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Abstract
Purpose Identification and delineation of the gross tumour and malignant nodal volume (GTV) in medical images are vital
in radiotherapy. We assessed the applicability of convolutional neural networks (CNNs) for fully automatic delineation of
the GTV from FDG-PET/CT images of patients with head and neck cancer (HNC). CNN models were compared to manual
GTV delineations made by experienced specialists. New structure-based performance metrics were introduced to enable
in-depth assessment of auto-delineation of multiple malignant structures in individual patients.

Methods U-Net CNN models were trained and evaluated on images and manual GTV delineations from 197 HNC patients.
The dataset was split into training, validation and test cohorts (n = 142, n = 15 and n = 40, respectively). The Dice score,
surface distance metrics and the new structure-based metrics were used for model evaluation. Additionally, auto-delineations
were manually assessed by an oncologist for 15 randomly selected patients in the test cohort.

Results The mean Dice scores of the auto-delineations were 55%, 69% and 71% for the CT-based, PET-based and PET/CT-
based CNN models, respectively. The PET signal was essential for delineating all structures. Models based on PET/CT
images identified 86% of the true GTV structures, whereas models built solely on CT images identified only 55% of the true
structures. The oncologist reported very high-quality auto-delineations for 14 out of the 15 randomly selected patients.

Conclusions CNNs provided high-quality auto-delineations for HNC using multimodality PET/CT. The introduced
structure-wise evaluation metrics provided valuable information on CNNmodel strengths and weaknesses for multi-structure
auto-delineation.

Keywords Deep learning · Delineation · Head and neck cancer · Automatic delineation

Introduction

Radiotherapy (RT) with concurrent chemotherapy is the
preferred curative treatment option for inoperable head and
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neck cancer (HNC) [1]. An essential part of RT is tumour
delineation, where the tumour and involved lymph nodes
are carefully outlined in medical images. This task is vital
to ensure that all malignant tissues are included in the RT
treatment volume.

Positron emission tomography/X-ray computed tomog-
raphy (PET/CT) is a highly useful modality for imag-
ing and subsequent delineation of HNC for RT [2]. In
most cases, CT is performed with an iodinated contrast
agent [3]. Tumours and involved nodes may be detected
on PET images, as these regions normally have higher
metabolic activity than surrounding healthy tissue. How-
ever, PET is limited by low spatial resolution, and com-
bining PET images with high-resolution CT images may
improve delineation quality. Several studies have found a
significant reduction in interobserver variability for man-
ual gross tumour volume (GTV) delineations in HNC when
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using combined PET/CT instead of CT [4–7]. Despite this,
considerable interobserver variations still occur. In a recent
HNC interobserver study, the average overlap between
PET/CT-based GTV delineations made by expert radiation
oncologists was 69% (as measured by the Dice score) [7].
Moreover, the manual delineation process is time consum-
ing and can be a bottleneck in RT planning. Finding meth-
ods to improve delineation quality and reduce the workload
is therefore highly warranted.

Automatic tumour delineation using deep convolutional
neural networks (CNNs) can potentially provide delineation
consistency and time-efficiency. Recent studies show a high
degree of overlap between expert’s tumour delineations and
those proposed by CNNs [8–10]. There has, to date, been
few studies on CNN auto-delineation of HNC lesions using
multimodality images. In [8], Lin et al. used a 3D CNN
to successfully auto-delineate the GTV of nasopharyngeal
cancers from PET/MRI images. These delineations were
evaluated both quantitatively and qualitatively, the latter by
expert oncologists. Likewise, Huang et al. [9] used a 2D
CNN to delineate the GTV of HNC lesions in PET/CT
images. Although very promising, these studies did not
consider involved lymph nodes, which, according to current
practice, should be prescribed the same RT dose as the GTV.
A typical patient with HNC may have multiple involved
neck nodes and delineating these is essential for adequate
RT [2]. This issue was addressed by Guo et al. [10] who
used 3D CNNs to delineate both the GTV and involved
nodes in CT, PET and combined PET/CT images. In the
latter study, the quality of the network delineations was
evaluated quantitatively on a patient-wise basis, regardless
of the number of structures delineated.

The scoring of involved lymph nodes does, however,
constitute a challenge in evaluating the quality of auto-
delineations. This is apparent for occult or small lesions
that have been judged as malignant by the expert but
not by the auto-delineation method (false negatives).
For these situations, the overall performance of the
automatic method may be interpreted as poor when assessed
using, for example, distance-based metrics, despite a high
agreement for the tumour and larger nodes. The same
problem also arises for false positive predictions, where
the auto-delineation program may incorrectly delineate an
hypermetabolic region as part of the GTV. In this case,
the distance between this falsely delineated structure and
the true GTV may be very large, even though there is
high agreement between all other predicted structures and
the ground truth. Thus, there is a need for standardised
methods to estimate the performance of multi-structure
auto-delineation, when the expert delineations include both
primary tumour and involved nodes.

