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ABSTRACT 

The quantity purchased in a period is the result of two decisions: the frequency of purchase and 

the average purchase on each occasion. We introduce habit formation into demand systems 

modelling each of these decisions. An econometric model is estimated by Bayesian methods. The 

data generating processes of the frequency and quantity decisions are assumed to follow, 

respectively, a multivariate Poisson log-normal distribution and a multivariate gamma log-normal 

distribution. We estimate the systems using French scanner data for purchases of fish. The results 

suggest that habits in purchase frequencies are important, while habits in average purchased 

quantities are less important. Furthermore, we find that price changes are important for explaining 

average quantities purchased but have only minor effects on purchase frequencies.  
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1. INTRODUCTION 

Goods may be habit forming such that current preferences for a good depend on past 

consumption of the good. The importance of habits in purchase decisions for ordinary consumer 

goods is well documented in the economic literature (e.g., Havranek, Rusnak, & Sokolova, 2017). 

Habits have frequently been found to be important in demand system analysis for food (e.g., 

Gracia, Gil, & Angulo, 1998; Rickertsen, 1998) and fish (e.g., Asche, 1996; Asche, Salvanes, & 

Steen, 1997). For a review of this literature we refer the reader to Daunfeldt, Nordstöm, & 

Thunström (2012).  

The strength of habits may be measured by a habit formation parameter taking a value 

between zero and one. A value of zero corresponds to no habit formation and as the value 

approaches one it implies that consumption becomes more and more determined by habits. In a 

meta-analysis, Havranek, Rusnak, & Sokolova, (2017) find that the average value of the habit 

formation parameter is 0.4. However, estimates vary significantly between micro and macro data 

with an average of 0.6 in studies using macro data and 0.1 in studies using micro data. The authors 

suggest that a likely reason for this difference is that estimates based on macro data likely show 

significantly higher habit formation due to higher aggregation level, longer time horizons, and 

lower data frequency, since consumption goods are more likely to display durability in higher data 

frequencies and thus counteracting the observed habit formation.  

Durability was defined by Spinnewyn (1981) as the physical depreciation rate of a durable 

good. The durability parameter takes a value between zero and one. A value of zero implies no 

depreciation, and a value of one implies complete depreciation in the period. In Spinnewyn’s 

(1981) formulation, the net effect of habits and durability determines the effect of previous period’s 

consumption on current period’s consumption. However, since Spinnewyn (1981) defined the 
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durability parameter as the physical depreciation of durable goods, previous studies of non-durable 

goods typically do not include this parameter. One exception is Zhen et al. (2011) who estimate 

the demand for different non-alcoholic beverages with varying degrees of storability. Their 

estimated durability parameter for whole milk and low-fat milk was not zero, and they suggest that 

the durability parameter reflects more than the physical depreciation such as consumers’ 

preferences for shopping frequencies. Based on this interpretation, we do not restrict the durability 

parameter to zero in our study of the demand for fresh fish. To make the distinction between 

physical depreciation, as reflected by the durability parameter, and personal preference, we will 

refer to our parameter as a duration parameter. 

Research applying micro data to study the effects of habits and consumer purchasing 

behavior has focused on product choice and expenditure shares (Adamowicz & Swait, 2012; 

Alessie & Kapteyn, 1991; Arnade & Gopinath, 2006; Browning & Collado, 2007; Dynan, 2000; 

Fuhrer, 2000; Heaton, 1995; Holt & Goodwin, 1997; Rickertsen et al., 1995; Rickertsen, 1998; 

Zhen et al., 2011). The relationships between purchase frequency, habits, and duration have, as far 

as we know, not been investigated. Previous research by Robin (1993) and Buason & Agnarsson 

(2020) demonstrate that purchase frequencies are important for explaining consumer purchasing 

behavior. Thus, it is worth investigating whether habit formation and duration are more important 

for purchase frequency than for expenditure shares in micro data. To study the relationships 

between purchase frequency, habits, and duration, we divide the household’s decision of how 

much to buy in one period into two decisions: (i) the frequency of shopping and (ii) the average 

purchase on each shopping trip.  

An understanding of how habits and duration influence these two decisions can be used to 

formulate marketing strategies such as a loss-leader pricing strategy. This strategy involves 
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reducing the price of some products below their marginal cost and simultaneously increase the 

price of other products (e.g., Chen & Rey, 2012; In & Wright, 2014; Buason, Kristofersson, & 

Rickertsen, 2020). In many situations, consumers buy multiple categories of grocery and find it 

convenient to buy them from a single store. These consumers are known as one-stop shoppers and 

have different shopping preferences relative to multi-stop shoppers, for example, due to tighter 

time constraints or a lower preference for shopping (Thomassen et al., 2017). Good candidates for 

price reductions are products that have a relatively high own-price elasticity and moderate habits 

in the frequency of shopping. Good candidates for price increases are products with a relatively 

low own-price elasticity but a high degree of habits in average purchases. Our methodology can 

potentially be used to investigate whether a product is a good loss-leader candidate. However, our 

empirical analysis includes only fresh fish, and we would need to include other products to develop 

a plausible example of an effective loss-leader strategy. 

We follow Spinnewyn (1981), Pashardes (1986), Muellbauer & Pashardes (1992), and 

Zhen et al. (2011) and introduce durability and habits. As discussed above, our duration parameter 

reflects consumer preferences more than physical depreciation, and it reduces the speed at which 

goods need to be acquired to maintain an optimal level of the service stock. Habits have the 

opposite effect of duration on purchases, and more habitual consumers need greater flows of goods 

to reach their desired level of the service stock.  

Purchase frequencies have rarely been incorporated into consumer demand analysis. 

However, some studies have used infrequency of purchase models (e.g., Meghir and Robin, 1992; 

Robin, 1993; and Buason & Agnarsson, 2020). These studies use purchase frequencies instead of 

a binary choice of whether to purchase or not. Robin (1993) showed that when a demand system 
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is adjusted by the predictions from such a count data model, it explains more of the variation in 

the data than a conventional double-hurdle model.1  

To estimate a multivariate count data model with unrestricted covariance structures for 

more than two goods is challenging. For example, Meghir & Robin (1992) and Robin (1993) 

estimated their count data demand equations without allowing for any covariance structure 

between the equations in their systems. A few studies have estimated count data demand systems 

with unrestricted covariance structure. Examples include Buason, Kristofersson, & Rickertsen 

(2020); Chib & Winkelmann (2001); and Egan & Herriges (2006). These studies either use 

Bayesian methods or standard maximum likelihood. The simulation-based methods, such as the 

random walk Metropolis algorithm that is used in Bayesian estimation, do not require numerical 

integration to get an explicit solution to the likelihood function but only sampling from the 

posterior. The simulation-based methods do therefore not suffer as much from the curse of 

dimensionality as the Gaussian quadrature. 

This article adds to the literature in three ways. First, we extend the models developed in 

Spinnewyn (1981) and Muellbauer & Pashardes (1992), by allowing the choice of service stocks 

to be derived from two decisions: (i) how often to purchase each good and (ii) the average purchase 

on each occasion. We incorporate the dynamic structure of habit formation and duration into a 

semi-logarithmic demand specification, which is the standard specification of the expected value 

of count data models. 

