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Abstract

Low lattice thermal conductivity is essential for high thermoelectric performance of a material. Lattice
thermal conductivity is often computed using density functional theory (DFT), typically at a high computa-
tional cost. Training machine learning models to predict lattice thermal conductivity could offer an effective
procedure to identify low lattice thermal conductivity compounds. However, in doing so, we must face the
fact that such compounds can be quite rare and distinct from those in a typical training set. This distinct-
ness can be problematic as standard machine learning methods are inaccurate when predicting properties
of compounds with features differing significantly from those in the training set. By computing the lattice
thermal conductivity of 122 half-Heusler compounds, using the temperature-dependent effective potential
method, we generate a data set to explore this issue. We first show how random forest regression can fail
to identify low lattice thermal conductivity compounds with random selection of training data. Next, we
show how active selection of training data using feature and principal component analysis can be used to
improve model performance and the ability to identify low lattice thermal conductivity compounds. Lastly,
we find that active learning without the use of DFT-based features can be viable as a quicker way of selecting
samples.
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1. Introduction

With their ability to convert heat to electricity,
thermoelectrics find use in several niche technologies
ranging from wine coolers, hiking stoves with mo-
bile phone chargers, and radioisotope thermoelectric
(TE) generators used to power e.g. the Curiosity
Mars rover. Thermoelectrics could also contribute
to reducing global greenhouse gas emissions through
waste heat recovery, but their role is currently limited
by the modest efficacy realized in devices [1, 2]. An-
other limitation is the fact that several state-of-the-
art TE materials contain toxic or rare elements [3, 4].
Finding new TE materials has therefore gathered
much scientific interest in recent years [5].

The efficiency of TE materials is conventionally
given by the dimensionless figure of merit, which is
expressed as ZT = σS2T/(κe + κ`), where σ is the
electrical conductivity, S is the Seebeck coefficient,
T is the absolute temperature, κe is the electronic
thermal conductivity, and κ` is the lattice thermal
conductivity. High ZT requires both a high power
factor, P = σS2, and low total thermal conductivity.
In non-metals, κ` is typically much larger than κe,
but in heavily doped semiconductors, κ` and κe can
be more comparable in size [6, 7]; nonetheless, a low
κ` is still typically needed for achieving high ZT .

High-throughput screening based on first-principle
calculations have in recent years been much used
in the search for new TE materials [8–14]. Many
studies focus on electronic properties and use sim-
ple models or estimates of κ`. One reason for this
is that computing κ` comes at a significant compu-
tational cost. The cost arises because accounting
for the phonon-phonon interactions due to the an-
harmonicity of the lattice vibrations requires obtain-
ing third-order force constants extracted from a large
number of supercell-based density functional theory
(DFT) calculations [15–17]. For this reason, machine
learning (ML) methods are increasingly supplement-
ing first-principles based calculations for predicting
κ` [18–25]. Pre-trained ML models can in turn also
be made available in convenient web-based applica-
tions [26].

The half-Heusler (HH) compounds are a class of
cubic compounds with three atoms in the primitive

cell, belonging to the F 4̄3m spacegroup. As shown in
Fig. 1, the XZ sublattice forms a rocksalt structure,
while the Y Z sublattice forms a zinc-blende struc-
ture [27–29]. Several HH compounds have a high
power factor in combination with relatively low κ`,
making HHs attractive for TE applications [8, 13, 30–
36]. Recently, Feng et al. [37] used DFT-based
calculations to show that the four HH compounds:
CdPNa, BaBiK, LaRhTe, and LaPtSb have very low
κ`. LaPtSb and BaBiK also have promising elec-
tronic transport properties in addition to low κ` and
could have a ZT competitive with top performing
TE materials [38–40]. Because κ` of these four com-
pounds is much lower than for typical HHs, the set
of HH compounds presents itself as a dataset well
suited for investigating ML methods to separate low
and high κ` compounds. The high symmetry of HHs
also reduces the computational cost of calculating κ`
compared to more complex systems such as layered
compounds and compounds with distorted symme-
tries [41–43]. The reduced cost allows us to generate
both training and test sets for assessing κ`.

