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Abstract

Within the computational neuroscience community, there has been a focus on simulating

the electrical activity of neurons, while other components of brain tissue, such as glia cells

and the extracellular space, are often neglected. Standard models of extracellular potentials

are based on a combination of multicompartmental models describing neural electrodynam-

ics and volume conductor theory. Such models cannot be used to simulate the slow compo-

nents of extracellular potentials, which depend on ion concentration dynamics, and the

effect that this has on extracellular diffusion potentials and glial buffering currents. We here

present the electrodiffusive neuron-extracellular-glia (edNEG) model, which we believe is

the first model to combine compartmental neuron modeling with an electrodiffusive frame-

work for intra- and extracellular ion concentration dynamics in a local piece of neuro-glial

brain tissue. The edNEG model (i) keeps track of all intraneuronal, intraglial, and extracellu-

lar ion concentrations and electrical potentials, (ii) accounts for action potentials and den-

dritic calcium spikes in neurons, (iii) contains a neuronal and glial homeostatic machinery

that gives physiologically realistic ion concentration dynamics, (iv) accounts for electrodiffu-

sive transmembrane, intracellular, and extracellular ionic movements, and (v) accounts for

glial and neuronal swelling caused by osmotic transmembrane pressure gradients. The

edNEG model accounts for the concentration-dependent effects on ECS potentials that the

standard models neglect. Using the edNEG model, we analyze these effects by splitting the

extracellular potential into three components: one due to neural sink/source configurations,

one due to glial sink/source configurations, and one due to extracellular diffusive currents.

Through a series of simulations, we analyze the roles played by the various components

and how they interact in generating the total slow potential. We conclude that the three com-

ponents are of comparable magnitude and that the stimulus conditions determine which of

the components that dominate.
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Author summary

A common experimental method for investigating brain activity is to measure the electric

potential outside neurons. These recordings usually only capture the high-frequency part

of the potential while ignoring frequencies below a set cut-off between 0.1 and 1 Hz.

Therefore, standard recordings cannot tell us what the slow frequency potentials might

say about on-going brain activity. Most computational models are also not suited in this

regard. They ignore two possibly important contributions to the slow potentials, namely

the diffusion of ions in the extracellular space and a cell type called astrocytes that contrib-

ute to keeping an appropriate chemical environment for neurons. To overcome this, we

here present what we call the electrodiffusive neuron-extracellular-glia (edNEG) model

for exploring the genesis of slow potentials in the brain. We use the model to study the

contributions from neurons, astrocytes, and diffusive currents to the slow potentials and

show that the model predicts that they are on the same order of magnitude.

Introduction

A common experimental method for investigating brain activity is to measure the electric

potential, either at the scalp (EEG), at the cortical surface (ECoG), or in the extracellular space

inside the brain (LFP or spikes) [1]. These recordings are traditionally done using a low-fre-

quency filter, with a cut-off frequency normally set somewhere between 0.1 and 1 Hz (see, e.g.,

[2–4]). Frequency components below this threshold are often referred to as slow potentials,

standing potentials, sustained potentials, or DC potentials. We will here use the term slow

potentials. The information that slow potentials might provide about on-going brain activity is

discarded from standard recordings.

A multitude of brain processes have been associated with slow potentials, including both

physiological phenomena, such as brain-state transitions and readiness potentials, and patho-

logical phenomena, such as spreading depression, stroke, and epilepsy [4]. Slow potentials are

often correlated with changes in extracellular ion concentrations, and especially with rises in

the extracellular K+ concentration. Such correlations are, for example, found regularly in stud-

ies of seizure activity [4, 5] and spreading depression [6, 7]. In layered brain regions such as

the cortex and hippocampus, concentration shifts are inhomogeneous across layers, and dur-

ing seizure activity and spreading depression, concentration gradients arise between deeper

(cell-body) layers and superficial (dendritic) layers. Slow-potential shifts are normally reported

to follow similar depth profiles as the extracellular K+ concentration (see, e.g., [5, 8–13]).

There are three main candidate mechanisms (M1-M3) for explaining the correlation

between gradients in ion concentrations and slow potentials, all of which were discussed in a

recent review paper addressing how such potentials (there called DC potentials) arise during

spreading depression [7]. These are (M1) neural sink/source configurations, (M2) glial sink/

source configurations, and (M3) electrodiffusion (Fig 1). The two first (M1-M2) are conceptu-

ally similar: When the chemical environment varies with depth, cellular parts in superficial

versus deeper layers will have different ionic reversal potentials over their membranes. Expect-

edly, this will lead to gradients in the membrane- and intracellular potentials, and thus to intra-

cellular steady-state currents, even when the cells are otherwise inactive. Since currents always

travel in closed loops, an intracellular current that, for example, goes towards deeper layers

through (M1) neural dendrites or (M2) a glial syncytium, requires inward currents entering

the cells (sinks) in the superficial layers, and outward return currents (sources) in the deeper

layers. Such a sink and source configuration requires an extracellular current going towards
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the superficial layers in order to complete the loop, and thus a gradient in the extracellular

potential. The spatial K+ buffering current in astrocytes [14] is a well-known example of such a

slow current loop. In addition to M1 and M2, diffusion of ions along extracellular concentra-

tion gradients can (M3) give rise to a so-called diffusion current. The diffusion current is a

direct function of the concentration differences and the diffusion constants of the involved

ions, and will contribute to completing the current loops between the membrane sources and

sinks (see, e.g., [15]). The three components (M1-M3) are therefore not independent (see Fig

1, figure caption).

Computational modeling in neuroscience has largely focused on simulating the fast electri-

cal activity of neurons and networks of such, while ignoring other components of brain tissue,

such as glia cells and the extracellular space. Within that paradigm, multicompartment neuron

models are typically based on a combination of a Hodgkin-Huxley type formalism for mem-

brane mechanisms (see, e.g., [16, 17]), and cable theory for how signals propagate in dendrites

Fig 1. Neuronal, glial, and diffusive contributions to the extracellular potential. Neural sink/source configurations (left), glial sink/source

configurations (right), and diffusion (middle) give contributions to the extracellular potential gradient Δϕe: Δϕe = Δϕe,n + Δϕe,g + Δϕe,diff. For a two-

layered, one-dimensional system, these contributions can be computed as indicated in the top of the figure, where R denotes the total extracellular

resistance between the source and sink locations. Currents in the system are the neural membrane sources/sinks (±In), glial membrane sources/sinks

(±In), extracellular diffusive currents (~I diff ), and extracellular field currents due to the neuronal (~I n) and glial (~I g) source/sink configurations. The three

contributions to Δϕe are not independent. Current loop-completion requires that In þ Ig ¼ ~I n þ ~I g þ ~I diff , indicating that In 6¼ ~I n and Ig 6¼ ~I g. When

Δϕe,n and Δϕe,g are computed from membrane current sources, as in standard volume conductor theory, the contribution from diffusion (Δϕe,diff) can

be seen as a “correction” term, accounting for the fact that also diffusion contributes to completing the current loops. See the Analysis section in

Methods for a full description of how we calculated Δϕe,n, Δϕe,g, and Δϕe,diff.

https://doi.org/10.1371/journal.pcbi.1008143.g001
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and axons (see, e.g., [18, 19]). Two underlying assumptions in these standard models are that

the neurodynamics is unaffected by changes in (i) extracellular potentials and (ii) extracellular

ion concentrations. Models of this kind thus do not account for so-called ephaptic effects,

where neurons may affect their neighbors non-synaptically through inducing changes in the

extracellular environment [20]. Electric ephaptic effects have been the topic of many studies

(see, e.g., [21–28]), as has the effect of changing ion concentrations on neurodynamics (see,

e.g., [29–33]). The justification for neglecting such effects in standard simulations is that they

often (and by assumption) are quite small, at least on the relatively short time-scale considered

in most neural simulations.

Computational modeling of ECS potentials is typically done by combining the above men-

tioned standard models with volume conductor theory [34] through a forward modeling

scheme consisting of two steps [3]: In step 1, the neurodynamics is computed under the

assumption of constant extracellular conditions, and then, in step 2, the extracellular potentials

are computed as a function of the transmembrane neural currents found in step 1. This model-

ing scheme may be suited to capture the fast dynamics of extracellular potentials, which are

believed to be predominantly generated by neural activity and synaptic input to neurons [1, 3],

i.e., by the first (M1) of the mechanisms discussed above. However, in the cases with large

extracellular concentration gradients, it has been estimated that diffusion (M3) can give non-

negligible contributions to extracellular potentials, even to frequency components on the

order of�1 Hz, i.e., above the normal cut-off frequency [15, 35, 36]. Via effects on ionic rever-

sal potentials, concentration shifts will also affect the other mechanisms (M1-M2). Hence, the

standard framework is not applicable to studies of slow potentials, which depend on slower

mechanisms involving concentration changes and their effects on extracellular diffusive cur-

rents, glial current sources, and neural current sources.

As they might involve both diffusion potentials and concentration-dependent effects on

cellular dynamics, computational modeling of slow potentials on the spatial scale of tissue

requires a self-consistent electrodiffusive framework that ensures conservation of ions and

charge, and a physically consistent relationship between ion concentrations and electrical

potentials in both the intra- and extracellular space [33]. Domain-type models that are consis-

tent in this regard (see, e.g., [37–39]), have not accounted for the differential expression of

membrane mechanisms in dendrites versus somata, or do not include a glial domain [33]. As

cellular contributions to extracellular potentials depend on the spatial separation between

transmembrane current sinks and sources [3], a model of slow potentials should, at least in

some crude way, account for differences between somatic and dendritic current sources. Such

differences are also the likely cause of the extracellular ion concentration gradients that occur

under some conditions. For example, the concentration shifts seen during spreading depres-

sion have been suggested to originate in superficial layers of hippocampus and cortex, and to

depend strongly on ion channel openings in the apical dendrites of pyramidal cells [6, 7, 10,

40–42].

Recently, we developed the electrodiffusive Pinsky-Rinzel (edPR) model, which we believe

is the first model that combines a neural model with soma and dendrites with biophysically

consistent modeling of ion concentrations, electrical charge, and electrical potentials in both

the intra- and extracellular space [33]. In that work, we equipped the well-established two-

compartment Pinsky-Rinzel model [43] with ion pumps, cotransporters, and equations for ion

concentration dynamics in the intra- and extracellular space. The objective was to supply the

neuroscience community with a model that can simulate neural dynamics not only under

physiological conditions, where the homeostatic machinery succeeds in maintaining ion con-

centrations close to baseline, but also under pathological conditions, where homeostasis is

incomplete, so that ion concentrations change over time.
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Two potentially important contributors to slow potentials that were not accounted for in

the edPR model were glia cells and effects of cellular swelling or shrinkage. In particular, a type

of glia cells called astrocytes is known to be important for regulating the ionic content of the

ECS [44], and especially for the uptake of excess K+ that may develop during neuronal hyper-

activity [14, 45–47]. Furthermore, when ion concentrations change in neurons, astrocytes, and

the ECS, it will cause osmotic pressure gradients over the cellular membrane. This can lead to

cellular swelling or shrinkage [48–51], which in turn will alter the ionic concentrations in the

swollen or shrunken volumes. Cellular swelling and a corresponding shrinkage of the ECS is,

for example, an important trademark of pathological conditions such as seizures and spreading

depression [52–54].

To account for the main mechanisms behind slow potentials, we here expand the edPR

model by including a glial domain and accounting for neuronal and glial swelling. We refer to

the new model as the electrodiffusive neuron-extracellular-glia (edNEG) model and consider

it to be a minimal model that includes the main machinery responsible for slow potential gen-

erations in a “unit” piece of brain tissue, i.e., a tissue volume of the size that on average will

contain a single neuron, and the ECS and glial ion uptake that it has to its disposal. The

edNEG model has six compartments, two for each of the three domains. It has the functional-

ity that it (1) keeps track of all ion concentrations (Na+, K+, Ca2+, and Cl−) in all compart-

ments, (2) keeps track of the electrical potential in all compartments, (3) has different ion

channels in neuronal soma and dendrites so that the neuron can fire somatic action potentials

(APs) and dendritic calcium spikes, (4) contains the neuronal and glial homeostatic machinery

that maintains a realistic dynamics of the membrane potential and ion concentrations, (5)

accounts for transmembrane, intracellular, and extracellular ionic movements due to both dif-

fusion and electrical migration, and (6) accounts for cellular swelling of neurons and glia cells

due to osmotic pressure gradients.

Using the edNEG model, we here simulate slow potentials occurring under conditions of

varying (1) stimulus type (constant current injection versus synaptic), (2) stimulus location

(somatic, dendritic, or uniformly distributed), and (3) stimulus strength (evoking physiologi-

cal versus pathological activity), and study how the various mechanisms (M1-M3) defined

above contribute to the total slow potential under the various conditions. As a general, qualita-

tive insight, the edNEG model predicts that the three mechanisms give contributions to the

slow potentials that are of the same order of magnitude, and that the mechanism that contrib-

utes the most differs between different stimulus conditions.