Second, we extend the model presented in Buason, Kristofersson, & Rickertsen (2020) by 

introducing habit formation. As in their model, our model allows for the joint estimation of 

 
1 Even though count data models have not been used frequently in demand analysis of consumer goods they have 

frequently been used in health economics, environmental economics, and marketing. The dependent variable in 

these studies are typically the number of visits to doctors, the number of trips to a recreational site or frequency of 

shopping (Deb & Trivedi, 2002; Egan & Herriges, 2006; Uncles & Lee, 2006).  
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purchase frequencies and average purchased quantities on each shopping occasion. For the 

purchase frequencies, a multivariate Poisson log-normal mixture (MPLN) distribution is used,2 

and for the average quantities a multivariate gamma log-normal (MGLN) distribution is used. Our 

empirical model allows for an unrestricted covariance structure between the equations in each 

subsystem and also between the two subsystems of the model. However, for ease of computation, 

we assume that the two subsystems are stochastically unrelated but let the covariance structure 

between equations in each system be unrestricted.3  

Third, the model is applied to French scanner data for fresh fish purchases over the period 

2005-2008. Our empirical system consists of wild, farmed, and other fish, which the consumers 

do not know whether is wild or farmed. We refer to the last category as other fish.4  

 

2. THEORETICAL MODEL 

Following Spinnewyn (1981), and Muellbauer & Pashardes (1992), let 𝑍𝑖𝑡 be the utility generating 

services in period t provided by the flow of good 𝑥𝑖 purchased in period t or before, i.e., the model 

differentiates between the period of purchase and the periods when utility is gained from the 

purchased good. Let 𝑍𝑖𝑡 be defined as the weighted sum of the logarithm of current and past 

purchases as follows:  

 
𝑍𝑖𝑡 = ∑ 𝑑𝑖

𝜏 ln 𝑥𝑖𝑡−𝜏 = ln 𝑥𝑖𝑡

∞

𝜏=0

+ 𝑑𝑖𝑍𝑖𝑡−1. 
(1) 

 
2 This model was introduced by Aitchison & Ho (1981). 
3 This simplifying assumption could lead to an incorrect specification of the variance if the two systems are 

stochastically correlated, but it does not lead to inconsistent or biased estimates of the parameters. 
4 Discussion on wild versus farmed fish can be found in, for example, Herrmann et al. (1993), Asche et al. (2005), 

Asche & Guttormsen (2014), Rickertsen et al. (2017). 
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The degree of durability of good 𝑥𝑖 is determined by a simple duration parameter 𝑑𝑖 , where 

0 ≤ 𝑑𝑖 < 1. As discussed above, the parameter 𝑑𝑖 does not just reflect the biological durability of 

the good, but also personal preference of time between purchases (Zhen et al., 2011). For example, 

fresh fish is not a durable good, however, this lack of durability does not imply that a purchase of 

fresh fish today has no impact on purchases of fresh fish in the next period.5 

We modify Equation (1) by assuming that the decision of purchased quantity 𝑥𝑖𝑡 of good i 

in a time period t is determined by two decisions: (i) how often to purchase good i in period t and 

(ii) the average quantity purchased on each shopping occasion in the period. These decisions are 

expressed by the identity 𝑥𝑖𝑡 ≡ 𝑛𝑖𝑡𝑞𝑖𝑡, where 𝑛𝑖𝑡 is purchase frequency and 𝑞𝑖𝑡 is average quantity.  

We follow Muellbauer & Pashardes (1992) and assume that habits are developed over time, 

where the desired level of the utility generating service stock 𝑍𝑖𝑡
∗  is defined as follows: 

 𝑍𝑖𝑡
∗ = exp(𝑍𝑖𝑡 − 𝜙𝑖𝑍𝑖𝑡−1), (2) 

where habits are introduced by the parameter 𝜙𝑖 for each good and 0 ≤ 𝜙𝑖 < 1, i.e., habits are 

treated as the opposite of duration. The grater the habit formation parameter is the larger service 

stock 𝑍𝑖𝑡 needs to be maintained to reach the desired level of the utility generating stock 𝑍𝑖𝑡
∗ . 

Substituting Equation (1) into Equation (2) gives: 

 𝑍𝑖𝑡
∗ = exp(ln 𝑥𝑖𝑡 + 𝑑𝑖𝑍𝑖𝑡−1 − 𝜙𝑖𝑍𝑖𝑡−1) (3) 

 = 𝑥𝑖𝑡exp((𝑑𝑖 − 𝜙𝑖)𝑍𝑖𝑡−1).  

If duration 𝑑𝑖 dominates habits 𝜙𝑖 , then the total effect is positive and the utility generating stock 

is greater than the quantity of good i purchased in period t. The opposite is true when habits 

dominate duration. We are interested in the specific effects of duration and habits. To separately 

 
5 The durability of good 𝑥𝑖𝑡 could also be modelled by a decay function. However, for simplicity we use one 

duration parameter.  
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identify these effects, we need to know either the value of the duration or habit parameter. We 

estimate the duration parameter from Equation (1) by using the initial condition of the service 

stock and solve for the estimated habit formation parameter.6 

Following Zhen et al. (2011), a consumer’s lifetime utility is assumed to be weakly 

separable over time such that: 

 𝑈 = 𝑣[𝑣𝑡(𝑍0𝑡
∗ , … , 𝑍𝑚𝑡

∗ ), 𝑣𝑡+1(𝑍0𝑡+1
∗ , … , 𝑍𝑚𝑡+1

∗ ), … , 𝑣𝑇(𝑍0𝑇
∗ , … , 𝑍𝑚𝑇

∗ )], (4) 

and the present value of the lifetime budget constraint is:  

 

𝑊𝑡 = ∑ ∑ �̂�𝑖𝜏

𝑚

𝑖=0

𝑇

𝜏=𝑡

𝑍𝑖𝜏
∗ , 

(5) 

where �̂�𝑖𝜏 is the user’s cost in period 𝜏 of service stock 𝑍𝑖𝜏
∗ . This user’s cost can be thought of as 

rational or myopic. Neither assumption has proven to be consistently more accurate (Zhen et al., 

2011), and we use the myopic assumption.7 

Due to the weakly separable utility function (4), the consumer can allocate the period to 

period budget 𝑦𝑡 = ∑ �̂�𝑖𝑡𝑍𝑖𝑡
∗

𝑖  and maximizes the utility 𝑣𝑡(𝑍0𝑡
∗ , … , 𝑍𝑚𝑡

∗ ) in each period separately. 

This gives an m dimensional system of Marshallian demand functions of the form, 𝑍𝑖𝑡
∗ = 𝑔(�̂�𝑖𝑡 , 𝑦𝑡) 

in each period. Substituting Equation (3) into one of these demand functions gives the following 

expressions: 

 𝑥𝑖𝑡exp((𝑑𝑖 − 𝜙𝑖)𝑍𝑖𝑡−1) = 𝑔(�̂�𝑖𝑡 , 𝑦𝑡) (6) 

 𝑥𝑖𝑡 = 𝑔(�̂�𝑖𝑡 , 𝑦𝑡)exp((𝜙𝑖 − 𝑑𝑖)𝑍𝑖𝑡−1).  

 
6 We describe how we estimate the duration parameter from Equation (1) using the initial conditions of the service 

stock in Section 4.1. 
7 Under the myopic assumption, the consumer does not account for the user cost of stocks. 
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Equation (6) gives the demand for good 𝑥𝑖𝑡 including the effects of habits and duration. 