Our study is based on 122 HH compounds
for which κ` is computed explicitly using DFT.
The compounds are based on a combination
of dynamically stable HHs, 54 from groups 4-
9-15 (Ti,Zr,Hf)(Co,Rh,Ir)(As,Sb,Bi), 4-10-14
(Ti,Zr,Hf)(Ni,Pd,Pt)(Ge,Sn,Pb), and 48 HHs from
groups 5-8-15 (V,Nb,Ta)(Fe,Ru,Os)(As,Sb,Bi) and
5-9-14 (V,Nb,Ta)(Co,Rh,Ir)(Ge,Sn,Pb). The last 20
HHs are the remaining stable compounds studied by

X
Y
Z

Fig. 1: The HH crystal structure, displayed as the unit cell.
The primitive cell is made from the three atoms X, Y , and Z.
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Feng et al. [37], based on a revision of the 75 stable
HHs identified by Carrete et al. [18].

2. Methods

2.1. Lattice thermal conductivity

DFT calculations in this work are done with the
VASP [44–46] software package using the Perdew-
Burke-Ernzerhof (PBE) generalized gradient approx-
imation for solids, PBEsol [47, 48]. The plane-wave
energy cutoff is set to 600 eV. For relaxations, we
use an 11 × 11 × 11 k-point sampling of the Bril-
louin zone. The electronic self-consistent loop is iter-
ated until the energy difference falls below 10−6 eV,
while ionic positions are relaxed until forces fall be-
low 1 meV/Å. The lattice thermal conductivity, κ`,
is calculated with the temperature-dependent effec-
tive potential (TDEP) method [16, 49], taking into
account three-phonon and isotope-phonon scattering
[50, 51]. Fifty configurations based on 3× 3× 3 repe-
titions of the primitive cell are used to obtain second-
and third-order force constants. The atomic config-
urations are taken from a fixed-temperature canoni-
cal ensemble at 300 K, where the zero-point motion
of the phonons is matched with the Debye tempera-
ture [52]. The Debye temperature is obtained from
the Voigt approximation of the bulk and shear mod-
uli [53]. A 3 × 3 × 3 k-point grid is used for the
supercell DFT force calculations. We employ a cut-
off for second-order pair-interactions of 7 Å while for
third-order pair-interactions, the cutoff is set slightly
larger than half the width of the supercell (i.e. 6.1 Å
for NbCoGe). For the calculation of κ`, the recipro-
cal space is discretized on a 35×35×35 q-point grid.
In a convergence study for NbCoGe, we find these
cutoffs to give a numerical error of κ` less than 3 %.

2.2. Machine learning model

Random forest (RF) regression is a non-linear ML
method used in industry and academia alike [54]. An
ensemble of decision trees forms the RF model, where
each tree is trained on a subset of randomly cho-
sen features and training samples. This randomness
makes RF less prone to overfitting. RF has been

shown to perform well in earlier ML studies involv-
ing the lattice thermal conductivity [23]. In the RF
regression, a given input sample is sorted in each of
the decision trees based on its features, so that in a

given tree, the sample is assigned to a κ
{i..}
` in the

training set. Finally, the predicted outcome is given

by the mean 〈κ{i..}` 〉 of the predictions of the ensemble
of decision trees.

In ML, failing to identify key features can re-
sult in overfitting and reduce method interpretabil-
ity [55, 56]. Feature selection is here performed us-
ing exhaustive feature selection (EFS) in combination
with RF regression. EFS assesses the predictive per-
formance of every subset of extracted features and
finds the features that give the best outcome of a
chosen performance metric. We here choose to use
Spearman rank correlation as the metric with five-
fold cross-validation, as this correlation measures the
predicted ranking of compounds. This brute-force
approach carries a significant computational cost, but
with the limited number of features in our study, this
cost is small compared to that of computing κ`. EFS
is done with the MLxtend [57] code, while RF re-
gression is done using Scikit-learn [58]. In the RF
model, the hyperparameters of each set of features
are optimized using a hyperparameter grid search.

87 
half-Heusler 
compounds

Training set 1
40 compounds

Feature
selection

Sampling
unique

training sets

Training set 2
40 compounds

Training set 10
40 compounds

RF model 1

RF model 2

RF model 10

Test set with 
low

conductivity
materials.

