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Ås, 14th December, 2021

Charlott Kjærre Olofsson

1



2



Abstract

Alzheimer’s disease is a neurodegenerative brain disease that damages neurons in
the part of the brain involved in cognitive function, and early diagnosis is crucial
for treatment that could slow down the progression of the disease. In the preclin-
ical stage, the accumulation of a protein fragment called amyloid-beta outside the
neurons can be associated with the early onset of Alzheimer’s disease.

The aim of the study was to identify biomarkers (features) for early detection of
Alzheimer’s disease using data from patients known to have an accumulation of
amyloid-beta in their brains. 44 features from different sources were used and di-
vided into 5 blocks of similar measurements. A baseline analysis was done with all
the features combined, consisting of 172 patient assessments with complete mea-
surements, where 49 had presence of amyloid-beta. The same patient assessments
were used as the test data for block-wise analysis. This study includes exploratory
analysis of the data using correlation, principal components analysis (PCA) and
partial least squares regression (PLSR). The performance outcomes of five differ-
ent classifiers were compared when trying to separate the two classes. Repeated
Elastic Net Technique (RENT) was used for feature selection, in combination with
repeated stratified k-fold validation for the acquisition of robust results.

Using the selected features from the RENT analysis, the best performing classifier
for the individual blocks were identified through repeated stratified k-fold valida-
tion. A final prediction of the class was computed from the prediction of each
block using a performance-based weighted average. The final score based on this
weighted average did not exceed the score of the baseline study.

The block consisting of factors related to environment and heritage provided the
highest predictive performance. In the baseline analysis with RENT, the factors
related to heritage came out as important for the classification task, along with
features related to cognitive tests. From the features containing information from
MR-images of the brain, white matter hyperintensity and lesion measured in the
occipital lobe can be considered as important for both the baseline analysis and the
block-wise analysis.
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Sammendrag

Alzheimers sykdom er en nevrodegenerativ hjernesykdom som skader nevroner i
den delen av hjernen som er involvert i kognitiv funksjon, og tidlig diagnose er
avgjørende for behandling som kan bremse utviklingen av sykdommen. I det prek-
liniske stadiet kan akkumulering av et proteinfragment kalt amyloid-beta utenfor
nevronene assosieres med begynnelsen av Alzheimers sykdom.

Målet med dette studiet var å identifisere biomarkører (variabler) for tidlig op-
pdagelse av Alzheimers sykdom ved å bruke data fra pasienter som er kjent for å
ha en akkumulering av amyloid-beta i hjernen. 44 variabler fra forskjellige kilder
ble brukt og delt inn i 5 blokker med lignende målinger. En baseline-analyse ble
gjort med alle variablene kombinert, bestående av 172 pasientvurderinger med
komplette målinger, der 49 hadde tilstedeværelse av amyloid-beta. De samme
pasientvurderingene ble brukt som testdata for blokkvis analyse. Dette studiet
inkluderer utforskende analyse av dataene ved bruk av korrelasjon, hovedkompo-
nentanalyse (PCA) og partiell minste kvadraters regresjon (PLSR). Ytelsen til fem
forskjellige modeller for klassifisering ble sammenlignet for å skille mellom de to
klassene. Repeated Elastic Net Technique (RENT) ble brukt for variabel selek-
sjon, i kombinasjon med gjentatt stratifisert k-fold validering for å oppnå robuste
resultater.

Ved å bruke de selekterte variablene fra RENT-analysen, ble den modellen med
best ytelse for de individuelle blokkene identifisert gjennom gjentatt stratifisert k-
fold validering. En endelig prediksjon av klassen ble beregnet fra prediksjonen for
hver blokk ved å bruke et ytelsesbasert vektet gjennomsnitt. Den endelige poeng-
summen basert på dette vektede gjennomsnittet oversteg ikke resultatet i baseline-
analysen.

Blokken bestående av faktorer knyttet til miljø og arv ga den høyeste prediktive
ytelsen. I baseline-analysen med RENT kom variablene knyttet til arv ut som vik-
tige for klassifiseringsoppgaven, sammen med variabler knyttet til kognitive tester.
Fra variablene som inneholder informasjon fra MR-bilder av hjernen, kom hyper-
intensitet og lesjon i hvit substans målt i occipitallappen ut som viktige både for
baseline-analysen og den blokkvise analysen.
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Chapter 1

Introduction

1.1 Background

Dementia is a general term for brain diseases that causes loss of memory, language
problems, and other thinking abilities that are serious enough to interfere with daily
life. One of the most common causes of Dementia is Alzheimer’s Disease (AD),
which is responsible for 60− 80% of Dementia cases [1].

AD is a neurodegenerative brain disease that damages or destroys neurons in the
part of the brain involved in cognitive functions. The developing process of the
disease consists of five stages. The first stage is preclinical AD, then mild cognitive
impairment (MCI) due to AD, and the last three stages consist of Dementia in the
mild, moderate, and severe categories. In the preclinical stage, the patient does
not notice any symptoms, but changes in the brain are measurable. Brain changes
associated with AD are mainly accumulation of a protein fragment called amyloid-
beta outside the neurons and accumulation of an unusual form of the protein tau
inside the neurons, called tau tangles. Fig. 1.1 gives an illustration of how the
two proteins affect a diseased neuron. The illustration includes a healthy neuron
for comparison. Other forms of brain changes associated with the disease include
inflammation and atrophy [2]. Atrophy related to AD is the loss of neurons and the
connection between the neurons. This reduces brain tissue and causes the brain to
shrink.
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Figure 1.1: Illustration of the neuropathology of AD. Comparison of a

healthy neuron and a diseased neuron. Figure adapted from [3]

A positron emission tomography (PET) scan and analysis of cerebrospinal fluid
(CSF) can show abnormal amyloid-beta levels. Not all individuals with abnormal
levels of beta-amyloid go on to develop dementia/symptoms of MCI [1]. Figure 1.2
shows PET scans that detect amyloid-beta plaques, comparing scans from a nor-
mal brain with a brain with AD. Another early indication for AD is the decreased
metabolism of glucose, which is also visible in PET scans [2].