Given 𝑥𝑖𝑡 ≡ 𝑛𝑖𝑡𝑞𝑖𝑡 , it follows that 𝑔(�̂�𝑖𝑡 , 𝑦𝑡) ≡  𝑛(�̂�𝑖𝑡 , 𝑦𝑡)𝑞(�̂�𝑖𝑡 , 𝑦𝑡), and substituting this 

expression into Equation (6) gives: 

 𝑛𝑖𝑡𝑞𝑖𝑡 = 𝑛(�̂�𝑖𝑡 , 𝑦𝑡)𝑞(�̂�𝑖𝑡 , 𝑦𝑡)exp((𝜙𝑖 − 𝑑𝑖)𝑍𝑖𝑡−1). (7) 

The multiplicative form of Equation (7) allows us to analyze two systems of demand 

equations in each period, 𝑛𝑖𝑡(∙) and 𝑞𝑖𝑡(∙). We assume that the habit and duration parameters can 

be additively separated, 𝜙𝑖 = 𝜓𝑖 + 𝜔𝑖 and 𝑑𝑖 = 𝜑𝑖 + 𝜁𝑖 , where 𝜓𝑖 and 𝜑𝑖  are the habit and 

duration parameters of the frequency part, and 𝜔𝑖 and 𝜁𝑖 are the habit and duration parameters of 

the average quantity part of the model. Equation (7) can be rewritten as: 

 𝑛𝑖𝑡𝑞𝑖𝑡 = 𝑛(�̂�𝑖𝑡 , 𝑦𝑡)exp((𝜓𝑖 − 𝜑𝑖)𝑍𝑖𝑡−1)𝑞(�̂�𝑖𝑡 , 𝑦𝑡)exp((𝜔𝑖 − 𝜁𝑖)𝑍𝑖𝑡−1). (8) 

 

3. STATISTICAL MODEL 

The frequency of shopping 𝑛𝑖 = (𝑛𝑖11, 𝑛𝑖12, … , 𝑛𝑖𝐾𝑇) is assumed to follow a discrete distribution 

𝑓𝑁𝑖 (𝑛𝑖|𝛽𝑖 , 𝐶), for 𝑛𝑖𝑘𝑡 = 0,1,2, …, where 𝛽𝑖 is a vector of parameters, 𝑘 = 1,2, … , 𝐾 denotes 

households, 𝑡 = 1,2, … , 𝑇 denotes time periods, 𝑛𝑖𝑘𝑡 is an observed value of the random variable 

N, and C is a matrix of explanatory variables. The average purchases 𝑞𝑖 = (𝑞𝑖11, 𝑞𝑖12, … , 𝑞𝑖𝐾𝑇) are 

only observed when a trip to the shop takes place. Thus, the variable 𝑞𝑖|𝑛𝑖 > 0 is assumed to 

follow a continuous distribution 𝑓𝑄𝑖|𝑛𝑖>0(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑛𝑖 > 0), defined only over positive values, 
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where 𝛼𝑖 is a vector of parameters, and 𝑞𝑖𝑘𝑡 is an observed value of the random variable Q.8 The 

data generating process for average quantity purchased is therefore given by the two-part model:  

𝑓𝑄(𝑞𝑖|𝛼𝑖 , 𝐶) = (
Pr(𝑁 = 0|𝛽𝑖 , 𝐶) if 𝑞𝑖 = 0

Pr(𝑁 > 0|𝛽𝑖 , 𝐶)𝑓𝑄𝑖|𝑛>0(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑛𝑖 > 0) if 𝑞𝑖 > 0
). 

(9) 

The decisions to purchase a good and how much to purchase of the good in each trip are 

likely to be related decisions, and it is desirable to model them as stochastically correlated. 

Furthermore, the demand for one good is directly related to the demand to the other, and we would 

therefore like to allow for correlation between the equations within each of the two systems. To 

model these correlations, we introduce random effects to the densities 𝑓𝑁𝑖(𝑛𝑖|𝛽𝑖 , 𝐶, 𝑏𝑁𝑖) and 

𝑓𝑄𝑖|𝑛>0(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑛𝑖 > 0, 𝑏𝑄𝑖 ), where 𝑏𝑁𝑖  and 𝑏𝑄𝑖  are the random effects for frequencies and 

average quantities, respectively. They are assumed to follow a multivariate normal distribution:  

[
𝑏𝑁

𝑏𝑄
]| 𝐷 ∼ 𝑀𝑉𝑁 ([0𝑚

0𝑚] , [
𝐷𝑁 𝐷𝑁𝑄

𝐷𝑁𝑄 𝐷𝑄
]), 

(10) 

where 𝑏𝑁 = (𝑏𝑁1, … , 𝑏𝑁𝑚), 𝑏𝑄 = (𝑏𝑄1, … , 𝑏𝑄𝑚), and D is the unrestricted block covariance 

matrix. The joint probability density function for 𝑛𝑖 and 𝑞𝑖 is: 

𝑝(𝑛𝑖, 𝑞𝑖|𝛽𝑖, 𝛼𝑖 , 𝐷, 𝐶) =  

∫ ∏ 𝑓𝑁𝑖 (𝑛𝑖𝑘𝑡|𝛽𝑖 , 𝐶, 𝑏𝑁𝑖𝑘𝑡)

𝑇

𝑡=1

𝑓𝑄𝑖|𝑛>0(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑛𝑖 > 0)𝜙(𝑏𝑖𝑘|0, 𝐷)𝑑𝑏𝑖𝑘 . 
(11) 

The product operator is inside the integral since 𝑏𝑁 and 𝑏𝑄 each have one draw for the T 

random variables 𝑛𝑖𝑘1, 𝑛𝑖𝑘2, … , 𝑛𝑖𝑘𝑇 and 𝑞𝑖𝑘1, 𝑞𝑖𝑘2, … , 𝑞𝑖𝑘𝑇 , respectively. Thus, there is a new 

 
8 The conditional mean of 𝑛𝑖 and 𝑞𝑖 are given as follows: E(𝑛𝑖|𝛽𝑖 , 𝐶, 𝑏𝑁𝑖), E(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑏𝑄𝑖) =

Pr(𝑁 > 0|𝛽𝑖 , 𝐶)E(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑛𝑖 > 0, 𝑏𝑄𝑖). The marginal effects of E(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑏𝑄𝑖) are given by: 
𝜕E(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑏𝑄𝑖)

𝜕𝐶𝑖
=

𝜕E(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑛𝑖 > 0, 𝑏𝑄𝑖)

𝜕𝐶𝑖
Pr(𝑁 > 0|𝛽𝑖 , 𝐶). 
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draw for each cluster, but not for each time period within a cluster. The likelihood is then given 

by:  

𝐿 = ∏ ∏ 𝑝(𝑛𝑖, 𝑞𝑖|𝛽𝑖 , 𝛼𝑖, 𝐷, 𝐶)

𝑀

𝑖=1

𝐾

𝑘=1

. 
(12) 

Since the joint density 𝑝(𝑛𝑖, 𝑞𝑖|𝛽𝑖 , 𝛼𝑖 , 𝐷, 𝐶) does not have a closed form solution, the 

likelihood L is difficult to optimize with conventional Newton methods, so we use simulation 

based methods.9  

 

3.1. Distribution Assumptions 

To be able to estimate the parameters of our model, the conditional distribution assumptions of 

𝑛𝑖|𝛽𝑖 , 𝐶 and 𝑞𝑖|𝛼𝑖, 𝐶, 𝑛𝑖 > 0 need to be determined. The number of shopping trips is assumed to 

follow a Poisson distribution, 𝑛𝑖|𝛽𝑖, 𝐶, ∼ Poisson(𝜇𝑖) and the average quantity purchased in each 

trip is assumed to follow a gamma distribution 𝑞𝑖|𝛼𝑖, 𝐶, 𝑛𝑖 > 0 ∼ Gamma(𝜅𝑖, 𝜂𝑖). The parameter 

of the Poisson distribution is specified as 𝜆𝑖 = exp(𝐶𝑖𝛽𝑖). The mean of the gamma distribution is 

specified as 𝜅𝑖𝜂𝑖 = exp(𝐶𝑖𝛼𝑖). Now let 𝑣𝑖𝑜 = exp(𝑏𝑖𝑜), where 𝑣𝑖𝑜 = (𝑣𝑖1𝑜 , 𝑣𝑖2𝑜 , … , 𝑣𝑖𝐽𝑜), and 

𝑣𝑖𝑜 ∼ 𝐿𝑁(𝜇𝑜 , Σ𝑜), where 𝜇𝑜 = exp(0.5diag(𝐷𝑜)), and 𝑜 = 𝑁, 𝑄. The variance covariance matrix 

is then Σ𝑜 = (diag(𝜇𝑜))[exp(𝐷𝑜) − 11′](diag(𝜇𝑜)). Multiplying both means with this random 

effect gives, 𝜆𝑖𝑣𝑁𝑖 = exp(𝐶𝑖𝛽𝑖 + 𝑏𝑁𝑖 ) and 𝜅𝑖𝜂𝑖𝑣𝑄𝑖 = exp(𝐶𝑖𝛼𝑖 + 𝑏𝑄𝑖 ). To simplify the analysis, 

the covariance between 𝑛𝑖 and 𝑞𝑖 is assumed to be zero.10 However, a non-restricted covariance 

matrix is assumed between clusters within both parts of the model. Equation (10) is then reduced 

to: 

 
9 For less complex problems, the Gaussian-quadrature could be used. 
10 This assumption could lead to incorrect variance specification but will not result in inconsistent parameter 

estimates.  
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[
𝑏𝑁

𝑏𝑄
]| 𝐷 ∼ 𝑀𝑉𝑁 ([0𝑚

0𝑚] , [
𝐷𝑁 0𝑁𝑄

0𝑁𝑄 𝐷𝑄
]). 

