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Different methods to describe dispersion interactions within density functional theory have been
developed, which is essential to describe binding in van der Waals complexes. However, several key
aspects of such complexes—including binding energies, lattice constants, and binding distances—
also depend on the exchange description that is paired with the description of dispersion interactions.
This is particularly true for the vdW-DF family of van der Waals density functionals, which has
a clear division between truly non-local correlations and semi-local generalized-gradient exchange.
Here, we present a systematic analysis of the reduced-gradient values that determine the semi-
local exchange for different classes of van der Waals complexes. In particular, we analyze molecular
dimers, layered structures, surface adsorption, and molecular crystals. We find that reduced-gradient
values of less than ∼ 1 to ∼ 1.5—depending on the system—contribute attractively to the exchange
binding, while reduced gradients above those values are repulsive. We find that the attractive
contributions can be attributed to low-density regions between the constituents with disk-like iso-
surfaces. We further identify a mechanism wherein the surface area of these disks decreases through
merging with other iso-surfaces and switches the gradient-correction to exchange from attractive
to repulsive. This analysis allows us to explain some of the differences in performance of vdW-DF
variants and initiates a discussion of desirable features of the exchange enhancement factor. While
our analysis is focused on vdW-DF, it also casts light on van der Waals binding in a broader context
and can be used to understand why methods perform differently for different classes of van der
Waals systems.

I. INTRODUCTION

van der Waals interactions provide crucial contri-
butions to the binding and structure of an ever-
growing list of technologically relevant materials, reach-
ing from photovoltaics and organic electronics,1–4 to
ferroelectrics,5,6 pharmaceuticals,7 and applications in
gas storage/sequestration,8–10 sensing,11 and catalysis.12

Density functional theory has long struggled to correctly
describe those materials, but over the last two decades
numerous approaches have been developed to overcome
this problem.13–30 Among these, the vdW-DF family27–32

of non-local density functionals is of particular interest
because it can describe van der Waals interactions based
on knowledge of the electron density n(r) alone. The
latest release of this family, i.e. vdW-DF3,32 exhibits
the highest accuracy for different classes of dispersion-
bonded systems in the vdW-DF family. However, during
the construction of vdW-DF3 it became apparent that
further efforts to improve its accuracy are inhibited by a
lack of in-depth understanding of the mechanisms caus-
ing different vdW-DF variants to perform differently for
different classes of systems.

The van der Waals interactions within vdW-DF are
captured through a non-local correlation contribution
to the exchange-correlation energy.27,30 This non-local
correlation functional provides the majority of the en-
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FIG. 1. (top) Exchange enhancement factors Fx(s) used in
various vdW-DF variants and (bottom) their derivatives.

ergetics that contributes to the binding of van der
Waals complexes. However, the remainder of the
exchange-correlation functional—in particular the semi-
local exchange—plays a crucial role in determining struc-
tural aspects such as binding separations or lattice con-
stants. Within the generalized-gradient approximation
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(GGA),33 the semi-local exchange is typically expressed
in terms of an exchange enhancement factor Fx(s), which
describes gradient corrections to the local density ap-
proximation (LDA) in terms of the reduced gradient
s(r) ∝ |∇n(r)|/n(r)4/3. Various exchange enhancement
factors used in the vdW-DF family are plotted in Fig. 1
and lead to quite different results for different classes of
van der Waals complexes.32 Different features of Fx(s)
and its derivative play an important role in determin-
ing the various aspects of van der Waals systems, pos-
sibly leading to competing requirements for Fx(s) to
achieve high accuracy, as discussed for molecular dimers
vs. molecular crystals in Ref. [32]. In this paper, we pro-
vide a systematic analysis of which values of s are most
important for different systems. This allows us to ex-
plain some of the performance differences of the various
exchanges that have been used throughout the history of
the vdW-DF development, and it also forms the basis for
identifying desirable features of the exchange enhance-
ment factor. Such an s-analysis has a long history for
general systems34–36 and was first applied to a limited set
of van der Waals complexes in Ref. [37]. While our paper
emphasizes a quantitative analysis of energetic and force
contributions to vdW-DF, our analysis can also provide a
starting point to understand and improve other schemes
to include dispersion interactions in density functional
theory. In addition, our reduced-gradient analysis can
also be used to assess the nature and existence of non-
covalent bonding from a method-independent perspective
following Refs. [38, 39].

II. THEORY

Within the vdW-DF framework, the exchange-
correlation energy Exc is given by

Exc[n] = EGGA
x [n] + ELDA

c [n] + Enl
c [n] . (1)

Here, the semi-local exchange EGGA
x [n] is given at the

GGA level, the purely local correlation ELDA
c [n] is eval-

uated at the LDA level, and the non-local contribution
is given by

Enl
c [n] =

1

2

∫
d3r

∫
d3r′ n(r) Φ(r, r′)n(r′) , (2)

where the kernel Φ(r, r′) is a function of the charge den-
sity and its gradient at the points r and r′.27 Note the
lack of gradient corrections to the local correlation in
Eq. (1),30 which ensures that there is no double-counting
of semi-local correlation contributions. The non-local
contribution is derived from a many-body starting point
and observes four physical constraints.30,40–43 The semi-
local exchange is typically expressed as

EGGA
x [n] =

∫
d3r n(r) εhom

x

(
n(r)

)
Fx(s) , (3)

and describes the enhancement (through the exchange
enhancement factor Fx(s)) over the exchange of the ho-
mogeneous electron gas εhom

x . It is Eq. (2) that allows
vdW-DF to capture van der Waals interactions30 and dis-
tinguishes the vdW-DF family from other, popular semi-
local functionals such as PBE33 and hybrid functionals
such as PBE044 and B3LYP45 (which do not have an
explicit mechanism to describe long-range London dis-
persion forces and are thus often paired with C6-based
correction schemes such as DFT-D346). Note that hy-
brid functionals include a fraction of the exact exchange
in conjunction with a density functional like Eq. (3).