Mild symptoms begin to appear during the stage of MCI due to AD, but they do
not interfere with daily activities. More severe symptoms develop during the last
three stages. AD symptoms include memory loss, cognitive deficits, problems with
recognition, spatial awareness, speaking, reading, or writing. Other symptoms
related to the disease are personality and behaviour changes [1]. As the disease
progresses, it will affect neurons in different brain parts, and ultimately lead to
premature death [2].

The disease progresses gradually, starting with minor changes in the brain. Re-
searchers believe it can take 20 years or more for symptoms like memory loss
and language problems to develop [2]. A study showed that through analysis of
CSF, a mutation in a gene suggests that AD has a pre-symptomatic period of 40-50
years [5]. An early diagnosis opens up treatment opportunities that may slow down
the progression of the disease [6]. There exist medications that could temporarily
improve cognitive symptoms by either increasing neurotransmitters in the brain
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Figure 1.2: PET scans for detecting amyloid-beta plaques. The figure on

the left shows the scan of a healthy brain, while the figure on the right is

of a brain with AD. Figure adapted from [4].

or blocking certain receptors in the brain from excess stimulation that can dam-
age nerve cells. The medication does not stop or reverse the damage of brain cells.
Treatment without medication is available, including memory training, aerobic and
nonaerobic exercise, special lighting to lessen sleep disorders, and music-related
treatment [2]. There exist no treatments that would reverse the death of brain cells,
so early diagnosis is crucial [1].

Several tests can be performed to determine if a person has AD. The tests include
cognitive and memory tests, neurological function tests, blood and urine tests, PET-
CT- or MRI-scan of the brain, and genetic testing [1]. To get an accurate diagnosis,
doctors may also talk to friends and family about a patient’s behaviour and take
tests to rule out other impairment causes [7]. Detecting amyloid-beta abnormality
is standard for diagnosing AD and is done by analyzing the cerebrospinal fluid
(CSF). PET and MRI scans can show structural changes in the brain, amyloid-beta
density, and neural tissue metabolism activity [5].

Risk factors for developing Alzheimer’s Dementia are mainly related to ageing, ge-
netics, and family history. Although the disease is not a natural part of ageing, the
percentage of people with the disease increases with age [2]. Research has shown
an increase in the risk of developing AD related to the apolipoprotein-e4 (APOE-
e4) gene. The APOE gene exists in three forms (alleles) - e2, e3, and e4. Everyone
has a pair of these forms, one inherited from each parent and resulting in six differ-
ent combinations of the APOE pairs, e2/e2, e2/e3, e2/e4, e3/e3, e3/e4 and e4/e4.
Researchers have found that having the e4 form increases the risk of developing

17



AD compared to having the e3 form and that the e2 form may decrease the risk of
developing AD [2]. People with a first-degree relative with AD have a higher risk
of developing AD. Although genetics is a part of this, other lifestyle habits within
a family, such as diet, could also impact this [2]. Other risk factors include indi-
vidual lifestyle factors, traumatic brain injuries, and exposition to environmental
contaminants as toxic metals, pesticides, or industrial chemicals [1]. A connection
of developing AD can also be found with cardiovascular diseases. Many factors
that increase the risk of cardiovascular disease can be related to a greater risk of
developing Dementia. A healthy heart provides the brain with enough blood, and
healthy blood vessels ensure that the blood is oxygen- and nutrient-rich [2].

In 2020, over 50 million people worldwide lived with Dementia, and the number
is expected to increase due to better healthcare and people getting older [8]. The
economic cost of Dementia impacts the family around the person who develops
it and the healthcare system. The existing cost is related to the diagnostics and
informal care and the social and medical care needed. In 2015 the cost of Dementia
worldwide was estimated to be 818 billion US dollars a year. The annual cost is
now above 1 trillion dollars [8].

1.2 Previous work

Because early diagnosis can dramatically improve a patient’s life, many studies
on Alzheimer’s disease using machine learning methods exist. This includes clas-
sification of people with AD and machine learning methods used to search for
biomarkers for AD.

Machine learning methods can explore unknown patterns using medical images[9].
As mentioned, CSF, PET- and MRI-scan can detect amyloid-beta abnormality and
brain changes. As these methods are comprehensive and expensive, cheaper alter-
natives are in demand. One such alternative is a study that uses retinal images that
investigates the retinal vasculature for extracting potential biomarkers [5]. Their
study focus on using machine learning methods for identifying links between the
retinal vasculature and AD, and showed that using machine learning methods could
be an efficient solution for cheaper AD screening [5]. Another study uses func-
tional magnetic resonance imaging (fMRI) combined with a convolutional neural
network (CNN) to differentiate fMRI signals from healthy people, people with
MCI, and AD [10]. The authors of this paper hope to investigate further the possi-
bilities of developing fMRI-based biomarkers for AD and MCI [10].

A study using machine learning models for differentiating between AD and vascu-
lar dementia (VD) showed that machine learning combined with volumetric mea-
surements derived from structural MRI was a useful approach [9].
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There also exist studies that extend beyond classification problems. In the lack
of tools predicting individual progression to Dementia, a study uses a trajectory
modelling approach to determine predictive and interpretable markers of individ-
ual variability in progression to Dementia due to AD [11]. Although not all in-
dividuals with MCI develop Dementia, the disease can also remain stable, and
the study aims to create a model that discriminates between stable and progres-
sive MCI. When predicting an individualized rate of future cognitive decline, their
model showed better performance when trained on biological data than cognitive
data [11]. The biological data contain measurements of amyloid-beta burden, grey
matter density and APOE 4, while the cognitive data contain information about
memory, executive function and affective measurements. The study also showed
that the grey matter score was a highly predictive feature for classifying stable MCI
vs. progressive MCI [11]. The paper refers to grey matter density from MRI scans,
beta-amyloid burden from PET scans, and APOE-4 status as well studied biomark-
ers of AD. Another study uses an unsupervised machine learning algorithm for
simulating detailed patient trajectories to train a model for individual forecasting
of disease progression [12].

