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Making decisions in missing person identification cases with low 
statistical power 

 
Abstract 

 

The present work proposes a general strategy for dealing with missing person identi- 

fication cases through DNA-database search. Our main example is the identification 

of abducted children in the last civic-dictatorship of Argentina, known as the “Miss- 

ing Grandchildren of Argentina”. Particularly we focus on those pedigrees where few, 

or only distant relatives of the missing person are available, resulting in low statistical 

power. For such complex cases we provide a statistical method for selecting a likeli- 

hood ratio (LR) threshold for each pedigree based on error rates. Furthermore, we 

provide an open-source user friendly software for computing LR thresholds and error 

rates. The strategy described in the paper could be applied to other large-scale cases 

of DNA-based identification hampered by low statistical power. 

Introduction 

 
The use of DNA databases for missing person identification (MPI) and disaster victim identification 

(DVI) has gained relevance in the last decades [1,2,3]. Despite the incorporation of more genetic markers 

and new software programs for kinship testing, several complicating factors remain challenging in such 

applica- tions, mainly pedigrees with low statistical power, complex pedigree structures and 

inconsistencies due to mutations. 

Loosely speaking, the statistical power refers to the probability of reaching a conclusion when we are 

testing a specific hypothesis with the available data. In our context, the data is the genetic information 

collected from: (i) persons of interest (POIs) that are people who could be the missing person (MP) and 

(ii) reference individuals, i.e., relatives of the missing persons. Typically, each POI is matched 



 

 
 
 

 
 

Figure 1: Confusion matrix showing potential outcomes of LR based classification. 

 
against the reference families using a statistical kinship test based on the likelihood ratio (LR). A 

potential match is declared if LR exceeds a specified threshold T. 

Two measures of statistical power are particularly useful in large-scale cases such as the “Missing 

Grand- children of Argentina” [1,4]: The inclusion power (IP) is the probability that LR ≥ T if POI is 

MP, while the exclusion power (EP) is the probability that a random unrelated person can be excluded 

due to genetic inconsistencies with the relatives of the missing person (mutation model is not used when 

estimating EP). Low statistical power increases the risk of not reaching the correct decision [5] (Figure 

1). Potential matches, indicated by LR ≥ T , are analysed further, with more data (mtDNA, Y-STRs or 

X-chromosomal markers), to reach a conclusion about the case. This confirmation step has the specific 

aim of avoiding false positives. In contrast, false negatives (LR < T , when POI is MP) are silent errors 

which are often hard to catch. 

 

Choosing an optimal LR threshold T is a difficult problem in many forensic applications. In practice, 

DNA laboratories set an ad − hoc T based on the type of cases that they are working on (MPI, DVI, 

paternity testing, etc). In MPI cases, high thresholds are generally chosen in order to avoid false 

positives. For example T = 10,000 was proposed by Kling et al. [1] where a set of unsolved cases from 

BNDG were exemplified. After performing simulations with a group of reference pedigrees from 

BNDG, authors did not get false positives, using T = 10,000, for all analyzed cases. Importantly, for 



 

 
 

pedigrees with low statistical power, the threshold of 10,000 is not likely to be met; in other words such 

pedigrees have a high false negative rate (FNR). Selecting a lower T decreases FNR at the cost of 

increasing the false positive rate (FPR). On the other hand, a high FPR due to a low T implies an 

increased cost for a forensic lab, since extended analyses are needed to check each potential 

identification. 

Previous works have explored some strategies for selecting T based on LR distributions [6,7,8]. These 

approaches analyzed different types of relationships (uncle-nephew, grandparent-grandchildren, etc) in 

order to determine LR thresholds for declaring an identification. As mentioned by Slooten et al. [5] a 

distinction should be done between notions of evidence and decision making in these cases. We do not 

provide a LR threshold for reaching a conclusion in the identification process, when comparing H1: POI 

is MP, and H2: POI is unrelated to MP. We propose a case-specific LR threshold, named LR decision 

threshold (DT), for reference families with low statistical power to identify an optimal subset of POIs. 

