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Abstract

Attackers exploiting vulnerabilities in software can cause severe damage to
affected victims. Despite continuous efforts of security experts, the number
of reported vulnerabilities is increasing. As of January 2022, the National
Vulnerability Database consists of more than 160 000 vulnerability records
of known vulnerabilities. These vulnerability records contain data such as
vulnerability classification, severity metrics, affected software products, and
textual descriptions describing the vulnerability.

The National Vulnerability Database provides a high-quality data source
for security analysts learning about known vulnerabilities. However, main-
taining this database comes at a high labor cost for the security experts
involved. Knowledge graphs is a semantic technology which has the poten-
tial to aid in this task. In our work we explore how knowledge graphs are
used in the broader field of cyber security. We then propose our own vul-
nerability knowledge graph for vulnerability assessment where we combine
techniques from NLP with Knowledge graph embedding. Although future
work on constructing ground truth data is necessary to evaluate and bench-
mark our experiments, our initial results show entity prediction results of
0.76 in Hits@10 score.
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Chapter 1

Introduction

1.1 Software security and vulnerabilities

New applications being released provide users with tools for work, study, en-
tertainment, and other areas. However, while many of these applications are
useful, some can also be abused in harmful ways. Software vulnerabilities
are flaws in code that an attacker can exploit. Attacks utilizing these vulner-
abilities can cause severe damage to the affected victim. The consequences
for the victim include financial loss, exposure of sensitive data, or essential
production halting.

Developers unintentionally introduce vulnerabilities in their code by lack-
ing understanding of how systems fail. To combat this, training in secure
development, use of code reviews, and testing are all important measures
(Tsipenyuk et al., 2005).

A critical vulnerability in the application Log4j was published in Decem-
ber 2021 and has received much public attention. Log4j is an open-source
logging tool from Apache 1. The use of Log4j includes logging runtime events
and error messages in applications running on servers. The vulnerability
was associated with a feature where users could input code instructions to
customize text formatting. Instead of using the feature to format logs, an
attacker could input malicious code to gain access to the targeted server
(Torres-Arias, 2021). The infected server can then be used for mining cryp-
tocurrency or in attacks against organizations or government institutions
(Palmer, 2021). Log4j is commonly bundled in other software, making the

1https://logging.apache.org/log4j/2.x/manual/index.html
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10 CHAPTER 1. INTRODUCTION

vulnerability affecting a wide range of applications. Not only does it affect
the applications including vulnerable Log4j libraries, but also services us-
ing these applications (msl, 2021). Consequently, the task of identifying the
vulnerable components in order to implement patches becomes more difficult.

On an annual basis, the number of reported vulnerabilities in Common
Vulnerabilities and Exposures (CVE) (MITRE, 2021a) is increasing, accord-
ing to statistics from the National Vulnerability Database (NVD). In 2015,
less than seven thousand CVEs were registered, and in 2020 the number had
increased to more than 18 thousand (Laboratory, 2021).

Security researchers are constantly searching for better ways to learn why
vulnerabilities occur and how to fix these. Accurate classification of known
vulnerabilities is essential to achieve this goal. Security related data are
heterogeneous and often unstructured, including textual descriptions of vul-
nerabilities and vulnerable source code. Manually classifying vulnerabilities
from these sources is labor-intensive work for security experts. Data-driven
security research can contribute to vulnerability classification using machine
learning techniques and statistical analysis.

1.2 Motivation and problem statement

CVE is a data set storing vulnerability information as CVE records. The
CVE records contain an ID number, a description, and public references.
NVD fetches this data and provides additional structure by adding vulner-
ability type, product configurations, and severity metrics to each record.
However, this comes at a high labor cost for security analysts labeling and
classifying the records. A knowledge graph (KG) is a graph-based abstraction
to represent data as knowledge (Hogan et al., 2021, Ch. 1).

where a schema is defined in advance for relational databases, defining a
schema could be postponed in KGs. This allows for more flexibility for the
KG to evolve, for example by adding incomplete information (Hogan et al.,
2021, Ch. 1).

We believe that knowledge graphs can aid in labeling data in NVD by
increasing the degree of automation. In addition, the knowledge graph can
also be helpful for data exploration where similar vulnerabilities can be found
based on common characteristics.

This thesis constructs a vulnerability knowledge graph by extracting data
from NVD. The first part of the knowledge graph is to extract cyber-security
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entities using a Named Entity Recognition (NER) model, which we train
on labeled NVD data. We then propose a rule-based relation extraction
(RE) model to extract relations between the entities. The RE model is
based on NVD labels and identifies the typical structure of CVE records.
The extracted entities and relations between these are triples that combined
form our initial knowledge graph. Knowledge graph embedding is the last
step of our model. This technique enables us to improve the initial graph
by predicting missing entities. We performed KG embedding by training a
tensor decomposition model.

Applying the knowledge graph concept to the NVD data, we raise the
following research questions:

1. Can our knowledge graph predict vulnerability types and related terms?

2. Can we find relations between existing vulnerabilities using the same
knowledge graph?

1.3 National Vulnerability Database

CVE stores disclosed vulnerabilities. Each vulnerability record has a unique
identification number, a description, and public links. The vulnerability de-
scription contains information about the characteristics of the vulnerability
and how it can be exploited, and what products and vendors are affected.
The public links hold additional publicly available information about the
vulnerability and include advisories, solutions, mitigation, and exploit infor-
mation.

NVD fetches vulnerability records from CVE and adds additional infor-
mation such as product configurations and vulnerability types. Five figures
1.1 to 1.5 shows how the Log4j vulnerability (CVE-2021-44228) is stored
as a vulnerability record in NVD. The first figure, Fig. 1.1 contains the
vulnerability description which is the same as in CVE.

Severity metrics is calculated in Fig. 1.2 according to the Common Vul-
nerability Scoring System (CVSS) 2. CVE-2021-44228 is a critical vulnera-
bility with a base score of 10.0, the highest possible score.

2https://www.first.org/cvss/
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Figure 1.1: CVE ID and description of CVE-2021-44228

The Vector string in the bottom of Fig. 1.2 consists of categorical vari-
ables which are used as input when calculating the score. CVE-2021-44228
consists of the following nine elements:

CVSS:3.1 CVSS version.

AV:N Attack vector is Network.

AC:L Access complexity is low.

PR:N Privileges required is none.

UI:N User interaction is not required.

S:C Scope is changed.

C:H Confidentiality impact is high

I:H Integrity impact is high

A:H Availability impact is high
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Figure 1.2: Common Vulnerability Scoring System (CVSS) of CVE-2021-
44228

CVSS version 3.1 is the standard for calculating the base score. The
Attack vector is through the network, allowing remote attackers to perform
an attack through the internet. Attack complexity for this example is low,
where the attack complexity measures what conditions outside the attackers’
control must be circumvented for the attack to be successful. No privileges
are required, so the attacker does not need to be authorized.

The security scope in CVE-2021-44228 is changed. A security scope con-
sists of security authorities, where a security authority is a mechanism for
access control. For example, a single security authority could restrict what
processes and which users have access to one database. If the vulnerability
affects components outside of the vulnerable components security authority,
the security scope is changed (CVS, 2022). In CVE-2021-44228, applications
directly using Log4j libraries in their code are vulnerable. In addition, other
applications and services using these applications are also vulnerable.

The impact on confidentiality (C), integrity (I), and availability (A) are all
high (H). Measures of confidentiality restrict what information is available
to whom. For example, only authorized users should have access to read
sensitive information. Integrity concerns write access. An example of an
integrity measure is ensuring that only authorized users can write information
to a particular database. Availability is about making sure that requested
resources are available to authorized users (Bruvoll and Arne Sørby, 2020).

Fig. 1.3 shows some of the provided public links, including exploit infor-
mation and third-party advisories.

Common Weakness Enumeration (CWE) 3 contains a list of software and

3https://cwe.mitre.org/
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Figure 1.3: Some of the public references in CVE-2021-44228

hardware weakness types. NVD classifies vulnerabilities (CVE) in weakness
types (CWE).

CVE-2021-44228 has three CWEs assigned. CVE-2021-44228 allows an
attacker to input malicious code without raising an exception. Thus the
input is not properly validated, and the weakness ”CWE-20 Improper Input
Validation” in Fig. 1.4 is applicable. We refer to MITRE (2021b) for further
information about the two other weaknesses CWE-502 and CWE-400, which
also apply to CVE-2021-44228.

Figure 1.4: CVE-2021-44228 is classified in three weakness types.

Common Platform Enumeration (CPE) is a protocol for identifying and
classifying product configurations (4). Each CPE string corresponds to a
single uniquely defined configuration.

Considering the second line in Fig. 1.5. ”cpe:2.3” tells us that this
product configuration has CPE version 2.3. ”a” tells us that the product is

4https://csrc.nist.gov/projects/security-content-automation-
protocol/specifications/cpe
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Figure 1.5: Some of the affected configurations of CVE-2021-44228

an application. The software vendor is Apache, and the application is Log4j.
The application has version 2.0 and update beta9.

1.4 Framework

The following framework gives an overview of our work constructing a vul-
nerability knowledge graph. The framework begins with downloading data
from NVD and goes through multiple steps before reaching the final step of
entity prediction.
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Figure 1.6: Framework showing the steps of our work



Chapter 2

Theory

2.1 Performance metrics

In the following section we present performance metrics used throughout
this thesis. In the first part we consider the commonly encountered metrics
in machine learning which is accuracy, precision, recall and F1-score. In the
second part we look closer into performance metrics commonly used for entity
prediction in knowledge graph.

2.1.1 Common performance metrics in machine learn-
ing

Accuracy is common metric used when evaluating machine learning classifiers
on balanced data. Accuracy simply calculates all true predictions and divides
this by the total number of predictions. Accuracy is defined:

Accuracy =
TP + TN

FP + FN + TP + TN
(2.1)

where

• TP: True positives

• TN: True negatives

• FP: False positives

17



18 CHAPTER 2. THEORY

• FN: False negatives

However, accuracy is not a good metric for unbalanced data sets. For
example, consider we are interested in classifying vulnerability related terms
from a vulnerability description and separate these from the non-vulnerability
related terms. Our data set consists of 1 percent vulnerability related terms
and 99 percent non-vulnerability related terms. A model that always predicts
non-vulnerability related terms, will achieve 99 percent accuracy. However,
such a model is not a good model since it completely fails in predicting
vulnerability related terms.

Precision (PRE), recall (REC and F1-score are metrics which is often
used for unbalanced data sets. Precision and recall is defined:

PRE =
TP

TP + FP
(2.2)

REC =
TP

FN + TP
. (2.3)

If we optimize our model for precision, our model will only predict vulner-
ability related terms if it has a high confidence that the term is a vulnerability
related term.

If we optimize our model for recall on the other hand, our model will aim
for predicting all vulnerability related terms in our data set. However, this
comes at the cost of predicting a larger amount of false positives. Where
the false positives are the terms incorrectly predicted as vulnerability related
term.

A metric which compromises the wish for high precision and high recall
is called F1-score. F1-score is defined:

F1 = 2× PRE ×REC
PRE +REC

(2.4)

2.1.2 Performance metrics in knowledge graphs

A triple in a knowledge graph consists of a head, a tail, and a relation between
the two. Entity prediction is the task of predicting a tail (or head) given that
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we know head (or tail) and relation. The goal is to find the true head or tail
given all other entities in the graph. Entity prediction algorithms usually
return results in the form of a ranked list of possible triples (Balažević et al.,
2019). For example, consider we want to predict the head of a triple given
100 possible entities. We assign confidence to all possible triples, and then
return the rank of the true triple. The ranking of the true triple are used when
calculating performance metrics such as mean rank (MR), mean reciprocal
rank (MRR) and Hits@n (Balažević et al., 2019).

MR calculates the average ranking of the true triple over all possible
triples. To compute the MRR we first calculate the inverse ranking of the
true triple among all possible triples. Then the average of these rankings is
computed to get the MRR score. Hits@n calculates the percentage of time
the true triple is ranked among the top n possible triples. Hits@10, hits@3
and hits@1 is commonly reported when referring to this metric.