Much research has gone into improving the exchange
enhancement factor within vdW-DF. The original choice
of revPBE47,48 for the GGA-type exchange in vdW-DF1,
with its rapidly increasing Fx(s) in the s = 0.5− 2 range
(see Fig. 1), avoids nonphysical exchange-based binding
in van der Waals systems at binding separations.27,37

However, that same choice of revPBE is also responsible
for the too large binding separations observed with vdW-
DF1.49–52 Further research indicated that Fx(s) ∝ s2/5 in
the limit of large s also avoids such non-physical binding
using a formal argument and can provide good agree-
ment with Hartree-Fock calculations.37 This argument
was used to support the use of PW86r in vdW-DF2.53

It has also been shown that the separation overestima-
tion in vdW-DF1 can be avoided by using an Fx(s) that
increases more slowly with s for small values of s < 1.54

Clearly, the features of Fx(s), in particular for values
0 < s < 3, have a profound impact on van der Waals
complexes. But, in order to make improvements, we have
to identify which s values in that range are the most
important for a particular class of complexes and deduce
desirable shapes of Fx(s) in more limited ranges of s to
improve a particular class of systems. To identify s values
important for the binding of van der Waals complexes,
we compute the s-resolved exchange interaction energy
as the difference between the GGA and LDA values37

∆egx(s) = etot
gx (s)−

∑
i

eigx(s) , (4)

where the “tot” superscript refer to the total system and
“i” refers to the individual fragments. The individual
gradient portions of the exchange energy are calculated
as

egx(s) = −3

4

(
3

π

)1/3∫
d3r n4/3

[
Fx

(
s(r)

)
−1
]
δ
(
s−s(r)

)
,

(5)
where the

[
Fx

(
s(r)

)
− 1

]
singles-out the purely semi-

local gradient corrections to exchange by removing con-
tributions from the local LDA exchange, which all vdW-
DF functional have in common.55 Similarly, in Eq. (1)
all vdW-DF functionals have the same local correla-
tion ELDA

c , allowing us to relate performance differences
mostly to differences in semi-local gradient exchange,
Eq. (5), for all functionals that share the same Enl

c . The
main focus of our analysis will be the comparison of
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∆egx(s) from Eq. (4) for various different classes of van
der Waals complexes as well as different functionals of
the vdW-DF family. Another property of interest is the
s-integrated quantity

∆Egx(s) =

∫ s

0

ds′ ∆egx(s′) . (6)

Then, ∆Egx(∞) gives the total gradient-corrected ex-
change portion of the interaction energy.

For an analysis of binding separations, the correspond-
ing forces are essential. In parallel to the s-resolved ex-
change energy ∆egx(s) we define a s-resolved exchange
force ∆kgx(s) as the energy derivative

∆kgx(s) = −d∆egx(s)

d|a|
, (7)

where a is a suitably defined separation between frag-
ments of the van der Waals complex. Such forces are
related to the exchange potential, which in turn includes
terms of the form dFx(s)/ds.56,57 Performance with re-
spect to binding separations will thus make connections
to the bottom panel of Fig. 1. Similarly to Eq. (6), we
define the s-integrated quantity ∆Kgx(s); where ∆kgx(s)
is analogous to ∆egx(s), ∆Kgx(s) is the integrated ana-
logue to ∆Egx(s).

III. COMPUTATIONAL DETAILS

The computational details are mostly identical those in
Ref. [32]. Our calculations were based on the quantum
espresso (QE) package58 with PBE ultrasoft pseudopo-
tentials designed by Garrity, Bennett, Rabe, and Vander-
bilt (GBRV).59 Where applicable, all systems were struc-
turally optimized with a wave-function cutoff of 50 Ryd
and a density cutoff of 600 Ryd. The energy convergence
criterion was 1×10−8 Ryd and the force convergence cri-
terion was 1×10−6 Ryd/Bohr. Calculations on molecular
dimers/monomers were performed in boxes with at least
15 Å of vacuum for padding. Layered structures were
obtained from the Inorganic Crystal Structure Database
(ICSD) and we used the procedure in Refs. [60–62] to op-
timize those systems, i.e. we relaxed the inter-layer c-axis
with 12× 12× 6 k-points and kept the a-lattice constant
at the experimental value. Single layers were calculated
with fixed a-lattice constant and with at least 12 Å vac-
uum along the c-axis, utilizing a 12×12×1 k-mesh. The
structure of the molecular crystals for the X23 dataset
were obtained from Ref. [63] and all structural degrees
of freedom were optimized, sampling only the Γ-point of
the Brillouin zone. Finally, for the adsorption of benzene
on the (111) surface of the coinage metals Cu, Ag, and,
Au we used 6 atomic metal layers64 of which we kept the
three bottom layers fixed; we used 9 Å vacuum and a
4× 4× 1 k-mesh.

While the physical aspects of all systems are well con-
verged with the kinetic energy cutoffs provided above,

plots of ∆egx(s) from Eq. (4) are very noisy due to the
finite spatial integration grid in plane-wave calculations
used for n(r) and s(r) in Eq. (5). While increasing the
energy cutoff results in a denser grid, it only provides di-
minishing returns for noise reduction; we explored den-
sity cutoffs up to 1920 Ryd. To limit the grid sensitivity,
we introduced broadening by first integrating ∆egx

∆Egx(s) ≈
∫ ∞

0

ds′ ∆egx(s′) G(s, s′) , (8)

where

G(s, s′) =
1

e(s′−s)/β + 1
(9)

is a Fermi-type function, and then calculated the numer-
ical derivative to arrive at a broadened ∆egx(s). This
procedure drastically reduces the gird-sensitivity. We
found that small values of β = 0.03 are sufficient. How-
ever, even with this approach some systems required den-
sity cutoffs as high as 1920 Ryd to ensure low noise in
∆egx(s).