Similarly, Meester et al. suggested using a case specific LR threshold based on error rates for selecting 

this subset [8]. Here, we propose a statistical method for selecting a case-specific DT. Furthermore, we 

exemplify its application on the Banco Nacional de Datos Genéticos (BNDG) cases. 

The “Missing Grandchildren of Argentina” is a pioneer case in missing person identification, and 

BNDG, created in 1987, is one of the first of its kind [9,10,11]. It has two genetic databases: one for the 

reference pedigrees composed by the genetic profiles of the relatives of the missing persons and the 

other for people who question their biological identity and were born during the military-civic 

dictatorship, namely, persons of interest (POIs). DNA database search implies performing kinship 

analyses between all POIs against all the pedigrees present in BNDG. A majority of BNDG reference 

pedigrees lack first-degree relatives of the missing person, because biological parents of the kidnapped 

children were murdered and their bodies still remain missing. This implies that the DNA-based 

identification of the kidnapped children must be done with distant relatives, like grandparents, uncles, 

great-grandparents, and others [12]. These characteristics of the “Missing Grandchildren of Argentina” 

are not unique. There are several cases where first degree relatives of the missing persons are 



 

 
 

unavailable for genotyping [3]. In such complex situations the more distant relatives play a key role in 

the identification process. Likelihood ratio Decision Threshold calculation and estimation of error 

rates can be obtained using Forensic Genetic Simulation Analysis (FOGSA), developed with the aim 

of helping decision makers in database search analysis. 

Materials and methods 

Database. BNDG currently holds genetic data from more than 10,000 POIs. In addition, each month 
around 100 new POIs are incorporated into the database. The reference database contains around 300 
pedigrees composed by relatives of the missing grandchildren. This study covers 274 of the reference 
families. In the last general evaluation of the BNDG [1], summary statistics of the analyzed reference 
families were calculated providing an overview of the number of typed relatives and their relationship 
to MP. Since then, the number of genetic markers has increased from 15 to 23 for all reference samples 
in the database. For special cases, when more genetic data is required, some pedigrees are genotyped 
with more autosomal STRs markers (increased to at least 30), X-chromosomal STRs, Y-STRs and 
mtDNA. Kinship testing. The identification cases considered in this paper involve families with a single 
MP. For a given POI we compare the following hypotheses: H1: POI is MP and H2: POI is unrelated to 
MP. After genotyping POI, a statistical evaluation of the above hypotheses is done using the likelihood 
ratio, defined by

 

(1)

 

Here data means the genotype information, and θ contains marker properties and other fixed parameters. 

In our context each hypothesis H is equivalent to specifying a (not necessarily connected) pedigree, and 

we may regard P (data|H) as a pedigree likelihood. 

Statistical Power Analysis. Statistical power for kinship testing was described by Egeland et al. [13]. 

Kling et al. [1] presented power calculations based on conditional simulations, currently implemented 

in the R library forrel (https://CRAN.R-project.org/package=forrel). Unless otherwise stated, we assume



 

 
 

that the reference data is consistent, meaning that the observed genotypes have nonzero probability in 

the reference pedigree (but note that this may allow mutations if appropriately modelled) [4]. For the 

simulations in this paper we applied the uniform mutation model, with a mutation rate of 0.002 [14]. 

Based on the previously mentioned work by Kling et al. [1], we defined the inclusion power as the 

probability that LR exceeds T0 = 10,000, given that POI is MP: 

 
IP10,000 = P (LR ≥ 10,000 | H1) (2) 

We estimated IP10,000 for each pedigree by simulating the genotypes of 10,000 MPs conditional on 

the reference data. 