Although there exist different models and purposes behind the analysis of AD, the
studies all face some of the same challenges because of clinical data. For exam-
ple, clinical data often contain data from multiple sources derived from different
measurement instruments and may have missing values [12]. Thus, for a broader
implementation of machine learning methods in precision medicine, methods that
can overcome these challenges must be developed.

In this thesis, block-wise analysis will be used to see if more information can
be extracted from the data to improve model performance locally for the blocks.
The separation of features into groups could result in an increase of patients with
no missing values. The models will be based on classification between people
with the presence of amyloid-beta, and people without. As mentioned above, the
presence of amyloid-beta does not necessarily imply that the person will develop
Alzheimer’s dementia, but they are candidates that are more likely to develop AD
than people without.
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1.3 Problem statement

Although there are several risk factors related to the development of Alzheimer’s
disease, scientists don’t fully understand what causes the disease in most people
[13]. This promotes the need for a better understanding of risk factors related to
the disease. Even though there exists no treatment against the disease, early di-
agnosis can be beneficial [7]. As mentioned, there exist methods that could slow
down the decline in memory and other cognitive skills, which will be most benefi-
cial in the early stages of the development of the disease. The problem statement
for this thesis will be to analyse patient data to look for risk factors related to
Alzheimer’s Disease, and factors that could work as biomarkers for early detection
of the disease.

1.4 Structure of thesis

The thesis will start with theory regarding machine learning and the different tech-
niques used, which is described in Ch. 2. The data is described in Ch. 3, while
Ch. 4 gives a description of how the data is preprocessed and how the methods are
applied to the data. Results from the analysis are presented in Ch. 5 and then fur-
ther discussed in Ch. 6. A final conclusion of the analysis and this thesis is given
in Ch. 7.
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Chapter 2

Theory

Data analysis is the process of using different methods to look for information and
patterns in the data. The data analysis process includes collecting the data, cleaning
the data, modelling the data, interpretation, and visualisation of results. There exist
different types of data analysis methods, and the primary methods are text analysis,
statistical analysis, diagnostic analysis, predictive analysis, and prescriptive anal-
ysis. Machine learning is a type of data analysis where algorithms can identify
patterns and make decisions by learning from the data. Machine learning is based
on understanding how the human brain works to create Artificial Intelligence (AI)
that is deployed to solve real-world problems. The human brain consists of con-
nected nerve cells, neurons that process and transmit electrical signals. The first
machine learning algorithm, the Perceptron, is a simplified model of such a neuron
and is based on how a neuron fires a signal dependent on if an accumulated value
goes over a threshold value. The first concept of this algorithm was published in
1957 by Warren McCulloch and Walter Pitts [14]. Machine learning is a subfield
of AI, and Deep Learning is a subfield of Machine learning. Fig. 2.1 gives an
illustration of how the terms are connected.
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ARTIFICIAL INTELLIGENCE
Branch of computer science working 

with simulating human behavior in 
machines

MACHINE LEARNING
Algorithms that learn from data 

and have the ability to alter 
themselves

DEEP LEARNING
Multilayered neural networks 
that learn from large amounts 

of data

Figure 2.1: Illustration of how the terms used in the field of data science

are connected.

Through an iterative process, machine learning algorithms gradually improve their
performance and can be applied to analyse large amounts of data. In machine
learning the variables in the dataset are called features and the response variables
are called targets. The different types of Machine learning are listed below:

• Supervised learning: The model can train itself with already known answers,
labelled data, and then be used on new data for prediction. The models
receive direct feedback in supervised learning.

• Unsupervised Learning: There are no labels, and the model tries to find hid-
den structures in the data without direct feedback. Subfields of unsupervised
learning include clustering of data and dimensionality reduction of the data.

• Reinforced Learning: Training an agent (system) that learns from interac-
tions with its environment. A reward is given based on the interaction, and
the agent tries to maximise the reward.

In this thesis supervised learning will be used, and it consists of the subcategories
classification and regression. Classification is used for predicting categorical class
labels and can be used for binary classification or multiclass classification. A com-
monly used example for binary classification is the task of separating email by
spam or non-spam. Regression is used for predicting a target that has a continuous
value [14]. Some classification models can produce continuous values in the form
of probability that a sample belongs to one of the classes [15].
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Chapter structure

The theory chapter will start with describing the steps involved in preprocessing
the data, in Sec. 2.1. Sec. 2.2 describes methods for exploratory analysis of the
data, including correlation, Principal Component Analysis (PCA) and Partial Least
Squares Regression (PLSR). Sec. 2.3 describes the models used for classification,
and Sec. 2.4 goes into how to evaluate a model. Feature selection with Repeated
Elastic Net Technique (RENT) will be described in Sec. 2.5. Sec. 2.6 will go into
the details about creating ensembles of several models.

2.1 Preprocessing

Preparing the data for analysis consists of several steps. Cleaning the data is es-
sential to ensure good quality of the data and includes removing data that is in-
complete, duplicate values, or values that are irrelevant for the analysis. Different
techniques can be applied to modify the data instead of removing it [16]. The
dataset may include missing values, and there are different ways of handling this.
Columns or samples can be removed if they contain several missing values, or they
can be handled with data imputation. This means replacing the missing value with,
e.g., the mean, median, or most frequent value of the given feature. The men-
tioned examples are simple ways of imputing missing values, and more advanced
techniques exist.