In addition to ∆egx(s) and ∆Egx(s), we calculate the
s-resolved exchange force ∆kgx(s) from Eq. (7) through
a finite difference method wherein we calculate ∆egx(s)
for two different distances. For example, for the benzene
dimer, we move the “frozen” monomers along the natural
direction defined by the S22×565 dataset by 0.05 Å.

We also compare the performance of various well-
used members of the vdW-DF family. In particular,
we will be using vdW-DF (vdW-DF1),27 vdW-DF1-
optB88,66 vdW-DF1-cx,52,67 vdW-DF2,53 vdW-DF2-
B86R,68 vdW-DF3-opt1,32 and vdW-DF3-opt232 and
we will use the following corresponding abbreviations:
DF1, DF1-optB88, DF1-cx, DF2, DF2-B86R, DF3-opt1,
and DF3-opt2. Furthermore, the functionals include
the following exchanges: revPBE,47,48 optB88,66 cx13,67

PW86r,69 B86R,68 DF3-opt1,32 and DF3-opt2.32

IV. RESULTS

A. The Benzene Dimer

Figure 2 provides a detailed s-analysis of one repre-
sentative van der Waals-bound dimer, i.e. the benzene
dimer in C2h configuration, which is part of the com-
monly studied S22×5 set of molecular dimers.65,70 The
center of Fig. 2 shows the s-resolved exchange interac-
tion energy ∆egx(s) of the benzene dimer for the opti-
mal “1.0” CCSD(T) separation. Unless otherwise noted,
all such curves are generated with the GGA exchange of
DF3-opt1. The curve has a negative regime at low s, con-
tributing in an attractive way to binding, and a positive
regime at higher values of s, contributing in a repulsive
way. The various motifs in Fig. 2 show iso-surfaces of
the benzene dimer at different values of s. These can
be linked to the shape of ∆egx(s) and the different spa-
tial regions contributing to it. For clarity, the adjacent
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FIG. 2. (center) s-resolved exchange interaction energy ∆egx(s) for the benzene dimer in C2h configuration for the optimal
CCSD(T) separation, calculated with DF3-opt1. (top and bottom insets) Iso-surfaces for different values of s. The electronic
charge density is mapped onto the iso-surface in color and can be read off the color bar in units of e/Bohr3. Each iso-surface
is further mapped onto a plane that goes through the center of the dimer, resulting in iso-lines; lines of the dimer are blue and
lines of the individual monomers are red.

blue iso-lines show intersections of the dimer iso-surfaces
with a plane crossing the center of the dimers, overlaid by
red iso-lines corresponding to individual monomers. Con-
sider first the attractive low-s regime. For s = 0.80 and
s = 0.96, three distinct surfaces are apparent: two sur-
rounding the individual monomers and one disk-shaped
surface in-between them. For these s values, the iso-
surfaces of the monomers are nearly identical to the cor-
responding portions of the dimer iso-surface. Thus, for
these low-s values, there is a near-perfect cancellation of
the contributions of these surfaces to ∆egx(s) in Eq. (4)
and the attractive energy therefore comes almost exclu-
sively from the disk region.

As the iso-surfaces grow with increasing s, they even-
tually start overlapping and merging. At s = 1.13, the
onset of this merger has begun, as evident in the iso-
lines. The merger causes both the disk and molecular
iso-surfaces to effectively loose surface area. This reduces
the attractive contributions from the disk and gives rise
to repulsive contributions to the s-resolved exchange en-
ergy due to less and less cancellation of the monomer

iso-surfaces. This merging thus causes the crossover
from negative to positive ∆egx(s). Once the merger has
completed, the overall shape of the combined dimer iso-
surface remains similiar while growing outwards around
the benzene dimer. As the s iso-surface grows, the charge
density decrease, which is the cause for the decrease in
∆egx(s) beyond the positive peak at s = 1.62. In Fig. S1
in the Supplementary Information (SI), we provide a s–n
scatter-plot,38,39 which complements this analysis.

In Fig. 3, we show ∆egx(s) for the five separations de-
fined in the S22×5 dataset, from 0.9 to 1.0, 1.2, 1.5, and
2.0 times the optimal CCSD(T) binding separation. The
crossover and ranges spanned by the attractive and repul-
sive regimes vary significantly with respect to separation,
but the overall shapes of the curves remain quite similar.
The analysis of the benzene dimer at optimal separation
allows us to also interpret the change in ∆egx(s) with
separation. On the one hand, the onset of the merger
in s increases with separation, as the central disk has
more room to grow before merging, causing the shift in
∆egx(s) to larger s values with increasing separation. On
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FIG. 3. s-resolved exchange interaction energy ∆egx(s)
for the benzene dimer in C2h configuration for separations
ranging from 0.9 to 1.0, 1.2, 1.5, and 2.0 times the opti-
mal CCSD(T) binding separation, as defined in the S22×5
dataset.65

the other hand, the decrease in magnitude of ∆egx(s)
with increasing separation can be explained by the lower
electronic densities in the inter-molecular region.