The aim of the current study was threefold. First, we
evaluated 2D CNN models for fully automatic delineation

of both the gross (primary) tumour volume (GTV-T) and
the malignant nodal volume (GTV-N) in patients with HNC.
Secondly, as all patients underwent a combined PET/CT
examination prior to treatment, network performance was
assessed using single-modality (CT or PET) as well
as multimodality (PET/CT) image input, to determine
which modality or modality combination provided the
most accurate auto-delineations. Thirdly, we introduce a
new framework for structure-wise performance evaluation
of multi-structure auto-delineations, as a supplement
to already well-established performance metrics. This
framework provides additional metrics to quantify the
similarity between the expert’s ground truth and the network
predictions when more than one contoured structure is
present in the ground truth, thereby enabling thorough
evaluation of the strengths and weaknesses of auto-
delineation approaches. Finally, auto-delineations were
qualitatively assessed by an expert oncologist.

Material andmethods

Imaging and contouring

HNC patients referred to curative chemoradiotherapy at
Oslo University Hospital from January 2007 to December
2013 were retrospectively included, as described in [11].
Briefly, inclusion criteria were squamous cell carcinoma of
the oral cavity, oropharynx, hypopharynx and larynx treated
with curatively intended radio(chemo)therapy and available
radiotherapy plans based on FDG PET/CT. Nasopharyngeal
cancers were excluded, as were patients with known distal
metastases and post-operative radiotherapy without residual
tumour. In addition, patients without a contrast-enhanced
planning CT were excluded, resulting in 197 patients
included in the current analysis. Patient characteristics are
provided in Supplementary Table A1 (Online Resource 1).
The study was approved by the Regional Ethics Committee
(REK) and the Institutional Review Board. Exemption from
study-specific informed consent was granted by REK.

All patients had an RT optimised PET/CT scan (CT with
contrast enhancement) taken on a Siemens Biograph 16
scanner (Siemens Healthineers Gmbh, Erlangen, Germany).
After ≥ 6 h of fasting 370±20 MBq FDG was injected, and
the patient rested for about one hour until imaging. Image
acquisition was performed on an RT-compatible flat table
with head support in an RT fixation mask. PET acquisition
time was 5 min/bed position with 25% overlap between
positions. The PET coincidence data were reconstructed
using the OSEM4,8 algorithm with a Gaussian post-
reconstruction filter with full width at half maximum equal
to 3.5 mm for 193 patients, 2 mm for 3 patients and 5 mm for
1 patient. PET pixel size varied between 1.33 and 4.06 mm
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(mode 2.66 mm for 143 patients) in a 256×256 matrix with
a slice thickness of 1.0–5.00 mm (mode 2.00 mm for 169
patients). CT images were obtained with a peak tube voltage
of 120 kV, giving a reconstructed matrix of 512×512, a pixel
size of around 1.0 mm and a slice thickness of 2.0 mm. The
Visipaque contrast agent was used, and the CT acquisition
was performed after a delay of about 30 s post-injection.
All PET and CT image series were resampled to a common
isotropic 1×1×1 mm3 reference frame. The resulting image
slices were cropped to a 191-by-265 mm2 axial region of
interest, keeping the patient in the centre of the full image
stack.

The primary tumour (GTV-T) and, if present, malignant
lymph nodes (GTV-N) were manually delineated by an
experienced nuclear medicine specialist, based on the
FDG uptake. These delineations were further refined by
one to two (of many) oncology residents based on the
contrast-enhanced CT and clinical information such as the
endoscopy report. The delineations were finally approved
by one of several senior oncologists. All delineations
were performed at the time of initial RT (i.e. the patients
received RT based on these delineations). The union of the
manual GTV-T and GTV-N delineations were defined as
the ground truth and used for training and evaluation of
the CNN models. An overview of the number of manually
delineated structures per patient and their volumes is given
in Supplementary Tables A2 and A3 (Online Resource 1).

Model architecture and training

A U-Net architecture following the setup described in [12]
was trained to delineate GTV-T and GTV-N in the PET/CT
image slices. There was one addition to the original U-
Net architecture, namely that batch normalisation [13] was
applied after each ReLU non-linearity. Model details are
provided in Supplementary Table A4 (Online Resource 1).

