
Master’s Thesis 2021    60 ECTS
Faculty of Biosciences

Wheat Trait Prediction Using UAV

Henrik Lassegård
Bioinformatikk og anvendt statistikk



i



Acknowledgements

I would like to thank my supervisor Morten Lillemo and co-supervisors Tomasz Mroz and 

Sahameh Shafiee for interesting field work and for helping me write this thesis

ii



Abstract 
Phenotyping is a major bottleneck in breeding programs or crop-related field experiments. 

Development of high throughput phenotyping (HTP) methodologies holds promise of 

mitigating this shortcoming and providing applications capable of non-destructive and rapid 

recording of accurate phenotypes at large scales.

In this work, three field experiments consisting of 300, 24 and 16 spring wheat varieties, 

respectively, were planted at Vollebekk research station in field season 2021 and phenotyped 

with DJI Phantom 4 drone across the growing season.

Two sets of images captured by an unmanned aerial vehicle (UAV) at nominal altitudes of 20 

and 8 meter above ground were used to estimate plot heights and model heading status of the 

plots by texture properties of the images. The estimated traits are compared with manually 

collected ground truth measurements to see whether the traits can be accurately described. 

One set of images was captured from at a 75 degree angle and used for generating digital 

surface models (DSM). The second set of images was captured at nadir and used to investigate 

how texture properties of the images relate to the heading process of the plots. 

Digital surface models (DSM) produced by Pix4D were used to estimate a terrain model which

is used to produce estimates of the heights of the wheat plots. The estimated plot heights were 

compared to manual plot height measurements to assess the accuracy of the estimates. The 

DSMs were also used to provide altitude values for three-dimensional models of the plot 

surfaces.

A dataset of uniform images depicting surfaces of known plots at known times was created 

from drone images calibrated and undistorted by Pix4D. Grey level co-occurrence (GLCM) 

texture features were extracted from the dataset and a logistic regression model used to assess 

the features’ ability to discriminate heading status of the plots.
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1 Introduction
Currently, it takes 10-15 years from the first cross to produce a new variety/cultivar ready to be 

released on the market. Considering climate change, this delay becomes increasingly 

problematic. When environmental fluctuations from season to season becomes more severe and

unpredictable, long lasting breeding programs will struggle to keep up. On top of this, 

increased food production is needed for a growing population. The need for accelerated genetic

gains in crops is being recognized worldwide and is, alongside reducing the environmental 

impact of agriculture, one of two main aims of EUs’ agricultural policies (The Common 

Agricultural Policy at a Glance, u.å.).

New plant varieties are created by crossing parents with favorable characteristics and screening

the offspring for individuals with favorable phenotypes. Progress in breeding relies on several 

factors, but most importantly on selection intensity, selection accuracy, heritability of the target 

trait, genetic variance of the target trait in breeding material and the length of generation 

interval. This relationship is empirically described as the “breeders’ equation”:

ΔG=h2 S=
i⋅r⋅σA

L

Where ΔG is the genetic gain, h2 is the narrow sense heritability, S is the selection differential 

between selected parents and parent population, i is the selection intensity, r is the selection 

accuracy, σA is the genetic variance and L is the length of generation interval (Lush, 1937).

Genetic gains can be increased by shortening the generations interval (L) by breeding in 

multiple climatic zones. Countries spanning several climate zones, for example Mexico, may 

have access to two wheat growing seasons per year, which would reduce L of spring wheat by 

half, effectively doubling genetic gains. It is also a common practice for large, international 

breeding companies to conduct their field trials in multiple locations worldwide. However, as 

those environments can be fundamentally different, this strategy severely limits the ability to 

breed for a specific target niche, which is often desired in smaller and local breeding programs.

Another approach to reduce L is “speed-breeding”. It uses controlled-conditions chambers with

long days (up to 22 hours) and optimal temperature to achieve up to six generations of wheat, 

barley or chickpea per year, compared to one generation under field conditions or up to three 
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generations in a traditional glasshouse with 12/24 days. This method holds great promise for 

drastically reducing L and thereby increase genetic gains. Unfortunately, it is quite costly, and 

currently only available to organizations with enough resources to invest in such advanced 

technology. There is also an ongoing debate about the correspondence of the data from speed-

breeding nurseries to “real-world” conditions, which are the ultimate target for any crop variety

(Watson et al., 2018).

