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Measurements of the Planck Length from a Ball
Clock without Knowledge of Newton’s

Gravitational Constant G or the Planck Constant
Espen Gaarder Haug

Abstract—We demonstrate how one can extract the Planck
length from a ball with a built-in stopwatch, without knowledge
of the Newtonian gravitational constant or the Planck constant.
This could be of great importance since, until recently, it has been
assumed the Planck length cannot be found without knowledge
of Newton’s gravitational constant. This method of measuring
the Planck length should also be of great interest not only to
physics researchers but also to physics teachers and students, as it
conveniently demonstrates that the Plank length is directly linked
to gravitational phenomena, not only theoretically but practically.
To demonstrate that this is more than a theory, we report 100
measurements of the Planck length using this simple approach.
We will claim that, despite the mathematical and experimental
simplicity, our findings could be of great importance in better
understanding the Planck scale and quantum gravity, as our
findings strongly support the idea that to detect gravity is to
detect the effects from the Planck scale indirectly.

Index Terms—Planck length, Planck units, Newton’s gravita-
tional constant, Planck constant, Compton wavelength.

I. INTRODUCTION

In 1899 and 1906, Max Planck [1], [2] assumed there were
three important universal constants: the speed of light, the
Planck constant, and the Newtonian gravitational constant.
Based on these, he used dimensional analysis and predicted
there had to be a very fundamental length, lp =

√
G~
c3 ; time

unit, tp =
√

G~
c5 , and mass, mp =

√
~c
G . Still, what were

these Planck units related to? Max Planck said little about this,
except for calling them natural units. He had also not been the
first to suggest natural units. Stoney [3] had, in 1883, already
suggested natural units derived from the elementary charge,
the Newtonian gravitational constant, and the speed of light.
Today, however, most physicists consider the Planck units to
be more important than the Stoney units.

The Planck units were in no way immediately accepted as
something important, and it was mainly the Planck constant
(quanta of energy) and Planck’s law that made Max Planck
very famous in physics and won him a Nobel Prize. The Planck
units are today considered to potentially play an important
role in a “final” unified theory. Already, by 1916, Einstein [4]
had laid out his general relativity theory in one of his papers,
indicating that a quantum gravity theory was the next natural
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step to an even better understanding of gravity or, in his own
words:

Because of the intra-atomic movement of elec-
trons, the atom must radiate not only electromag-
netic but also gravitational energy, if only in minute
amounts. Since, in reality, this cannot be the case
in nature, then it appears that the quantum theory
must modify not only Maxwell’s electrodynamics but
also the new theory of gravitation. (Einstein 1916,
p. 696).

However, Einstein said little or nothing about how the
quantum theory should cause modifications in gravity theory.
Eddington [5], in 1918, is likely to have been the first to
suggest that the Planck length must play a central role in new
quantum gravity theory or, in his own words:

There are three fundamental constants of nature
which stand out as pre-eminent. The velocity of light,
300 · 1010 C.G.S. units ; dimensions LT−1. The
quantum, 6.55 · 10−27, ML2T−1 C.G.S. Units. The
constant of gravitation, 6.66 · 10−8 ; M−1L2T−2.
From these we can construct a fundamental unit
of length whose value is 4 × 10−33 cm. There are
other natural units of length, the radii of the positive
and negative unit electric charges, but these are of
an altogether higher order of magnitude. But it is
evident that this length must be the key to some es-
sential structure. It may not be an unattainable hope
that someday a clearer knowledge of the process of
gravitation may be reached.

It is clear that it is the Planck length that Eddington refers
to. However, this “speculation” that gravity likely had to be
linked to the Planck length was by no means easily accepted.
For example, Bridgman [6] ridiculed Eddington in 1931 for his
speculative claim, and he himself basically claimed the Planck
units were more of a mathematical artifact coming out of
dimensional analysis rather than something linked to anything
physical. Today most physicists, especially those working with
gravity and quantum gravity theories, [7]–[12] seem to agree
with Eddington that the Planck length must likely play central
role in a quantum gravity—in addition, superstring theorists
assume the Planck length is important for their theory. Still,
there are others [13] that are more inclined to agree with
Bridgman and think of the Planck units more like a math-
ematical artifact, or at least something we can never measure
except by deriving it through dimensional analysis. However,
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recently, we [15], [16] have shown how one can measure the
Planck length and Plank time independent of G and ~ by
using a Newton force spring, and also how to find the Planck
length independent of G by using a Cavendish apparatus [14],
although these methods are somewhat more complicated than
shown here. Here, we will extend our analysis to measure
the Planck length with a ball with a built-in stopwatch—this
makes it particularly easy to perform such an experiment, so
that even high school physics students can obtain a better
understanding of how one can extract the Planck length from
gravity phenomena.