Results

An electrodiffusive tissue model with neuron-glia interactions

The architecture of the edNEG model is illustrated in Fig 2. It contains a neuronal, extracellu-

lar (ECS), and glial domain, all of which were modeled with two compartments. We use the

term “domain” here, because the edNEG model is best interpreted as a tri-domain model, i.e.,

it represents the average neural, glial, and extracellular activity occurring in a “unit” piece of

brain tissue, i.e., a tissue volume of the size that on average will contain a single neuron, and

the ECS and glial ion uptake that it has at its disposal.

For the neuronal domain, the two compartments represent the neural membrane charac-

teristics in somatic (bottom) and dendritic (top) layers. In the edNEG model, these compart-

ments were connected with an intra-domain resistance similar to the intracellular resistance in

the Pinsky-Rinzel model [33, 43], so that the neuronal domain was essentially modeled in the

same way as a single two-compartment neuron model with “explicit” geometry. For the ECS,

the two compartments represent the average ECS that the single neuron has at its disposal
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surrounding its somata (bottom) and dendrites (top). Finally, the glia cells most involved in

ion homeostasis, the astrocytes, are typically interconnected via gap junctions into a continu-

ous syncytium. The glial compartments could thus be interpreted not as two compartments of

a single glia cell but rather as a representative for the average glial buffering surrounding the

neural somata (bottom) and dendrites (top). To keep notation short, we will in the following

refer to the neural, ECS, and glial domains, simply as the neuron, the ECS, and the glia cell.

The neuron and the ECS were adopted from the previously published electrodiffusive

Pinsky-Rinzel (edPR) model [33] and modified slightly (see Methods). The glial model was

based on a previous model for astrocytic spatial buffering [47] and added to the edPR model

so that both the neuron and glia cell interacted with the ECS. Unlike the previous neuron [33]

and glia [47] models that it was based upon, the edNEG model was constructed so that it also

accounted for cellular swelling due to osmotic pressure gradients. We implemented the

edNEG model using the electrodiffusive Kirchoff-Nernst-Planck framework (KNP) [33, 47],

which consistently outputs the voltage- and ion concentration dynamics in all compartments.

Fig 2. Model architecture. (A) The edNEG model contained three domains (neuron, index n, ECS, index e, and glia, index g). Initial neuronal/

extracellular/glial volume fractions were 0.4/0.2/0.4. Each domain contained two compartments (soma level, index s, and dendrite level, index d). Ions

of species k were carried by two types of fluxes: transmembrane (index m) fluxes (jk,msn, jk,mdn, jk,msg, jk,mdg) and intra-domain fluxes in the neuron

(jk,in), the ECS (jk,e), and the glia cell (jk,ig). An electrodiffusive framework was used to calculate ion concentrations and electrical potentials in all

compartments. (B) The neuronal membrane contained the same mechanisms as in [33]. Both compartments contained Na+, K+, and Cl− leak currents

(Ileak), 3Na+/2K+ pumps (Ipump,n), K+/Cl− cotransporters (IKCC2), Na+/K+/2Cl− cotransporters (INKCC1), and Ca2+/2Na+ exchangers (ICa−dec). The soma

contained Na+ and K+ delayed rectifier currents (INa and IK−DR), and the dendrite contained a voltage-dependent Ca2+ current (ICa), a voltage-

dependent K+ afterhyperpolarization current (IK−AHP), and a Ca2+-dependent K+ current (IK−C). The glial membrane mechanisms were taken from

[47], and they were the same in both compartments. They included Na+ and Cl- leak currents (Ileak), inward rectifying K+ currents (IK−IR), and 3Na+/

2K+ pumps (Ipump,g). The edNEG model also accounted for cellular swelling due to osmotic pressure gradients across the membranes.

https://doi.org/10.1371/journal.pcbi.1008143.g002
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Both the neuron and glial domain contained cell-specific and ion-specific passive leakage

channels, cotransporters, and ion pumps (Fig 2) that ensured a stable ion balance in the sys-

tem. The neuron contained additional active ion channels that were different in the somatic

versus dendritic compartment, enabling it to fire somatic action potentials (AP) and den-

dritic Ca2+ spikes. Both glial compartments contained inward rectifying K+ channels. All

included membrane mechanisms are summarized in Fig 2 and described in further detail in

the Methods section.

edNEG modeling of physiological and pathological activity

In standard (Hodgkin-Huxley type) neuron models, the key dynamical variable is the mem-

brane potential. In addition to modeling the membrane potential, the edNEG model keeps

track of the ion concentrations and electric potentials in all neuronal, glial, and extracellular

compartments, as well as changes in compartment volumes due to osmotic gradients. It also

accounts for the effect that changes in these variables may have on neuronal firing properties.

When the neuron is active, the exchange of ions due to AP firing will be counteracted by

the stabilizing mechanisms striving to restore baseline concentration gradients. Hence, for

moderately low neuronal firing, the edNEG model will enter a dynamic steady-state where

homeostasis is successful, and firing can prevail for an arbitrarily long period of time without

ion concentrations diverging far off from baseline. For a too-high neuronal activity level, the

stabilizing mechanisms of the edNEG model will fail to keep up, and gradual changes in ion

concentrations will lead to gradual changes in neuronal firing properties, and eventually to

ceased AP firing. We will refer to these two classes of activity patterns as physiological and

pathological activity, respectively.

Physiological (here used meaning normal/healthy) activity of the edNEG model is illus-

trated in Fig 3, which shows how the membrane potentials, the extracellular ion concentra-

tions, and the volumes vary during a 1400 s simulation. The neuron received a stimulus from

t = 1 s to t = 600 s that made it fire at 1 Hz. Fig 3A shows the neuronal and glial membrane

potentials in the soma layer over the full simulation period, and Fig 3B illustrates the shape of

an AP. Fig 3B also shows that the system had a stable resting state. Before stimulus onset, the

neuron and glia cell rested at their resting potentials of approximately −67 mV and −84 mV,

respectively.

In Fig 3C and 3D, we have plotted the extracellular ion concentrations of all ion species

(Na+, K+, Cl−, Ca2+) in the soma and dendrite layer, respectively. Values are given in terms of

their deviance from baseline values. As the soma contained no Ca2+ channels, variations in the

extracellular Ca2+ concentrations were very small, although not strictly zero, since minor con-

centration shifts could occur due to electrodiffusion of Ca2+ between the soma and dendrite

layer. For the other ion species, as well as for Ca2+ ions in the dendrite layer, we see that the

lines appeared to have a certain thickness while the neuron was firing. The thickness arose

because of changes in the ion concentrations on a short time scale. Had we zoomed in, we

would see that the lines had a zig-zagging shape, most pronounced for the K+ concentrations,

where the upstroke would reflect the efflux of K+ during the repolarization phase of an AP,

while the downstroke would reflect the stabilizing mechanisms that were active between APs,

working to restore the baseline concentrations.

The stabilizing recovery between APs was incomplete at the beginning of the simulation,

and the ion concentrations zig-zagged away from baseline for each consecutive AP. However,

the gradual divergence from baseline increased the stabilizing activity, which prevented ion

concentrations from deviating too dramatically from baseline. After a period of regular firing,

the system entered a dynamic steady-state where the zigs and the zags became equal in

PLOS COMPUTATIONAL BIOLOGY Electrodiffusive neuron-extracellular-glia model for slow potentials in the brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008143 July 16, 2021 7 / 45

https://doi.org/10.1371/journal.pcbi.1008143


Fig 3. edNEG modeling of physiological activity. Model response to a 22 pA step-current injection to the somatic

compartment of the neuron between t = 1 s and t = 600 s. The neuron responded with a firing rate of 1 Hz. The simulation

covered 1400 s of biological time, and the last 800 s shows recovery to baseline. (A) The somatic membrane potential ϕms of the

neuron (black line) and the glia cell (purple line) for the full simulation period. (B) The membrane potential ϕm of the neuronal

soma (black line), neuronal dendrite (black dotted line), glial “soma” (purple line), and glial “dendrite” (purple dotted line) for t
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magnitude, and the ion concentrations did not vary over time. In this simulation, [K+]e devi-

ated by maximally 0.4 mM, [Na+]e by maximally −0.6 mM, [Cl−]e by maximally −0.5 mM, and

[Ca2+]e by maximally −0.07 mM from the baseline ion concentrations during neuronal firing,

which were not enough to have a visible impact on the regular firing of the neuron. Hence, the

neuron in the edNEG model could fire regularly and continuously without dissipating its con-

centration gradients.

When the stimulus was turned off, the membrane potentials returned rapidly to values

very close to the resting potential (Fig 3A), while the ion concentrations made a small “jump”

before they returned more slowly towards baseline (Fig 3C and 3D). At the end of the simula-

tion, ion concentrations had recovered the baseline values. If we define recovery (rather arbi-

trary) as the time it took for all ion concentrations to return to values less than 0.01 mM away

from their resting baseline values, recovery took about 700 s, i.e., it occurred at about t = 1300

s. The fact that the membrane potentials were almost constant during the recovery of the

reversal potentials indicates that the ion concentration recovery was due to a close-to electro-

neutral exchange of ions over the neuronal and glial membranes. Hence, the edNEG model

predicts that “memories” of previous spiking history may linger in a neuron for several min-

utes, in the form of altered concentrations, even if it appears to have returned to baseline by

judging from its membrane potential.

Pathological activity of the edNEG model, where the stabilizing mechanisms fail to keep up

with the neuronal exchange, is illustrated in Fig 4. There, the neuron received a strong input

current (150 pA) for seven seconds, giving it a high firing rate (Fig 4A and 4B). While the neu-

ron fired, ion concentrations gradually changed (Fig 4C and 4D), causing a gradual depolariza-

tion of the neuron, which made it fire even faster. The neuron could tolerate this strong input

for only a little more than 5 s before it became unable to re-polarize to levels below the AP fir-

ing threshold, and the firing ceased due to a permanent inactivation of the AP generating Na+

channels. This condition, when a neuron is depolarized to voltage levels making it incapable of

eliciting further APs, is known as depolarization block. It is a well-studied phenomenon, often

caused by high extracellular K+ concentrations [55]. We note that there are two main ways in

which a neuron can be driven into depolarization block. The perhaps most well-studied sce-

nario is that when the neuron fires so fast that it does not have time to repolarize properly

between two consecutive action potentials. The action potential amplitude will then gradually

decrease and tend to zero, repolarization will eventually fail, and the membrane potential will

approach some depolarized equilibrium value. Neurons often have mechanisms (such as Ca2+

channels coupled to afterhyperpolarizing K+ channels) that limit firing rates and prevent them

from entering firing-rate dependent depolarization block. An alternative scenario is when the

depolarization block is caused by an increase in the extracellular K+ concentration to values

high above baseline due to, e.g., intense firing or impairment of the Na+/K+ pump [55]. An

enhanced extracellular K+ concentration will (i) depolarize the neuron due to an increased K+

reversal potential, and at the same time, (ii) make repolarizing K+ currents weaker due to the

reduced K+ gradient. Jointly, these two effects can put the neuron in a state where voltage-acti-

vated ion channels remain open, and the neuron gradually dissipates its concentration gradi-

ents approaching a depolarized equilibrium where it is unable to fire. The first type of

depolarization block can be explored using models that do not model ion concentrations

running from t = 0.99 s to t = 1.08 s. (C) Ion concentration dynamics of the extracellular space in the soma layer for all ion

species (Na+, K+, Cl−, Ca2+) shown in terms of their deviance from baseline values. (D) Ion concentration dynamics of the

extracellular space in the dendrite layer. (E) Volume dynamics of the three domains shown in terms of relative changes. Volume

changes were computed as totals for the full domains (soma layer + dendrite layer). Initial neuronal/extracellular/glial volume

fractions were 0.4/0.2/0.4.

https://doi.org/10.1371/journal.pcbi.1008143.g003
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Fig 4. edNEG modeling of pathological activity. Model response to a 150 pA step-current injection to the somatic

compartment of the neuron between t = 1 s and t = 8 s. (A) The neuron responded with an initial firing rate of 57 Hz, but both

the firing rate and spike shapes varied throughout the simulation due to variations in the ion concentrations. Both the neuron

(black line) and glia cell (purple line) experienced a gradual depolarization throughout the simulation, and the neuron

eventually went into depolarization block, where it stayed throughout the rest of the simulation (B). The gradually changing
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explicitly (see, e.g., [56, 57], while the second type can only be studied in models that include

ion concentration dynamics [31, 33] and is the one that we observe here.