B. Comparison of Exchange Functionals at
Optimal Separation

Table I shows the total interaction energy ∆E of the
benzene dimer at the “1.0” separation, the corresponding
gradient exchange portion ∆Egx(∞), the non-local corre-
lation contribution ∆Enl

c , the gradient exchange portion
of the force ∆Kgx(∞), and the dimer distance resulting
from a full optimization for various vdW-DF function-
als. Comparison with CCSD(T) reference values shows
that the performance of the different functionals can vary
significantly. Trends in the interaction energy ∆E can
be related to ∆Egx(∞)—taking the differences in ∆Enl

c

into account—which in turn can be related to ∆egx(s)
(top panel of Fig. 4) and Fx(s) (top panel of Fig. 1).
The optimized binding distances are related to forces
∆kgx(s) (bottom panel of Fig. 4), which can be related
to dFx(s)/ds (bottom panel of Fig. 1).

When integrating ∆egx(s) to get ∆Egx(s) in Fig. 4,
at some point the negative and positive contributions of
∆egx(s) cancel, causing ∆Egx(s) to cross the zero line.
Since Fx(s) varies quite slowly with s, this crossing occurs
at quite similar values of s for most functionals (in the
case of the benzene dimer at s ≈ 2). All net contributions
to ∆Egx(∞) are therefore given by the shape of Fx(s) be-
yond this crossing point. However, even small differences
in the crossing point—or correspondingly the value of
∆Egx(s = 2)—do matter, since the ∆egx(s) curve is so
steep in this region, making the values of Fx(s) below
this crossing point also important. Here, we discuss dif-
ferences in ∆Egx(∞) caused by different Fx(s) in terms of
contributions of negative and positive regions in ∆egx(s),
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FIG. 4. s-resolved exchange interaction energy ∆egx(s), ex-
change energy ∆Egx(s), s-resolved exchange force ∆kgx(s),
and exchange force ∆Kgx(s) for the benzene dimer in C2h

configuration for several different exchange functionals. Fur-
ther analysis can be found in Fig. S2 in the SI.

but one could alternatively analyze it in terms of shifts
in crossing points of ∆Egx(s) and the values of Fx(s) be-
yond that. Such an analysis is provided in Fig. S2 in the
SI.

We now discuss how specific shapes of Fx(s) and
∆egx(s) give rise to different values of ∆Egx(∞). We first
compare PW86r, DF3-opt2, and B86R. These have quite
similar ∆Egx(∞), but the Fx(s) values of PW86r are con-
sistently larger than those of DF3-opt2 and B86R. How-
ever, since those larger values partially cancel through
negative and positive contributions of ∆egx(s), the end
result is quite similar values of ∆Egx(∞). The slightly
lower values of DF3-opt2 compared to B86R can be re-
lated to the smaller values of Fx(s) for large s. Compar-
ing cx13 and PW86r gives a different weighing. On the
one hand, Fx(s) of cx13 is lower than that of PW86r (as
is B86R) in the attractive regime, but on the other hand,
at larger s, Fx(s) becomes more similar until they become
identical at large s.67 cx13 therefore has a significantly
reduced attractive portion of the exchange compared to
PW86r, but retains quite similar repulsive contributions,
resulting in significantly larger ∆Egx(∞). This analy-
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TABLE I. Total interaction energy ∆E of the benzene dimer in C2h configuration at the optimal CCSD(T) distance [eV],
corresponding gradient exchange portion ∆Egx(∞) [eV], non-local correlation contribution ∆Enl

c [eV], gradient exchange portion
of the force ∆Kgx(∞) [eV/Å], and dimer distance [Å] resulting from a full optimization. CCSD(T) results are given for
reference.65,70

Functional reference DF1 DF2 DF1-optB88 DF1-cx DF2-B86R DF3-opt1 DF3-opt2

Exchange — revPBE PW86r optB88 cx13 B86R DF3-opt1 DF3-opt2

∆E [eV] −0.1219 −0.0881 −0.0968 −0.1416 −0.1120 −0.0937 −0.1191 −0.1234

∆Egx(∞) [eV] — 0.4281 0.3056 0.3626 0.3891 0.3094 0.2990 0.2783

∆Enl
c [eV] — −0.3879 −0.2865 −0.3980 −0.3969 −0.2923 −0.3090 −0.2891

∆Kgx(∞) [eV/Å] — 0.6998 0.5389 0.5203 0.5449 0.4561 0.3930 0.4175

Distance [Å] 3.765 4.214 4.064 3.939 4.089 3.989 3.864 3.914

sis shows how PW86r and B86R, both with quite differ-
ent Fx(s), can give quite similar energies when combined
with DF2 non-local correlation. cx13 with its much larger
value of the exchange energy is comparable with DF1,
which has a much larger negative non-local correlation
energy contribution to the binding. Similar to PW86r,
revPBE has quite large values of Fx(s) in the attractive
regimes, but more than compensates for this by having
even larger values of Fx(s) than the other functionals
in most of the repulsive regime, with the end result of
a too low interaction energy even when combined with
DF1 non-local correlation. For most values of s, optB88
falls somewhere in-between cx13 and revPBE, making it
a suited companion to DF1 non-local correlation, which
is what it was fitted to.66 However, since optB88 in the
repulsive regime is closer to cx13 than revPBE, it has a
lower exchange energy than cx13 and DF1-optB88 over-
estimates the full interaction energy for this system.