Four different loss functions were compared as follows:
(1) the cross-entropy loss, (2) the Dice loss [14] and (3)
the fβ loss with β ∈ {2, 4} [15]. For each loss function,
the models were trained using CT images only, PET images
only and both PET and CT images. Additionally, the impact
of CT windowing on model performance was assessed,
using a narrow soft-tissue window of width 200 HU and
a centre of 70 HU (range: [−30, 170] HU). The window
centre of 70 HU corresponded to the median HU value
within the GTV-T and GTV-N in the training set. In total,
20 models were run (i.e. 4 loss functions × (3 image input
combinations without windowing + 2 input combinations
with windowing)).

To assess model performance, we split the patients
into three cohorts, stratifying by the primary tumour
(T) stage of the TNM staging system to ensure similar
patient characteristics across cohorts: A training cohort (142

patients), a validation cohort (15 patients) and a test cohort
(40 patients). Patient characteristics of these cohorts are
given in Supplementary Table A1 (Online Resource 1).
To compare models, the patient-wise Dice score (1) was
evaluated on patients in the validation cohort. Then, for each
modality, the model achieving the highest Dice score was
used to delineate in images from the test cohort. These test
cohort auto-delineations were evaluated in depth, using the
qualitative and quantitative methods described below.

To train the model, we used the Adam optimiser [16] with
the β-values1 recommended in [16] and a learning rate of
10−4. The model was trained for 20 epochs, and the network
coefficients were saved to disc (checkpointed) every second
epoch. After training a model, we compared the average
Dice score per image slice of each coefficient checkpoint.
The coefficient checkpoint with the highest slice-wise Dice
was used for subsequent performance analysis.

No post-processing was applied on the model output,
such that the raw delineations provided by the CNN models
were assessed without modifications.

Quantitative performance evaluation

Patient-wise metrics

Similarity and surface-distance metrics were used to assess
the quality of the predicted delineations generated by the
CNN models. Firstly, we measured overall delineation
accuracy by the patient-wise (i.e. per patient) Dice score.
The Dice score is given by:

Dice(X, X̂) =
∣
∣
∣X ∩ X̂

∣
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∣
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, (1)

where |X| and |X̂| are the number of voxels in the ground
truth, and the predicted delineations, respectively, and |X ∩
X̂| denotes the number of voxels in the intersection between
the ground truth and predicted delineations.

Next, we computed three surface-distance-based metrics
for each patient (i.e. patient-wise): (1) the 95th percentile
Hausdorff distance (HD95), (2) the average surface distance
(ASD) and (3) the median surface distance (MSD), all
three of which were calculated from the same set of
boundary distances. For a boundary voxel i in the predicted
delineation, we computed its smallest distance Di to the
ground truth boundary X̃, given by:

Di = min
x̃j ∈X̃

dist( ˆ̃xi , x̃j ), (2)

where dist( ˆ̃xi , x̃j ) is the (Euclidean) distance between the

predicted boundary voxel i with coordinates ˆ̃xi and the true

1These are different β values than those for the fβ loss.
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(a) (b)

Fig. 1 The illustration in a demonstrates how the surface-distance
based metrics (HD = maxi Di ) can be non-informative in the presence
of falsely predicted structures. As CNN structure 3 (red, CNN) does
not overlap with any of the true manually delineated structures (blue,
Oncologist), it is defined as a falsely predicted structure. Computing

distance metrics between the false structure 3 and true structures will
increase the metrics. The illustration in b shows how this problem can
be alleviated by only computing the surface-distance-based metrics for
predicted structures (red, labelled 1 and 2) that have sufficient overlap
with the manually delineated ground truth (blue, labelled 1 and 2)

boundary voxel j with coordinates x̃j . From the set of all
such distances, we computed HD95 as its 95% quantile,
ASD as its average and MSD as its median. Thus, the HD95

measures how severe the largest delineation error is, and the
ASD and MSD measure the overall delineation error. These
surface-distance metrics should be as small as possible.

Structure-wise metrics

The distance-based metrics can be skewed if the CNN
model misses a true structure or falsely predicts an
additional structure not included in the ground truth, as
illustrated in Fig. 1a. If distance-based metrics are to capture
the delineation quality of the structures that are actually
detected, they should be computed for true and predicted
structures that overlap. Thus, we computed the degree of
overlap between true and predicted structures, giving the
coverage fraction (CFrac):

CFrac(X̂k, X) =
∣
∣
∣X̂k ∩ X

∣
∣
∣

∣
∣
∣X̂k

∣
∣
∣

. (3)

Here X̂k is the set of voxels in the kth structure of the
predicted mask. An illustration of the CFrac is given in
Fig. 2. If the CFrac was greater than 0.5, the predicted
structure was defined as correctly identified by the CNN
model. Thereafter, HD95, MSD and ASD were computed
separately for all structures in the auto-delineation with
CFrac ≥ 0.5, as shown in Fig. 1b, giving structure-wise
distance metrics not skewed by falsely predicted structures.