When pathological activity had been induced, the system never returned to its baseline

resting state, and the neuron never regained its ability to elicit APs. This has previously been

referred to as a wave-of-death-like dynamics [58, 59]. It also resembles the neural dynamics

seen under the onset of spreading depression [59], but during spreading depression, neurons

tend to recover baseline activity after about one minute as the spreading depression wave

passes [53]. Putatively, this recovery depends on K+ being transported away from the local

region by ECS electrodiffusion and spatial buffering through the astrocytic network, and quite

likely also vascular clearance. As the edNEG model studied here represented a local and closed

system, such spatial riddance of K+ did not occur, but we anticipate that recovery might be

observed if the edNEG model was expanded to a spatially continuous model or if K+ was

allowed to “leak” out of the system, relaxing towards its concentration in an external bath

solution.

When the ion concentrations changed, so did the osmotic pressure gradients. This caused

the neuron and glia cell to swell under both physiological (Fig 3E) and pathological activity

(Fig 4E). The swelling was not dramatic during physiological firing, where the volume changes

of the different domains were in the order of� 1%. After the stimulus was turned off, the

three domains recovered their original volume fractions. During pathological activity, the neu-

ron lingered in depolarization block and continued to dissipate its concentration gradients so

that cellular swelling went on for a long time. At the end of the simulation, ion concentrations

were several tens of millimolar away from their baseline values, the neuron had swollen by

46.7%, and the glia cell and ECS had shrunken by 2.44% and 88.5%, respectively. In compari-

son, ECS shrinkage during spreading depression range from 40% to 78% [6, 60–64].

Having presented the edNEG model and its firing properties, we from here on shift our

focus towards its prediction of extracellular slow potentials and how the various mechanisms

(M1-M3) contribute to them. We note that in the edNEG model, changes in ion concentra-

tions and volumes were modeled in a consistent manner, i.e., concentrations were computed

as number of ions per volume, and hence, effects of volume dynamics were accounted for in

the concentration dynamics. Apart from this, we did not directly explore the relationship

between volume fractions and extracellular potentials.

Extracellular slow potentials

In the edNEG model, ion concentrations and electric potentials were computed self-consis-

tently in all compartments. As we took the ECS compartment in the dendrite layer as the

reference point for the electric potential (ϕde = 0), we will base our investigation of the ECS

potential on the ECS potential in the soma layer (ϕse).

When the neuron elicited an AP, a clear AP signature could be seen in the ECS potential in

the soma layer (Fig 5A, dashed line). The characteristic extracellular spike consisted of a volt-

age drop (to about −20 mV) followed by a voltage increase (to about 20 mV). This biphasic

response in the extracellular spike is well understood and has been examined in previous

computational studies [21, 65, 66].

In the Methods section, we show that we can split the extracellular potential into three

components that together sum up to the total potential. As we indicated in Fig 1, these are:

dynamics patterns were due to activity-induced changes in ion concentrations (C-D). (E) The system experienced massive

neuronal and glial swelling. Volume changes were computed as totals for the full domains (soma layer + dendrite layer).

https://doi.org/10.1371/journal.pcbi.1008143.g004
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Fig 5. Neuronal, glial, and diffusive components of the extracellular potential. (A) The extracellular potential, split into components explained by

standard volume conductor (VC) theory and neuronal currents (ϕse,n), VC theory and glial currents (ϕse,g), and a “correction” term explained by

diffusive currents (ϕse,diff). The sum of the three components (ϕse,sum) is equal to the extracellular potential calculated in the edNEG model. See the

Methods section for a description of how we calculated ϕse,n, ϕse,g, and ϕse,diff. The simulation was the same as in Fig 3. (B) The neuronal (�se;n), glial
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• ϕse,n: Potential (in soma-layer) as predicted from the neural current sink/source configura-

tion, using volume conductor theory.

• ϕse,g: Potential (in soma-layer) as predicted from the glial current sink/source configuration,

using volume conductor theory.

• ϕse,diff: Potential (in soma-layer) as predicted from extracellular diffusion, using the KNP

framework.

For readers familiar with the use of (standard) volume conductor (VC) theory for comput-

ing ECS potentials, the diffusion potential might be a new acquaintance. To give an intuitive

understanding of how it affects the total potential, we start by noting that the sum of the two

cellular components ϕse,VC = ϕse,n + ϕse,g will be the ECS potential as predicted from standard

VC theory. Volume conductor theory is based on the principle of Ohmic current conservation,

so that ϕse,VC is the potential needed to complete all current loops under the assumption that

all extracellular currents are purely Ohmic, i.e., linearly dependent on the voltage gradient.

However, if additional, diffusive currents are present, these will also contribute to current-loop

completion, so that the real ϕse = ϕse,VC + ϕse,diff will deviate from ϕse,VC. The diffusive compo-

nent can thus be seen as a correction of the potential predicted from VC theory.

As expected, the extracellular spike signature (black, dashed line in Fig 5) is dominated by

ϕse,n predicted from neuronal current sources and sinks (black, solid line). However, we also

see that glial current sources and sinks contribute, especially during the initial negative peak.

The glial contribution can be understood as follows: The initial peak is due to an inward cur-

rent into the neuron in the soma-layer (depolarizing it), which requires a net current entering

the extracellular compartment in the soma layer. This current comes partly from an extracellu-

lar current (from the dendritic to the somatic layer) and partly from an outward glial current.

The latter gives rise to a glial “spike” (purple, solid line) with opposite polarity from the neuro-

nal spike, and can be regarded as an ephaptic effect from the neuronal domain on the glial

domain. As very small concentration changes occur on the short time-scale of AP firing, the

diffusive component gives negligible contributions to the dynamics seen in Fig 5.

We note that the edNEG model dramatically overestimates the brief ECS voltage deflection

seen during an AP. In experimental recordings, amplitudes in ϕe fluctuations are typically on

the order of 0.1 mV [65], which is much smaller than that predicted by the edPR model. The

discrepancy is an artifact mainly caused by the 1D approximation and the closed boundary

conditions used in the edNEG model, which confine currents that, in reality, are 3D currents

to go in only one spatial direction and to stay within the local system. Limiting the degrees of

freedom in this manner essentially amounts to increasing the effective ECS resistance dramati-

cally, thus causing larger voltage deflections. Importantly, while the edNEG model overesti-

mates the amplitude of fast voltage deflections, it is reasonable to expect that it will give sound

predictions of the slower components of extracellular potentials. The argument for this is that

the closed boundary conditions applied in the simulations are equivalent to assuming periodic

boundary conditions in the horizontal direction. Fig 5 thus simulates the extracellular spike

in the hypothetical case of a population of perfectly synchronized neurons, i.e., one where all

neurons in some brain region are identical and fire an AP at the exact same time. While such

synchrony is unreasonable on the short time scale of AP firing, it seems like a reasonable

assumption for processes on a longer time scale (arguments for this were also given in [15]).

(�se;g), and diffusive (� se;diff ) components of the extracellular slow potential (� se;sum) from Fig 3, defined as the moving averages of ϕse,n, ϕse,g, ϕse,diff,

and ϕse,sum using a time window of 10 s. (C) The neuronal, glial, diffusive, and total component of the extracellular slow potential from Fig 4.

https://doi.org/10.1371/journal.pcbi.1008143.g005
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Synchrony in slow signal components of, say, 0.1 Hz, simply means that all the neurons have

the same average activity over a 10 s period.

From here on, we turn the focus away from the fast components of the ECS potential and

focus on the slow potential. As a proxy of the slow potential, we used the average potential

taken over a 10 s sliding window of simulated time. The slow potential in the ECS during the

physiological and pathological neural activity are shown in Fig 5B (same simulation as in Fig

3) and Fig 5C (same simulation as in Fig 4), respectively. To keep notation short, we refer to

contributions to the slow potential from neuronal sinks/sources (black curves), glial sinks/

sources (purple curves), and diffusion (red curves), as the neuronal, glial, and diffusive

�se-contributions, respectively.

During physiological conditions (Fig 5B), the neuronal �se-contribution (black curve)

reflected the step current injection to the neural soma. This was not surprising, since the stim-

ulus current dominated the neuronal membrane currents in the soma-layer during firing (S1A

Fig). Since the step current injection amounted to a current sink, the neuronal �se-contribu-

tion was negative. The return current in the dendrite-layer was dominated by the K+ afterhy-

perpolarization current (S1B Fig).

The glial �se-contribution (purple curve) was also step-like, but, similar to what we saw for

the AP in Fig 5A, had the opposite polarity from the neuronal �se-contribution (see S1C and

S1D Fig for the various current components contributing to glial sinks/sources). The glial

�se-contribution was smaller than the neuronal contribution, so that the total slow potential

(grey curve) was negative. The diffusive �se-contribution (red curve) was smaller in magnitude

than the two other, but varied throughout the simulation as the extracellular ion concentration

gradients changed. The concentration gradients remained in the system for a few hundred sec-

onds after the stimulus had been turned off, and during this phase, the diffusive �se-contribu-

tion dominated the slow potential (grey and red lines coincide).

During pathological conditions, the neuron was stimulated so that it entered depolarization

block and seized its AP activity after about 5 s of firing. The slow potential seen in Fig 5C was

therefore mainly a result of gradual changes in ionic concentrations (cf. Fig 4C and 4D) and

the effects that these had on neuronal and glial reversal potentials and extracellular diffusion.

Towards the end of the simulation, the system reached a steady state where all concentrations

and potentials remained at a constant value. Interestingly, in this final steady-state, the neuro-

nal (� 0.3 mV), glial (� −0.8 mV), and diffusive (� −1.5 mV) �se-components added up to a

total slow potential of about −2 mV. The steady-state is thus due to a balance between slow

neuronal and glial current loops and a constant diffusion potential due to constant concentra-

tion gradients between the somatic and dendritic layers. The magnitude of the different mem-

brane currents contributing to these current loops are illustrated in S2 Fig.

Dependence of extracellular slow potentials on stimulus conditions

Next, we wanted to explore how the slow potentials generated in the edNEG model depend on

stimulus conditions. To do this, we varied the stimulus strength, the stimulus type (constant

injection versus synaptic), the stimulus position (soma, dendrite, or both), and the ion species

that mediated the stimulus.

As we wanted to summarize the results from a number of simulations, we needed to sim-

plify the analysis by selecting one slow potential measure per simulation. For physiological

activity, simulations were instead run for 60 s, and the selected slow potential was defined as

the average ECS potential taken over the last 10 s of the simulation, where the neuron fired

with an (approximately) constant steady-state rate. For pathological conditions, simulations
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were then run for 600 s. The neuron had then been in depolarization block for a long time,

and all variables had settled on approximately constant values. Also in this scenario, the

selected slow potential was computed as the average ECS potential taken over the last 10 s of

the simulation.

In the first series of simulations, we evoked neuronal firing by applying constant current

injections to the neuron for 60 s (Fig 6). As we have seen in earlier simulations, the magnitude

of the injected current determined whether the neuron responded by settling on physiological

steady-state firing (as in Fig 6A), or responded pathologically by entering depolarization block

(as in Fig 6B). Fig 6C–6K summarizes the selected slow potentials from a number of simula-

tions, where we have varied the stimulus conditions. As before, we decomposed the total slow

potential (dashed curves) into the neuronal (black curves), glial (purple curves), and diffusive

(red curves) �se-contributions.

Each of the panels in Fig 6C–6K summarizes a series of simulations, differing in terms of

stimulus strength. The two different regimes, i.e., physiological versus pathological, are indi-

cated by the curves splitting. The panels within each row differ in terms of where the stimulus

was delivered, i.e., if it was delivered to the soma, the dendrite, or equally distributed over both

compartments. The panels within a column differ in terms of which ion species that carried

the stimulus current, i.e., whether it was a K+ stimulus, a Na+ stimulus, or a Cl− stimulus. We

implemented the injection currents as inward positive currents across the neuronal mem-

brane, affecting the intra- and extracellular ion concentrations in accordance with ion conser-

vation (See Methods for details). The stimulus type and location are indicated above each

panel in Fig 6C–6K.

The first thing that we notice is that, for pathological conditions (the rightmost half of the

separated curves in each panel), the slow potential, and the neuronal, glial, and diffusive con-

tributions to it, were more or less independent of stimulus strength, stimulus location, and

stimulus type, i.e., they were the same in all panels. This indicates that the final pathological

state is an equilibrium determined by the intrinsic dynamics of the system after the neuron

had entered depolarization block, independently of what caused the neuron to enter depolari-

zation block in the first place. In this state, the final slow potential was� −2 mV, and domi-

nated by the diffusion potential� −1.5 mV, followed by the glial �se-contibution� −0.8 mV.

The neuronal �se-contribution was smaller and positive� 0.3 mV, and thus acted to reduce

the final slow potential.

For physiological conditions, we generally found that the slow potential (in the soma layer)

was negative when the stimulus was delivered to the soma (Fig 6C, 6F and 6I), positive when

the stimulus was delivered to the dendrite (Fig 6D, 6G and 6J), and close to (but not identical

to) zero when the stimulus was distributed equally among the compartments (Fig 6E, 6H and

6K). Since the stimulus amounts to a current sink, it was not surprising that it biased the slow

potential towards a negative value when applied to the soma layer and towards a positive value

when applied to the dendrite layer, although the system contained other sources and sinks

beside the stimulus. In all simulations, the absolute magnitude of the slow potential under

physiological activity increased with stimulus strength.