Gene-editing methodologies can be used to override the natural sources of variability in a trait 

of interest. They replace recombination mechanisms with gene-specific edits, yielding 

immediate changes in a trait of interest (Jung et al., 2018). However, since gene- edited crops 

are regulated as genetically modified  organisms (GMO) under the  current EU legislation, the  

technology is currently not being used to develop new varieties in Europe (Turnbull et al., 

2021).

Phenotyping is a major bottleneck in any breeding program or crop-related field experiment; 

genetic gains are contingent on the accuracy of phenotyping and the genetic variance of the 

breeding pool. Phenotyping is traditionally done by human observers taking notes in the field, 

thus rate limited by the human resources available and prone to human bias and subjectivity.

Recent rapid advancements, cost reduction and popularization of modern data acquisition tools 

(drones, robots, and cameras) and data analytics (machine learning, deep learning) hold 

promise to mitigate those shortcomings by developing high-throughput phenotyping (HTP) 

methodologies.

In recent years, unmanned aerial vehicle (UAV) imagery has successfully been used to predict 

numerous important crop traits such as grain yield (Duan et al., 2019; Maimaitijiang et al., 

2020; Shafiee et al., 2021; Suab & Avtar, 2020; X. Zhou et al., 2017), above-ground biomass 

(Han et al., 2019; Li et al., 2020; Lu et al., 2019), plant height (Hassan et al., 2019; Tirado et 

al., 2020), maturity date (Trevisan et al., 2020; J. Zhou et al., 2019), crop emergence (Lu et al., 

2019) to name but a few. 

Phenotypes obtained using HTP are often more accurate and replicable (yielding higher 

heritability) than manual ones, for instance in winterkill estimation (Shafiee et al., in 

preparation). The drastically increased phenotyping capacity and lack of human-generated error

introduced by HTP commits to increase accuracy (r) and possible size of breeding 
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trials/experiments (σA), thereby boosting genetic gains significantly while still maintaining 

affordability. However, HTP methodologies developed for trait estimation/prediction are in 

many cases still not mature enough to be applied in commercial breeding programs.

Applications of UAVs for phenotyping usually leverage their easy access to multiple 

viewpoints of some object of interest to create spatial models not easily obtained by other 

means. These might include reflectance maps and digital surface models (DSM) of a field. The 

generation of maps from images depends on photogrammetric methods for aligning the 

imagery, constructing three-dimensional representations of the contents in them and stitching 

them to a more or less seamless map. For accurate georeferencing, the image alignments can be

anchored to ground control points (GCP) of known exact locations.
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2 Research objectives
The objectives of this work are: (1) to develop a pipeline for estimating plant height using UAV

imagery, (2) to improve the pipeline by estimating a digital terrain model based on multiple 

phenotyping missions, (3) to investigate the height models relationship to the ground truth with

statistical metrics (4) to investigate the effect of crop canopy density on the accuracy of plant 

height estimates using UAV imagery and (5) to investigate if heading stage can be reliably 

estimated using RGB imagery. This work has focus on the technical aspects of the UAV 

phenotyping data analysis.

For research objectives (1), (2), (3) & (4), estimates of wheat plot heights were extracted from 

drone imagery and compared with ground truth (manual) measurements. A new pipeline for 

digital terrain model was developed using multiple flight missions throughout the growing 

season. Several percentiles of the models, ranging from median to max were screened for their 

correspondence with the ground truth estimates and viewed in light of canopy densities.

For research objective (5), a novel pipeline for extracting plot-level standardized images of 

crop canopies was developed based on low altitude RGB UAV imagery. Grey-level co-

occurrence matrix (GLCM) was used to extract a number of features for each image. Those 

features were next used to construct a model to predict heading stage in spring wheat.
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3 Methods

3.1 Field trials
Wheat trials were conducted during the summer of 2021 at Vollebekk Research Station (Ås, 

south-eastern Norway, 59 39’N, 10 45’E). Several fields with different compositions of wheat ⁰ ⁰

varieties were included in the trials. Data from three of them are used in this thesis: 24 

historical cultivars released in Norway between 1972 and 2019 (referred to later as the robot 

field), 16 cultivars used in the NobalWheat project nitrogen use efficiency trial (referred to later

as NobalNUE) and a panel of 300 current and historical spring wheat varieties (referred to later

as MASBASIS).

Field trials were sown on the 23rd, 23rd and the 19th of April 2021 for Robot, NobalNUE and 

MASBASIS trials, respectively.