To further assess the performance of the CNN model, we
defined a structure-wise sensitivity and positive predictive
value. The number of true negative structures cannot be
defined, and the number of true positive structures varies
according to perspective (ground truth vs auto-delineation).
As illustrated by the example in Fig. 2, there are two
structures (1 and 2, red) in the auto-delineated mask that
obtain a CFrac above 0.5 with the ground truth, and one that
does not (red structure 3). The auto-delineation, therefore,

has two true positive structures and one false positive
structure. Thus, we define the structure-wise positive
predictive value with respect to the CNN model (PPVCNN)
as:

PPVCNN = TPCNN
TPCNN + FP

, (4)

Fig. 2 Illustration of the coverage fraction metric CFrac. The left
column gives the CFrac (3) for the overlap between the predicted
(red, CNN) and true (blue, Oncologist) structures relative to the CNN
structure (red). In this case, the PPVCNN is 0.7, as two of the structures
(red, 1 and 2) proposed by the CNN-model were delineated by the
oncologist, and one (red, structure 3) was not. The right column gives
CFrac for the overlap between the CNN (red) and true (blue) structures
relative to the true structure (blue). The SensGT is equal to 0.5 since
one true structure (blue, 1) was identified by the CNN-model and one
was not (blue, 2), as its coverage fraction was less than 0.5
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where TPCNN is the number of true positive structures in the
auto-delineation mask and FP is the number of false positive
structures. For Fig. 2, TPCNN = 2 and FP= 1, giving a
PPVCNN=0.7 (rounded to one significant digit).

Likewise, for Fig. 2, there is one structure (1, blue) in
the ground truth that obtain a CFrac above 0.5 with the
auto-delineation mask, meaning that there is only one true
positive with respect to the ground truth. Consequently, we
define structure-wise sensitivity with respect to the ground
truth (SensGT):

SensGT = TPGT
TPGT + FN

, (5)

where TPGT is the number of true positive structures with
respect to the ground truth and FN is the number of
structures in the ground truth not delineated by the CNN
model (false negatives). In Fig. 2, TPGT = 1 and FN= 1,
giving a SensGT = 0.5.

Finally, to further assess errors made by the CNN model,
we calculated (1) the volume of structures in the auto-
delineation that obtained a CFrac > 0.5 with the ground
truth (Volumetrue), and (2) the volume of structures in the
auto-delineation that obtained a CFrac ≤ 0.5 with the
ground truth (Volumefalse). For the delineations in Fig. 2,
the Volumetrue is the mean volume of CNN (red) structures
1 and 2 and Volumefalse is the volume of CNN structure 3.

Qualitative evaluation

The CNN model with superior mean Dice performance was
qualitatively evaluated by an expert oncologist with more

than 7-year experience in HNC target volume delineation.
The expert was presented with the ground truth and the
delineations made by the CNN-model for 15 patients
randomly selected from the test cohort. The expert did not
know which contour was CNN-generated and which was
human-generated. For each of these patients, the oncologist
was asked to identify (if possible) which delineation was
generated by the CNN model. The oncologist scored the
quality of the selected auto-delineation masks using a score
from one to ten. A score of one represented a delineation
with little to no clinical value and a score of ten represented
a delineation where the oncologist was unable to identify
whether the mask was generated by the CNN model or
human specialists, implying high clinical value.

Code

Models were trained using Python and TensorFlow. Code
for running the experiments is provided at https://github.
com/yngvem/EJNMMI-20. Performance metrics were com-
puted using an in-house developed Python library provided
at: https://github.com/yngvem/mask stats.

Results

Comparison of models

The average model performance on the validation cohort
is summarised in Table 1. All models had an average Dice
between 0.40 and 0.65. Note that standard deviations of

Table 1 The performance
(mean ± one standard
deviation) of CNN models
trained using different
modalities