2.1.1 Data transformation

Data transformation is another step in preprocessing the data, which is the pro-
cess of transforming the data into an applicable form. Transforming the data can
improve the performance of a model [17]. One way of transforming the data is
through scaling the data to limit the value range. Normalisation is one way of scal-
ing the data and limits the value to be in the range from 0 to 1. This is done using
the equation:

X ′ =
X −Xmin

Xmax −Xmin
(2.1)

Where X ′ is the new value for the sample, Xmin is the minimum value of that fea-
ture and Xmax is the maximum value. Another way of scaling the data is through
standardisation. With standardisation, the values are scaled so that they are centred
around the mean with a unit standard deviation. The values are not restricted to a
particular range.

23



This is achieved by subtracting the mean value, µ, and dividing by the standard
deviation, σ as shown in equation:

X ′ =
X − µ
σ

(2.2)

Whether to normalise or standardise depends on the problem and the data, and it
could be useful to test both. Both techniques are useful when working with mea-
surements that differ in range. Standardisation does not give a limited range for
the values, and the operation will not affect outliers. Another type of data transfor-
mation is power transformations, which are techniques that use a power function
to make the probability distribution of a feature more Gaussian-like [17]. This re-
moves distributional skewness in a feature. One method of power transforming the
data is Box-Cox transformation [18], which is defined by the equation:

yλ =

{
(yλ − 1)/λ, if λ 6= 0.
log(y), if λ = 0.

(2.3)

where y is a list of strictly positive numbers and λ is a hyperparameter used to con-
trol the nature of the transformation [17]. Another method of power transformation
is Yeo-Johnson transformation [18] and can be used without the restriction of posi-
tive numbers. The Yeo-Johnson transformation is defined with the equation:

ψ(λ, y) =


((y + 1)λ − 1)/λ, if λ 6= 0, y ≥ 0.
log(y + 1), if λ = 0, y ≥ 0.
−[(−y + 1)2−λ − 1]/(2− λ), if λ 6= 2, y < 0.
−log(−y + 1), if λ = 2, y < 0.

(2.4)

Where ψ is the new value for the sample and a function of λ and y. λ is a hyper-
parameter, chosen to give the best approximation of a normal distribution. If the
values of y are strictly positive, the transformation becomes the BoxCox transfor-
mation.

2.1.2 Data reduction

When dealing with a large dataset, a reduction of the data can be useful. Data re-
duction preserves the information in the data set while reducing the volume. Three
basic methods used for reducing the data are dimensionality reduction, numerosity
reduction, and data compression. Dimensionality reduction reduces the number
of features in the data set, and different techniques can be used. One of the tech-
niques is Principal Component Analysis (PCA), which is discussed more in detail
in Sec. 2.2.3.
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2.1.3 One-hot-encoding

Features in a dataset can consist of different types of data. Numerical features
can be both discrete and continuous values. A feature can also consist of cate-
gorical features, grouping information with similar characteristics, and containing
a finite number of groups. An example of a categorical feature could be gender.
If the dataset contains categorical features, these should be converted to numeri-
cal values. Most algorithms require input values to be numerical. A method of
converting data is One Hot Encoding, which gives each categorical value a new
column. It then assigns binary values of 0 and 1 to these columns. Figure 2.2
gives an illustration with the example of a feature: gender, with categories male
and female. On the left is the original dataset, and on the right is the dataset after
One-hot-encoding. One-hot-encoding is useful in situations where the categorical
features don’t have any way of being ordered in numerical ranking [19].

Figure 2.2: Illustration of how One-hot-encoding changes the categorical

feature into numerical values.

2.2 Exploratory analysis

Through descriptive statistics and visualisation of the distribution of values in a
feature, it is possible to perform an initial analysis of the data. Exploratory analysis
of the data can consist of several techniques to analyse the data for patterns or
anomalies.

Descriptive statistics gives information about the values in the data. For features
containing continuous data, the distribution can be numerically described with dif-
ferent statistical measures. The mean and median for the different features will give
information about the centres of the data, the central tendency. Plotting the distri-
bution in a histogram will provide information about how the values are spread
[20].
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2.2.1 Correlation

With multiple features in a dataset, it could be of interest to obtain information
about the relationship between the features. The covariance between two features
describes the direction of the linear relationship between the two features and can
indicate how these features change together. The covariance σjk between two fea-
ture vectors, xj and xk, can be calculated with the equation [14]:

σjk =
1

n− 1

n∑
i=1

(xij − µj)(xik − µk) (2.5)

where µj and µk are the sample means of features j and k, and n is the number of
samples. xij is the value of sample i for feature j and xik is the value of sample i
for feature k. The values for the covariance are not standardised. This can make
it difficult to determine the strength of the relationship between the two features.
By dividing the covariance with the standard deviations of the features, the value
for the correlation coefficient can be computed. Correlation measures whether
the two variables systematically vary together, and therefore describes the strength
of the relationship between two features. This is shown mathematically with the
equation:

CORR(xj , xk) =
σjk

σxjσxk
(2.6)

Where σxj and σxk are the standard deviations of the features xj and xk. The val-
ues for the correlation coefficient range from −1 to 1. The closer the value is to
either −1 or 1, the more closely the two features are related. When the coefficient
is positive, an increase in one feature means an increase in the other feature. When
the coefficient is negative, an increase in one feature means a decrease in the other
feature, meaning the changes in the two features are inversely related. The corre-
lation coefficient will be 0 if there is no relationship between the two features [21]

The value for the correlation coefficient between the features in a dataset can be
plotted in a heat map. This will give visual information about which features are
the most correlated or anti-correlated. This method is used in this thesis, and the
heat maps are presented in Sec. 5.2.1.