(13) 

The Poisson part of this model is the log-normal Poisson model in Atchinson and Ho 

(1989), and it is possible to derive the mean and variance of the marginal distribution of 𝑛𝑖 without 

integration. Let �̃�𝑖 = 𝜆𝑖𝜇, where �̃�𝑖 = (�̃�𝑖11, �̃�𝑖12, … , �̃�𝑖𝐾𝑇) and Λ̃𝑖 = diag(�̃�𝑖). Applying the law 

of iterated expectations, one obtains 𝐸(𝑛𝑖|𝛽𝑖 , 𝐶, 𝐷𝑁) = �̃�𝑖 and var(𝑛𝑖|𝛽𝑖, 𝐶, 𝐷𝑁) = Λ̃𝑖 +

Λ̃𝑖[exp(𝐷𝑁) − 11′]Λ̃𝑖. Then, the covariance between 𝑛𝑖𝑘𝑡 and 𝑛𝑖𝑓𝑡 is calculated as: cov(𝑛𝑖𝑘𝑡, 𝑛𝑖𝑓𝑡) 

= �̃�𝑖𝑘𝑡 (exp(𝑑𝑁𝑖𝑘𝑡,𝑖𝑓𝑡) − 1) �̃�𝑖𝑓𝑡 = 𝜆𝑖𝑘𝑡 exp (0.5(𝑑𝑁𝑖𝑘𝑡,𝑖𝑘𝑡 )) (exp(𝑑𝑁𝑖𝑘𝑡,𝑖𝑘𝑓) − 1) 𝜆𝑗𝑘𝑡 

exp (0.5(𝑑𝑁𝑖𝑓𝑡,𝑖𝑓𝑡)). For a more detailed derivation of this result see Atchinson and Ho (1989).  

The mean and variance of the marginal distribution of 𝑞𝑖 can also be derived without 

integration.11 We start by defining 𝛿𝑖𝑘𝑡 ≡ 𝜅𝑖𝑘𝑡𝜂𝑖𝑘𝑡, and the mean of the marginal distribution of 𝑞𝑖 

is:  

E[𝑞𝑖𝑘𝑡|𝛽𝑖, 𝐶, 𝐷𝑄] = E𝑣|𝛿 [E𝑞|𝛿,𝑣[𝑞𝑖𝑘𝑡|𝛿𝑖𝑘𝑡 , 𝑣𝑖𝑘𝑡 , 𝐷𝑄]] (14) 

= E𝑣|𝛿[𝛿𝑖𝑘𝑡𝑣𝑖𝑘𝑡] = 𝛿𝑖𝑘𝑡E𝑣|𝛿[𝑣𝑖𝑘𝑡] = 𝛿𝑖𝑘𝑡𝜇 ≡ 𝛿𝑖𝑘𝑡 .  

The variance of the marginal distribution of 𝑞𝑖 is: 

var[𝑞𝑖𝑘𝑡|𝛽𝑖, 𝐶, 𝐷𝑄] (15) 

= E𝑣|𝛿 [var𝑞|𝛿,𝑣[𝑞𝑖𝑘𝑡|𝛿𝑖𝑘𝑡 , 𝑣𝑖𝑘𝑡 , 𝐷𝑄]] + var𝑣|𝛿 [E𝑞|𝛿,𝑣[𝑞𝑖𝑘𝑡|𝛿𝑖𝑘𝑡 , 𝑣𝑖𝑘𝑡 , 𝐷𝑄]]  

= E𝑣|𝛿[𝑣𝑖𝑘𝑡𝜅𝑖𝑘𝑡 𝜂𝑖𝑘𝑡
2 ] + var𝑣|𝛿[𝑣𝑖𝑘𝑡𝛿𝑖𝑘𝑡]  

= 𝜅𝑖𝑘𝑡𝜂𝑖𝑘𝑡
2 E𝑣|𝛿[𝑣𝑖𝑘𝑡] + 𝛿𝑖𝑘𝑡

2 var𝑣|𝛿[𝑣𝑖𝑘𝑡]  

= 𝜅𝑖𝑘𝑡𝜂𝑖𝑘𝑡
2 𝜇 + 𝛿𝑖𝑘𝑡

2 𝜇2(exp(𝑑𝑄𝑘𝑘) − 1)  

 
11 The mean and variance of the marginal distribution of 𝑞𝑖 have, as far as we know, not been derived in the 
literature.  
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𝜂𝑖𝑘𝑡𝛿𝑖𝑘𝑡 + 𝛿𝑖𝑘𝑡
2 (exp(𝑑𝑄𝑘𝑘) − 1).  

Let 𝛿𝑖 = (𝛿𝑖11, 𝛿𝑖12, … , 𝛿𝑖𝐾𝑇), 𝜂𝑖 = (𝜂𝑖11 , 𝜂𝑖12 , … , 𝜂𝑖𝐾𝑇), Δ̃𝑖 = diag(𝛿𝑖), and Η𝑖 = diag(𝜂𝑖). 

Equation (15) is rewritten in matrix form as: 

var[𝑞𝑖|𝛽𝑖 , 𝐶, 𝐷𝑄] = Η𝑖Δ̃𝑖 + Δ̃𝑖(exp(𝐷𝑄) − 11′)Δ̃𝑖. (16) 

The covariance between 𝑞𝑖𝑘𝑡 and 𝑞𝑖𝑓𝑡 becomes: 

cov(𝑞𝑖𝑘𝑡 , 𝑞𝑖𝑓𝑡) = 𝛿𝑖𝑘𝑡(exp(𝑑𝑄𝑖𝑘𝑡,𝑖𝑓𝑡) − 1)𝛿𝑖𝑓𝑡 (17) 

= 𝛿𝑖𝑘𝑡exp (0.5(𝑑𝑄𝑖𝑘𝑡,𝑖𝑘𝑡)) (exp(𝑑𝑄𝑖𝑘𝑡,𝑖𝑓𝑡) − 1)exp (0.5(𝑑𝑄𝑖𝑓𝑡,𝑖𝑓𝑡)) 𝛿𝑖𝑓𝑡 ,  

𝑘 ≠ 𝑓. 