A low MR, a high MRR and a high Hits@n indicates better performance
of the entity prediction model. The MR metric could be unstable and is
reported to be more negatively affected by individual bad ranked examples.
It has thus been more common in recent work to focus on MRR and Hits@n
metrics (Rastogi et al., 2021).

2.2 Labeling unstructured data

In order to train supervised machine learning models to perform NLP tasks
such as NER or relation extraction (RE), we need labeled data serving as
ground truth. Both manually labeling and automatic labeling approaches
have been considered for this thesis.

The first approach is to annotate data manually. Although the approach
can produce very accurate labeling, it is costly and time-consuming. A corpus
consisting of 30 security blogs, 240 CVE descriptions, and 80 security bul-
letins manually annotated is considered by Joshi et al. (2013) to train a NER
model for cybersecurity entities. Joshi et al. (2013) uses the Stanford NER
(Finkel et al., 2005) which is a pre-trained NER model. The performance
metrics is reported in Table 2.1.

As an alternative approach Bridges et al. (2014) propose a framework
for automatic labeling. The data set consists of vulnerability descriptions
from NVD, patch and mitigation information taken from Microsoft Security
Bulletin, and exploit descriptions from Metasploit Framework (Bridges et al.,
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An HTML Injection Vulnerability in iOrder 1.0 allows the remote
attacker to execute Malicious HTML codes via the signup form

Figure 2.1: Vulnerability description of CVE-2021-43441

2014). The vulnerability descriptions from NVD used by Bridges et al. (2014)
is approximately thirty times the size of what was used by Joshi et al. (2013).
This framework labels data using three approaches.

The first step is using the CPE vector for exact database matching. This
is done by matching elements from the CPE vector with words in the vul-
nerability description. We consider the following vulnerability description;

With the corresponding CPE vector:

cpe:2.3:a:iorder project:iorder:1.0:*:*:*:*:*:*:*

”iorder” is the product component of the CPE vector above and is of
type application. The ”iorder” from CPE is matched with ”iOrder” from
the CVE description. The word ”iOrder” will then be labeled as application.
Furthermore, 1.0 is a version component of the CPE vector above and is
matched with ”1.0” in the CVE description for labeling.

Bridges et al. (2014) uses heuristic rules and regular expressions to label
those entities that do not precisely match the CPE vectors. One example of
a heuristic rule approach is to use file extensions such as ”.exe” to label the
file entities. Another approach is to use standard terminology when referring
to versioning, such as ”before 2.5”, ”1.1.4 through 2.3.0” and ”2.2.x”. In
addition, Bridges et al. (2014) classifies some of the words as vulnerability-
relevant terms. These relevant terms can consist of one-gram, two-gram,
or three-gram words. Where an example of a two-gram relevant term is
”remote attacker”. A total of 172 entities with relevant terms are provided
in a dictionary which is called a gazetteer. When encountering any of these
172 entities in a CVE description, the label is given by the dictionary. The
relevant terms provided by the gazetteer are entities particularly relevant to
the weakness type (CWE). The labeling we just described is referred to as
domain-specific labeling by Bridges et al. (2014).

In addition to domain-specific labeling, Inside-Outside-Beginning-labeling
(IOB) and parts of speech (POS) labeling are also performed by Bridges et al.
(2014). IOB-labeling is a technique useful for labeling multi-word entities,
also called n-grams. The first word of an entity is labeled as ”B” which
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Paper Precision Recall F1-score
Bridges et al. (2014) 0.989 0.993 0.994
Joshi et al. (2013) 0.837 0.764 0.799

Table 2.1: Entity extraction performance from two papers. Automatic an-
notation is utilized in Bridges et al. (2014) while manual annotations is per-
formed in Joshi et al. (2013).

stands for ”begin”. The following words that belong to the same entity are
labeled with ”I” for ”inside”. The words which are not labeled are labeled
with ”O”. For example, the two words in the term ”remote attacker” should
have IOB labels ”B” and ”I” correspondingly.

Bridges et al. (2014) evaluate the automatic labels by comparing them
against a random sample of manually annotated CVE descriptions. The
labeling results reported were 99 percent precision, 77.8 percent recall, and
87.5 percent F1 score (Bridges et al., 2014). Bridges et al. (2014) argues for
optimizing their model for high precision where nearly every label found is
correctly classified. On the contrary, recall is high if all labels are classified,
but many of the entities are classified incorrectly. By choosing this approach
Bridges et al. (2014) avoid introducing additional noise to the data. The
purpose of high precision in labeling is that this will yield higher performance
when later training NER models based on machine learning algorithms on
the labeled data.

Bridges et al. (2014) train an average perceptron (AP) classifier on the
automatically labeled data. The results are presented in Tab. 2.1 where
the reported performance in Bridges et al. (2014) is much higher than what
is achieved in Joshi et al. (2013). The average perceptron seems to benefit
from the large amounts of data available as a result of the automatic labeling
approach (Bridges et al., 2014).

In this thesis automatic labeling based on Bridges et al. (2014) will be
used to label data from NVD. In the case of automatic labeling, there are
two reasons for training a machine learning classifier for NER on top of
already labeled data. These are to improve the performance of the automatic
labeling, and to enable recognizing entities from unstructured text where the
automatic labeling can not be applied directly. This includes cyber security
newsletters, forum posts and raw CVE descriptions which has not yet been
analysed and enriched in NVD.
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2.3 Encoding of words

If we want to use machine learning algorithms for NER or RE on vulnerabil-
ity descriptions, we must ensure that these descriptions are in a compatible
representation for the algorithms to understand. The first step is tokeniza-
tion, which is splitting the descriptions into smaller pieces called tokens.
The tokens could, for example, be words, part of words, or characters (Pai,
2020). Usually, these tokens must be converted into a numeric representation
before machine learning algorithms can be applied. We look into different
techniques to represent words as numeric vectors in the following sections.
In addition to being useful for NER and RE, a good understanding of how
words are encoded is helpful before we continue exploring how we can encode
graphs as vectors in Sec. 2.7.

2.3.1 Bag of words

One way of representing words as numeric vectors is the bag of words model
(Raschka and Mirjalili, 2019, Ch. 8). Each word in the corpus is assigned an
index number in this simple model. One vector can then be used to either
represent a single word or a document. This vector is typically sparse, with
a length equal to the number of words in the corpus. All indices except those
corresponding to words in the document are zero. For example, if a single
word is encoded in a corresponding vocabulary of 20 000 words, one element
will be equal to one while the 19 999 other elements are zero.

If encoding is done on the document level, the words present in the doc-
ument are represented by the number of occurrences on the corresponding
index. This is the standard bag of words model. Alternatively, in the binary
bag of words model, we ignore the occurrences and only consider if the word
occurs or not. The indices are then either zero or one depending on the word
exists or not (Bose, 2021). This type of encoding is also referred to as one-hot
encoding (Chollet, 2018, Ch. 6.1.1).

We demonstrate the binary bag of words with two vulnerability descrip-
tions. CVE-2021-4079:

Out of bounds write in WebRTC in Google Chrome prior to
96.0.4664.93 allowed a remote attacker to potentially exploit heap
corruption via crafted WebRTC packets.

And CVE-2021-4064:
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Use after free in screen capture in Google Chrome on ChromeOS
prior to 96.0.4664.93 allowed a remote attacker to potentially ex-
ploit heap corruption via a crafted HTML page.

From these examples, we see that the two descriptions share common
words such as ”Google” and ”attacker”. We first make an index of all unique
words across both CVE descriptions.

Listing 2.1: Binary bow word index

1 {’in ’: 1, ’to’: 2, ’a’: 3, ’webrtc ’: 4, ’google ’: 5,

’chrome ’: 6, ’prior ’: 7, ’96’: 8, ’0’: 9, ’4664’

: 10, ’93’: 11, ’allowed ’: 12, ’remote ’: 13, ’

attacker ’: 14, ’potentially ’: 15, ’exploit ’: 16,

’heap ’: 17, ’corruption ’: 18, ’via ’: 19, ’crafted

’: 20, ’out ’: 21, ’of’: 22, ’bounds ’: 23, ’write ’

: 24, ’packets ’: 25, ’use ’: 26, ’after ’: 27, ’

free ’: 28, ’screen ’: 29, ’capture ’: 30, ’on’: 31,

’chromeos ’: 32, ’html ’: 33, ’page ’: 34}

We then encode the descriptions using the binary bag of words and get
the following output.

Listing 2.2: Binary bow CVE-2021-4079

1 [0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,

1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,

1., 0., 0., 0., 0., 0., 0., 0., 0., 0.]

Listing 2.3: Binary bow CVE-2021-4064

1 0., 1., 1., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1.,

1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0

., 1., 1., 1., 1., 1., 1., 1., 1., 1.]

Indexing starts from 0, and thus the first element from each vector is
encoded with 0. Comparing the two descriptions we see that for example
”webrtc” which has index 4 is represented by 1 in CVE-2021-4079 and 0
CVE-2021-4064.

The challenge with this approach is that expanding the corpus to contain
more words will increase sparsity when single documents are encoded.
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2.3.2 Term Frequency - Inverse Document Frequency

As was seen in the section above, some of the words were common for both
CVEs. When including all CVEs from NVD some words will occur more
frequently than others. If we are extracting information from CVEs, the less
frequently occurring words are more important to distinquish CVEs from
one-another. We say that less frequently occurring words contains more dis-
criminatory information ((Raschka and Mirjalili, 2019)). As a consequence,
these words should be given more emphasis. Term Frequency Inverse Docu-
ment Frequency (tf-idf) is a technique to handle this.

We define the term frequency as the number of times a term occurrs in
a document. The term frequency is often normalized ((Bose, 2021)) by the
total number of words in a document and defined as :

tf(t, d) =
nt,d∑k
i=1 ni,d

(2.5)

Here nt,d is the number of occurrences of term, t, in document, d.
We can then define the inverse document frequency as:

idf(t, d) = log
nd

1 + df (d, t)
(2.6)

Where nd is the total number of documents and df is the document fre-
quency, which is the number of documents, d, containing the term, t. The
inverse document frequency is logarithmically scaled to ensure that weights
assigned to low document frequencies are not too high ((Raschka and Mir-
jalili, 2019)). It is common to add one in the denominator in (2.6) to avoid
division by zero.

The product of 2.5 and 2.6 is the term-frequency-inverse document fre-
quency, defined:

tf -idf(t, d) = tf(t, d)× idf(t, d) (2.7)

2.3.3 Word Embedding

Embedding of words is a popular approach to represent words as vectors.
Word embeddings are dense numeric representations. Instead of encoding
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words as a vector with length equal to the size of the vocabulary, the di-
mensions can be chosen depending on the problem. Typically when dealing
with large vocabularies its common with 256-dimensional, 512-dimensional
or 1024-dimensional vectors (Chollet, 2018, 6.1.1). This means that for a
vocabulary containing 20 000 words, a significant amount of space is saved
compared to a one-hot encoding approach. Another characteristic of word
embeddings is that they are learned from data. The goal is to construct em-
beddings such that the distance between two words in a vector space should
reflect their semantic relationship. Synonyms should be encoded close, while
two unrelated words should be encoded further away. One toy example of a
word embedding taken from Chollet (2018) considers the four words: tiger,
wolf, cat, and dog. The relationships in a 2-dimensional space is illustrated
in Fig. 2.2. On the y-axis, wolf and tiger have higher values since they are
both wild animals, while cats and dogs are pets and are thus assigned lower
values. On the x-axis, the embedding captures that dog and wolf share that
they are both canines while tiger and cat are felines.

y

y

Wolf Tiger

Dog Cat

Figure 2.2: Toy example of word embedding

To learn the word embeddings, different approaches exist. A model which
have proven success are referred to as the Word2vec algorithm and were
proposed by Mikolov et al. (2013). The basic idea is that the model computes
the embedding for a particular word by considering a window of surrounding
words as context.
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2.4 Named Entity Recognition

Named Entity Recognition (NER) is the task of classifying a mention also
referred to as a term from a document with a label. These terms typically
consist of a single or a few words (Kejriwal, 2019). Some terms are ambigu-
ous. For example, this could be ”Linux” which could refer to the ”Linux”
organization or the ”Linux” software. These terms need disambiguation,
which we will touch upon later in the thesis. In the following, a model for
NER, which has been used for extracting cyber security entities by Bridges
et al. (2014) is presented.