2.2.2 RV matrix correlation

When working with data with many features or if the data comes from differ-
ent sources, it can be helpful to divide the data into groups of similar measure-
ments.
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It could be of interest to look into the overlapping information between the blocks.
As with correlation between features, it is possible to calculate the correlation be-
tween blocks. This is done by calculating the RV matrix correlation coefficients
between pairs of arrays and the coefficient represents a measure of common in-
formation. Given two matrices X and Y, one expression for the RV matrix is
[22]:

RV (X,Y) =
V ec(XXT )T V ec(YYT )√

V ec(XXT )TV ec(XXT ) x V ec(YYT )TV ec(YYT )
(2.7)

Where V ec(X) is the vectorised version of the matrix X. The value for the correla-
tion coefficients is between 0 and 1, where 1 is perfect correlation. For matrix cor-
relations for high-dimensional data, the modified RV-coefficient can be used. The
modified RV-coefficient is also calledRV2-coefficient and ignores the diagonal ma-
trices. The same formula can be used if replacing: XXT with XXT − diag(XXT ).
The matrix diag(XXT ) contains only diagonal elements, the diagonal elements of
XXT , and zero’s elsewhere [22]. For the modified coefficient, the values can range
from −1 to 1, which means it also can measure negative correlation.

2.2.3 Principal Component Analysis

Principal components analysis (PCA) is an unsupervised, non-parametric tech-
nique for exploratory data analysis. PCA can be used to describe the variability
in a dataset and reduce the dimensions of a dataset while preserving systematic
information by the use of principal components [23]. Reducing the dimensions is
done by feature extraction, where the extracted features are the principal compo-
nents and are formed by linear combinations of the original features. PCA projects
the data onto a new subspace by looking for the directions with the most variance
in the data. The subspace can have equal or fewer dimensions than the original
subspace of the data. Finding the most variance is done by finding patterns based
on the correlation between features [14].

PCA works as follows: for a d-dimensional feature vector, ~x, given as:

~x = [x1, x2, .., xd] (2.8)

the first step is to standardize the data using Eq. (2.2), because of the sensitivity to
scaling for the direction of the principal components. The next step is to construct
the covariance matrix, which is a square d × d matrix, where d is the dimension
of the feature vector. The covariance between two features is discussed above
in Sec. 2.2.1 and is calculated using Eq. 2.5. The covariance matrix can then be
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constructed by calculating the covariance between the different features. If d = 3,
the covariance matrix would become:

Σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

 (2.9)

Where σ12 is the covariance for j = 1 and k = 2. The covariance matrix is then
decomposed into its eigenvectors and eigenvalues using eigenvalue decomposition
[24]. The eigenvectors indicate the direction of maximum variance, which corre-
sponds to the principal components. The elements of an eigenvector are the weight
coefficients for each of the features from the original data. The weight coefficients
are also known as loadings. The corresponding eigenvalues represent the magni-
tude of the eigenvector. For an eigenvector, ~v, with the eigenvalue, λ, the following
condition is satisfied [14]:

Σ~v = λ~v (2.10)

For dimensionality reduction, the subset of eigenvectors that contributes to most
of the variance should be selected and the eigenvalues can be used to calculate
the explained variance. The explained variance ratio for a given eigenvalue λj is
shown in the equation:

Explained variance ratio =
λj∑d
j=1 λj

(2.11)

which is the fraction of the given eigenvalue divided by the total sum of all the
eigenvalues. The eigenvalues give the magnitude of the eigenvectors and can be
sorted in decreasing order. The eigenvectors are sorted in corresponding order as
the eigenvalues. From this, the k top corresponding eigenvectors can be chosen
to represent the new feature subspace, where k is the dimension of the new fea-
ture subspace. For dimensionality reduction, k must be smaller than d. To find
an appropriate value for k, it is possible to plot the explained variance ratio as a
function of the number of principal components. It is ideal to select the subset of
eigenvectors that contains most of the information in the data, which is the same
as choosing the number of principal components that most of the variation. The
next step is to construct a transformation matrix, W, which consists of the top k
eigenvectors. Then the original data set can be transformed using this matrix to get
the new feature subspace, as shown in the following equation:

X’ = XW (2.12)
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where the new feature subspace is k-dimensional. X’ represent the scores, and
there is one score for each sample for every component. X is the original data
and W is the loadings. The scores can also be written with the notation: T = X P,
where X is the original data and P represent the loadings. A scores plot can be used
for exploratory analysis of the data showing how the samples are distributed across
the plane of two components. Fig. 2.3 shows an illustration of a scores plot. In this
example, the horizontal axis represents the first component, while the vertical axis
represents the second component. It is possible to choose which of the components
to plot against each other.

Figure 2.3: Illustration of a scores plot with the first two principal com-

ponents.

The percentage of explained variance each component contributes to is given in the
parenthesis. Each dot represents a sample. A plot of the scores can identify outliers
in the dataset and can be also be used to see if any evident grouping occurs. A plot
of the loadings shows how strongly each feature influences a principal component.
Fig. 2.4 shows an illustration of a loadings plot with the first two principal compo-
nents. A loadings plot can be used for identifying clusters of features. The scores
and loadings can also be plotted together, which is called a biplot.

Figure 2.4: Illustration of a plot of the loadings with the two first principal

components.

