2 + ... + wmxm + b) (2.4)

Figure 2.6: Sketch of a perceptron. It receives an input (x), makes a weighted (w) summation
of the inputs, adds a bias (b). Finally, the activation function (f) computes an output (y).

Page 12 of 63

2.3.2 Multi-layer Perceptrons

Combining multiple perceptrons gives us a layer of perceptrons. Then combining multiple of
these layers gives us multi-layer perceptrons (MLP). Adding a non-linear activation function to
the perceptron makes it able to capture some non-linear relationships in the input data. Com-
bining multiple layers of perceptrons together make them able to capture much more complex
relations. Figure 2.7 illustrates the architecture of a simple MLP network.

The input layer of the MLP receives the input and the output layer predicts the final output.
In between these two layers are the hidden layers which perform complex computations required
by the network, before passing their output on to the next layer. This ”feed forward flow” of
information from one end to the other is called forward propagation. Neurons of one layer are
fully connected to neurons of the next layer, which are assigned weights. This type of layer is
called a dense layer, and is the most basic layer used in ANNs.

The number of layers used in an MLP and the number of neurons in each layer is part
of the architecture of the model. Elements such as the loss function, the optimiser and the
learning rate used during training, are hyperparameters that together with the architecture of
the neural network play an important role in determining how high performance the model can
attain. These concepts will be explained in the following paragraphs.

Figure 2.7: Example of a simple MLP consisting of an input layer with three input units plus
a bias unit. Two hidden layers with three and four hidden units plus each their bias unit
respectively. Finally, there is a single output layer.

2.3.3 Activation Functions

As mentioned, the activation function determines the output of every single node in a layer,
depending on its input. Every layer after the input layer in an MLP uses a specific activation
function for each of the nodes in that layer. There are several different activation functions, and
which activation function is used in a layer depends on the purpose of that particular layer. The
choice of activation function has a large impact on the performance and training of the neural
network. The hidden layers in an MLP often use the same activation function, while the output
layer uses a different activation function depending on the type of prediction that is to be made
by the model. The typical activation functions used for hidden layers are Rectified Linear Unit
(ReLU), Logistic (Sigmoid), Hyperbolic Tangent (Tanh) and Linear [20]. These functions are
shown in Equation 2.5. There are several more activation functions than the ones mentioned
here, including different variants of the ReLU function. Which activation function is used also
depends on what type of neural network is being built.

Page 13 of 63

Tanh(x) =
ex − e−x

ex + e−x

Sigmoid(x) =
1

1 + e−x

ReLu(x) = max(0, x)

Linear(x) = x

(2.5)

Figure 2.8 shows a simple mind map of the most common activation functions for hidden layers,
depending on the network type. In this thesis a recurrent neural networks was tested, and
therefore the Sigmoid and Tanh activation functions are the most relevant. Figure 2.9 presents
the most common activation functions used by the output layer in a neural network, and how
they vary depending on the problem type.

Figure 2.8: Overview of activation functions that are common to use for hidden layers depending
on the network type. The figure is inspired by Brownlee [20].

Figure 2.9: Overview of activation functions that are common to use for output layers depending
on the problem type. The figure is inspired by Brownlee [20].

Page 14 of 63

2.3.4 Training

During the forward propagation in an MLP, a subset of the training data, called a batch, is
given as input to the model. This is passed through the different layers in the network, before
an output is predicted in the output layer. At this stage the training and learning process of
the neural network begins. The predicted output is compared with the actual output, so that
one can calculate the error of the prediction. The magnitude and signs of the error indicates
how far off from the truth the model is, and in which direction. One then computes the loss
function which computes the error as a function of the network’s trainable parameters. Similar
to the activation function, there are different loss functions that can be used depending on what
type of model and problem one has. Binary cross-entropy is the most common loss function for
binary classification problems. Once one has a loss function, this information is used to update
the trainable parameters of the network, such as weights and biases. The process of updating
these trainable parameters can be thought of as a gradient optimisation problem where the
parameters are updated iteratively using a given optimisation function (optimiser). There are
several optimisation functions that can be used to train a neural network. Three of the most
widely used functions are Stochastic Gradient Descent (SGD), Root Mean Square Propagation
(RMSProp) and Adaptive Moment Estimation (ADAM) optimiser. The latter two are tested in
this thesis. These optimisation functions have in common that they use the GD algorithm with
Back-propagation, and differ in the way their learning rates are optimised. These concepts will
be explained in the following paragraphs.

Gradient Descent with Back-propagation

The goal of GD is to find the parameter values of the model that minimises the loss function as
far as possible. In order for the GD algorithm to update the parameters during each iteration
of training, the gradients of the loss function with regard to each individual parameter in the
MLP needs to be estimated. This is done by the back-propagation algorithm, which can be
thought of as a computationally efficient approach to computing these gradients. It relies on
the chain rule and automatic differentiation to calculate the derivatives backward through the
layers of the neural network [21]. Automatic differentiation are special techniques developed
to solve complex gradient problems efficiently [22]. These gradients are then used by the GD
algorithm to give an indication of which direction one should adjust the parameters in order to
minimise the loss value.

Optimisers and Learning Rate

In addition to the gradient of the loss function, the GD algorithm needs to know the step
size to take towards the local minimum when updating the trainable parameters. This is also
called the learning rate of the algorithm. The learning rate determines the amount at which
the parameters are adjusted at each iteration during training. If the learning rate is too large
one risks overshooting the optimal minimum, and if the learning rate is too small the training
of the model may take very long, or get stuck in a local minimum. The gradients calculated
during back-propagation affect how the learning rate is adjusted during training, depending on
what optimiser is used. Different optimisers have different ways of tackling these problems.

The GD algorithm can be improved by adding what is called ”momentum” to the learn-
ing process. The momentum is calculated by taking an exponential weighted average of past
gradients, which is then used to update the trainable parameters. By adding the momentum
term the parameter adjustments are smaller in directions where the past gradients oscillate,
and higher in directions where the past gradients have the same direction for a longer period.
In other words, one makes use of the momentum accumulated from past gradient calculations
when defining the current gradient. This allows the GD algorithm to avoid getting stuck in a

Page 15 of 63

local minimum, even when the current gradient is close to zero [23]. By taking smaller steps
when the gradient has oscillated a lot in past iterations, one may avoid overshooting the optimal
minimum. Similar to GD with momentum, the RMSProp optimiser also uses past gradients.
It normalises the current gradient by taking a moving average of past squared gradients, and
uses this to adjust the learning rate. This decreases the learning rate for large gradients and
increases the learning rate for small gradients, in attempt to avoid the problems of exploding
and vanishing gradients. The ADAM optimiser is a combination of GD with momentum and
RMSProp. It takes the exponential weighted average of the past gradients such as GD with
momentum, and adjusts the learning rate using the moving average of the squares of recent
gradients, such as RMSProp.

Different neural network architectures can be more prone to vanishing and exploding gra-
dients. If one has an architecture with many layers for instance, vanishing gradients can occur
due to the error gradients becoming smaller and smaller as one moves backward through the
layers during back-propagation. Exploding gradients on the other hand occur when the error
gradients become larger and larger during back-propagation, causing unreasonable weight and
parameter updates. RNNs, which are often used for modelling time-dependent and sequential
data, are prone to vanishing and exploding gradients. This can inhibit them from learning from
long data sequences. The long term memory introduced by Long Short-Term Memory (LSTM)
units, can prevent the problem of vanishing and exploding gradients in RNNs. This will be
discussed in the Section 2.3.5.

Batches and Epochs

During training, the MLP is repeatedly given batches of training data. This is repeated until
the MLP has been trained on all the training data once. The model has then been trained for
one epoch. MLP’s are normally trained for multiple epochs, and the repetitive cycles of forward
and backward propagations is how the model learns. The chosen batch size determines how
often the weights are updated during one epoch, and the number of epochs determines how
many iterations the model will be trained for on the entire training dataset. If the number of
observations in the training data is not divisible by the batch size the last observations that do
not make up a complete batch will be discarded during that epoch.

Figure 2.10: Illustration of the training process for a multi-layer perceptron.

In addition to setting the batch size, and the number of epochs during training, one also sets a
validation split size. This determines the percentage of the training data that will be held aside
for validating the model performance after one epoch. The remaining data is split into batches
of the given batch size. It is said that the number of epochs used to train a model should
be increased until the validation score starts to decrease even though the training accuracy

Page 16 of 63

increases [24]. Figure 2.10 illustrates the different stages of training that have been mentioned
in this section.

2.3.5 Recurrent Layers

Dense layers such as the one presented in the simple MLP in Figure 2.7, consider only the
current input received at each node. They have no memory of previous inputs which will make
it difficult for such a model to predict what is coming next in a sequence for instance. A
recurrent layer on the other hand, consists of special perceptrons that have the ability to loop
back the output from a node such that it considers both current inputs as well as past inputs
simultaneously. A comparison between a simple MLP and RNN is presented in Figure 2.11.

Figure 2.11: Comparison of a simple MLP and RNN. The networks consist of an input layer
x, a single hidden layer h and an output layer y. The t in the RNN denotes the time step of
each input, and the unfolded version of the RNN illustrates how input is received from both
the input at the current time step as well as from the hidden layer of the previous time step.

Both the networks in the figure have only one hidden layer, denoted as h and ht respectively.
The nodes in each of the layers are not displayed in the figure, but one can assume that both
the input layers (x), output layers (y) and hidden layers have many nodes. The t in the RNN
denotes the time step from one input to the next. As mentioned above RNNs have the ability
to receive input from both the input layer at the current time step, as well as from the hidden
layer of the past time step [22]. This is more clearly presented in the unfolded version of the
RNN in Figure 2.11. The figure should not be confused with a RNN containing many layers,
but rather an illustration of the time steps of a RNN. The looping of information also includes
a weight (W) that is applied to the output that is to be memorised. This determines the extent
to which previous output affects the current input.

The fact that RNNs are able to memorise previous inputs make them particularly efficient
for the purpose of sequence modelling. RNNs are commonly used in sentiment analysis, which
for example involves taking a text as input and predicting a class label as output (many-to-
one). It can be used for image captioning, which involves getting a single image as input and
a phrase describing the image as output (one-to-many). Or, it can be used for translation,
taking an English phrase as input for example and giving the translated phrase as an output
(many-to-many) [22].

A recurrent layer’s ability of short-term memory is both its strength and its weakness.
When presented with long sequences the RNNs may struggle to remember enough of the past
information to make correct predictions. In addition, these long sequences may cause vanishing
or exploding gradient problems. LSTM layers are a popular solution to this problem.

Page 17 of 63

Figure 2.12: Illustration of an LSTM layer and how it is controlled by a memory cell, a forget
gate, a input gate, a output gate and the respective activation functions. The input from the
current time step to the cell is denoted by xt. ct−1 is the cell state from past time steps, ht−1

is the input from past time steps, ct is the cell state output, and ht is the layers output. The
figure is inspired by Graves, Mohamed, and Hinton [25].

LSTM layers are advanced recurrent layers, and were developed to handle chronological se-
quences and long-term dependencies in a better manner than the vanilla-RNN. An LSTM layer
can store information for a longer period of time, as well as control the extent at which past in-
puts are memorised or forgotten. When implementing a simple LSTM architecture, the LSTM
layer replaces the hidden layer of the RNN. Imagine the ht of the RNN in Figure 2.11 being
replaced by what one calls an LSTM cell. Figure 2.12 is an illustration of an LSTM cell. In
addition to ht, which in this case is the output of a hidden layer from a given time step, an
additional connection between every layer is also added in LSTM layers, called the cell state
ct. Each LSTM layer is composed of a memory cell and three gates, as shown in Figure 2.12.
The cell memorises information over arbitrary time intervals, and the three gates control the
flow of information through the cell [26]. The input gate controls whether the memory cell is
updated, the forget gate determines if information is to be discarded or if it is should impact the
output, and the output gate controls whether the information of the current cell state is made
visible. The combinations of the Tanh and Sigmoid activation functions used in the LSTM cell
help distribute the gradients, which in turn helps solve the problem of vanishing or exploding
gradients during back-propagation.

2.4 Evaluation Metrics

The metrics accuracy, precision and recall are used to evaluate the performance of the three
machine learning models. They are all based on the true positive (TP), false positive (FP),
true negative (TN) and false negative (FN) values derived from the model predictions. True
positives are CDS that have been correctly classified as CDS by the model, and false positives are
n-LORFs that have been incorrectly classified as CDS. True negative are correctly classified n-
LORFs, and false negatives are CDS that have been incorrectly classified as n-LORFs. Accuracy
is a measure of the share of correct predictions considering the total number of classifications.
Precision is a measure of the number of correct positive predictions given the total number of
positive predictions made. Recall on the other hand measures the amount of correct positive
predictions given the total number of positive instances in the data. The equations for each of
the three metrics are given in Equation 2.6.

Page 18 of 63

Accuracy =
TP + TN

TP + TN + FN + FP

Recall =
TP

TP + FN

Precision =
TP

TP + FP

(2.6)

2.5 Related Work

The articles written by Silva et al. [2] and Al-Ajlan and El Allali [3] have inspired much of the
work done in this thesis. In this section details regarding the methods used in both papers will
be explained, how the approaches differ and which method proved to be more effective. Both
articles aim to identify protein coding genes in prokaryotic genomes, using different machine
learning techniques and datasets. When using multiple genomic samples for gene prediction,
the mixing of genetic information occurs and the read fragments are often short and incomplete.
This can impact the quality of state-of-the-art gene prediction tools.

2.5.1 GeneRFinder: Random Forest Classifier

Silva et al. [2] present an ab-initio gene prediction tool, called GeneRFinder, which aims to
tackle the difficulties regarding gene prediction in genomic complexities and identify both CDS
and intergenic regions in such DNA sequences. The tool uses the Random Forest classifier, and
this method was chosen considering it was the best performing machine learning model when
compared to other classification methods. GeneRFinder is a tool based on ORFs extracted from
genome samples. It makes predictions based on signals captured from these ORFs [2]. 11 sets
of features are used in the final version of the GeneRFinder. Four of which correspond to the
GC-content of the different reading frames in the ORFs as well as the overall GC-content. Five
features correspond to k-mer frequencies from 2-mers to 6-mers. One feature aims to take the
codon bias of synonymous codons into account. This is implemented by counting the codons in
the reading frame of each ORF. The last feature is the length of each ORF.

GeneRFinder was trained and tested on complete genomes, with their respective gene an-
notations from the NCBI database. After the ORFs were extracted from the genome data, they
were labelled as either a positive instance or negative instance depending on whether or not
the ORF was a coding gene. The tool was trained on 129 complete genomes, of which 11 were
archaea and 118 were bacteria. Around 700,000 sequences were extracted from the genomes
in total, of which approximately half were positive instances and the remaining half were neg-
ative instances. The tool was then tested on a new set of 12 public genomes, of which three
were archaea and nine bacteria. From these genomes 50,000 ORFs were extracted in total, of
which approximately 30,000 were positive and 20,000 were negative instances. GeneRFinder
outperformed the state-of-the-art gene prediction tools Prodigal [27] and FragGeneScan [28],
and consequently received higher evaluation-metric scores.

The method used to derive the GeneRFinder tool has largely inspired the Random Forest
classifier implemented this thesis. When building the Random Forest classifier presented in
Chapter 4, a similar approach was followed as for the GeneRFinder tool, but using different
feature engineering and selection techniques. The incentive of this was to see how the alternative
Random Forest model would compare to the results of the GeneRFinder tool, as well as to the
XGBoost and Recurrent Neural Network models. These are also presented in Chapter 4.

Page 19 of 63

2.5.2 CNN-MGP: Convolutional Neural Network Classifier

As opposed to the more common approaches that rely on feature extraction and ensemble
methods, Al-Ajlan and El Allali [3] present the tool CNN-MGP, which uses a Convolutional
Neural Network (CNN) for genomic gene prediction. This approach automates the process
of gene prediction further by avoiding the need for feature engineering and feature selection
before feeding the ORFs to the machine learning model. The CNN-MGP simply takes raw
DNA sequences as input, and extracts the necessary information needed to classify an ORF
as either a coding or non-coding gene. An interesting aspect to the method used by Al-Ajlan
and El Allali [3] is that they chose to train 10 different CNN models on 10 different datasets,
that are arranged according to their GC-content. GC-content is known to be quite varying
across genomes. The CNN-MGP addresses this variation in a different manner than other
gene prediction tools. Different versions of the CNN-MGP are used on various genome samples
depending on the samples’ GC-content.

Before the raw DNA sequences are inputted to the appropriate CNN-MGP, the ORFs
are extracted and numerically encoded by character-level one-hot encoding. 131 prokaryotic
genomes from the NCBI GeneBank, and their respective annotations, were used to create the
training dataset. The length of the genome fragments were limited to 700 base pairs, of which
seven million ORFs were extracted. These ORFs were then divided into 10 mutually exclusive
datasets based on their GC-content, which were then used to train the 10 different CNN-MGP
models. The test dataset consisted of three archaeal and eight bacterial genomes, that were also
limited in length to to 700 base pairs. The fact that the sequences are limited to this length
means one excludes all CDS that may be longer than this, which is a large limitation. The
architecture used in the CNN-MGP consists of four alternating convolutional and max-pooling
layers, followed by a flattening layer before a fully connected layer, and finally the output layer
which produces the gene probability. Since convolutional layers are not used in this thesis, an
explanation of what they are falls outside the scope of this thesis.

The CNN-MGP model proves that deep learning methods can be used for gene prediction
in prokaryotic DNA sequences, and its performance is better than or comparable to state-of-the
art gene prediction tools such as Orphelia [29] and Prodigal. Considering the CNN architecture
used by Al-Ajlan and El Allali [3] was fairly simple, but yet successful, it makes one wonder
how other deep learning models would perform, such as Recurrent Neural Networks.

Page 20 of 63

Chapter 3
Data Exploration

In this chapter the sequenced genome data used to develop the gene prediction models are pre-
sented and explored in detail. This includes methods and reasoning used during data selection
and pre-processing, as well as assumptions and limitations made in order to make the data
amounts manageable and limit the scope of the thesis.

The data exploration and pre-processing was done in R Studio [30], relying largely on the
R-packages seqinR [31], microseq [32] and microclass [33]. The purpose and versions of each
package used can be found in Table A.1 in Appendix A. GitHub-links to the R-scripts created
to process the genomes and make the datasets in this chapter can be found in Table B.1 in
Appendix B.

3.1 Selecting Genomes

As mentioned in Chapter 2, Section 2.5, this thesis is largely based on the work done by Silva
et al. [2] and Al-Ajlan and El Allali [3]. When the GeneRFinder and CNN-MGP tools were
developed, a combination of fully sequenced bacterial and archaeal genomes were used to build
their datasets, extracted from the NCBI GeneBank. The genomes selected to build the datasets
in this thesis are 15 bacterial reference genomes extracted from the NCBI Reference Sequence
Database (RefSeq). In comparison to the NCBI GeneBank database, the RefSeq database is said
to be more selective as only the more verified and complete genomes are represented there. A
reference genome is a representation of the complete set of genes in an individual organism of a
species [34]. Even though these genomes are considered the most sequenced and well-annotated
genomes, the reality is that there is no true way of knowing that these annotations are correct
or complete. However, since they are the closest thing to the truth that is available, one can
assume that they are correct and complete for the purpose of this investigation. The limiting
factor when selecting genomes from the Refseq database was therefore, that only genomes that
are considered reference genomes were to be selected. After filtering out all genomes that were
not reference genomes, only 15 bacterial genomes were remaining. No archaeal genomes were
considered reference genomes in the database.