2.4.1 Maximum Entropy model trained with Averaged
Perceptron

The Maximum Entropy Model (MEM) is a supervised machine learning
model utilizing a large set of predefined features. The model is a popular
choice in sequential tagging problems (Bridges et al., 2014). In our case, the
model is used for Named Entity Recognition. Different variants of the model
are common. In history-based MEM, the model considers only features until
the current word. In Conditional Random Fields (CRF) the ”global” fea-
tures are considered. Global features refer to features both before and after
the current word of each sentence. We can use both alternatives for training
a NER model in extracting security-related entities. We present an example
of MEM using two history-based features in the following.

A sentence, w, is split in a sequence of words with length n:

w = (w1, ..., wn) (2.8)

The sentence is labeled with the corresponding sequence of tags:

t = (t1, .., tn) (2.9)

Sequences of labels and words form the input to the model.
By Bridges et al. (2014) the following features have been implemented:
For notional ease, we focus on the previous two domain labels as a single

feature, defined as ti−1, ti−2. However, the following formulas can be gener-
alized, including all the mentioned features.
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Given an arbitrary word sequence, the conditional probability of a tag
sequence is:

p(t|w) =
n∏

i=1

p(ti|ti−2, ti−1, wi) (2.10)

The probability of a tag is then defined:

p(ti|ti−2, ti−1, wi) ≡
ef(t̄i,wi)∗v

z(t̄i, wi)
(2.11)

f = (f1, ..., fm) is the feature vector with corresponding weights, v =
(v1, ..., vm) which are learned from the data. For notional ease, we defined
t̄i = ti−2, ti−1, ti. We want to make sure that the computed probabilities of
all possible tags in has sum equal to one. To ensure this we divide by the
factor, z(t̄i, wi) which is defined:

z(t̄i, wi) =
∑
ti

exp[f(t̄i, wi) ∗ v] (2.12)

Each feature either fires or not. An example of a feature component could
be:

f1(t̄i, wi) =


1 if ti−2 = Vendor,

ti−1 = Application

0 otherwise

(2.13)

The feature above fires if we encounter the tags vendor and application
as the two previous tags.

The goal is to find the best set of weights such which maximizes the
probability of predicting the correct tag.

The weights are initialized to zero and trained using the averaged per-
ceptron. Since the perceptron learning rule updates the weights for every
prediction, Bridges et al. (2014) argues for averaging the weights over multi-
ple iterations. Considering an intuitive example from Bridges et al. (2014) of
a model predicting correctly in 9999 examples out of 10 000, but then makes
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the wrong prediction in the last example. In such a case, a model which
has 99.99 percent accuracy will be replaced by a less accurate model Bridges
et al. (2014).

Al Algorithm 1 describes the averaged perceptron algorithm which Bridges
et al. (2014) uses for training the MEM model and is. Intermediate weights
at each iteration are stored in v and accumulated as a weighted sum in vtot.
vt−stamp keeps a timestamp for when the different weights were adjusted. The
argument maximum of p(t̂|w, y) with respect to the possible tags, t̂, is used
to decide the prediction y. The weights are only adjusted when a prediction
is wrong, and only the weights for the fired features are adjusted.
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Listing 1 Averaged Perceptron

1 Input: (w, t) = training set
2 Niter = number of iterations
3 Output: vave = trained parameter vector
4 Initialize iter = 1
5 Initialize i = 0
6 Initialize v = (0, ..., 0)
7 Initialize vt−stamp = (0, ..., 0)
8 Initialize vtot = (0, ..., 0)
9 while iter ≤ Niter do

10 for (w, t) in training set do
11 Set y = argmaxt̂p(t̂|w, v)
12 if y! = t then
13 vtot+ = [(i, ...i)− vt−stamp] ∗ v
14 v+ = f(w, t)− f(w, y)
15 for j = 1...length(v) such that
16 f(w, y)[j]! = 0 do
17 Set vt−stamp[j] = i
18 i+ = 1
19 else
20 i+ = 1
21 iter+ = 1
22 vtot+ = [(i, ..., i)− vt−stamp] ∗ v
23 Set vave = vtot/i
24 return vave
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2.5 Machine learning

In the following we provide an introduction to some basic machine learn-
ing algorithms and some more advanced algorithms which extends the basic
models. The goal for this section is to provide an understanding of some
of the models which could be used as part of our KG. We also provide an
introduction to underlying concepts including model weights, net input, loss
functions and activation functions which is applicable to many machine learn-
ing models.

2.5.1 Perceptron

In the Perceptron model, small random weights, w, are initialized and as-
signed to the input features, x. The net input is then defined as:

z = wTx (2.14)

In the unit step function, this net input is compared against a defined
threshold, θ.

For simplification it is common to bring θ to the left side of the net input
by defining a zero weight, w0 = −θ and a corresponding input signal x0 = 1
(Raschka and Mirjalili, 2019, p.21). The unit step function can then be
defined as:

φ(z) =

{
1 if z ≥ 0

−1 otherwise
(2.15)

And the net input in 2.14 becomes:

z = w0x0 + w1x1 + ..+ wmxm = wTx (2.16)

(Raschka and Mirjalili, 2019, Ch. 2) The output of the unit step function
corresponds to a single prediction, φ(z) = ŷ. The true value ,y, is compared
against the prediction, ŷ. If the prediction is wrong the weights are updated.
This update value is often referred to ase loss and defined:

∆wj = η(y(i) − ŷ)x
(i)
j (2.17)
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Here η is the learning rate that controls the magnitude of the weight
updates for misclassified examples. The learning rate is discussed in more
detail in the next section about Adaline 2.5.2. For every prediction, all
weights are updated simultaneously. The steps of training the Perceptron
model can be summarized in the Perceptron learning rule:

1. Initialize the weights to 0 or small random numbers.

2. For each training example, x(i):

(a) Compute the output value, ŷ.

(b) Update the weights.

(Raschka and Mirjalili, 2019, p. 23)
The rule above corresponds to one iteration of training, also called epoch,

and training the model usually involves multiple epochs. When 2.17 is zero
across all weights for all examples, the algorithm has converged. The model
has perfect performance without any misclassifications in such an idealized
case. However, for this to be achievable, the data must be linearly separable.
Examples of linearly and non-linearly separable data are illustrated in Fig.
2.3. Since this is not always the case, it is common to set a maximum limit
on how many epochs of training. Another approach is to set a threshold for
the number of accepted misclassifications (Raschka and Mirjalili, 2019, p.25).

Figure 2.3: Linearly and non-linearly separable data by Raschka and Mirjalili
(2019, p.25)/MIT license.

The architecture of the perceptron algorithm is illustrated in Fig. 2.4.
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Figure 2.4: Architecture of Perceptron. Figure from Raschka and Mirjalili
(2019, p.26)/MIT license.

2.5.2 Adaline

Adaline is a single-layer neural network illustrated in Fig. 2.5 and considered
an improvement of the Perceptron model. Adaline is a good starting point
to understand more complex neural network architectures.

Adaline learns by optimizing an objective function, also called a loss func-
tion. The loss function of Adaline is the sum of squared errors (SSE) between
the true labels and predicted labels defined as:

J(w) =
1

2

∑
(y(i) − φ(z(i)))2 (2.18)

where y(i) is the true class label of the ith sample. φ(z(i)) is the predicted
label of the ith sample. In Fig. 2.5 each input feature is assigned a weight.

A difference from Perceptron is that a linear activation is applied to the
net input function.

φ(z) = z (2.19)

However, for Adaline, the above is simply an identity function and the
net input does not change. Perceptron computes the loss after applying the
unit step function. In Adaline, loss is computed by comparing the true label
with the output after linear activation to decide the weight update.

When a final prediction is made, the output from the activation function
is compared against the threshold function.
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Figure 2.5: Architecture of Adaptive Linear Neuron. Figure based on
Raschka and Mirjalili (2019, p.37).

During training, Adaline updates the weights for every epoch using the
following update rule.

w := w + ∆w, where ∆w = −η∇J(w) (2.20)

η is the learning rate which is a hyperparameter. ∇J(w) is the gradient.
Since the cost function is minimized, a minus sign in front of the learning
rate is used. This optimization method is called gradient descent, and a step
is taken in the opposite direction of the gradient to reach the minimum seen
in the left part of Fig. 2.6. Using gradient descent, all weights are updated
simultaneously, where the updates are calculated by multiplying each input
signal with its corresponding error. To compute the gradient, each individual
weight update is found by taking the partial derivative of the cost function
with respect to each weight j.

∂

∂wj

J(w) = −
∑
i

(y(i) − φ(z(i)))x
(i)
j (2.21)

The learning rate is used to adjust the speed of the training. The learning
rate must be tuned in order to reach the optimum. A too-large learning rate
will overshoot the minimum seen in the right part of Fig. 2.6, a too small
learning rate results in slow training with the potential of never reaching the
minimum. Interested readers are referred to Raschka and Mirjalili (2019, ch.
2) for additional details regarding the challenges of finding the best learning
rate.
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Figure 2.6: Right figure illustrates the optimization using the gradient de-
scent algorithm. Left figure is an example where the algorithm ”overshoots”
the minimum as a consequence of a too high learning rate. Figure from
Raschka and Mirjalili (2019, p. 44) /MIT license.

2.5.3 Deep learning and Multilayer Perceptron

A Multilayer Perceptron (MLP) is a variant of a multilayer neural network
architecture. In addition to an input and an output, layer MLP consists
of an arbitrary number of hidden layers. The hidden layers increase the
learning capacity of the network compared to Adaline. In addition, MLP
uses non-linear activation functions such as the sigmoid function to learn
more complex problems (Raschka and Mirjalili, 2019, Ch. 12). A network
is commonly considered deep when it consists of two or more hidden layers
(Raschka and Mirjalili, 2019, Ch. 12). However, for easier illustration, in
Fig. 2.7 we illustrate a MLP with a single hidden layer. The network can
easily be generalized to include more layers.

MLP is fully connected with weight coefficients connecting one layer to
the next. In Fig. 2.7 each unit in the input layer is connected with every
unit in the hidden layer, and each unit in the hidden layer is connected
to every unit in the output layer. A bias unit is added to the input layer
referred to as a

(in)
0 in the input layer and a

(h)
0 in the hidden layer. These

bias units are introduced independently in the specific layer and are not
dependent on the previous layer. The bias units typically have the value 1
and the corresponding weights are adjusted during training similarly to other
weights (Raschka and Mirjalili, 2019, ch. 2).

The training process of MLP can be described as follows. Each of the
input signals is activated in the input layer. Then, in the hidden layer, the



2.5. MACHINE LEARNING 35

units here are linear combinations of signals and weights from the previous
layer. These units are also activated. In the output layer, the units are
linear combinations of hidden units and corresponding weights. This is called
forward propagation where the input signal is sent through the network and
in each layer different features of the data are learned. For each iteration,
the error corresponding to each output unit is calculated as the difference
between the unit and the true class label.

Like how forward propagation sends an input signal forward through the
network, backpropagation sends an error signal in the opposite direction.
The error signal is used for computing the loss gradient at each layer in order
to update the weights.

In standard gradient descent, weights are updated after iterating through
all training examples. However, when training a multilayer neural network
such as MLP this approach can result in slow training. This is due to the
many weights that needs to be adjusted. To speed up training, one approach
is to use stochastic gradient descent where weights are updated for every
training example. Another approach uses mini-batch gradient descent. A
mini-batch consists of a subset of the full training data. Weight gradients
from each example of the mini-batch are stored. The model is updated by
the mean gradient over the mini-batch. (Raschka and Mirjalili, 2019, Ch.12)

There are some challenges of using MLP on our data, including textual
descriptions of vulnerabilities. Sentences are sequential data with a time
dimension. The order of which the words appear matters. MLP on the other
hand, does not consider the time dimension and assumes that all the data
are independently distributed.

