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Abstract
Conventional environmental risk assessment of chemicals is based on a calculated risk quotient, representing the ratio of

exposure to effects of the chemical, in combination with assessment factors to account for uncertainty. Probabilistic risk
assessment approaches can offer more transparency by using probability distributions for exposure and/or effects to account
for variability and uncertainty. In this study, a probabilistic approach using Bayesian network modeling is explored as an
alternative to traditional risk calculation. Bayesian networks can serve as meta‐models that link information from several
sources and offer a transparent way of incorporating the required characterization of uncertainty for environmental risk
assessment. To this end, a Bayesian network has been developed and parameterized for the pesticides azoxystrobin,
metribuzin, and imidacloprid. We illustrate the development from deterministic (traditional) risk calculation, via intermediate
versions, to fully probabilistic risk characterization using azoxystrobin as an example. We also demonstrate the seasonal risk
calculation for the three pesticides. Integr Environ Assess Manag 2021;00:1–16. © 2021 The Authors. Integrated Environ-
mental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology
& Chemistry (SETAC).
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INTRODUCTION
Pesticides play an important role in food production by

maintaining or enhancing crop yields and quality in arable
farming. However, they can also lead to harmful effects in
the environment and pose risks to human health. There is
now a widespread concern about regular emissions of such
substances designed to control specific target organisms
and their effects on ecosystems (Boye et al., 2019; Bradley
et al., 2017; Mohaupt et al., 2020; Szöcs et al., 2017;
Van den Brink et al., 2018).
In spite of strict regulations of pesticide use (e.g., Direc-

tive 2009/128/EC; Regulation (EC) No 1107/2009), there are
still knowledge gaps for the potential environmental impact
of these pesticides and their mixtures (Bradley et al., 2017;
Mohaupt et al., 2020; Szöcs et al., 2017). Current risk as-
sessment methods use conservative assumptions to avoid

underestimating the risk (F. A. M. Verdonck et al., 2003), and
decision makers rely on large safety margins for protective
decision making (Fairbrother et al., 2015).
In general, risk assessment of pesticides is carried out to

protect human health as well as the health and biodiversity
of ecosystems (Schäfer et al., 2019). The purpose is to assess
the probability that adverse effects of regulatory concern
occurs in ecosystems due to the exposure to one or several
chemicals. This can be done as a prospective assessment for
the registration of substances before products enter the
market, or as a retrospective assessment for potentially
harmful substances that are already in use (Forbes & Calow,
2002). The environmental risk assessment process usually
incorporates exposure and effect assessments as well as risk
characterization (Figure 1). Exposure assessment covers the
estimation of the predicted or measured environmental
concentration (PEC) of the compound in the environment
(van Leeuwen & Vermeire, 2007). Predicted environmental
concentration is usually calculated as the maximum envi-
ronmental exposure concentration (Finizio & Villa, 2002).
Effect assessment is typically based on the response of
species that are exposed to a chemical in toxicity tests, such
as data for toxicity endpoints (e.g., mortality, reproduction,
and growth) after short‐term exposure (acute) or long‐term
(chronic) exposure (van Leeuwen & Vermeire, 2007).
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Usually, a predicted no‐effect concentration (PNEC) is ob-
tained from the most sensitive no‐observed‐effect concen-
tration (NOEC). Alternatively, the PNEC can be calculated
from the hazardous concentration for 5% of the species
(HC5) based on the species sensitivity distribution (SSD)
(Bruijn et al., 2002). To account for uncertainty, the lowest
NOEC (alternatively the HC5) is divided by an assessment
factor (AF) to derive the PNEC, so it can be considered a
safe concentration for non‐target organisms (Schäfer et al.,
2019). Risk characterization includes a risk estimation by
comparing effect (hazard identification and characterization)
and exposure assessment; some of the metrics used are
margin of exposure, hazard, or risk quotient (More et al.,
2019). To ensure low risk, it is required that the PEC is lower
than the PNEC (Bruijn et al., 2002; Schäfer et al., 2019), so
when using a risk quotient (RQ), it is derived by the PEC/
PNEC ratio. Usually, in EU frameworks, if the risk quotient
exceeds 1, a risk of harmful effects to the environment is
indicated (Bruijn et al., 2002). Risk is usually considered an
estimation of the likelihood that an adverse effect occurs on
a biological target when being exposed to a chemical
(Fairbrother et al., 2015; Finizio & Villa, 2002; Moe, Carriger,
et al., 2021). Nevertheless, in the commonly used framework
for environmental risk assessment, the output of risk char-
acterization tends to be a single value (the risk quotient) from
which the conclusion is a “yes/no” statement (Fairbrother
et al., 2015). It has been argued that such single‐value esti-
mates cannot stand alone as a scientifically defensible char-
acterization of ecological risk (Campbell et al., 2000). The
analysis and quantification of uncertainty are a vital part of
risk assessment of the environmental impacts of pesticides,
which is not reflected in the single‐value risk estimate
(Fairbrother et al., 2015; USEPA, 2014). Based on this, a
concerted action was established to develop a European
framework for probabilistic risk assessment of the environ-
mental impacts of pesticides (EUFRAM). The consortium

named several shortcomings of conventional ERA (EUFRAM,
2006). For example, there is no indication of the level of
certainty associated with the risk assessment; no quantifica-
tion of the risk is carried out; the uncertainty calculation is not
transparent but hidden in assessment factors; and it is difficult
to follow all steps of the risk assessment. Various recom-
mendations were given for development toward probabilistic
risk assessment, mainly based on the use of cumulative
probability distributions (EUFRAM, 2006). Also, Jager et al.
(2001) recommend the use of probabilistic risk assessment for
the European Union (EU). In recent years, EFSA has published
a Guidance document on Uncertainty analysis where they
mention not only Bayesian inference but also Bayesian
graphical models as a way to use probability distribution to
analyze variability and uncertainty (EFSA et al., 2018) Never-
theless, non‐probabilistic methods are still more commonly
used (Fairbrother et al., 2015). During the “International
conference on uncertainty in risk analysis” held in 2018 by the
European Food Safety Authority (EFSA) and the German
Federal Institute for Risk Assessment (BfR), three conclusions
were drawn highlighting that training is important to improve
the understanding of uncertainty, that there is an ethical re-
sponsibility of scientists to communicate uncertainties, and
that active steps need to be taken by risk assessors to avoid
undetected sources of uncertainty (EFSA & BfR, 2019).