29



2.2.4 Partial Least Squares Regression

Regression is a statistical method for analyzing the strength and character of the
relationship between features. With simple regression analysis, this is the relation-
ship between a single explanatory feature and a response, usually denoted with
x and y, respectively. The task of regression analysis is to produce an estimate
of the features involved in the analysis based on previous information [25]. For
simple linear regression, this means finding the model that best describes the re-
lationship between the features. The regression model can be described with the
equation:

y = a+ bx (2.13)

where a is the intercept of the best-fitted line and b is the slope of the line. The
individual sample’s deviation from the line is called the residuals, and finding the
best-fitted line to the measurements is done by finding a line that minimizes the sum
of the squared residuals. Figure 2.5 shows an example of a regression problem for
illustration. The red line is the regression line, the black dots are the samples, and
the black lines show the residuals.

Figure 2.5: Example of a regression problem. The red line is the regression

line. The samples are shown as black dots and the residuals as black lines.

Figure adapted from [26].
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The line that minimizes the sum of the squared residuals is called the least-squares
line, and the slope is calculated with the equation:

b =
SSxy
SSxx

(2.14)

Where SSXY is the sum of the cross products and SSXX is the sum of the squares
for variable x. The intercepts can be found by rearranging Eq. 2.13 and using the
average values for y and x.

With multiple regression analysis, we are dealing with several explanatory features,
x1...xn, to describe the target feature. The explanatory features are independent
features, and the response is a dependent feature. When dealing with two explana-
tory features, the task is no longer to find the best-suited line but the best-suited
plane. The best-suited plan can be found by minimizing the distance between the
value of y and the estimated plane. This can be extended to the general concept
that when dealing with n explanatory features, the task is to find a n dimensional
best-suited plane [25].

Partial Least Squares Regression (PLSR) is a supervised technique for exploratory
data analysis. Similar to PCA, it projects the data onto a new subspace, but it differs
from PCA because it projects both the X and Y data. The following equations can
describe a PLSR model [27]:

X = TPT + E
Y = UQT + F (2.15)

X is the data matrix with dimension n ∗ m and Y is the response matrix with
dimension n ∗ p. T and U are matrices with dimensions n ∗ l and are the scores
matrices for X and Y. P and Q are the loadings matrices for X and Y and have
dimensions m ∗ l and p ∗ l. E and F are residual error matrices.

A PLSR model (requires) solving an optimization problem under the restrictions:
~t = X~w and ~u = ~t~c = X~w~c. The models optimisation task is to maximize (~tT~u)
subjected to ~tT~t = ~wT ~w = I, which means maximizing the covariance of the
vectors ~t and ~u. The regression coefficient matrix can be calculated with equa-
tion:

BPLS = W(PTW)−1CQT (2.16)

The predicted value can then be found with equation:

Ŷ = TCQT = XBPLS (2.17)
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2.3 Models for classification

As the problem studied in this thesis is a binary classification problem, this sec-
tion describes models used for classification. Classification is a type of supervised
learning, where the model learns from labelled data.

As mentioned at the beginning of this chapter, machine learning is inspired by how
the biological brain works and how the signals are transmitted through neurons in
the brain. The first machine learning algorithm, the Perceptron, is a model with a
single neuron and is used for binary classification [14]. Figure 2.6 illustrates the
concept behind the Perceptron. The network receives input values x1 to xn. The
input values are then linearly combined with the weights, w1j to wnj , to form the
net input z. The net input is referred to as netj in the figure.

Figure 2.6: Illustration of the concept behind the single-neuron Perceptron

algorithm. Figure adapted from [28].

The net input is used as input to the activation. The net input can be calculated
with equation [14]:

z = ~wT~x = w0x0 + w1x1 + ..+ wnxn (2.18)

w0 and x0 represents the bias. Which class the sample belongs to is decided by
the value of the net input and a threshold value, θ. The activation function for the
Perceptron is called a unit step function. Defining the bias unit as w0 = −θ and
x0 = 1, the function can be described with equation:

φ(z) =

{
1, if z ≥ 0,
−1, otherwise.

(2.19)
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The network learns by updating the weights, which happens after computing the
output value, ŷ, denoted with oj in the figure. The weights are initially zero or
small random numbers and each weight, wj , in weight vector ~w is updated simul-
taneously:

wj := wj + δwj (2.20)

Where δwj is calculated with the equation:

δwj = η(y(i) − ŷ(i))x(i)j (2.21)

where i indicates the ith samples, η is the learning rate, y is the actual class label,
and ŷ is the predicted class label. The Perceptron model will only converge if
the classes are linearly separable [14]. Another single-layer neural network is the
Adaptive Linear Neuron (Adaline), which lays the foundation for understanding
more complex networks and classification models. The Adaline model illustrates
the key concept of defining and minimizing continuous cost functions [14]. The
model uses a linear activation function for updating the weights, which is described
with the equation:

φ(z) = z (2.22)

After the activation function, a threshold function is used to make the final predic-
tion. While the Perceptron compares the actual class label to the predicted class
label to update the weights, the Adaline compares the actual class label with the
continuous output from the linear activation function [14]. To learn the best-suited
parameters, a cost function can be used, where the goal for the model is to mini-
mize this cost function. In Adaline, the cost function is defined as:

J(~w) =
1

2

∑
i

(y(i) − φ(z(i)))2 (2.23)

Showing that the Adaline algorithm learns the weights as the sum of squared errors
(SSE) between the actual class label and the calculated outcome. An algorithm
called gradient descent is used to find the weights that minimize the cost function.
The weights can be updated by taking a step in the opposite direction of the gradient
to the cost function for a given ~w. The change in weights is calculated by taking
the negative gradient multiplied by the learning rate, and the gradient of the cost
function is calculated using the partial derivative of the cost function with respect
to each weight in ~w [14].
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The update of weight can be described mathematically with the equation:

∆wj = −η ∂J
∂wj

= η
∑
i

(y(i) − φ(z(i)))xij (2.24)

Figure 2.7 illustrates how the gradient descent algorithm works by using an ex-
ample where the data is fitted to a straight line. The figure on the left shows the
straight line as black x’s and the fitted lines with different values for the weight.
The initial weight is zero and the orange line is the start. By gradually increasing
the weights, the line gets closer to the black line. The figure on the right shows the
cost function. The orange dot represent the start and using the gradient the dots
move closer towards the global minimum, the minimum cost.