Due to the stimulus bias, the polarity of the physiological slow potential always had the

same polarity as the neuronal �se-contribution when stimulus was applied to only one com-

partment, and in general, the neuronal �se-contribution dominated slightly over the glial and

diffusive �se-contributions. For example, with a Na+ stimulus to the soma (Fig 6F), the diffu-

sive and glial contribution canceled each other out, so that the slow potential was almost iden-

tical to the neural �se-contribution. In comparison, with a K+ stimulus to the soma (Fig 6C),

the diffusive �se-contribution was almost zero, and the slow potential ended up midways
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Fig 6. Effects of neurons, glia, and diffusion on slow potentials under constant current injections. (A) Extracellular potential during

physiological steady-state firing caused by a 90 pA K+ step current injection to the neuronal soma between t = 1 s and t = 60 s.

Simulation ended at t = 60 s. (B) Extracellular potential during pathological conditions evoked by a 130 pA K+ step current to the

neuronal soma between t = 1 s and t = 60 s. The neuron entered depolarization block before the stimuli was turned off. Simulation

ended at t = 600 s. (C)-(K) Extracellular slow potentials (�se;sum) as a function of the stimulus current Istim. �se;sum was split into
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between a positive glial �se-contribution and negative neuronal �se-contribution, where the

latter was of greatest magnitude, so that the final slow potential became negative (� −0.3 mV).

The largest (physiological) slow potential was seen when a Na+ stimulus was delivered to the

dendrite (Fig 6G). In that case, the neuronal, glial, and diffusive �se-contributions were all pos-

itive, adding up to a maximal slow potential of� 1 mV for a strong (but not pathologically

strong) stimulus. Although the neuronal �se-contribution dominated, all the three contribu-

tions tended to be of the same order of magnitude.

To mimic more realistic stimulus conditions, we also stimulated the neuron with input

from AMPA synapses (Fig 7). The synaptic current was composed of Na+, K+, and Ca2+ ions

in biologically realistic ratios (see the Synaptic current section in Methods). The synaptic

input was delivered in terms of a Poissonian spike train, and the input frequency determined

whether the response of the neuron was physiological (Fig 7B) or pathological (Fig 7C). The

slow potentials selected from the two regimes were defined in the same way as for a constant

current injection.

For synaptic stimuli, the pathological slow potentials (Fig 7) were close to identical to those

obtained with constant current injections (Fig 6), which again indicates that the final state was

an intrinsic equilibrium of the edNEG system. For stimuli in the physiological range, the slow

potentials obtained with synaptic current (Fig 7D–7F) resembled those obtained with a con-

stant Na+ stimuli (Fig 6F–6H). This similarity is most likely a consequence of our AMPA cur-

rent being dominated by Na+ ions crossing the membrane (see Methods subsection titled

Synaptic current), so that the AMPA and Na+ stimuli gave rise to chemically similar effects in

the system.

Discussion

We presented the edNEG model for local ion concentration dynamics in a piece of brain tissue

containing a neuronal, extracellular, and glial domain (Fig 2). The edNEG model was con-

structed with the aim to include the main categories of biophysical mechanisms involved in

the generation of extracellular slow potentials. These included (i) a selection of neural and glial

membrane mechanisms, including passive ion channels, ion pumps, and cotransporters in

both cell types and additional active ion channels and synapses on the neuron, (ii) spatial

heterogeneity, i.e., different ion channels in the soma and dendrites of neurons, and thus

somatodendritic neural signaling, (iii) electrodiffusive ion concentration dynamics within all

domains, inducing changes in ionic reversal potentials and diffusive currents evoking diffusion

potentials, and (iv) neuronal and glial swelling due to concentration-dependent osmotic pres-

sure gradients, and the effects that the corresponding volume changes had on local ion concen-

trations. We note that the spatial heterogeneity of the model restricts it to brain regions where

neurons are organized in layers with all neurons having the same spatial orientation (such as,

e.g., hippocampus).

Many previous models have modeled intra- and extracellular ion concentration dynamics,

and have some of the same functionality as the edNEG model [29–32, 39, 58, 59, 67–97]. How-

ever, to our knowledge, the edNEG model is the first tri-domain type of electrodiffusive tissue

contributions from neuronal sinks/sources (�se;n), glial sinks/sources (�se;g), and diffusion (�se;diff ). �se was computed as the mean

potential taken over the last 10 s of the simulations, i.e., from t = 50 s to t = 60 s for physiological cases and from t = 590 s to t = 600 s for

pathological cases. The transition from physiological to pathological conditions corresponds to the curves breaking. The stimulus

current was carried either by K+, Na+, or Cl− ions (different rows), and applied either to the somatic compartment, dendritic

compartment, or both compartments of the neuron (different columns). The stimulus type and location are indicated above each panel.

https://doi.org/10.1371/journal.pcbi.1008143.g006
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Fig 7. Effects of neurons, glia, and diffusion on slow potentials under AMPA stimulus conditions. (A) Somatic

membrane potential of the neuron responding to a 300 Hz Poissonian AMPA spike train delivered to the soma between

t = 1 s and t = 10 s. (B) Extracellular potential (oustide soma) during physiological steady-state firing obtained with a

somatic synaptic input rate of 300 Hz between t = 1 s and t = 60 s. The simulation was ended at t = 60 s. (C) Extracellular

potential (outside soma) during pathological conditions obtained with a synaptic input rate of 700 Hz between t = 1 s and
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model that is spatially explicit in the vertical (soma! dendrite) direction, and therefore the

first framework that can be used to simulate phenomena involving concentration gradients

and slow potential gradients across layers in a self-consistent manner.

The main predictions of the edNEG model (Figs 6 and 7) were the following. Firstly, the

�se-contributions from neurons, glia cells, and diffusion were of comparable magnitude, so

that neither of them, as a generality, can be neglected. Secondly, for physiological neural firing,

the slow potential was dominated by the neuronal activity, was biased to be negative at the

location where the neuron received its stimulus (since the stimulus was a current-sink from

the ECS and into the neuron), and increased with stimulus strength. Thirdly, for pathological

conditions with the neuron entering depolarization block, the slow potential was eventually

dominated by the intrinsic dynamics of the system. In this scenario, the slow potential was

dominated by diffusion and glial buffering currents.

The predictions made with the edNEG model are bound to depend on a set of model

choices, some of which were quite arbitrary. The general insights gained from the slow poten-

tial predictions are therefore at best qualitative: neurons, glia cells, and diffusion give compara-

ble contributions to slow potentials, and their relative roles in generating them depend on

stimulus conditions.

For the purpose of further discussion, we can divide the modeling choices into two classes.

The first class concerns the choice of membrane mechanisms included in the cell models. In

the edNEG model, we adopted a set of membrane mechanisms from previous models and did

not perform any tuning in order to match the models to data obtained from a specific biologi-

cal system. The choice of membrane mechanisms was somewhat arbitrary, and had we chosen

another set of membrane mechanisms, we would likely arrive at somewhat different conclu-

sions. As such, we believe that the edNEG model is valuable, not predominantly as “a final

model”, but rather through representing a framework for exploring how various ion channels

in neuronal and glial membranes will affect slow potentials, both directly, through their contri-

butions as current sinks or sources, or indirectly, through the concentration changes they may

induce in the ECS. By modifying or exchanging the membrane mechanisms, the edNEG

framework could, in principle, be re-tuned to represent other cell types (for frameworks for

model-tuning, see, e.g., [98–100]), including other types of ion channels. Many ion channels,

such as non-specific hyperpolarization-activated cation channels (Ih) and A-type K+ channels

(IA) often have gradient distributions in neural dendrites [101], and to explore effects of this, it

might be necessary to expand the edNEG model by including additional compartments for

each of the domains. Such an expansion would require a re-writing of the model code (see the

Numerical implementation section in Methods for source code), but would not require any

fundamental changes of the conceptual framework that it was based upon, and should there-

fore not be too challenging for a user with training in programming.

The second class of modeling choices concerns the geometrical specifications of the system.

Several electrodiffusive models have been developed for systems with explicit geometries (see

e.g., [32, 102–108]. These models have the advantages that they are conceptually easy to inter-

pret, i.e., the various compartments (often finite elements) exist side by side in a spatially

t = 60 s. The neuron entered depolarization block before the stimuli was turned off. Simulation was ended at t = 600 s. (D)-

(F) Extracellular slow potentials (�e;sum) as a function of synaptic input rate. �se;sum was split into contributions from

neuronal sinks/sources (�se;n), glial sinks/sources (�e;g), and diffusion (�se;diff ). �se was computed as the mean potential

taken over the last 10 s of the simulations, i.e., from t = 50 s to t = 60 s for physiological cases and from t = 590 s to t = 600 s

for pathological cases. The transition from physiological to pathological conditions corresponds to the curves breaking.

Synapses where located in (D) the somatic compartment, (E) dendritic compartment, or (F) both compartments of the

neuron.

https://doi.org/10.1371/journal.pcbi.1008143.g007
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explicit meaning. However, they have the disadvantage that they are very computationally

demanding, and applications have so far been limited to processes taking place on rather small

spatial and temporal scales. When making a leap in spatial scale, as we did when constructing

the edNEG model, we had to struggle with the question of how one best capture desired prop-

erties of neurons, ECS, and glia cells within an abstract tri-domain framework. This is a far

from trivial problem. Domain-type models are inspired by the bi-domain model [109], which

has been used to describe cardiac tissue as a bi-phasic continuum consisting of an intracellular

and extracellular domain [110, 111]. Similar, tri-domain models (including neurons, ECS, and

glia cells) have been used to simulate brain tissue [37–39]. Domain-type models are coarse-

grained, meaning that a set of intra- and extracellular variables (e.g., voltages and ion concen-

trations), and exchanges between the intra- and extracellular domains, are defined at each

point in space. In this context, a “point in space” refers to a spatial average taken over a volume

that is big enough to span all domains. Previous tri-domain models of brain tissue [37–39]

have been spatially explicit in the lateral direction, e.g., they have modeled spatial variations

along the cortical surface, but not in the vertical direction, e.g., all variables are averages taken

over all cortical layers. In those models, there was no over-distance intracellular coupling

within the neural domain, since the intracellular domain of neurons does not form a continu-

ous space at the tissue level. Differing from this, the edNEG model is spatially explicit in the

vertical direction, and thus had to include such an intracellular, spatial coupling inside the

neuronal domain, capturing the somatodendritic signaling. It is, however, not immediately

evident what this coupling should be, since one in a domain-representation should not inter-

pret the two layers explicitly as two pieces of the same, single neuron, but rather the average

somatic activity and dendritic activity in a local region of tissue. In the edNEG model, we nev-

ertheless defined this coupling in a manner giving a somatodendritic coupling similar to that

of the single-cell Pinsky-Rinzel model. This might result in an over-estimate of the coupling,

except in the hypothetical scenario discussed earlier, where all neurons in the tissue fire in per-

fect synchrony.

Generally, reducing the morphological complexity of a cell to a small number of compart-

ments is not straightforward, and requires that compromises are made regarding what proper-

ties should be preserved under the reduction. This can be challenging even in the comparably

simple case when one only models the intracellular electric dynamics of the cell [112], but

more so when the model also includes the ion concentration dynamics and the extracellular

environment. The impact of a transmembrane current on the membrane potential is inversely

proportional to the membrane surface area of the compartment, while its impact on the intra-

cellular ion concentration dynamics is inversely proportional to the compartment volume,

meaning that various variables will scale differently with choices of geometrical parameters. In

the edNEG model, we preserved the experimentally reported volume fractions of neuronal,

extracellular, and glial domains. Apart from that, we did not attempt to base geometrical

parameters for volumes, membrane surface areas, or cross-section areas for intra-domain

flows directly on experimental measures. Instead, we treated these as somewhat free parame-

ters, and specified them to values that gave reasonable dynamics for ion concentrations and

potentials in the various compartments (see Methods), and preserved the firing patterns of the

original Pinsky-Rinzel model [33, 43].

Finally, as we have argued earlier, the sealed boundary conditions used in the edNEG simu-

lations were equivalent to having periodic boundary conditions, and we thus simulated the

hypothetical scenario of a tissue region consisting of identical and synchronized cells. We

chose to use this scenario because it has a clear interpretation, and as we argued, it makes

sense to assume such synchrony when studying slower signals such as slow potentials. An

alternative and equally simple setup would be to use open boundaries, for example allowing
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the extracellular domain to be coupled with a constant bath-solution. Such a setup was not

tested in the current implementation of the edNEG model, but could perhaps be valuable if

one wished to mimic conditions with localized input to a neuron in an otherwise silenced

region, and could putatively be used to model various slice experiments.