The aim of this study was to explore Bayesian network
modeling as a tool to combine probability distributions of
pesticide exposure and effects, to facilitate the calculation
of the risk quotient as a probability distribution instead of a
single number. We aimed to align the developed model to
the EU regulatory requirements and current risk assessment
procedures (Figure 1). Although a Bayesian network model
could also have incorporated more advanced components
such as effect modeling, we chose a simpler model structure
to facilitate the comparison of the Bayesian network ap-
proach with the more traditional existing approaches
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FIGURE 1 General ecological risk assessment process. AF, assessment factor; HC5, hazardous concentration for 5% of the species derived from SSD (species
sensitivity distribution); PEC, predicted or measured environmental concentration; PNEC, predicted no effect concentration; RQ, risk quotient
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(Figure 2). To this end, we present the development from a
deterministic toward a fully probabilistic Bayesian network
approach to risk characterization for a case study repre-
senting a small agricultural catchment in Norway. The model
application is demonstrated for three examples of pesti-
cides and for different seasons of the year.

APPROACHES TO PROBABILISTIC RISK
ASSESSMENT

Proposed methods for probabilistic risk assessment

Probabilistic risk assessment has been defined as using
“probabilities or probability distributions to quantify one or

Integr Environ Assess Manag 2021:1–16 © 2021 The AuthorsDOI: 10.1002/ieam.4533
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FIGURE 2 Systematic overview of the traditional approach to derive a risk quotient (A), compared with two intermediate probabilistic options that contain
single values and a distribution (B and C), and a fully probabilistic option that derives a risk quotient distribution (D). Option B has a single exposure value and
an effect distribution, and Option C has an exposure distribution and a single effect value. AF, assessment factor; HC5, hazardous concentration for 5% of the
species derived from SSD (species sensitivity distribution); PF, precautionary factor
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more sources of variability and/or uncertainty in exposure
and/or effects and the resulting risk” (EUFRAM, 2006). This
allows the inclusion of estimates of uncertainty and sto-
chastic properties (Solomon et al., 2000). There are now
several probabilistic methods in use for risk characterization.
The species sensitivity distribution (SSD) (Posthuma et al.,
2001) is a probabilistic model for the variation in the sensi-
tivity of biological species to a single or a set of toxicants,
which is used in several frameworks (Belanger & Carr, 2020).
Guidance on modeling and data requirements can be found
in the “Technical Guidance for Deriving Environmental
Quality Standards” (TGD) (SCHEER, 2017). Many of the
probabilistic methods currently at hand also incorporate a
distribution for the exposure part. Methods such as quanti-
tative overlap and joint probability curves are relatively easy
to construct (Campbell et al., 2000; F. A. M. Verdonck, 2003)
and use more available data for exposure and effect com-
pared with traditional approaches (Campbell et al., 2000).
They also allow for an estimation of the likelihood of po-
tential ecosystem impact and their magnitude (Solomon
et al., 1996). Recently, an “Ecotoxicity Risk Calculator” was
presented by Dreier et al. (2020) that uses joint probability
curves. It is able to provide more information than a single‐
value risk quotient, as it depicts the relationship between
cumulative probability and magnitude of effect. The use of
both effect and exposure distributions enables a more
powerful approach for risk assessment and communication
(Dreier et al., 2020). However, most of these probabilistic
methods derive a distribution that can be a challenge
for decision makers to understand and interpret (F. A. M.
Verdonck et al., 2003).

From deterministic to probabilistic risk quotient

Another method more consistent with the probabilistic
definition of risk is the calculation of probabilistic risk quo-
tients. It can be useful for ranking of different scenarios as
well as prioritizing among alternative risk scenarios
(Campbell et al., 2000). A fully probabilistic risk quotient
calculation requires the quantification of a probability dis-
tribution for both exposure and effect. In cases where ex-
posure or effect data are too limited, an alternative
“intermediate” probabilistic approach could be applied
using a distribution for either the exposure or effect com-
ponent (Figure 1). This will allow for some variability to be
taken into account when deriving a distribution for the risk
quotient. For example, an intermediate approach could be
applied when an effect concentration distribution can be
quantified by a species sensitivity distribution, although few
exposure measurements are available. An overview of the
underlying concepts for the traditional deterministic ap-
proach, and the intermediate and fully probabilistic ap-
proaches is shown in Figure 2. The traditional deterministic
approach (Figure 2A) uses single‐value PEC and PNEC to
calculate a single‐value risk quotient. The second option
(Figure 2B) used an exposure distribution together with a
single‐value PNEC, derived the same way as in the tradi-
tional approach. However, unlike the traditional approach,