35
compounds

Fig. 2: Flowchart for building the baseline model.

Fig. 2 shows a flowchart for the baseline model.
In the model, 87 of the 122 compounds are semi-
randomly selected as the training pool for ML, while
35 are left out to provide a test set for model assess-
ment. By semi-randomly, we refer to the fact the five
lowest κ` compounds are in the test set. We make this
choice to emulate a not too improbable scenario that
could easily arise for larger material classes when only
modest-size training sets are used. From the training
pool, 10 unique training sets of 40 compounds are se-
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lected randomly. The models are retrained based on
the features obtained with EFS for final model eval-
uation. Our baseline model predictions are given by
the average of the predictions of these 10 RF models.

In the active sampling scheme, we use principal
component analysis (PCA) with the hoggorm [59]
package to identify compounds possessing combina-
tions of feature values that are distinct from those in
the training pool. PCA accounts for correlations be-
tween features by constructing orthogonal principal
components (PC) as linear combinations of feature
vectors in feature space. The PCs are oriented in the
direction of maximum variance and the features are
centered and scaled to unit variance. The PCA anal-
ysis is based on all compounds in the study. Using
PCA, we identify three compounds, BaBiK, CdPNa,
and LaPtSb, that are needed to cover the feature
space mapped out by the first two PCs. These three
are subsequently included in the training sets from
the baseline model, such that the 10 training sets
for the active sampling model contain 43 compounds
that are used with RF and EFS.

Our study is based on 14 features: 9 are tabu-
lated while 5 are obtained from lost-cost DFT cal-
culations. Two of these, the volume of the relaxed
primitive unit cell, V , and corresponding mass den-
sity, ρ, could in principle have been obtained from
typical tabulated data, standard experiment, or in
the absence of such data, from ML models [60–
62]. The tabulated features together with V and
ρ are grouped as the easily available tier-0 fea-
tures. Tabulated features are as follows: the ra-
tio between the lightest and heaviest atoms in the
primitive cell [63], mr, the average atomic mass,
ma, the standard deviation of the atomic masses,

ms = 1/3
(∑

i=X,Y,Z(mi −ma)2
)1/2

, as well as cor-

responding features for the electronegativity [64], χ,
and covalent atomic radius [65], r. The remaining
three, which together with the tier-0 features consti-
tute the tier-1 features, are the lattice thermal con-
ductivity in the Slack model [66], κs, the Debye tem-
perature, θD, and the bulk modulus, B. These three
are related to the elastic tensor [67], and are hence the
most time-consuming features to generate. Sections
4.1 through 4.3 are based on tier-1 features, while

Section 4.4 compares the ML performance of models
based on tier-0 and tier-1 features.

Higher-order features beyond what we consider,
such as the three-phonon scattering phase space, ef-
fective spring constants, and first moment frequencies
from the phonon density of states [18, 37, 68], can im-
prove the predictions of the ML model, but we here
limit ourselves to features that are based on prop-
erties that one can expect to be continuously added
in material databases such as the MaterialsPro-
ject [69]. Therefore, using such simple features sup-
ports a methodology that can later be adopted for
screening of larger material databases.

3. Results: Density functional theory calcula-
tions

3.1. Lattice thermal conductivity of half-Heusler
compounds

Fig. 3 shows the lattice thermal conductivity cal-
culated with TDEP, κTDEP

` , at 300 K, 500 K, and
700 K for the 122 HHs. Appendix A: Table A.1 re-
ports κTDEP

` at 500 K. At 500 K, the span of κTDEP
`

goes from 0.85 W/mK (LaPtSb) to 23.45 W/mK
(LiBSi). Compounds with heavy atoms on the
X- or Z-site, such as La, Ba, Bi, and Pb, or
with high average mass, typically have lower κTDEP

` .
The correlation between lattice thermal conductiv-
ity and the average mass has been observed for ex-
perimental lattice thermal conductivity with com-
pounds across different spacegroups [20]. The order-
ing of the five lowest κTDEP

` materials from low to
high κTDEP

` is consistent with the findings of Feng
et al. [37]. The Vanadium-containing compounds
VRuBi, VFeBi, VIrPb, VOsBi, VRhPb, and VCoPb
have negative phonon frequencies and are not stud-
ied further. The two latter have previously been pre-
dicted to decompose into elemental phases [70].