Methods

The Kirchoff-Nernst-Planck (KNP) framework for a three-times-two

compartment model

We previously developed the electrodiffusive Pinsky-Rinzel model for a closed-boundary sys-

tem containing 2 × 2 compartments, representing a soma, a dendrite, and extracellular space

(ECS) outside the soma and dendrite [33]. The edNEG model expands the previous model

by including an additional, glial domain, and accounting for osmotically induced volume

changes. The three domains (neuron + ECS + glia) all consisted of two compartments, repre-

senting the soma layer and the dendrite layer. Within each layer, the neuron and glial domain

interacted with the ECS through transmembrane currents (Fig 2). Volume changes were due

to osmotic pressure gradients computed as functions of the ionic concentrations (see section

titled Volume dynamics). Geometrical parameters, including initial volumes, are listed in

Table 1. Dynamics of ion concentrations and electric potentials in all compartments were

computed using the KNP framework [15, 32, 33, 47, 95].

Electrodiffusion. Two kinds of fluxes transport ions in the system: transmembrane fluxes

and axial fluxes. The axial fluxes are driven by electrodiffusion, described by the Nernst-Planck

equation so that the intracellular flux density of the neuron for ion species k is expressed as:

jk;in ¼ �
Dk

l
2

i

gkð½k�dn � ½k�snÞ
Dx

�
DkzkF
l

2

i RT
½k�n

�dn � �sn

Dx
: ð1Þ

In Eq 1, Dk is the diffusion constant, γk (= 1 for all ions except Ca2+) is the fraction of mobile

ions of species k, that is, ions that are not buffered or taken up by the endoplasmatic reticu-

lum, λi is the tortuosity, which represents hindrances in free diffusion due to obstacles,

γk([k]dn − [k]sn)/Δx is the longitudinal concentration gradient, zk is the charge number of ion

species k, F is the Faraday constant, R is the gas constant, T is the absolute temperature, ½k�n
is the average intra-domain concentration, that is, γk([k]dn + [k]sn)/2, and (ϕdn − ϕsn)/Δx is

Table 1. Geometrical parameters.

Parameter Value Reference

Δx (distance between the two layers) 667 � 10−6 m [33]

α (intracellular coupling strength) 2 [33]

Am (membrane area of each cellular compartment) 616 � 10−12 m2 [33]

Ai (intracellular cross-section areas) α � Am [33]

Ae (extracellular cross-section area) 308 � 10−13 m2

Vsn,0, Vdn,0 (initial neuronal volumes) 1437 � 10−18 m3 [33]

Vse,0, Vde,0 (initial extracellular volumes) 718.5 � 10−18 m3 [33]

Vsg,0, Vdg,0 (initial glial volumes) 1437 � 10−18 m3

We assumed a region thickness of 1.3 μm and consequently a Δx that was half of this. The cellular compartment

volumes and membrane areas correspond to spheres with radius 7 μm. The initial neuronal/extracellular/glial

volume fractions were 0.4/0.2/0.4 [45].

https://doi.org/10.1371/journal.pcbi.1008143.t001
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the intra-domain potential gradient. Likewise, the extracellular flux densities and the glial

intracellular flux densities are described, respectively, by

jk;e ¼ �
Dk

l
2

e

½k�de � ½k�se
Dx

�
DkzkF
l

2

eRT
½k�e

�de � �se

Dx
; ð2Þ

jk;ig ¼ �
Dk

l
2

i

½k�dg � ½k�sg
Dx

�
DkzkF
l

2

i RT
½k�g

�dg � �sg

Dx
: ð3Þ

All simulated ion species are mobile in the extracellular and glial space, thus, γk is not

included in Eqs 2 and 3. Diffusion constants, tortuosities, and intracellular fractions of mobile

ions are listed in Table 2.

Ion conservation. To keep track of all ions in the system, we solve six differential equa-

tions for each ion species k. Conservation of ions gives:

dNk;sn

dt
¼ � jk;msnAm � jk;inAi; ð4Þ

dNk;se

dt
¼ þjk;msnAm � jk;eAe þ jk;msgAm; ð5Þ

dNk;sg

dt
¼ � jk;msgAm � jk;igAi; ð6Þ

dNk;dn

dt
¼ � jk;mdnAm þ jk;inAi; ð7Þ

dNk;de

dt
¼ þjk;mdnAm þ jk;eAe þ jk;mdgAm; ð8Þ

dNk;dg

dt
¼ � jk;mdgAm þ jk;igAi; ð9Þ

where Nk is the amount of substance, in units of mol. To find the change in Nk, all ion flux den-

sities are multiplied by the area they go through. The variable jk,m represents the sum of all

membrane flux densities of ion species k, and jk,in, jk,e, and jk,ig represent the axial flux densi-

ties. To find the ion concentrations [k], we divide the amounts of substance in a compartment

Table 2. Diffusion constants, tortuosities, and intraneuronal fractions of mobile ions†.

Parameter Value Reference

DNa (Na+ diffusion constant) 1.33 � 10−9 m2/s [15]

DK (K+ diffusion constant) 1.96 � 10−9 m2/s [15]

DCl (Cl− diffusion constant) 2.03 � 10−9 m2/s [15]

DCa (Ca2+ diffusion constant) 0.71 � 10−9 m2/s [15]

λi (intracellular tortuosity) 3.2 [47]

λe (extracellular tortuosity) 1.6 [47]

γNa, γK, γCl (intraneuronal fractions of mobile ions) 1 [33]

γCa (intraneuronal fraction of mobile ions) 0.01 [33]

† The table is adopted from [33].

https://doi.org/10.1371/journal.pcbi.1008143.t002
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by the compartment volume at the beginning of each time step:

½k�sn ¼
Nk;sn

Vsn
; ð10Þ

½k�se ¼
Nk;se

Vse
; ð11Þ

½k�sg ¼
Nk;sg

Vsg
; ð12Þ

½k�dn ¼
Nk;dn

Vdn
; ð13Þ

½k�de ¼
Nk;de

Vde
; ð14Þ

½k�dg ¼
Nk;dg

Vdg
: ð15Þ

We insert the Nernst-Planck equation for the axial flux density (Eq 1) into Eq 4 and get:

dNk;sn

dt
¼ � jk;msnAm þ

AiDk

l
2

iDx
gkð½k�dn � ½k�snÞ þ

zkF
RT
½k�nð�dn � �snÞ

� �

: ð16Þ

In Eq 16, [k]dn and [k]sn are the intraneuronal ion concentrations of the dendrite and soma,

defined in Eqs 13 and 10, respectively. We define the voltage variables ϕdn and ϕsn below.

Six constraints to derive ϕ. If we have four ion species (Na+, K+, Cl−, and Ca2+) in six

compartments, we get 24 equations to solve (Eqs 4–9 times four) and 30 unknowns (N and ϕ).

We overcome this by defining ϕ in terms of ion concentrations using a set of constraints simi-

lar to those used in [33].

1. Arbitrary reference point for ϕ. The first constraint is simple; we can choose an arbitrary ref-

erence point for ϕ. We define it to be in the ECS of the dendrite layer, which gives us:

�de ¼ 0: ð17Þ

2. Neuronal membrane is a capacitor (dendrite). As the second constraint, we use that the

membrane is a capacitor. This means that it will always separate a charge Q on one side

from an opposite charge −Q on the other side. This gives rise to a voltage difference across

the membrane

�mdn ¼ Q=Cm; ð18Þ

where Cm is the total capacitance of the membrane, i.e., Cm = cm Am, where cm is the capaci-

tance per membrane area. We know, by definition, that ϕmdn = ϕdn − ϕde, and since ϕde = 0,

we get:

�mdn ¼ �dn ¼
Qdn

Cm
: ð19Þ

We assume bulk electroneutrality, meaning that all net charges in the dendritic
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compartment must be on the membrane. It follows that Qdn ¼ F
X

k

zk½k�dnVdn, where F is

the Faraday constant, zk is the charge number of ion species k, [k]dn is the ion concentra-

tion, and Vdn is the volume. By inserting this into Eq 19, we get

�dn ¼ ðF
X

k

zk½k�dnVdnÞ=ðcmAmÞ: ð20Þ

3. Neuronal membrane is a capacitor (soma). The second constraint also applies to the soma,

and gives us the criterion:

�sn � �se ¼
Qsn

Cm
¼ ðF

X

k

zk½k�snVsnÞ=ðcmAmÞ: ð21Þ

Here, the outside potential is not set to zero, so this constraint is not sufficient to determine

ϕsn and ϕse separately.

4. Glial membrane is a capacitor (dendrite layer). The glial membrane is no different than the

neuronal membrane when it comes to acting as a capacitor, so we get:

�dg ¼
Qdg

Cm
¼ ðF

X

k

zk½k�dgVdgÞ=ðcmAmÞ; ð22Þ

where we have used that ϕde = 0.

5. Glial membrane is a capacitor (soma layer). Constraint number (4) also applies to the soma

layer, and gives us:

�sg � �se ¼
Qsg

Cm
¼ ðF

X

k

zk½k�sgVsgÞ=ðcmAmÞ: ð23Þ

We can now calculate ϕdn and ϕdg from Eqs 20 and 22 but to determine ϕsn, ϕse, and ϕsg, we

need a sixth constraint.

6. Current anti-symmetry. The sixth constraint is charge (anti-)symmetry. We must define the

initial conditions so that the membrane separates a charge Q on one side from an opposite

charge −Q on the other side, and the system dynamics so that it stays this way. The mem-

brane fluxes (alone) fulfill this criterion, since a charge that leaves a compartment automati-

cally pops up on the other side of the membrane, making sure that dQi/dt = −dQe/dt. For

the axial fluxes to fulfill the criterion, we must have that:

Aiiin þ Aiiig ¼ � Aeie; ð24Þ

where i stands for current density. We find expressions for iin, iig, and ie, by multiplying Eqs

1–3 by Fzk and sum over all ion species k. Expressions for the current densities then become:

iin ¼ �
F

l
2

iDx

X

k

Dkzkgkð½k�dn � ½k�snÞ �
F2

RTl2

iDx

X

k

Dkz
2

k½k�nð�dn � �snÞ; ð25Þ

iig ¼ �
F

l
2

iDx

X

k

Dkzkð½k�dg � ½k�sgÞ �
F2

RTl2

iDx

X

k

Dkz
2

k½k�gð�dg � �sgÞ; ð26Þ

ie ¼ �
F

l
2

eDx

X

k

Dkzkð½k�de � ½k�seÞ �
F2

RTl2

eDx

X

k

Dkz
2

k½k�eð�de � �seÞ: ð27Þ

The first term in Eq 25 is the diffusion current density and is defined by the ion
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concentrations:

idiff;in ¼ �
F

l
2

iDx

X

k

Dkzkgkð½k�dn � ½k�snÞ: ð28Þ

The second term is the field driven current density

ifield;in ¼ � sn
ð�dn � �snÞ

Dx
; ð29Þ

where σn is the conductivity:

sn ¼
F2

RTl2

i

X

k

Dkz
2

k½k�n: ð30Þ

Likewise, Eq 26 can be written in terms of idiff,ig, ifield,ig, and σg, and Eq 27 in terms of idiff,e,

ifield,e, and σe. We combine Eqs 24–27 and obtain:

� Aiidiff ;in þ Aisn
ð�dn � �snÞ

Dx
� Aiidiff ;ig þ Aisg

ð�dg � �sgÞ

Dx
¼

Aeidiff ;e � Aese
ð�de � �seÞ

Dx
:

ð31Þ

In Eq 31, we know ϕdn, ϕde, and ϕdg from Eqs 20, 17, and 22, and idiff and σ from the ion con-

centrations. We solve Eqs 21, 23, and 31 to find ϕsn, ϕsg, and ϕse:

�se ¼ ð� DxAiidiff;in þ Aisn�dn � Aisn
Qsn

cmAm
� DxAiidiff ;ig ð32Þ

þAisg�dg � Aisg

Qsg

cmAm
� DxAeidiff;eÞ ð33Þ

=ðAese þ Aisn þ AisgÞ; ð34Þ

�sn ¼
Qsn

cmAm
þ �se; ð35Þ

�sg ¼
Qsg

cmAm
þ �se: ð36Þ

Neuronal membrane mechanisms

The neuronal membrane mechanisms were the same as in [33], where the active ion channels

were taken from the Pinsky-Rinzel model [43], leak currents, ion pumps, and cotransporters

were modeled as in [59], and a 2Na+/Ca2+ exchanger was added to partly mimic the Ca2+

decay in [43]. We list the mechanisms again here for easy reference.
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Leakage channels

Both neuronal compartments contained Na+, K+, and Cl− leak currents. The flux densities

were modeled as follows:

jk;leak ¼ g k;leakð�m � EkÞ=ðFzkÞ; ð37Þ

where k denotes the ion species, g k;leak is the ion conductance, ϕm is the membrane potential,

Ek is the reversal potential, F is the Faraday constant, and zk is the charge number. Reversal

potentials are given by the Nernst equation:

Ek ¼
RT
zkF

ln
½k�e
gk½k�i

; ð38Þ

where R is the gas constant, T is the absolute temperature, γk is the intracellular fraction of

freely moving ions, and [k]e and [k]i are the extra- and intracellular concentrations of ion spe-

cies k, respectively.