In the robot and NobalNUE fields, two rates of 75 kgN∙ha-1 and 150 kgN∙ha-1 of compound 

NPK fertilizer (YaraMila 22-3-10) were applied to different parts of the fields before sowing to 

evaluate the effects of fertilization rates on yield performance and physiological traits. This 

fertilization treatment has no detectable effect on heading date, a positive effect on canopy 

density and a small positive effect on plant height (Mroz et al., under review). The extra 

variability introduced by the fertilization treatment was used to increase the variance of plant 

height and to evaluate the influence of canopy density on plant height estimation using drone 

imagery. 

In robot and NobalNUE the final plot sizes were 1.5m x 6.5m and in MASBASIS, 1.5m x 5m. 

The seeding rate was approximately 25g of seeds per m2. After germination, alleys between the 

plots were sprayed with glyphosate. 

All the trials were managed according to local practice to keep the fields free of weeds and 

fungal diseases. 
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3.1.1 Ground truth measurements
The ground truths for plot height and heading date were manually measured for each plot. 

The heading date for a plot was defined as the date when heads had emerged in half of the 

plants in the plot and was judged visually in the field.

Plot heights were recorded shortly after anthesis, on July 9th, when the plants had reached their 

final heights, with except for parts of MASBASIS, which were measured July 12th. The heights 

were recorded as the average height of three to five bundles of fertile stems measured from soil

bed to the top of the spikes (excluding awns) with a meterstick.

3.2 Image acquisition
All the images used here were captured from a DJI Phantom 4 (original) with a DJI FC330 

camera1 Flight paths used for capturing the images were made in DJI GS Pro, running on an 

iPad (Figure 1 shows the interface of similar app).

Figure 1: Creation of a flight path.

The images intended for height modelling and texture analysis were captured at nominal 

altitudes of 20 and 8 meters above the ground, respectively. Images for height modelling were 

captured with 80% frontal and 85% side overlap. The images for the texture analysis were 

1 https://www.dji.com/no/phantom-4/info
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captured with 80% frontal and 80% side overlap. An overview of when the two types of flight 

were done over which fields is shown in Figure 2.

Figure 2: Gantt chart showing when, and over which fields, the two types of flights were done 
during the summer

Ground control points (GCP) had been placed in the fields and their locations recorded using 

an RTK GPS with cm precision. The GCPs were located in each of the four corners of the 

MASBASIS and robot fields. Two additional GCPs were located in the middle of MASBASIS.

3.3 Image processing
All images were grouped by the flight they originated from and processed together in Pix4D. 

Images of the NobalNUE field were processed together with those of the robot field if they had

both been flown over the same day, as no GCPs were present in NobalNUE.

Pix4D was used to create digital surface models (DSM) utilized for height modelling, and to 

provide undistorted images and the information needed to locate mask coordinates in them. 

Pix4D saves the DSMs it produces in geotiff format in which the pixel values represent the 

estimated altitudes of the surfaces of the field.

To locate mask coordinates in undistorted images, Pix4D provides a transformation matrix per 

calibrated image (pmatrix) and a common offset to be subtracted. Given three-dimensional 

coordinates in the CRS used in the Pix4D project, pixel coordinates in the undistorted images 

can be obtained2

2 https://support.pix4d.com/hc/en-us/articles/202977149-What-does-the-Output-Params-

Folder-contain
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The photogrammetry performed by Pix4D is computationally heavy, necessitating designated 

computers to handle the map stitching. Two remotely accessed computers running versions 

4.4.12 and 4.5.3 of Pix4Dmapper were used to process the data.

3.4 Mask generation
Orthomosaics produced by Pix4D were loaded in QGIS 3.22 (Development Team, 2021) and 

masks of the fields and the plots within fields were hand drawn on top of them.

Both types of masks were drawn on new temporary scratch layers in the same CRS as the maps

and exported as geojson files.

Field masks were drawn as quadrilaterals extending comfortably beyond the GCPs in all 

corners of the fields. Plot masks were drawn as rectangles aligned with the edges for each plot 

in the robot and NobalNUE fields and scaled down to 80% of their original size to avoid the 

edges of the plots and allow some margin for error in map alignment (Figure 3).
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Figure 3: Part of an orthomosaic showing the robot field with full size masks in blue and 
scaled masks in green overlaid



3.5 Plot height estimation
DSMs were used to create a terrain model (DTM) per field. Height maps were obtained by 

subtracting a fields DTM from the DSMs. Estimates of plot heights were then extracted from 

the height maps.

3.5.1 Uniforming of surface models
To facilitate doing computations on the maps, they were cropped, resized and stacked in a 

single data structure using the rasterio python package.