The exclusion power (EP) is the probability of LR vanishing, given that POI is not MP: 
 

 
EP = P (LR = 0 | H2) (3) 

Reference pedigrees with the same structure (for example, one uncle is typed) may have different 

statistical power, depending on the observed genotypes. The power is typically better for pedigrees com- 

posed by members with rare multilocus genotypes, compared to more common genotypes. To account 

for such differences, all simulations were performed conditionally on the known reference data. 

We may consider the false negative rate as a function of the threshold T , 
 

 
FNR = P (LR < T | H1) (4) 

and similarly for the false positive rate: 

 
FPR = P (LR ≥ T | H2) (5) 

 
For each pedigree, with conditional simulations, we estimated FNR and FPR for each integer T between 

1 and 10,000. For cases where low rates were obtained, importance sampling was used [15].



 

 
 
 

 
 

Figure 2: Left. False negative rate (FNR) and false positive rate (FPR) when the LR threshold T varies 
between 1 and 10,000. The red dot minimizes the weighted euclidean distance (WED) to the origin. 
Right. WED as a function of T . 

 
LR decision threshold estimation. DT is the value of T that minimizes the following weighted eu- 

clidean distance (WED) to the theoretical optimum (where FPR = FNR = 0) (see Figure 2): 

 

 (6) 

The choice of weights W1 and W2 reflects the relative importance of false positives and negatives, 

and depends on the database size and the capacity of the forensic lab. A ratio of ten to one, correspond- 

ing to W1 = 10 and W2 = 1, between FPR and FNR allows obtaining DTs with a manageable number of 

expected false positives. 

We note that a similar approach, the point closest to the optimal, is commonly used in the estimation of 

optimal cutoff in ROC curves [16]. Here, the weights represent the relative importance of the errors and 

depend on laboratory resources. The proposed weights in this paper were selected for the particular cases 

from BNDG but may be modified for decision makers in their cases. This is addressed in more detail in 

the discussion section. 

Database search strategy. A series of steps, illustrated in Figure 3, were followed for each pedigree: 

(i) Statistical power evaluation: The first step is the evaluation of the statistical power of the reference



 

 
 

pedigree. In this way we are able to identify well-powered (EP ≥ 0.9; IP10,000 ≥ 0.9) and underpowered 

pedigrees (either EP or IP10,000 below 0.9). For pedigrees with good power, we go to the step (iv). For 

those underpowered we follow the steps detailed below. 

(ii) Include more relatives: If there are available relatives, the impact of their incorporation to the pedi- 

gree is tested and the best option is genotyped (for more details see Vigeland et al. [4]). For pedigrees 

that now reach good power, we go to step (iv); otherwise we proceed with the next step. 

(iii) Likelihood ratio decision threshold calculation: A decision threshold DT is computed as explained 

above. 

(iv) DNA database search: Cases with LR ≥ 10,000 (well-powered pedigrees) or LR ≥ DT (for under- 

powered pedigrees) are declared as potential identifications. 

(v) Confirmation: All potential matches are analyzed in detail, possibly with more data incorporated, to 

reach a reliable conclusion. If all collected evidence is consistent, the match is confirmed and declared 

as a missing person identification. 

Implementation. The software Familias was used to perform the LR calculations [17,18]. Plotting and 

power analyses were done in R with the forrel package (https://cran.r-

project.org/web/packages/forrel/index.html). Importance sampling, FNR, FPR and DT calculations were done 

using the mentioned FOGSA (https://github.com/MarsicoFL/FOGSA). A web version is available 

(https://francomarsico.shinyapps.io/fogsa/) as well tutorial and documentation: 

https://marsicofl.github.io/FOGSA/. This software works with the output data from simulations performed with 

programs such as Familias and forrel. 

 
Results 

 
Power analysis for DNA-based identification. Figure 4 shows a power plot with EP and IP10,000, for 

all analyzed BNDG reference families. With 23 markers, more than 70% of the pedigrees present in the 

BNDG have good statistical power (EP and IP10,000 both ≥ 0.90). 