2.5.4 Recurrent Neural Networks

In modeling sequential data, a set of architectures called Recurrent Neural
Networks (RNN) is common. The basic structure of RNN are shown in Fig.
2.8. Similar to a standard feedforward network like MLP mentioned in Sec.
2.5.3, the input layer is connected to the hidden layer. However, in the hidden
layer, the units are connected with what is called recurrent edges (Raschka
and Mirjalili, 2019, Ch. 16). As a result, each hidden unit has two outgoing
connections to the next layer’s output unit and the hidden unit of the next
time step. A simplified illustration is shown in Fig. 2.8.

In order to calculate the loss gradient responsible for updating the weights,
the error in each epoch is backpropagated both through the layers, and
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(input layer in) (hidden layer h) (output layer out)

Figure 2.7: Multilayer Perceptron consisting of an input layer, a hidden layer
and an output layer. Figure based on Raschka and Mirjalili (2019, p. 388).

through the time steps. This is called backpropagation through time (BPTT).
For interested readers we refer to Raschka and Mirjalili (2019, p. 547) for
the derivation of the gradients using BPTT. A challenge with BPTT is that
the gradients will vanish as the number of time steps increases (Raschka and
Mirjalili, 2019, Ch. 16). In an RNN, error signals far back in time will con-
verge to zero. As a consequence of this, RNN has trouble learning long-range
dependencies.

An example of a long-range dependency could be a relation between two
words from two different sentences.

2.5.5 Long Short Term Memory

In order to solve the vanishing gradient problem and to learn long-range de-
pendencies, Hochreiter and Schmidhuber (1997) proposed a gradient-based
method called long short-term memory (LSTM), which is a variant of RNN.
An LSTM consists of memory cells, and the architecture of LSTM is illus-
trated in Fig. 2.9. The goal is that these memory cells should memorize
by preserving information from earlier time steps. An LSTM memory cell is
illustrated in Fig. 2.9 and consists of a cell state, C(t), in addition to four
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Figure 2.8: Basic RNN architecture based on Raschka and Mirjalili (2019, p.
571).

gates. The forget gate controls which information from the previous time to
suppress and which information to keep. The forget gate is defined:

ft = σ(Wxfx
(t) +Whfh

(t−1) + bf) (2.22)

Wxf and Whf are weight matrices for the input unit vector of the current
time step xt and the hidden unit vector of the previous time step h(t−1)

correspondingly. The indices hf and xf are vector multiplications. bf is
the bias vector. The sigmoid activation function, σ is applied to all the
components in the forget gate to get a vector with elements between 0 and
1. The input gate, it and output gate, ot are defined in the same way.

The candidate value updates the cell state and are given by:

C̃t = tanh(Wxix
(t) +W

(t−1)
hi + bt) (2.23)

tanh is the hyperbolic tangent activation function. This activation function
returns values between 1 and -1. The cell state can then be computed:

C(t) = (C(t−1) ◦ ft)⊕ (it ◦ C̃t), (2.24)

where ◦ represents elementwise multiplication and ⊕ elementwise addition.
Elementwise multiplication between the cell state and the output gate is
performed in order to compute the values of the hidden units of the current
timestep:

h(t) = ot ◦ tanh(C(t)) (2.25)
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Figure 2.9: LSTM from Raschka and Mirjalili (2019, p. 582)/MIT license.

The hidden units are then passed on to the next time step and the next layer,
as in regular RNN. The cell state is passed on to the next timestep.

2.5.6 Bidirectional LSTM

Bidirectional LSTM (BiLSTM) is an architecture consisting of two hidden
LSTM layers independently trained with recurrent edges in opposite direc-
tions. BiLSTM is based on Bidirectional RNN (Schuster and Paliwal, 1997).
In the first layer, information from a memory cell is passed forward to the
next memory cell. In the second layer, the memory cells are connected in
reverse order, starting from the last step. The ordinary and reverse BiLSTM
learns from the same data represented differently.

The forward connected and backward connected layers are combined in
the output layer to make the final prediction. This type of architecture
is related to ensemble learning, where multiple classifiers capture different
patterns in the data (Raschka and Mirjalili, 2019, ch. 7). The architecture
is used in the RE model of MalKG by Rastogi et al. (2021).
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Figure 2.10: Illustration of BiLSTM

2.6 Assess overfitting and bias with learning

and validation curves

How the model fits the data is vital for achieving good performance and
reliable results in any machine learning problem. A model suffers from high
bias if training and validation performance are both low and below the desired
or expected performance. A high bias model is illustrated in Fig. 2.11 A. To
avoid this, choosing a more complex model or decreasing regularising could
help.

The model is overfitted when the trained model has high performance on
training data but does not generalize well when making predictions on new
unseen data. The model suffers from high variance. If the model is trained
and evaluated on the same data repeatedly, the risk is that the model will
learn from the test data, and performance on unseen data will suffer. Another
reason for overfitting is that the model might be too complex for the data. If
the model captures too much of the variation in the training data that does
not generalize well to unseen data.

One way to detect overfitting is to compare the training and validation
performance as seen Fig. 2.11 B. Here, the gap between the two curves are
large, this is a clear sign of overfitting.

If a model overfitts gathering more data could help. This could make
the model learn from a larger data set with more variation. As seen in
Fig. 2.11 B, performance continues to increase with more training samples.
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Figure 2.11: Overfitting versus bias. Figure from Raschka and Mirjalili (2019,
p. 202) /MIT License

Unfortunately, this is not always feasible given resources or other limitations.
Another alternative is choosing a less complex model with fewer parameters,
e.g. a linear model. Regularisation can also be used to penalize large weights
forcing the model to emphasize extreme cases. The optimal model choice
is when training and validation curves are close, and performance is at the
desired level illustrated in Fig. 2.11 C (Raschka and Mirjalili, 2019, p. 201f).
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2.7 Knowledge graph embedding

We can use machine learning algorithms in several tasks involving knowledge
graphs, including entity and relation prediction. As with word embeddings,
we usually need numeric vector representations for these algorithms to work.

A first attempt to create a numeric representation of the graph is using
a one-hot encoding approach such as the binary bag of words.
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Figure 2.12: Binary tensor. The example tensor consists of three matrices.
Each matrix Ri corresponds to one relation between subject entities, the
rows, and object entities the columns of the matrix. E.g es11 is the first
subject entity of the first relation.

A triple consist of a subject entity an object entity and a relation between
these. The subject entities, es, and object entities, eo, can be encoded as
vectors es, eo ∈ Rne and the relations as matrices R ∈ Rne×ne , where ne is
the number of entities. Together this will form a tensor shown in Fig. 2.12.
A tensor is a generalization of a matrix. 0-order, 1-order and 2-order tensors
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refer to scalars, vectors and matrices. Tensors ranging from 3-order into any
arbitrary order are called higher-order tensors (Hogan et al., 2021, ch.5.2).

The challenge with a one-hot encoded graph is that if most subject and
object entities are not related, these binary tensors will become sparse. KG
embedding encodes entities and relations into a dense representation.

Some embedding algorithms encode separately into entity and relation
embeddings, while others use a core tensor storing shared information across
the embeddings. The dimension of these embeddings is usually much lower
than the one-hot encoded vectors and typically ranges between 50 and 1000.
As a result of compressing the vectors into lower dimensions, the embed-
ding algorithms are forced to learn from data and can thus capture latent
structures of the graph (Balažević et al., 2019).

By capturing latent structures in the graph, knowledge graph embedding
algorithms should encode nodes with similar characteristics closer in the vec-
tor space compared to unrelated nodes. This feature can be helpful for several
tasks related to our problem. In our case, a successful embedding should en-
code vulnerabilities with similar characteristics in the same neighborhood.
We can then use entity prediction to predict missing information about the
vulnerability. We will aim to use these embedding to predict vulnerability
types.

In the following sections, some embedding algorithms will be presented.
These algorithms’ strengths and weaknesses are considered to choose the
most promising for our use case.

2.7.1 TransE

Translational models is one class of embedding algorithms. The most basic
of these is TransE introduced in Bordes et al. (2013). As above we define
subject entity, es, relation, r, and object entity, eo, with corresponding em-
bedding vectors in bold notation. Then from a set, S, of triples (es, r, eo),
embeddings are constructed in Rk where k is a hyperparameter representing
the embedding dimensionality. The goal is to construct embeddings such that
es + r ≈ eo when (es, r, eo) holds. In a good embedding, eo, should be the
nearest neighbor of es + r. At the same time, in the case where (es, r, eo) does
not hold, es + r should be far away from eo. The embeddings are learned
from the training set by minimizing the following loss function.
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∇ =
∑

(es,r,eo)∈S

∑
(e′s,r,e

′
o)∈S′

(es,r,eo)

[γ + d(es + r, eo)− d(e′s + r, e′o)]+ (2.26)

In a corrupted triple (es’,r,eo’), either the head or the tail entity has been
replaced. The set of corrupted triples S ′ is defined:

S ′(es,r,eo) = {(e′s, r, eo)|e′s ∈ E} ∪ {(es, r, e′o)|e′o ∈ E} (2.27)

[]+ in (2.26) specifies that only the positive part is considered during
optimization. d is a dissimilarity measure assumed to be either the L1 or the
L2 norm. For each triple in the training set, dissimilarity is measured both
for the original triple and the corrupted triple. A good embedding algorithm
will output a lower dissimilarity for a true triple, (es, r, eo), than a corrupted
triple, (e′s, r, e

′
o). A margin, γ > 0, is added to the loss function to ensure

this.
Optimization is done using mini-batch stochastic gradient descent. In

addition, the L2 norm of the entity vectors is used for optimization. Without
regularization, if the norm of es and eo are increased in (2.26) while γ is kept
constant, the effect of γ will diminish, which could result in an artificial
minimizing loss. Normalization using the L2 norm is performed to the entity
vectors during optimization. (Bordes et al., 2013)

TransE has some limitations and might, in some cases, be too simplistic.
This includes potential flaws when transforming 1-to-n, n-to-1 and n-to-n
relations (Hogan et al., 2021, Ch 5.2). We consider an example of a CVE
record which consist of multiple vulnerability-relevant terms in its description
which is a 1-to-n relation. TransE will aim to assign a similar relation vector
to all relevant terms. However, the vulnerability-related terms have different
entity embeddings which could be encoded far away from each other.

2.7.2 Tensor decomposition

Tensor decomposition is another approach to create the embeddings. Tensor
decomposition involves a set of techniques to decompose a tensor into two
or more elementary tensors of lower order. The goal is that the elementary
tensors should capture the underlying information from the original tensor
(Hogan et al., 2021). As an example, we define a matrix C of m×n elements
as the outer product of two vectors, x and y.
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x⊗ y = C (2.28)

C is a rank-1 matrix. This is because the columns of C are linearly
dependent. By scaling one column we can get all other columns.

C could then be precisely encoded using m + n elements instead of the
full matrix containing m× n elements. However, most of the times the rank
of C is more than one. If we assume the rank of C to be a matrix of rank
r, then we need to sum r rank-1 matrices to precisely decompose C. Since
this may become computationally expensive for matrices with high rank, rank
decomposition sets a limit, d, on the rank of C. The sum of the d matrices are
computed to best approximate C in (??). Rank decomposition generalized
and applied to tensors is referred to as CP-decomposition (Rabanser et al.,
2017). To compute the CP-decompositions different algorithms exists further
explained in Rabanser et al. (2017).

In knowledge graphs, the initial one-hot encoded representation of the
graph mentioned in 2.7 can be decomposed using CP-decomposition.

Three matrices, X = [x1...xd], Y = [y1...yd] and Z = [z1..zd] are compo-
nents in the decomposition. The ith row of Y is the embedding of the ith

relation. Furthermore, the jth row of X and Z are both embeddings of the
jth entity. We define the tensor decomposition of G:

x1⊗ y1⊗ z1 + ...+ xd⊗ yd⊗ zd ≈ G (2.29)

In the binary one-hot encoded graph the same entity also has different
embeddings depending on whether it is the subject or object in a particular
triple. Many Knowledge Graphs, though, typically aim to assign one unique
embedding to each entity (Hogan et al., 2021, Ch.5.2).