II. THE COMPTON WAVELENGTH AND COUNTING ATOMS

Our method will rely on the fact that we know the Compton
wavelength of the gravity object from which we will measure
the gravity effects. First, we start out by measuring the Comp-
ton wavelength based on Compton scattering, as described
by Compton [17] in 1923. Compton scattering consists of
shooting photons at an electron and measuring the wavelength
of the photon before λγ,1 and after λγ,1 it hits the electron, as
well as measuring the angle between the ingoing and outgoing
photon (θ).

λe =
λγ,2 − λγ,1
1 − cos θ

(1)

.
It is important to note that this way of measuring the

Compton wavelength of the electron requires no knowledge
of the Planck constant. We could alternatively have found
the Compton wavelength from the electron mass in kilograms
(kg), but this would generally require knowledge of the
Planck constant. This is given by the well-known Compton
wavelength formula: λ = h

mc ; however, we will stick to the
first method that is independent of knowledge of the Planck
constant. Next, we will find the Compton wavelength of a
proton. We then utilize the fact that the Compton wavelength
is inversely linearly proportional to the cyclotron frequency.
This because the cyclotron frequency is given by:

f =
qB

2πm
(2)

and since the charge of a proton and electron is the same, the
relative cyclotron frequency of a proton relative to an electron
is equal to the Compton wavelength ratio; that is to say, we
have:

fe
fP

=

qB
2πme

qB
2πmP

=
mP

me
=
λe
λP

≈ 1836.15 (3)

This method has been used to accurately find the proton
electron mass ratio [18], [19], which is identical to the
Compton wavelength ratio. If we have now measured the
electron Compton wavelength by Compton scattering, we
simply need to divide this by the cyclotron frequency ratio
to find the Compton wavelength of the proton. Theories about
the Compton wavelength of the proton reach back to, at least,
Levitt [20] in 1958, who claimed:

Most of the experimental lengths concerning
the fundamental forces in the nucleus are integral
multiples of the Compton wavelength, λ0, of the

proton, where λ0 = h
m0c

= 1.32× 10−13 cm (which
we can thus call a ‘Compton’). These lengths include
the effective range of nucleon interactions, and the
amplitudes of dispersion.

The author uses notation λ0 for the Compton wavelength
of the rest mass, but we have simply used notation λ. We
also note an increased interest in the Compton wavelength of
the proton, which has recently, for example, been suggested
to also be directly related to the proton radius [21]. Some
will possibly protest here and claim only elementary particles
like the electron have a Compton wavelength, and that protons
do not. We, to a large degree, agree with such an argument,
but even if a composite particle or even a large composite
mass does not have one single Compton wavelength, they
ultimately consist of many elementary particles each with
a Compton wavelength. The aggregates of the individual
Compton wavelengths in any mass are given by the relation
below (see also [15])

λ =
1∑n
i

1
λi

(4)

Since we already know how to find the Compton wavelength
of a proton (without knowledge of h) all we now need to do
to find the Compton wavelength of, for example, a handful of
matter is to count the number of atoms in that clump of matter.
This method has been used since the early history of physics,
at least to Avogadro’s number [22]. It is not easy, but we can
indeed count the number of atoms very accurately today. For
example, one of the new kg definition suggestions was rooted
in counting atoms in silicon spheres [23], [24], [27]. But then
what about really large masses such as the Earth? How can
we count the number of atoms in the Earth? Here we can take
advantage of the fact that the ratio of the Compton wavelength
in two masses is always linearly proportional to almost any two
gravitational measurements performed on the two objects, after
correcting for distances to the centre of the gravity objects.
For example, if we know the gravitational acceleration from
a small silicon sphere and the gravitational acceleration field
of the Earth, then we know that the Compton wavelength in
the Earth is related to:

g1R
2
1

g2R2
2

=
λ2
λ1

(5)

To predict the gravitational acceleration from the mass of the
Earth, in standard physics we need to know G since we have
g = GM

R2 , but we can measure the gravitational acceleration
of the Earth, for example, at the surface of the Earth, without
any knowledge of G. This we can do by dropping a ball from
height H to the ground and measuring how long this took,
and based on this we know g from the following well-known
formula:

g =
2H

T 2
(6)

.
From a small mass (such as a silicon sphere) in which we

been able to count the number of atoms, we can measure
the gravitational acceleration field with a Cavendish apparatus
based on the following relation:
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g =
2π2Lθ

T 2
(7)

where θ is the angle of the arm when it is deflected, and L is
the distance between the two small balls in the apparatus, and
T is the oscillation time.