 

Supplementary Table 1 shows that the median IP10,000 (considering all the pedigrees in the reference 
 

 
 
 
 
 

 
 

Figure 3: General strategy for DVI/MPI large scale cases. See main text for a detailed description.



 

 
 
 

 
 

Figure 4: DNA-based identification capability of the pedigrees present in the BNDG. Power plot 
describ- ing the current statistical power (with 23 markers). Each point represents the EP and IP for a 
specific pedigree. Example pedigrees are shown. 

 
database) significantly increases as a result of increasing from 15 to 23 markers. In contrast, for median 

EP there was a smaller increment. 2nd and 3rd degree relatives to the missing person are very common 

in pedigrees present in the BNDG. Some of those pedigrees may give high LR values resulting from 

sharing low frequency alleles with POI, but there is also a risk of false positives. The impact of 

incorporating more genetic markers on IP10,000 and EP certainly depends on the pedigree structure 

(supplementary Ta- ble 1). The addition of more markers does not improve EP for pedigrees with too 

few or distant relatives to enable exclusion. For pedigrees F1, F2 and F3 there are no impact on the EP 

when the new markers were added. Considering the IP10,000, F1 and F2 have comparable values. Despite 

not having the genetic



 

 
 

profile of the paternal uncle, the incorporation of the profiles of two paternal cousins and their mother 

was enough to obtain an acceptable IP10,000. F3 shows a high IP with 23 markers but the EP is equal to 

zero. 

Likelihood ratio distribution analysis. Firstly we analyzed the LR distributions obtained from condi- 

tional simulations for the pedigrees with low statistical power (some examples are shown in Figure 5). 

Pedigrees F5 and F10 have very low IP10,000 and it is evident that the default LR threshold of 10,000 

will lead to a high FNR. The remaining pedigrees (F6 to F9) have IP10,000 > 0, topped by F8 (IP10,000 = 

0.62). Interestingly, the probability of finding an unrelated person exceeding the LR threshold is 

negligible in all cases, demonstrating that T = 10,000 is sufficient for avoiding false positives. 

LR Decision Threshold. Curves shown in Figure 6 were obtained for pedigrees F5 to F10 , allowing 

us to define a DT using the previously illustrated criterion (see Figure 2). Figure 6 shows the FPR-FNR 

curves and optimal points determining DT for the low-powered pedigrees F5-F10. Numerical results are 

given in Supplementary Table 2. For example, we see that F7 gave DT = 10, with FNR = 0.03 and FPR 

= 0.002. In a database of ten thousand people, this corresponds to a manageable number of 20 expected 

false positives. In contrast, F6 has lower DT and more false positives are expected (around 120 in a 

database of ten thousand). The most complex cases are pedigrees F5 and F10 where DT is very low 

(equal to 6) and a high number false positives are expected (more than 200). Using F5 as an example, 

Figure 7A shows WED as a function of T , elucidating how T < DT rapidly increases WED because of 

the FPR increment. In contrast, when T > DT , WED increases with a lesser slope. Figure 7B shows 

how DT optimization improves IP from IP10,000 = 0.01 to IP6 = 0.47, at the cost of increasing FPR from 

0 to 0.021. 
 

 



 

 
 
 
 
 
 

 
 

Figure 5: LR distribution of six pedigrees with low statistical power. Log10(LR) distributions for both 
related (POI is MP) and unrelated (POI is a random person from the population) are plotted. The vertical 
purple lines indicate a LR threshold T0 = 10,000. The axes are scaled according to the obtained values.



 

 
 
 
 

 
 

Figure 6: Curves of false positive rates (FPR) and false negative rates (FNR) of the six pedigrees 
analyzed in Figure 5. 

 

 

 

Figure 7: A. Weighted Euclidean Distance (WED) for pedigree F5. B. DT, FPR and FNR for F5 if a T0 
= 10,000 or DT = 6 are considered.