3.2 Description of the Data

In Table 3.1 the 15 bacterial genomes are presented. The table includes the latin name for the
species of each genome, the number of CDS, the number of n-LORFs (which neither are, or
include CDS), the total number of LORFs in each genome, as well as the percentages of the
two classes of LORFs compared to total number of LORFs extracted from each genome.

When exploring the 15 bacterial reference genomes a number of observations were made.
The two most obvious differences when looking at Table 3.1 is that the genomes vary greatly

21

in the number of total LORFs extracted from each genome. Secondly, there are far more CDS
than n-LORFs in each genome. During data prepossessing other characteristics and differences
between CDS and n-LORFs were also taken in account, which will be presented in the following
section. In the table one sees how all the genomes are from different species except for the two
E. coli genomes, that are different strains of the same species. CDS and n-LORFs make up
on average 5.54% and 94.47% respectively, of the total number of LORFs extracted from each
genome on average. The number of CDS extracted compared to the number of n-LORFs is
significantly smaller. However, it is important to keep in mind that these percentages are not
equivalent to showing how much of a genome that consist of CDS or n-LORFs. For this one
also needs to take the length of the extracted CDS and n-LORFs sequences into account. In the
table one can see that most of the genomes deviate only around 1% over or under the average
for both CDS and n-LORFS, except for the genomes S. aureus and E. coli str. Sakai. These
deviations are marked in bold in Table 3.1 and they are noticeably higher for CDS and lower
for n-LORFs compared to the respective mean values.

Table 3.1: Descriptive table of the 15 genomes used in this thesis. Including their latin name,
number of CDS, number of n-LORFs, number of total LORFs extracted from the genomes,
and the percentages of CDS and n-LORFs. The percentages are simply the number of CDS or
n-LORFs divided by the total number of LORFs found in each genome.

Latin name CDS CDS% n-LORFs n-LORFs% Total LORFs

Mycobacterium tuberculosis 4324 4.87% 84479 95.17% 88762

Staphylococcus aureus 5573 8.09% 63334 91.91% 68906

Salmonella enterica 4313 4.60% 89525 95.40% 93838

Listeria monocytogenes 4549 5.13% 84172 94.88% 88717

Campylobacter jejuni 1833 4.71% 37106 95.29% 38939

Shigella flexneri 888 4.70% 18015 95.31% 18901

Pseudomonas aeruginosa 5156 4.83% 101582 95.17% 106736

Bacillus subtilis 4240 5.03% 80127 94.98% 84363

Coxiella burnetii 1579 6.03% 24629 94.00% 26201

Chlamydia trachomatis 2727 5.25% 49209 94,69% 51967

Escherichia coli str. Sakai 3886 8.01% 44658 92.00% 48543

Escherichia coli str. K-12 3599 4.68% 73262 95.32% 76861

Caulobacter vibrioides 3906 5.71% 64518 94.29% 68424

Acinetobacter pittii 2867 5.15% 52780 94.85% 55645

Klebsiella pneumoniae 5779 6.28% 86260 93.72% 92039

MEAN 3681 5.54% 63577 94.47% 67256

3.3 Data Preprocessing

When pre-processing the datasets, each genome was explored separately due to their different
composition with regards to CDS and n-LORFs. For the sake of simplicity, CDS will be referred
to as positive instances and the n-LORFs as negative instances. The pre-processing started with
extracting the positive instances from the genome, and then the negative. When extracting

Page 22 of 63

the negative instances, a limitation was made regarding the length of the n-LORFs. Only n-
LORFs that were longer than 45 base pairs were extracted. From Table 3.1 one can recall that
the percentage of n-LORFs extracted from the genomes was significantly larger than CDS. In
addition, a large number of the n-LORFs in each genome are very short. Hence, the filtering
was done in order to limit the number of short n-LORFs and also the total number of n-LORFs
extracted. This reason for choosing a length of exactly 45 base pairs was somewhat arbitrary,
but also inspired by the article by Silva et al. [2], where the minimum length was set to 90 base
pairs.

Table 3.1 shows that the number of positive and negative instances in each genome is very
unbalanced. After selecting both the positive and negative instances one would ideally just
remove the number of negative instances that are excessive, so that one is left with an equal
number of positive and negative instances in the final dataset. However, after studying the
length-distribution of the instances in both classes, it was apparent that there was a large
difference in this distribution which needed to be taken into account.

Figure 3.1: Histogram plots featuring the length and number distribution of all CDS and n-
LORFs extracted from the genome of species M. tuberculosis. The length is measured in number
of base pairs [bp]. Notice that the y-axis is not the same in both plots.

In Figure 3.1 one can see a histogram plot of the length-distribution of the positive and negative
instances in the genome of species in M. tuberculosis. Notice that the x-axis is the same in both
plots but the y-axis differs. The length of an ORFs is measured by the number of base pairs
it consists of. From this figure one can first and foremost see that there is a large difference in
the length distribution between the two classes. The positive instances are fewer in number but
have a much larger number of long instances than the negative class. This is easy to see in Table
3.2. The majority of the instances in the negative class in this genome are quite short compared
to the positive class. This is the general trend in all of the genomes. In order to make balanced
datasets for each genome with regards to both the number of positive and negative instances
as well as the individual length-distributions of each class, the instances in both classes were
categorised based on their lengths.

In Table 3.2 an example of how the positive instances were categorised based on their base

Page 23 of 63

Table 3.2: CDS arranged according to the
given length categories.

Category Count

0-100 6
100-200 93
200-300 387
300-500 839
500-800 938
800-1100 879
1100-1400 548
≥1400 623

Table 3.3: n-LORFs arranged according to
the given length categories.

Category Count

0-100 50142
100-200 27660
200-300 7358
300-500 3184
500-800 820
800-1100 205
1100-1400 84
≥1400 72

pair lengths is presented. Table 3.3 presents a similar table with the categorisation of the
negative instances. Based on the counts of the positive instances in each length category, the
same number of instances were sampled from the same length category of the negative instances,
in order to create a balanced dataset. However, there was a limiting factor when doing so. The
negative instances in most of the genomes had fewer long instances than the positive instances,
as one can see when comparing Table 3.2 and 3.3. This made it impossible to get an identical
length distribution while simultaneously keeping the number of positive and negative instances
equal. At least without removing CDS.

Figure 3.2: Histogram plot featuring the length and number distribution of CDS and n-LORFs
in dataset 1, from the genome of species M. tuberculosis. The length is measured in number of
base pairs [bp].

The challenge with identifying CDS among the LORFs in a genome is quite different for long
and short LORFs. If one makes a random guess that a LORF that is longer than 1400 bases
is a CDS one can be almost 90% certain that this is correct. Among the short LORFs in a
genome, on the other hand, the ratio of CDS is about 1:10 000. For that reason two datasets

Page 24 of 63

for each genome was created. The first dataset (dataset 1) attempts to have an as balanced as
possible length-distribution between the positive and negative instances, which therefore also
means the numbers of positive and negative instances will be unequal in most genomes. While
the second dataset (dataset 2) is primarily the same as the first, but with additional negative
instances so that the number of positive and negative instances becomes equal. In Figure 3.2
and 3.3 one can see how the length and number-distribution between the negative and positive
instances varies depending on the datasets described above. The aim with creating these two
datasets for each genome is to see if the model gets better at classifying CDS when trained on
a dataset that is more balanced in terms of the length of the sequences.

Figure 3.3: Histogram plot featuring the length and number distribution of CDS and n-LORFs
in dataset 2, from the genome of species M. tuberculosis. The length is measured in number of
base pairs [bp].

Page 25 of 63

Chapter 4
Methods

The implementation of the three machine learning methods will be presented in this chapter.
The models have been trained tuned, and tested using two different training datasets, and
using single genomes as well as combined genomes. The methods and reasoning involved in
the selection and engineering of features will also be discussed. Feature engineering was done
in R Studio, while the implementation of all three models was done in Kaggle using Python
programming language. The Python libraries used can be found in Table A.2 in Appendix A,
and GitHub-links to the source code can be found in Table B.1 in Appendix B.

4.1 Feature Engineering

Figure 4.1: Features engineered from LORFs in 15 different genome datasets, which are to be
used as input in the machine learning models Random Forest and XGBoost.

Feature engineering is a preprocessing step where one extracts the most relevant information
from the raw dataset, which then can be used as input in a machine learning model. This process
often involves selection, creation and transformation. By extracting features that describe
different aspects of the data, one increases the amount of data used as input to the model, in
hopes of increasing model performance. In this case, the raw datasets are sequences of CDS
and n-LORFs, as described in Chapter 3. The feature engineering process involves identifying

26

properties of sequences that can be used as features, transform them into numerical vectors,
which are then to be learned by both the Random Forest and XGBoost model.

The features created for the Random Forest and XGBoost model were largely inspired by
the features used in the the article by Silva et al. [2]. The same features were created, however
using a different approach in cases such as the codon bias feature. Additional features were
also created such as amino acid usage. In Figure 4.1 the 17 sets of features extracted from each
genome dataset are presented. In the subsections below a short description of each feature set
is given and an explanation as to why it was chosen.

GC-content

The GC-content of an ORF is the percentage of G and C nucleotide base pairs found in the ORF.
As stated by Al-Ajlan and El Allali [35], GC-content is a well-known feature that has been used
by several machine learning based gene prediction tools such as Orphelia [29] and Metagenomic
Gene Caller (MGC) [36]. In this thesis GC-content values for each ORF were extracted using
the ”G+C Content” function in the ”SeqinR” R-package. This function computes the overall
GC-content of an ORF as well as the GC-content of all the base pairs in the first, second
and third position reading frames of the same ORF. Hence, in total this function can return 4
different GC-content values.

Figure 4.2: Density plot showing the difference in the density distribution between CDS and
n-LORFs in 5 genomes given their overall GC-content which includes all frames.

GC-content is an interesting feature to include because it both varies within the same genome
and also between genomes. This is clearly seen in Figure 4.2. When comparing the two subplots
one can see that the density distributions of ORFs with different GC-content varies within the
same genome depending on if one is looking at the coding gene (CDS) or the n-LORFs of a
particular genome. All the genomes in the subplot showing the CDS have a slimmer and taller

Page 27 of 63

density distribution than the genomes in subplot showing n-LORFs. This indicates that the
CDS have a greater number of sequences with high GC-content than n-LORFs. By including
GC-content as a feature one may be able to determine if the GC-content can play a role in
distinguishing between CDS and n-LORFs.

Some argue that there is a correlation between GC-content and the use of synonymous
codons (codon bias) [37]. Other argue that there is a relationship between the GC-content of
an ORF and the CDS lengths [38]. Pozzoli et al. [39] state that there is a directly proportional
relationship between GC-content and CDS length due to the fact that stop-codons have a bias
towards A and T nucleotides. Thereby, the shorter the ORF is, the higher the AT bias. The
three stop-codons can be found in Table 2.1 in Chapter 2.

Length

The ORF-length is simply the number of bases that makes up the ORF. In resemblance with
GC-content, the ORF-length is also a well-known feature, often used by state-of-the-art gene
predictions tools with good reason. There is clearly a strong correlation between length and
coding genes, which is visible in Figure 4.3. Looking at the two subplots it is evident that
the length distribution in CDS across different genomes is much more stable than the length
distribution in n-LORFs across the same genomes. Chapter 3 explains how a sufficient amount
of data preprocessing was done on each genome dataset due to the differences in the length
distributions between CDS and n-LORFs. Before the data preprocessing the differences in
length distributions between CDS and n-LORFs were even greater.

Figure 4.3: Density plot showing the length distribution of CDS and n-LORFs in 5 different
genomes, after data preprocessing. The length is measured in number of base pairs [bp].

Page 28 of 63

K-mer Frequency

As presented in Figure 4.1 the k-mer frequencies computed were: 2-mer, 3-mer, 4-mer, 5-mer and
6-mer. A k-mer is simply a substring of nucleotides with a length of k. When one calculates a
2-mer frequency for instance, one simply sums up the number of times a given 2-mer is observed
in an ORF. Since there exist only 4 different bases, A, T, C and G, the number of possible k-
mers for a given k would be: 4k. Al-Ajlan and El Allali [35] compute only the monocodon usage
and the dicodon usage of each ORF, but Silva et al. [2] compute all k-mers from 2 to 6. In
this thesis the latter option was chosen during feature engineering. Including k-mers as features
means one can determine whether there are certain k-mers that are more represented in CDS
and if they are useful in the prediction of CDS.

Amino Acid Usage

The amino acid usage follows the same principles as k-mer frequencies. One simply translates
the ORF and counts the frequencies of the k-amino acid occurrences in the ORF. Since there
exist 20 amino acids and one stop codon, the number of possible k-amino acids for a given k
would be: 21k. 1-, 2- and 3-amino-acid-mers were computed for each ORF in a genome. The
amino acid-mer features could potentially have better predictive power than the k-mer features
as they essentially contain the same information, but without as much redundancy. In other
words, the redundancy in the genetic code is eliminated by using amino acid sequences, making
the sequences stable and more closely related to proteins. By including amino acid-mers as
features one could determine whether the particular sequence of amino acids in a sequence is a
better indicator of the presence of coding genes than the codon sequence.

Codon Bias

Codon bias, also referred to as codon weight by some, is defined differently in many articles. In
Silva et al. [2] the codon bias is simply the monocodon frequencies in the ORF. In this paper
however, another approach has been used to estimate the codon weight. First the monocodon
frequencies of each ORF is found as well as the respective amino acid frequencies of the trans-
lated ORF. Then each codon is given a weight by dividing the frequency of a specific codon by
the total number of times the corresponding amino acid is found in that particular sequence. For
each sequence, every codons is given its respective weight. These set of features then indicates
if certain synonymous codons are preferred over others in a given genome.

Start Codon Usage

As mentioned in the Chapter 2 there are three possible start codons for ORFs in prokaryotic
genomes. These are ATG, TTG, and GTG. ATG is the most common start codon. The start
codon feature simply indicates which start codon is used in a given ORF with 1 or 0 if the start
codon has not been used. By including this feature one could potentially get an indication if
start codon usage can be used for the purpose of gene prediction.

4.2 Random Forest Classifier

The first model that was tested on the genome-data was the Random Forest classifier. This
model was implemented using the machine learning library scikit-learn. Theory about Random
Forest is given in Chapter 2, Section 2.2.2.

Implementing a Random Forest classifier involves several stages: feature engineering, train-
ing and testing, tuning and feature selection. Figure 4.4 is a rough visualisation of the stages in
the prediction pipeline, from having raw sequencing data and until classification. The datasets
presented in Chapter 3 were used as training and test data for the Random Forest classifier

Page 29 of 63

presented in this section. The Random Forest classifier makes predictions based on signals cap-
tured from the ORFs, which can be used as input in the model. These signals are the features
presented above in Section 4.1.

Figure 4.4: Illustration of the stages during the implementation of a Random Forest classifier,
from raw sequence data and until a final model. The figure is inspired by Fig.1 by Al-Ajlan
and El Allali [35].

4.2.1 The Input Datasets

The Random Forest classifier was trained and tested multiple times with various input datasets
which will be presented in this subsection. In Chapter 3 two datasets for each genome are
presented. The first dataset is attempted balanced in terms of length distribution between the
two classes. The other dataset is attempted balanced in terms of length distribution, while
also remaining balanced in the number of CDS and n-LORFs. The Random Forest classifier
was trained and tested on both the datasets for all 15 genomes individually. This was done
to determine if the difference in balance between the datasets affects the performance of the
Random Forest classifier. After determining this, further exploration of the classifier continued
using only the dataset variation that gave the best performance. The training of the classifier,
on all genomes individually, was also done in order to see how performance varies depending on
the genome. Following this, the classifier was trained on a combination of genomes. This will
be explained in more detail in Section 4.5. The Random Forest classifier was the only classifier
that was trained on pairs of genomes. This was done to see if there may be an advantage to
training genomes that are difficult to classify together with genomes that are easier to classify,
as opposed to training them separately.

Page 30 of 63

4.2.2 Hyperparameter Tuning

Since scikit-learn was used to implement this model one could simply run the model with
the default parameters and get reasonable results. However, one could potentially improve
these results further by tweaking the hyperparameters according to the dataset. Koehrsen
[18] state that the most important parameters to tune for a Random Forest classifier are the
number of trees in the forest and the number of features that are considered at each node. The
hyperparameters that were tuned are listed below. These were inspired by Koehrsen [18].

• n estimators: number of trees in the forest

• max features: maximum number of features to consider when looking for the best split

• max depth: the maximum number of levels of a tree

• min samples split: minimum number of samples required to split an internal node

• min samples leaf : minimum number of samples required to be at a leaf node

• bootstrap: method for sampling datapoints [40].

There are various approaches to hyperparameter tuning, in this case, scikit-learn’s GridSearchCV
and RandomizedSearchCV were both tested. The difference between these two methods is that
GridSearchCV systematically tests all the combinations of hyperparameters defined in a grid,
while RandomizedSearchCV only selects a combination at random. Koehrsen [18] recommends
starting with a RandomizedSearchCV approach and then narrow down the search further with
a GridSearchCV afterwards. RandomizedSearchCV tends to be much faster, and is therefore
often preferable when dealing with large datasets. Since this was the case with the datasets used
for this model, this approach quickly became the favoured one. Both approaches were initially
tested on the first genome from species M. tuberculosis. After yielding similar results with both
approaches only the RandomizedSearchCV class was used when tuning hyperparameters with
other genome datasets.

Hyperparameter Values tested Result

Number of estimators min: 10, max: 1000, num: 10 200

Maximum features auto, sqrt auto

Maximum depth min: 10, max: 1000, num: 10 20

Minimum samples for split 2, 5, 10 2

Minimum samples for leafs 1, 2, 4 1

Bootstrap True, False False

Table 4.1: Representation of the hyperparameters tuned using RandomizedSearchCV, the span
of values tested for each parameter, and the optimal hyperparameters (results) found during
tuning.

RandomizedSearchCV

When hyperparameter tuning with the RandomizedSearchCV one first defines a grid or distribu-
tion of values for the parameters that one wishes to tune. During training, different combinations
of parameters are randomly sampled from the grid, while performing a K-fold cross validation
for each combination. When running a machine learning model, it is common practice to hold
out a part of the dataset for testing in order to avoid overfitting the model. When training a

Page 31 of 63

model multiple times with different combinations of parameters, the same problem of overfitting
can occur. For this reason one implements cross-validation methods while tuning. K-fold cross
validation is used during a randomised search, and how it works is explained in Chapter 2.
During the randomised search performed in this thesis a 3-fold cross validation was used with
10-50 iterations.

Table 4.1 presents the six hyperparameters that were tuned, the span of values tested for
each parameter, and the last column shows the optimal hyperparameters selected for the final
Random Forest classifier.

4.2.3 Feature Selection

After tuning the Random Forest classifier the next attempt to further improve the accuracy of
the model was feature selection. As mentioned in Chapter 2 there are different methods for
feature selection, depending on what type of model one is building. The Random Forest classifier
has its own built in feature selection method, which falls under the category of embedded
methods [41]. The selection of features is based on the feature importance computed by the
decisions trees created when building the model. In Chapter 2 it is stated how each decision tree
in the Random Forest classifier is built on a selection of arbitrary features. At each decision
node in a tree, the data is divided into two groups based on their similarity to each other,
given a particular feature. The importance of each feature is thereafter determined by how
pure each leaf node is, after such a split. Gini impurity or information gain are the functions
used to measure the quality of a split in classification problems. A pure leaf node is an end
node that only contains data from one of two target classes in a classification problem. In other
words, the importance of each feature is the ability of a given feature to separate a subset of
ORFs into CDS and n-LORFs. All the feature importance scores are normalised so that they
sum up to 1 for each dataset. An advantage of using the feature importances computed during
training of the Random Forest model, is that the importance are computed simultaneously with
model training. A disadvantage on the other hand, is that the decision trees have a tendency
to favour features with high cardinality [42]. By high cardinality we mean features that have
a large number of distinct values. The decision trees also have a tendency to give correlated
features similar scores that are lower than what they would be if the model was trained without
correlated counterparts. In the sections below, the two different approaches chosen for feature
selection will be discussed. Both are based on the feature importance’s computed by the tuned
Random Forest classifier.