Active ion channels

The active ion channels included Na+ and K+ delayed rectifier fluxes in the soma (jNa, jDR),

and a voltage-dependent Ca2+ flux (jCa), a voltage-dependent K+ afterhyperpolarization flux

(jAHP), and a Ca2+-dependent K+ flux (jC) in the dendrite:

jNa ¼ gNað�msn � ENa;snÞ=ðFzNaÞ; ð39Þ

jDR ¼ gDRð�msn � EK;snÞ=ðFzKÞ; ð40Þ

jCa ¼ gCað�mdn � ECa;dnÞ=ðFzCaÞ; ð41Þ

jAHP ¼ gAHPð�mdn � EK;dnÞ=ðFzKÞ; ð42Þ

jC ¼ gCð�mdn � EK;dnÞ=ðFzKÞ: ð43Þ

Here, gNa, gDR, gCa, gAHP, and gC are ion conductances, ϕmsn and ϕmdn are the somatic and den-

dritic membrane potentials, respectively, ENa,sn, EK,sn, ECa,dn, and EK,dn are reversal potentials,

F is the Faraday constant, and zNa, zK, and zCa are charge numbers. We used the Hodkin-

Huxley formalism to model the voltage-dependent conductances, with differential equations

for the gating variables:

dx
dt
¼ axð1 � xÞ � bxx; with x 2 fm; h; n; s; c; qg; ð44Þ

dz
dt
¼

z1 � z
tz

; ð45Þ
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and

gNa ¼ gNam2
1

h; ð46Þ

gDR ¼ gDRn; ð47Þ

gCa ¼ gCas2z; ð48Þ

gC ¼ gCcwð½Caþ2�dnÞ; ð49Þ

gAHP ¼ gAHPq; ð50Þ

am ¼ �
3:2 � 105 � �1

exp ð� �1=0:004Þ � 1
; with �1 ¼ �msn þ 0:0469 ð51Þ

bm ¼
2:8 � 105 � �2

exp ð�2=0:005Þ � 1
; with �2 ¼ �msn þ 0:0199 ð52Þ

m1 ¼
am

am þ bm
ð53Þ

ah ¼ 128 exp
� 0:043 � �msn

0:018
; ð54Þ

bh ¼
4000

1þ exp ð� �3=0:005Þ
; with �3 ¼ �msn þ 0:02 ð55Þ

an ¼ �
1:6 � 104 � �4

exp ð� �4=0:005Þ � 1
; with �4 ¼ �msn þ 0:0249 ð56Þ

bn ¼ 250 exp ð� �5=0:04Þ; with �5 ¼ �msn þ 0:04 ð57Þ

as ¼
1600

1þ exp ð� 72ð�mdn � 0:005ÞÞ
; ð58Þ

bs ¼
2 � 104 � �6

exp ð�6=0:005Þ � 1
; with �6 ¼ �mdn þ 0:0089 ð59Þ

z1 ¼
1

1þ exp ð�7=0:001Þ
; with �7 ¼ �mdn þ 0:03 ð60Þ

tz ¼ 1; ð61Þ

ac ¼

(
52:7 exp �8

0:011
�

�9

0:027

� �
; if �mdn � � 0:01 V

2000 exp ð� �9=0:027Þ; otherwise
ð62Þ
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with �8 ¼ �mdn þ 0:05 and �9 ¼ �mdn þ 0:0535 ð63Þ

bc ¼

(
2000 exp ð� �9=0:027Þ � ac; if �mdn � � 0:01 V

0; otherwise
ð64Þ

w ¼ minð
gCa½Ca

þ2�dn � 99:8 � 10� 6

2:5 � 10� 4
; 1Þ; ð65Þ

aq ¼ minð2 � 104ðgCa½Ca
þ2�dn � 99:8 � 10� 6Þ; 10Þ; ð66Þ

bq ¼ 1: ð67Þ

In Eqs 44–67, rates (α’s, β’s) are in units of 1/s, τz is in units of s, and voltages ϕ are in units

of V.

Stabilizing mechanisms

Both neuronal compartments contained a 3Na+/2K+ pump, a K+/Cl− cotransporter (KCC2), a

Na+/K+/2Cl− cotransporter (NKCC1), and a 2Na+/Ca2+ exchanger:

jpump;n ¼
rn

1:0þ exp ðð25 � ½Naþ�nÞ=3Þ
�

1:0

1:0þ exp ð3:5 � ½Kþ�eÞ
; ð68Þ

jkcc2 ¼ Ukcc2 ln
½Kþ�n½Cl

�
�n

½Kþ�e½Cl
�
�e

� �

; ð69Þ

jnkcc1 ¼ Unkcc1f ð½K
þ�eÞ ln

½Kþ�n½Cl
�
�n

½Kþ�e½Cl
�
�e

� �

þ ln
½Naþ�n½Cl

�
�n

½Naþ�e½Cl
�
�e

� �� �

; ð70Þ

f ð½Kþ�eÞ ¼
1

1þ exp ð16 � ½Kþ�eÞ
; ð71Þ

jCa� dec ¼ UCa� dec � ð½Ca
þ2�n � ½Ca

þ2�n;bÞ �
Vn

Am
: ð72Þ

Here, n denotes the neuronal compartment, e denotes the extracellular compartment, ρn,

Ukcc2, and Unkcc1 are pump and cotransporter strengths, UCa−dec is the Ca2+ decay rate, and

[Ca+2]n,b is the basal Ca2+ concentration.

Glial membrane mechanisms

The glial membrane mechanisms were taken from a previously published astrocyte model

[47]. They included Na+ and Cl− leak channels, modeled as in Eq 37, an inward rectifying K+

channel, and a 3Na+/2K+ pump:

jK� IR ¼ gK� IRfK� IRð�mg � EK;gÞ=ðFzKÞ; ð73Þ
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fK� IR ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
½Kþ�e
½Kþ�e;b

s
1þ exp ð18:4=42:4Þ

1þ exp ððD� � 1000þ 18:5Þ=42:5Þ

� �

�
1þ exp ð� ð118:6þ EK;b � 1000Þ=44:1Þ

1þ exp ð� ð118:6þ �mg � 1000Þ=44:1Þ

 ! ð74Þ

jpump;g ¼ rg

½Naþ�1:5g

½Naþ�1:5g þ ½Na
þ�

1:5

g;threshold

½Kþ�e
½Kþ�e þ ½K

þ�e;threshold
: ð75Þ

Here, g denotes the glial compartment, e denotes the extracellular compartment, gK� IR is the

K+ ion conductance, ϕmg is the membrane potential, EK,g is the K+ reversal potential, F is the

Faraday constant, zK is the K+ charge number, [K+]e,b is the basal K+ concentration in the

extracellular space, Δϕ = ϕmg − EK, EK,b is the reversal potential for K+ at basal concentrations,

ρg is the pump strength, and [Na+]g,threshold and [K+]e,threshold are the pump’s threshold concen-

trations for Na+ and K+, respectively. We included the same set of membrane mechanisms in

both glial compartments.

Volume dynamics

To calculate the osmotically induced volume changes dV/dt, we used the formalism outlined

in [51]. The water flow Q across the membrane is given by

Q ¼ GDC; ð76Þ

where G is the water permeability, given in units of m3/Pa/s, and ΔC is the pressure difference

between the inside (i) and the outside (e) of the cell,Ci −Ce, given in units of Pa. We assumed

the hydrostatic pressure differences to be zero, so that water flow was driven by osmotic pres-

sure differences only, and we calculated the solute potentials from:

C ¼ � iMRT: ð77Þ

Here, i is the ionization factor (van’t Hoff factor), which is 1 for ions, M is the osmotic concen-

tration of solutes measured in moles per cubic meter, R is the gas constant, and T is the abso-

lute temperature. If we combine Eqs 76 and 77 and notice that Q = −dVi/dt, where Vi is the

intracellular volume, the osmotically induced volume changes are given by the following dif-

ferential equations:

dVsn

dt
¼ � GnRT

Ntot;se

Vse
�

Ntot;sn

Vsn

� �

; ð78Þ

dVsg

dt
¼ � GgRT

Ntot;se

Vse
�

Ntot;sg

Vsg

 !

; ð79Þ

dVdn

dt
¼ � GnRT

Ntot;de

Vde
�

Ntot;dn

Vdn

� �

; ð80Þ

dVdg

dt
¼ � GgRT

Ntot;de

Vde
�

Ntot;dg

Vdg

 !

; ð81Þ
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dVse

dt
¼ �

dVsn

dt
þ

dVsg

dt

� �

; ð82Þ

dVde

dt
¼ �

dVdn

dt
þ

dVdg

dt

� �

; ð83Þ

where Ntot is the total amount of ions in a compartment, given in moles. Eqs 82 and 83 follow

from the assumption that the total volume did not change, that is, the system was closed.

We only considered effects of transmembrane water flow, and intra-domain water flow due

to hydrostatic pressures were neglected. The assumption is applied in several previous multi-

compartment models, e.g. [37, 39, 83], but as Mori et al. [37] point out, intra-domain water

flow in brain tissue is not fully understood and may play an important role in brain function.

It is an ongoing area of computational research, see, e.g. [113–115], and the edNEG model

may contribute to this work if the framework gets extended.

Model summary

To keep track of all ions in the system, we solved six differential equations for each ion species k:

dNk;sn

dt
¼ � jk;msnAm � jk;inAi; ð84Þ

dNk;se

dt
¼ þjk;msnAm � jk;eAe þ jk;msgAm; ð85Þ

dNk;sg

dt
¼ � jk;msgAm � jk;igAi; ð86Þ

dNk;dn

dt
¼ � jk;mdnAm þ jk;inAi; ð87Þ

dNk;de

dt
¼ þjk;mdnAm þ jk;eAe þ jk;mdgAm; ð88Þ

dNk;dg

dt
¼ � jk;mdgAm þ jk;igAi: ð89Þ

The total membrane flux densities are summarized here:

jNa;msn ¼ jNa þ jNa;leak;n þ 3jpump;n þ jnkcc1 � 2jCa� dec; ð90Þ

jK;msn ¼ jDR þ jK;leak;n � 2jpump;n þ jnkcc1 þ jkcc2; ð91Þ

jCl;msn ¼ jCl;leak;n þ 2jnkcc1 þ jkcc2; ð92Þ

jCa;msn ¼ jCa� dec; ð93Þ

jNa;mdn ¼ jNa;leak;n þ 3jpump;n þ jnkcc1 � 2jCa� dec; ð94Þ
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jK;mdn ¼ jAHP þ jC þ jK;leak;n � 2jpump;n þ jnkcc1 þ jkcc2; ð95Þ

jCl;mdn ¼ jCl;leak;n þ 2jnkcc1 þ jkcc2; ð96Þ

jCa;mdn ¼ jCa þ jCa� dec; ð97Þ

jNa;msg ¼ jNa;leak;g þ 3jpump;g; ð98Þ

jK;msg ¼ jK� IR � 2jpump;g; ð99Þ

jCl;msg ¼ jCl;leak;g; ð100Þ

jNa;mdg ¼ jNa;leak;g þ 3jpump;g; ð101Þ

jK;mdg ¼ jK� IR � 2jpump;g; ð102Þ

jCl;mdg ¼ jCl;leak;g: ð103Þ

At each time step, we derived ϕ algebraically in all six compartments:

�de ¼ 0; ð104Þ

�dn ¼ ðF
X

k

zk½k�dnVdnÞ=ðcmAmÞ; ð105Þ

�dg ¼ ðF
X

k

zk½k�dgVdgÞ=ðcmAmÞ; ð106Þ

�se ¼ ð� DxAiidiff;in þ Aisn�dn � Aisn
Qsn

cmAsn
� DxAiidiff;ig ð107Þ

þAisg�dg � Aisg

Qsg

cmAm
� DxAeidiff;eÞ ð108Þ

=ðAese þ Aisn þ AisgÞ; ð109Þ

�sn ¼
Qsn

cmAm
þ �se; ð110Þ

�sg ¼
Qsg

cmAm
þ �se: ð111Þ

PLOS COMPUTATIONAL BIOLOGY Electrodiffusive neuron-extracellular-glia model for slow potentials in the brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008143 July 16, 2021 31 / 45

https://doi.org/10.1371/journal.pcbi.1008143


Membrane potentials were defined as:

�msn ¼ �sn � �se; ð112Þ

�mdn ¼ �dn; ð113Þ

�msg ¼ �sg � �se; ð114Þ

�mdg ¼ �dg: ð115Þ

Volume dynamics was given by:

dVsn

dt
¼ � GnRT

Ntot;se

Vse
�

Ntot;sn

Vsn

� �

; ð116Þ

dVsg

dt
¼ � GgRT

Ntot;se

Vse
�

Ntot;sg

Vsg

 !