here, a risk quotient distribution is derived. The third option
(Figure 2C) uses the probability distribution of effects
(corresponding to an SSD). Instead of using the SSD to ex-
tract a single‐value HC5 as a basis for a single‐value PNEC in
combination with an assessment factor, in this case, a pre-
cautionary factor (PF) is applied to the calculated risk quo-
tient distribution. The precautionary factor plays a similar
role as an assessment factor by adjusting the predicted risk
to account for uncertainties, for example, associated with
extrapolation from laboratory toxicity tests to environmental
effects. However, we chose to use the slightly different term
“precautionary factor” to avoid misusing the more well‐
established term “assessment factor.” The principle of
avoiding the use of assessment factors as a prudential
measure in the calculation of the exposure/effect ratio, and
instead applying a precautionary factor more transparently
in the subsequent step, is inspired by the recommendations
of F. Verdonck et al. (2005). The fourth option (Figure 2D),
uses effect and exposure probability distributions to derive
the exposure/effect ratio distribution. Again, no PNEC is
derived, so after calculating the exposure/effect ratio dis-
tribution, the precautionary factor is applied to derive the
risk quotient distribution.

Probabilistic risk assessment using Bayesian networks

The early efforts of probabilistic risk assessment for pes-
ticides, which were usually visualized by cumulative dis-
tribution curves, were sometimes difficult to interpret for
both for advanced users and the general public (EUFRAM,
2006). As an alternative, Bayesian networks may provide a
way to overcome the limitations associated with visualization
of risk estimations while accounting for uncertainties when
using probabilistic approaches. They have been recognized
as a tool to analyze complex environmental problems and
support decision making while considering uncertainty
(Sperotto et al., 2017), and have recently been increasingly
used for environmental risk assessments (Moe, Carriger,
et al., 2021). A Bayesian network can characterize a system
by showing its interactions between variables in a network
(Chen & Pollino, 2012) through a directed acyclic graph
(Kanes et al., 2017). They are probabilistic graphical models
implementing Bayes' rule for updating probability dis-
tributions based on evidence. The nodes (variables) have
discrete states (e.g., intervals), quantified by discrete prob-
ability distributions. The causal links (arrows) represent
the conditional probability table (CPT), which can be
based on equations. The causal links (arrows) represent
conditional probability tables (CPT), which can be based on
equations of several methods, empirical frequency dis-
tributions, information from the literature, or expert opinion.
The degree of belief (probability) that a node will be in a
particular state given the state of the node are specified by
conditional probability table (Chen & Pollino, 2012) and by
using Bayes' rule probability distributions are updated
based on new evidence (Molina et al., 2010). In this project,
Bayesian network construction largely followed the
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guidelines provided by Marcot et al. (2006) and Pollino and
Henderson (2010).
Bayesian networks have an integral feature suitable for

risk estimation as they present results in the probability
distribution form instead of point estimates. They can ac-
commodate different kinds of data; their sources can in-
clude both direct measurements and output from models.
Also, if data are limited or non‐existent, it is possible to
include expert opinions instead (Pitchforth & Mengersen,
2013). The models can be updated with new information on
pesticide exposure and effects whenever it becomes avail-
able. Model updates are carried out by combining prior
probabilities and new data so that an update of the network
posterior probabilities can take place as a response to the
added observational information (Franco et al., 2016).
Bayesian networks are especially useful for pesticide risk
assessment and management tasks as these require char-
acterization of the uncertainties (Carriger and Newman
(2012)). Focusing on a terrestrial species (puma), Carriger
and Barron (2020) reported a process of mapping cause–
effect relations into a quantitative model. This is supported
by Catenacci and Giupponi (2013), who found that the
Bayesian network approach can examine different phe-
nomena due to its flexibility for interdisciplinary integration,
e.g., climatic, physical, ecological, and socio‐economic.
They also have the ability to perform predictive (forward),
diagnostic (backward), and mixed (forward and backward)
inferences (Carriger & Barron, 2020).

METHODS

Study area

The model was developed based on monitoring data
from a catchment within the Norwegian Agricultural Envi-
ronmental Monitoring Program (JOVA) located in South‐
East Norway (Heia, location: 59°21′29″N, 10°47′52″E). The
monitoring catchment has a total area of 1.7 km2, of which
62% is cropland. As the catchment is located in a coastal
climate, winters are mild and the growing season starts
relatively early as compared to Norwegian conditions in
general. The catchment has an annual rainfall of 829mm
and a mean annual temperature of 5.6 °C (in 2016). The crop
production in the catchment is mostly grain (up to 75%).
Potato and vegetable production made up about 40% until
2007 and had decreased to about 25% in 2015. The
catchment's use of plant protection products and exposure
data are recorded in the JOVA program (Bechmann et al.,
2017). Flow‐proportional composite sampling of stream
water at the catchment outlet was performed in the JOVA
program throughout the spraying season and the analyses
of concentrations of a wide range of current and previously
used pesticides were included. Based on these data, ex-
ceedances of environmental safety thresholds are identified
for different agricultural management practices for key ag-
ricultural production systems in various catchments in
Norway (Stenrød, 2015). The JOVA monitoring data for
pesticides have been collected over 25 years (1995 onward)

and thus also support the retrospective assessment
of ecological risk and temporal trends (Bechmann
et al., 2017).