Scikit-learn SelectFromModel

Scikit-learn has a class called SelectFromModel which automatically extracts the best features
from a model based on their feature importance weights, measured against a given threshold.
This is a straightforward approach where one simply provides the estimator one wishes to use,
which in this case was the Random Forest classifier, including its tuned parameters, and the
threshold at which one wishes to discard features. Examples of thresholds can be the median
value of all the feature importance’s, the mean, or the median times a scaling factor for instance.
In this model the mean feature importance was used as a threshold. This means features having
a feature importance below the mean value were discarded. The feature selection method was
trained and tested on all genomes, and then compared in terms of the accuracy scores with the
feature selection method presented below.

Manual Feature Selection

In addition to the method above, manual feature selection was also attempted. This simply
involved training the tuned Random Forest classifier with a range of features, that were selected

Page 32 of 63

based on their feature importance. The testing range spanned from 100 - 1400 features, with an
increment of 100. In other words, all the features were arranged in descending order of feature
importance, after which the given number of features were selected, always starting with the
features with highest importance. After running this on multiple datasets the metric scores
were compared. Finally a conclusion regarding the best number of features was made, based
on both the best metric score and also on the degree of complexity. The greater the number of
features in a model, the more time consuming and resource-intensive the model is to run. After
a conclusion was made the tuned Random Forest classifier was trained and tested again on all
genomes with only the selected number of best features.

4.3 XGBoost

After attempting various combinations of datasets, genomes and feature selection methods with
the Random Forest classifier, the ensemble method XGBoost was next in turn. Theory regard-
ing the XGBoost method is found in Chapter 2, Section 2.2.3. The incentive for implementing
an XGBoost classifier was to see how it performed in comparison to the Random Forest clas-
sifier and the RNN model. The implementation was through the scikit-learn library, and no
hyperparameter tuning was done, only the default XGBoost classifier was used. The same set
of features used for the Random Forest classifier were used for the XGBoost classifier, presented
in Section 4.1. Cross-validation and early stopping was also used for some datasets, without
significant improvement in performance. A manual feature selection was done based on feature
importance, identical to the manual feature selection process done for the Random Forest clas-
sifier. Then a new model was trained and tested for each genome with the selected features.
The XGBoost classifier was also trained and tested on both the two types of datasets. These
results were very similar to the Random Forest classifier, and the results will therefore not be
presented in Chapter 5. Finally, the model was tested on a combination of genomes. This will
be discussed further in section 4.5.

4.4 Recurrent Neural Network

The RNN model was implemented using the Keras [43] library through TensorFlow [44].
Theory regarding the general structure of RNNs is found in Chapter 2, Section 2.3. In this
section the preprocessing of input data, architecture and tuning process executed during imple-
mentation of the RNN will be presented.

4.4.1 Preprocessing

The same datasets as presented in Chapter 3 are used for the RNN model. The first dataset
is balanced in terms of the length distribution of the positive and negative instances. The
second dataset is balanced in terms of the length distribution as well as having a balanced
number of positive and negative instances. As with the ensemble methods, the RNN model
was tested on both these datasets for all 15 genomes. When using these datasets as input to
the RNN model they required much less preprocessing and no feature engineering as opposed
to the ensemble methods. This is because the sequences themselves are used as input directly.
Figure 4.5 a), demonstrates what a single raw input sequence looks like. In order to feed these
sequences to the RNN they must be made numeric. This was done using one-hot-encoding for
the target variables and tokenisation followed by a padding of zeros for the predictor variables.
The padding needed to be done since there is a large variation in the lengths of the ORFs in
each dataset. Each sequence was padded until its length was equivalent to the longest ORF
found in that particular dataset.

Page 33 of 63

Figure 4.5: a) A single raw base input sequence. b) The same input sequence, but translated
to its respective amino acids.

A translated version of the nucleotide sequences used as input was also used as input to the RNN
model. By translating the sequences to their respective amino acids one wishes to minimise the
redundancy in the sequences. Translation also makes the sequences considerably shorter and
thereby potentially makes it easier and faster for the RNN model to perform a classification.
However, even though the dimension of the vector becomes much shorter in one direction, the
number of tokens during tokenistaion increases from 4 to 21 as there are 21 different amino acids
and only four different bases. This in turn makes the sequences longer in another direction.
Figure 4.5 b), demonstrates what the translated input sequence looks like.

4.4.2 Architecture

Figure 4.6 is a simple illustration of the architecture of the RNN model. The first layer is an
embedding layer. Embedding layers are commonly used in Natural Language Processing (NLP)
as a method to deal with textual data. According to Saxena [45] it can be thought of as an
alternative to one-hot-encoding along with dimensionality reduction. In this case, the purpose
of the embedding layer is simply dimensionalty reduction, since the sequences already have been
tokenised. The input dimension in the embedding layer is 22, since there are 21 tokenised amino
acid symbols, plus a zero due to padding.

The second layer is the recurrent layer. The activation functions used in this layer are the
default functions in keras LSTM layers. That is the ”tanh” function for feed forward activation
and the ”sigmoid” function for recurrent activation, meaning the output that is memorized.

The third layer is the dropout layer. Dropout layers are used in neural networks to prevent
overfitting. This is done by randomly setting the output of certain nodes to zero at a given
rate, during each training iteration. This in turn makes the loss function more sensitive to the
remaining nodes which affects the way the weights are updated during back-propagation [46].
The last layer is a dense layer consisting of only one node, which is also called the output layer.
Since the problem at hand is a classification problem, the activation function used in the output
layer is the ”sigmoid” function. This was explained in more detail in Section 2.3.3.

4.4.3 Tuning

Before starting to tune the model, both nucleotide sequences and amino acid sequences were
used as input to the RNN model and compared in terms of training time and performance
metrics, using a dataset from species M. tuberculosis. In addition, different maximum lengths
of the sequences and different number of epochs for each type of input data were also compared.
When using the amino acid sequences the RNN model was much faster and achieved better
performance scores. The tuning of the hyperparameters in the model was therefore done using
only the translated sequence data.

The maximum length of each sequence used as input to the RNN model was manually
tuned to see how it affected the speed of the model training as well as if it had an effect on the
performance. The maximum length parameter is used in the function that ”pads” the sequences
before they are passed as input to the RNN. By padding one refers the process of extending
sequences that are shorter than a given length by adding zeros to the beginning or end of the

Page 34 of 63

Figure 4.6: Simple illustration of the layers in the final RNN model. Layers coloured in red
(embedding layer and dense layer) contain parameters that have not been tuned. Layers coloured
in green (LSTM layer and dropout layer) contain parameters that have been tuned.

sequences. This needs to be done in order for the RNN to be able to take the sequences as
input. Another parameter in this function determines whether the sequence is to be padded
from the beginning or the end of the sequence. In this case, the sequences were padded from
the start of the sequences. For the raw sequence data a span of approximately 1000 to 8000
maximum lengths were tested, and for the amino acid sequences a span of approximately 200
to 2000 maximum lengths were tested. Each length was tested three times at the same number
of epochs and the final result was the average of the three replications. Since the training of the
RNN model was quite fast when using the amino acid sequences, the maximum length of the
sequences was finally decided to be set the same length as the longest ORF in a given dataset.
This also gives a closer depiction of the length distribution of ORFs in an unaltered genome.

The number of epochs used during training was also manually tuned for each type of input
data. The preferred number of epochs used varied depending on if one used the nucleotide
sequence data or if one used the translated sequence data. A span of 15 to 50 epochs was tested
when using the translated sequence data. The number of epochs that gave the best performance-
time trade-off was 15 epochs. For the raw sequence data, a span of 15 to 500 epochs were tested,
of which 500 epochs gave the best performance-time trade-off. The different number of epochs
were tested three times for both models, using the same maximum length of sequences. The
average of the three replications was used as the final result. The manual tuning of both epochs
and maximum lengths was also done using genome data from species M. tuberculosis. The
results from the comparisons of different maximum lengths and the number of epochs, when
using different types of sequence inputs will be presented in Chapter 5.
After selecting the best type of data input, as well as manually tuning the maximum length and
epochs, the hyperparameters of the RNN model were tuned using the Keras Tuner library.
The complete source code for the tuning process is found on GitHub [47]. Table 4.2 shows
the four hyperparameters that were tuned, as well as the span of values that were tested for
each parameter. The number of nodes in the LSTM layer was tuned in the span of 32 -
512 with a step size of 32. The dropout rate in the dropout layer was tuned in the span
0 - 0.9. Three different loss functions were tested, binary cross entropy, hinge, and squared

Page 35 of 63

Hyperparameter Values tested Result

Number of nodes min: 32, max: 512, step: 32 288

Dropout rate min: 0, max: 0.9, step: 0.1 0.4

Learning rate 10−1, 10−2, 10−3, 10−4, 10−5 10−4

Loss function binary cross entropy, hinge, squared hinge binary cross entropy

Table 4.2: Representation of the hyperparameters tuned by Keras Tuner and the span of values
tested for each parameter. The optimal hyperparameters chosen for the final model are pre-
sented in the last column labelled as ”results”.

hinge. According to Brownlee [48] these loss functions are appropriate for binary classification
problems. Finally, the optimiser learning rate was tuned using values in the span 0.1 - 0.00001.
Two optimiser functions were considered during tuning, ADAM and RMSprop. They were both
tested and tuned separately, before a comparison was made which resulted in the selection of
RMSprop as the preferred optimiser. Even though the learning rate is initially set at a certain
value, and treated as a hyperparameter, the two optimisers used will update the learning rate
under training, as mentioned in Chapter 2. Therefore, the learning rate is regarded as both a
hyperparameter and a trainable parameter.

The RNN was tuned on datasets from three species, M. turberculosis, C. burnetii and E.
coli str. K-12. The datasets from these exact genomes were chosen due to their dissimilarities
in CDS and n-LORF percentage. The optimal hyperparameters selected by the tuner varied
greatly depending on the species. Therefore, the hyperparameters for the final model were
chosen to be an average of the three tuning results. The optimal hyperparameters chosen for
the final model after tuning are shown in the ”Results” column of Table 4.2.

When fitting the final RNN model the batch size was set to 32. The batch size parameter
limits the number of samples that are used for training the model at a time. 32 and 64 are
common batch sizes. The number of epochs was set to 20 and the validation split parameter
was set at 0.2. This means that 20% of the input data is used to validate the model during
training. This model was then trained separately and used to classify the datasets from all the
15 genomes individually, as well as on combinations of genome datasets. This will be explained
in more detail in the following section, and the results will be presented in the following chapter.

4.5 Combining Genomes

The four different combinations of genomes that the models were tested on were a combination
of 10 genomes, a combination of 5 genomes, a combination of the 5 best performing genomes and
a combination of the 5 worst performing genomes. The combination of the genomes were made
based on how the models performed on the genomes individually. One of the challenges when
training and testing the models on combinations of genomes was that when combining more
than two genomes, the datasets became very large and difficult to handle. This was solved by
taking a random sample from each genome dataset, without replacement, and then combining
them. When combining 10 genomes a random sample of 2000 ORFs were taken from each of the
10 datasets, and when combining 5 genomes a random sample of 4000 ORFs were taken from
each dataset. The genome datasets that contained less than 2000 ORFs, such as the genome
dataset of species S. flexneri, were used as they were. The performance results of all the three
models on the different combinations will be presented in the following chapter.

Page 36 of 63

Chapter 5
Results

This chapter will present and compare the results obtained by the three models tested, while
addressing the three objectives introduced in Chapter 1. Chapter 3 and Chapter 4 discuss why
two differently balanced datasets were created to train the three models. The dataset that
is balanced only in terms of the length distribution of positive and negative instances will be
referred to as dataset 1. The dataset that is balanced both in terms of the length distribution
as well as the number of positive and negative instances will be referred to as dataset 2.

5.1 Random Forest Classifier

As presented in Section 4.2, implementing a Random Forest classifier involves several stages.
The results obtained when testing different datasets, from hyperparameter tuning, feature engi-
neering and feature selection will be presented in this section. This includes feature importance
and the difference between feature selection techniques. The performance of the classifier will
also be compared when using different genomes as input, as well as combined genomes.

5.1.1 Comparing Datasets

The results presented below were created using scikit-learn’s default Random Forest classifier.
With ”default”, one means that no hyperparameter tuning was done at this stage, only the
parameter values set by scikit-learn version 0.23.2 were used. This default model was used to
train and test dataset 1 and dataset 2 for all 15 genomes. Figure 5.1 compares how the three
evaluation metrics vary when using dataset 1 as opposed to dataset 2 as input to the Random
Forest model, for all genomes. The difference in accuracy score between the two datasets is
very minor. The lines in the two plots follow an almost identical path. In contrast to the
accuracy score, the precision and recall metrics are clearly affected by which datasets that is
used as input. Some genomes are also more affected by the different datasets than others. The
genomes from species S. enterica, L. monocytogenes, C. jejuni, S. flexneri, P. aeruginosa and
C. burnetti have significantly lower precision and recall scores when using dataset 1 compared
to when using dataset 2. Other genomes from species such as S. aureus and the E. coli, show
little to no difference in all evaluation metric scores. From the two plots one can also see that
there is a large difference in performance metrics from one genome to another. The metrics
used to evaluate model performances in this thesis are explained in Chapter 2, Section 2.4.

The confusion matrices shown in figure 5.2 presents the results when using dataset 1 and
dataset 2 from the genome of species L. monocytogenes, as input to the default Random Forest
classifier. The confusion matrices of this specific genome were of particulate interest as the
precision and recall scores were considerably different in the two plots for this species. In the
matrix for dataset 1 we can see that there is a considerable difference in the distribution of
true positive and true negative values compared to the matrix for dataset 2. There is also a

37

difference in the distribution of false positives and false negatives in the two datasets. In the
following results, only dataset 2 is used unless something else is specified.

Figure 5.1: Comparison of the accuracy, precision and recall score for the Random Forest
classifier given dataset 1 and dataset 2 as input for each of the 15 genomes. The x-axis for both
plots are the same genomes, in the same order.

Figure 5.2: The confusion matrices present the results when using dataset 1 and dataset 2 from
the genome of species L. monocytogenes, as input to the default Random Forest classifier. ”0”
corresponds to predicting a n-LORF, and ”1” corresponds to predicting a CDS.

5.1.2 Default vs. Tuned Random Forest Classifier

In this section the performance improvement after hyperparameter tuning will be presented.
The parameters that were tuned using RandomizedGridSearch are presented in Section 4.2.2.
Figure 5.3 compares the accuracy score before and after tuning of the Random Forest classifier.
The tuning improves the performance only marginally. The genomes with lower accuracy scores
are affected more by the tuning than the features with a higher score. Figure 5.4 presents the

Page 38 of 63

results from tuning of the number of trees in the forest, as well as how the number of trees
chosen affects the training time. After reaching 100 tress the increase in validation accuracy
score stops. The training time on the other hand continues to increase steadily as the number
of trees increases. The fewer the number of trees one needs to get a good validation score, the
faster it takes to train the model.

Figure 5.3: Plot presenting the accuracy score of the default Random Forest classifier compared
to the tuned model, trained and tested on all genomes, one at a time.

Figure 5.4: Plots showing how the number of trees in a Random Forest classifier affects the
accuracy (left plot) and the training time (right plot) of the Random Forest classifier. The blue
points in the left plot is the accuracy score of the training data and the green points are the
accuracy scores for the validation data.

5.1.3 Feature Importance

As mentioned in Chapter 4, 17 feature sets were engineered to be used by the Random Forest
and XGBoost classifiers. Feature importance is the score that the Random Forest classifier

Page 39 of 63

Figure 5.5: Plots showing the feature importance scores for all 17 feature sets, computed during
training of the Random Forest classifier on the genome of species M. tuberculosis. The first plot
computes the mean score of all features in a set, while the lower plot takes a sum.

gives each feature during training. This score gives an indication of how important a given
feature is to the model when making gene predictions, and the scores for all these features sum
to 1. Since 9 of the 17 features sets consist of many feature computations, such as the k-mer
count features and codon bias, it is difficult to present the feature importances of all the feature
sets in their condensed form. Figure 5.5 presents two alternative methods of presenting the
feature importance for the genome of species M. turberculosis. The first plot is simply created
by computing the mean of all feature importances in each feature set. However, this means the
feature sets that only consist of one computation, such as the ”GC-content” features, ”length”
and the ”start codon” features, get an unfair advantage. Despite this, some k-mer features
such as the ”single-aa” feature which is a count of the single amino acid usage, still receives a
relatively high score. This goes for ”dimers” (2-kmer) and the ”c weight” (codon bias) features
as well.

The second plot in Figure 5.5 presents each feature set’s importance score as a summation
of all importance values within that feature set. This approach, as opposed to the ”mean score”

Page 40 of 63

Figure 5.6: Plots presenting feature importance scores for all 17 feature sets computed using the
”mean score” approach, for the four genomes of species M. tuberculosis, S. enterica, C. jejuni,
and S. flexneri.

presented above, gives an unfair advantage to the feature sets that consist of multiple feature
computations. All the features that have multiple computations score considerably better than
the ones with only one. Neither of the two approaches are optimal, but the ”mean score”
approach seems like the most fair approach of the two.

Figure 5.6 presents the mean score feature importance for four selected genomes. These
genomes vary in size and the Random Forest model classified each of them with varying perfor-
mance success. M. tuberculosis is a large genome and the Random Forest classifier scored well
with this genome as input. S. enterica is also a large genome, but got one of the lowest accuracy
scores out of the 15 genomes when classified with the Random Forest model. C. jejuni is a small
genome and was classified well by the Random Forest model. S. flexneri is also a small genome
and was classified poorly by the Random Forest classifier. Feature importance scores clearly
vary greatly depending on the genome used as input to the Random Forest classifier. The top
five feature sets in each of the four plots are different. M. tuberculosis is the only genome out of
the four that does not have the ”length” feature as its most important feature. In total, 11 out
of the 15 genomes had the ”length” feature as its most important feature in the ”mean score”

Page 41 of 63

feature importance plots. In addition, the magnitude of the feature importance score of the
”length” feature was often a lot greater than the remaining feature sets, as seen in the plots of
S. enterica, C. jejuni and S. flexneri in Figure 5.6.

5.1.4 Feature Selection Techniques

Based on the feature importance scores computed by the Random Forest classifier during train-
ing, a selection of features was made using both scikit-learn’s ”SelectFromModel” estimator as
well as a manual feature selection technique.

Figure 5.7: Plot presenting how increasing the number of features affect the three evaluation
metrics. The features are selected based on the best feature importance score.

Figure 5.8: Plot presenting the accuracy score of the tuned Random Forest classifier with
features selected using the scikit-learn technique, compared to manual feature selection.

The manual selection technique is shown in Figure 5.7, and one can see that the three evalua-
tion metrics varies depending on the number of features that are used for the Random Forest
classifier. The plot shows that the accuracy and precision scores are the highest between 200 to

Page 42 of 63

300 features after which they start decreasing as more features are included. The recall score
on the other hand increases gradually as the number of features included increases.

The difference in accuracy score when using scikit-learns ”SelectFromModel” feature se-
lection technique compared to the manual feature selection technique is shown in Figure 5.8.
From the plot one can see that the manual feature selection technique quite clearly yields better
results than the scikit-learn technique.

Figure 5.9: Plot presenting the accuracy score of the tuned Random Forest classifier with all
features, compared to the tuned Random Forest classifier with only the selected best features.