DistMult Yang et al. (2015) is a knowledge graph embedding method
based on CP-rank decomposition. In DistMult a plausibility function is de-
fined as

∑d
i=1(es)i(rp)i(eo)i. Where es, rp and es are subject entity, relation

and object entity embeddings correspondingly. The goal is to construct the
embeddings such that the plausibility of positive edges are maximized and
the plausibility of negative (false) edges is minimized. Instead of using dif-
ferent matrices for head and tail entities, a single entity matrix E = [e1...ed]
is applied twice such that:
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e1⊗ r1⊗ e1 + ...+ ed⊗ rd⊗ ed ≈ G (2.30)

One limitation with using the same matrix for subject and object entities
is that the direction of the relation is not considered (Hogan et al., 2021, ch.
5.2).

Another embedding approach for knowledge graph embedding which is
based on tensor decomposition is TuckER, also mentioned in chapter 4.3.
TuckER is considered current state of the art when benchmarked on several
generic data sets (Balažević et al., 2019). TuckER is based on Tucker decom-
position from Tucker (1966) which decomposes a tensor into one core tensor
and a set of matrices. We assume an original third order tensor defined
as X ∈ RI×J×K , the core tensor as G ∈ RP×Q×R and matrices A ∈ RI×P ,
B ∈ RJ×K and C ∈ RK×R. Tucker decomposition can be formulated as the
following a minimization problem:

minX̂ ||X − X̂ || with

X̂ =
P∑

p=1

Q∑
q=1

R∑
r=1

gpqrap ⊗ bq ⊗ cr

= G ×1 A×2 B×3 C

(2.31)

ap, bq and cr are column vectors of the matrices A, B and C correspond-
ingly. When considering tensors, the outer product is commonly referred to
as tensor product. A mode n tensor is another term of a tensor of order n.
In the last line of the above formula, ×n, is the tensor product along the
n-th mode Rabanser et al. (2017). X̂ is the approximation of X . The core
tensor G stores the level of interaction between the factor matrices A, B and
C. G is usually a compressed version of X with lower dimensions. Tucker
decomposition can be viewed as a form of higher-order Principal Component
Analysis where the factor matrices are the principal components that best
capture the variation in each mode. For additional information about tensor
products and tensor decomposition approaches we refer to Rabanser et al.
(2017).

In Balažević et al. (2019), knowledge graph embeddings are created apply-
ing Tucker decomposition to a one-hot encoded graph. Similar to DistMult,
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two equivalent matrices holds the entity embeddings for both subject and ob-
ject entities defined as E = A = C ∈ Rne×de . The relation embeddings are
defined as R = B ∈ Rnr×dr and the core tensor are defined asW ∈ Rde×dr×de .
ne and nr are the number of entities and relations while de and dr are the
dimensions of the embeddings.

The scoring function of TuckER is defined in Balažević et al. (2019) as:

φ(es, r, eo) =W ×1 es ×2 wr ×3 eo (2.32)

In 2.32, the subject embeddings es and the object embeddings eo are
rows in E. The relation embeddings wr are rows in R. In order to obtain
the plausibility of a given triple being true, the logistic sigmoid function is
applied to each score element in (2.32). (Balažević et al., 2019)

Contrary to DistMult, not all information about relations and entities are
stored in R and E. Some information is instead stored in the core tensor
W . Balažević et al. (2019) view the matrices of the core tensor as prototype
relations which are linearly combined according to the parameters in each
relation embedding. This parameter sharing across relation embeddings will
increase computational performance since fewer parameters must be adjusted
during training. The core tensor used in TuckER also ensures that the em-
bedding algorithm is fully expressive, which means that TuckER have the
potential to capture all information from the original graph.(Balažević et al.,
2019)

2.8 Hyperparameters and configurations of

TuckER

TuckER includes a set of hyper parameters that must be tuned to achieve
optimal performance. The learning rate was introduced in Sec. 2.5.2 and is
also used in TuckER adjusting the speed of training. Learning rate decay is
another hyperparameter used to decrease the learning rate during training.
A higher learning rate for earlier epochs could be helpful for computational
efficiency, while a lower learning rate for later epochs increases the chance of
reaching the optimum without overshooting it. Dropout is a regularisation
technique and has been applied in neural networks to avoid overfitting (Sri-
vastava et al., 2014). The risk of overfitting in TuckER increases when there
are few triples relative to the number of relations Balažević et al. (2019).
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When applying dropout in TuckER, a proportion of the embedding weights
are randomly set to zero during training.

2.8.1 Batch Normalization

Batch Normalization is a technique introduced to prevent shifts in the weight
distribution during training. The idea is that using batch normalization
could help reaching a better optimum in addition to making training faster
(Raschka and Mirjalili, 2019, Ch. 17 p. 649f). In the following batch normal-
ization is performed to entity embeddings in TuckER. Consider an arbitrary
entity embedding e[i] with embedding dimension, c, and batch size, m. The
batch-wise mean and standard deviation of e[i] is defined:

µ =
1

m

∑
i

e[i], σ2 =
1

m

∑
i

(e[i] − µ)2 (2.33)

Embedding e[i] is then standardized over all examples in a batch:

e
[i]
std =

e[i] − µ
σ + ε

(2.34)

The standardized embedding has center mean and unit variance. And
the ε is a small positive value added to avoid division by zero.

The standardized embedding is then scaled and shifted using two learning
parameters, γ and β to get the batch normalized embedding, y[i]:

y[i] = γe
[i]
std + β (2.35)



Chapter 3

Methods and materials

3.1 Data transformations

3.2 Architecture

We download yearly JSON feeds of CVE records from 2003 until October
2021 from NVD. The data contains vulnerability descriptions which are tex-
tual descriptions of the vulnerability records, severity metrics, affected prod-
uct configurations (CPE), links to references, and classification in vulnera-
bility types. The data contains approximately 150 000 CVEs, 269 unique
weakness types, and almost 270 000 unique CPEs, as seen in Table 3.1.

3.3 Processing and labeling

The files must be processed and adjusted before labeling can be performed.
We based our approach on code from Bhandari et al. (2021) to process our
initial data by removing CVEs without a public reference describing the
vulnerability. When a CVE is rejected all public references are removed.

CVE count CWE count CPE count

150397 269 266658

Table 3.1: Raw data statistics

48
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CVEs can be rejected for several reasons. One example is when the CVE is
a duplicate of another CVE. Another example could be that further research
determines that the issue is not a vulnerability after all 1.

We extended the code from Bhandari et al. (2021) by further processing
the data in a graphson file consisting of edges and vertices. We did this to
make our data compatible with the auto-labeling tool, which we explain in
the following paragraph. Each CVE record has outgoing edges to the corre-
sponding CPE objects. Each CVE record has one vertex. CVE ID, CWE
ID, description, and labeled data are properties of a vertex. An example of
how the data looks like for a single CVE record after processing is shown in
listing ??.

Listing 3.1: CVE-2020-17004 after processing

1 {"edges": [{’_id ’: ’CVE -2020-17004_to_cpe:2.3:o:

microsoft:windows_10:-:*:*:*:*:*:*:*’,

2 ’_inV ’: ’CVE -2020-17004’,

3 ’_label ’: ’has ’,

4 ’_outV ’: ’cpe:2.3:o:microsoft:windows_10:-:*:*:*:*

:*:*:*’,

5 ’_type ’: ’edge ’},
6 {’_id ’: ’CVE -2020-17004_to_cpe:2.3:o:microsoft:

windows_10:20h2:*:*:*:*:*:*:*’,

7 ’_inV ’: ’CVE -2020-17004’,

8 ’_label ’: ’has ’,

9 ’_outV ’: ’cpe:2.3:o:microsoft:windows_10:20h2:*:*:

*:*:*:*:*’,

10 ’_type ’: ’edge ’}],
11 "vertices": [{’_id ’: ’CVE -2020-17004’,

12 ’_type ’: ’vertex ’,

13 ’cwe ’: ’NVD -CWE -noinfo ’,

14 ’description ’: ’Windows Graphics Component

Information Disclosure Vulnerability ’}

The processed CVE records were labeled using the auto labeling technique
proposed by Bridges et al. (2014), which was introduced in Chapter 2.2. We
used the corresponding source code which can be found in GitHub Bridges

1https://www.cve.org/ResourcesSupport/FAQs
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et al. (2014) 2. A few adjustments were made to the original labeling script
to make it work with our data. We adjusted the script to the current CPE
2.3 standard from the original CPE 2.2 standard. In addition, we corrected
a mistake in the code where the hardware version was initially not extracted.

In listings 3.2 the CVE record from above, listings 3.1, is labeled. The
labels which are stored under ”tagged text” is added to the vertex in listings
3.1. Three types of labeling are used. These are IOB labels, domain labels,
and POS labels. In listings 3.2, the word ”Information” has IOB-label ”B”,
domain label ”relevant term” and POS label ”NNP”. ”NNP” is proper noun,
see for example 3.

Listing 3.2: CVE-2020-17004 processed and labeled

1 {’tagged_text ’: [[’Windows ’, ’O’, ’NNS ’],

2 [’Graphics ’, ’O’, ’NNP ’],

3 [’Component ’, ’O’, ’NNP ’],

4 [’Information ’, ’B:relevant_term ’, ’NNP ’],

5 [’Disclosure ’, ’I:relevant_term ’, ’NNP ’],

6 [’Vulnerability ’, ’O’, ’NNP ’]]}

3.3.1 Named Entity Recognition and Relation Extrac-
tion

Additional processing was required before we could train the Averaged per-
ceptron model for Named Entity Recognition on the labeled data. We first
removed the CPE objects, and then stored the data in lists. For each CVE
record, we stored the CVE-ID, CWE-ID, and four sublists corresponding to
the words, pos labels, IOB-labels, and domain labels. Using the same exam-
ple as above, CVE-2020-17004, listings 3.3 show how the data is formatted
in Averaged Perceptron.

Listing 3.3: CVE-2020-17004 processed for Averaged Perceptron

1 [’CVE -2020-17004’,

2 ’NVD -CWE -noinfo ’,

3 [’Windows ’, ’Graphics ’, ’Component ’, ’Information ’,

’Disclosure ’, ’Vulnerability ’],

2https://github.com/stucco/auto-labeled-corpus
3https://cs.nyu.edu/ grishman/jet/guide/PennPOS.html
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4 [’NNS ’, ’NNP ’, ’NNP ’, ’NNP ’, ’NNP ’, ’NNP ’],

5 [’O’, ’O’, ’O’, ’B’, ’I’, ’O’],

6 [’O’, ’O’, ’O’, ’relevant_term ’, ’relevant_term ’, ’

O’]]

We separately trained two averaged perceptron models, one for domain-
labeling and another for IOB-labeling, using the same training data for both
models. We based most of our implementation on the approach made by
Bridges et al. (2014).

When evaluating the model, Bridges et al. (2014) compares the pre-
dicted labels with the labels from the auto-labeling tool, which are considered
ground truth. The test performance of the two models is reported separately.

We noticed some differences between the paper and the corresponding
code from Bridges et al. (2014). Some of the features included in the paper
were missing in the code. In both the IOB and domain model, the feature
with the part of speech label for the current word were missing. In addition,
the domain model was missing the feature with the IOB label of the current
word. We included these features in our implementation. We used the same
features as provided in the paper by Bridges et al. (2014). Two sets of features
were provided for IOB-labeling and domain labeling correspondingly.

Bridges et al. (2014) refer to their implementation as a history-based
Maximum Entropy Model. History-based means that the current and previ-
ous words and labels are considered. However, as seen in the list of features
provided by Bridges et al. (2014) below, words and labels after the current
word are also considered.