 

 

3.2. Priors and Markov Chain Monte Carlo Sampling  

To estimate our model using Bayesian methods, we use uninformative priors, see for example 

Chib and Winkelmann (2001) for a discussion. Let 𝛽 ∼ N(𝛽0, 𝐵0
−1), 𝛼 ∼ N(𝛼0, 𝐴0

−1), 𝜅 ∼

Gamma(𝑘0, 𝑠0), 𝐷𝑁
−1 ∼ Wishart(𝑣𝑁0, 𝑅𝑁0), and 𝐷𝑄

−1 ∼ Wishart(𝑣𝑄0, 𝑅𝑄0), where 

𝛽0, 𝐵0, 𝛼0, 𝐴0, 𝑘0, 𝑠0, 𝑣𝑁0, 𝑅𝑁0 , 𝑣𝑄0, and 𝑅𝑄0 are known hyperparameters and Wishart(∙,∙) is the 

Wishart distribution with 𝑣𝑜0 degrees of freedom and scale matrix 𝑅𝑜0, where 𝑜 = 𝑁, 𝑄. By Bayes 

theorem, the posterior density of the two parts of the model are proportional to the following 

expressions:  

𝜙(𝛽|𝛽0, 𝐵0
−1)𝑓𝑊(𝐷𝑁

−1|𝑣𝑁0, 𝑅𝑁0) ∏ ∏ 𝑓𝑁(𝑛𝑖𝑘|𝛽, 𝑏𝑁𝑖𝑘 )

𝑀

𝑖=1

𝐾

𝑘=1

𝜙(𝑏𝑁𝑖𝑘 |0, 𝐷𝑁), 
(18) 

𝜙(𝛼|𝛼0, 𝐴0
−1)𝑓𝑊(𝐷𝑄

−1|𝑣𝑄0, 𝑅𝑄0) ∏ ∏ 𝑓𝑄|𝑛>0(𝑞𝑖𝑘|𝛼, 𝑏𝑄𝑖𝑘 , 𝑛𝑖𝑘 > 0)

𝑀

𝑖=1

𝐾

𝑘=1

𝜙(𝑏𝑄𝑖𝑘 |0, 𝐷𝑄), 
(19) 
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where 𝑓𝑊 is the Wishart distribution. We construct Markov chains using the blocks of parameters 

𝑏𝑁, 𝑏𝑄, 𝛽, 𝛼, 𝐷𝑁 and 𝐷𝑄, and their full conditional distributions: 

[𝑏𝑁|𝑛, 𝛽, 𝐷𝑁];   [𝛽|𝑛, 𝑏𝑁];   [𝐷𝑁|𝑏𝑁], (20) 

[𝑏𝑄|𝑞, 𝛼, 𝐷𝑄];    [𝛼|𝑞, 𝑏𝑄];   [𝐷𝑄|𝑏𝑄]. (21) 

The simulation output is generated by recursively simulating these distributions, using the 

most recent values of the conditioning variables in each step. The sampling of 𝑏𝑁 and 𝑏𝑄 starts 

with specifying the target densities: 

𝜋(𝑏𝑁|𝑛, 𝛽, 𝐷𝑁) = ∏ ∏ 𝜋(𝑏𝑁𝑖𝑘 |𝑛𝑖𝑘 , 𝛽, 𝐷𝑁)

𝑀

𝑖=1

𝐾

𝑘=1

, 
(22) 

𝜋(𝑏𝑄|𝑞, 𝛼, 𝐷𝑄) = ∏ ∏ 𝜋(𝑏𝑄𝑖𝑘|𝑞𝑖𝑘 , 𝛼, 𝐷𝑄)

𝑀

𝑖=1

𝐾

𝑘=1

. 
(23) 

To sample the density of the kth household of the ith cluster of the target densities, we 

specify: 

𝜋(𝑏𝑁𝑖𝑘|𝑛𝑖𝑘 , 𝛽, 𝐷𝑁) = 𝑐𝑖𝑘𝜙(𝑏𝑁𝑖𝑘 |0, 𝐷𝑁) ∏ exp[−exp(𝐶𝑖𝑘𝑡𝛽𝑡 + 𝑏𝑁𝑖𝑘𝑡 )]

𝑇

𝑡=1

 

(24) 

× [−exp(𝐶𝑖𝑘𝑡𝛽𝑡 + 𝑏𝑁𝑖𝑘𝑡 )]𝑛𝑖𝑘𝑡  

≡ 𝑐𝑖𝑘𝜋+(𝑏𝑁𝑖𝑘 |𝑛𝑖𝑘 , 𝛽, 𝐷𝑁),  

𝜋(𝑏𝑄𝑖𝑘 |𝑞𝑖𝑘 , 𝛼, 𝜅, 𝐷𝑄) = 𝑖𝑖𝑘𝜙(𝑏𝑄𝑖𝑘 |0, 𝐷𝑄) ∏
𝑞𝑖𝑘𝑡

𝐶𝑖𝑘𝑡𝛼𝑡+𝑏𝑁𝑖𝑘𝑡

Γ(𝐶𝑖𝑘𝑡𝛼𝑡 + 𝑏𝑁𝑖𝑘𝑡)𝜅𝐶𝑖𝑘𝑡𝛼𝑡+𝑏𝑄𝑖𝑘𝑡

𝑇

𝑡=1

 

(25) 

×  exp[−𝑞𝑖𝑘𝑡/𝜅]  

≡ 𝑖𝜋+(𝑏𝑄𝑖𝑘 |𝑞𝑖𝑘 , 𝛼, 𝜅, 𝐷𝑄).  
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The target distributions are a Poisson log-normal mixture distribution and a Gamma log-

normal mixture distribution. We utilize a random walk Metropolis algorithm.12 The proposal 

density is found by approximating the target density around the modal value by a multivariate t-

distribution. Let �̂�𝑁𝑖𝑘 = argmax ln 𝜋+(𝑏𝑁𝑖𝑘|𝑛𝑖𝑘 , 𝛽, 𝐷𝑁) and 𝑉𝑏𝑁𝑖𝑘
= (𝐻𝑏𝑁𝑖𝑘

)
−1

 be the inverse of 

the Hessian of ln 𝜋+(𝑏𝑁𝑖𝑘|𝑛𝑖𝑘 , 𝛽, 𝐷𝑁) at the mode �̂�𝑁𝑖𝑘 . To find these estimates, we use the 

Newton-Raphson algorithm. Then, our proposal density is 𝑏𝑁𝑖𝑘
(𝑠)

|𝑏𝑁𝑖𝑘
(𝑠−1)

∼ 𝑡(𝑏𝑁𝑖𝑘
(𝑠−1)

, 𝑉𝑏𝑁𝑖𝑘
, 𝑣), 

where v is the degrees of freedom and s indicates the draw number. We then make a random draw 

𝑒𝑖𝑘 from 𝑡(0, 𝑉𝑏𝑁𝑖𝑘
, 𝑣), where 𝑏𝑁𝑖𝑘

(𝑠)
= 𝑏𝑁𝑖𝑘

(𝑠−1)
+ 𝑒𝑖𝑘 and we moved from 𝑏𝑁𝑖𝑘

(𝑠−1)
 to 𝑏𝑁𝑖𝑘

(𝑠)
 with 

probability  

𝑟 = min {
𝜋+(𝑏𝑁𝑖𝑘

(𝑠)
|𝑛𝑖𝑘 , 𝛽, 𝐷𝑁)

𝜋+(𝑏𝑁𝑖𝑘
(𝑠−1)

|𝑛𝑖𝑘, 𝛽, 𝐷𝑁)
, 1}. 

(26) 

Next, we sample u from a uniform distribution U(0,1) and if 𝑢 < 𝑟 then 𝑏𝑁𝑖𝑘
(𝑠)

= 𝑏𝑁𝑖𝑘
∗  

otherwise 𝑏𝑁𝑖𝑘
(𝑠−1)

= 𝑏𝑁𝑖𝑘
∗ . We use the same steps for the sampling of 𝑏𝑄. 

The sampling of 𝛽 and 𝛼 follows the same approach, and the respective target distributions 

are given as follows: 

𝜋(𝛽|𝑛, 𝑏𝑁 , 𝐷𝑁) = 𝜙(𝛽|𝛽0, 𝐵0
−1) ∏ ∏ ∏ exp[−exp(𝐶𝑖𝑘𝑡𝛽𝑡 + 𝑏𝑁𝑖𝑘𝑡 )]

𝑇

𝑡=1

𝑀

𝑖=1

𝐾

𝑘=1

 

(27) 

× [−exp(𝐶𝑖𝑘𝑡𝛽𝑡 + 𝑏𝑁𝑖𝑘𝑡 )]𝑛𝑖𝑘𝑡  

𝜋(𝛼|𝑞, 𝑏𝑄 , 𝜅, 𝐷𝑄) = 𝜙(𝛼|𝛼0, 𝐴0
−1) ∏ ∏ ∏

𝑞𝑖𝑘𝑡
𝐶𝑖𝑘𝑡𝛼𝑡+𝑏𝑁𝑖𝑘𝑡

Γ(𝐶𝑖𝑘𝑡𝛼𝑡 + 𝑏𝑁𝑖𝑘𝑡)𝜅𝐶𝑖𝑘𝑡𝛼𝑡+𝑏𝑄𝑖𝑘𝑡

𝑇

𝑡=1

𝑀

𝑖=1

𝐾

𝑘=1

 

(28) 

×  exp[−𝑞𝑖𝑘𝑡/𝜅].  