Figure 5.10: Plot presenting the accuracy score of the tuned Random Forest classifier with all
features compared to a tuned model that is trained and tested without the feature ”length”.

A comparison of the accuracy score of the tuned Random Forest classifier with all features,
and the tuned Random Forest classifier with only the 200 most important features is shown in

Page 43 of 63

Figure 5.9. As one can see from the plot, the model with selected features performs better than
the model with all features for almost all the 15 genomes.

The feature ”Length” is historically known to have much importance in gene prediction
[49]. One has also learnt from the feature importance plots above that the feature is given high
feature importance by the Random Forest classifier for most of the 15 genomes classified. Figure
5.10 shows how the performance of the Random Forest classifier is affected if one removes only
the feature ”length”. From the plot one can see how the absence of this feature affects the
accuracy score for some genomes and not for others. The four genomes from species S. enterica,
C. jejuni, P. aeruginosa and K. pneumoniae show a distinct drop in accuracy, while other
genomes are affected significantly less. These results correlate well with the feature importance
graphs shown in Section 5.1.3.

5.2 XGBoost

A selection of the results from the methods described in Chapter 4, Section 4.3 are presented
in this section. The XGBoost classifier was tested on dataset 1 and 2 for all genomes, manual
feature selection was attempted, and it was tested on different combinations of genomes. The
comparison of dataset 1 and 2 will not be presented, as the results were very similar to the
Random Forest classifier. The main objective of implementing the XGBoost classifier was to
see how its performance is comparable with the Random Forest classifier and the RNN.

5.2.1 Feature Selection

Since manually selecting features based on feature importance for the Random Forest classifier
yielded better accuracy scores, the same method was attempted with XGBoost. In Figure
5.11 the accuracy scores of a default XGBoost model with all features compared to a default
XGBoost model with only the 200 features with best feature importance is presented. As one
can see there is close to no improvement in accuracy after manual feature selection. For the S.
enterica genome the accuracy is in fact higher for the XGBoost model using all features.

Figure 5.11: Plot presenting the accuracy score of the default XGBoost classifier with all fea-
tures, compared to the default XGBoost classifier with only a selection of features.

Page 44 of 63

5.2.2 Default XGBoost vs. Default Random Forest Classifier

Since no parameter tuning was done on the XGBoost model, and feature selection did not yield
significant improvement in accuracy the default XGBoost classifier is considered the best version
of the XGBoost model. By default one means an XGBoost classifier using the default parameter
settings in the scikit-learn implementation. Figure 5.12 compares the default XGBoost model
with the default Random Forest classifier, before any tuning or feature selection was performed.
The plot shows that the default XGBoost classifier performs significantly better than the default
Random Forest classifier.

Figure 5.12: Plot comparing the accuracy score of the default Random Forest classifier with the
default XGBoost classifier.

5.3 Recurrent Neural Network

As outlined in Chapter 4, Section 4.4 the RNN was tuned manually in terms of the maximum
length used for the input sequences in the neural network, and the number of epochs used. In
addition, both raw nucleotide sequences as well as translated amino acid sequences were tested
as input. Finally, hyperparameter tuning was done using the Keras tuner. These results will
be presented in this section, in addition to a comparison between dataset 1 and 2 and how the
RNN performs on a combination of genomes.

5.3.1 Nucleotide Sequence Data vs. Amino Acid Sequence Data

Two things were established early while getting started with the RNN model. First, it was
decide whether to use the raw nucleotide sequences as input or amino acid sequences. Second,
it was decide which maximum sequence length yields the best performance-time trade-off. A
description of the maximum length parameter is given in Chapter 4, Section 4.4.3. The longer
the sequences, are the longer the training time is. Table 5.1 and Table 5.2 shows the difference
in number of epochs, accuracy score and the time used by the RNN model to train the same
dataset when using raw nucleotide sequences compared to amino acid sequences. The results
when using amino acid sequences are clearly better, as one achieves a better accuracy score,
fewer epochs are required and the training time is shorter. These results were computed with

Page 45 of 63

the maximum length set to approximately half of the length of the longest sequence in the
genome. This was a length of 4000 bases for the raw nucleotide sequences and 1000 amino acids
for the amino acid sequence, when using the genome from species M. tuberculosis.

Table 5.1: Metrics for the RNN model us-
ing nucleotide sequences as input and dif-
ferent number of training epochs.

Epochs Accuracy Time

15 0.6237 3 min 59 sec
50 0.7786 12 min 24 sec
100 0.8399 23 min 46 sec
500 0.9069 1 hour 44 min

Table 5.2: Metrics for the RNN model us-
ing amino acid sequences as input and dif-
ferent number of training epochs.

Epochs Accuracy Time

15 0.9393 1 min 30 sec
20 0.9422 2 min 02 sec
30 0.9410 3 min 04 sec
50 0.9353 4 min 07 sec

Table 5.3: Metrics for the RNN model us-
ing nucleotide sequences as input and dif-
ferent number of maximum lengths.

Max length Accuracy Time

1000 0.8745 11 min 20 sec
2000 0.8566 11 min 20 sec
3000 0.8364 16 min 40 sec
4000 0.8399 22 min 49 sec
5000 0.8516 27 min 34 sec
6000 0.8310 32 min 31 sec
full 0.8235 37 min 55 sec

Table 5.4: Metrics for the RNN model us-
ing amino acid sequences as input and dif-
ferent number of maximum lengths.

Max length Accuracy Time

200 0.9242 1 min 02 sec
400 0.9395 1 min 10 sec
800 0.9376 1 min 40 sec
1200 0.9291 2 min 01 sec
1600 0.9241 2 min 05 sec
2000 0.9204 2 min 40 sec
full 0.9237 3 min 05 sec

(a) Nucleotide sequences. (b) Amino acid sequences.

Figure 5.13: Training and validation accuracy for an RNN model using nucleotide sequences as
input (left plot), compared to a model using amino acid sequences as input (right plot).

Table 5.3 and 5.4 present the results when testing various maximum lengths for the raw nu-
cleotide sequences and for the amino acid sequences respectively. The different maximum lengths
for the raw nucleotide sequences were all trained at 100 epochs and the maximum lengths tested
for the amino acid sequences were trained 15 epochs. The genome of species M. tuberculosis

Page 46 of 63

was used also in this case. The longest nucleotide sequence in this genome dataset is 8649
nucleotides, which corresponds to 2359 amino acids when translated. In the last row in both
tables the maximum length of the sequences for each model is set to ”full”. This means it is set
to the length of the longest nucleotide or amino acid sequence in the genome. Again one can
see that using amino acid sequences as input results in much faster training time than using
nucleotide sequences. There seems to be a slight downward trend in accuracy as the maximum
length is increased, especially for the model using amino acid sequences as input.

The training and validation accuracy score when training two RNN models with each se-
quence input type is shown in Figure 5.13. Figure 5.13a is from the training of the model with
raw nucleotide sequences as input. It was trained for 500 epochs, with a maximum sequence
length of 4000 nucleotides. Figure 5.13b is from the training of the model using amino acid
sequences as input. It was trained for 20 epochs and with a maximum sequence length of 1000
amino acids. In Figure 5.13a one can see that the model only stabilises around 200 epochs. In
Figure 5.13b on the other hand, the model stabilises quite quickly, despite the fact that consid-
erably fewer epochs were used. The time used and final accuracy achieved by both models is
presented in Table 5.1 and Table 5.2.

5.3.2 Comparing Datasets

A comparison of the accuracy score of the RNN model when using dataset 1 and dataset 2 as
input is shown in Figure 5.14. In Figure 5.1 we saw that there was not much difference in the
accuracy score when comparing the two datasets with the Random Forest classifier. In Figure
5.14 on the other hand, we can observe that there is a significant reduction in accuracy for some
genomes when using dataset 1 as opposed dataset 2. The genomes from the species C. jejuni
and S. flexneri score significantly worse with dataset 1.

Figure 5.14: Plot comparing the accuracy score of the RNN model given dataset 1 and dataset
2 as input for each of the 15 genomes.

5.4 Comparing the Methods

Figure 5.15 presents a comparison of all three models that have been discussed and tested in
this thesis. The best performing versions of the models have been used in this comparison.

Page 47 of 63

When comparing the default version of the Random Forest classifier with XGBoost in Figure
5.12, one could see that the XGBoost model yielded the better results. In 5.15, the best
performing version of the Random Forest classifier is used, with tuned hyperparameters and
selected features, as opposed to the default version. The difference in performance between
the Random Forest classifier and XGBoost in Figure 5.15 is considerably less prominent than
in Figure 5.12. In fact, the two ensemble methods seem to perform quite equally. The RNN
model on the other hand shows a slightly different pattern than the two ensemble methods. It
scores worse for genomes where the ensemble methods score very well and slightly better for
the genomes where the ensemble methods score poorly.

Figure 5.15: Plot presenting the difference in accuracy score between the best performing Ran-
dom Forest, XGBoost and RNN model. The models were trained and tested on all 15 genomes.

Figure 5.16: The confusion matrices display the results from the Random Forest, XGBoost and
RNN model, after classifying data from the genome of species C. vibriodes. ”0” corresponds to
predicting a n-LORF, and ”1” corresponds to predicting a CDS.

In Figure 5.16 one can see three confusion matrices presenting the results of all three models
when classifying the genome data from species C. vibriodes. The confusion matrices shows how
the three models compare in the number of predictions that were false positive, false negative,
true positive and true negative. This particular species was chosen due to it being a genome

Page 48 of 63

where the ensemble methods performed better compared to the RNN, which can be confirmed
in Figure 5.15. The RNN model shows a significantly higher number of false positives than the
ensemble methods in addition to a lower amount of true negatives. It also has more than double
the amount of false negative predictions compared to the ensemble methods.

Figure 5.17: Confusion matrices for each of the three models when classifying data from the
genome of species C. jejuni. ”0” corresponds to predicting a n-LORF, and ”1” corresponds to
predicting a CDS.

The confusion matrices for the three models when classifying the genome data from species
C. jejuni is presented in Figure 5.17. For this species the RNN model performed better in
terms of accuracy score than both the ensemble methods, as seen in Figure 5.15. In this case
the ensemble methods have slightly lower true positive and true negative predictions than the
RNN, in addition to larger false positive and false negative predictions. The Random Forest
classifier has a significantly higher number of false positive predictions compared to the other
two models.

5.4.1 Combined Genomes

Until now we have trained and tested all models on data from one genome at the time. As
mentioned in Chapter 4, Section 4.5, all the models were also trained and tested on a combina-
tion of genomes. The different combinations were chosen based on how the models performed
on each genome. As one can see in Figure 5.15 all three models get a lower accuracy score on
the same 5 genome datasets. These are the genome datasets of species S. enterica, L. mono-
cytogenes, C. jejuni, P. aeruginosa and K. pneumoniae. The combination of the 10 genomes
included four of these genomes in addition to six genomes where all the models received a good
accuracy score. The combination of the five genomes had three of the poorly classified genomes
and two of the better classified genomes. Finally, all three models were trained and tested on
the 5 genomes with the best scores, and the 5 genomes with the worst accuracy scores. The
results of the models performance on all four combinations of genomes is presented in Figure
5.18. The figure is a two way comparison, as the solid coloured bars show how the three models
perform compared to each other for the different combinations of genomes. The bars that are
lighter in colour, on the other hand, present the performance average of the same genomes that
are combined in each of the four combinations. This average is calculated after the models have
been individually trained and tested on the different genomes.

In the figure one can see how the ensemble methods (yellow and green bars) always perform
slightly better than the RNN when classifying the various combinations of the genomes. At
least the Random Forest classifier. The accuracy score for each combination of genomes coin-
cides quite well with the value one gets when taking an average of the scores of each genome

Page 49 of 63

Figure 5.18: Plot presenting a to-way comparison of the accuracy score for the Random Forest
classifier, XGBoost classifier and RNN model when trained and tested on four different com-
binations of genomes (fully coloured bars). As well as their average score when trained on the
same genomes individually (lightly coloured bars).

when classified individually (lightly coloured bars). The ensemble methods consistently seem to
perform better when trained on a combination of genomes, as opposed to individually. Except
for when they are trained on the combination of the five best genomes. The RNN on the other
hand performs worse when trained on all the combinations of genomes compared to when it is
trained individually. Even though the genome combination consisting of 10 different genomes
has double the number of genomes as the combination consisting of only 5 different genomes, all
three models still get a better accuracy score when classifying the combination of 10 genomes.

The Random Forest classifier was also trained on pairwise genomes. The genomes that
were combined were M. tuberculosis and S. enterica. These exact genomes were chosen because
the Random Forest classifier gets a good accuracy score when classifying M. tuberculosis and
a significantly worse score when classifying S. enterica, as we can see in Figure 5.15. The
two genomes are similar in size and in CDS and n-LORF percentage, as seen in Table 3.1.
Table 5.5 shows how training the genomes together compares to training them individually in
terms of their individual accuracy scores. Training the genomes together seems to improve
the performance of the Random Forest classifier when classifying genome data from species S.
enterica. The performance when classifying M. tuberculosis is not affected greatly by being
trained together with genome data from speceis S. eneterica.

Trained M. tuberculosis S. enterica

Combination 0.9621 0.8396

Individually 0.9634 0.8275

Table 5.5: Presents the performance metrics for the Random Forest classifier when classifying
genome data from species M. tuberculosis and S. enterica. The column ”Trained” indicates
whether the Random Forest classifier was trained on a combination of the genome data from
the two species, or individually.

Page 50 of 63

Chapter 6
Discussion

The findings from the previous chapter will be discussed in this chapter, with the objectives
presented in Chapter 1 in mind. Possible explanations to why these results may have occurred
will also be presented, as well as some of the limitations with the models tested and possible
future directions of work.

6.1 Random Forest Classifier

The first objective presented in Chapter 1 addresses the question of which subset of predefined
and engineered features yield the highest performance of a Random Forest classifier. These
results, among other things, are discussed in the following subsections, in the same order as
they were presented in Chapter 5.

6.1.1 Comparing Datasets

Figure 5.1 presents the results of the three performance metrics for the Random Forest classifier,
after using dataset 1 and dataset 2 to classify all 15 genomes. The precision and recall metrics
both drop significantly when dataset 1 is used as opposed to dataset 2. From Chapter 3 one can
recall that dataset 1 is balanced in terms of length distribution of the CDS and n-LORFs only.
Since the majority of the CDS sequences are long and the majority of the n-LORF sequences
are short, dataset 1 contains considerably fewer n-LORFs than CDS. This means the dataset is
imbalanced in terms of the number of positive and negative instances. The reason why this type
of imbalanced dataset was tested, is due of the fact that most sequences over a certain length are
much more likely to be CDS than n-LORFs. Far more of the longer LORFs found in a genome
are CDS than n-LORFs, and far more of the shorter LORFs are n-LORFs. Therefore, creating
a dataset that is more balanced in terms of the length distribution between the two classes is an
attempt to make it less likely that the longer sequences in all the dataset are CDS. In this case
however, it unfortunately means that one gets an imbalanced dataset in terms of the number
of instances of each class, which entails its own disadvantages. When handling imbalanced
datasets the evaluation metrics may react differently depending how the true positive, true
negative, false negative and false positive values are affected by the imbalance. This is seen in
Figure 5.2. There are much fewer true positive classifications when using dataset 1 as opposed
to dataset 2. In addition, there are more false negatives than false positives when using dataset
1. This difference clearly does not affect the overall fraction of classifications that our model
classified correctly (accuracy score), but it does, on the other hand affect the metrics’ precision
and recall. This can be explained by looking at the definitions of the metrics precision and recall
presented in Section 2.4. To summarise, when evaluating models using imbalanced datasets one
may need to look at different metrics to measure the performance of a classification model.

51

Even though the accuracy score conveys that there is not much difference in the performance
when using dataset 1 or dataset 2 as input, the other evaluation metrics say otherwise.

Even though using dataset 2 gave the best results between the two datasets, it does not
necessarily mean training our model on this dataset will give the best results if the trained model
was given a new dataset that was balanced differently. Due to time limitations, neither of the
three models implemented in this thesis were tested on a dataset that had neither been balanced
in terms of the length distribution or the number of each class. This could potentially have
given an impression of how the models perform on a more realistic length and class distribution.
A different strategy could also have been to train the models on dataset 1 and 2, as well as on
all the ORFs in a genome, and then test which model gives the best results when given a new
dataset with a realistic length and class balance.

6.1.2 Feature Importance

Since 9 of the 17 feature sets used for the ensemble methods consisted of multiple features
(k-mers, aa-mers and the codon biases), it was difficult to present the feature importances for
complete feature sets without bias. The method chosen to compare the feature importances in
this thesis was by taking a mean score of the importances of the feature sets that consisted of
multiple features. As mentioned in the Chapter 5 this gives an unfair advantage to the feature
sets that only consist of one feature. The second method involved taking a sum of the feature
sets consisting of multiple features, which on the other hand gives an unfair advantage to the
feature sets consisting of many features. An alternative to these two approaches could be to
use the Jaccard index. The Jaccard index is a similarity index that allows one to measure the
similarity of the members in two sets of data. In this case, it would involve extracting the 100
features with highest importance after training separate models for each genome. These are
then compared and one computes a Jaccard index based on how many of the 100 features each
genome has in common.

As may be recalled from Chapter 2, Section 4.2.3 the feature importance computed by
the Random Forest classifier has certain bias towards features with high cardinality or high
correlation. In this case it would mean that features such as ”length”, ”GC-content” and
”codon bias” with high cardinality have an advantage over features such as ”start codon usage”
which has low cardinality. In addition, features such as ”aa-mers”, ”k-mers” and ”GC-content”
are likely to be highly correlated which also gives them a disadvantage in the Random Forests
feature importance computations. Features with high importance scores and low cardinality
should therefore be regarded as more trustworthy. An alternative method to computing feature
importance is the feature permutation importance method. This gives an importance value to
each feature based on its impact on the error of the model. The importance values are computed
by testing a trained model with different permutated datasets iteratively. Each dataset has one
missing or inactivated feature. The error scores from each iteration are compared with a baseline
score where all features were included in the dataset. If the model error is unchanged without
a certain feature, this feature is not regarded as important. On the other hand, if the error
increases the feature is regarded as important. The disadvantage with this method is that it
is slightly more time consuming if there are many features, considering that the number of
predictions made with the model must equal the number of features. An alternative to this
method is simply dropping one feature from the dataset and training and testing the model
without the given feature. This implies training the model and making predictions as many
times as one has features, which is even more time-consuming. Despite this it is still the gold-
standard for computing trustworthy feature importances.

Page 52 of 63

6.1.3 Feature Selection

During the manual feature selection process we learned that the accuracy and precision scores
are the highest between 200 to 300 features for the Random Forest classifier. This was shown in
Figure 5.7 in Chapter 5. The recall score on the other hand increases constantly as the number
of features included increases. This makes sense considering recall is a measure of the number
of correctly identified CDS in comparison to all existing CDS in the dataset. It seems as if
the more features one has, the higher the probability is of correctly identifying a CDS. When
picking the optimal number of features to include in the Random Forest classifier, one must
remember there is a trade-off between the best performance metrics and model complexity. An
overly complex model not only increases training time but also makes the model more prone
to overfitting, and more difficult to interpret. From Figure 5.7 the optimal number of features
seemed to be the first 200 considering this trade-off. By making a selection of features to be
used for training, one gets a more parsimonious model, as the remaining features get more value
and predictive power.

The greatest improvement in performance of the Random Forest classifier was established
after feature selection. This turned out to yield better performance results than than hyperpa-
rameter tuning. Determining which features that are the most important for gene prediction
across all genomes turned out to be a more complex task than first assumed. Certain features
were regarded more critical, depending on what genome data was used as input to the Random
Forest classifier. An alternative approach to the forward feature selection used in this thesis
could be a backward approach. It would involve gradually discarding the least important fea-
tures and then retraining the model to see how this affects the remaining features and the model
performance.