; ð117Þ

dVdn

dt
¼ � GnRT

Ntot;de

Vde
�

Ntot;dn

Vdn

� �

; ð118Þ

dVdg

dt
¼ � GgRT

Ntot;de

Vde
�

Ntot;dg

Vdg

 !

; ð119Þ

dVse

dt
¼ �

dVsn

dt
þ

dVsg

dt

� �

; ð120Þ

dVde

dt
¼ �

dVdn

dt
þ

dVdg

dt

� �

: ð121Þ

Fig 2 summarizes the model and model parameters are listed in Tables 1–5.

Simulations

Model tuning

The edNEG model combines two previous models, one consisting of a neuron and ECS [33],

and the other of a glial domain (astrocyte) and ECS [47]. When we combined the models, we

set the initial concentrations in the glial domain to the same values as in [47]. In the ECS, we

set the initial Na+, K+, and Cl− concentrations to the same values as in [47], and the initial Ca2+

Table 3. Temperature and physical constants†.

Parameter Value Reference

T (absolute temperature) 309.14K [33]

F (Faraday constant) 9.648 � 104 C/mol

R (gas constant) 8.314 J/(mol K)

† This table is adopted from [33].

https://doi.org/10.1371/journal.pcbi.1008143.t003
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Table 4. Membrane parameters.

Parameter Value Reference

cm 3 � 10−2 F/m2 [33]

gNa;leak;n 0.246 S/m2 Eq 123

gK;leak;n 0.245 S/m2 Eq 123

gCl;leak;n 1 S/m2 [33]

gNa 300 S/m2 [33]

gDR 150 S/m2 [33]

gCa 118 S/m2 [33]

gAHP 8 S/m2 [33]

gC 150 S/m2 [33]

ρn 1.87 � 10−6 mol/(m2s) [33]

Ukcc2 1.49 � 10−7 mol/(m2s) Eq 124

Unkcc1 2.33 � 10−7 mol/(m2s) [33]

UCa−dec 75 s−1 [33]

gNa;leak;g 1 S/m2 [47]

gCl;leak;g 0.5 S/m2 [47]

gK� IR 16.96 S/m2 [47]

ρg 1.12 � 10−6 mol/(m2s) [47]

[Na+]g,threshold 10 mM [47]

[K+]e,threshold 1.5 mM [47]

Gn 2 � 10−23 m3/Pa/s [116]

Gg 5 � 10−23 m3/Pa/s [50]

https://doi.org/10.1371/journal.pcbi.1008143.t004

Table 5. Initial conditions.

Variables Pre-calibrated Post-calibrated1 Reference

ϕmn,0
† −67.7 mV −66.9 mV [33]

ϕmg,0
† −83.6 mV −83.9 mV [47]

[Na+]n,0 16.9 mM 18.7 mM [33]

[Na+]e,0 144.622 mM 142.3 mM [47]

[Na+]g,0 15.189 mM 14.5 mM [47]

[K+]n,0 139.5 mM 138.1 mM [33]

[K+]e,0 3.082 mM 3.5 mM [47]

[K+]g,0 99.959 mM 101.2 mM [47]

[Cl−]n,0 6.7412 mM 7.1 mM Eq 122

[Cl−]e,0 133.71 mM 131.9 mM [47]

[Cl−]g,0 5.145 mM 5.7 mM [47]

[Ca2+]n,0 0.01 mM� 0.01 mM� [33]

[Ca2+]e,0 1.1 mM 1.1 mM [33]

n0 0.0003 0.0003 [33]

h0 0.999 0.9993 [33]

s0 0.007 0.0077 [33]

c0 0.005 0.0057 [33]

q0 0.011 0.0117 [33]

z0 1.0 1.0 [33]

1 Values with more decimals included were read to/from file and used in the simulations. (Available at https://github.com/CINPLA/edNEGmodel_analysis.)
† ϕm is not an independent state variable, but defined at each time point from the ion concentrations.

� Only 1% of the total intracellular Ca2+, that is, a 100 nM, was assumed to be free (unbuffered).

https://doi.org/10.1371/journal.pcbi.1008143.t005
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concentration to the same value as in [33]. In the neuron, we set the initial Na+, K+, and Ca2+

concentrations to be the same as in [33]. If we used the same Cl− concentration as in [33], we

obtained an unrealistically low reversal potential for Cl−. Therefore, we computed a new value

for the intraneuronal Cl− concentration by requiring the initial reversal potential for Cl− to be

the same as in [33], i.e., we solved:

RT
zClF

ln
½Cl� �e;new
gCl½Cl

�
�n;new

¼
RT
zClF

ln
½Cl� �e;old
gCl½Cl

�
�n;old

; ð122Þ

where [Cl−]n,old [Cl−]e,old are the intra- and extraneuronal Cl− concentrations at steady state in

[33], [Cl−]e,new is the ECS Cl− concentration adopted from [47] (Table 5), and [Cl−]n,new is the

new intraneuronal Cl− concentration computed for the edNEG model (Table 5).

As the initial ion concentrations (Table 5) differed from the initial ECS- and intraneuronal

Cl− concentrations in the previous neuron model [33], the neuron was not in equilibrium with

the (new) environment. This was because the altered ion concentrations gave rise to altered

concentration-dependent activity of the ion pumps, cotransporters, and ionic currents

through Na+ and K+ channels. We found that a re-tuning of the Na+ and K+ leak conductances

(gNa;leak;n and gK;leak;n) and K+/Cl− cotransporter strength (Ukcc2) in the neuron model was suffi-

cient to obtain a system with a plausible resting state. Tuning the leak conductances was done

by requiring that the initial leakage currents should be identical to those in [33], i.e., we set:

g k;newð�m � Ek;newÞ ¼ g k;oldð�m � Ek;oldÞ; ð123Þ

with ϕm being the resting potential in [33] (−67.7 mV), Ek,old being the reversal potential for

ion species k at steady state in [33], and Ek,new being the reversal potential obtained by the new

initial ion concentrations (Table 5). Similarly, we tuned the K+/Cl− cotransporter strength by

requiring the initial K+ and Cl− currents through the cotransporter to be identical to those in

[33], i.e., we set:

Ukcc2;new ln
½Kþ�n;new½Cl

�
�n;new

½Kþ�e;new½Cl
�
�e;new

 !

¼ Ukcc2;old ln
½Kþ�n;old½Cl

�
�n;old

½Kþ�e;old½Cl
�
�e;old

 !

; ð124Þ

with [k]n,new and [k]e,new being the new neuronal and extracellular ion concentrations of ion

species k, respectively, and [k]n,old and [k]e,old being the neuronal and extracellular ion concen-

trations at steady state in [33]. By solving Eqs 123 and 124, we obtained a final set of passive

conductances and cotransporter strengths for the neuronal membrane (Table 4).

In the previous neuron model [33], the extracellular redistribution of ions was very fast,

and almost no concentration gradients developed between the soma and dendrite layer, even

during intense neural activity. To obtain concentration gradients and diffusion potentials

more consistent with that seen in experiments provoking intense neural activity (see, e.g., [8,

13]), we reduced the cross-section area for extracellular fluxes (and currents) by a factor 10

compared to the previous model (Table 1).

After calibrating the edNEG model (running it for 5000 s) with the (new) derived passive

conductances and K+/Cl− cotransporter strength, it settled at a resting state where the neuronal

resting membrane potential was −66.9 mV, and the glial membrane resting potential was

−83.9 mV, which were close to the original resting potentials for the neuron and glial domain

(original values were −67.7 mV [33] and −83.6 mV [47], respectively).
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Initial conditions

Before tuning the edNEG model, we defined its initial volumes (Table 1), amounts of ions,

membrane potentials, and gating variables (Table 5, Pre-calibrated column) using values from

the two previous models in [33] and [47] and Eq 122. After re-tuning selected parameters (as

described in the previous subsection), the system was close to, but not strictly in equilibrium,

and for this reason we calibrated the edNEG model by running it for 5000 s of simulated time.

The water permeabilities were set to zero during the calibration.

We wrote the final values from the calibration to file (see Table 5, Post-calibrated column)

and used them as initial conditions in all simulations shown throughout this paper. Note that

the edNEG model takes amounts of ions (in units of mol) as input, while we have listed ion

concentrations in Table 5. The post-calibrated values of the ion concentrations correspond to

the following reversal potentials: ENa,n = 54 mV, ENa,g = 61 mV, EK,n = −98 mV, EK,g = −89

mV, ECl,n = −78 mV, ECl,g = −84 mV, and ECa,n = 124 mV.

To ensure charge symmetry and electroneutrality, we defined a set of static residual charges,

based on the initial amounts of ions. These represent negatively charged macromolecules pres-

ent in real cells. We defined them as constant amounts of ion species X− with charge number

zX = −1 and diffusion constant DX = 0. To ensure strict electroneutrality, we did not read resid-

ual charges to/from file, but calculated them at the beginning of each simulation. They were

given by the following expressions:

NX;n ¼ zNaNNa;n;0 þ zKNK;n;0 þ zClNCl;n;0 þ zCaNCa;n;0 � �mn;0
cmAm

F
; ð125Þ

NX;e ¼ zNaNNa;e;0 þ zKKK;e;0 þ zClNCl;e;0 þ zCaNCa;e;0 þ ð�mn;0 þ �mg;0Þ
cmAm

F
; ð126Þ

NX;g ¼ zNaNNa;g;0 þ zKNK;g;0 þ zClNCl;g;0 � �mg;0
cmAm

F
: ð127Þ

Additionally, we introduced a set of static residual molecules to ensure zero osmotic pres-

sure gradients across the membranes at the beginning of each simulation. These were defined

as osmotic concentrations of a molecule M:

½M�n ¼ ðNNa;n;0 þ NK;n;0 þ NCl;n;0 þ NCa;n;0Þ=Vsn;0; ð128Þ

½M�e ¼ ðNNa;e;0 þ NK;e;0 þ NCl;e;0 þ NCa;e;0Þ=Vse;0; ð129Þ

½M�g ¼ ðNNa;g;0 þ NK;g;0 þ NCl;g;0Þ=Vsg;0: ð130Þ

Injection current

In Figs 3–6, we stimulated the neuron by applying a K+, Na+, or Cl− injection current into the

somatic, dendritic, or both compartments. To ensure ion conservation, the same amount of

ions were removed from the extracellular compartment(s). In this aspect, the stimulus was

equivalent to a current through an open ion channel. This changed the ion dynamics in the
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following way:

dNk;i

dt
!

dNk;i

dt
þ

Istim
Fzk

; ð131Þ

dNk;e

dt
!

dNk;e

dt
�

Istim
Fzk

; ð132Þ

where Nk is the amount of ions, k denotes the injected ion species, i denotes the relevant intra-

cellular compartment, e denotes the corresponding extracellular compartment, F is the Fara-

day constant, zk is the charge number of ion species k, and Istim is the injection current, given

in units of A. If nothing else is stated, we applied a K+ injection current to the soma. A previous

computational study of a cardiac cell showed that K+ ions cause least physiological disruption

when used as stimulus [68].

Synaptic current

In Fig 7, we stimulated the neuron by attaching an AMPA synapse to the somatic, dendritic, or

both compartments. We made the synaptic current ion-specific and modeled the synaptic con-

ductance changes using a dual exponential function:

Isyn;Na ¼ g syn;Na

Xn

s¼1

exp �
t � ts
t1

� �

� exp �
t � ts
t2

� �� �

Yðt � tsÞð�m � ENaÞ; ð133Þ

Isyn;K ¼ g syn;K

Xn

s¼1

exp �
t � ts
t1

� �

� exp �
t � ts
t2

� �� �

Yðt � tsÞð�m � EKÞ; ð134Þ

Isyn;Ca ¼ g syn;Ca

Xn

s¼1

exp �
t � ts
t1

� �

� exp �
t � ts
t2

� �� �

Yðt � tsÞð�m � ECaÞ: ð135Þ

In Eqs 133–135, Θ(t) is the Heaviside unit-step function: Θ(t� 0) = 1, Θ(t< 0) = 0, g syn;Na,

g syn;K, and g syn;Ca are the maximum Na+, K+, and Ca2+ conductances, respectively, t is time, ts is

the arrival time of the sth spike, τ1 is the decay time constant, τ2 is the rise time constants, ϕm

is the membrane potential, and ENa, EK, and ECa are the Na+, K+, and Ca2+ reversal potentials,

respectively. Parameter values are listed in Table 6.