Target sizes for resizing the maps were found by dividing the extents of the fields by their mean

resolutions (and rounding to an integer). The widths and heights of the fields (in meter) were 

obtained from the field masks described above. The resolutions of the DSMs were read from 

the geotiffs with rasterio, and the mean resolution calculated per field.

Each field was cropped from the DSMs containing it with rasterio.mask.mask, resized with 

rasterio.warp.calculate_default_transform  and rasterio.warp.reproject and written to a layer in 

a three-dimensional dataset in a HDF5 file.

3.5.2 Terrain model generation
Areas depicting the ground in the DSMs should reflect its assumed stability throughout the 

season. The standard deviation was computed along the stacked axis to produce a map of the 

variation in surface altitudes in the different regions of the DSMs throughout the season. Figure

4 shows the standard deviation map computed for the robot field to the left.

To identify ground areas from the standard deviation map, a few low percentiles of its values 

were tried as thresholds to produce a mask, considering values lower than the threshold to 

belong to ground areas. The mask from the lowest percentile yielding interpolatable gaps was 

chosen.

Median values throughout the season were filled in the mask areas. The median ground map for

the robot field is shown in the middle of Figure 4. Finally, the non-ground areas of the median 

ground map were interpolated with rasterio.fill.fillnodata to create a terrain model.
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3.5.3 Value extraction
Plot surface altitude and height values were extracted from the maps using the plot masks and 

the rasterstats.zonal_stats function.

Altitude values were extracted directly from the stacked DSMs. Canopy height values were 

extracted from the height maps resulting from the subtraction of a fields DTM from its DSMs.

For both altitude and height values, the 50th (median), 55th, 65th, 75th, 85th, 95th and 100th (max) 

percentiles were extracted to investigate which would describe the ground truth better and 

whether there were any trends in the distributions of the models.
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Figure 4: The Standard deviation of the DSMs, the Median ground altitudes where values in the 
standard deviation map are below a chosen threshold and the terrain model, in which non-
ground areas of the median ground map has been interpolated.



3.6 Texture analysis
A dataset of uniform, square images depicting known plots at known times were extracted from

UAV images calibrated and undistorted by Pix4D. Texture features were extracted from the 

dataset and joined with plot level field data to investigate whether texture features of wheat plot

images can describe the plots’ heading status.

3.6.1 Extracting plot images
To be most accurately compared, steps were taken to extract images as uniform as possible in 

the extent of the plots depicted, the angle the plots were viewed at, and the orientation of the 

sowing rows in them. Squares to crop from the undistorted images were found using their 

calibrated camera parameters, provided by Pix4D, plot masks and extracted altitude values, and

were aided by the use of the shapely python package.

For each of the flights, the extracted surface altitude values, described in section 3.5.3 were 

interpolated at the hour of the first image per flight for each plot. New sets of three-

dimensional plot masks were created by adding the altitude values as a third dimension to the 

two-dimensional masks. The ground under the plots and the plot canopies were assumed to be 

flat, therefore only a single altitude value per plot per flight was used.

For each image, the three-dimensional masks were transformed to image coordinates using the 

pmatrix and offset files generated by Pix4D. The transformed masks were used to check which 

plots were visible in each image.

A circular mask was created for each plot mask in each image to limit the range of viewing 

angles. The circle was drawn around the calibrated x, y positions of the cameras in the plane of 

the estimated plot surfaces with radii found by dividing the distance from the camera to the plot

surface altitude by the tangent of 80 degrees. This circle is illustrated in the first column of

Figure 5.

If the plot mask and its corresponding circular mask intersected, the centroid of the intersection

and the shortest distance from the centroid to the perimeter of the intersection were found. This 

distance was compared against a desired length of 0.325 m to check whether a square would fit 

and to find a scaling factor.
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If a square would fit, the corresponding distance found in image coordinates was scaled down 

and a diamond shape with a diagonal of twice the length of the distance constructed. Figure 5 

illustrates some of the steps performed after the two masks have been created. To align with the

structures of the plot, the orientation of that of the two long edges of the plot mask closest to 

the center of the circle was found and the diamond shape rotated accordingly. 