In Figure 5.6 we see that the feature ”length” was consistently regarded as one of the
most critical features, and the same went for a majority of the other genomes. This is not
surprising, considering most of the longest ORFs found in the genomes are CDS, and most of the
shorter ORFs are n-LORFs. In Figure 5.10 we also saw examples of the Random Forest model
performing equally good for certain genomes without the ”length” feature as it did including
it. It makes one wonder if the model without the ”length” feature becomes more robust by
being forced to employ other distinguishing characters and not just the length feature. Perhaps
it can make more accurate classifications when given sequences of similar length, or shorter.
Unfortunately, this was not explored in this thesis but could be a target for further investigation.

6.2 XGBoost

The results from Figure 5.12 shows how the default XGBoost classifier clearly outperforms a de-
fault Random Forest classifier. However, the default XGBoost classifier and the best performing
Random Forest model, perform quite similarly as seen in 5.15. Implementing a Random Forest
classifier for the purpose of gene prediction turned out to be quite time consuming. The process
of feature engineering was the most time consuming part, followed by tuning and feature selec-
tion. Implementing an XGBoost classifier, on the other hand, was slightly less time-consuming
as tuning and feature selection did not yield better results than the default model. That being
said, the XGBoost also required feature engineering beforehand, which was the most time con-
suming step in the implementation. Since the XGBoost classifier yields the best performance
when using all features, its training time is longer than the best performing Random Forest
classifier, which only uses the 200 most important features to yield its highest scores.

To summarise and answer the objective regarding XGBoost presented in Chapter 1; the
XGBoost classifier performs on par with the established Random Forest classifier, and is a
straightforward model to implement.

Page 53 of 63

6.3 Recurrent Neural Network

The main objective of implementing an RNN model was to determine if it is applicable for gene
prediction and how the model compares to the ensemble methods. Even though the performance
results for the RNN model were both better and worse than the ensemble methods, one can
definitely establish that the RNN model is applicable for the purpose of gene prediction. In the
following subsections, the results from the RNN model will be discussed, in the same order as
they were presented in Chapter 5.

6.3.1 Maximum Sequence Lengths

The difference between using nucleotide sequences and amino acid sequences as input to the
RNN model came across quite clearly in Tables 5.1 and 5.2. By translating the nucleotide
sequences one considerably reduced the training time of the model, and a lot of the irrelevant
variations in the sequences were removed, which resulted in better accuracy scores as well.

While simultaneously comparing the difference between using nucleotide sequences or amino
acid sequences as input to the RNN model, different maximum lengths of the sequences were
also tested. Tables 5.3 and 5.4 show how the accuracy decreased when longer maximum lengths
were used for both sequence types. When the maximum length is large, the shorter sequences
become more padded. The larger the share of 0’s due to padding becomes, the lesser the share
of relevant sequence information becomes. This makes it more difficult for the model to extract
the information needed from the sequence to make the correct classifications. If a sequence is
longer than the given maximum length they have to be truncated. As with padding, this can
also be done from either the start or the end of the sequence. In this case, the sequences that
were longer than the given maximum length were truncated from the beginning of the sequence.
The beginning of the sequences often contain more irrelevant information than the end of the
sequences. The coding part of the sequence does not need to start from the beginning, it can
start from anywhere in the LORF. Therefore, when one truncates the start of the sequences,
which one needs to do when one sets the maximum length to a small value, the probability
of removing irrelevant information is often high. The remaining part of the sequence then
contains a higher percentage of the coding region, which explains why the shorter maximum
lengths yield higher performance scores. Since there is such a large span in the lengths of
sequences for most genomes, the percentage of padding in the shorter amino acid sequences
becomes extremely large. A possible way to avoid this excessive padding could be to group the
sequences based on their length and then train separate RNN models for each length category.
This is a similar approach to what Al-Ajlan and El Allali [3] did with the CNN-MGP tool, but
instead of grouping in terms of GC-content one groups in terms of sequence length.

6.3.2 Comparing Datasets

In Figure 5.14 we see a drop in the accuracy score for certain genomes when dataset 1 was used
as input as opposed to dataset 2. This drop was not seen when testing the different datasets
with the Random Forest classifier. However, the drop in accuracy score that we see in Figure
5.14, is visible in Figure 5.1 for the precision and recall scores. Specific genomes used as input
in both the RNN model and the Random Forest model result in different performance metrics,
depending on whether dataset 1 or dataset 2 is used. Clearly, the accuracy score for the RNN
model is also affected by the imbalance in dataset 1, as opposed to the Random Forest model
where only the precision and recall scores were affected.

Page 54 of 63

6.4 Comparing Machine Learning Methods

From Figure 5.15 we see that the ensemble methods are more similar in performance compared
to the RNN model. However, all three methods follow the same general pattern. They perform
well for the same genomes and worse for the same genomes. The RNN model, however, performs
slightly better with the genomes that the ensemble models find difficult to classify and slightly
worse with the genomes that the ensemble models score well with. It means there is a bit less
of a difference between the performance scores for the different genomes when using the RNN
model as opposed to the ensemble models. The fact that the RNN model fluctuates somewhat
less in its performance scores is a promising results, as one ultimately wishes to have a model
that predicts good scores consistently, independent of the genome. There are numerous ways
one could continue tuning the RNN model to potentially get a model that is better performing
overall. One could for instance try different loss functions and optimisation functions, tune the
model to prioritise either true positives, true negatives, false negatives, or false positives, reuse
samples that are difficult to classify, etc. Another approach could be to create an ensemble
model utilising the strengths of all the three models tested. This would then involve using all
models for each classification, and then using a majority voting method to select the final result
based on what the majority of the models achieved.

In the confusion matrix in Figure 5.16 all three models perform relatively well with this
genome, but the ensemble methods get a slightly better result than the RNN model. The largest
difference between the confusion matrices for the ensemble methods and the RNN model is that
the number of false positive classifications is much higher for the RNN model. In the confusion
matrices in Figure 5.17 it is the ensemble methods that have the lower true positive and true
negative values and slightly higher false positive and false negative values. It is difficult to say
which error is worse between false positives and false negatives in gene prediction. It depends on
the problem at hand. In gene mapping it is not problematic to have many positive classifications.
When one wishes to compare sequences across genomes, on the other hand, it is a problem if
one gets large amounts of false positives. Ideally one would like to have a model that can be
tuned to be sensitive to either false positives or false negatives, given the situation.

Most likely many of the false positive classifications made by gene prediction tools are not
false, but are genes that have not yet been annotated. Examples of these are Pseudo-genes.
These are genes that greatly resemble CDS structurally, but are in fact not coding genes. Often
they have been coding genes at one point but then have lost their coding ability. These ”genes”
are difficult to define, as one cannot be sure whether it is a pseudo-gene or not. Unfortunately,
no ground truth is available to tell which genes are correctly annotated or not, which makes it
difficult for new classifications and research not to be affected by historical bias. With historical
bias, one means the bias that follows already annotated genes and the fact that these genes are
used as truth when classifying new sequences. All new classifications are therefore judged and
affected by these historically annotated genes, which in reality one cannot be certain if have
been annotated correctly or not.

When it comes to training time, the ensemble methods were quicker than the RNN model.
The gradient computations that occur during back-propagation in the RNN model are compu-
tationally heavy and to speed up the training process parallel processing from a GPU was used.
This makes the RNN model both slower in terms of training time and more in need of extra
computational power than the ensemble methods. However, one of the great advantages with
RNNs is that no feature engineering is required. This is one the most time-consuming steps in
implementing ensemble methods. Selecting which features to use, and finding the most accurate
way to extract them, was a challenging tasks. The time and resources saved by not needing to
extract ”smart” features manually definitely exceeds the extra training time of the model.

Page 55 of 63

6.4.1 Combined genomes

As one can see in several of the plots presented in Chapter 5, the accuracy performance varies
greatly depending on which genome is classified. All models struggle with the same genomes
and perform well on the same genomes. They all have scored reasonably well on many of the
genomes. However, this is of no advantage if all new genome data requires creation of a new
model. In addition, most sequence data nowadays is metagenome data. This means there is a
growing need for gene prediction tools that can generalise well when given new genomes or a mix
of genomes. Figure 4.5 compares four different combinations of the genomes, and the ensemble
methods seem to perform the best on all combinations. The most promising result with the
combined genomes was that S. enterica got a better individual classification score when trained
together with M. tuberculosis, as presented in table 5.5. As mentioned earlier, M. tuberculosis is
straightforward to classify as the Random Forest classifier gets a good performance score for this
genome. S. enterica, on the other hand, is trickier as the Random Forest classifier gets a worse
performance score for its genome. These results indicate that by combining ”tricky” genomes
with ”straightforward” genomes and training them together, one can potentially improve the
score for ”tricky” genomes.

6.5 Other Future Work

Trying RNN for the purpose of gene prediction was a natural next step, after discovering CNNs
have been tried and proven to be sufficient [3]. In addition, RNNs are known to be particularly
good with handling sequential data, and have so far shown promising results in the work done
in this thesis. However, there is still a lot more left to explore with RNNs. The architecture
used for the RNN model in this thesis was a very simple one, and the parameters chosen have
a large impact on the results of the model. This means a lot more tuning could be done to
improve the model, including tuning the number of LSTM layers. It is said that the width of
the neural network, which refers to the number of nodes in each layer, extracts more features,
while the depth, which refers to the number of layers in the neural network, extracts richer
features. There are definitely many potential features to extract in DNA sequences, and one
should therefore ideally try many different combinations of widths for the various layers in the
model.

There are also several other types of recurrent layers and deep learning methods that could
be tested, such as Gated Recurrent Units (GRU), bidirectional LSTM, and transformer models.
GRUs are somewhat similar to LSTM units. Both use gating mechanisms to memorise infor-
mation and by this, minimising the problem of vanishing gradients. GRUs however, only have
two gates, the reset gate and the update gate, which makes them less complex than the LSTM
units. The fact that LSTMs are more sophisticated due to their extra gates, can be both an
advantage and a disadvantage. It makes them more capable of remembering long term depen-
dencies in long sequences, but it also makes them more complex with many more parameters
to tune. Therefore, GRUs are known to be faster and simpler to modify than LSTMs. There is
no rule or guarantee that one will work better than the other; one simply has to try both and
compare their performances. Bidirectional LSTMs involve two LSTM models being trained,
one learns from one direction of the sequences, and the other learns from the reverse direction
of the sequence. The output from the two LSTM models then needs to be merged, and this
can be done in several ways such as summation, multiplication, averaging or concatenation.
This makes bidirectional LSTMs particularly good for NLP problems, as they are known to be
more successful in capturing the context of the input sequences. The disadvantage to this is
that they need much more training time and are therefore slower than normal LSTMs. Finally,
a transformer model could also be explored for gene prediction. A transformer model has the
ability of self-attention, which means it learns by enhancing or diminishing certain parts of a

Page 56 of 63

sequence depending on what it regards as more or less important. This is done to determine the
context of each part of the input data. It does not need to process or memorise input sequence
chronologically but rather learns by parallel computing, which makes it a faster option than
other RNNs.

Only hard classifications were used for the models in this thesis. Instead of using only
hard classifications one could use predicted probabilities to plot the outputs. Such plots would
show the distribution of the classifications made by the models, i.e., indicate the fractions of
the classifications that the models are very certain of, and respectively less certain of. These
probabilities are particularly useful in cases where certainty about the classifications is essential,
or if it is desirable to identify as many CDS as possible. One simply adjusts the probability
cutoff. Another use case for probability outputs are, if there are many overlapping ORFs, of
which some have been classified as CDS and some not, one can assume that the ORF with the
highest probability is the actual CDS.

Due to time limitations, feature importance across genomes was not explored further in
this thesis. However, it would be interesting to get a better idea of which features, other than
”length”, are important for the majority of genomes. In general, more data exploration of
different genomes could allow one to discover characteristics that explain why some genomes
are more difficult to classify than others. One could for instance use these characteristics to
create separate gene prediction models that are trained to tackle these differences, such as length
distribution, different GC-content, codon biases, etc. As stated by Al-Ajlan and El Allali [3]
”previous research has shown that building multiple models based on GC-content is better than
building a single model [50], because fragments with similar GC-content have closer features
such as codon usage [50].” The CNN-MGP has 10 different versions, each for a specific GC-
content group. This, among other things, is something that could be tested for all three of
the models in this thesis. In a metagenomic setting, it would be useful to know if there are
certain characteristics that one should filter the metagenomic data by that determines what
custom-made model one should use for each of the different subsets of data.

One of the incentives for implementing a Random Forest classifier, despite the fact that
it has already been tested by others successfully, was to implement different features. The
features introduced in this thesis were inspired by the features used by Silva et al. [2]. Some
were engineered differently (codon usage) and some additional features were added such as ”aa-
mers” and ”start codon usage”. The addition of both these feature sets seem to have been
a good idea, considering both got relatively good feature importance scores as seen in Figure
5.6. The RNN model shows the benefits of using the amino acid sequences as opposed to the
nucleotide sequences, which perhaps also could be related to the use of k-mers and aa-mers.
These feature sets essentially both contain the same information, and it may be redundant to
use both feature sets in the ensemble methods. It would be interesting to see how the models
perform when given only either the aa-mer or k-mer feature sets.

Even though a couple new feature sets were introduced during the implementation of the
ensemble models in this thesis, there are still plenty more potential features that could be
tested, such as upstream activating sequences for instance. These sequences play a part in
the expression of protein coding genes and are found upstream of the start codon of an ORF.
Other potential features could be the relative position of the ORF in a genome, given that the
whole genome has been sequenced and that one has long consecutive sequences. Or, whether or
not coding genes have other neighbouring ORFs that also are coding genes. Finally, one could
consider whether the functionality of the coding genes, given by the amino acid sequences, can
indicate how one more readily can predict these coding genes in a sequence.

Page 57 of 63

Chapter 7
Conclusion

The main objective of this thesis has been to evaluate the performance of three machine learning
models to classify CDS and n-LORFs in prokaryotic DNA sequences. The models tested are a
Random Forest classifier, an XGBoost classifier, and an RNN model. The performances of the
three models have been compared to each other when trained, tuned, and tested on the same
datasets, consisting of individual genomes, as well as combinations of genomes. Several factors
have motivated the choice of the sub-objectives presented in Section 1.2. Firstly, the Random
Forest classifier is an established method in the field of gene prediction, and the article written
by Silva et al. [2] showed promising results when using this method. The implementation of
the Random Forest classifier in this thesis has therefore attempted to follow a similar approach
while introducing new features and trying different feature engineering and selection techniques.
The XGBoost classifier is a popular ensemble method, as well as a known competitor of the
Random Forest classifier, and it has in this thesis proven to perform on par with the established
Random Forest classifier. Since Al-Ajlan and El Allali [3] proved to be successful with a CNN
model for gene prediction, and RNNs are known to be good at handling sequential data, the
method seemed like an appropriate next candidate. Even though a simple RNN model was
implemented and minimal tuning was done, the model showed satisfactory results.

The three models were trained and tested on 15 prokaryotic genomes, of which all LORFs
were extracted and prepared to be used as input to the models. One of the challenges with
preparing these datasets is that the length distribution of CDS and n-LORFs is very different.
A majority of all long sequences are CDS, and in return a majority of all short sequences are
n-LORFs. In addition, there are fewer CDS than n-LORFs. This was solved by creating two
different datasets, one focused on having an as balanced length distribution as possible and the
other focused on having a balanced number of CDS and LORFs. The three models were tested
on both datasets, and they all performed better when trained on the dataset with a balanced
number of CDS and LORFs.

Another aspect of the data preparation that was time consuming when implementing the
ensemble methods was feature engineering. One of the great advantages with RNNs is that
feature engineering is avoided entirely. The sequence data can be used as input directly without
manual feature extraction and selection.

The overall consensus from the results is that all three models are applicable for gene
prediction in prokaryotic DNA. Considering the data used to train these three models was
significantly less than the data used for GeneRFinder and CNN-MGP, their performance is
that much more impressive. In addition, all three models have an abundance of parameters and
tuning potential that has not yet been tested, and the experiences made in this thesis can serve
as a building block for further exploration of the models. The fact that the RNN model yielded
as good results as it did, despite limited tuning, is perhaps the most promising result achieved.
This creates a magnitude of opportunities not only for gene prediction but also for other fields
within bioinformatics.

58

Bibliography

[1] Genomics. Mar. 2022. url: https://en.wikipedia.org/wiki/Genomics#:~:text=
Genomics.

[2] Ráıssa Silva et al. “geneRFinder: gene finding in distinct metagenomic data complexities”.
In: BMC Bioinformatics 22.87 (2020). issn: 1471-2105. url: https://doi.org/10.1186/
s12859-021-03997-w.

[3] Amani Al-Ajlan and Achraf El Allali. “CNN-MGP: Convolutional Neural Networks for
Metagenomics Gene Prediction”. In: Interdisciplinary Sciences: Computational Life Sci-
ences 11.4 (2019), pp. 628–635. url: https://doi.org/10.1007/s12539-018-0313-4.

[4] Tulio L. Campos et al. “An Evaluation of Machine Learning Approaches for the Prediction
of Essential Genes in Eukaryotes Using Protein Sequence-Derived Features”. In: Compu-
tational and Structural Biotechnology Journal 17 (2019), pp. 785–796. issn: 2001-0370.
url: https://doi.org/10.1016/j.csbj.2019.05.008.

[5] Amani Al-Ajlan and Achraf El Allali. “The Effect of Machine Learning Algorithms on
Metagenomics Gene Prediction”. In: (Mar. 2019). doi: 10.1145/3309129.3309136.

[6] Le Duc Hau, Nguyen Hoai, and Yung-Keun Kwon. “A Comparative Study of Classification-
Based Machine Learning Methods for Novel Disease Gene Prediction”. In: Advances in
Intelligent Systems and Computing 326 (Jan. 2015), pp. 577–588. doi: 10.1007/978-3-
319-11680-8_46.

[7] National Human Genome Research Institute NIH. Double helix. url: https://www.

genome.gov/genetics-glossary/Double-Helix.

[8] Frida Belinky, Igor B. Rogozin, and Eugene V. Koonin. “Selection on start codons in
prokaryotes and potential compensatory nucleotide substitutions”. In: Nature News (Sept.
2017). url: https://www.nature.com/articles/s41598-017-12619-6.

[9] AI vs. Machine Learning vs. Deep Learning vs. neural networks: What’s the difference?
url: https://www.ibm.com/cloud/blog/ai- vs- machine- learning- vs- deep-

learning-vs-neural-networks.

[10] IBM Cloud Education. What is deep learning? url: https://www.ibm.com/cloud/
learn/deep-learning.

[11] Scikit-Learn. url: https://scikit-learn.org/stable/.

[12] Fatih Karabiber. Gini impurity. url: https://www.learndatasci.com/glossary/gini-
impurity/.

[13] Tony Yiu. Understanding random forest. Sept. 2021. url: https://towardsdatascience.
com/understanding-random-forest-58381e0602d2#:~:text=The.

[14] Random Forest. Mar. 2022. url: https://en.wikipedia.org/wiki/Random_forest.