In the following, the ML models are based on
κTDEP
` at 500 K, which also indicates low lattice ther-

mal conductivity at 300 K and 700 K.
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Fig. 3: κTDEP
` for the HHs at 300 K (blue bars), 500 K (turquoise bars), and 700 K (red bars).
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Fig. 4: (a) Scatter plot for the compounds, with V on the
horizontal axis and B on the vertical axis. (b) PCA plot for
the compounds using tier-1 features. The first PC is shown on
the horizontal axis and the second is on the vertical axis. The
blue convex hull is the area of the PC space spanned by the
87 materials in the training pool, while the orange convex hull
is the area spanned with inclusion of the test compounds.

4. Results and discussion: Machine learning

4.1. Using principal component analysis for diversi-
fying training sets

Fig. 4 (a) shows the position of the compounds in
the space spanned by V and B, two features which
are known to correlate with the lattice thermal con-
ductivity [18, 20, 71]. In general, low V materials

tend to have less compressed acoustical phonon band
structures, increasing the phonon group velocity [72]
and thus also the lattice thermal conductivity. Higher
B can also be related to stiffer atomic bonds and
increased phonon velocities. This is reflected in a
Spearman correlation of −0.69 between κTDEP

` and
V and 0.58 between κTDEP

` and B for the compounds
in the training pool. The plot shows that some of the
compounds in the test set fall outside the convex hull
spanned by V and B of the compounds in the train-
ing pool. Including such outliers in the training sets,
could result in more accurate ML predictions. How-
ever, as B and V also have a Spearman correlation
of −0.51, —i.e. higher V tend to relate to less stiff
bonds and thus lower B — solely relying on these two
features could risk missing important compounds and
correlations. This motivates the use of PCA, which
offers a more systematic procedure to take all features
and their correlations into consideration.

Fig. 4 (b) indicates the position of the compounds
of the test set and training pool in the subspace
spanned by the two first PCs. This subspace accounts
for 56.0 % of the cumulative explained variance (EV)
of the feature space. Mapping these two features back
to the original feature space, we find the cumulative
explained variances of V and B to be 78.6 % and
77.2 %. A comparison of the two convex hulls shows
that the low κ` compounds lie outside of convex hull
spanned by the training pool.

While PCA can support a human-guided selection
of training sets, we choose to formalize this in a sys-
tematic procedure that is better suited for automa-
tion of the active sampling. The specific compounds
to be included are determined iteratively by identify-
ing the compound in the test set with the largest Eu-
clidean distance in the PC space to the closest com-
pound in the current training pool until a marked
drop in distance arises. The procedure identifies that
three additional compounds, BaBiK, CdPNa, and
LaPtSb, should be included in the training process.
These compounds are highlighted with red circles in
Fig. 4, and Fig. 7 shows the distance in PC space
after each iteration.
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4.2. Exhaustive feature selection analysis

Fig. 5 compares the EFS feature selection fre-
quency of the baseline and active sampling ML mod-
els. The baseline and active sampling models use on
average 5.7 and 5.9 features out of the 14 potential
features, respectively. The relatively few features se-
lected is in line with the recent results of Miyazaki
et al. [60] finding that using a limited subset of fea-
tures gives the best ML performance, which can be
linked to the fact that redundant features can cause
overfitting. In both the baseline and active sampling
models, B and V are the most frequently selected
features, in agreement with their high Spearman cor-
relation with κTDEP

` .

There are some notable differences between the
EFS for the active sampling model and the base-
line model. In particular, the selection frequency
of ms increases from 0.3 to 0.6 for the active sam-
pling model. This result reflects that the variation
of masses in the primitive cell is linked to low lattice
thermal conductivity, such as for BaBiK. The selec-
tion frequencies for κs and B also increase for the
active sampling model.