Pay attention to the fact that no G or ~ are needed to find
the gravitational acceleration field in the Cavendish apparatus.
Newton [25] did not use or introduce a gravity constant. It
is often said that the Cavendish apparatus was developed
to measure G; however this is not the case. A Cavendish
apparatus can be used to measure G, but in 1798 Cavendish
[26] did not use or measure the gravitational constant G. What
Cavendish did was to use the apparatus to find the gravitational
effects from a uniform mass—in his case, lead balls—that he
already knew the density of. When he knew this, he could find
the density of the Earth relative to this. The gravity constant
was actually first introduced in 1873 by Cornu and Baill [28]
and was partly needed because the research community now
had redefined the mass standard in terms of kg; they actually
used notation f for the gravity constant, while in 1994 Boys
[29] introduced today’s notation G. Whether one uses f or G
notation is naturally only a purely cosmetic question. The main
point is that we can measure gravitational acceleration with no
knowledge of G and, if we have counted the number of atoms
(protons and neutrons) in the reference mass, for example
a silicon sphere, then we can find the Compton wavelength
of even a planet or a sun without any knowledge of G or
~. The Compton wavelength of the Earth is approximately
λE ≈ 3.70 × 10−67 m, and the reduced Compton wavelength
is this number divided by 2π, which gives approximately
λ̄E ≈ 5.89 × 10−68 m. Again, this is not a physical single
Compton wavelength, but corresponds to the aggregate of the
Compton wavelength of all elementary particles making up
the mass of the Earth, see formula 4.

III. PLANCK LENGTH MEASURED WITH A BALL-CLOCK

It is well known that one can measure g by measuring the
velocity of a ball from a drop height H , as shown in the section
above. Traditionally, one needs two synchronized clocks to
do this: one clock that measures when the ball is dropped
from point H , and one clock measuring when the ball hits the
ground or passes a point below H . That is to say, an external
observer frame observes the time it takes for the object to fall,
and therefore to be accelerated by the gravitational acceleration
field. In recent years, this has become much easier to do as we
have instead incorporated a stopwatch inside the ball itself as,
in other words, a proper observer. What is known as a “gravity
ball” or just “g-ball” is a ball with a built-in stopwatch that
starts at the moment one drops the ball and stops when the ball
hits something, such as the ground. Such a ball costs about 30
USD at the time of writing, and it has about one-hundredth of
a second precision. If we know the Compton wavelength of
the Earth, then we can use such a ball to measure the Planck
length in a very simple way. This new device makes it easy to

measure the gravitational acceleration field that again is given
by:

g =
2H

T 2
(8)

as we also have g = GM
R2 and in addition we can solve the

Planck length formula, lp =
√

G~
c3 that gives, with respect to

G, this:

G =
l2pc

3

~
(9)

To make the gravity constant a function of the Planck length
would naturally only lead to a circular unsolvable problem if
we cannot find the Planck length independent of knowledge
of G. The idea that the Newtonian gravitational constant is
a composite constant expressed through Planck units is not
new. Already in 1984, Cahill [33] suggested that one could
express the Newton gravitational constant as G = ~c

m2
p

, which
is simply the Planck mass formula solved with respect to G
but, as pointed out by Cohen [34] in 1987, this only led to
a circular problem as one had to know G to find mp. This
has, until recently, been the view among researchers, and this
view was repeated as late as in 2016 in an interesting paper
by McCulloch [35]. It is when we can first find the Planck
units independent of G that we really can claim G must be
a composite constant and that the Planck units play a more
important role, something we have recently demonstrated in
2017 and 2020, and also will demonstrate in this paper in a
very simple and powerful way using a ball with a built in
stopwatch.

Next, we can solve the Compton 1923 wavelength formula,
λ = h

mc which, with respect to the mass, gives:

m =
h

λ

1

c
(10)

To solve the Compton wavelength formula with respect to
m is trivial, but we have not seen the kilogram mass expressed
in this way before 2018 [36]. Further the gravitational accel-
eration is then given by:

g =
Gm

R2
=
l2pc

3

~

h
λ

1
c

R2
= c2

l2p
λ̄R2

(11)

As we can measure g without knowing G or m, we can
now solve this equation with respect to lp; this gives:

lp =
R

c

√
gλ̄ (12)

Next we replace g with g = 2H
T 2 , and this gives:

lp =
R

cT

√
2Hλ̄ (13)

That is to say, we can now measure the Planck length from
dropping a ball with a built-in stopwatch, as T is the drop
time and H is the height of the drop; furthermore, R is the
radius of the Earth and c is the speed of light that we can look
up or measure independently. Figure 1 shows a picture of our
drop-ball with built-in stopwatch (also known as a g-ball).