59

https://en.wikipedia.org/wiki/Genomics#:~:text=Genomics
https://en.wikipedia.org/wiki/Genomics#:~:text=Genomics
https://doi.org/10.1186/s12859-021-03997-w
https://doi.org/10.1186/s12859-021-03997-w
https://doi.org/10.1007/s12539-018-0313-4
https://doi.org/10.1016/j.csbj.2019.05.008
https://doi.org/10.1145/3309129.3309136
https://doi.org/10.1007/978-3-319-11680-8_46
https://doi.org/10.1007/978-3-319-11680-8_46
https://www.genome.gov/genetics-glossary/Double-Helix
https://www.genome.gov/genetics-glossary/Double-Helix
https://www.nature.com/articles/s41598-017-12619-6
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/learn/deep-learning
https://www.ibm.com/cloud/learn/deep-learning
https://scikit-learn.org/stable/
https://www.learndatasci.com/glossary/gini-impurity/
https://www.learndatasci.com/glossary/gini-impurity/
https://towardsdatascience.com/understanding-random-forest-58381e0602d2#:~:text=The
https://towardsdatascience.com/understanding-random-forest-58381e0602d2#:~:text=The
https://en.wikipedia.org/wiki/Random_forest

[15] IBM Cloud Education. What is Random Forest? url: https://www.ibm.com/cloud/
learn/random-forest?mhsrc=ibmsearch_a&mhq=random+forest.

[16] Hieu Tran. “Survey of Machine Learning and Data Mining Techniques used in Multimedia
System”. In: BioData Mining 11 (Sept. 2019). url: https://doi.org/10.13140/RG.2.
2.20395.49446/1.

[17] Vihar Kurama. Gradient boosting for classification. Apr. 2021. url: https://blog.

paperspace.com/gradient-boosting-for-classification/.

[18] Will Koehrsen. Hyperparameter tuning the random forest in python. Jan. 2018. url:
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-

in-python-using-scikit-learn-28d2aa77dd74.

[19] Feature selection. Mar. 2022. url: https : / / en . wikipedia . org / wiki / Feature _

selection.

[20] Jason Brownlee. How to choose an activation function for deep learning. Jan. 2021. url:
https://machinelearningmastery.com/choose- an- activation- function- for-

deep-learning/.

[21] Seb. Understanding backpropagation with gradient descent. Oct. 2021. url: https://

programmathically.com/understanding-backpropagation-with-gradient-descent/.

[22] Sebastian Raschka and Vahid Mirjalili. Python Machine Learning, 3rd Ed. 3rd ed. Birm-
ingham, UK: Packt Publishing, 2019. isbn: 978-1789955750.

[23] Rauf Bhat. Gradient descent with momentum. Oct. 2020. url: https://towardsdatascience.
com/gradient-descent-with-momentum-59420f626c8f.

[24] Kuldeep Chowdhury. 10 hyperparameters to keep an eye on for your LSTM model and
other tips. May 2021. url: https://medium.com/geekculture/10-hyperparameters-
to-keep-an-eye-on-for-your-lstm-model-and-other-tips-f0ff5b63fcd4.

[25] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recognition with
deep recurrent neural networks.” In: Speech and Signal Processing (ICASSP) (Jan. 2013),
pp. 6645–6649. url: https://en.wikipedia.org/wiki/Long_short-term_memory#
/media/File:Peephole_Long_Short-Term_Memory.svg.

[26] Long short-term memory. Apr. 2022. url: https://en.wikipedia.org/wiki/Long_
short-term_memory.

[27] Doug Hyatt et al. “Prodigal: prokaryotic gene recognition and translation initiation site
identification.” In: BMC Bioinformatics 11.9 (2010). url: https://doi.org/10.1186/
1471-2105-11-119.

[28] Rho M;Tang H;Ye Y; “FragGeneScan: Predicting genes in short and error-prone reads”.
In: Nucleic acids research (). url: https://pubmed.ncbi.nlm.nih.gov/20805240/.

[29] Katharina J Hoff et al. “Orphelia: Predicting genes in metagenomic sequencing reads”.
In: Nucleic acids research (July 2009). url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2703946/.

[30] Professional software for data science teams: R Studio. Apr. 2022. url: https://www.
rstudio.com/.

[31] Biological Sequences Retrieval and analysis. June 2021. url: https://cran.r-project.
org/web/packages/seqinr/index.html.

[32] Kristian Liland and Lars Snipen. Package microseq. url: https://cran.r-project.
org/web/packages/microseq/index.html.

[33] Kristian Liland and Lars Snipen. Package microclass. url: https://cran.r-project.
org/web/packages/microclass/index.html.

Page 60 of 63

https://www.ibm.com/cloud/learn/random-forest?mhsrc=ibmsearch_a&mhq=random+forest
https://www.ibm.com/cloud/learn/random-forest?mhsrc=ibmsearch_a&mhq=random+forest
https://doi.org/10.13140/RG.2.2.20395.49446/1
https://doi.org/10.13140/RG.2.2.20395.49446/1
https://blog.paperspace.com/gradient-boosting-for-classification/
https://blog.paperspace.com/gradient-boosting-for-classification/
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74
https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Feature_selection
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning/
https://programmathically.com/understanding-backpropagation-with-gradient-descent/
https://programmathically.com/understanding-backpropagation-with-gradient-descent/
https://towardsdatascience.com/gradient-descent-with-momentum-59420f626c8f
https://towardsdatascience.com/gradient-descent-with-momentum-59420f626c8f
https://medium.com/geekculture/10-hyperparameters-to-keep-an-eye-on-for-your-lstm-model-and-other-tips-f0ff5b63fcd4
https://medium.com/geekculture/10-hyperparameters-to-keep-an-eye-on-for-your-lstm-model-and-other-tips-f0ff5b63fcd4
https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:Peephole_Long_Short-Term_Memory.svg
https://en.wikipedia.org/wiki/Long_short-term_memory#/media/File:Peephole_Long_Short-Term_Memory.svg
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
https://pubmed.ncbi.nlm.nih.gov/20805240/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703946/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703946/
https://www.rstudio.com/
https://www.rstudio.com/
https://cran.r-project.org/web/packages/seqinr/index.html
https://cran.r-project.org/web/packages/seqinr/index.html
https://cran.r-project.org/web/packages/microseq/index.html
https://cran.r-project.org/web/packages/microseq/index.html
https://cran.r-project.org/web/packages/microclass/index.html
https://cran.r-project.org/web/packages/microclass/index.html

[34] Reference genome. Jan. 2022. url: https://en.wikipedia.org/wiki/Reference_

genome#:~:text=A.

[35] Amani Al-Ajlan and Achraf El Allali. “Feature selection for gene prediction in metage-
nomic fragments.” In: BioData Mining 11.9 (2018). url: https://doi.org/10.1186/
s13040-018-0170-z.

[36] Achraf El Allali and John R Rose. MGC: A metagenomic gene caller - BMC bioinformat-
ics. June 2013. url: https://bmcbioinformatics.biomedcentral.com/articles/10.
1186/1471-2105-14-S9-S6#citeas.

[37] Kajetan Bentele et al. “Efficient translation initiation dictates codon usage at gene start.”
In: Molecular systems biology 9.675 (2013). url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3964316/.

[38] J L Oliver and A Maŕın. “A relationship between GC content and coding-sequence length.”
In: Journal of molecular evolution 43.3 (1996), pp. 216–223. url: https://pubmed.ncbi.
nlm.nih.gov/8703087/.

[39] Uberto Pozzoli et al. “Both selective and neutral processes drive GC content evolution in
the human genome.” In: BMC evolutionary biology 8.99 (2008). url: https://pubmed.
ncbi.nlm.nih.gov/18371205/.

[40] Sklearn.ensemble.randomforestclassifier. url: https://scikit- learn.org/stable/

modules/generated/sklearn.ensemble.RandomForestClassifier.html.

[41] Akash Dubey. Feature selection using Random Forest. Dec. 2018. url: https://towardsdatascience.
com/feature-selection-using-random-forest-26d7b747597f.

[42] Piotr P loński. Random Forest feature importance computed in 3 ways with python. June
2020. url: https://mljar.com/blog/feature-importance-in-random-forest/#:~:
text=Random.

[43] Keras Team. Keras. url: https://keras.io/.

[44] Machine learning education: tensorflow. url: https://www.tensorflow.org/resources/
learn-ml.

[45] Sawan Saxena. Understanding embedding layer in Keras. Feb. 2021. url: https : / /

medium . com / analytics - vidhya / understanding - embedding - layer - in - keras -

bbe3ff1327ce.

[46] Cory Maklin. Dropout neural network layer in Keras explained. June 2019. url: https:
//towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-

explained-8c9f6dc4c9ab.

[47] Yva Sandvik. Data Science Thesis. 2022. url: https://github.com/yvasandvik/data-
science-thesis.

[48] Jason Brownlee. How to choose loss functions when Training Deep Learning Neural Net-
works. Aug. 2020. url: https://machinelearningmastery.com/how-to-choose-loss-
functions-when-training-deep-learning-neural-networks/.

[49] Open reading frame. url: https : / / www . genome . gov / genetics - glossary / Open -

Reading-Frame#:~:text=So.

[50] Achraf El Allali and John R Rose. “MGC: A metagenomic gene caller - BMC bioinformat-
ics”. In: BioMed Central (June 2013). url: https://bmcbioinformatics.biomedcentral.
com/articles/10.1186/1471-2105-14-S9-S6.

Page 61 of 63

https://en.wikipedia.org/wiki/Reference_genome#:~:text=A
https://en.wikipedia.org/wiki/Reference_genome#:~:text=A
https://doi.org/10.1186/s13040-018-0170-z
https://doi.org/10.1186/s13040-018-0170-z
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-S9-S6#citeas
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-S9-S6#citeas
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964316/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3964316/
https://pubmed.ncbi.nlm.nih.gov/8703087/
https://pubmed.ncbi.nlm.nih.gov/8703087/
https://pubmed.ncbi.nlm.nih.gov/18371205/
https://pubmed.ncbi.nlm.nih.gov/18371205/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://towardsdatascience.com/feature-selection-using-random-forest-26d7b747597f
https://towardsdatascience.com/feature-selection-using-random-forest-26d7b747597f
https://mljar.com/blog/feature-importance-in-random-forest/#:~:text=Random
https://mljar.com/blog/feature-importance-in-random-forest/#:~:text=Random
https://keras.io/
https://www.tensorflow.org/resources/learn-ml
https://www.tensorflow.org/resources/learn-ml
https://medium.com/analytics-vidhya/understanding-embedding-layer-in-keras-bbe3ff1327ce
https://medium.com/analytics-vidhya/understanding-embedding-layer-in-keras-bbe3ff1327ce
https://medium.com/analytics-vidhya/understanding-embedding-layer-in-keras-bbe3ff1327ce
https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-explained-8c9f6dc4c9ab
https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-explained-8c9f6dc4c9ab
https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-explained-8c9f6dc4c9ab
https://github.com/yvasandvik/data-science-thesis
https://github.com/yvasandvik/data-science-thesis
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/
https://www.genome.gov/genetics-glossary/Open-Reading-Frame#:~:text=So
https://www.genome.gov/genetics-glossary/Open-Reading-Frame#:~:text=So
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-S9-S6
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-S9-S6

Appendices

Appendix A: R-packages and Python Libraries Used

R-package name Version Purpose of use

seqinr 4.2.8 Mainly for the ”G+C Content” function

microclass 1.2 Mainly for the ”KmerCount” function

ggplot2 3.3.5 Plotting graphs

dplyr 1.0.7 Data frame manipulations

microseq 2.1.5 Fetch and process data, find ORFs, and for feature engineering

Table A.1: R-packages used during data exploration, data processing, feature selection and
feature engineering, the respective version used as well as the purpose of use.

Python libraries Version Purpose of use

pandas 1.3.5 Pre-processing of data

numpy 1.20.3 Array manipulations

matplotlib 3.5.1 Plotting

seaborn 0.11.2 Plotting

sklearn 0.23.2 Implementation of the Random Forest and XGBoost models

tensorflow 2.6.2 Implementation of the RNN model

keras 2.6.0 Implementation of the RNN model

keras tuner 1.1.0 Tuning of the RNN model

Table A.2: Python libraries used during the implementation of the Random Forest, XGBoost,
and RNN models, as well as the version used, and a short description of the purpose of use.

Appendix B: Source Code Links for GitHub

File name Link Commit hash

script data exploration.Rmd GitHub:data expo d1b0df7

script creating features.Rmd GitHub:creating features de97615

rf model master.ipynb GitHub:random forest 382bbb1

xgb model master.ipynb GitHub:xgboost 112fccf

rnn model master.ipynb GitHub:rnn 0687a2a

Table B.1: Links and commit hashes for some of the source code created during data exploration,
feature engineering and model implementation. All source code created during the work on this
thesis can be found on GitHub[47].

https://github.com/yvasandvik/data-science-thesis/blob/112fccf4945066ac65ad8e399e933e03443c7f15/data_expo/script_data_exploration.Rmd
https://github.com/yvasandvik/data-science-thesis/blob/112fccf4945066ac65ad8e399e933e03443c7f15/data_expo/script_creating_features.Rmd
https://github.com/yvasandvik/data-science-thesis/blob/112fccf4945066ac65ad8e399e933e03443c7f15/method/rf-model-master.ipynb
https://github.com/yvasandvik/data-science-thesis/blob/master/method/xgb-model-master.ipynb
https://github.com/yvasandvik/data-science-thesis/blob/master/method/rnn-model-master.ipynb

Appendix C: Preliminary Work - Data Science Seminar

Methods used for Prediction of Protein Coding Genes in DNA

Sequences: A Literature Review

Written by

Yva Sandvik

Supervised by

Kristian Hovde Liland

Master of Science
Faculty of Science and Technology

December 5, 2021

Abstract

Gene prediction plays a crucial role in understanding the genome of a species once it has been
sequenced. It has a broad application basis and it is regarded as one of the most promising
topics within bioinformatics. Several gene prediction tools have been developed and improved
over the years. The computational methods applied by these tools vary, as well as their perfor-
mance. This literature review aims to compare state-of-the-art gene prediction tools with an
emphasis on recent solutions, outline the existing challenges, and present possible future efforts.

First, background knowledge required to understand the application and evaluation of gene
prediction tools is introduced. Next, current gene prediction tools that apply different computa-
tional methods such as Hidden Markov Models, Dynamic Programming and Machine Learning,
are summarized and compared.

Despite the many efforts that have improved the performance of gene prediction tools in recent
years, one can see that there still remains many important topics for future research.

1 INTRODUCTION

1 Introduction

Following the technological advances that have been made over the past decade the amount of
DNA sequencing data that is produced has increased rapidly. In accordance with this increase,
the demand for analysis, interpretation and learning from said data has never been greater.
The work that goes into tackling this task falls within the field of bioinformatics.

Bioinformatics can broadly be defined as an intersection between the disciplines biology, com-
puter science, statistics and medical science. It is essential for the management and analysis
of biological data, and it makes use of computational tools and mathematical models to give
insight into fields such as genetics, pharmacology and microbiology. For instance, through the
prediction and annotation of undiscovered gene products, the field of bioinformatics has con-
tributed to the functional understanding of the human genome, enhanced the discovery of drug
targets and made advances in directed therapy [1]. These are just a few examples of the many
benefits from getting increased insight into genomic data.

Gene prediction, also called gene finding, is the process of identifying an area of genomic DNA
that encodes a gene. This may include both protein coding genes, RNA genes as well as
regulatory regions [2]. In this paper the focus will be on explaining and comparing existing
computational methods used to predict primarily protein coding genes in DNA sequences.

1.1 Motivation

Today’s gene prediction methods have high error rates, and there has not been much develop-
ment in this area of research. This paper aims to get acquainted with the current methods used
in gene prediction, and investigate machine learning models used for the purpose of predicting
protein coding genes. The motivation for this is the possibility of improving the current gene
prediction techniques, and finding new tools that can attain lower error rates.

1.2 Objective

The literature search yielded plenty of papers giving comprehensive explanations about specific
gene prediction methods. However, in recent years there has not been written any literature
reviews that take on state-of-the-art methods as well as up and coming machine learning meth-
ods. Therefore, this review aims to compare the current most cutting-edge methods for gene
prediction, and present the findings along with the current challenges. This leaves us with three
objectives which are presented below in the form of questions.

Objectives

1. What tools are currently being used for prediction of protein coding genes in
prokaryotes?

2. Are machine learning methods applicable for predicting protein coding genes in
prokaryotic DNA?

3. What are the current challenges with the prediction of protein coding genes?

2

1.3 Structure of Review 2 METHOD

1.3 Structure of Review

The rest of the review is organised as follows:

• In Section 2, the method used to find literature and the screening criteria for articles are
presented.

• In Section 3, essential terms and theory required to understand the process of gene pre-
diction are explained.

• In Section 4, the objectives presented above are addressed by categorizing and explaining
the existing gene prediction methods.

• In Section 5, challenges with existing gene prediction methods, and areas for further
exploration, are presented.

• In Section 6, the review is concluded.

2 Method

The search engines Oria and Google Scholar were utilized to find relevant literature on the
subjects of interest, using the keyword searches found in Table 1. The searches were limited
to peer reviewed papers, with no limitations on publication dates. This yielded a total of 18
articles of which 6 were selected after screening.

Nr. Title terms General terms

1 gene × prediction* × review None

2 gene × prediction* × (method* ∧ technique*) machine × learning

3 gene × prediction* × (method* ∧ technique*) × review None

Table 1: Search terms used in the Oria searches. The columns contain terms required to be in
the title, or generally in the article. The ”×” represent the AND operator between two terms,
and ”∧” represent the OR operator. The ”*” means that the search will include any word
beginning with the word before the star. The table is based on Table 2.1 in Sandvik [3].

A number of broad searches were also made on the websites Nature, NCBI, PubMed and BMC
Bioinformatics with terms such as machine learning, deep learning, gene finding, gene prediction,
Prodigal, GeneMarK, etc. These searches yielded another 22 relevant articles of which 10 were
selected after screening. The limitations and screening done to select the final 16 articles used
for this review is explained in Subsection 2.1 below.

2.1 Limitations and Screening

To limit the scope of this review only the papers using intrinsic approaches to gene prediction
were selected. In addition, as protein-coding gene prediction in prokaryotic genomes is consid-
ered a much simpler task than for intron-containing eukaryotic genomes, the papers regarding
prokaryotic gene prediction tools were prioritized. Studies based on gene function prediction or
annotation were discarded.

3

3 THEORY

3 Theory

This section will briefly explain what is meant by a genome, DNA, DNA sequencing, genes, and
other structures in the genetic code. These terms are necessary to understand the context and
applications of gene prediction.

3.1 The Genetic Code

Deoxyribonucleic acid (DNA) is the genetic material used to store an organism’s complete set
of genetic information. This material is also responsible for the translation of the information
encoded within the genetic code and into proteins. The genetic code is a term used to explain
the sequence of nucleotide bases in a genome. The four different DNA nucleotides are adenine
(A), thymine (T), guanine (G) and cytosine(C), and they are regarded as the building blocks of
DNA. In Figure 1 we present a nucleotide which consists of a sugar molecule, phosphate group,
and a distinguishing nitrogen-containing base.

Figure 1: Illustration of a nucleotide and the structure of a DNA double helix, taken from
National Human Genome Research Institute [4] (public domain). The Figure shows how each
strand is built up of covalently linked nucleotides, through the phosphate and sugar part of
the nucleotide. This makes up the sugar-phosphate backbone. The nitrogenous bases form
complementary base pairs with each other.

4

3.2 Genes and Protein Synthesis 3 THEORY

A DNA molecule consists of two complementary strands, and is often referred to as double
stranded DNA, or DNA double helix. Each strand is built up of covalently linked nucleotides
through the phosphate and sugar part of the nucleotide, which make up the sugar-phosphate
backbone, or one DNA strand. Covalent bonds are ordinary chemical bonds that involve the
sharing of electron pairs between atoms. To make a complete DNA molecule one needs two
DNA strands. The nitrogenous bases can form complementary base pairs with each other.
Adenine correctly pairs with thymine (A-T), and guanine correctly pairs with cytosine (G-C).
Hence, the DNA strands in a DNA double helix mirror each other and are called complementary
strands as one can predict one strand from the other.