Pesticides—exposure and effect data

The chemicals selected for analysis in this study are most
frequently occurring pesticides and the highest in concen-
tration in the study catchment (Table 1). Azoxystrobin and
metribuzin are approved chemicals for use in the EU and
Norway. Since 2013, the use and sale of imidacloprid are
prohibited in the EU (EC, 2013). Of the selected chemicals,
only the fungicide azoxystrobin has low solubility in water at
20 °C (6.7mg L−1), whereas metribuzin and imidacloprid
have high solubility in water. All pesticides form metabolites
primarily in soil (for more information, see the Supporting
Information. Chemical properties of selected pesticides).
The data used in this study were obtained from the NIVA
Risk Assessment database (NIVA RAdb, www.niva.no/radb),
which hosts exposure and effect data from a wide variety of
sources. Moreover, this database provides transparent and
harmonized cumulative risk predictions according to inter-
national recommendations for harmonized approaches for
human and ecological risk assessments (Tollefsen, 2021).
Exposure data for the period from 11.05.2011 to 06.12.2016
from the JOVA monitoring program and effect data
(NOECs) for the different compounds originating from the
ECOTOXicology Knowledgebase (ECOTOX) (https://cfpub.
epa.gov/ecotox/index.cfm) were extracted from the NIVA
RAdb database.
The total number of measured environmental concen-

trations was 55 for azoxystrobin and 59 for metribuzin and
imidacloprid. There is a large variation in the measured
concentration levels during the season and years for each
of the pesticides. The percentages of the detection fre-
quencies were 47.4%, 76.3, and 81.4 for azoxystrobin,
metribuzin, and imidacloprid, respectively. In general,
sampling of pesticides varied markedly between the years
and months. The highest concentrations were recorded in
summer and autumn, and lower concentrations were
recorded in spring and winter. Due to the sampling
method and frequency (i.e., an approx. 20‐day sampling
period of composite flow proportional sampling), the
measured exposure concentrations can reflect chronic
exposure to the ecosystem, but maximum/peak exposure
concentrations are unlikely to be reflected (see the
Supporting Information.
The exposure data for the three pesticides showed

that 22%–50% of the measured values were below the
respective limit of quantification (LOQ) (Supporting In-
formation Tables S4, S6, S7, and S8). In the case of non‐
detected values (below LOQ), new values were generated as
follows (see Supporting Information, Figure 4). First, the non‐
quantified records were temporarily assigned the value
LOQ/2. Use of the LOQ/2 value has been common practice
in assessing the potential risks of non‐detected residues
(Loos et al., 2018), but has been criticized for overestimating
the risks of chemicals with PNEC below LOQ (von der Ohe
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et al., 2011). Second, this intermediate data set was used to
derive a mean and standard deviation in ln scale. Third, the
resulting log‐normal distribution was used to simulate new
values in the range from 0 to LOD to replace the non‐
detected values. The discretized version of this distribution
was used as the prior probability distribution of the Exposure
node.

For the selected pesticides, data on toxic effects for sev-
eral freshwater species representing various taxonomic
groups were extracted from the NIVA RAdb and represent
data from the ECOTOX data repository. The data set con-
sisted of NOECs (no observed effect concentration) for ad-
verse effects such as growth, reproduction, and population.
For each chemical, multiple NOEC values from the same
species were used in our analysis that represent different
species, test durations, and time for effect observation (see
Table 2). In traditional effect assessments, only the most
sensitive value per species is often chosen to derive an SSD,
although, in some cases, an average is also used. In cases
where multiple NOEC values of the same species were
present, the mean NOEC was used. The fitted distribution
corresponds to a species sensitivity distribution (SDD), which
is often fitted as a log‐normal distribution (Belanger &
Carr, 2020).

Data processing

Data preparation was carried out using R version
4.0.2 (Team, 2020) using packages including tidyverse
(version 1.3.0) (Wickham et al., 2019), dplyr (version 1.0.2)
(Wickham et al., 2020), and readxl (version 1.3.1)
(Wickham & Bryan, 2019). To obtain probability dis-
tributions for the BN model from the exposure and ef-
fects data, log‐normal distribution models were fitted to
the data using the R package MASS (version 7.3‐51.6)
(Venables & Ripley, 2002).

In the case of exposure data below the LOQ, new values
in the range from 0 to LOQ were simulated using the
mean and standard deviation from the fitted log‐normal

Integr Environ Assess Manag 2021:1–16 © 2021 The Authorswileyonlinelibrary.com/journal/ieam
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TABLE 2 Overview of the collected toxicity data of the selected
pesticides, also showing their adverse effect endpoint, and number
(n) of means used to fit the distribution and species with multiple

NOECs for the same substance

Substance Endpoints n

Metribuzin Growth 11

Population

Azoxystrobin Growth 13

Population

Imidacloprid Growth 11

Population

Reproduction

Abbreviation: NOEC, no observed effect concentration.
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distribution. To take into account the seasonal variation in
pesticide exposure, a separate probability distribution was
estimated for each season, defined as follows: Winter=
Dec–Feb; Spring=Mar–May; Summer= Jun–Aug; and
Autumn= Sep–Nov.
For the effect distribution, likewise, a log‐normal dis-

tribution was fitted to the NOEC values available for each
pesticide. However, while SSDs are traditionally used to
derive a single PNEC value (Figure 1), we used the whole
probability distribution of effects data in this study. For
comparison with the traditional risk quotient calculation
based on a PNEC, as described in the introduction, an HC5
was derived from a species sensitivity distribution using the
package ssdtools (Thorley & Schwarz, 2018) (see the
Supporting Information).