Table 1: Performance metrics for predicting log(κTDEP
` ) for

the 32 test compounds using the active sampling and baseline
models. The metrics are: R2-score, root-mean-square error
(RMSE), Spearman correlation, and Pearson correlation. The
standard deviations are in parenthesis.

Active Baseline

R2 0.84 (0.03) 0.36 (0.13)
RMSE 0.21 (0.02) 0.43 (0.04)
Spearman 0.85 (0.04) 0.79 (0.07)
Pearson 0.93 (0.02) 0.64 (0.09)

4.3. Enhanced machine learning performance with
active sampling

Fig. 6 (a) compares the predictions of the base-
line model and the active sampling model on a log-
arithmic scale as used in the training. The error
bars indicate the standard deviation of the predic-
tions of the 10 models. The figure shows that the
active sampling model has a superior ability to iden-
tify the compounds with low κTDEP

` . Predictions for
the three compounds found with PCA, highlighted
with red circles, are not provided for the active sam-
pling model as they are included in the training sets of
the model. Fig. 6 (b) shows the corresponding com-
parison with a linear scale, with compounds sorted
according to κTDEP

` . In most of the cases, the ac-
tive sampling model predictions, κAS

` , are higher than
κTDEP
` for low κTDEP

` compounds, and vice versa for
high κTDEP

` compounds. This is also seen in the log-
arithmic scale of Fig. 6 (a). Even if the numerical
precision of the active sampling model for the com-
pounds with low κTDEP

` is quite modest, which can
be linked to the limited sampling in this region of fea-
ture space, the model identifies the compounds with
the lowest κTDEP

` . Appendix A: Table A.1 provides
the numerical values of κTDEP

` and κAS
` at 500 K.

Table 1 summarizes various performance metrics
of the ML models. The baseline model predictions,
log(κBL

` ), has a Spearman correlation of 0.79 with
log(κTDEP

` ), which is larger than the correlation of
Carrete et al. [18] of 0.74. Their model is based on
fewer training samples, but more complex features.
However, even though the Spearman correlation met-
ric is fair and the low κTDEP

` compounds do tend
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b) Corresponding comparison for κTDEP

` . The turquoise bars

indicate κTDEP
` at 500 K.

to be in the lower end of the spectrum of log(κBL
` ),

the model fails to differentiate between the truly low
κTDEP
` compounds and the rest. The Spearman cor-

relation of the active sampling model increases to
0.85. The superior ability of the active sampling
model to predict properties of compounds with low
κTDEP
` results in improvement of the other perfor-

mance metrics as well.
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and purple shows the results for tier-0 features. The green
line indicates the point at which we stop the inclusion of more
compounds.

4.4. Machine learning at tier-0 level

The need for DFT-level input can be a drawback of
using tier-1 features, as in some cases, experimental
or calculated lattice constants are known while elas-
tic tensors or bulk moduli are lacking. Thus, to un-
cover the potential of ML based on simpler features,
we compare compound sampling and ML using tier-0
and tier-1 features. PCA-based active sampling with
tier-0 features identifies the same three compounds
as found earlier, as shown in Fig. 7 and Fig. 8 (a).
We allow for LiZnSb to be in the test set in this case,
even though the drop-off in PC distance is less steep,
as it allows for direct comparison of ML performance
when using tier-0 and tier-1 features.

Fig. 8 (b) compares the EFS selection frequencies
of the active sampling models with tier-0 and tier-
1 features. The average number of features chosen
in the EFS for the active sampling model (tier-0) is
4.7, and increased selection frequencies are seen for
χa and rs.

Fig. 8 (c) shows that the active sampling model
(tier-0) identifies the lowest κTDEP

` compound, but
fails to differentiate the second and third lowest from
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Fig. 8: (a) PCA plot for the compounds using tier-0 features.
The horizontal axis shows the first PC while the vertical axis
shows the second. (b) Selection frequencies from the EFS us-
ing RF regression for the active sampling models using tier-0
and tier-1 features. (c) Predicted and TDEP lattice thermal
conductivity using active sampling models based on tier-0 and
tier-1 features.

the rest. This model has weaker predictivity overall
compared to the active sampling model (tier-1), with
an R2-score of 0.73 and Spearman correlation of 0.78.
Despite that tier-0 features are used, the active sam-
pling model (tier-0) outperforms the baseline model,
underlining the importance of sample selection.