Features for IOB-labeling

• Unigram features for

– previous two, current, and following two words

– previous two, current and following one part of speech tags

– previous two ‘IOB’-tags

• Bigram features for

– previous two ’IOB’-tags

– previous ’IOB’-tag and current word
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– previous part of speech tag and current word

• Regular expressions as listed above for

– previous two, current, and following two words

Features for domain labeling

• Unigram features for

– previous two, current, and following two words

– previous two, current, and following ‘IOB’-tags

– previous two domain labels

• Bigram features for

– previous two domain tags

– previous domain tag and current word

– previous ’IOB’-tag and current word

– previous part of speech tag and current word

• Regular expressions as listed above for

– previous two, current, and following two words

• Gazetteer features for

– Software Product

– Software Vendor

We use the same set of features in our implementation. The regular
expression features adjust for variations of the words, this includes words
with digits, punctuation, capital letter, or words written as snake-case and
camel-case Bridges et al. (2014).

When comparing the paper and code by Bridges et al. (2014) we also
noticed another difference regarding how the model makes predictions. The
Averaged perceptron model keeps a dictionary of unambiguous words from
the auto-labeled data in the code. This dictionary contains the unambigu-
ous words as keys and the corresponding labels as values. If the dictionary
contains the current word, the corresponding label is the predicted label.
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The trained model is then only used when the word is unambiguous. For
example, if the word ”kernel” is labeled as ”relevant term” one place and
as ”os” another place, the word is unambiguous. The Averaged Perceptron
algorithm is used on the unambiguous words.

We trained two models for our named entity recognition model based on
the Averaged perceptron. We used the Averaged Perceptron algorithm for
training and evaluation on all available data in our first approach. In our
second approach, we used the Averaged Perceptron algorithm for training,
and then for evaluation, we used the labeled dictionary for the unambiguous
words and the Averaged Perceptron for the ambiguous words.

Due to slow training, we restricted our training data to 4000 CVE de-
scriptions. Then we evaluated the model’s performance on the remaining
data consisting of approximately 146 000 CVE descriptions.

The IOB-labels contain helpful information about multi-word entities.
For example, the two words ”Information” and ”Disclosure” are one entity
with ”B” and ”I” as corresponding IOB-labels. ”B” indicates the start of
an entity, and ”I” indicates that the second word is inside the same entity.
IOB-labels do not contain a stop label, but if we encounter a ”B” or an ”O”,
we know a new entity has started.

The labeled data are used in the relation extraction model constructing
our initial knowledge graph, illustrated in Fig. 3.1. We removed all entities
labeled as outside as we did not want to keep these words in our graph. The
remaining IOB- and domain-labels were then used to form entities of multiple
words. We connect the extracted entities to the corresponding CVE-ID. Since
each CVE-ID also has a CWE-ID we also connected the same entities to the
CWE-ID. We made rules to extract relations between the entities inside a
CVE record. When encountering a product entity, we connect all relevant
terms corresponding to the same CVE to this product entity. The CPE vector
organizes entities such that vendor comes before application and application
before version. We assumed that the same structure was used in the CVE
description, and when exploring our data, we found that in approximately
two-thirds of the cases, the product follows the vendor and the version follows
the product.

We made rules to extract the relation between these entities as follows.
When we encounter a vendor entity, we check the following entity. If the
following entity is a product that could be either application, hardware or
os, we make a relation from the product to the vendor.

We also made relations from product to version similarly. A difference
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when checking for versions of a product is that we continue looking as long
as the next word is version. In this way, we hope that all versions of a related
product are extracted from the description.

Hardware

OS

Application

CVE/CWE

Term
Vendor

Version

CWE

Figure 3.1: Initial knowledge graph after relation extraction is performed.

3.3.2 Entity prediction

Entity prediction using KG embedding is the final step of the proposed archi-
tecture. We use the processed relations from the relation extraction model
as input in the TuckER model introduced in sec. 2.7.2. Data augmenta-
tion were then performed by reversing all the relations. The data set were
split into 80 percent for training, 10 percent for validation, and 10 percent
for testing. Misclassifications could happen both during entity extraction
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and relations extraction. However, TuckER assumes that the provided input
triples are true.

As mentioned in Sec. 2.8, hyper parameters must be tuned in order for
the model to obtain optimal performance. Our first approach was to train the
same four combinations of hyperparameters as proposed in (Balažević et al.,
2019). All models were run for 100 epochs, and based on the intermediate
results, the most promising model was run for additional 200 epochs such
that this model was trained for 300 epochs in total.

We evaluated the results from this approach and set up a grid search
covering 36 additional hyperparameter combinations focusing on drop out
rates and learning rates. Due to slow training of the full data set, we made
smaller subsets of the data. These subsets were random samples taken from
the training data consisting of 100 000 triples or approximately five percent of
the training data. To avoid overfitting, two models were trained and validated
for each of the hyper parameter combinations on different samples of the
data. We then calculated the mean Hits@10 metric for each combination
and ranked them. The parameters from the most promising candidate were
used in training a model for 300 epochs on the full data set.

3.4 Specifications of software and hardware

All code regarding this thesis is stored in a GitHub repository 4. The data
is stored in a shared google drive folder. Neptune is a project for tracking
machine learning experiments. We used this tool to track output logs, hyper-
parameters, performance metrics, and more. Python version 3.6.9 is used in
the project, and in requirements.txt, all needed libraries are specified. This
file was used to create a virtual environment where all code related to this
thesis could be run.

For large jobs, we need high-performance computing power. The com-
puting clusters from the eX3 infrastructure (ex3, 2022) hosted by Simula
Research Laboratory in addition to the NBMU Orion HPC Cluster were
used (NMBU, 2022). Running jobs on eX3, we used two different partitions
depending on the type of job. For jobs involving GPU training with the
CUDA platform (CUD, 2013), the dgx2q partition was used. The dgx2q has
16 Nvidia Tesla V100 GPUs where each GPU has 32GB of ram. For long

4https://github.com/secureIT-project/anders-msc
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sequential jobs, the slowq partition was used. This partition contains 8 sin-
gle processor nodes with Intel Xeon Silver 4112 CPU. The CPU operates at
2.60GHz with four cores.

Running jobs on NMBU Orion HPC Cluster we used the gpu partition
with 4 x 256 GB RAM, 64 cores, 3 Quadro RTX 8000 from Nvidia. A Huawei
Matebook D where used for initial prototype testing. The computer has a
AMD ryzen 5 processor with 2100 Mhz quad-core processor and 8 GB of
ram.



Chapter 4

Related Work

4.1 Related data

CVEfixes is a data set constructed by Bhandari et al. (2021) mining vulner-
able and patched code from open source projects stored in the code reposi-
tories GitHub, GitLab, and Bitbucket. CVEfixes automatically fetches new
commits to the mentioned repositories keeping them up to date with the
most recent vulnerability patches. In addition to code-related data, CVE-
fixes fetches CVE records from NVD and vulnerability types from Common
Weakness Enumeration, CWE 1. The mentioned data sources are combined
and stored in a relational database. This rich data set provides multiple op-
portunities for constructing and refining a vulnerability KG. In this thesis,
the focus has been on utilizing vulnerability databases, leaving code-related
data for future work.

4.2 Entity and relation extraction of cyber-

security concepts

Gasmi et al. (2019) proposed a method for entity and relation extraction
and applied this to the NVD data. The NVD data are labeled using the
auto-label tool provided by Bridges et al. (2014). Gasmi et al. (2019) then
compares two models of entity extraction where one of them is combining
LSTM and CRF (Conditional Random fields) while the other is based on

1https://cwe.mitre.org/index.html
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CRF alone. The LSTM-CRF is the best performer with an F1 score on the
test data reported to be 0.8337 on average for all entity types (Gasmi et al.,
2019, Table 4.). Bridges et al. (2014) trains an Averaged Perceptron model
and reports the performance in terms of F1 score as 0.965. Comparing the
results of Gasmi et al. (2019) and Bridges et al. (2014), the averaged percep-
tron performs better on the given data. However, the AveragedPerceptron
depends more heavily on choosing the best features, which is more labor
costly and dependent on domain knowledge (Gasmi et al., 2019).

Gasmi et al. (2019) also proposes three relation extraction models based
on the LSTM model. The data set considered consists of all CVE records
from 2015 collected from NVD data. The best model performs 0.943 in F1-
score. A challenge is that the data is not labeled with relations. Gasmi et al.
(2019) uses a semi-supervised approach where important labeled relations are
provided as seed values to the model. The iterative algorithm builds on the
seed values increasing the number of relations in the process. The approach
was originally proposed by Jones et al. (2015) on a data set consisting of 62
news articles, blogs, and updates from a variety of security-related websites.
Jones et al. (2015) reports the performance of 0.82 in precision.

4.3 Related Knowledge Graphs

4.3.1 VulKG

The vulnerability knowledge graph (VulKG) was proposed by Qin and Chow
(2019). This graph extracts vulnerability information from the NVD. The
authors define a vulnerability-related ontology to which knowledge is con-
nected. Qin and Chow (2019) proposes a theoretical framework architec-
ture. The framework includes a Natural language processing (NLP) part
and a reasoning part. In the NLP part, entities from CVE descriptions
are extracted through Named Entity Recognition (NER) using a BiLSTM-
CRF (Bi-directional Long Short Term Memory - Conditional Random Fields)
model. This model is based on results by Gasmi et al. (2019) who proposed
a NER model for cybersecurity concepts. The model by Gasmi et al. (2019)
is trained on automatically labeled data relying on work by Bridges et al.
(2014). The extracted entities are aligned with the underlying VulKG ontol-
ogy as seen in Fig. 4.1 in order to find the relations between the entities.

Reasoning is used to find hidden rules in VulKG where another goal
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Vendor Vulnerability

Hardware

Product

OperatingSystem

Weakness

Application

Figure 4.1: VulKG ontology. From Qin and Chow (2019, Fig. 3).

of VulKG is to find new weakness chains. If a weakness triggers another
weakness, the weaknesses are part of a weakness chain (MITRE, 2021b). (Qin
and Chow, 2019). Qin and Chow (2019) finds candidate weakness chains by
computing the chain confidence. We define two weaknesses as CWE1 and
CWE2. The chain confidence is calculated as the conditional probability of
finding CWE2 in a product given that the product already has weakness
CWE1. The chain confidence is calculated as follows:

Chain Confidence =
C(Pr with CWE1 ∩ Pr with CWE2)

C(Pr with CWE1)
(4.1)

C(Pr with CWE1), in short, C1, is the number of products which have
weakness, CWE1. C(Pr with CWE1 ∩ Pr with CWE2), in short C12, is the
number of products which have both weakness CWE1 and CWE2 (Qin and
Chow, 2019). To be considered a chain, (Qin and Chow, 2019) requires
the chain confidence to be above a threshold of 0.2 and C1 and C12 both
to be above 100. Qin and Chow (2019) constructs their knowledge graph
from NVD data. Each record of NVD consists of a CVE record enriched
with data, including product configurations (CPE) and weakness information
(CWE). To connect a product with a weakness, collecting all CVE records
with related product configurations is necessary. In order to compute the
chain confidence, Qin and Chow (2019) count the CPE objects, which are
the nodes of the linking path between the two CWE objects illustrated in
Fig. 4.2. By linking two CWE objects sharing CPE objects, we infer that
multiple CVE objects are also linked. For example, it is not possible to make



60 CHAPTER 4. RELATED WORK

a connection from CWE-79 to CWE-918 in Fig. 4.2 without including two
CVE objects in the connecting path.

CVE CPE

CVE CPEaffectPlatform

affectPlatform
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affectPlatform
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affectPlatform

Figure 4.2: VulKG weakness chain. Based on Qin and Chow (2019, Fig.
10a).

How CVE records are assigned in the CVE dataset should follow a set of
rules MITRE (2021a). One of these rules states that connecting two CVEs
cannot be dependent on each other. Rule 7.2.2 states:

CNAs MUST NOT assign a CVE ID to a vulnerability that is
dependent on another vulnerability. The dependent vulnerability
should share the same CVE ID as the vulnerability it is dependent
on.

CNA is an abbreviation for CVE Numbering Authorities and CNAs are
authorized organizations tasked with assigning new CVE records. Another
potential flaw in VulKG reasoning concerns graph theory. VulKG ontology
defines a directed relation from vulnerability (CVE) to weakness (CWE). In
Fig. 4.2 we recognize directed edges from the CVEs to the CWEs. Since
these relations are not bidirectional, no valid path exists linking CWE-79
with CWE-918.
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4.3.2 MalKG

In Rastogi et al. (2021) the author constructs a Malware Knowledge Graph
(MalKG). At the time of our replication, MalKG was published open source
in GitHub 2. We cloned the mentioned repository in order to replicate their
work.