3.1.1 Reading Frames

There are three ways of reading a strand of DNA depending on which position of the strand
one starts reading from [5]. Three consecutive nucleotides make up a codon in a DNA sequence.
Each codon codes for a specific amino acid. In Section 3.2 we will discuss this further. Lets
say one has the sequence of bases: GCTACGGGG. The reading could start from the first base
giving a total of three codons: GCT, ACG and GGG. The reading could start from the second
base giving two codons: CTA and CGG. Lastly the reading could start from the third base also
giving two bases: TAC and GGG. Looking at the resulting codons we see that the codons found
can differ entirely or only partially given the reading frame. Double-stranded DNA will also
have a reverse complimentary strand which will have additional three reading frames. There-
fore, there are in total six possible reading frames in double-stranded DNA.

3.2 Genes and Protein Synthesis

Protein synthesis involves two processes where the genetic code is directly involved: transcrip-
tion and translation. In transcription the sequence of base pairs, i.e. genetic information in a
DNA strand, is transcribed to a ”transport” sequence called ribonucleic acid (RNA) or mes-
senger RNA (mRNA), in the case of coding genes. RNA has a very similar structure as DNA.
The purpose of mRNA is to act as a messenger, carrying instructions from DNA to control the
synthesis of proteins. In some viruses RNA rather than DNA carries the genetic information [6].

The next step is then translation, where the amino acids are selected based on a sequence of
three nucleotides which together make up a codon. Translation is facilitated by a ribosome which
moves along a transcribed mRNA strand until it finds a start codon. Each codon, other than
the stop codons, code for a particular amino acids. As the ribosome moves along the mRNA,
a polypeptide chain is formed by amino acids being linked together in the order specified by
the codons and the respective transporter RNA (tRNA) which carries the correct amino acid
to the binding site [7]. The process of translation is illustrated in Figure 2. When a sequence
of nucelotides in DNA is both transcribed and translated, it means that this sequence encodes
the synthesis of a gene product and is regarded as a gene. The whole process of DNA being
transcribed to mRNA and then translated to protein is known as the central dogma of molecular
biology.

3.3 Coding and Non-coding DNA

As mentioned in Section 1 a gene product can be either RNA or protein. One can divide DNA
sequences into the non-coding and coding DNA. When referring to coding DNA sequences one
means a sequence of DNA that codes for proteins. Non-coding DNA on the other hand include
the genes that code for RNA. Some non-coding DNA can play a part in the regulation of gene
expression, and in eukaryotes some non-coding DNA lies between genes in a DNA sequence and

5

3.4 Finding Genes 3 THEORY

Figure 2: Illustration of protein synthesis, taken from Brent Cornell [8] (public domain). The
Figure shows how a ribosome facilitates translation by moving along a transcribed mRNA strand
while tRNA correctly matches the peptides with corresponding codons, creating a polypeptide
chain.

are called introns [9]. Introns are mostly present in only eukaryotic genomes, and need to be
spliced out of a mRNA sequence before translation.

3.4 Finding Genes

Before gene prediction and gene annotation can begin one needs to have sequenced genomes to
work with. As stated by Snipen [10]: ”sequencing refers to the technology that allows us to
actually read the sequence of DNA or RNA molecules”. This data then needs to go through
some processing so that the quality of the sequenced data is verified.

In the process of sequencing, one gets a number of overlapping and often also repeated frag-
ments called reads. These reads are then aligned and merged to form longer fragments called
contigs. This is done to reconstruct the original DNA fragment and the process is referred to
as sequence assembly.

Once one has a set of genomic sequences one may wish to find out where exactly the genes are
in these assembled sequences also called gene prediction. This will be the first step to find out
what the function of the identified genes are, which is called gene annotation [11]. As mentioned
in Section 1, this paper will focus on the intrinsic approach to gene prediction. Below are brief
explanations of the two approaches to finding genes.

3.4.1 Extrinsic Approach

The extrinsic approach, also called similarity based searches, is a reference based approach where
one compares the contigs to a database of already known and annotated genes. RNA genes
are quite conserved genes, meaning if one has seen them in one organism one will recognise
them in another organism. This makes RNA genes easily identifiable by using the extrinsic
approach, since it is likely they are identical to genes found earlier. As stated by Ayal [12]:
”Local alignment and global alignment are two methods based on similarity searches. The

6

3.5 Features used in Gene Prediction Tools 3 THEORY

most common local alignment tool is the BLAST family of programs, which detects sequence
similarity to known genes or proteins”.

3.4.2 Intrinsic Approach

This approach involves recognizing genes based on some rule or patterns without using external
data, instead it uses gene structure as a template to detect genes [12]. These methods are also
referred to as ab-initio prediction methods. Protein coding genes, which are the majority of the
genes in a genome, evolve fast and can be quite different from one organism to another. Therefor
the intrinsic approach is a widely used approach when it comes to protein coding genes.

3.4.3 Open Reading Frames

Wikipedia [13] states that: ”an open reading frame is the part of a reading frame that has the
ability to be translated”. Almost all open reading frames start with a start codon and end
with a stop codon. There are three possible stop and start codons as one can see in Figure 3.
Stop codons have no other meaning, they simply determine the end of a coding gene. Start
codons on the other hand also occur inside genes as ordinary codons. Hence, one cannot be
certain if a start codon is really the start of an ORF or if it is just inside an ORF, coding for
an amino acid. A good way to search for genes is therefore by starting with identifying stop
codons, and not necessarily start codons. The three known stop codons are: TGA, TAG and
TAA [14]. The three most known start codons in prokaryotes are: ATG, GTG and TTG. Eu-
karyotes rarely alternate start codons, and mainly uses only the ATG codon as a start codon [15].

An ORF starting in a given reading frame can contain multiple ORFs as there may be multiple
start codons withing this ORF before the next stop codon is identified. In Figure 4 we can
see how the start of an ORF is identified by the first possible stop codon in a given reading
frame, ’TAA’, and continues until the next stop codon is located downstream, ’TGA’. The
longest possible ORF (LORF) is defined from the first stop codon and until the start codon
that is furthest upstream in the sequence before the next stop codon. In Figure 4 this is ’GTG’.
However, we can also see that there are two other start codons located in the middle of the
ORF, giving us three possible ORFs in this reading frame.

3.5 Features used in Gene Prediction Tools

All gene prediction tools apply complex filtering on ORFs across a region of DNA or genome
in order to locate genes. The filtering performed is unique to each tool and may be dependent
on properties (features) such as GC content, ORF length, codon usage, upstream motifs and
overlapping genes [17]. How these may serve as useful features in a gene prediction tool is briefly
explained below.

3.5.1 Open Reading Frame Length and GC content

Coding genes tend to be longer than random ORFs. Random ORF lengths follow a geometric
distribution. This distribution is said to depend on the GC-content of the genome [18]. If we
take a look at Figure 3 we can see that the stop codons contain a higher density of T and A, less
G and no C. A genome with low GC-content, contains more T and A and is therefore likely to
contain more stop codons and in turn shorter ORFs. Low GC-content can in theory therefore
be an indication of shorter ORFs. In any biological genome the long ORFs are overepresented,
compared to what one statistically would expect, based on the random distribution of lengths.
This is due to natural selection during evolution. Long ORFs are more likely to be coding genes
and are thereby more necessary to an organism [14]. This is an attempt at explaining how
GC-content and ORF length can be used by gene prediction tools as important features.

7

3.5 Features used in Gene Prediction Tools 3 THEORY

Figure 3: Table showing which codons code for which amino acid in an RNA strand. In RNA,
the uracil nucleobase replaces thymine. Each amino acid is coded for by 2-4 different codons.
Only the most common start codon is marked in red. In Section 3.4.3 other common start
codons are mentioned. The figure is taken from Lumen [16] (public domain).

Figure 4: Illustrates the definition of the ”Longest possible ORF” (LORF) for a given stop-
codon. There are three possible start codons between two stop codons in the figure. The LORF
is defined as the stretch of sequence starting with the start codon furthest downstream from
the first stop codon in both complementary strands. Figure taken from Snipen [14].

3.5.2 Codon Usage

It is to some degree possible to use the codon content of ORFs to separate between the coding
and non coding genes. Most amino acids are coded by several codons, as we can see in Figure 3.
Some of these codons are typical or nontypical in a certain genome. This varies a lot between
genomes, however when identifying genes in a genome it could be useful to make a probabilistic
model to capture this information as it can aid with gene prediction.

3.5.3 Upstream Motif

Upstream of a gene there is a ribosomal binding site (RBS). This is often a short motif, usually
5-15 bases upstream of start-codon. This area is expected to be AG-rich, and by identifying
AGGAGG or other patterns upstream of start codons, these upstream motifs can serve as
valuable features in a model that aims to identify genes.

8

3.6 Evaluation Metrics 4 RESULTS

3.6 Evaluation Metrics

When evaluating the performance of gene prediction methods the metrics accuracy, recall,
precision and specificity are often used. These metrics are based on the true positive (TP),
false positive (FP), true negative (TN) and false negative (FN) values. True positive are the
correctly identified coding genes and true negative are the correctly identified non coding genes.
False positives are non-coding genes incorrectly predicted as coding genes, and false negatives
are coding genes incorrectly predicted as non-coding genes. The metrics are defined as follows:

• Accuracy: presents the proportion of correct predictions considering the total number
of instances and is defined by equation 1.

• Recall: also called sensitivity, gives the proportion of correctly identified coding genes
and is defined by equation 2.

• Precision: gives an estimate of how good a method is at excluding non coding genes and
is defined by equation 3.

• Specificity: gives the proportion of correctly identified non coding genes and is defined
by equation 4.

Accuracy =
TP + TN

TP + TN + FN + FP
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

Specificity =
TN

TN + FP
(4)

4 Results

In this section state of the art gene prediction tools found in the reviewed literature are pre-
sented and discussed. This addresses objective number one and two of this paper. For more
details on the articles reviewed for this section of the paper see Appendix A.

Wang, Chen, and Li [19] states that many different algorithms have been used over the years
for modelling gene structure, some of the most common and successful ones are dynamic pro-
gramming, hidden markov models, linear discriminant analysis, linguist methods and artificial
neural networks. Other machine learning algorithms have also been explored in recent years
and are very relevant when it comes to the development of improved gene prediction tools.

4.1 Categorization of Existing Solutions

In Table 2 we see the gene prediction tools that have been selected for this paper. They are
categorized based on the techniques they implement to make them easier to present. These
tools were selected because they are recent and state-of-the-art models found in the field and
literature. Some tools implement similar techniques, some are based on other gene prediction
tools and some use more modern techniques from machine learning. GeneRFinder is a machine

9

4.2 Hidden Markov Model Approach 4 RESULTS

learning based tool, and was included in this paper to serve as a modern comparison to other
state of the art tools.

Prediction tool Article Publication dates Basic approach

FragGeneScan [20–22] 2021, 2010 Markov model based

GeneMarkS [20, 23, 24] 2021, 2012, 2001 Markov model based

GeneMark.hmm [20, 23, 25] 2021, 2012, 1998 Markov model based

GLIMMER [20, 23, 26] 2021, 2012, 2011 Markov model based

Prodigal [20, 21, 23, 27] 2021, 2012, 2010 Dynamic programming

MetaGene [20, 21, 28] 2021, 2006 Stochastic approach

geneRFinder [21] 2021 Machine learning algorithm

Table 2: Categorization of gene prediction tools depending on their fundamental approaches.

Gene prediction tool Model or non-model based

FragGeneScan Model based

GeneMark.hmm Model based

geneRFinder Model based

GLIMMER Non-model based

Prodigal Non-model based

MetaGene Non-model based

GeneMarkS Non-model based

Table 3: Categorization of gene prediction tools depending on whether they are model based or
not.

In Table 3 the categorization of gene prediction tools is performed depending on if the tools
are model based or not. Model based prediction tools require a rigid set of parameters that are
pre-tuned to a particular organism before performing the actual prediction [20]. GeneRFinder
is in this category as it uses a supervised machine learning algorithm, meaning it requires a
training set and training before actually performing predictions.
According to Dimonaco et al. [20], model based tools (in this case FragGeneScan and Gene-
Mark.hmm) perform worse than tools that do not need to be pre-tuned to a particular organism.
They say this may be due to the fact that rigid model-based methods are unable to pick up
subtle feature differences that may occur in even strains from the same species. In some cases
model based tools are shown to perform satisfactory when the target and model genomes are
different. However, the unreliability of these tools give non-model based tools such as Prodigal,
GeneMarkS and GLIMMER an advantage.

4.2 Hidden Markov Model Approach

Markov models describe the process of moving from one state to another where the probability
of each event depends on the state attained in the previous event [29]. This is useful when
needing to compute the probability for a sequence of observable events, although, in many cases
the events we are interested in may be hidden. In this case these hidden events could be the

10

4.2 Hidden Markov Model Approach 4 RESULTS

transition between coding and non-coding genes in a DNA sequence for instance.
We can think of these hidden events as causal factors in our probabilistic model, and that
the hidden states also influence the transition probabilities [30]. In these cases hidden Markov
models (HMMs) can be used to address both the observable events as well as the hidden ones.
Eddy [31] states that HMMs are ”a formal foundation for making probabilistic models of linear
sequence ’labeling’ problems”, and are therefor at the heart of a diverse range of tools in genetics.
GeneMark.hmm, FragGeneScan and GeneMarkS all use an architecture based on hidden markov
models.

4.2.1 GeneMark.hmm

GeneMark is a generic name for a number of ab initio gene prediction programs. GeneMark.hmm
was designed to improve the gene prediction accuracy of short genes and gene starts [32].
The original GeneMark tool used a similar Markov-chain algorithm, so the purpose of Gene-
Mark.hmm was to integrate this into a hidden Markov model framework. According to Lukashin
and Borodovsky [25] it is based on the hidden markov model architecture and uses a modified
version of the Viterbi algorithm to determine the most likely sequence of hidden states [23].
The transition between coding and non-coding regions is interpreted as the transition between
hidden states. To avoid predicting overlapping genes as shorter than they are GeneMark.hmm
uses a a post-processing step which picks alternative gene starts when scores are above a certain
threshold.

4.2.2 FragGeneScan

In the article by Rho, Tang, and Ye [22] a common challenge for gene predictor tools developed
for whole genomes is said to be identifying genes directly from short reads, or reads where
the sequencing error rates are high. FragGeneScan is said to be developed for the purpose of
improving the prediction of protein coding genes in short reads, by combining sequencing error
models and the codon usage in a hidden markov model.

4.2.3 GeneMarkS

Besemer, Lomsadze, and Borodovsky [24] state that GeneMarkS is a combination of Gene-
Mark.hmm and the Gibbs sampling method, and it was the next step in the development of
the GeneMark family of gene prediction programs. It is a self-training gene prediction tool and
uses the heursitic Markov models to run GeneMark.hmm. It then uses the prediction output
from this step to build new models and produce new predictions. The process is repeated until
the predictions from two steps are sufficiently related [23].

4.2.4 GLIMMER

Glimmer uses interpolated markov models (IMM), which is a variable-length Markov model,
for capturing gene composition as stated by Engebretsen [23]. According to Kelley et al. [26]
Glimmer uses a flexible ORF-based framework to differentiate the sequences into coding and
non-coding genes. This framework incorporates how prokaryotic genes can overlap upstream
features like ribosomal binding sites (RBS). Glimmer extracts the longest ORFs and scores them
using log-likelihood ratio. In order to reduce the number of false positives that appear due to
overlapping ORFS, dynamic programming is used to find the set of ORFs with a maximum
score given the constraint that genes cannot overlap for more than a certain threshold.

11

4.3 Prodigal 4 RESULTS

4.3 Prodigal

Prodigal uses a dynamic programming based architecture and is regarded as one of the most
popular prediction softwares these days [14]. It is easy to use, runs fast and the results seem
to be at least as good as other tools. In Table 3 we can see that Prodigal is a non-model based
tool, meaning that it is unsupervised. This is possible because Prodigal constructs a training
set of genes by extracting necessary properties such as start codon usage, RBS motif usage,
GC frame plot bias and other information required to build a sufficient training profile. From
the GC bias information prodigal creates preliminary coding scores for each gene. These scores
are then later used in a series of dynamic programming connections to score every ORF longer
than 90 base pairs in the entire genome. The implementation of Prodigal is quite complex and
is described in detail in the article by Hyatt et al. [27].

4.4 MetaGene

According to Noguchi, Park, and Takagi [28], MetaGene uses log-odds ratio for scoring ORFs
throughout the algorithm. The process of gene prediction of a given sequence can be divided
into two stages. The first stage involves extracting all ORFs and giving them a score based
on their composition and length. In the second stage a high-scoring combinations of ORFs are
derived by using their scores of orientations and distances to neighbouring ORFs, in addition
to the scores from stage one. This two-fold approach makes it possible to predict overlapping
genes with appropriate scores [28].

4.5 geneRFinder

The geneRFinder uses an algorithm called Random Forest (RF) classifier which learns from
properties of sequences extracted from ORFs, and makes predictions based on features cap-
tured from these regions, as stated by Silva et al. [21]. The RF classifier is a supervised machine
learning algorithm, based on the decision tree algorithms, used to solve regression and classi-
fication problems. Briefly explained, it is a collection of multiple random decision trees and
by using methods such as bagging and multiple iterations it becomes much less sensitive to
the training data, and thereby reduces overfitting and increases precision. After the model has
been trained it can be tested on independent datasets having different genome complexities and
sequence sizes and still identify coding sequences.

4.6 Comparing Performance

In this subsection we discuss and compare the performance of the gene prediction tools presented
in section 4. Engebretsen [23] is the oldest article selected for this review. In its comparison
of state of the art prediction tools, the tools Prodigal and GeneMarkS perform the best in
terms of accuracy, precision and recall. In the study it is expected to be approximately 900
genes per megabase in the target genome. Of which Prodigal and GeneMarkS predicts 914 and
899 genes per megabase respectively. This indicates that GeneMarkS is slightly more conserva-
tive than Prodigal, considering it also made some false positive predictions. Prodigal was able
to predict more of the annotated genes and despite being less strict in its predictions it also
achieved better precision and recall scores. GeneMark.hmm and GLIMMER on the other hand
were too little conservative in their predictions, as they both predicted more than 950 genes,
meaning they predicted many false positives. The fact that GeneMarkS performs better than
GeneMark.hmm in terms of prediction performance supports the claim that GeneMarkS is an
improvement of GeneMark.hmm. When comparing GLIMMER to the other state of the art
programs it is mentioned that GLIMMER is more versatile than the other programs, meaning
its performance could potentially be improved by more domain knowledge.

12

4.7 Other Machine Learning Approaches 4 RESULTS

In contrast to Engebretsen [23], the article written by Dimonaco et al. [20] compares a wide
range of gene prediction tools for the purpose of proving that their performance highly depends
on the organism of study. It concludes the comparison with that Prodigal was ranked the best
overall, being the most well-rounded tool and performing best in terms of the 12 chosen metrics.
However, in regards to its performance on specific genomes it only ranked the best when pre-
dicting genes in two out of six model organisms. This supports the suggestion that prediction
tools should be carefully selected based on the organism and questions at study.

Silva et al. [21] tested the performance of geneRFinder on a dataset of 12 geneomes. When
determining whether a sequence was coding or not the sequence length was considered the most
important feature. The sequence lengths in the dataset ranged from 100 to 2000 base pairs
and geneRFinder achieved an accuracy and sensitivity score of 75 percent for sequences of all
lengths, and a score over 90 percent for sequences longer than 600 bp. In other words, the
longer the sequence is the easier it is to classify if the sequence is coding or not. However,
geneRFinder’s performance on shorter sequences was also sufficient. Prodigal and FragGeneS-
can were also used in this study as a comparison to geneRFinder. FragGeneScan is considered
one of the best gene prediction tools for shorter sequences, while Prodigal on the other hand is
often used as a complementary tool in annotation pipelines to identify the longer sequences [21].