We also note that pre-sampling using PCA with
tier-0 features could be used for pruning the test set.
This can be done by excluding compounds that lie
close to or within already sampled compound clus-
ters in PC space. This would reduce the number of
compounds in the test set, and thus reduce the com-
putational resources needed for calculating the tier-1
DFT features.

While the performance gain when using more com-
plex features and larger training sets has been demon-
strated in earlier studies [20–23, 60, 73–75], this work
demonstrates that using rather modest training set
sizes and low feature complexity can give reliable pre-
dictions by adopting active sample selection.

On a cautionary note, the use of semi-random se-
lection rather than truly random selection accentu-
ates the performance gains when doing active sam-
pling. We also find that only including one or two
of the low lattice thermal conductivity compounds
in the models significantly reduces performance com-
pared to including all three. Performance with a truly
random model would hence be sensitive to exactly
which training samples are selected. In any case, a
key advantage of PCA is that when used in the pro-
cess to include additional HH compounds, we have
a procedure to identify whether the properties of a
given compound can be predicted reliably.

4.5. Comparison with experiments

Computed and predicted lattice thermal conduc-
tivities do not always agree perfectly with that of ex-
periments. For comparison, the κTDEP

` for NbCoSn
and ZrNiSn of 12.2 W/mK and 10.8 W/mK are
higher than lattice thermal conductivity measured in
experiments: 7.0 W/mK [76] and 8.7 W/mK [77]
for NbCoSn; 5.4 W/mK [78] and 6.1 W/mK [79]
for ZrNiSn. Predictions made by the active sam-
pling model (tier-1) for NbCoSn and ZrNiSn are 13.4
W/mK and 12.0 W/mK, respectively, when trained
on calculated data. At the current level of theory,
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the difference between the ML predictions and TDEP
lattice thermal conductivity is therefore much lower
than that of experiment and theory. Sample depen-
dent phonon scattering mechanisms due to physical
properties such as grain boundaries, intrinsic disor-
der, and antisite defects can drastically reduce lattice
thermal conductivity [79–85], and can explain why
experimentally measured lattice thermal conductiv-
ity is lower than predictions when computed lattice
thermal conductivity only includes three-phonon and
isotope scattering. Including such scattering mecha-
nisms in the calculated lattice thermal conductivity
can give values closer to that of experiment [81, 86],
which future studies should contemplate including in
ML training for making models more representative
of the lattice thermal conductivity of real-world sam-
ples.

5. Summary and conclusion

This study has explored strategies for using ma-
chine learning for finding low lattice thermal conduc-
tivity compounds using a limited number of training
samples. Moreover, rather simple features were used,
which can be found directly in material databases
or computed straightforwardly. The exploration was
made possible by computing lattice thermal conduc-
tivity with the temperature-dependent effective po-
tential method for 122 half-Heusler compounds. We
first demonstrated how a model based on a semi-
random pool of materials (i.e. assumed ”bad luck”
in the training set) was unable to separate the truly
low lattice thermal conductivity compounds in the
test set from the rest. To improve the model, we
used active sample selection based on principal com-
ponent analysis. This approach suggested three com-
pounds to be included in the training process. The
subsequent inclusions resulted in a substantial im-
provement of model performance, in particular the
ability to identify the remaining low lattice thermal
conductivity compounds in the test set. Active sam-
ple selection without density functional theory-based
features also identified necessary compounds to in-
clude in the model, but excluding the features in the
model training resulted in weaker predictivity.

Our study demonstrates how active sampling can
improve machine learning predictivity by accurately
predicting properties of compounds dissimilar from
the typical ones in a material class. More narrowly,
we expect the procedure outlined here to be adopted
to study broader classes of materials to systemati-
cally identify new low lattice thermal conductivity
compounds.

6. Data availability

The data forming the basis of this study is available
from the authors upon reasonable request.
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Appendix A.

Table A.1 shows κTDEP
` for the HH compounds.