Our goal with replicating the work of Rastogi et al. (2021) is to understand
further how knowledge graphs are used within the broader field of cyber
security. Malware and vulnerabilities are closely related, making MalKG a
useful starting point before constructing our own knowledge graph.

A large amount of threat intelligence is published by security organiza-
tions, government agencies, and research institutions containing information
about recent attacks and mitigation strategies. Rastogi et al. (2021) con-
siders a data set consisting of a total of 1100 threat reports, of which 80
were manually annotated to construct a malware knowledge graph. It is also
written in the paper by Rastogi et al. (2021) that all available CVE descrip-
tions are part of the data set. However, the provided data set in the GitHub
repository does not include these.

Some essential differences between the data set forming our KG and
MalKG are worth considering. The data set used in MalKG consists of
unstructured threat reports and manually annotated data from these. These
threat reports typically span several pages of text describing the malware
and its characteristics. On the other hand, CVE records from NVD con-
sist of vulnerability descriptions that only span a few sentences and follow a
stricter format. In addition, as introduced in Sec. 1.3, the CVE records in
NVD consist of additional data such as vulnerability type, severity metrics,
and affected product configurations.

MalKG extracts information from the mentioned threat reports in the
form of triples used to construct a KG. The goal of Rastogi et al. (2021) is
to use MalKG to predict unknown threat information. This is done by using
knowledge graph embedding 2.7 to encode latent structures of the graph
which could be used for entity prediction. The architecture of MalKG is
shown in Fig. 4.3

Rastogi et al. (2021) demonstrates use cases of MalKG in two exam-
ples. In one of the examples, the malware family of the indicator intel -
update[.]com is missing. MalKG is queried with the incomplete triple (intel
- update[.]com, indicates, ?) and returns confidence scores for all possible

2https://github.com/malkg-researcher/MalKG
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Figure 4.3: MalKG architecture. Figure based on Rastogi et al. (2021, Fig.
3).

entities using KG embedding. The entities are ranked in descending order
according to their confidence score. The correct entity in this example was
Stealer and ranked second among the returned entities in this example.

Two variations of the knowledge graph is proposed in MalKG, MT3K
and MT40K. The 80 threat reports, which are manually annotated form the
triples in MT3K. MT3K consists of a total of 3 000 triples. MT40K consists
of 40 000 triples and is based on the 1100 unstructured threat reports. How
the MT40K triples are extracted will be explained soon.

To extract information from the unstructured threat reports Rastogi et al.
(2021) first applies NER. Two approaches to NER is used in the MalKG,
the Flair framework (Akbik et al., 2019) and SetExpan (Shen et al., 2017).
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The Flair framework proposed by Akbik et al. (2019) is an NLP framework
providing an interface for model training and hyperparameter tuning. The
framework allows for the mixing of word embedding techniques, see 2.3.3.
The flair framework also provides pre-trained models. SetExpan is an algo-
rithm that can be used in a range of NLP tasks, including NER. SetExpan
takes a set of labeled seed values and an unlabeled corpus as input for train-
ing. The goal is then to recognize all entities of the same semantic class
(Shen et al., 2017).

Using the Flair framework for NER, precision scores are reported to be
between 0.9-0.99 for different classes. We assume that evaluation of the flair
framework was performed on the annotated data to achieve the obtained
scores. However, the code for this is not included in the repository. No code
implementation of SetExpan exists in the repository.

After entities have been extracted, a relation extraction model can find
the relations between the entities. The relation extraction model used by
Rastogi et al. (2021) is taken from Yao et al. (8 09) and based on a BiLSTM
architecture. MT3K is used for training the model. After the model has been
trained, the extracted entities from Flair are used as input to the trained
relation extraction model to form the triples of MT40K. MT3K is split into
training and validation sets (90/10).

No performance metrics are reported from the relation extraction model
in the paper by Rastogi et al. (2021). From the code by Rastogi et al.
(2021) we found that accuracy is reported as a training metric. Validation
metrics included F1 score, precision, and recall. We extended the code also
to compute training performance as F1 score, precision, and recall Rastogi
et al. (2021).

In the repository from (Rastogi et al., 2021) we find results from training
and testing the model. The test F1 score has a max value of 0.1456. A dis-
tinction is made between the performance containing these inverse relations
and where these relations have been removed. However, in MalKG these
scores were almost identical.

The relation extraction model used in MalKG was originally proposed
by Yao et al. (8 09). We compare the results from relation extraction in
MalKG with the results presented in this paper. Yao et al. (8 09) reports
the performance of different relation extraction models tested on data from
Wikipedia. The reported scores in the paper proposed by Yao et al. (8 09)
range between 0.32 and 0.51 in F1 score (Yao et al., 8 09, p. 7). Considering
that these results are significantly higher than what we found indicates that
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Model Data set Hits@1 Hist@3 Hits@10 MR MRR
TransH MT3K 26.8 50.5 65.2 32.34 0.414

TuckER
MT3K 64.3 70.5 81.21 7.6 0.697
MT40K 73.9 75.9 80.4 202 0.75

Table 4.1: Results for MalKG entity prediction reported by (Rastogi et al.,
2021).

relation extraction on threat reports has potential for further improvement.

From MT3K and MT40K new entities can be predicted using knowl-
edge graph embedding. Rastogi et al. (2021) use two embedding algorithms,
TuckER (Balažević et al., 2019) and TransH (Wang et al., 2014). TransH
is a variation of TransE presented earlier in this thesis. Relations from one
entity to another is learned after first projecting the entities on a hyperplane
where different relations have distinct hyperplanes (Hogan et al., 2021).

The embedding algorithms are used on both MT3K and MT40K. Since
MT40K does not have any ground truth, the models trained on MT40K are
tested on MT3K.

The reported scores for entity prediction are calculated using different
scoring metrics for both the annotated data set referred to as MT3K and the
automatic data set, called MT40K. The reported performance metrics are
shown in Table 4.1. The Hits@n metrics is multiplied by 100. In Table 4.1
we see that Rastogi et al. (2021) reports 80.4 in Hits@10 for MT40K. These
results can be interpreted as follows, on average, in 80.4 out of 100 times, the
true test triple is ranked among the ten triples with the highest confidence
score.

The authors compare model performance on MT3K and MT40K to stan-
dard data sets such as FB15K (Bordes et al., 2013), FB15k-237 (Toutanova
et al., 2015), WN18 (Bordes et al., 2013) and WN18RR (Dettmers et al.,
2018). These data sets have been used to benchmark several entity predic-
tion models, such as Bordes et al. (2013), Wang et al. (2014) and Balažević
et al. (2019). The performance of the embedding algorithms in MalKG is
compared with these because there are no earlier data sets available related
to malware knowledge graphs available for comparison. The goal of the au-
thors is that MT3K and MT40K could provide a baseline for future research
(Rastogi et al., 2021).

We found some errors when comparing the performance metrics for the
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FB15K WN18
Model Author Hits@10 MRR Hits@10 MRR

TransE
Balažević et al. (2019) 0.471 - 0.892 -
Rastogi et al. (2021) 0.443 0.227 0.754 0.395

TuckER
Balažević et al. (2019) 0.892 0.795 0.958 0.953
Rastogi et al. (2021) 0.513 0.260 0.806 0.576

Table 4.2: Reported metrics of KG embedding on standard datasets.

standard data sets presented in the paper by Rastogi et al. (2021) with what
has been reported by Balažević et al. (2019). For example, as seen in Tab. 4.2
Hits@10 for TuckER on FB15K is reported 0.892 by Balažević et al. (2019)
and the same experiment is reported with a Hits@10 of 0.513 by Balažević
et al. (2019). Overall the reported scores of the standard data sets seem
lower than what has been reported in earlier papers. As a consequence, the
reported performance of MT3K and MT40K by Rastogi et al. (2021) appears
closer to what is state of the art for the standard data sets.

Our replication results of MalKG includes relation extraction and entity
prediction and are presented in 5.



Chapter 5

Results

The following chapter considers the results of our experiments with our vul-
nerability knowledge graph. The results include two major components: re-
sults from entity extraction and entity prediction. In addition, the results
from the replication work of MalKG is presented.

5.1 Vulnerability knowledge graph

5.1.1 Named Entity recognition

When training the model, we experienced quadratic growth in the training
time. We restricted the training data to 4000 CVE records out of approxi-
mately 150 000. The training for a sample size was around 6-8 hours for each
model.

We used the remaining 146 000 CVE records to evaluate the performance.
These CVE records were used for testing the models with performance met-
rics shown in Table 5.1.

We evaluate the domain model by first using the auto-labeled input data
and then the predictions made by the IOB model. Using predicted IOB-labels
as input in the domain model, performance decreases for all four metrics. The
most significant decrease is in recall which drops by almost 0.1.

After performance evaluation, we used the trained model for labeling all
150 000 CVE records. The extracted labels were then used as input in the
relation extraction model.

In Tab. 5.2 we see that 76 percent of the extracted words are ”outside”
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F1-score Precision Recall Accurracy
Model

IOB-labeling 0.9304 0.9290 0.9318 0.9657
domain-labeling 0.9398 0.9407 0.9389 0.9818
domain-labeling* 0.8800 0.9245 0.8396 0.9479

Table 5.1: Performance metrics for the averaged perceptron model. domain-
labeling* uses the predicted IOB-labels.

labels. These words are not relevant terms according to our model.
Comparing the rest of the labels, we see in Fig. 5.1 that the ”rele-

vant term” label is by far the most frequent domain label occurring more
than twice as often as the version, which is the second most frequent label.

Figure 5.1: Plot domain labels distribution excluding outside tags.

5.1.2 Entity prediction

During the relation extraction, we extracted approximately 2 million triples.
We then reversed all triples such that the input to TuckER was 4 million
triples in total.

When evaluating TuckER, the input data are assumed to be true. The two
best models are presented in Tab. 5.3 with corresponding hyperparameters
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occurrences ratio
label

O 5386747 0.7609
relevant term 898359 0.1269
version 437991 0.0619
application 167779 0.0237
vendor 71030 0.0100
os 43879 0.0062
cve id 34992 0.0049
file 14843 0.0021
update 11953 0.0017
function 8850 0.0013
parameter 3195 0.0005
method 233 0.0000
hardware 30 0.0000

TOTAL 7079881 1.0000

Table 5.2: Statistics of domain labeling

Hits@10 Hits@3 Hits@1 MRR
Id

TUC-405 0.760 0.728 0.682 0.710
TUC-370 0.757 0.719 0.658 0.694

Table 5.3: Performance metrics for the two best models
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Id TUC-405 TUC-370

num iterations 300 300
edim 200 200
rdim 30 30
lr 0.001 0.005
input dropout 0.2 0.2
hidden dropout1 0.1 0.1
hidden dropout2 0 0.2
batch size 128 128
label smoothing 0.1 0.1
dr 1 0.995

Table 5.4: Hyperparameters of the two best models

Duplicates Hits@10 Hits@3 Hits@1 MRR
Id

TUC-99 False 0.539 0.458 0.354 0.415
TUC-370 True 0.723 0.657 0.541 0.609

Table 5.5: Performance metrics with and without duplicate triples.

in Tab. 5.4. As seen in Tab. 5.3, TUC-405 performed better than TUC-370
on all performance metrics. TUC-405 was based on the parameters of the
best candidate found in the grid search explained in Sec. 3.

Performance curves of the two models TUC-370 and TUC-405 are in the
left figure of Fig. 5.2 and follow similar paths. TUC-370 falls a bit behind
at approximately 35 epochs before catching up at around 200 epochs. The
difference in the Hits@10 metric is only 0.003 but becomes more prominent
for the Hits@3 and Hits@1 metric as seen in Tab. 5.3. From the right part
of Fig. 5.2 convergence is reached earlier and at around 150 epochs for the
broader Hits@10 metric compared to around 250 epochs for Hits@1.