We dropped this ball 100 times from a height of approx-
imately two meters. After each ball drop, we read the time
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Fig. 1. The picture shows a ball with built-in stopwatch that starts when
the ball is dropped (release of the button) and stops on impact. It has one-
hundredth of a second precision. We have used this ball to indirectly measure
the Planck length 100 times without knowledge of G or ~ (as reported in
Table 1.

the ball took to fall this distance and input this time into the
formula 13. The formula also requires the reduced Compton
wavelength of the Earth and this, as we have demonstrated
in section II, can be found independent of any knowledge
of G or h. Table 1 reports the 100 ball-drop times and
the corresponding Planck length we obtain from formula
13. Our average value from 100 ball-drop measurements
is 1.56 × 10−35 m. Almost all these values are somewhat
lower than the CODATA 2019 value for the Planck length,
which is 1.616255×10−35 m. That our predictions from such
measurements are lower is partly to be expected—first of all,
the formula we use is only valid for an ideal ball drop when the
ball is not rotating at all during the drop, and secondly that
the drop is performed in a vacuum. Both these effects give
a longer time and lower Planck length estimate than under
ideal conditions. We have merely performed the ball drops in
a library room at normal room temperature. Air drag will slow
the ball-drop time somewhat. After adjusting for air drag [30]
we get an average estimated Planck length of approximately
1.59×10−35 meters. The theoretical time for the fall including
air drag is given by the formula:

t =

√
m

gk
acosh(eHk/m) (14)

where, in our case, the m is the kg mass of the clock
ball. This we measured on a kitchen weight to be 121 grams;
further, H is the height of the drop, as before; 2 meters, and
k = 1

2ρCd4πr
2, where r is the radius of the drop ball that we

measured to be 5 centimeters and Cd is the drag coefficient
that is 0.47 for a ball, and ρ is the air density where we used
1.225 kg/m3.

So, to perform the adjustment, we calculate the theoretical
time for the drop in a vacuum minus the theoretical time in
the air and adjust our time numbers for this difference. This
gives the adjusted Planck length. Our Planck length measure

of 1.59 × 10−35 after air-drag adjustment is naturally still
less accurate than the value given by CODATA 2019, which
is obtained from very accurate measurements with expensive
apparatus that has been used to measure G, that again has been
converted into the Planck length indirectly from dimensional
analysis. Still, we found it interesting that we, with such very
simple equipment, can measure the Planck length, which can
easily be utilized in a classroom situation with minimal budget.

More importantly, we have demonstrated that this can be
done without any knowledge of G. Our way to find the Planck
length is also very easy to perform, based on the fact that we
already know the Compton wavelength of the Earth. Naturally,
an interesting question is why it is possible to measure the
Planck length independent of G and ~. One possibility is that
G is really a composite constant of the form G =

l2pc
3

~ , as has
been suggested by [31], [32], and that it is the Planck length
and the speed of light (gravity) that are really important for
gravity predictions and observations. Again, it is only after one
solves the circular problem and is able to find the Planck length
independent of G that this approach can really be useful.
The Planck constant, as we have seen, cancels out the Planck
constant in the mass; something discussed in more detail in
[37] when doing gravitational predictions. This would still
mean G is a universal gravitational constant, but that it consists
of more fundamental constants, so G is actually not needed.
This is a new view and we naturally do not ask anyone to take
this for granted, but rather to investigate it carefully. Recently
we [37], [38] have argued that G, h and c can be replaced
with only c and lp. Superstring theory [39] has also suggested
that the speed of light c and the Planck length are the two
universal fundamental constants. However, superstring theory
has not led to a way to find the Planck length independent
of G, nor has it led to direct experimental evidence [40] of
string theory. It is therefore in high time to look closer at
other approaches, and we think that to find the Planck length
independent of G and ~ could be of great importance towards
a unified quantum gravity theory.

IV. CONCLUSION

The main contribution of this paper is that one can very
easily measure the Planck length quite accurately with a simple
and cheap device that is ideal for use in classroom settings.
We hope this will encourage both researchers and students
of physics to look closer at the Planck length, both from a
theoretical and experimental standpoint.