Predictions made with the active sampling model
(tier-1) are in the parenthesis.
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Table A.1: Calculated κTDEP
` at 500 K for the HHs. The 32 compounds in the final test set are highlighted with bold text,

and predictions made with the active sampling model (tier-1) are in parenthesis.

κ` [W/mK] κ` [W/mK] κ` [W/mK] κ` [W/mK]

LaPtSb 0.85 ZrPtGe 8.27 ZrCoBi 11.54 (10.41) TaCoGe 15.47
LaRhTe 1.11 (1.79) TiPdSn 8.42 NbIrSn 11.57 (11.13) VRuAs 15.52
BaBiK 1.99 NbRuBi 8.70 (8.18) HfCoAs 11.64 TiPdGe 15.78
CdPNa 2.58 TiPtSn 8.88 TiRhSb 11.72 GaNiNb 15.88 (14.65)
LiZnSb 3.76 (4.92) HfIrAs 9.04 HfRhAs 11.76 NbOsAs 15.95
TaIrPb 5.20 ZrNiPb 9.10 (10.37) TaIrSn 11.84 SiCoTa 16.28
TiPtPb 5.43 VOsSb 9.12 NbOsSb 11.86 VRhGe 16.57 (15.54)
BiPdSc 5.44 (5.92) AlSiLi 9.18 ZrRhSb 11.89 VCoGe 16.58
BiNiY 5.46 ZrPtSn 9.20 (9.32) HfCoBi 12.11 (10.20) TaRuAs 16.60
HfPtPb 5.48 HfPdSn 9.32 NbCoSn 12.23 GaPtTa 16.75
HfPdPb 5.86 VRuSb 9.32 TaFeBi 12.40 VOsAs 16.82
TaOsBi 5.90 ZrPdSn 9.37 HfCoSb 12.48 TaRhGe 16.85
TiPdPb 5.94 AsNiSc 9.46 ZrNiGe 12.48 VIrGe 16.95 (15.76)
TaRhPb 5.95 TaCoPb 9.66 (12.55) NbRuSb 12.52 GeFeW 17.07
NbIrPb 6.07 NbRhSn 9.92 (11.44) TiIrSb 12.73 (10.35) TaFeSb 17.10 (14.85)
ZrPtPb 6.50 (6.48) NbCoPb 9.95 TaRuSb 13.12 (11.83) AlAuHf 17.11
HfIrBi 6.58 HfNiPb 9.96 (9.96) TaCoSn 13.38 NbIrGe 17.21
ZrPdPb 6.59 (6.42) HfPtSn 9.98 VFeSb 13.40 TiRhAs 17.52 (14.06)
TiIrBi 6.68 HfPdGe 10.28 HfIrSb 13.65 TaOsAs 18.09
ZrIrBi 6.88 (6.62) TiNiSn 10.50 (13.83) TeFeTi 13.82 TiCoBi 19.10
BiNiSc 6.97 ZrNiSn 10.84 (12.00) TiCoSb 13.90 (13.87) NbCoGe 19.37
HfRhBi 7.00 ZrIrSb 10.97 TiNiPb 13.91 TaIrGe 19.57
VIrSn 7.01 ZrPdGe 10.98 ZrCoAs 13.91 (13.97) TiCoAs 19.92
TaRuBi 7.02 (7.58) HfPtGe 11.08 TiIrAs 14.12 NbRuAs 20.21
VRhSn 7.11 TeRuZr 11.11 ZrCoSb 14.29 NbCoSi 20.31
ZrIrAs 7.20 (10.76) HfNiSn 11.29 TiPtGe 14.34 NbRhGe 20.63
NbRhPb 7.21 VCoSn 11.30 ZrRhAs 14.54 NbFeAs 22.20
NbOsBi 7.26 TaRhSn 11.37 TiNiGe 14.78 (16.15) VFeAs 22.60
ZrRhBi 7.33 NbFeBi 11.40 NbFeSb 15.00 LiBSi 23.45
AlGeLi 7.68 HfNiGe 11.41 (13.41) TaFeAs 15.12 (16.37)
TiRhBi 7.85 HfRhSb 11.49 TaOsSb 15.16 (12.16)
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