At most one crop were made per plot per undistorted image. Prepending the plot identifier to 

the name of the original image ensured unique names for the every image in the dataset.
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Figure 5: Shows the masks and shapes used when extracting a square from the images. The top
row shows shapes defined in the coordinate system of the masks, with units in meter. The 
bottom row shows shapes transformed to image coordinates. In the first column, the 
intersection of the two masks are found. In the second column, the centroid of their intersection
and its distance to the intersection perimeter is shown. A circle has been drawn using the 
distance as radius for illustration purposes. In the third column, second row, the same distance 
as in the second column is shown in red. It is compared to a desired length (in green) to get a 
scaling factor which is applied when constructing the final square in image coordinates (third 
column, second row).



3.6.2 Extraction of texture features
Before computing any texture features, the images were resized to 120x120 pixels, and 

histogram equalized with skimage.exposure.equalize_adapthist, to correct for varying lighting 

conditions on the different dates.

A time series of irradiation measurements (W/m2) was obtained from NIBIO3 («Q0 – 

Globalstråling», the sum of direct and diffuse sun irradiation) to investigate its effect on the 

images and whether histogram equal.

A grey level co-occurrence matrix (GLCM) is a square matrix counting the times two greyscale

values occur together in an image at a given offset (Haralick et al., 1973). Several features can 

be calculated from a GLCM that characterizes the texture in the image

3 https://lmt.nibio.no/agrometbase/getweatherdata_new.php?weatherStationId=5
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Figure 6: Example of an image captured by the drone and the shapes used to extract parts of the
plots. Pink shapes are plot masks, the circle in the center is used to limit the viewing angle, and 
the olive colored squares are the parts to be cropped from the image.

https://lmt.nibio.no/agrometbase/getweatherdata_new.php?weatherStationId=5


No assumptions were made about which features and combinations of distances and angles 

were likely to carry information about heading state. GLCMs were therefore collected using the

combinations of a range of offsets (1, 2, 4, 8, 16, 32 and 64 pixels) and three angles (0, 45 and 

90 degrees) for each layer in the RGB images, using skimage.feature.graycomatrix. For each 

GLCM, the contrast, dissimilarity, homogeneity, angular second moment (ASM), energy and 

correlation (Table 1) were calculated with skimage.feature.greycoprops.

Table 1: Formulas for the GLCM features. P is the GLCM.

Contrast ∑i , j=0

levels−1
Pi , j(i− j)2

Dissimilarity ∑i , j=0

levels−1
Pi , j | i− j |

Homogeneity ∑i , j=0

levels−1 Pi , j

1+(i− j)2

ASM ∑i , j=0

levels−1
Pi , j

2

Energy √ ASM

Correlation
∑i , j=0

levels−1
Pi , j[ (i−μi)( j−μ j)

√(σi
2)(σ j

2) ]
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4 Results

4.1 Ground truth

 

The distributions of heading dates and heights of the plots are shown for each field in Figure 7. 

MASBASIS, containing the greatest genetic diversity had the greatest variation in phenotypes 

for both traits, with heights ranging from 63 cm to 118 cm. Plots in the NobalNUE field headed

on average later than those in the other fields.

4.2 Plot height estimation
The flights closest in time to the manual height measurements were done July 6th and July 12th,

three days before and after the manual measurements. Plot height estimates from both these 

dates were compared to the ground truth.

15

Figure 7: Histograms of heading dates and heights for plots in the three fields. The bars sum to
1.



The median height values estimated from the imagery consistently underestimates the ground 

truth, by 18.5 and 10.8 cm on average across all the fields for July 6th and July 12th respectively.

Values estimated on July 6th show a bigger spread around the ground truth compared to the 

estimates from July 12th (Figure 8).

The relationship between the maximum value estimated from the imagery and the ground truth 

is subject to strong variability among the trials and flight days (Table 2). However, the 

maximum values get closest to the true plot height, shown by the lowest mean absolute error 

values (Table 3). 
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Figure 8: Scatterplots of the measured plot heights on the x-axes against the median value of 
the modelled plot heights on the y-axes. The top row shows the heights modelled from flights 
done three days prior to the manual measurements and the bottom row from a flight done three 
days after (except for parts of MASBASIS, which were measured the same day). Plots that had 
lodged by the end of the season are colored orange. They had not necessarily lodged at the 
time of the flights. 1:1 line in red.



Median, as the default metric used in plant height estimation, shows high and consistent 

correlation with the ground truth through all the trials and flight missions, on average 

outperforming the maximum value but still underestimating the true height (Table 3, Figure 8). 

The correlations tend to increase, and the errors tend to decrease with higher percentile values 

of the height models, up to and including the 95th percentile. (Table 2, Table 3).