Looking at the forces, we find that the slope of the
enhancement factor at typical s values plays a signifi-
cant role. In the lower panels of Fig. 4 we see how the
s-resolved force ∆kgx(s) crosses zero at s∆k

0 = 1.21 and
∆Kgx(s) crosses zero at almost precisely s∆K

0 = 1.45,
which is also approximately the location of the upward
peak in ∆egx(s). The force curves are much more narrow
and localized than the corresponding s-resolved exchange
energy curves. Because they are so narrow and the neg-
ative and positive regions partially cancel, the slope of
dFx/ds around s∆k

0 becomes very important for analy-
sis, since it effectively determines the weighing of the rel-
ative negative and positive portions. Moreover, typical
dFx/ds differ more from each other than typical Fx(s) in
this regime. In fact, comparing Fig. 1 and Table I and
the lower left panel of Fig 4, we observe a strong cor-
relation between dFx/ds (s∆k

0 ) and the total exchange
force for each functional. The ordering from largest-
to-smallest dFx/ds (s∆k

0 )—i.e. revPBE, cx13 ≈ PW86r,
optB88, B86R, DF3-opt2, and DF3-opt1—matches the
ordering of ∆Kgx(∞).

This ordering can also be connected to the differences
in binding separations in Table I, which in a first-order
approximation is proportional to the differences in the
exchange force for the same non-local correlation. Even
for the cases where the non-local correlation differs the

comparison has merit as the non-local correlation has a
slower distance dependence than the exchange.71 Thus,
the trend in dFx/ds (s∆k

0 ) explains why standard DF1
with revPBE has the largest binding distance and DF3-
opt1 has the shortest. The only exception is the some-
what larger separation of DF2-B86R compared to DF1-
optB88, which can be attributed to the smaller attractive
force of DF2 non-local correlation compared to DF1.

The fact that differences in forces can be attributed to
a rather narrow region of dFx/ds and somewhat lower
values of s compared to differences in energies, explains
why updating the exchange of DF1 to that of e.g. optB88
and cx13 had the capability to improve both binding en-
ergies and distances, and likewise for the switch from
PW86r to B86R for DF2. However, as shown in Fig. 3,
the typical s values shift with separation and good per-
formance at binding separations is no guarantee that the
interaction energies beyond the binding separation is ac-
curate for a given non-local correlation functional. In
fact, inaccurate interaction energies beyond the binding
separation were one of the key motivations for developing
vdW-DF3.32

C. S22×5 Dataset at Optimal Separation

We next analyze the s-resolved exchange interaction
energy ∆egx(s) (upper panel of Fig. 5) and force ∆kgx(s)
(lower panel for Fig. 5) for the 22 dimers in the S22×5 set
at the “1.0” separation.65 In general, the iso-surfaces for
these dimers exhibit the same main features as for the
benzene dimer, i.e. the formation of a disk in-between
the molecules at low-s values, a merger process, and sub-
sequent iso-surface growth. The similar shapes of the
∆egx(s) curves compared to the benzene dimer (system
11) is reflected in the statistical representation in the
upper panel. The blue band indicates the domain that
covers 80% of the negative part of the curve, centered
around the median (blue curve). The wider red band is
the corresponding data for the positive curve; the much
larger domain above the median (red curve) reflects the
longer tails of the ∆egx(s) curves. The black curve indi-
cates s∆e

0 , i.e. the point where ∆egx(s) crosses zero.
A number of trends can be seen from Fig. 5. Compar-
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FIG. 5. Statistical data for the S22 dataset of molecular dimers. For full ∆egx(s) curves and for dimer numbering see Fig. S3.
The median and spread for each dimer are calculated separately for the positive and negative regions of ∆egx(s) and ∆kgx(s),
see Fig. S4 for details.

ing the hydrogen-bonded and dispersion-dominated sys-
tems, the average s∆e

0 value increases from 1.15 to 1.51,
with similar shifts in magnitude for the medians. For
systems involving the smallest molecules and in which
hydrogen atoms are involved in the binding, the typical
s∆e

0 value is shifted to larger values, which is particularly
evident for the methane dimer (system 8, s∆e

0 = 2.1)
and the ethene-ethyne dimer in the T-configuration (sys-
tem 16, s∆e

0 = 1.7). For some of the mixed systems and
dispersion-bonded systems, the iso-surfaces have several
merging points at different values of s, resulting in more
wiggled ∆egx(s) curves. This is reflected in the broader
blue bands for the mixed systems than for the hydrogen-
and dispersion-bonded systems.

As for the benzene dimer (see Fig. 4), the force
bands are noticeably narrower than the energy bands
and shifted to lower s-values; for instance the negative
median is shifted from an average of 1.25 to 0.96. An
added complication for the force curves is that for sys-
tems with more complicated iso-surface mergers, this can
cause rapid oscillations in ∆kgx(s). The exact s∆k

0 roots
of these curves can be hard to disentangle and depend
on broadening choices in Eq. (9) and therefore are not
shown. These oscillations are also the reason why some
of the blue and red bands partially overlap in the lower
panel of Fig. 5.

As for the benzene dimer, trends in the curves for the
entire S22×5 set at the “1.0” separation (provided in
Fig. S3) can be compared with Fig. 4. In line with the
analysis for the benzene dimer, such a comparison sug-
gests that more local changes in Fx(s) in Fig. 1 may allow
for targeted improvements, in particular for the binding
separations. Such modifications could potentially over-
come the competing requirements uncovered in Ref. [32].
Our results can for instance explain why DF1-cx signifi-
cantly overestimates the methane dimer binding separa-

tion (system 8, by 0.25 Å) compared to an almost perfect
agreement with the reference data for DF3-opt1 (see Ta-
ble S1 in the SI). As seen in the lower panel of Fig. 5, the
crossing region between the blue and red bands around
s ≈ 1.6 − 1.8 coincides with the region in which dFx/ds
values of cx13 become larger than those of revPBE (DF1
overestimates this dimer distance by 0.175 Å). DF3-opt2
is the only functional underestimating the separation of
this dimer (−0.02 Å) and also has the lowest dFx/ds
in this region, whereas DF3-opt1 with slightly larger
dFx/ds in this region, has a perfect agreement with the
reference data.