Parameterization of the Bayesian networks

The Bayesian networks were built in Netica (Norsys Soft-
ware Corp., www.norsys.com). For each pesticide, a BN was
built with an identical structure, for both exposure and ef-
fects nodes, the range was defined by the observed values
of the given pesticide, and the intervals were discretized
into 12 equidistant bins in a log10‐scale. The fitted log‐
normal distributions were used to parameterize the parent
nodes. The individual node description is shown in Table 3;
further detailed information is shown in the Supporting
Information—IV. Netica discretization and equation syntax).
All conditional probability tables of the BNs (Figure 3)

were generated from equations, by the function “Equation
to Table” in Netica (see the Supporting Information).
The probability distribution of the nodes “Exposure
Concentration (µg/L)” and “Effects Concentration (µg/L)”
was calculated from their respective parent nodes by
exp‐transformation. The node “Exposure/Effect Ratio” was
discretized into eight equidistant bins and calculated using
the equation [Exposure Concentration (µg/L)]/[Effects Con-
centration (µg/L)]. Thereafter, the risk quotient distribution

was derived by multiplying the “Exposure/Effect Ratio” with
a precautionary factor. The precautionary factor can be ap-
plied to account for uncertainties in the effect assessment,
similar to the use of an assessment factor in traditional risk
assessment (Figure 1). This factor can be transparent and
standardized in a simple manner by considering the in-
formation used during the effect assessment, for example,
number of data points, species, taxonomic groups, and
region‐specific species. In our model (Figure 1), the node
“precautionary factor” has alternative levels that can be se-
lected by the risk assessor, depending on the sources of
uncertainty to be accounted for in the risk assessment. We
describe diagnostic inference in more detail and how we
used it to derive an appropriate precautionary factor (see
Figure 3) in the results, as we used the parameterized
Bayesian network for this.
After the Bayesian network was constructed and para-

meterized, a sensitivity analysis was carried out in Netica.
The report showed that the risk quotient distribution is
dominated by the exposure side over the effect side, which
is most likely due to the wider range of concentrations.
In this way, a Bayesian network model is intended

as a tool for calculating the risk quotient as a probability
distribution, to account for, for example, temporal variability
in exposure, taxonomic variability in effects, and other types
of uncertainties.

RESULTS AND DISCUSSION

Diagnostic inference to derive an appropriate
precautionary factor used in the Bayesian network

This section describes the parameterized version of the
Bayesian network for each of the three pesticides, illustrated
with azoxystrobin as an example. For comparison, the risk
quotient was also calculated using the traditional single‐
values method (Figure 2A) as well as by the two inter-
mediate options (Figure 2B,C). For the single‐value ex-
posure versions (Options A and C), the minimum (0.01 µg/L),
mean (0.129 µg/L), and maximum (0.660 µg/L) of the meas-
ured concentrations were selected as alternative PEC
values. The highest exposure concentration is usually used
as the more conservative or protective choice. To be able to
compare traditional and probabilistic outputs better, we
have decided to use the mean PEC instead. For the single‐
value effect version (Options A and B), the PNEC values
were derived from an HC5 of 3.87 µg/L divided by an as-
sessment factor of 10, 5, 3, and 1 (Table 5). The Technical
Guidance Document recommends the use of an assessment
factor of 1–5 when deriving the PNEC from an SSD. We also
applied an additional and more conservative assessment
factor of 10, as the data set that we used does not fulfil
all the requirements of the TGD with at least 10 NOECs and
at least 8 taxonomic groups. The Technical Guidance
Document also states that the assessment factor should be
decided on a case‐by‐case basis “through consideration of
sensitive endpoints, sensitive species, mode of toxic action
and/or knowledge from structure‐activity considerations”
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TABLE 3 Node description for the example of Option D, the fully
probabilistic approaches (see Figure 4D), also describing the

discretization type, number of states, conditional probability table
input, and parent relation

Node/variable Type of discretization States

Exposure concentration
distribution

C 10

Effect concentration
distribution

C 10

Exposure–effect–ratio
distribution

C 8

Uncertainty factor D 7

Risk quotient distribution C 8

Abbreviations: C, discretized continuous; continuous variables were binned
into the states; D, discretized discrete; States, number of intervals of
each node.
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(Bruijn et al., 2002). Therefore, in this study, we present
several assessment factors, but primarily focus on an
assessment factor of 5.
The probability distributions of exposure and/or effects

data in Options B, C, and D were based on the fitted
log‐normal distribution with mean and standard deviation.
The exposure distribution had a mean of −4.148 (ln µg/L),

with a standard deviation of 1.484 (ln µg/L). The effect dis-
tribution had a mean of 2.322 (ln µg/L), with a standard
deviation of 0.56 (ln µg/L).

The seasonal version of the Bayesian network was
parameterized with exposure distributions based on sea-
sonal mean values for the three pesticides. Winter season
for all chemicals and spring season for azoxystrobin had

Integr Environ Assess Manag 2021:1–16 © 2021 The Authorswileyonlinelibrary.com/journal/ieam

FIGURE 3 Example of diagnostic inference for a mean exposure and effect interval. The precautionary factor was explored for a Risk quotient interval of “0.03
to 0.1” of azoxystrobin. The initiated nodes are visualized by the line above and below the interval probability bar (also the red outline)
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too few detected concentrations to derive a distribution
and were therefore excluded from further analysis. In
general, the mean concentrations in summer were higher
than in spring and intermediate in autumn (Table 4). The
exception was Imidacloprid, which had higher concen-
trations in autumn.