Table 2: The correlations between the statistics extracted from the models and the manual 
measurements for each of the fields for the two dates. Plots that had lodged by the end of the 
season are not included.

MASBASIS NobalNUE robot

Percentile 2021-07-06 2021-07-12 2021-07-06 2021-07-12 2021-07-06 2021-07-12
median 0.69 0.87 0.60 0.90 0.76 0.89
55 0.69 0.87 0.61 0.91 0.76 0.89
65 0.69 0.88 0.64 0.91 0.77 0.90
75 0.70 0.89 0.66 0.91 0.78 0.91
85 0.71 0.89 0.68 0.91 0.78 0.92
95 0.73 0.90 0.70 0.91 0.79 0.93
max 0.78 0.89 0.51 0.89 0.58 0.89

Table 3: The mean absolute errors of the statistics extracted from the models and the manual 
measurements for each of the fields for the two dates. Plots that had lodged by the end of the 
season are not included.

MASBASIS NobalNUE robot

Percentile 2021-07-06 2021-07-12 2021-07-06 2021-07-12 2021-07-06 2021-07-12
median 14.81 9.50 28.16 10.49 24.97 9.24
55 14.22 9.13 27.60 10.02 24.42 8.87
65 12.98 8.41 26.51 9.07 23.33 8.13
75 11.63 7.67 25.34 8.17 22.13 7.33
85 9.97 6.78 24.02 7.16 20.63 6.36
95 7.53 5.46 21.96 5.72 18.07 4.97
max 4.26 3.57 17.50 3.90 12.79 3.25

Table 4: The median difference in cm between the DSMs and the DTM for the areas within the 
ground mask.

MASBASIS NobalNUE robot
2021-07-06 0.01 0.81 0.74
2021-07-12 -2.85 -0.20 1.52
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The ground areas found in the DSMs from July 6th were on average 0.01, 0.81 and 0.74 cm 

higher than those in the DTMs (the median of the DSMs) for the MASBASIS, NobalNUE and 

robot fields, respectively (Table 4). The same differences calculated for July 12th showed that 

the ground areas in the DSMs for MASBASIS and NobalNUE on average were 2.85 and 0.20 

cm lower than those in the DTM. In the robot field they were 1.52 cm higher on July 12th.

Comparing values between the two nitrogen treatments in robot and NobalNUE reveals that the

low nitrogen group on average was underestimated more than the high nitrogen group (Table 

6). This underestimation is also reflected in Figure 9 in which the 95th percentile of the models 

are plotted against days to heading. The differences in errors were larger on July 6th than on 

July 12th. The correlations between the models and the ground truth are similar for the nitrogen 

levels in the upper percentiles (excluding max) but diverges closer to the median (Table 5).

Table 5: The mean correlations between the statistics extracted from the models and the 
manual measurements for each of the two dates for each of the two nitrogen treatments for the 
robot and nobalnue fields combined.

2021-07-06 2021-07-12

Percentile Low N High N Low N High N
median 0.73 0.81 0.88 0.92
55 0.74 0.81 0.88 0.93
65 0.76 0.82 0.90 0.93
75 0.78 0.82 0.91 0.93
85 0.79 0.81 0.92 0.93
95 0.78 0.81 0.93 0.93
max 0.37 0.80 0.93 0.87

Table 6: The mean absolute errors of the statistics extracted from the models and the manual 
measurements for each of the two dates for each of the two nitrogen treatments for the robot 
and nobalnue fields combined.

2021-07-06 2021-07-12

Percentile Low N High N Low N High N
median 30.09 22.40 10.38 9.10
55 29.48 21.91 9.98 8.68
65 28.28 20.92 9.19 7.83
75 26.97 19.86 8.34 6.99
85 25.42 18.55 7.33 6.03
95 22.80 16.45 5.84 4.69
max 17.39 11.95 3.58 3.44

18



From Figure 9 the maximum estimated heights are on average reached around 15 days after 

heading for plots in the robot and NobalNUE fields and approximately 10 days after heading 

for the MASBASIS field. A decline in the estimated heights after reaching their max is also 

visible.

19

Figure 9: Scatterplots of the 95th percentile of the height models per plot on the y-axis 
against days to heading on the x-axis for each field. For MASBASIS the points are colored by
whether the plots were judged to be lodged at the end of the season or not. For the robot and 
NobalNUE fields the points are colored by the nitrogen treatment the plots were subject to.