The precise reason why a functional like DF1-cx can
give fairly accurate binding energies for the benzene
dimer (see Tables S2 and S3) while having an initially
slow increase in Fx(s)—which is why the functional pro-
vides excellent lattice constants of covalent solids—is the
increase to larger Fx(s) starting at s ≈ 1.5. Without this
increase, the repulsive components are not sufficiently
weighted to counteract the large energetic contribution
from the non-local correlation of DF1. In the case of DF-
cx, dFx(s)/ds is particularly large around s ≈ 2, which
is significantly beyond the crossing points of most of the
dimers, but not the smallest ones. Thus, our analysis
indicates that it is not possible to design very accurate
and broadly applicable functionals by tuning the GGA
exchange as long as one relies on DF1 non-local correla-
tion.

D. Layered Structures

Next, we analyze the reduced-gradient for a set of nine
layered structures, a subset of systems that has been
used in several other studies.32,61,62,72 First, we focus on
graphite as a representative case within this subset. Fig-
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FIG. 6. Iso-surface of s = 1.0 for a graphite supercell;
electronic charge density in units of e/Bohr3 is mapped onto
the iso-surface. Along the edge one can see cut-open “tunnels”
connecting individual surfaces, showing the beginning of a
merger that gradually depletes attractive interaction energy
in the system.

ure 6 shows the iso-surface of s = 1.0 for a graphite su-
percell with charge-density mapping. As for the benzene
dimer, there are two types of iso-surface to consider: the
“monomer” iso-surfaces that grow around the individual
layers and the “disk”, which is here more like a “sheet”,
that represents the interaction between adjacent layers.

In parallel to the benzene dimer, at very low-s val-
ues the iso-surfaces formed around the individual layers
are almost identical to those of graphene sheets, so that
these low-s iso-surfaces cancel out and only the inter-
layer sheet contributes to the interaction energy. As we
move to higher s, the iso-surfaces grow outward from
their planes of origin. By s = 1.0, as shown in Fig. 6,
the iso-surfaces have expanded to the point that they be-
gin to merge with one another through spatially periodic
“tunnels”. In the benzene-dimer case this merger cor-
responds to immediate losses in attractive energy. For
graphite, however, the parts of the inter-layer sheet that
have not been “annihilated” continue to grow in the di-
rection of the carbon atoms, increasing the charge den-
sity on that iso-surface. It is this increase in charge den-
sity that temporarily offsets the decrease in surface area.
The loss in surface area does not begin to dominate un-
til s = 1.17, which is the downward peak of graphite’s
∆egx(s), as shown in the red curve in Fig. 7. After
this point, the inter-layer iso-surface is gradually “an-
nihilated” along with the monolayer iso-surfaces in the
dimer, resulting in a shift from negative energy (attrac-
tion) to positive energy (repulsion). By s = 1.31, the
location of graphite’s upward peak in ∆egx(s), the iso-
surfaces in graphite completely vanish. This means that
any contribution to the interaction energy above that s
value is repulsive and entirely dependent on the energy
of a single graphene layer.

Though we use graphite as our main example, the same
iso-surface behavior is true of all of our layered systems.
This is demonstrated by the fact that they all have the
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FIG. 7. s-resolved exchange interaction energy ∆egx(s) for
a set of nine layered systems.

same overall shape of ∆egx(s), see Fig. 7: an attractive
contribution to interaction energy at low s, followed by a
sharp transition to repulsive energy at higher s, and then
a regression to zero exchange interaction energy after the
full layered system no longer contributes to the interac-
tion. This regression is due to the decrease in charge
density as iso-surfaces of s grow more distant from the
monolayer. We find that all layered structures abide by
this sequence with only slight variations between indi-
vidual types of systems, but there are some clear differ-
ences in the relevant value of s. PdTe2, in particular,
has a ∆egx(s) curve that is shifted to the left compared
to the other systems, also evident in the statistical data
provided in Fig. 8. This shift is caused by the partly
covalent character of this inter-layer binding, evidenced
by the sizable GGA-level binding energy found in e.g.
Ref. [73]. This results in the shortest distance between
any inter-planar atoms in all of our layered structures.
Thus, the “disk” iso-surface that arises between the tel-
lurium atoms has less space to grow, resulting in less con-
tribution from higher-s values. We also see that certain
systems such as MoS2, MoSe2, and WS2 have a tendency
for their ∆egx(s) to plateau slightly before hitting peak
attraction. We believe that this is due to asymmetry
in the iso-surfaces, where parts of the interplanar disk
merge with the monolayer iso-surfaces long before the
remainder does. This results in a brief and small repul-
sive contribution even as the attractive energy continues
to build.

It is instructive to compare the shifts in ∆egx(s) with
the predicted inter-layer separations in Table S4 and the
form of dFx/ds for different functionals. In particular,
DF2 has notoriously inaccurate interlayer separations for
some systems;30,67,73 in the case of PdTe2 by as much
as 0.9 Å, while for HfTe2 and MoSe2 by approximately
0.6 Å. WS2, HfSe2, and MoS2 have similar curves and
DF2 overestimates their separation by 0.4 Å. Graphite,
BN, and HfS2 also have similar curves and DF2 overes-
timates their separation by approximately 0.15 Å. For
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FIG. 8. Statistical analysis of ∆egx(s) for (left) nine layered
systems and (right) benzene adsorbed on three surfaces. See
legend in Fig. 5 for more details.

these three, DF1 has somewhat larger overestimation of
inter-layer separations, i.e. by 0.2 Å. The trends in bind-
ing separation can be linked to the much larger dFx/ds
of PW86r for s ≈ 0.2 to s ≈ 0.8 used in DF2, compared
to all others, while the regions for which DF1 gives larger
separations can be linked to the crossing of dFx/ds for
PW86r and revPBE at s ≈ 1. Trends in inter-layered
binding energies are harder to distinguish, since the sep-
arations are influenced by the functional. However, we
can infer that the overall more accurate energies of DF1-
cx compared to DF1-optB88 can be linked to the larger
Fx(s) for smaller s and similar magnitude for larger s,
causing the exchange attraction to be weighted more for
optB88 and thus resulting in larger binding energy over-
estimation.