Before the parameterized Bayesian network model can
be used to calculate the risk quotient, an appropriate
precautionary factor should be set by the risk assessor. In
our example, to follow a regulatory accepted method as
closely as possible, we selected a precautionary factor that
would yield a similar risk quotient as the SSD‐based

Integr Environ Assess Manag 2021:1–16 © 2021 The AuthorsDOI: 10.1002/ieam.4533

Traditional approach Intermediate approach using effect distribution 

Intermediate approach using exposure
distribution 

Fully probabilistic approach  

RQ
= mean PEC / PNEC
= 0.129 (µg/L) / 0.774 (µg/L) 
= 0.166 

(A) (C)

(B) (D)

FIGURE 4 Example of Bayesian network representation of the four alternative options shown in Figure 2, parameters for the fungicide azoxystrobin. A single‐
value risk quotient is calculated from a mean predicted environmental concentration (PEC) and predicted no effect concentration (PNEC) derived with an
assessment factor of 5 (A); the risk quotient distribution is calculated for the an exposure distribution and a PNEC derived with an assessment factor of 5 (B), the
risk quotient distribution is calculated for a mean predicted environmental concentration and an effect distribution, with a precautionary factor of 30 (C), and the
risk quotient distribution is calculated for exposure and effect distributions, with a precautionary factor of 30 (D)
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approach (Figure 2A). The derived ranges of risk quotients
are shown in Table 5. The values of the precautionary
factor corresponding to selected assessment factor values
of 1, 5, and 10 were derived by diagnostic inference by
instantiating the nodes for exposure, effect concentration,

and risk quotient nodes (Figure 3). For the exposure and
effect concentrations, the intervals were set according to
the mean of the observed values. The intervals for the risk
quotient were set according to Table 5. An example is
shown in Figure 3, where the risk quotient was 0.0999 (see
Table 5), showing that the risk quotient node interval is set
to “0.03 to 0.1.” In this example, the resulting precau-
tionary factor is 30. The appropriate precautionary factors
found corresponding to the assessment factors are shown
in Table 6. To explore the role of the assessment factor and
the precautionary factor and their effect on the risk quo-
tient, we chose precautionary factors of 3, 10, and 30 for
Option C and 10, 30, and a 100 for Option D for the first
example with azoxystrobin (Figure 5). For all the seasonal
versions of the Bayesian network, only one precautionary
factor (100) was chosen to focus more on the exploration of
the seasonal effects.

Risk quotient distributions predicted by the Bayesian
network

The Bayesian networks for the different options for the risk
quotient calculation (Figure 2) were carried out for azox-
ystrobin and are shown in Figure 4. The posterior probability
distribution of the risk quotient node output was shown for
the different approaches (Figure 2) and for alternative values

Integr Environ Assess Manag 2021:1–16 © 2021 The Authorswileyonlinelibrary.com/journal/ieam
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FIGURE 5 Risk quotient values calculated with three alternative assessment factor values (AF= 1, 5, or 10) and corresponding precautionary factor values (PF=
3, 10, 30, or 100) from the traditional approach using the single mean predicted environmental concentration (PEC) and predicted no effect concentration
(PNEC) values (A), from the intermediate approaches with exposure distribution and PNEC (B) or mean PEC and effect distribution (C), and a fully probabilistic
approach with exposure and effect distribution (D). There are eight risk quotient intervals ranging from 0 to 3000. The color scheme ranges from dark red
(high‐risk quotient interval) to dark green (low‐risk quotient interval). AF, assessment factor; PF, precautionary factor; RQ, risk quotient

TABLE 4 Estimated mean and standard deviation of the exposure
by season and effect distributions, which are used as input for the

nodes in the Bayesian network

Exposure

Compound
Spring
ln (µg/L)

Summer
ln (µg/L)

Autumn
ln (µg/L)

Effect
ln (µg/L)

Azoxystrobin

Mean −3.939 −4.018 2.322

SD 1.529 1.541 0.568

Metribuzin

Mean −4.357 −2.794 −3.292 4.946

SD 0.966 1.416 1.363 2.432

Imidacloprid

Mean −3.902 −3.404 −1.783 6.484

SD 1.481 1.116 1.743 4.004
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of the assessment factor or precautionary factor, re-
spectively. The colors range from green (no risk) to red
(posing a risk) (Figure 5). The risk quotient distribution for
the approaches ranged from 0 to 3000. Higher assessment
factor and precautionary factor increase the probability of
the risk quotient exceeding 1.
An example using a Bayesian network approach for the

different approaches for Options A–D (Figure 2) is shown in
Figure 4. The assessment factor used in a risk assessment is
usually decided by the risk assessor depending on the
available toxicity test data. In this study, we have explored
the resulting risk quotient when using three alternative
plausible assessment factor values for Options (A) and (B),
and three corresponding precautionary factor values (see
Table 6) for Options (C) and (D). In this example, the risk

quotient was calculated using the following evidence: a
mean PEC and a PNEC with an applied assessment factor
of 5 (Options A and B) and a precautionary factor of 10
(Options C and D). Using the deterministic method, the risk
quotient distribution is estimated to be within the interval
“0.01 to 0.3” with 100% probability (Figure 4A). On the
other hand, Options B–D show a wider distributed risk
quotient and probabilities distributed over several risk
levels. Options B and D have the highest probabilities in
the intervals of “0.003 to 0.01,” “0.01 to 0.03,” and “0.03 to
0.1.” Option C has the highest probability in the interval of
“0.1 to 0.3.” A bar charts displaying vizualising the results
for the different Options A/D and selected assessment and
precautionary factor of the Bayesian network risk quotient
node are shown in Figure 5. When using an assessment
factor of 1, 5, or 10, the deterministic option (Figure 5A)
results in 100% probability of the risk quotient being in the
intervals of “0.01 to 0.03,” “0.1 to 0.3,” or 0.3 to 1, re-
spectively. Option B uses an exposure distribution and the
same assessment factors as in Option A to calculate the risk
quotient, which is distributed over the intervals “0 to
0.0003” and “1 to 3.” For an assessment factor of 1, the
probability for the risk quotient to be in an interval higher
than 0.1 is about 3.2%, whereas for an assessment factor of
5, it is 26.4%. Option C in this example uses the precau-
tionary factor calculated in Table 6a. For the events of a
mean PEC with a precautionary factor of 30, the interval of
“0.3 to 1” has the highest probability. If a precautionary
factor of 10 is chosen, however, the interval of “0.1 to 0.3”
has the highest probability (Figure 5C). The probability for
the risk quotient to be above 0.1 with a precautionary
factor of 3 is less than 10%; with one of 10, it is about 65%
and with one of 30, it is about 100%. The fully probabilistic
approach—Option D uses distributions for both exposure
and effect, when using precautionary factors of 10, 30, and
100, Table 6b. The probability for the risk quotient to be
above 0.3 is about 4% with a precautionary factor of 10,
12% with PF = 30, and about 40 with PF = 100 (Figure 5D).
As can be seen in Figure 5, the probabilistic approaches