4.3 Texture analysis

A total of 4201 images depicting plot canopies within one week of their heading date were 

cropped from the UAV images. When compared visually, the cropped images showed signs of 

increasingly distinguished sowing rows with the development of the plants. Heads were visible 

in many of the post-heading images. Variations in contrast due to varying light conditions were 

also visible. Some example images are shown in Figure 10.

Logistic regression models were fitted on the GLCM features, using the heading status 

(headed/not headed) as target variable, with a leave-one-date-out approach; data from each of 

the flight dates were in turn used as the test-set and the model fitted on the rest of the data. The 

results are shown in Table 7.

Images taken the same date as a plot was heading were excluded when fitting the models.

Using these splits, the ratios of headed plots included in the training sets were fairly balanced 

for all dates. The ratios of headed plots in the test sets increased for each date (Table 7) as 

heading progressed in the fields.

Figure 11 shows a histogram of interpolated irradiation values at the time of each image. From 

the principal component plot in Figure 12 it is clear that there is some effect of irradiation in 

the GLCM features, even after histogram equalization.
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Figure 10: Four randomly drawn images from the dataset for each of the days from seven days 
before heading to seven days after heading.



Table 7: The ratios of headed images in the training sets (Excl. Date) and test sets (Date) used, 
the number of images in each set for each split and the resulting confusion matrix and 
accuracies when predicting on the test set.

Ratio headed N images Confusion matrix

Excl. Date Date Excl. Date Date Accuracy TP FN FP TN
2021-06-17 0.56 0 3670 120
2021-06-21 0.62 0 3330 460
2021-06-22 0.62 0.03 3272 518 0.61 9 7 194 308
2021-06-24 0.58 0.18 3464 326 0.32 52 8 214 52
2021-06-25 0.54 0.55 3260 530 0.58 218 75 145 92
2021-06-26 0.51 0.76 3364 426 0.68 250 72 65 39
2021-06-28 0.47 0.96 3213 577 0.53 282 273 1 21
2021-06-29 0.48 0.96 3321 469 0.89 409 43 10 7
2021-07-02 0.50 0.97 3426 364 0.39 133 221 0 10

With the exception of June 28th and July 2nd, the classification results show a high number of 

false positives; plots predicted to have headed when in fact they had not. June 24th was the day 

with the highest irradiation (Figure 11) and achieves a low accuracy due to the model 

erroneously predicting 214 of the 266 not headed plots as headed. The two next brightest days, 

June 26th and 29th, achieves higher accuracies when their headed plots are correctly predicted.
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Figure 12: Scatterplots of the two first principal components of the GLCM features. Colored 
by the heading status of the depicted plot to the left and by the irradiation at the time of 
capturing the image to the right

Figure 11: Histogram of interpolated irradiation values at the time of each image. Colored by 
date of the flight



5 Discussion

5.1 Ground truth measurements
The heading date is defined as the day heads have emerged from half of the plants for a plot. 

Visual judgement of heading dates in the field is complicated by both morphological variation 

between the cultivars and uneven development within a plot, caused by either soil or genetic 

conditions. Variation within plots also complicates measurement of plot heights. Gradients in 

height across the plot will be averaged when taking multiple measurements, but high local 

variation can make it difficult to decide on a representative height for an area. Scoring of 

heading date and plot height will both to some degree be influenced by the subjective 

judgement of the observer.

Another aspect to manual scores is their purpose. The scoring for plant height and heading date 

in this work were performed the same way a plant breeder would. For breeders or scientists, the

absolute values for a trait may be less important than the relative differences between varieties. 

This because most traits are a function of the environment and their absolute values will vary 

more with the environment than their relative differences, or rankings, between varieties.

A phenomenon describing the situation when the rankings of accessions differ from 

environment to environment is called genotype by environment interaction (GxE) (Hill, 1975). 

The actual method of scoring a trait is therefore in many cases secondary, as long as it is 

executed consistently over the whole experiment.

5.2 Plot height estimation
The plot height estimates generated from UAV imagery here from July 12th showed high 

correlation with the ground truth, which means that the two agree on the relative height 

differences between the plots. The low correlation with the ground truth of the models from 

July 6th (Table 2) may suggest that not all plots had reached their full heights yet at that date. 

This is also reflected in Figure 9, in which the plots appear to reach their maximum heights 

some days after heading.

The heights were however consistently underestimated. Manual measurements consider the 

total height of the plants, from soil bed to the top of the spikes. The UAV method cannot 
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benefit from such precise distinctions and its estimations will incorporate a portion of the leaf 

canopy heights, which will result in lower than ground truth estimates.