Finally, we give attention to the fact that all vdW-
DFs with accurate inter-layer separation overestimate the
binding energy of layered systems as seen in Table S4,
with DF3-opt1 being the best performing with a MARD
of 13.55%. While improving this may require updating
the non-local correlation further, it is interesting to an-
alyze the role of the exchange energy compared to the
molecular dimers. While being a quite accurate func-
tional for the energies at the “1.0” separation for the
S22×5 set in Table S3, optB88 is the worst performing
for the energies of layered systems (MARD of 32.36%).
If we disregard revPBE and PW86r (as DF1 and DF2
have inaccurate inter-layer separations), optB88 has the
largest Fx(s) among the functionals beyond s = 2.9. In
this tail region, optB88 picks up significant repulsive con-
tributions for the molecular dimers, while for layered sys-
tems this tail region has almost vanished, clearly evident
by comparing Fig. 5 and Fig. 8.
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FIG. 9. ∆egx(s) for benzene adsorbed on the coinage metals
Cu, Ag, and Au.

E. Benzene Adsorption on Cu/Ag/Au (111)

Molecular adsorption on coinage metals has tradition-
ally been a challenging problem to model with DFT
methods52 due to very distinct properties of the surface
and the molecule as well as different response properties
of the surface and bulk regions of the metal. Here, we
study the adsorption of benzene on the (111) surface of
Cu, Ag, and Au and analyze the s dependence. Figure 9
shows the profile of ∆egx(s) for these three cases; cor-
responding statistical properties of the domains are indi-
cated in the right panel of Fig. 8. Moreover, Fig. 10 shows
the iso-surfaces of s for benzene on Ag (111) as a repre-
sentative system. As for the other systems, we find that
the iso-surfaces growth and merger dictates the depen-
dence of the exchange interaction energy on s. The first
iso-surface is at s = 0.50, which is below the 80% negative
domain (see Fig. 8). We observe three distinct types of
surfaces: ones surrounding and intrinsic to the benzene
molecule, ones permeating and surrounding the Ag lat-
tice, and a single, very-low charge-density surface directly
between the benzene and metal surface. As the iso-value
of s grows, so too does the interaction iso-surface until it
runs out of space and begins to “annihilate” on contact
with the benzene and Ag iso-surfaces. The lower panel
of Fig. 10 shows the iso-surface for s = 0.84, i.e. the lo-
cation of the negative peak in ∆egx(s) for this system.
Here, the interaction iso-surface has been partially “an-
nihilated” on the side facing the Ag atoms and is just be-
ginning to merge with the benzene molecule as well. As
this merger progresses, the interaction iso-surface loses
surface area and charge density, leaving the energies of
the isolated benzene and Ag surfaces to dominate the
interaction. This results in the permanent transition to
repulsive exchange interaction energy that we see around
s ≈ 1.0.

The dissimilarity between the benzene molecule and
metal surface makes this system interesting to compare
with the molecular dimers and layered systems. The neg-
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s = 0.50

s = 0.84

FIG. 10. Iso-surface of s = 0.50 and s = 0.84 for benzene ad-
sorbed on the Ag (111) surface. The electronic charge density
in units of e/Bohr3 is mapped onto the iso-surface.

ative parts of the curves in Fig. 9 have an onset at lower
values of s, almost as low as for PdTe2, in particular for
Au. The localization and negative/positive peak mag-
nitude can also be ranked as Cu > Ag > Au. For the
negative region, the surface adsorption peaks are more
localized than the ones for layered systems, while for the
positive region they are much broader, see Fig. 8. The
shift to lower-s values and localization on the negative
side can be understood from the asymmetry of the “anni-
hilation” of the molecule and metal-surface iso-surfaces;
the broadening on the positive side arises from the dis-
tinctness of the individual surfaces and that of benzene.
We further note that benzene on Ag (111) exhibits a
shifting to larger-s values on the positive side and a slight
broadening compared to the Cu case, while for Au (111)
we only see broadening. This slight shift in trend is a
testament to the distinct electronic properties of these
surfaces and might be related to the lower binding en-
ergy on Ag (111), a trend only DF1-cx gets right among
the functionals, see Table S5. Finally, all the ∆egx(s)
curves have very similar large-s behavior, which is pri-
marily due to the benzene monomer contributions.

F. Molecular Crystals

Finally, our reduced-gradient analysis was also done for
the X23 dataset of molecular crystals.74 Figure 11 shows
the statistical analysis of ∆egx(s) for the full dataset

FIG. 11. s-resolved exchange interaction energy ∆egx(s) for
the X23 dataset of molecular crystals.74 See legend in Fig. 5
for more details.

and the individual curves are provided in Fig. S5 in the
SI. Among these systems we find a high degree of sim-
ilarity and no particular structure to serve as a repre-
sentative. Nonetheless, the mechanism behind their in-
teractions can still be described similar to the benzene
dimer. However, whereas the benzene dimer features a
single interacting iso-surface between the two molecules,
we see several iso-surfaces between adjacent molecules in
the molecular crystals. And, due to differences in orien-
tation of the molecules relative to one another, we find
that the iso-surfaces residing between them take a variety
of different shapes and sizes. Still, the same mechanisms
of how these iso-surfaces contribute to the s-resolved ex-
change interaction energy come into effect: At low s,
iso-surfaces form around and in-between atoms, with the
ones in-between causing exchange attraction. In the case
of the X23 dataset, the crossing point from positive to
negative values occurs on average at s∆e

0 = 1.44, with
the negative and positive medians on average at 1.01 and
2.27.