Modality

PET CT PET/CT

– CTW CT CTW CT

Patient-wise Dice (%) 61 ± 2 55 ± 2 48 ± 5 63 ± 1 62 ± 1

ASD (mm) 8.1 ± 2.6 11 ± 3 13 ± 7 7.0 ± 0.8 8.0 ± 3.1

MSD (mm) 4.5 ± 1.9 5.6 ± 0.8 7.8 ± 2.5 4.6 ± 1.0 4.6 ± 2.6

HD95 (mm) 31 ± 14 38 ± 17 50 ± 44 24 ± 2 32 ± 17

SensGT (%) 75 ± 5 60 ± 9 53 ± 11 75 ± 4 78 ± 7

PPVCNN (%) 25 ± 5 22 ± 6 21 ± 11 26 ± 4 28 ± 11

Structure-wise ASD (mm) 1.6 ± 0.2 2.1 ± 0.4 2.4 ± 0.6 1.6 ± 0.3 1.4 ± 0.2

MSD (mm) 1.1 ± 0.2 1.7 ± 0.4 1.9 ± 0.6 1.1 ± 0.3 0.92 ± 0.14

HD95 (mm) 4.9 ± 0.7 5.6 ± 1.0 6.0 ± 1.0 4.5 ± 0.5 4.4 ± 0.6

Volumetrue (cm3) 17 ± 5 9.7 ± 3.7 11 ± 3 15 ± 4 16 ± 3

Volumefalse (cm3) 1.1 ± 1.3 0.41 ± 0.17 1.6 ± 2.6 0.58 ± 0.54 0.58 ± 0.41

Choice of loss function had little effect on performance, and averaging therefore was done over models
trained with different loss functions. CTW and CT columns represent models trained with and without CT
windowing, respectively. All models were evaluated on the validation cohort
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Table 2 Performance on the
test cohort for the CNN models
with the highest Dice score on
the validation set, using
different input modalities

Modality

PET CT PET/CT

Mean Std. Mean Std. Mean Std.

Patient-wise Dice ( %) 69 17 56 21 71 16

ASD (mm) 4.2 4.3 6.1 5.1 4.7 4.8

MSD (mm) 1.9 4.0 3.1 5.4 1.8 4.0

HD95 (mm) 18 16.5 22.2 11.7 21.2 17.1

SensGT ( %) 77 31 53 41 86 27

PPVCNN ( %) 45 29 28 17 33 23

Structure-wise ASD (mm) 1.1 0.6 1.4 1.4 1.0 0.6

MSD (mm) 0.61 0.54 0.96 1.45 0.56 0.67

HD95 (mm) 4.0 2.6 4.1 2.5 3.3 1.8

Volumetrue (cm3) 17 22 7.2 12 15 24

Volumefalse (cm3) 0.45 1.1 0.56 1.7 0.54 3.0

The CT images were pre-processed using windowing

the Dice score and structure-wise performance metrics were
relatively small, indicating that the model performance was
stable between models trained with the same modality and
windowing option, but with different loss functions. Thus,
loss function choice had little effect on performance.

Imaging modality and Hounsfield windowing of CT
images, however, had a clear effect on performance. Models
trained on both PET and CT images had the highest patient-
wise Dice performance and the lowest surface distances,
indicating a high degree of overlap between the model
prediction and the ground truth. Models trained solely on
PET images had lower Dice and larger surface distances
than PET/CT models, but outperformed models based on
CT images on all performance metrics. Note that patient-
wise surface distances were both larger and more varied
than structure-wise due to measurements between false
positive structures and the ground truth.

From Table 1, it is also apparent that models, on average,
identified more than 50% of the manually delineated
structures in the validation cohort (SensGT). Particularly
models built using PET images had high detection rates,
identifying more than 75% of true structures. However, the
models generated many false positive structures, which is
apparent from the low PPVCNN. On average, less than a
third of all delineated structures in the CNN masks (for all
modalities) were also present in the ground truth. Despite
this, the Dice was high, indicating that the false positive
structures were small in volume (see Volumefalse in Table 1).

Performance on the test cohort

For each input-modality, the model that achieved the highest
average Dice score on the validation cohort was selected

for further evaluation on the test cohort. The best PET-
based model was trained with the Dice loss function. The
best CT-based and PET/CT-based models were trained
using CT-windowing and the f2 loss function. Test cohort
performance metrics are shown in Table 2 and Fig. 3. The
CT model had the lowest patient-wise Dice score (56%) as
well as the largest patient-wise distance metrics, indicating
poorer overlap between the predicted delineation and the
ground truth relative to PET and PET/CT models. PET and
PET/CT models achieved high Dice performance (69% and
71%, respectively) and structure-wise sensitivity (SensGT)
(77% and 86%, respectively), indicating that these models
had high overlap with the ground truth and detected the
majority of the manually delineated structures (i.e. few false
negative structures, Eq. 5).

Even though the CT model on average identified 53% of
the manually delineated structures (SensGT), it was unable
to identify even a single structure for 10 patients in the
test cohort (data not shown). In contrast, the PET and
PET/CT models failed to identify a single structure for only
two patients. Moreover, from the boxplots overlayed on
the violin plots in Fig. 3a, we see that the 25th percentile
SensGT was 15% for the CT-based model, while it was 50%
for the PET-based model and 93% for the PET/CT-based
model, again highlighting the PET/CT model’s high rate of
structure identification.