Due to the fact that varying inputs to gene prediction tools can affect their performance dif-
ferently, Silva et al. [21] performed their study using standard datasets compiled to provide a
fair gene prediction benchmark when evaluating gene predictors. Four datasets were used, one
test dataset, one dataset with low genome complexity, one with medium genome complexity
and one with high genome complexity. In all the four cases the accuracy and specificity score
for geneRFinder was over 90 percent, and between 20 to 70 percent better than Prodigal and
FragGeneScan. The exact accuracy, recall and sensitivity score for all the three tools can be
found in Table 4. Prodigal was second best in terms of accuracy and specificity, but FragGe-
neScan had the highest score for sensitivity of 99 percent for all four datasets. However, both
geneRFinder and Prodigal had more than satisfactory scores above 90 percent as well. In other
words FragGeneScan and Prodigal were slightly less conservative in predicting genes, however,
they struggled to identify which genes were non-coding. GeneRFinder on the other hand can
achieve high specificity when trained to find non-coding sequences as well, and not just genes.
This is because its selected features capture the signals present in coding and non-coding se-
quences independently, as opposed Prodigal and FragGeneScan which use features based on
other segments of the sequence such as the ribosomal binding site for instance.

Prediction tool Accuracy Recall Specificity

geneRFinder 93.8% 94.6% 93.6%

Prodigal 40.1% 97.6% 28.6%

FragGeneScan 29.6% 99.9% 15.5%

Table 4: Accuracy, recall and specificity scores from gene predictions on the medium complexity
dataset. Taken from Silva et al. [21]. GeneRFinder clearly performs the best overall in compar-
ison to Prodigal and FragGeneScan.

4.7 Other Machine Learning Approaches

Apart from the RF classifier, other machine learning approaches have also been tested for the
purpose of gene prediction. In this section these will be briefly presented. Campos et al. [17]

13

5 DISCUSSION

tested algorithms such as Generalised Linear Model (GLM), Artificial Neural Networks (NN),
Gradient Boosting Method (GBM), Support Vector Machines (SVM) and RF classifier for the
purpose of identifying essential genes in eukaryotes.
The results showed that prediction performance and the selected best predictive features varied
with which machine learning algorithm used and species studied. All the machine learning
algorithms used here outperformed random guessing based on true probabilities. However,
RF’s performance was superior to all other machine learning algorithms in most cases, and all
the algorithms prediction performance increased in correlation with more data being added to
training datasets.

5 Discussion

In this section the challenges with gene prediction and existing tools is discussed, and potential
future directions are presented. This addresses objective three of this paper. Despite much
progress in gene prediction tools over the past decade, the search for improved methods has
somewhat stagnated. Other methods within genomics seem to be prioritised despite gene pre-
diction being an important step in many pipelines within structural and functional genomics.
The importance of accurate predictions of protein coding genes has never been greater and there
are still interesting and challenging research directions that deserve further efforts. Figure 5
illustrates a summary of the challenges discussed in Subsection 5.1 and the future directions
presented in Subsection 5.2.

Figure 5: Summary of section 5. The figure illustrates the remaining challenges with gene
prediction and existing tools used for this purpose. It also presents possible future directions
for the development of improved gene prediction tools. See Section 5.2 for explanation of
abbreviations.

5.1 Remaining Challenges

As learnt after reading the paper by Dimonaco et al. [20], a prominent challenge with gene
prediction tools is that different state-of-the-art tools appear to work differently depending on

14

5.2 Potential Future Directions 5 DISCUSSION

the species. In addition, certain types of genes such as short genes, overlapping genes and those
with alternative codon usage are handled differently and are still tough to classify even for the
best performing tools.

Rare features and the accurate finding of start codons are still problems for state-of-the-art
tools according to Engebretsen [23]. Rare features refers to cases such as prokaryotic introns or
cases where start and stop codons encode rare amino acids depending on RNA motifs located
upstream of the start or stop codon. Engebretsen [23] suggest these features might be best
handled outside of the gene prediction tools.

Dimonaco et al. [20] states that short genes and overlapping sequences are often misreported.
A majority of the state-of-the-art tools still have hard-coded limitations when it comes to min-
imum ORF length, as well as algorithmic weights against short ORFs. This is a problem as
short genes are both common and important in prokaryotic genomes. Overlapping genes oc-
curring either in the same reading frame or a different one are also hard to handle. Most tools
return either only one of the overlapping genes or neither of them in the predictions. Dimonaco
et al. [20] also mention that there is a general under-representation of short genes in genomic
databases, which brings us to the final challenge: historic bias.

When assessing the performance of a gene prediction tools we often use a ”verified” reference
genome. These have been thoroughly studied, sequenced, assembled and annotated. However,
there is no real ground truth and there exists no actual verified genes. Historic biases like this
have over the years caused biases in ORF prediction tools, as well as gene prediction tools.
In turn this hinders and taints the discovery of new genes and gene prediction tools, as their
verification is based on current, possibly incorrect, knowledge.

5.2 Potential Future Directions

In Campos et al. [17] the SVM algorithm is used among other machine learning algorithms.
This is the only machine learning tool for Natural Language Processing (NLP) used in any of
the articles reviewed in this paper. The article concludes by stating other machine learning
methods should also be explored for the purpose of gene prediction, such as deep learning [33].
Recurrent Neural Networks (RNN) is a deep learning method that can be useful for modelling
sequential data [34]. Sequential data is essentially just ordered data in which related data follow
in sequence to each other, like for instance a DNA sequence.

In order for a machine learning model to be able to make sense of a sequence of words or letters
one may need to perform some basic transformations to create some type of numeric representa-
tion, also called feature engineering. Machine learning algorithms then examine these features
to find patterns. There are several different feature engineering methods worth exploring, and
when it comes to DNA sequences a particularly relevant method is for instance n-grams (k-mer
frequencies).

N-grams is a method used in NLP, which preserves the context of the ”words” in a sequence.
It uses a (n-1)-order Markov model to predicts the next item in a sequence, and the larger the
”n” the more context is stored in the model. By calculating and comparing profiles of n-gram
frequencies one can use n-grams for text categorization. In a DNA sequence an n-gram can
take on 4n values, and a 1-gram would be a single base, and a 3-gram would be a codon, i.e. a
triplet of bases. However, a simple 3-gram representation would not take the alternative reading
frames into account, which is necessary in the case of DNA sequences and gene prediction.

15

6 CONCLUSION

Throughout this paper several potential features in DNA sequences that can be relevant for
gene prediction tools have been mentioned (Section 3.5). The selection of the most suitable
features is also a potential area of focus for future studies, as well as the selection of reliable
data that can be used for benchmarking purposes.

6 Conclusion

The objectives of this review were to: find current methods used for the prediction of protein
coding genes in prokaryotes, find out if machine learning tools are applicable for predicting
protein coding genes and what the current challenges are with the prediction of protein coding
genes. 30 articles were screened, and 16 articles were included to fulfill these objectives.

Having reviewed several state-of-the-art gene prediction tools, as well as more modern compu-
tational methods such as geneRFinder, we can see how the older gene prediction tools were
based on the power of Hidden Markov Models, whilst the newer are mostly based on machine
learning techniques. This paper provides a basis for how state-of-the-art gene prediction tools
are comparable to more modern tools using machine learning approaches. Future work on new
computational methods could include exploring different feature engineering and feature selec-
tion techniques, recurrent neural networks and other deep learning methods used for natural
language processing.

16

REFERENCES REFERENCES

References

[1] Bayat A. “Science, medicine, and the future: Bioinformatics.” In: BMJ Bioinformatics
324 (2002), pp. 1018–2022. issn: 0959-8138. url: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC1122955/#:~:text=Bioinformatics.

[2] Wikipedia contributors. Gene Prediction. 2021. url: https://en.wikipedia.org/wiki/
Gene_prediction.

[3] Yohann Jacob Sandvik. “A Literature Review of Time-Series Clustering Techniques and
Machine Learning Techniques Used for Monitoring of Wind Turbines.” In: (2019). url:
https://github.com/yohannjs/project_assigment.

[4] NIH National Human Genome Research Institute. Nucleotide. 2019. url: https://www.
genome.gov/genetics-glossary/Nucleotide.

[5] Susha Cheriyedath. Start and stop codons. 2019. url: https://www.news-medical.net/
life-sciences/START-and-STOP-Codons.aspx.

[6] Oxford Languages and Google. RNA. url: https://languages.oup.com/google-
dictionary-en/.

[7] Wikipedia contributors. Ribosome. url: https://en.wikipedia.org/wiki/Ribosome.

[8] BioNinja Brent Cornell. Translation. url: https://ib.bioninja.com.au/standard-
level/topic-2-molecular-biology/27-dna-replication-transcri/translation.

html.

[9] Genome.gov. Non-coding genes. url: https://www.genome.gov/genetics-glossary/
Non-Coding-DNA.

[10] Lars Snipen. BIN310 - module 3 lecture. url: http://arken.nmbu.no/~larssn/teach/
bin310/module2.html.

[11] Lars Snipen. BIN310 - module 6 lecture. 2021. url: https://www.youtube.com/watch?
v=sSfk6ww01A4.

[12] Sagar Ayal. Gene Prediction - Importance and methods. url: https://microbenotes.
com/gene-prediction-importance-and-methods/.

[13] Wikipedia. Open reading frame. 2021. url: https://en.wikipedia.org/wiki/Open_
reading_frame.

[14] Lars Snipen. BIN310 - module 6 lecture. 2021. url: https://www.youtube.com/watch?
v=sSfk6ww01A4.

[15] Wikipedia. Start codon. 2021. url: https://en.wikipedia.org/wiki/Start_codon..

[16] Lumen. Genetic Code. url: https://courses.lumenlearning.com/wm-nmbiology1/
chapter/reading-codons/.

[17] Tulio L. Campos et al. “An Evaluation of Machine Learning Approaches for the Prediction
of Essential Genes in Eukaryotes Using Protein Sequence-Derived Features”. In: Compu-
tational and Structural Biotechnology Journal 17 (2019), pp. 785–796. issn: 2001-0370.
url: https://doi.org/10.1016/j.csbj.2019.05.008.

[18] Arthur M. Lesk. Introduction to Bioinformatics. 1st ed. Oxford University Press, 2013,
pp. 109–136.

[19] Zhuo Wang, Yazhu Chen, and Yixue Li. “A Brief Review of Computational Gene Pre-
diction Methods”. In: Genomics, Proteomics & Bioinformatics 2.4 (2004), pp. 216–221.
issn: 1672-0229. url: https: //www .sciencedirect. com/ science /article /pii/
S1672022904020285.

17

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1122955/#:~:text=Bioinformatics
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1122955/#:~:text=Bioinformatics
https://en.wikipedia.org/wiki/Gene_prediction
https://en.wikipedia.org/wiki/Gene_prediction
https://github.com/yohannjs/project_assigment
https://www.genome.gov/genetics-glossary/Nucleotide
https://www.genome.gov/genetics-glossary/Nucleotide
https://www.news-medical.net/life-sciences/START-and-STOP-Codons.aspx
https://www.news-medical.net/life-sciences/START-and-STOP-Codons.aspx
https://languages.oup.com/google-dictionary-en/
https://languages.oup.com/google-dictionary-en/
https://en.wikipedia.org/wiki/Ribosome
https://ib.bioninja.com.au/standard-level/topic-2-molecular-biology/27-dna-replication-transcri/translation.html
https://ib.bioninja.com.au/standard-level/topic-2-molecular-biology/27-dna-replication-transcri/translation.html
https://ib.bioninja.com.au/standard-level/topic-2-molecular-biology/27-dna-replication-transcri/translation.html
https://www.genome.gov/genetics-glossary/Non-Coding-DNA
https://www.genome.gov/genetics-glossary/Non-Coding-DNA
http://arken.nmbu.no/~larssn/teach/bin310/module2.html
http://arken.nmbu.no/~larssn/teach/bin310/module2.html
https://www.youtube.com/watch?v=sSfk6ww01A4
https://www.youtube.com/watch?v=sSfk6ww01A4
https://microbenotes.com/gene-prediction-importance-and-methods/
https://microbenotes.com/gene-prediction-importance-and-methods/
https://en.wikipedia.org/wiki/Open_reading_frame
https://en.wikipedia.org/wiki/Open_reading_frame
https://www.youtube.com/watch?v=sSfk6ww01A4
https://www.youtube.com/watch?v=sSfk6ww01A4
https://en.wikipedia.org/wiki/Start_codon.
https://courses.lumenlearning.com/wm-nmbiology1/chapter/reading-codons/
https://courses.lumenlearning.com/wm-nmbiology1/chapter/reading-codons/
https://doi.org/10.1016/j.csbj.2019.05.008
https://www.sciencedirect.com/science/article/pii/S1672022904020285
https://www.sciencedirect.com/science/article/pii/S1672022904020285

REFERENCES REFERENCES

[20] Nicholas J. Dimonaco et al. “No one tool to rule them all: Prokaryotic gene prediction
tool performance is highly dependent on the organism of study”. In: Cold Spring Harbor
Laboratory (2021). url: https://www.biorxiv.org/content/10.1101/2021.05.21.
445150v1.full.

[21] Ráıssa Silva et al. “geneRFinder: gene finding in distinct metagenomic data complexities.”
In: BMC Bioinformatics 22.87 (2021). issn: 1471-2105. url: https://doi.org/10.1186/
s12859-021-03997-w.

[22] Mina Rho, Haixu Tang, and Yuzhen Ye. “FragGeneScan: predicting genes in short and
error-prone reads.” In: Nucleic Acids Research 38.20 (2010). url: https://academic.
oup.com/nar/article/38/20/e191/1317565.

[23] Stian Engebretsen. “Evaluation of gene prediction methods for prokaryotes”. In: Uni-
veristy of Oslo, Department of Informatics (2012). url: https://www.duo.uio.no/
bitstream/handle/10852/34173/thesis.pdf?sequence=1&isAllowed=y.

[24] John Besemer, Alexandre Lomsadze, and Mark Borodovsky. “GeneMarkS: a self-training
method for prediction of gene starts in microbial genomes.” In: Nucleic Acids Research
29.12 (2001). url: https://doi.org/10.1093/nar/29.12.2607.

[25] AV Lukashin and M. Borodovsky. “GeneMark.hmm: new solutions for gene finding.” In:
Nucleic Acids Research 26.4 (1998). url: https://academic.oup.com/nar/article/
26/4/1107/2902172.

[26] David R. Kelley et al. “Gene prediction with Glimmer for metagenomic sequences aug-
mented by classification and clustering”. In: Nucleic Acids Research 40.1 (2011). url:
https://doi.org/10.1093/nar/gkr1067.

[27] Doug Hyatt et al. “Prodigal: prokaryotic gene recognition and translation initiation site
identification.” In: BMC Bioinformatics 11.9 (2010). url: https://doi.org/10.1186/
1471-2105-11-119.

[28] Hideki Noguchi, Jungho Park, and Toshihisa Takagi. “MetaGene: prokaryotic gene finding
from environmental genome shotgun sequences.” In: Nucleic Acids Research 34.19 (2006).
url: https://doi.org/10.1093/nar/gkl723.

[29] Wikimedia Foundation. Markov chain. url: https://en.wikipedia.org/wiki/Markov_
chain..

[30] Stanford University. Chapter A - Hidden Markov Models. url: https://web.stanford.
edu/~jurafsky/slp3/A.pdf..

[31] Sean R. Eddy. “What Is a Hidden Markov Model?” In: Nature News, Nature Publishing
Group (2004), pp. 1315–1316. url: https://www.nature.com/articles/nbt1004-1315.

[32] Wikimedia Foundation. Genemark. url: https://en.wikipedia.org/wiki/GeneMark..

[33] Gökcen Eraslan et al. “Deep learning: new computational modelling techniques for ge-
nomics.” In: Nat Rev Genet 30 (2019), pp. 389–403. url: https://doi.org/10.1038/
s41576-019-0122-6.

[34] Lexalytics. Natural Language Processing (NLP). 2021. url: https://www.lexalytics.
com/lexablog/machine-learning-natural-language-processing#unsupervised..

18

https://www.biorxiv.org/content/10.1101/2021.05.21.445150v1.full
https://www.biorxiv.org/content/10.1101/2021.05.21.445150v1.full
https://doi.org/10.1186/s12859-021-03997-w
https://doi.org/10.1186/s12859-021-03997-w
https://academic.oup.com/nar/article/38/20/e191/1317565
https://academic.oup.com/nar/article/38/20/e191/1317565
https://www.duo.uio.no/bitstream/handle/10852/34173/thesis.pdf?sequence=1&isAllowed=y
https://www.duo.uio.no/bitstream/handle/10852/34173/thesis.pdf?sequence=1&isAllowed=y
https://doi.org/10.1093/nar/29.12.2607
https://academic.oup.com/nar/article/26/4/1107/2902172
https://academic.oup.com/nar/article/26/4/1107/2902172
https://doi.org/10.1093/nar/gkr1067
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1186/1471-2105-11-119
https://doi.org/10.1093/nar/gkl723
https://en.wikipedia.org/wiki/Markov_chain.
https://en.wikipedia.org/wiki/Markov_chain.
https://web.stanford.edu/~jurafsky/slp3/A.pdf.
https://web.stanford.edu/~jurafsky/slp3/A.pdf.
https://www.nature.com/articles/nbt1004-1315
https://en.wikipedia.org/wiki/GeneMark.
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1038/s41576-019-0122-6
https://www.lexalytics.com/lexablog/machine-learning-natural-language-processing#unsupervised.
https://www.lexalytics.com/lexablog/machine-learning-natural-language-processing#unsupervised.

Appendices

Appendix A: Summary of articles included from search 1 and 3

	Preface
	Abstract
	List of Figures
	List of Tables
	Abbreviations and Acronyms
	Introduction
	Motivation
	Objectives
	Structure

	Theory
	Gene Prediction
	The Genetic Code

	Machine Learning
	Decision Trees
	Random Forest
	XGBoost
	Training and Validation
	Hyperparameter Tuning
	Feature Selection

	Deep Learning
	Perceptron
	Multi-layer Perceptrons
	Activation Functions
	Training
	Recurrent Layers

	Evaluation Metrics
	Related Work
	GeneRFinder: Random Forest Classifier
	CNN-MGP: Convolutional Neural Network Classifier

	Data Exploration
	Selecting Genomes
	Description of the Data
	Data Preprocessing

	Methods
	Feature Engineering
	Random Forest Classifier
	The Input Datasets
	Hyperparameter Tuning
	Feature Selection

	XGBoost
	Recurrent Neural Network
	Preprocessing
	Architecture
	Tuning

	Combining Genomes

	Results
	Random Forest Classifier
	Comparing Datasets
	Default vs. Tuned Random Forest Classifier
	Feature Importance
	Feature Selection Techniques

	XGBoost
	Feature Selection
	Default XGBoost vs. Default Random Forest Classifier

	Recurrent Neural Network
	Nucleotide Sequence Data vs. Amino Acid Sequence Data
	Comparing Datasets

	Comparing the Methods
	Combined Genomes

	Discussion
	Random Forest Classifier
	Comparing Datasets
	Feature Importance
	Feature Selection

	XGBoost
	Recurrent Neural Network
	Maximum Sequence Lengths
	Comparing Datasets

	Comparing Machine Learning Methods
	Combined genomes

	Other Future Work

	Conclusion