 
12 For a discussion of the random walk Metropolis algorithm, see for example Roberts et al. (1997). 
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Sampling 𝐷𝑁
−1 and 𝐷𝑄

−1 is a simpler process than the other two blocks of parameters, since 

we specify a hyperprior, which result in a Wishart distribution. We sampled 𝐷𝑜
−1, 𝑜 = 𝑁, 𝑄, from 

a distribution proportional to:  

𝑓𝑊( 𝐷𝑜
−1|𝑣𝑜0, 𝑅𝑜0

−1) ∏ ∏ 𝜙(𝑏𝑜𝑖𝑘|0, 𝐷𝑜)

𝑀

𝑖=1

𝐾

𝑘=1

. 
(29) 

The distribution of 𝐷𝑜
−1|𝑏0 then results in a Wishart distribution: 

𝐷𝑜
−1|𝑏0 ∼ Wishart (𝑀 + 𝑣𝑜0, [𝑅𝑜0

−1 + ∑ ∑(𝑏𝑜𝑖𝑘
′ 𝑏𝑜𝑖𝑘 )

𝑀

𝑖=1

𝐾

𝑘=1

]

−1

), 

(30) 

with 𝑀 + 𝑣𝑜0 degrees of freedom and a scale matrix [𝑅𝑜0
−1 + ∑ ∑ (𝑏𝑜𝑖𝑘

′ 𝑏𝑜𝑖𝑘)𝑀
𝑖=1

𝐾
𝑘=1 ]−1. 

 

4. DATA AND VARIABLE SPECIFICATION 

We use a scanner data set, which was collected by TNS Worldpanel and include weekly purchases 

of fresh fish for about 6,000 French households over the period 2005-2008. The data set includes 

a detailed description of social, geographical and other characteristics of the participating 

households. For simplicity, we do not include household characteristics in our analysis. A large 

proportion of zero observations is a standard problem when working with micro data, and we 

reduced the number of zero observations by aggregating the data over months.13  

 

4.1. Specification of Variables 

 
13 The problem of zero observations is also reduced when the data generating process is discrete as in the Poisson 

distribution with a positive probability of observing a zero. 
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To estimate Equation (8), the total service stock of each type of fish 𝑍𝑖𝑘𝑡 needs to be predicted. 

The first three months of the first year in the sample (2005) were used to predict 𝑍𝑖𝑘𝑡. From 

Equation (1), the relationship between the first two periods for one household k can be written as:  

𝑍𝑖𝑘1 = ln 𝑥𝑖𝑘1 + (
𝑑𝑖

1 − 𝑑𝑖
) ln 𝑥𝑖𝑘0. 

(31) 

The functional form for 𝑛(𝑝𝑖𝑡 , 𝑦𝑡) and 𝑞(𝑝𝑖𝑡 , 𝑦𝑡) given by Equations (6) and (7) is assumed to be 

semi-logarithmic. Thus, 𝑔(𝑝𝑖𝑡 , 𝑦𝑡) ≡  𝑛(𝑝𝑖𝑡 , 𝑦𝑡)𝑞(𝑝𝑖𝑡 , 𝑦𝑡) is also semi-logarithmic. Equation (6) 

can then be written as: 

𝑥𝑖𝑘2 = exp(𝐶𝑖𝑘𝑡 𝛾𝑖 + (𝜙𝑖 − 𝑑𝑖)𝑍𝑖𝑘1) (32) 

ln 𝑥𝑖𝑘2 = 𝐶𝑖𝑘𝑡𝛾𝑖 + (𝜙𝑖 − 𝑑𝑖) ln 𝑥𝑖𝑘1 + (𝜙𝑖 − 𝑑𝑖) (
𝑑𝑖

1 − 𝑑𝑖
) ln 𝑥𝑖𝑘0 

 

Equation (32) is estimated to obtain an estimate of 𝑑𝑖, where 𝑑𝑖 is used to predict 𝑍𝑖𝑘𝑡, and Equation 

(8) is estimated by the following two systems of equations: 

𝐸(𝑛𝑖𝑘|𝐶𝑖) = exp (𝛽𝑖𝑘 + ∑ 𝛽𝑖𝑠 (
𝑝𝑠𝑘

𝐶𝑃𝐼
)

𝑆

𝑠=1

+ 𝜃𝑖 (
𝑦𝑘

𝐶𝑃𝐼
) + (𝜓𝑖 − 𝜑𝑖)�̂�𝑖𝑘𝑡−1 + 𝑏𝑁𝑖𝑘 ) 

(33) 

𝐸(𝑞𝑖𝑘|𝐶𝑖) = exp (𝛼𝑖𝑘 + ∑ 𝛼𝑖𝑠 (
𝑝𝑠𝑘

𝐶𝑃𝐼
)

𝑆

𝑠=1

+ 𝜛𝑖 (
𝑦𝑘

𝐶𝑃𝐼
) + (𝜔𝑖 − 𝜁𝑖)�̂�𝑖𝑘𝑡−1 + 𝑏𝑄𝑖𝑘), 

(34) 

where the price of fish category i for household k is 𝑝𝑖𝑘 , the total fish expenditure of household k 

is 𝑦𝑘 , and CPI is the French consumer price index.14  

 

4.2. Descriptive Statistics 

 
14 The semi-logarithmic demand equations in Equations (32) and (33) are integrable when the restrictions 𝛽𝑖𝑠 =
0 ∀ 𝑖 ≠ 𝑠 and 𝜃𝑖 = 𝜃 ∀ 𝑖 are imposed (LaFrance & Hanemann, 1989).  
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The descriptive statistics of our variables are given in Table 1. The dependent variables in the 

count data system are the frequency of purchase of wild fish, farmed fish, and other fish. Wild fish 

mainly consists of cod and other white fish and farmed fish mainly consists of salmon. The average 

frequency of purchase of wild fish is around 1.5 per month. This relatively low frequency is still 

higher than for the other two fish types. Even though fresh fish is an infrequently purchased 

product among many consumers, the main reason for these low average values is the large number 

of zero observations. The dependent variables in the continuous part of the model are the truncated 

average quantities purchased of the three types of fish. These quantities are around 660 to 700 

grams. However, there are large variations within each type of fish. For example, the minimum 

quantity of wild fish is 15 grams while the maximum quantity is more than 15 kilograms.  

The data set does not contain any information regarding prices. The prices are therefore 

calculated as unit values by dividing expenditures by quantities for each type of fish on each 

purchase occasion. When zero purchases are recorded there is no unit value available and the 

average unit value is used. This approach has been frequently used in demand studies (e.g., Allais 

et al., 2010; Bertail & Caillavet, 2008; Buason & Agnarsson, 2020).15  

We estimate the duration parameters 𝑑𝑖 in Equation (32) for wild, farmed, and other fish. 

The duration parameters are 0.599, 0.442, and 0.441, respectively. We use these parameter 

estimates to predict the lagged service stock for each of the three fish types, as described in Section 

4.1. The predicted values of the service stocks are about 1,658, 504, and 924 grams for wild, 

farmed, and other fish as shown by the stock variables in Table 1. The other explanatory variables 

are the price variables (unit values divided by the CPI) and the expenditure variable (households’ 

 
15 This method is not without problems since prices will be influenced by choices of quality of fish or store, which 

potentially introduce endogeneity problems.  
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total expenditures on fresh fish divided by the CPI), the annual time dummy variables, and a 

monthly time trend.  