The structure-wisemetrics illustrate (see Table 2 and Fig. 3)
that using both the PET and CT signal simultaneously
was beneficial compared to only using one modality. All
structure-wise surface distance metrics were smaller for the
PET/CT model and spanned a narrower range with fewer
large outliers compared to the models that used only a single
modality. Thus, PET/CT-based auto-delineations were more
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Fig. 3 Violin plots with boxplots
overlayed (dark gray box within)
for test cohort performance
metrics of models achieving the
highest Dice based on each
imaging modality. a Patient-wise
Dice score and structure-wise
sensitivity (SensGT). b
Structure-wise HD95 and ASD
distance metrics. Note that the
axis for ASD is cut off at 6 mm
to improve visualisation for the
PET and PET/CT-based models.
There was one structure
generated by the CT-based
model which had an ASD
outside this range (13 mm).
Refer to Table 2 for details

(a) (b)

accurate with fewer large deviations between the predicted
and true structure boundaries.

Note also that the structure-wise distance metrics
(ASD, MSD, HD95) were considerably smaller than the
corresponding patient-wise distance metrics (Table 2).
This indicates that the patient-wise distance metrics were
influenced by measurements between falsely delineated
structures (false positives) and the ground truth (see Fig. 1a).
This is further supported by the metric PPVCNN, which
was below 50%, indicating that the CNN models tended
to delineate several false positive structures (i.e. large FP,
Eq. 4). However, the volumes of the erroneously predicted
structures (Volumefalse) were small compared to the true
structure volumes (see Supplementary Table A2, Online
Resource 1). This is also reflected by the high Dice score
of all the models. Furthermore, the average volume of the
erroneous structures (Volumefalse) for the PET/CT model
was 0.54 cm3. There were only five true structures in the
entire data set (< 5%) smaller than or equal to this size (data
not shown).

Fig. 4 Qualitative evaluation by an experienced oncologist of 15
PET/CT-based CNN delineations, randomly selected from the test
cohort. A score of 1 corresponds to a CNN delineation requiring
extensive revision whereas a score of 10 corresponds to a CNN
delineation that was indistinguishable from a manual delineation

Qualitative performance evaluation

The score distribution of the oncologist’s evaluation of the
PET/CT-based CNN delineations for 15 patients in the test
cohort is shown in Fig. 4, with performance details given
in Table 3. The majority of the CNN delineations were of
high quality. Thirteen delineations were scored 8 or higher,
indicating that the CNN delineations only required minor
modifications by an oncologist. For the two cases receiving
a score of 10, the oncologist was unable to decide which
delineation was generated by the CNN model and human
specialists. Only one case was assessed to a score < 7. This
auto-delineation received a score of 2, indicating that major
revision was required.

Figure 5 shows a representative image slice for three
patients whose PET/CT delineation was qualitatively
assessed by an oncologist. Animations of these delineations
are provided in Online Resources 2, 3 and 4 and
performance metric details are highlighted in italics in
Table 3. The upper row shows a patient for whom the
oncologist was unable to differentiate between the PET/CT-
based auto-delineation and the ground truth (Online
Resource 2). For this patient, both the PET- and the
PET/CT-based models performed well, whereas the CT-
based model missed the primary tumour in the larynx.
The middle row shows a patient for whom the PET/CT-
based auto-delineation obtained a qualitative score of 8
(Online Resource 3). The CT-based auto-delineation only
identified one structure and contained two false positive
structures. PET-based auto-delineation, however, correctly
identified both structures. Likewise, the PET/CT-based
auto-delineation correctly identified both structures, but
included one false positive structure. This false positive
structure resulted in a high patient-wise HD95 of 50 mm.
However, the correctly identified structures had an average
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Table 3 Performance metrics
for 15 randomly selected
patients in the test cohort,
whose auto-delineated contour
(generated by the superior
PET/CT model) was evaluated
by an experienced oncologist

HD95 (mm) ASD (mm) MSD (mm)

Score Dice ( %) SensGT ( %) PPVCNN ( %) SW PW SW PW SW PW

2 24 0 45 3.4 45 1.8 13 1.8 4.9

7 73 100 17 4.6 30 1.5 4.8 1.1 1.0

8 74 100 17 4.9 33 1.5 4.7 1.0 1.4

8 74 40 29 4.1 17 1.1 2.6 0.57 1.0

8 74 100 33 3.4 50 1.1 5.4 0.63 1.4

8 77 100 25 4.6 30 1.4 5.4 0.72 1.4

8 73 67 14 3.9 23 1.1 4.8 0.59 1.4

8 88 100 25 4.9 6.8 1.5 1.8 0.88 0

9 75 100 33 3.4 9.7 1.0 2.1 0.56 1.0

9 85 100 22 4.3 8.1 1.2 1.9 0.50 1.0

9 74 50 56 3.1 3.7 1.1 1.1 0.75 0

9 85 100 38 3.0 5.0 0.73 1.1 0.14 0

9 78 100 33 3.0 42 0.90 5.8 0.40 1.0

10 77 75 75 3.0 4.1 0.86 1.2 0.40 1.0

10 73 100 33 3.6 8.8 1.2 2.5 0.74 1.0

Dice, SensGT and PPVCNN are given patient-wise. For split metrics, PW represents the patient-wise
metric and SW represents the structure-wise metric. Representative auto-delineations for the italicised rows
(patients) are shown in Fig. 5