In the fields, plots in the two nitrogen treatments had visibly different canopy densities. It may 

be harder for Pix4D to find and match keypoints in the top of the sparse canopies of low 

nitrogen plots than in the top of the denser plots in the high nitrogen treatment, which could be 

why Table 5 and Table 6 show larger differences between the nitrogen treatments in the lower 

than in the upper percentiles (excluding max).

When drawing the plot masks used to extract the height and altitude values, they were scaled in

size around their center, which excessively reduced the lengths of the long edges. More 

representative measurements from the maps, and more, or larger, plot surface images, could 

have been cropped from undistorted images had the plot masks been scaled more appropriately.

5.3 Texture analysis
Before capturing images for texture analysis, a balance had to be found between the altitude of 

the flight and the necessary coverage for successful camera calibration in Pix4D, as the flight 

time and number of images captured increases substantially when lowering the altitude while 

keeping the coverage constant.

When extracting the images of plot surfaces, steps were taken to ensure they were as uniform 

as possible to allow more confident results than could otherwise be obtained. This was assumed

to be important for single statistics like the GLCM properties to be comparable between 

images.

For limiting the range of viewing angles in the undistorted images, as described in above, it 

was assumed that the ground was flat and that the straws were standing straight up, reaching 

their estimated heights. In reality the plots have a more chaotic structure.

The texture in an image of a plot canopy will be more sensitive to the camera angle the further 

the heads are from the background. As the heads emerge and rise above the leaves, their stems 

will make up greater portions of the image unless viewed precisely from above, thus 

influencing the texture.  Figure 13 shows this with images of a plot in the robot field from three

dates. In the first column, the canopy only consists of leaves, and it is hard to perceive camera 
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or straw angles, in the second and third columns the heads appear and the leaves wilt, making it

easier to get a sense of their angles.

An important factor influencing the texture perception of GLCM is dierct solar irradiation at 

the time of capturing the images.

When the three brightest days, June 24th, 26th and 29th, are left out, there is a tendency for the 

model to shift towards predicting that the plots in them have headed (high FP for June 24th and 

high TP for June 26th and 29th  Table 7). This could suggest that some effect of the light is not 

corrected for by the histogram equalization and captured by the GLCMs. A shift towards 

predicting that plots have headed is seen also in June 25th however, which was one of the 

dimmest days (Figure 11). More variation in the data would be desirable.

24

Figure 13: Two cropped images of plot 1210 from the robot field from three different 
dates. In the first column, the canopy consists of leaves, in the second column heads 
have emerged and in the third column the leaves have wilted leaving the ground visible



GLCM is a relatively simple and straight forward technique for describing texture, but GLCM 

texture values cannot easily be transferred from one situation to another (Hall-Beyer, 2017), 

and may not be the most appropriate method for representing image texture in different 

applications. Therefore, one should be cautious applying a model developed in on one dataset 

on images captured in different conditions.

New approaches for representing texture are usually based on Convolutional Neural Networks 

(CNN) (Liu et al., 2019). CNNs are both more flexible and powerful and capable of handling 

more variation in the input data, which could make them useful on less uniform images than 

are presented here.

5.4 Review of research objectives
A pipeline for estimating plant height using UAV imagery was developed, viewing multiple 

flights in comparison to enable creation of a DTM necessary for plot height estimation. The 

height models’ relation to the ground truth were asessed by comparing several extracted model 

statistics to the ground truths, The effect of canopy densities on the height models was checked 

by comparing the results from plots in two different nitrogen treatments. A pipeline for 

extracting plot level images from UAV imagery was also developed and heading status 

attempted classified from their texture features.

6 Conclusions
In this thesis, en extensive dataset of aerial imagery was analyzed and compared against ground

truth data for plant height and heading date.

Plant height estimation based on DSMs and a DTM estimated from the DSMs achieved high 

correlations with ground truth (0.51 to 0.93, depending on the metric used). The median metric,

commonly used for UAV plant height estimation, tends to underestimate the heights compared 

with manual measurements. However, this underestimation is consistent and does not 

significantly affect the rankings of the varieties. Among other metrics investigated, the 95th 

percentile is the one that resembles the ground truth the most and the best alternative to 

common practice.

25



A dataset of plot surface images was created, using extracted altitude values from DSMs and 

UAV images captured at low altitudes. Results from classification of heading states of plots 

from GLCM features of the images was not conclusive, but suggests sun irradiation is an 

influencing factor on the features.
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