The spike times ts were given by a Poisson spike train, which we modeled using the homo-
geneous_poisson_process function from the Elephant software package [118] in

Python. The function takes the synaptic input rate, the synaptic starting time, and the synaptic

stopping time as arguments. The values of these parameters are given in the labels and figure

caption of Fig 7.

Attaching synapses to the neuron, changed the ion dynamics in the following way:

dNNa;i

dt
!

dNNa;i

dt
�

Isyn;Na
FzNa

; ð136Þ

dNNa;e

dt
!

dNNa;e

dt
þ

Isyn;Na
FzNa

; ð137Þ

dNK;i

dt
!

dNK;i

dt
�

Isyn;K
FzK

; ð138Þ
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dNK;e

dt
!

dNK;e

dt
þ

Isyn;K
FzK

; ð139Þ

dNCa;i

dt
!

dNCa;i

dt
�

Isyn;Ca
FzCa

; ð140Þ

dNCa;e

dt
!

dNCa;e

dt
þ

Isyn;Ca
FzCa

: ð141Þ

Analysis

To calculate ϕse,n, ϕse,g, and ϕse,diff, we used our calculations from the analysis section in [33] as

a starting point. In [33], we split ϕse into two components:

�se ¼ �se;VC þ �se;diff ; ð142Þ

where ϕse,VC is the potential given by standard volume conductor (VC) theory, and ϕse,diff is

the additional contribution arising from diffusive currents. They are calculated from

�se;VC ¼ ie
Dx
se
; ð143Þ

and

�se;diff ¼ � ie;diff
Dx
se
; ð144Þ

where ie is the extracellular axial current density, and ie,diff is the diffusive component of the

extracellular current density.

In the edNEG model, currents travel in two connected loops: one going in and out of the

neuron, and one going in and out of the glial domain (Fig 1). Current continuity then requires

that:

ieAe ¼ imsnAm þ imsgAm; ð145Þ

Table 6. Synaptic parameters.

Parameter Value Reference

g syn;Na 1.0 � 10−9 S

g syn;K 1.9 � 10−9 S †

g syn;Ca 6.5 � 10−12 S ‡

τ1 3.0 � 10−3 s [117]

τ2 1.0 � 10−3 s [117]

† g syn;K was calculated from the criterion that Isyn;K ¼ 1

2
jIsyn;Naj at steady state (ϕm = −66.9 mV). The same Na+/K+

current fraction was previously used in an NMDA-synapse model [39].
‡ g syn;Ca was calculated so that Isyn,Ca = 0.02(Isyn,Na + Isyn,K + Isyn,Ca) at steady state, i.e., so that a small amount (2%) of

the AMPA current was carried by Ca2+.

https://doi.org/10.1371/journal.pcbi.1008143.t006
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and

ieAe ¼ � imdnAm � imdgAm: ð146Þ

If we insert Eq 146 into Eq 143, we get

�se;VC ¼ � imdn
Am

Ae

Dx
se
� imdg

Am

Ae

Dx
se
; ð147Þ

that is, ϕse,VC may be split into two components, ϕse,n and ϕse,g, where

�se;n ¼ � imdn
Am

Ae

Dx
se
; ð148Þ

and

�se;g ¼ � imdg
Am

Ae

Dx
se
: ð149Þ

Note that imdn and imdg denote the sum of all transmembrane currents in the respective com-

partments, including the capacitive currents.

The extracellular potential gradients are given by Δϕe,n = −ϕse,n, Δϕe,g = −ϕse,g, and Δϕe,diff =

−ϕse,diff. If we take the sum of ϕse,n, ϕse,g, and ϕse,diff,we get the extracellular potential ϕse as cal-

culated using the KNP framework.

Numerical implementation

We implemented the code in Python 3.6 and solved the differential equations using the sol-
ve_ivp function from SciPy with its Runge-Kutta method of order 3(2). We set the maximal

allowed step size to 10−4 s in all simulations, except when we simulated physiological activity

in Fig 6, where we set it to 10−5 s. The code can be downloaded from https://github.com/

CINPLA/edNEGmodel and https://github.com/CINPLA/edNEGmodel_analysis.

Supporting information

S1 Fig. Membrane currents during physiological activity. Components (various ion chan-

nels, stimulus, capacitive currents, and ion pumps) of the transmembrane current in the neu-

ral soma layer (A), the neural dendrite layer (B), the glial soma layer (C), and the glial

dendrite layer (D). The current components were plotted as moving averages using a time

window of 10 s. The simulation was the same as in Fig 3. (A) The neuronal membrane cur-

rent was dominated by the injection stimulus current (sink) in the soma-layer during firing.

Among the other currents, the delayed rectifying K+ current contributed the most, but the

other (ionic) current components were on the same order of magnitude. As expected, the

capacitive current (/ dϕm/dt averaged over 10 s) was close to zero. After firing ceased

(t > 600 s), the membrane current was dominated by the pump and leak currents, being

oppositely directed, keeping the cell in a steady resting state. (B) The afterhyperpolarizing K+

current dominated the neuronal membrane current (source) in the dendrite-layer during fir-

ing, but the other (ionic) currents were on the same order of magnitude. In the steady resting

state, the pump- and leak currents dominated the membrane current, just like in the soma-

layer. (C-D) In both glial compartments, the (inward) leak current was the largest compo-

nent, closely, but not entirely, balanced by the (outward) Kir and pump currents. Whether

the total membrane current amounted to a glial source (soma-layer) or sink (dendrite-layer)
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was determined by the magnitude of the Kir current.

(TIF)

S2 Fig. Membrane currents during pathological activity. Components (various ion channels,

stimulus, capacitive currents, and ion pumps) of the transmembrane current in the neural

soma layer (A), the neural dendrite layer (B), the glial soma layer (C), and the glial dendrite

layer (D). The current components were plotted as moving averages using a time window of

10 s. The simulation was the same as in Fig 4, where the neuron was driven into depolarization

block. (A) At the end (and throughout most) of the simulation, the neuronal membrane cur-

rent in the soma-layer was primarily composed of an (outward) Na+ current, and the (inward)

delayed rectifying K+ current and pump current. The Na+ current was largest in magnitude,

but smaller than the sum of the two inward currents, so that the soma was a net current source.

(B) At the end of the simulation, the neuronal membrane current (sink) in the dendrite layer

was dominated by the (inward) Ca2+ current. (C) The glial membrane currents were domi-

nated by the leak current (sink) in the soma-layer and (D) the Kir current (source) in the den-

drite-layer.

(TIF)
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63. Mazel T, Richter F, Vargová L, Syková E. Changes in extracellular space volume and geometry

induced by cortical spreading depression in immature and adult rats. Physiological research. 2002; 51:

S85–S94. PMID: 12479789

64. Zhou N, Gordon GR, Feighan D, MacVicar BA. Transient swelling, acidification, and mitochondrial

depolarization occurs in neurons but not astrocytes during spreading depression. Cerebral cortex.

2010; 20(11):2614–2624. https://doi.org/10.1093/cercor/bhq018 PMID: 20176688

65. Gold C, Henze DA, Koch C, Buzsaki G. On the origin of the extracellular action potential waveform: a

modeling study. Journal of neurophysiology. 2006; 95(5):3113–3128. https://doi.org/10.1152/jn.

00979.2005 PMID: 16467426

66. Pettersen KH, Einevoll GT. Amplitude variability and extracellular low-pass filtering of neuronal spikes.

Biophysical journal. 2008; 94(3):784–802. https://doi.org/10.1529/biophysj.107.111179 PMID:

17921225

67. Qian N, Sejnowski T. An electro-diffusion model for computing membrane potentials and ionic concen-

trations in branching dendrites, spines and axons. Biological Cybernetics. 1989; 62(1):1–15. https://

doi.org/10.1007/BF00217656

PLOS COMPUTATIONAL BIOLOGY Electrodiffusive neuron-extracellular-glia model for slow potentials in the brain

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008143 July 16, 2021 42 / 45

https://doi.org/10.1371/journal.pcbi.1003386
https://doi.org/10.1371/journal.pcbi.1003386
http://www.ncbi.nlm.nih.gov/pubmed/24367247
https://doi.org/10.1007/BF00233304
http://www.ncbi.nlm.nih.gov/pubmed/7636883
https://doi.org/10.1023/A:1008924227961
http://www.ncbi.nlm.nih.gov/pubmed/11316343
https://doi.org/10.1371/journal.pcbi.1000272
http://www.ncbi.nlm.nih.gov/pubmed/19165313
https://doi.org/10.1152/physrev.00027.2014
http://www.ncbi.nlm.nih.gov/pubmed/26133935
https://doi.org/10.1016/j.neuroscience.2006.02.034
https://doi.org/10.1016/j.neuroscience.2006.02.034
http://www.ncbi.nlm.nih.gov/pubmed/16580141
https://doi.org/10.1007/978-3-540-29678-2_1453
https://doi.org/10.1007/978-3-540-29678-2_1453
https://doi.org/10.1007/s10827-012-0383-y
http://www.ncbi.nlm.nih.gov/pubmed/22310969
https://doi.org/10.1371/journal.pone.0042811
http://www.ncbi.nlm.nih.gov/pubmed/22900051
https://doi.org/10.1371/journal.pone.0022127
http://www.ncbi.nlm.nih.gov/pubmed/21779384
https://doi.org/10.1523/JNEUROSCI.0516-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25164668
https://doi.org/10.1111/j.1748-1716.1980.tb06544.x
http://www.ncbi.nlm.nih.gov/pubmed/7415848
https://doi.org/10.1016/0165-3806(89)90288-5
http://www.ncbi.nlm.nih.gov/pubmed/2720957
https://doi.org/10.1152/jn.1994.71.6.2548
http://www.ncbi.nlm.nih.gov/pubmed/7523614
http://www.ncbi.nlm.nih.gov/pubmed/12479789
https://doi.org/10.1093/cercor/bhq018
http://www.ncbi.nlm.nih.gov/pubmed/20176688
https://doi.org/10.1152/jn.00979.2005
https://doi.org/10.1152/jn.00979.2005
http://www.ncbi.nlm.nih.gov/pubmed/16467426
https://doi.org/10.1529/biophysj.107.111179
http://www.ncbi.nlm.nih.gov/pubmed/17921225
https://doi.org/10.1007/BF00217656
https://doi.org/10.1007/BF00217656
https://doi.org/10.1371/journal.pcbi.1008143


68. Kneller J, Ramirez RJ, Chartier D, Courtemanche M, Nattel S. Time-dependent transients in an ioni-

cally based mathematical model of the canine atrial action potential. American Journal of Physiology-

Heart and Circulatory Physiology. 2002; 282(4):H1437–H1451. https://doi.org/10.1152/ajpheart.

00489.2001 PMID: 11893581

69. Dronne MA, Boissel JP, Grenier E. A mathematical model of ion movements in grey matter during a

stroke. Journal of theoretical biology. 2006; 240(4):599–615. https://doi.org/10.1016/j.jtbi.2005.10.023

PMID: 16368113

70. Somjen G, Kager H, Wadman W. Computer simulations of neuron-glia interactions mediated by ion

flux. Journal of computational neuroscience. 2008; 25(2):349–365. https://doi.org/10.1007/s10827-

008-0083-9 PMID: 18297383

71. Mori Y, Peskin C. A numerical method for cellular electrophysiology based on the electrodiffusion

equations with internal boundary conditions at membranes. Communications in Applied Mathematics

and Computational Science. 2009; 4.1:85–134. https://doi.org/10.2140/camcos.2009.4.85

72. Florence G, Dahlem Ma, Almeida ACG, Bassani JWM, Kurths J. The role of extracellular potassium

dynamics in the different stages of ictal bursting and spreading depression: a computational study.

Journal of theoretical biology. 2009; 258(2):219–28. https://doi.org/10.1016/j.jtbi.2009.01.032 PMID:

19490858

73. Cressman JR, Ullah G, Ziburkus J, Schiff SJ, Barreto E. The influence of sodium and potassium

dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics.

Journal of computational neuroscience. 2009; 26(2):159–170. https://doi.org/10.1007/s10827-008-

0132-4 PMID: 19169801

74. Ullah G, Cressman JR Jr, Barreto E, Schiff SJ. The influence of sodium and potassium dynamics on

excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. Journal of

computational neuroscience. 2009; 26(2):171–183. https://doi.org/10.1007/s10827-008-0130-6

PMID: 19083088

75. Lee J, Kim SJ. Spectrum measurement of fast optical signal of neural activity in brain tissue and its the-

oretical origin. Neuroimage. 2010; 51(2):713–722. https://doi.org/10.1016/j.neuroimage.2010.02.076

PMID: 20211742

76. Lee J, Boas DA, Kim SJ. Multiphysics neuron model for cellular volume dynamics. IEEE Transactions

on Biomedical Engineering. 2011; 58(10):3000–3003. https://doi.org/10.1109/TBME.2011.2159217

PMID: 21659016
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