Comparing the statistical data for molecular dimers in
Fig. 5 with those of molecular crystals in Fig. 11, we spec-
ulate that the crystals are more similar to each other than
the dimers. This might be due to the stronger attractive
dispersion forces arising due to the three-dimensional ge-
ometry in crystals, which compresses some of the most
weakly bonded systems—but, the effect is smaller for
crystals made out of larger molecules since the effect of
the three-dimensional geometry is smaller. In effect, the
effective packing distances in terms of the s iso-surfaces
become more similar. In turn, this analysis suggests that
it could be possible to design functionals that provide ac-
curate performance for all molecular crystals in the X23
data set at the same time.

Comparing molecular crystals with molecular dimers
and layered systems (Figs. 5, 8, and 11), it becomes evi-
dent that the exchange interaction of molecular crystals
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is more similar to molecular dimers than layered systems
including graphite. A consequence of this is that DF2
on one hand can provide accurate volumes of molecular
crystals, but on the other severely overestimates sepa-
rations of layered systems, whereas DF1-cx is accurate
for both (see Tables S4 and S6). This can be related to
their crossing of dFx/ds at s = 1.34, i.e. slightly below
s∆e

0 = 1.44, which is a good match considering the shift
in s-resolved exchange interaction energy and forces in
Fig. 4.

V. CONCLUSIONS

Our study provides a thorough analysis of reduced-
gradient values, their spatial distribution, and how they
contribute to the exchange component of the binding of
a variety of different van der Waals complexes. We find
that attractive contributions to the exchange interaction
energy can be attributed to low-density regions between
the constituents with disk-like iso-surfaces. We further
identify a mechanism wherein the surface area of these
disks decreases through merging with other iso-surfaces
and switches the gradient-correction to exchange from
attractive to repulsive. Our analysis shows that there
are clear differences in the reduced-gradient resolved ex-
change interaction energy for different classes of van der
Waals complexes. Analyzing these differences provides a
way to explain why different exchange functionals used in
vdW-DF perform differently for different classes of sys-
tems. In turn, this can provide valuable guidance for
constructing even more accurate functionals, whether for
broadly applicable ones or ones that target good perfor-

mance for particular classes of systems. At this point,
it is not clear that all our identified desirable features
for the enhancement factor are mutually compatible and
will lead to clear improvements across all classes of van
der Waals complexes. Currently ongoing work will clar-
ify this question and seeks to develop an updated variant
of the vdW-DF family that implements a maximum of
these features. The optimization of such a new vdW-DF
variant is not an easy task—large amounts of benchmark
calculations, covering large datasets and different classes
of van der Waals complexes, are needed to ensure a mean-
ingful local minimum in the high-dimensional parameter
space of not only the exchange but also the non-local cor-
relation energy. More evidence supporting the impact of
our reduced-gradient analysis on improving vdW-DF will
thus be addressed and provided in our future work show-
casing the utility of this insight for the development of
non-local functionals. While this paper emphasizes how
the effects play out for the vdW-DF family of functionals,
the same analysis approach may prove fruitful when an-
alyzing the performance of other approaches to describe
van der Waals binding within DFT.
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Garćıa, A. J. Cohen, and W. Yang, Revealing Noncova-
lent Interactions, J. Am. Chem. Soc. 132, 6498 (2010).

[40] H. Rydberg, Nonlocal Correlations in Density Functional
Theory, Ph.D. thesis, Chalmers University of Technology
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S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf,
A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thon-
hauser, P. Umari, N. Vast, X. Wu, and S. Baroni, Ad-
vanced capabilities for materials modelling with Quan-
tum ESPRESSO, J. Phys.: Condens. Matter 29, 465901
(2017).

[59] K. F. Garrity, J. W. Bennett, K. M. Rabe, and D. Van-
derbilt, Pseudopotentials for high-throughput DFT cal-
culations, Comput. Mater. Sci. 81, 446 (2014).

[60] H. Peng, Z.-H. Yang, J. P. Perdew, and J. Sun, Versa-
tile van der Waals density functional based on a meta-
generalized gradient approximation, Phys. Rev. X 6,
041005 (2016).

[61] T. Björkman, A. Gulans, A. V. Krasheninnikov, and
R. M. Nieminen, van der Waals bonding in layered com-
pounds from advanced density-functional first-principles
calculations, Phys. Rev. Lett. 108, 235502 (2012).

[62] T. Björkman, Testing several recent van der Waals den-
sity functionals for layered structures, J. Chem. Phys.
141, 074708 (2014).

[63] A. M. Reilly and A. Tkatchenko, Understanding the role
of vibrations, exact exchange, and many-body van der
Waals interactions in the cohesive properties of molecular
crystals, J. Chem. Phys. 139, 024705 (2013).

[64] K. Berland, T. L. Einstein, and P. Hyldgaard, Rings slid-
ing on a honeycomb network: Adsorption contours, in-
teractions, and assembly of benzene on Cu (111), Phys.
Rev. B 80, 155431 (2009).

[65] L. Gráfová, M. Pitoňák, J. Řezáč, and P. Hobza, Com-
parative study of selected wave function and density func-
tional methods for noncovalent interaction energy calcu-
lations using the extended S22 data set, J. Chem. Theory
Comput. 6, 2365 (2010).
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