Figure 2.7: Illustration of how the cost can be minimized using gradient

descent. The figure on the left shows the data and the fitted lines, and the

cost function is shown in the figure on the right.

Building on these fundamental concepts of machine learning, the different classi-
fiers used in this thesis will be described in the following sections.

34



2.3.1 Logistic Regression

Logistic Regression is a linear model used for binary classification. The model per-
forms well for linearly separable classes and is a widely used algorithm for classi-
fication [14]. The main difference between Logistic Regression and the previously
described Adaline algorithm is the activation function, φ. Logistic Regression uses
an activation function called logistic sigmoid function, which is defined as:

φ(z) =
1

1 + e−z
(2.25)

Where z is the net input to the activation function described with Eq. 2.18. Fig-
ure 2.8 shows the sigmoid activation function. It maps the net input to values in the
range of [0, 1], describing the sample’s probability of belonging to one of the two
classes.

Figure 2.8: Graphic representation of the sigmoid activation function used

in Logistic Regression. Figure adapted from [29].

A threshold function is used to turn the probability into binary values. For Logistic
Regression this is mathematically described:

z =

{
1, if φ(z) ≥ 0.5.
0, otherwise.

(2.26)

Logistic Regression is a probabilistic algorithm, and the cost function for learn-
ing the weights is based on the log-likelihood function. The cost function can be
written as:

J(~w) = −
∑
i

y(i) log(φ(z(i))) + (1− y(i)) log(1− φ(z(i))) (2.27)
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The gradient descent algorithm can be used for optimizing the cost function. The
negative sign comes from the fact that we want to maximize the probability by
minimizing the loss. If the cost decreases, the maximum likelihood assuming that
samples are drawn from an identically independent distribution will increase [? ].

2.3.2 Support Vector Machine

The Support Vector Machine (SVM) algorithm can be thought of as an extension of
the Perceptron and can be used for regression and classification tasks, but is widely
used for classification problems [30]. When looking at a classification problem, the
algorithm works to find a hyperplane that distinctly separates the two classes, also
called the decision boundary. Given a decision boundary that separates positive and
negative samples, we then have a positive- and negative hyperplane. The distance
between the positive- and negative hyperplane is known as the margin, and the
SVM algorithm works to maximize this margin, finding the hyperplane with the
greatest margin. With a large margin, the models tend to have lower generalization
errors [14].

Figure 2.9 illustrates the concept behind the algorithm. The optimal hyperplane is
illustrated as a red line, with the margin at each side as dotted lines. In this case, we
are trying to separate the blue and the green samples, which we could call the blue-
and green hyperplane. The support vectors are the samples closest to the decision
boundary.

Figure 2.9: Illustration of the optimal hyperplane, support vectors, and

the margin used in the SVM algorithm. Figure adapted from [31].
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As shown in the figure, the positive- and negative hyperplanes are parallel to the
optimal hyperplane. The objective function of the SVM becomes the maximization
of the distance between the positive- and negative hyperplane under the constraint
the samples are correctly classified [14]. Wanting all the positive samples to fall
on the side of the positive hyperplane and the negative samples to fall on the side
of the negative hyperplane can be described mathematically as:

y(i)(w0 + ~wT~x(i)) ≥ 1 (2.28)

To handle nonlinearly separable cases, a slack variable can be added to the equation
above. Another possibility is mapping nonlinear combinations of the features to a
higher-dimensional space using kernel methods [14].

2.3.3 Decision Tree

Decision Tree classifiers are models that make decisions based on a series of ques-
tions to break down the data [14]. Figure 2.10 shows the structure of a Decision
Tree. Starting with the root node, it splits into internal nodes where decisions are
made, also called decision nodes. The final leaf nodes are called the terminal nodes
since it is a final node, and no more splitting can be done. When all the samples
at each node belong to the same class, the leaf node can be called a pure node
[32].

Figure 2.10: An example of a Decision tree. Starting at the root node and

branches out to decision nodes. The final nodes are the leaf nodes. Figure

adapted from [33].

The number of nodes at each level and the number of levels, the depth, will depend
on the problem and how each split is performed. The data is split in a way that
maximizes the information gain (IG), which gives information about how impor-

37



tant a feature is. The objective function for the Decision Tree algorithm can be
described with the equation:

IG(Dp, f) = I(Dp)−
m∑
j=1

Nj

Np
I(Dj) (2.29)

Where Dp and Dj are the dataset of the parent node and jth child node, f is the
given feature, Np and Nj are the number of samples at the parent node and the
jth child node and I is the impurity measure. Information gain is the difference
between the child node impurities added together and the impurity of the parent
node [32]. A binary decision tree splits each node into two leaves and the common
impurity measures, also called splitting criteria, are Gini impurity (IG), entropy
(IH ), and classification error (IE).

2.3.4 Random Forest

Random Forest is an ensemble technique that combines multiple decision trees to
form one model. By combining multiple trees, it is possible to build a model that
generalizes better than one tree alone. Ensuring that there are enough trees will
prevent that the model is overfitted on the training data. The algorithm for random
forest can be summarized in four steps [14]:

1. Choose n samples from the training data with replacement.

2. Grow a decision tree from the n samples. At each node:

• Select d features without replacement.

• Split the node using the feature that maximizes the information gain.