 

 
 

Comparison with other threshold selection strategies. Finally, we compare the DT approach with 

other methods, some of them reviewed by Kruijver et al [8]. The alternative strategies analyzed here 

are: 

(i) FPR fixed: when FPR is selected for all pedigrees based on laboratory resources, so LR threshold 

and FNR vary in each one;  

(ii) FNR fixed: when FNR is selected, therefore FPR and LR threshold vary; 

(iii) LR threshold fixed: when the same LR threshold is selected for all reference pedigrees, named Tl 

(lower threshold), and it is used as a cut-off for gathering more genetic analysis. In this last case FNR 

and FPR vary for each reference pedigree. For example, we choose arbitrarily: FPR = 0.01 for (i); FNR 

= 0.03 for (ii); and Tl = 10 for (iii). Results are shown in Supplementary Table 3. We can observe 

differences between the alternative strategies and the proposed method. Underpowered pedigrees (F5 

and F10) show more divergence between fixed methods and the DT strategy. Particularly, fixed FNR 

gives useless thresholds for F5 and F10 with FPR = 1. Also, FPR fixed gives higher FNR than DT 

approach in F5, F6, F8, and F10. In F7 and F9 a slightly larger FNR obtained with DT allows much 

lower FPR. Fixed Tl gives higher FNR in all cases except F7, where DT = Tl = 10. 

Discussion 

 
In this paper we propose a general strategy for dealing with MPI/DVI cases in large-scale DNA database 

searches. Particularly we provide a statistical method for decision-making for cases with low statistical 

power. Bayesian decision theory has been proposed as a way of minimizing the risk of taking decisions 

[19]. It requires some cost to be specified for false positives and false negatives and also the use of 

priors. This approach is useful in DNA laboratories that treat paternity cases and, as explained by Hedell 

et al. [20], could be applied also to other problems in forensic genetics. There are several studies 

applying Bayesian network and decision theory approaches in order to make decisions in database 

searching [21,22].



 

 
 

In our case, we propose a strategy for taking advantage of the available genetic information from those 

pedigrees with low statistical power, that despite being insufficient for a conclusion, could be used to 

select a set of POIs that gives a LR ≥ DT for incorporating more genetic analysis in order to resolve the 

cases. Furthermore, the approach proposed by Tillmar et al [19] provides a method for decision making 

when different sets of markers could be incorporated. Comparisons between sets of markers are based 

on a function relating the expected additional value of information from new data to the amount of 

information already obtained from initial data. A low DT will give more false positives implying more 

cases where additional genetic analyses must be performed. On the good side, it will have a lower FNR 

and decrease the probability of missing an identification in the database search. 

In most cases with low statistical power, we were able to obtain an useful DT in pedigrees F6, F7, F8 

and F10 (Figure 6). DT approach gives a manageable FPR whilst reducing FNR. For families F5 and 

F10, DT optimization results in a high FNR and FPR (Figure 6). Despite this, the obtained DT is better 

than the original T0 = 10,000, as shown in Figure 7. Incorporating more information from other DNA 

markers or preliminary investigation could help in these complex cases to reduce the expected number 

of false positives. Importantly, this would allow to decrease the weight of the FPR in WED calculations 

(equation 2) leading to a lower DT and therefore a lower FNR. 

Comparisons with alternative strategies (Supplementary Table 3) show how DT approach leads to useful 

thresholds in all cases while other approaches not, for example when FNR is fixed with F5 and F10. 

When database search is carried out with many reference pedigrees, looking for a useful FPR, FNR or 

LR cut-off for all cases could be difficult. DT approach allows dealing with underpowered pedigrees 

obtaining thresholds with manageable FNR and FPR. In well-powered cases an ad − hoc criteria with 

T0 = 10,000 is enough to guarantee avoiding false positives without risk of false negatives, as proposed 

in different contexts by Ge at al [23], Kling et al [1] and revised by Kruijver et al [8].



 

 
 

Generally speaking, a threshold will be referred to as optimal if it classifies most of the individuals 

correctly when accounting for the relative costs of errors as explained in the definition of WED. Time 

and economic resources for gathering more genetic information may be limited in certain contexts. 