structure-wise HD95 of 3.4 mm (Table 3), indicating that the
CNN model delineated these structures adequately, more in
line with the oncologist’s evaluation. The bottom row shows
the patient for whom the PET/CT-based auto-delineation
obtained a qualitative score of 2 (Online Resource 4).
Here, all models, regardless of input-modality, failed at
delineating the true structures, likely caused by the strong
beam hardening artefacts and low PET-signal.

Discussion

Comparison to previous work

To the best of our knowledge, only three previous studies
have evaluated the use of CNNs for auto-delineation of
the GTV in HNC using multimodal images [8–10]. The
PET/MRI-based 3D CNN of Lin et al. [8] and the PET/CT-
based 2D CNN described in Huang et al. [9] obtained a
median Dice score of 79% and a mean Dice score of 74%,
respectively, for auto-delineation of the primary tumour
volume. As in the present study, Guo et al. [10] achieved
superior auto-delineation performance of the GTV-T and
GTV-N for combined PET/CT input, compared to using
single modality CT or PET input. Their PET/CT-based 3D
network (Dense Net) resulted in a mean Dice of 71%.
Similarly, our 2D U-Net obtained a mean Dice of 71% for

PET/CT-based GTV-T and GTV-N auto-delineation. One
notable difference between the present study and the results
reported by Guo et al. is the quality of auto-delineations
obtained using solely CT images. By only including CT
intensities in the range [−30, 170] HU, we obtained a mean
Dice of 56%, whereas Guo et al. reported a considerably
lower mean Dice of 31% using a wider CT window in the
range [−200, 200] HU [10].

Despite differences across imaging modalities in the
above studies, the median or mean agreement between
CNNs using multimodality input and the expert’s ground
truth is above 70%. Previous studies conclude that there
are considerable interobserver variations in manual HNC
target volume delineations [4–7, 17]. In Bird et al. [17],
the Dice agreement between five clinicians (three radiation
oncologists and two radiologists) was only 56% when
delineating the GTV in CT images. Similarly, Gudi et al.
[7] found that the Dice agreement between three radiation
oncologists was 57% when the GTV was delineated using
CT images and 69% when delineated using PET/CT-
images. Thus, the interobserver variability of clinicians
is similar to the performance of the present CNN-model,
which, when evaluated on the test cohort, had an average
Dice score of 56% and 71% for the CT and PET/CT-
based models, respectively. Furthermore, Lin et al. [8] found
that the interobserver and intraobserver variability between
oncologists, as well as the contouring time, decreased
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Fig. 5 The predicted (red) and
true (blue) delineations for one
representative image slice from
three different patients in the test
cohort. From left to right: CT-
based predictions; PET-based
predictions; PET/CT-based
predictions. From top to bottom,
different subjects for whom an
experienced oncologist gave the
PET/CT-based predictions a
qualitative score of 10, 8 and 2,
respectively. Performance
metrics for the shown patients
are marked with italicised text in
Table 3. Animations are given in
Online Resources 2 (top
patient), 3 (middle patient) and 4
(bottom patient)

significantly when CNN-based auto-delineations were used
to assist manual delineations, highlighting the possible
clinical value of auto-delineation tools.

Clinical usefulness of CNN-based auto-delineation

Both the quantitative performance metrics and the qual-
itative oncologist’s evaluation illustrate that despite the
moderate amount of training samples and the simple CNN
architecture, the models produced delineations of high qual-
ity. We observed that the auto-delineations could be useful
in RT with just minor to moderate refinements required,
such as removing false positive structure, delineating a
missing structure, or refining the delineation boundary. We
infer this conclusion both from the qualitative scores pro-
vided by an expert oncologist as well as the quantitative
surface-distance metrics. The average structure-wisesurface
distances between true and predicted delineated structures

were on the same order of magnitude as the CT resolu-
tion (∼ 1 mm). Furthermore, structure-wise HD95 were
on the same order of magnitude as the PET resolution (∼
3 mm). We can, in other words, conclude that the CNN
model generated highly accurate auto-delineations, with few
exceptions.