yield a distributed risk quotient. The general tendency is
that the calculated risk quotient is similar in all of the ap-
proaches; nevertheless, the Bayesian network yields a
more nuanced risk estimation and offers some uncertainty
related to the different risk quotient intervals. In other
words, instead of having a single risk quotient (e.g., RQ>
1), uncertainties for various risk levels (e.g., RQ > 0.1, RQ >
0.001, RQ < 1) can be derived. The intermediate ap-
proaches using a distribution for only exposure or effect
also results in a more informative risk quotient compared
to the traditional approach, but include more variability
and/or uncertainty, respectively, in effect or exposure.
Therefore, options b and c could be used whenever data
are lacking for the fully probabilistic approach. The as-
sessment and precautionary factor applied have a major
impact on the risk quotient exceeding 1 and with that
being an unacceptable effect for non‐target organisms and
aquatic organisms (Bruijn et al., 2002). In this example, fully
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TABLE 5 Alternative risk quotient calculated for the combinations
of minimum, average, and maximum predicted environmental
concentration (PEC), respectively, and alternative predicted no

effect concentration (PNEC)

PEC minimum PEC average PEC maximum
AF PNEC 0.01 0.129 0.66

10 0.387 0.0258 0.3333 1.7041

5 0.775 0.0129 0.1665 0.8521

3 1.291 0.0077 0.0999 0.5112

1 3.873 0.0026 0.0333 0.1704

Note: The alternative PNECs are derived from the HC5 (see Figure 2A) with
an assessment factor (AF) of 1, 3, 5, and 10.

TABLE 6 Precautionary factor resulting from diagnostic inference
(see Figure 3)

(a) PEC min PEC avg PEC max

AF 0.01 0.129 0.66

10 30 30 30

5 30 10 10

3 10 3 10

1 1 3 3

(b) PEC min PEC avg PEC max

AF 0.01 0.129 0.66

10 10 300 1000

5 10 100 300

3 3 30 300

1 1 30 100

Note: For each alternative risk quotient in Table 5, the related RQ interval was
selected as evidence to derive the corresponding precautionary factor for
Option C—the intermediate approach using effect distribution (a) and Option
D—the fully probabilistic approach (b). The bold values are the ones used in
the examples of the result section. AF, assessment factor; PEC, predicted
environmental concentration.

PROBABILISTIC RISK ASSESSMENT USING A BAYESIAN NETWORK MODEL—Integr Environ Assess Manag 00, 2021 11



probabilistic approaches only show the risk quotient ex-
ceeding 1 for high assessment and precautionary factors
(Options B–D) (Figure 5).

Seasonal variation in risk quotients

A more temporally refined version of the Bayesian
network was developed and used for calculating seasonal
risk quotients for all three pesticides (see the Supporting
Information). The precautionary factor was set to 100 as
this was found to be the most appropriate in comparison
with the deterministic method (Table 6). According to this
model (Figure 6), the probability of the risk quotient for

azoxystrobin exceeding 0.1 during summer is about 72%,
while the probability of the risk quotient exceeding 1 is
about 15%.

In comparison with the other two pesticides, azoxystrobin
clearly showed a higher probability of exceeding the
risk quotient levels of 0.1 to 0.3 in summer and autumn
(Figure 6). Metribuzin and imidacloprid have a wider dis-
tribution for the risk quotient, mainly ranging from 0.0001 to
0.001. Spring and autumn distributions of probability in the
case of imidacloprid are more similar, unlike metribuzin,
where summer and autumn distributions appear to be more
similar, with higher probabilities of the risk quotient

Integr Environ Assess Manag 2021:1–16 © 2021 The Authorswileyonlinelibrary.com/journal/ieam
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FIGURE 6 Risk quotient values calculated for three seasons spring, summer, and autumn for a precautionary factor of 100 for (A) azoxystrobin, (B) metribuzin,
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exceeding 1 than the spring season. This analysis illustrates
how the Bayesian network approach can be used to identify
periods with a high risk of environmental effects of in-
dividual pesticides. This outcome can in turn be used to
assess the combined risk of multiple pesticides in specific
periods.

Evaluation of the Bayesian networks approach for risk
characterization

This study has demonstrated that Bayesian networks can
account for quantified uncertainties and variabilities in a
more coherent and transparent way than traditional risk
characterization. When developing this Bayesian network
approach, we aimed to follow important recommendations
for probabilistic risk estimation given by EUFRAM (2006).
We tried to accomplish these by combining the new
methods with the conventional “deterministic” assessment
to enable the end user (e.g., regulators) to become familiar
with the new methodology. Furthermore, the developed
models follow well‐known concepts described in the TGD
whenever it was possible and logical. The TGD, for example,
describes what an appropriate assessment factor is de-
pending on the available data and mentions requirements
for the used data for a minimum amount of taxonomic and
species used for SSD modeling (More et al., 2019). In ad-
dition, the Bayesian network methodology provides a
simple display of the results in bar plots (histograms) instead
of cumulative probability. This was also pointed out by
EUFRAM (2006), which mentioned stakeholders being more
likely to take up results if they and the concepts used are as
simple as possible and aligned with existing frameworks
(EUFRAM, 2006).
Bayesian networks are increasingly being used in envi-