(Table 1 about here) 

 

5.1. Empirical Results 

Tables 2 – 4 present the results from the estimation of the MPLN and MGLN systems for each of 

the three fish types. The tables show the parameter estimates, associated t-values, and Geweke Z-

scores.16 Table 2 presents the results for wild fish. Except for the constant term and the price in the 

average quantity part, all Markov Chains are stationary and the associated parameters can be 

interpreted reliably. The stock parameter is positive in both equations, which implies that habits 

dominate duration in both equations. Using the estimates of the net effects of habits and duration 

in the two systems and the predicted total duration, we can calculate the habit parameter. For wild 

fish the habit parameter is about 0.60, where most of the habit formation is due to purchase 

frequency as can be seen from the estimates of the stock parameters.17 

Table 3 presents the results for farmed fish. The Geweke Z-scores indicate that all the 

Markov Chains are stationary. The stock parameter is positive in both equations, which implies 

that habits dominate duration in both equations, i.e., habits result in more frequent and higher 

purchases of farmed fish. Using calculations corresponding to the calculations in footnote 17, we 

find that the habit parameter for farmed fish is 0.44. The habit effect is somewhat lower than for 

wild fish, and most of the habit formation is due to purchase frequency.  

 
16 The Geweke convergence test is a test of stationarity of the Markov chains. For a discussion of this test, see 

Nylander et al. (2008). 
17 To find the habit parameter for wild fish, we add the estimated stock parameters from both the frequency and 

average quantity part given in Table 2, which is 0.00045. Next, we add this parameter (0.00045) to the predicted 

duration parameter presented in the previous subsection, which is 0.599 and the resulting parameter is 0.59945 or 

about 0.60. 
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Table 4 presents the results for other fish. The Geweke Z-scores indicate that all the Markov 

chains are stationary. The results are similar to those of wild and farmed fish, which is as expected 

given that other fish consists of a mixture of wild and farmed fish. The habit parameter is 0.44 and 

again most of the habit formation is due to purchase frequency.  

(Table 2 about here) 

(Table 3 about here) 

(Table 4 about here) 

Table 5 shows the parameter estimates and associated t-values for the cross-equation covariance 

matrix for the frequency and average quantity parts of the model. The demand for wild fish is 

defined as the first equation, farmed fish as the second equation and other fish as the third equation. 

Sigma11, Sigma22, and Sigma33 refer to the variance of the random effects of the three demand 

equations. Sigma12 and Sigma21 show the covariance between the random effects of the equations 

for wild and farmed fish, and Sigma13 and Sigma31 show the covariance between the equations 

for wild and other fish. Finally, Sigma23 and Sigma32 are the covariances between the equations 

for farmed and other fish. The covariance is positive between wild and farmed fish indicating a 

positive correlation between the purchases of wild and farmed fish. This positive covariance 

suggests that those who consume wild fish also consume farmed fish. However, there are negative 

correlations between wild and other fish and between farmed and other fish, which suggest that 

the buyers of wild and farmed fish are somewhat different than those who buy other fish. 

(Table 5 about here) 

 

5.2. Elasticities 
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Table 6 presents the elasticities and associated t-values for frequencies of purchase, average 

purchased quantities, and total purchased quantities as calculated from Equations (33) and (34). 

The effects of net habits in these equations are constructed from the habit components of 

frequencies and average quantities. All the elasticities are statistically significant at the 1% level.  

When the stock of wild fish increases by 10%, the purchase frequency increases by 0.66%, 

the average quantity increases by 0.05%, and total purchases by 0.71%. The results for farmed and 

other fish are similar. These results demonstrate that habits play an important role in fish purchases, 

and the effects of net habits mainly works through increased purchase frequencies. 

The own-price elasticities indicate that price changes have greater effect on average 

quantities than on frequencies. When the price of wild fish is reduced by 10%, the purchase 

frequency is increases by 1.2%, the average quantity increases by 3.2%, and total purchases 

increases by 4.3%. The results for farmed and other fish are similar. 

As discussed in Section 2, the expenditure elasticities for frequency of purchase have to be 

the identical for the three fish types to fulfill the symmetry condition in a semi-logarithmic demand 

system. However, the total expenditure elasticities for average purchases can differ between the 

fish types. For wild fish, the total expenditure elasticity for purchase frequency is 0.15, for average 

purchases 0.19, and for total purchases 0.34. 

(Table 6 about here) 

The differences in absolute value between net habit, own-price and total expenditure 

elasticities for the purchase frequencies, average purchases and total purchases for the three types 

of fish are presented in Table 7. The t-values for tests of no difference in the elasticities are also 

shown.  
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There is no statistically significant difference between any of the stock elasticities. Thus, 

net habits for purchasing the three types of fish are very similar. However, there are several 

significant differences between the own-price elasticities for frequencies, average quantities and 

total quantities. The purchase frequency of wild fish is significantly more price sensitive than the 

purchase frequency of farmed or other fish, and the total quantity of wild fish is significantly more 

price sensitive than the total quantities of farmed or other fish. The expenditure elasticities for total 

purchases are statistically different at the 1% level for wild and farmed fish and farmed and other 

fish. Farmed fish is less expenditure elastic than wild fish but more expenditure elastic than other 

fish. 

(Table 7 about here) 

 

6. CONCLUSIONS 

The model of Spinnewyn (1981) and Muellbauer & Pashardes (1992) has been extended in two 

ways. First, we specify the dynamic structure of habit formation and duration to fit into a semi-

logarithmic demand specification. Second, we allow for product specific net habits in the 

frequency of purchase decision and the average quantity purchased decision rather than having 

one total effect on the resulting total purchased quantity.  

Net habits are introduced into a Bayesian framework for the joint estimation of demand 

systems of purchase frequencies and average purchased quantities. This framework allows for an 

unrestricted covariance structure within each demand system.  

Our econometric model is applied to French scanner data for fresh fish purchases. We 

include wild fish, farmed fish, and other fish in our demand systems. We find that net habits on 

total quantities purchased are mainly due to habits in purchase frequencies, while habits in average 
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quantities purchased are of minor importance. We find no significant differences of net habits 

among the three types of fish. On the other hand, price effects on total quantities are mainly due 

to changes in average quantities purchased rather than frequencies. Fresh wild fish is more price 

elastic than the other two fish types both in terms of purchase frequency and total quantity 

purchased. However, the own-price elasticities of the average quantities do not differ much across 

the fish types. Similar own-price elasticities of farmed fish and other fish suggest that consumers 

do not distinguish between farmed fish and fish that does not display any information about 

whether it is wild or farmed. 

Havranek, Rusnak, & Sokolova, (2017) found an average habit formation effect of 0.6 in 

studies using macro data and 0.1 in studies using micro data, while our estimated habit formation 

without duration is between 0.4 - 0.6. Havranek, Rusnak, & Sokolova, (2017) suggest that the 

reason why one observes higher degree of habit formation in micro data is because consumption 

goods are more likely to display durability in higher data frequencies. This explanation is 

consistent with our results. We find significant duration effects, i.e., personal preferences for long 

time intervals between shopping trips. Our results therefore suggest that neglecting habits and 

duration could result in too low estimates of demand changes over time in response to changes in 

prices.  
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Table 1: Descriptive Statistics, 2005-2008 (Monthly) 

Variable Description Mean Std. Dev Min Max 

Frequency wild Number of trips to buy wild fish 1.51 1.65 0.00 27.00 

Frequency farmed Number of trips to buy farmed fish 0.94 0.88 0.00 14.00 

Frequency other Number of trips to buy other fish  1.31 1.20 0.00 16.00 

Quantity wild  Truncated average purchased quantities 

of wild fish (grams) 

669.75 631.80 14.66 15172.20 

Quantity farmed Truncated average purchased quantities 

of farmed fish (grams) 

701.00 642.89 20.00 11175.00 

Quantity other Truncated average purchased quantities 

of other fish (grams) 