The CNN model does, however, exhibit some weak-
nesses. Some CNN delineated structures are false positives.
Moreover, not all ground truth structures are detected. The
false positive structures are of minor concern, as most of
them are smaller than the resolution of the PET-images.
A simple post-processing procedure can easily remove
such small structures. In contrast, the lack of sensitivity
is more problematic, since all malignant structures should
be treated. However, the average SensGT was 86% for the
PET/CT model, and all structures were identified for 75%
of the patients in the test cohort. It was further noted that
many of the patients with low CNN performance had beam
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hardening artefacts on the CT image, leading to slices with
little-to-no information from the CT-signal, as can be seen in
the bottom row of Fig. 5. This implies that the model worked
well for a large portion of the patients, but a small number of
patients would still require considerable manual refinements
before RT. Lastly, our models were trained and evaluated on
images acquired at one single centre. An important next step
is an assessment of our models’ generalisability to images
stemming from other centres.

The effect of imagingmodality

The CT signal indicates the mass density of tissue. However,
we are interested in the properties of soft-tissue tumours
and involved lymph nodes, which are only represented in
a small section of the CT range. As such, analysing the
entire CT range is unnecessary and could even make it
harder to find relevant features. This motivated the reduction
in dynamic range of the CT images, utilising a soft-tissue
window ranging from −30 to 170 HU.

From a deep learning perspective, such an a priori
decrease in dynamic range is not expected to affect model
performance to a great extent, as the same transformation
can be learned by a two-layer neural network with ReLU
activation functions. Nevertheless, our experiments strongly
suggest that decreasing the dynamic range of the CT images
can have a considerable positive effect on model perfor-
mance. This increase in performance will likely be less
prominent as the dataset size grows, because then, it may be
easier for the model to learn the windowing-operation. Fur-
ther discussion of imaging modalities will, therefore, only
consider CT and PET/CTmodels where the CT images were
pre-processed using the given Hounsfield window settings.

When we compare the performance of the models
based on their input modality, we notice that the PET
signal was essential for discovering the involved lymph
nodes correctly. Without the PET-signal, the models, on
average, only discovered 60% (SensGT) of the manually
delineated structures (GTV-T and GTV-N) in the validation
cohort. For patients in the test cohort, the CNN model
performed worse. The highest performing CT-based CNN-
model only managed to identify 53% of the manually
delineated structures. Conversely, models trained using
only PET images and models trained using both PET and
CT images, delineated on average 75% of the malignant
structures for the validation cohort. On the test cohort, the
highest performing PET and PET/CT models discovered
77% and 86%, respectively. Thus, we conclude that the PET
signal was crucial for obtaining auto-delineation models
with sufficient sensitivity.

A benefit of CT, compared to PET, is its higher
spatial resolution. In our experiments, the surface distances

between the detected structures and their corresponding
ground truth boundaries were smaller for the models that
incorporated the CT signal as compared to those without CT
input. Hence, the high resolution of the CT was essential to
identify the small details and provide an accurate boundary
of the structures. Finally, combining the PET signal with
the CT signal improved all quantitative performance metrics
except for the PPVCNN, for most patients. We therefore
recommend using a fused PET/CT approach for auto-
delineation of head and neck tumours and involved nodes.

The performancemetrics

By including structure-wise performance metrics, as
opposed to only voxel- and patient-wise performance met-
rics, we were able to quantitatively analyse the results in
a more in-depth fashion. These structure-wise metrics are
meant as a supplement providing additional information on
the quality of the auto-delineation, not as a replacement of
the well-established and commonly reported metrics, which
must be reported to enable cross-study comparisons. Thus,
it is the joint information provided by the different types of
metrics that we consider useful.

The added information content of the structure-wise met-
rics is demonstrated in Tables 2 and 3. We see that the
patient-wise surface distances are relatively large—especially
the HD95 metric. However, the corresponding structure-
wise distance metrics are much smaller. As these metrics
were only calculated for auto-delineated structures that
overlapped by more than 50% with the ground truth, falsely
predicted structures that would otherwise skew the distance-
metrics were avoided. Thus, the discrepancy between the
patient-wise and the structure-wise distance metrics indi-
cates that the models predict false positive structures. Fur-
thermore, the small structure-wise distance metrics demon-
strate that the models performed well for the true structures
they actually detected and delineated, thereby indicating
how much manual modification is required by the clinician.
Likewise, the structure-wise sensitivity, PPV and volumes
were very informative as to the types of errors the mod-
els make, such as how many true structures they miss, how
many false structures they predict and how large these are.

Conclusions

In summary, we show that CNNs can be used for accurate
and precise GTV delineations of HNC using multimodality
PET/CT. Furthermore, our proposed structure-wise perfor-
mance metrics enabled in-depth assessment of CNN pre-
dictions and errors, which may facilitate the use of such
auto-delineation tools in RT planning.
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