ronmental risk assessment (Moe, Wolf, et al., 2021). They
can offer a transparent way of evaluating the required
characterization of uncertainty for pesticide risk assessment
as well as for ecological risk assessment in general (Carriger
& Newman, 2012). Moreover, their application is not only
carried out for risk estimation (e.g., risk quotient) but also
used to predict ecological effect from stressors more di-
rectly (e.g., decline in species abundance [Mitchell et al.,
2021]) and to develop quantitative Adverse Outcome
Pathways (Moe, Wolf, et al., 2021). Dreier et al. (2020)
pointed out that the use of effect and exposure distribution
allows for a competent risk assessment and communication
approach. In their “ecotoxicity risk calculator,” they used
joint probability curves or a risk curve‐based approach that
are able to show the connection between cumulative
probability and magnitude of effect (Dreier et al., 2020).
Although this might be an advantage of using joint proba-
bility curves, probabilistic risk quotients can provide a better
sense of the risk estimates and are useful for ranking of
different scenarios as well as prioritizing among alternative
risk scenarios (Campbell et al., 2000). Another probabilistic
alternative to the risk quotient was introduced by van
Straalen (2001) and has also been applied by Aldenberg
et al. (2001); it defines the ecological risk (δ) as the

probability that the environmental concentration exceeds
the no effect concentrations, while making use of the whole
probability distributions. This method does not make use of
an assessment factor; therefore, the δ would correspond to
the probability of our calculated Exposure/Effect ratio >1 (e.
g., Figure 3), or a risk quotient with the UF set to 1. How-
ever, this method does not allow for the calculation of dif-
ferent levels of risk.
Especially in ecological systems, limited data and knowl-

edge can hinder modeling efforts, as they constrain it to
simpler model structures that involve more assumptions. In
these cases, Bayesian network models can still be applied
by making better use of different sources of information,
including expert judgment (Hamilton & Pollino, 2012). Also,
Bayesian networks can be developed as casual models,
which can help understand pathways of hazard and vulner-
ability relations better and thereby be used to assist risk
prioritization (Sperotto et al., 2017).
Carriger and Barron (2020) recently showed how the

Bayesian network estimated a probabilistic risk quotient for
a single species by calculating the probability of an ex-
posure distribution exceeding an effect distribution. Their
Bayesian network estimated the risk by expanding the
standard risk equation to include more uncertainties and
variables that influence the risk (Carriger & Barron, 2020).
The networks that we have created used similar risk quotient
calculations, though instead of focusing on one terrestrial
species, we have included toxicity data for multiple aquatic
species using a species sensitivity distribution. Also, Carriger
and Barron (2020) stated that “the capabilities for per-
forming diagnostic, mixed, and predictive inference make
Bayesian networks especially useful for examining the causal
factor that could lead to higher or lower risk outcomes.” The
influence of different causal factors on the predicted risk in
our case study will be further explored later by including
different scenarios of climate and pesticide application.
The networks that we developed use discretization of

continuous variables and, due to this, lose some of the initial
precision and information. This is commonly considered a
shortcoming of Bayesian network models (Marcot, 2017).
Nevertheless, a possible improvement can be to use dy-
namic discretization to enable higher resolution and lower
uncertainty associated with the predictions (Carriger &
Barron, 2020).
Furthermore, F. A. M. Verdonck (2003) pointed out that

there are some unquantifiable uncertainties such as the
choice of distribution, model, and extrapolation un-
certainties that remain difficult to quantify, some of which
may be overcome by using distribution models other than
the ones used in this study. An alternative to the exposure
modeling that we have carried out in this study was pre-
sented by Wolf and Tollefsen (2021), showing how Bayesian
distributional regression models could be used to better
include spatiotemporal conditional variances in exposure
assessment and still allow for a distributed PEC (Wolf &
Tollefsen, 2021). Further refinement of the Bayesian Net-
work model presented here can make use of such statistical
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modeling for better estimation of the pesticide exposure
distributions.
There are many possibilities for further development

of the models presented here, for example, to better ac-
count for spatial and temporal variations in exposure
and inter‐ versus intra‐species variation in sensitivity in
effect assessment. Nevertheless, we have demonstrated
that this approach can offer a transparent way of
evaluating the required characterization of uncertainty
for pesticide risk assessment (Benford et al., 2018) as well
as for ecological risk assessment in general (Carriger &
Newman, 2012).

CONCLUSION AND OUTLOOK
This study demonstrates that Bayesian network modeling

is a promising tool for probabilistic calculation of a risk
quotient to carry out risk assessment of pesticides. A
probabilistic risk quotient is a more informative alternative
to the traditional single‐value risk quotient, which is often
interpreted as a binary outcome. The Bayesian network
approach provides more opportunities for interpretation,
such as the probability of the risk quotient that exceeds not
only the conventional threshold of 1 but also other specified
threshold values. The model presented here can easily be
mapped to the main steps of traditional risk characterization
frameworks. The Bayesian network approach can still apply
a precautionary factor to account for additional uncertainties
that are not captured by the exposure and effects dis-
tributions, corresponding to the assessment factor used in
traditional risk assessment. Thus, Bayesian networks can
offer a transparent way of evaluating the characterization of
uncertainty required for pesticide risk assessment as well as
for ecological risk assessment in general.
Our planned further development of this Bayesian net-

work includes extending the model for cumulative risk as-
sessment of pesticide mixtures in the aquatic ecosystem.
Furthermore, we intend to incorporate climate and agricul-
tural scenarios to predict the environmental risk of pesti-
cides under alternative future conditions.
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