We have demonstrated that the Planck length can be found
independent of G and h simply by using a ball with a built-in
stopwatch. This supports the idea that the Newton gravitational
constant is likely a composite constant of the form G =

l2pc
3

~
where ~ is needed to cancel out the Planck constant in the kg
definition of mass. Our more direct (but still indirect) way of
finding the Planck length supports our theory that the detection
of gravity is indeed the indirect detection of the Planck scale.
We do not, however, assume this should or will be easily
accepted. Still, such an idea should be of interest to the
research community. After all, early on, it was even ridiculed
that the Planck length had anything to do with gravity. Today,
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however, most researchers in the field of quantum gravity think
the Planck scale is essential, but they have just not figured out
exactly how as yet. We hope this paper can encourage more
researchers to consider the implications of why we can find
the Planck length without any reliance on G. We also hope
this simple way of measuring the Planck length can encourage
a future generation of physics students to become interested
in the Planck scale.

Ball drop Time Planck length Ball drop Time Planck length Ball drop Time Planck length
observation measured estimate observation measured estimate observation measured estimate

1 0.65 1.59E-35 34 0.66 1.56E-35 67 0.67 1.54E-35
2 0.65 1.59E-35 35 0.67 1.54E-35 68 0.67 1.54E-35
3 0.67 1.54E-35 36 0.67 1.54E-35 69 0.66 1.56E-35
4 0.67 1.54E-35 37 0.68 1.52E-35 70 0.65 1.59E-35
5 0.64 1.61E-35 38 0.66 1.56E-35 71 0.67 1.54E-35
6 0.66 1.56E-35 39 0.69 1.49E-35 72 0.66 1.56E-35
7 0.66 1.56E-35 40 0.67 1.54E-35 73 0.67 1.54E-35
8 0.64 1.61E-35 41 0.67 1.54E-35 74 0.66 1.56E-35
9 0.65 1.59E-35 42 0.67 1.54E-35 75 0.68 1.52E-35
10 0.65 1.59E-35 43 0.69 1.49E-35 76 0.69 1.49E-35
11 0.64 1.61E-35 44 0.64 1.61E-35 77 0.65 1.59E-35
12 0.66 1.56E-35 45 0.67 1.54E-35 78 0.67 1.54E-35
13 0.67 1.54E-35 46 0.65 1.59E-35 79 0.66 1.56E-35
14 0.65 1.59E-35 47 0.66 1.56E-35 80 0.68 1.52E-35
15 0.66 1.56E-35 48 0.67 1.54E-35 81 0.67 1.54E-35
16 0.69 1.49E-35 49 0.67 1.54E-35 82 0.67 1.54E-35
17 0.67 1.54E-35 50 0.64 1.61E-35 83 0.68 1.52E-35
18 0.67 1.54E-35 51 0.67 1.54E-35 84 0.67 1.54E-35
19 0.67 1.54E-35 52 0.69 1.49E-35 85 0.69 1.49E-35
20 0.68 1.52E-35 53 0.67 1.54E-35 86 0.68 1.52E-35
21 0.66 1.56E-35 54 0.65 1.59E-35 87 0.63 1.64E-35
22 0.66 1.56E-35 55 0.65 1.59E-35 88 0.65 1.59E-35
23 0.65 1.59E-35 56 0.66 1.56E-35 89 0.64 1.61E-35
24 0.67 1.54E-35 57 0.67 1.54E-35 90 0.65 1.59E-35
25 0.66 1.56E-35 58 0.68 1.52E-35 91 0.66 1.56E-35
26 0.66 1.56E-35 59 0.64 1.61E-35 92 0.66 1.56E-35
27 0.67 1.54E-35 60 0.67 1.54E-35 93 0.65 1.59E-35
28 0.65 1.59E-35 61 0.66 1.56E-35 94 0.65 1.59E-35
29 0.69 1.49E-35 62 0.67 1.54E-35 95 0.66 1.56E-35
30 0.65 1.59E-35 63 0.66 1.56E-35 96 0.66 1.56E-35
31 0.67 1.54E-35 64 0.67 1.54E-35 97 0.65 1.59E-35
32 0.67 1.54E-35 65 0.67 1.54E-35 98 0.67 1.54E-35
33 0.67 1.54E-35 66 0.67 1.54E-35 99 0.66 1.56E-35

100 0.65 1.59E-35
Average time : 0.664 Average Planck length : 1.56E-35 m

Air-drag adjusted time : 0.640 Air drag adjusted Planck length : 1.59E-35 m

TABLE I
ONE HUNDRED PLANCK LENGTH MEASUREMENTS FROM USING A STOP-CLOCK BALL. DROP HEIGHT TWO METERS, REDUCED COMPTON WAVELENGTH

USED FOR THE EARTH 5.89× 10−68 m. BE AWARE THAT THIS CAN BE FOUND WITHOUT KNOWLEDGE OF G OR ~.
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