658.87 549.70 11.80 10475.40 

Stock wild The lagged service stock of wild fish 

(grams) 

1657.54 2204.19 0.00 34650.19 

Stock farmed The lagged service stock of farmed fish 

(grams) 

504.33 837.95 0.00 19012.51 

Stock other The lagged service stock of other fish 

(grams) 

924.20 1208.82 0.00 21364.52 

Expenditure  Household’s total expenditures on fresh 

fish divided by CPI 

0.14 

 

0.14 

 

<0.01 

 

2.52 

 

Price wild Unit value of wild fish (per kilo) 

divided by CPI 

0.10 0.03 <0.01 0.59 

 

Price farmed Unit value of farmed fish (per kilo) 

divided by CPI 
0.09 

 

0.02 

 

<0.01 

 

0.58 

 

Price other Unit value of other fish (per kilo) 

divided by CPI 

0.10 

 

0.03 

 

<0.01 0.58 
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Table 2: Posterior Summary for Wild Fish Based on the MPLN and MGLN Distributions 

 Frequency Average Quantity 

Variable Mean t-value Geweke Z Mean t-value Geweke Z 

Constant 0.06 3.45 -0.72 6.47 501.39 2.28 

(Stock wild) ∙1,000 0.40 22.40 0.00 0.05 3.08 0.00 

Price wild -1.12 -10.56 0.15 -4.82 -68.81 -3.61 

Expenditure 1.06 75.99 -0.06 2.20 140.40 0.18 

Dummy06 -0.08 -9.20 -0.57 0.07 8.42 -0.53 

Dummy07 -0.11 -12.21 -1.50 0.09 10.14 -0.37 

Dummy08 -0.15 -15.31 0.56 0.10 11.58 0.11 

Month -0.01 -11.76 0.31 0.03 3.70 -0.74 

Notes: MPLN = multivariate Poisson log-normal and MGLN = multivariate gamma log-normal. Geweke Z provides 

the Z-value for a test of stationarity of the Markov chains. The Stock wild variable is multiplied by 1,000 for scaling 
purposes. 
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Table 3: Posterior Summary for Farmed Fish Based on the MPLN and MGLN 

Distributions 

 
Frequency Average Quantity 

Variable Mean t-value Geweke Z Mean t-value Geweke Z 

Constant -0.48 -18.22 1.84 6.57 373.48 1.22 

(Stock farmed) ∙1,000 0.13 28.20 0.00 0.02 4.74 0.00 

Price farmed -0.64 -3.35 -0.85 -5.94 -53.27 -0.64 

Expenditure 1.06 75.99 -0.06 2.20 140.40 0.18 

Dummy06 -0.09 -7.37 -0.19 0.05 4.60 -1.05 

Dummy07 -0.03 -2.46 -1.21 0.06 4.81 -1.62 

Dummy08 -0.05 -4.06 -1.48 0.09 7.56 -1.06 

Month -0.00 -2.72 -0.15 0.05 4.46 -0.27 

Notes: MPLN = multivariate Poisson log-normal and MGLN = multivariate gamma log-normal. Geweke Z 

provides the Z-value for a test of stationarity of the Markov chains. The Stock farmed variable is multiplied by 

1,000 for scaling purposes. 
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Table 4: Posterior Summary for Other Fish Based on the MPLN and MGLN Distributions 

 
Frequency Average Quantity 

Variable Mean t-value Geweke Z Mean t-value Geweke Z 

Constant 0.03 1.55 0.68 6.45 500.29 0.74 

(Stock other) ∙1,000 0.08 24.75 0.00 0.01 4.57 0.00 

Price -0.71 -6.19 0.13 -4.76 -63.77 0.19 

Expenditure 1.06 75.99 -0.06 2.20 140.40 0.18 

Dummy06 -0.09 -9.56 -0.06 0.08 9.65 -0.80 

Dummy07 -0.12 -11.76 -1.36 0.09 10.34 -1.32 

Dummy08 -0.14 -13.44 -0.43 0.10 12.66 -1.42 

Month -0.01 -7.02 -1.08 0.05 5.66 -0.07 

Notes: MPLN = multivariate Poisson log-normal and MGLN = multivariate gamma log-normal. Geweke Z 

provides the Z-value for a test of stationarity of the Markov chains. The Stock other variable is multiplied by 
1,000 for scaling purposes.  
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Table 5: Posterior Summary Cross-Equation Covariance Matrix based on MPLN and 

MGLN Distributions 

 
Frequency Average Quantity 

Variable Mean t-value Geweke Z Mean t-value Geweke Z 

Sigma11 0.55 36.15 0.45 0.13 36.17 -0.03 

Sigma12 0.08 8.52 0.32 0.10 32.21 1.27 

Sigma13 -0.15 -20.81 -0.10 0.10 34.16 0.11 

Sigma21 0.08 8.52 0.32 0.10 32.21 1.27 

Sigma22 0.60 33.55 -1.29 0.13 30.63 0.30 

Sigma23 ∙10 -0.05 -0.64 -0.93 0.92 32.31 1.28 

Sigma31 -0.15 -20.81 -0.10 0.10 34.16 0.11 

Sigma32 ∙10 -0.05 -0.64 -0.93 0.92 32.31 1.28 

Sigma33 0.39 36.06 -0.80 0.11 34.16 -0.44 

Notes: MPLN = multivariate Poisson log-normal and MGLN = multivariate gamma log-normal. Geweke Z 

provides the Z-value for a test of stationarity of the Markov chains. The multiplications following Sigma23 and 
Sigma32 indicate scaling. 
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Table 6: Elasticities for Purchase Frequencies, Average Quantities, and Total Quantities 

Purchase Frequency Wild Fish Farmed Fish Other Fish 

Estimate t-value Estimate t-value Estimate t-value 

Stock∙10 a 0.66 22.40 0.65 28.20 0.70 24.75 

Own price -0.12 -10.56 -0.06 -3.35 -0.07 -6.19 

Total expenditure 0.15 75.99 0.15 75.99 0.15 75.99 

Average Quantity Wild Fish Farmed Fish Other Fish 

Estimate t-value Estimate t-value Estimate t-value 

Stock∙10 a 0.05 3.08 0.05 4.74 0.07 4.57 

Own price -0.32 -68.81 -0.27 -53.27 -0.31 -63.77 

Total expenditure 0.19 140.40 0.15 140.40 0.20 140.40 

Total Quantity Wild Fish Farmed Fish Other Fish 

Estimate t-value Estimate t-value Estimate t-value 

Stock∙10 a 0.71 21.20 0.70 27.77 0.77 24.16 

Own price -0.43 -36.17 -0.33 -17.78 -0.38 -30.33 

Total expenditure 0.34 143.05 0.30 134.27 0.35 143.73 

Note: a The elasticities of each stock variable is multiplied by 10 for ease of presentation. 
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Table 7: Absolute Values of Elasticity Differences for Purchase Frequencies, Average 

Quantities, and Total Quantities 

 Frequency Average Quantity Total Quantity 

 Difference t-value Difference t-value Difference t-value 

Stock (wild - farmed)∙100 a 0.12 0.33 0.02 0.10 0.14 0.34 

Stock (wild - other)∙100 a 0.39 -0.96 0.16 -0.77 0.56 -1.21 

Stock (farmed - other)∙100 a 0.52 -1.42 0.18 -1.05 4.66 -1.73 

Price (wild - farmed) 0.06 -2.66 0.04 -6.25 0.10 -4.46 

Price (wild - other) 0.04 -2.81 0.01 -1.05 0.05 -3.00 

Price (farmed - other) 0.01 0.53 0.04 5.11 0.05 2.10 

Expenditure (wild - farmed) - - 0.04 24.40 0.04 13.05 

Expenditure (wild - other) - - <0.01 -2.06 <0.01 -1.19 

Expenditure (farmed - other) - - 0.05 -26.37 0.05 -14.23 

Note: a The elasticities differences for each stock variable is multiplied by 100 for ease of presentation. 

 

 