Some triples are extracted multiple times in the relation extraction. For
example, this can happen if the same relevant terms are found across mul-
tiple CVEs and these CVEs belong to the same CWE. We experienced that
keeping these duplicate triples significantly increased performance compared
to removing them. The Hits@10 metric of the second-best model TUC-370
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Figure 5.2: Comparison of two best performing configurations (TUC-370
and TUC-405) in the left figure. Different Hits@n metrics of the best model
(TUC-405) in the right figure.

was 0.723 and included duplicates. TUC-99 uses the same parameters but
removes all duplicate triples. The Hits@10 of TUC-99 is only 0.539 as seen
Tab. 5.5.

Training on the complete data set with 300 epochs lasted approximately
36 hours. Evaluating the model was more computationally demanding than
training the model. One training epoch took approximately four minutes,
while the evaluation took approximately 25 minutes. As a consequence of
this, we evaluated our model for every 15 epochs during training. We eval-
uated our model on both the test and the validation set. The evaluation
performance on the two splits were almost identical as seen in Fig. 5.3.

5.2 MalKG

We start by replicating the DocRED relation extraction model of MalKG.
When replicating, we use the hyperparameter combination reported in the
paper by Rastogi et al. (2021). When replicating the MalKG project, we
plot scoring metrics including precision, recall, and f1 score during training
of the relation extraction model in Fig. 5.4.

After around 150 epochs, the F1 score stabilizes at around 0.2. The
precision and recall score stabilizes at approximately the same value as the F1
score but with more fluctuating curves. Looking at the training performance
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Figure 5.3: Test and validation metrics of the best performing (TUC-405)
model. Test and validation metrics are almost identical.

Model Data Set Author Test F1 Score

DocRED MT3K
Ours 0.2291
Rastogi et al. (2021) 0.1367

Table 5.6: Relation extraction results of our replication compared with the
original results reported in the paper by Rastogi et al. (2021)

in Fig. 5.4, all training metrics quickly increase to a ”perfect” score which is
an indication of overfitting.

Unfortunately, no official results have been reported in the paper by Ras-
togi et al. (2021). However, we found results from training and testing the
model in the repository by Rastogi et al. (2021). We compare these results
with our replication results in Table 5.6. We see that our test F1 score of the
replication is higher than what we found in the repository by Rastogi et al.
(2021).

In Table 5.7 the results from our replication of entity prediction using
TuckER are shown. These results are compared with the reported results
from Rastogi et al. (2021) in the same table. We see that the replicated
results are much lower than the reported results.

The MT3K consists of around 3000 triples and the MT40K of around
40 000 triples, according to the paper by Rastogi et al. (2021). However, in
the repository by Rastogi et al. (2021) we found just about 2000 triples for
MT3K and around 15 000 triples for MT40K, indicating that some data are
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Epochs Epochs Epochs

Figure 5.4: Scoring metrics from training of MalKG relation extraction.
Training was run for a total of 984 epochs with best f1 score of 0.2291.

Model Data Set Author Hits@1 Hits@3 Hits@10 MR MRR

TuckER
MT3K

Ours 0.0315 0.0497 0.1275 916.0 0.0611
Rastogi 0.6430 0.7050 0.8121 7.6 0.6970

MT40K
Ours 0.2867 0.3172 0.3600 1832.1 0.3113
Rastogi 0.7390 0.759 0.804 202 0.7500

Table 5.7: Entity prediction using TuckER. Our replication results are com-
pared with the results reported in the paper by Rastogi et al. (2021).

missing.
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Discussion

6.1 MalKG

To increase our understanding of how we can construct a vulnerability knowl-
edge graph, we replicate MalKG. NER and RE are important components of
constructing a KG. Unfortunately, in the code by Rastogi et al. (2021), NER
was only applied to new unseen data, and no code implementation was pro-
vided of how training or evaluating the NER model is done. Regarding the
RE model, Rastogi et al. (2021) presents no official results in the paper, but
as opposed to NER, performance evaluation was implemented in the code
for RE. Rastogi et al. (2021) emphasize the entity prediction part of MalKG
the most. In Ch. 5 we experienced that our replication results for entity
prediction were far away the results presented by Rastogi et al. (2021). We
also experienced that the amount of provided data in the GitHub repository
for entity prediction was less than what was stated by Rastogi et al. (2021).
It is not unlikely that the missing data could be the reason for the expe-
rienced deviations between our results and the results provided by Rastogi
et al. (2021). For example, looking at MT40K, the original data set con-
tained 40 000 triples achieving a Hits@10 metric of 0.804 using TuckER on
the test data. On the other hand, our replication data set only contained 15
000 triples and achieved a score of 0.360 in Hits@10.

Insights from the paper by Rastogi et al. (2021) have still been helpful
for the construction of our KG, even if our replication work were not able
to reproduce the original results. Much of the terminology from vulnerabil-
ity descriptions and threat reports are similar such as vulnerable products,
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versions, and weakness terms. We have chosen to use the same approach for
entity prediction as was done in MalKG.

6.2 NER

We used the same model as Bridges et al. (2014) but our available data of
CVE records were larger. The python implementation of averaged perceptron
proposed by Bridges et al. (2014) is computationally demanding, therefore
we trained our model using only a random sample of 4000 out of the 150
000 CVE records in the full data set. Our performance was a bit lower than
what was reported by Bridges et al. (2014). For example, Bridges et al. (2014)
reported a score of 0.984 in F1-score compared to 0.940 for our domain model,
(second row in 5.1). Overall we believe the 4000 CVE records we used for
training represent the full data set well since the descriptions follow a certain
structure and contain similar entities. However, from Bridges et al. (2014)
they experienced increased performance with more training data. Bridges
et al. (2014) trained with 80 percent and tested with 20 percent of the data,
which would also be a preferable combination to our model. We believe our
performance could also increase with access to more training data.

To make the model training more efficient, Bridges et al. (2014) imple-
mented the model in OpenNLP. A challenge was that Bridges et al. (2014)
did not apply much implementation details of how this was done.

Gasmi et al. (2019) proposed different NER and RE models based on the
LSTM architecture and applied this to the NVD data. Gasmi et al. (2019)
reported a F1-score of 0.8337 applying NER for domain-labeling training on
data from 2010 to 2019. Gasmi et al. (2019) used an architecture based on
LSTM-CRF but their F1-score were approximately 0.1 less than ours. This
was despite the fact that Gasmi et al. (2019) used a much larger data set for
training. We thus confirm the statement made by Gasmi et al. (2019) em-
phasizing that feature engineered models outperforms more advanced models
like LSTM-CRF when applied to a structured data set like NVD.

Earlier in the theory we introduced the concept of encoding words in
numeric representations. Among the different types of word encoding were
word embedding. Word embedding is a feature learning technique (Raschka
and Mirjalili, 2019, Ch. 16) and is commonly used when training neural
network architectures based on RNN (Raschka and Mirjalili, 2019, Ch. 16).
In our work applying the averaged perceptron, word embeddings has not
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been used. The reason for this is how the feautres are given and how the
model learns optimal weights for these features.

6.3 Relation extraction

Initially our plan was to use a BiLSTM model for RE inspired by Rastogi
et al. (2021). The LSTM model has the ability to handle sequential data and
extract long range relationships (Raschka and Mirjalili, 2019, Ch. 16) which
could be beneficial when extracting relations between words.

Our replication work showed a performance score of this model of just
above 0.2 in F1-score. On the contrary, performance on standard data sets
has been reported to be twice as high (Yao et al., 8 09). In addition, we
did not have any labeled data or a labeling tool for relations similar to the
auto-labeling tool (Bridges et al., 2014) used for entities. As a consequence
of this, we started from scratch extracting some of the relations we believe is
most important in the CVE descriptions. By focusing on a few core relations
our hope is that we would get high precision, this approach was inspired by
how Bridges et al. (2014) constructed the auto-labeling tool.

As mentioned in Ch. 4, Gasmi et al. (2019) trained an LSTM-model of
data of CVE records from 2015 of NVD. A semi-supervised approach for
labeling the input data achieved a precision of 0.82. This data was then used
as input to the LSTM-model and achieved an F1-score of 0.943 (Gasmi et al.,
2019).

Jones et al. (2015) proposes a semi-supervised approach for labeling re-
lations which achived a precision of 0.82. Gasmi et al. (2019) first applies
the semi-supervised approach by Jones et al. (2015) for labeling relations.
Gasmi et al. (2019) then trains a LSTM model on the labeled data achieving
a F1-score of 0.943.

In our approach we do not have any labeled data of relations as ground
truth. Are results can thus not be compared with the work of Gasmi et al.
(2019) and Jones et al. (2015). For future work we plan to manually annotate
a sample of relations in order to measure the precision of the RE model.

Furthermore, we are interested in extracting additional relations from the
data. A single CPE vector contains multiple entities. These entities are all
related and include vendor, product, version and which OS the vulnerable
product are running on. For future improvements of our RE model, we could
utilize the CPE vector similarly as they have done in the auto-labeling tool
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by Bridges et al. (2014). We could then combine the auto-labeling tool with
our RE model labeling both relations and entities at the same time.

6.4 Entity prediction

TuckER has achieved state of the art performance of entity prediction on
standard data sets (Balažević et al., 2019). In particular, an important char-
acteristic of the model is its ability to capture 1-to-n, n-to-1 and n-to-n rela-
tions (Rastogi et al., 2021). The relation from vulnerable product to related
terms is an example from our data set of a 1-to-n relationship.

The results from entity prediction using TuckER is shown in Table 5.3.
The Hits@1 metric is 0.658 indicating that we are able to predict the correct
entity among all other entities in 65.8 percent of the time. The results we
achieve is below the results reported by Rastogi et al. (2021). We see for
example that they achieve a Hits@10 metric of 0.804 compared to 0.760 in our
case, however the gap between our results and the results by Rastogi et al.
(2021) increases for Hits@3 and Hits@1. Interestingly, our performance is
lower than Rastogi et al. (2021) despite training our model on a much larger
data set consisting of approximately 2 million triples compared to 40 000
triples in the MT40K data set from MalKG. Some particular challenges with
our data compared to Rastogi et al. (2021) is that it consists of all unique
CVE IDs. We suspect that these CVE IDs could be particularly hard for the
model to predict because of the level of granularity relative to the limited
discriminatory information. Regarding vulnerable versions, we suspect that
among 150 000 CVE records, many of the vulnerable versions of different
product are overlapping. Predicting vulnerable versions of a product could
thus also be challenging for our model.

6.5 An alternative approach

With our KG we can use entity prediction to find missing entities. This
includes predicting missing weakness types. As an alternative approach doc-
ument classification could be used to classify weakness types from vulnera-
bility descriptions. One could for example apply tf-idf to the vulnerability
descriptions, and then use the tf-idf scores as input to a machine learning
model for classification [Ch. 8](Raschka and Mirjalili, 2019).
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6.6 Future directions

Some future improvements have already been mentioned including ways of
improving the RE model. We are also interested on improving our KG by
extending the knowledge base. We could include data sources such as CWE
descriptions and CVSS scoring metrics. In addition, for open source projects
in the NVD, it could also be interesting to include commit messages, code
metrics and source code of vulnerability fixing commits. CVEfixes (Bhandari
et al., 2021) is an example of a relational database providing such multi-
granular vulnerability information.



Chapter 7

Conclusion

This work proposes a vulnerability knowledge graph constructed from CVE
records from the National Vulnerability Database. We explore the underlying
concepts and future opportunities focusing our work particularly on NER,
RE and entity prediction. For NER we use the current state of the art
model for cyber security entities. We propose a RE model based on specific
characteristics of the vulnerability descriptions which we believe could be
a starting point for future work. The last part of our framework uses a
knowledge graph embedding approach TuckER for entity prediction. We
benchmark our performance with MalKG which was proposed by Rastogi
et al. (2021) and uses the same approach, TuckER, for entity prediction on
threat reports. We experienced that our vulnerability knowledge graph does
not reach the same performance level as MalKG, however we believe our KG
have potential for future improvements. In particular the RE component of
our model could be extended to cover additional relations from the NVD .
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