Large scale cases hampered by low statistical power lead to many false positives. So, forensic scientists 

have to decide about how many resources are willing to put in order to avoid missing an identification. 

All this information results in giving some differential cost between the FPR and FNR. For example, 

with unlimited economic resources for gathering more genetic information the cost of FPR will be low 

(so W1 < W2) and it will lead to lower DT. In contrast, if resources are limited the cost will be higher 

(W1 > W2) and higher DT will be obtained. The decision of cost selection should be done by the forensic 

scientist and, despite being ad − hoc, contributes to mathematically formalize the identification process. 

In this study we have only considered autosomal STR markers, but many forensic labs incorporate other 

markers in addition. For example, mitochondrial DNA and Y-STRs markers could be used to reduce the 

expected number of false positives. For instance, for pedigree F5, all potential identifications (with LR 

≥ DT ) that do not share mitochondrial DNA with the great-grandmother could be excluded. The same 

thing, but only applicable to males, applies to Y-STRs. As an example we can analyze pedigree F1 

where a paternal uncle is available so all male POIs that do not share Y-STRs with the reference 

individual, could be excluded. All these strategies are powerful and have the advantage of only requiring 

genotyping one of the members of the pedigree. They could be used as a filter in database search, its 

success will depend on the frequency of the haplotypes in mtDNA or alleles in Y-STRs. Nevertheless, 

it does not avoid genotyping POIs that, with a high FPR, could be expensive in terms of time and 

resources. Finally, in the case of BNDG, baby theft or child trafficking, information such as age, 

geography and birth date, could complement the DNA-based identification. Methods for formalizing 

and incorporating this type of data in database searches have been suggested [24,25]. 

 

  



 

Conclusion 

 
In this paper we have described a method for dealing with low statistical power in DNA-based identifi- 

cation through database search. Moreover, we have exemplified the strategy using real cases of Missing 

Grandchildren of Argentina. The algorithm and functions for the calculations of FNR, FPR and DT are 

implemented in FOGSA, which is freely available from https://github.com/MarsicoFL/FOGSA. 
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Supplementary 
 

 IP EP 
Nº markers 15 23 15 23 

Median 0.81 0.92 0.84 0.87 
F1 0.31 0.57 0 0 
F2 0.22 0.63 0 0 
F3 0.41 0.95 0 0 
F4 0.37 0.91 0 0.89 
F5 0 0.01 0 0 
F6 0.02 0.23 0 0 
F7 0.24 0.54 0 0 
F8 0.31 0.72 0 0 
F9 0.27 0.56 0.52 0.86 
F10 0 0 0 0 

Supplementary table 1 - IP10,000 and EP with 15 and 23 Autosomal STRs markers for the median of all 

reference pedigrees analyzed in the BNDG reference database. 

 
 

Pedigree DT FPR FNR 
F5 6 0.021 0.53 
F6 8 0.012 0.21 
F7 10 0.002 0.03 
F8 12 0.001 0.02 
F9 7 0.003 0.02 
F10 6 0.024 0.47 

 

Supplementary table 2 - LR decision threshold (DT), false positive rate (FPR) and false negative rate 

(FNR) when T= DT, for pedigrees F5 to F10. 

 Tl = 10 FPR = 0.01 FNR = 0.03 
Pedigree FPR FNR Tl FNR Tl FPR 
F5 0.011 0.61 11 0.64 0 (<0.1) 1 
F6 0.010 0.23 11 0.22 24 0.005 
F7 0.002 0.03 1 0.01 10 0.002 
F8 0 0.03 1 0.06 12 0 
F9 0.001 0.04 3 0.01 9 0.002 
F10 0.014 0.64 12 0.67 0 (<0.1) 1 

Supplementary table 3 - Error rates and thresholds for alternative strategies. When FNR and FPR were 

fixed, closest LR integer was choosen. 