3. Repeat steps 1-2 a given number of times.

4. Aggregate the prediction by each tree and use majority voting to assign the
class label.

Figure (2.11) shows an illustration of a Random Forest model consisting of three
trees, where the sample is referred to as an instance. The decision of which class
a sample belongs to is based on majority voting from the predictions that each tree
makes.
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Figure 2.11: An example of how a forest can be constructed. Consisting

of three decision trees. Figure adapted from [34]

By averaging or combining results from different trees, the model overcomes the
issue of overfitting the data [35]. Compared to a single decision tree, Random
Forest has less variance. These advantages come at the cost of more computational
resources needed to implement the Random Forest model, and that prediction can
be time-consuming.

2.3.5 K-Nearest Neighbors

The K-Nearest Neighbors algorithm (KNN) is different from the other algorithms
discussed as it uses the data directly for classification and needs to keep all the
training data. This could be an advantage because the classifier adapts as new data
is collected, but this also means that the efficiency for classifying new samples
decreases with the increase of data. With more data the memory computations
increases. The algorithm can be summarized in three steps [14]:

1. Choose a number, k, representing the number of neighbours and a distance
metric.

2. Find the k-nearest neighbours of the data to be classified.

3. Assign class label by majority voting.

The algorithm uses a chosen metric to calculate the distance between points and
works with the assumption that similar things exist close to each other. There are
several metrics that can be used for calculating the distance, but the Euclidean
distance (straight line) is commonly used. The number of neighbours, k, is the
algorithm’s core deciding factor [36].
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Figure 2.12 illustrates how the algorithm works. The new sample to classify is
marked as a green circle, and the distance from this sample is marked with a solid
and a dashed circle. k is equal to five for the outer dashed circle and 3 for the
inner solid circle. For k = 3 the new sample, the green circle, will be predicted
as the class of red triangles. For k = 5 it will be predicted as the class of blue
squares.

Figure 2.12: Illustration of the concept behind KNN. The circles represent

the neighbourhood of the sample that is to be classified. Figure adapted

from [37].

2.3.6 Passive Aggressive Classifier

There exist additional categories of Machine Learning in addition to the main cat-
egories supervised learning, unsupervised learning and reinforced learning, which
was listed at the beginning of this chapter. One of them is Online learning, which
is the category that the Passive Aggressive Classifier belongs to. With online learn-
ing, the algorithm is fitted with the training data in increments and continues to
learn when new data is added [38]. Adding the data sequentially can be useful
when working with a large amount of data and when used in systems that continue
to receive data. The algorithm classifies labels as −1 and 1. 0 is the classifica-
tion boundary, and between −1 and 1 is a margin. The algorithm computes a loss
function based on where the prediction falls. If a label is predicted correctly, the
loss is zero, and the algorithm stays passive. The error becomes bigger the fur-
ther away the prediction is for the correct value, and the algorithm is said to move
aggressively to classify the labels [38].
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2.4 Model Evaluation

When building a machine learning model, the performance must be evaluated to
know if the predictions can be trusted. This will give information about how well
the model generalizes on unseen data.

When a model is too simple, it will not capture the relationship between the features
and target and miss important trends. This results in poor prediction performance.
The model is then under-performing, also called under-fitting. High bias and low
variance is a good indication of underfitting [39]. Bias error describes how much
the predictions differ from the actual value, while variance gives information about
how the prediction on the same sample differs from each other when the model is
trained on different subsets of the data. Figure 2.13 illustrates bias and variance.
The white circle middle is the actual value, and the black dots are the predictions.
The figure illustrates how a model can have low bias and low variance (a), high
bias (b), low variance (c) or high bias and high variance (d). An accurate model
has low bias and low variance.

Figure 2.13: Illustration of the terms bias and variance. The white circle

in the middle can be considered as the target. Figure adapted from [40].

More complex models lead to less bias and lower bias in the model will cause a re-
duction in error. But a model can also become too complex, overfitting the training
data, which in turn leads to high variance. This will give good prediction perfor-
mance on the training data used for learning but poor prediction performance on
unseen data since the model does not generalize well [39]. Finding a good balance
between the errors bias and variance is necessary for making a good model, and the
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model needs to be evaluated to find this balance [14]. Figure 2.14 shows an illustra-
tion of a regression model that is underfitted (left), optimal (middle) and overfitted
(right), where the task is to find the best-suited curve to the blue dots.

Figure 2.14: Shows the cases of a model that is underfitting, balanced and

overfitting. Figure adapted from [41].

There exist different techniques for accessing the performance of a model. There
are also different scoring metrics to use, and it is important to choose the right met-
ric for the given problem and data to measure the model’s performance correctly.

2.4.1 Regularisation

To handle underfitting and overfitting, finding a good bias-variance tradeoff, the
model complexity can be increased or decreased respectively. A method for this
is regularisation, which works to reduce the variance in a model without a con-
siderable increase in bias [42]. With this method, a regularisation term is added
to the cost function to shrink the weights during training. The regularisation term
includes a regularisation parameter, λ, that decides how much we want to penalize.
If it is set to zero, the regularisation term will have no effect. An increase in λ
will cause a higher penalty and a reduction of the weights [42]. As the value for
λ approaches infinity, the weights will approach zero. When the weights decrease,
the variance will decrease, but it is essential to find the correct value [42]. There
are mainly two types of regularisation techniques. One of them is Ridge Regres-
sion, which uses an L2 penalty function as shown in Eq. 2.30. To improve long-
term performance this method introduces a small amount of bias, known as Ridge
regression penalty. The technique minimizes the weights, but they don’t become
zero. The regularisation term for this technique is defined with the equation:

λ

m∑
j=1

w2
j (2.30)
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A constraint function can be defined when defining a constant s for each value of
λ. The constraint is shown in Fig. 2.15 in turquoise colour and is a circle for Ridge
regression. The Ridge regression technique can be thought of as finding a solution
to an equation where the summation of the squares of the weights is less or equal to
s, which becomes the constraint function [42]. The weights will have the smallest
residual sum of squares(RSS) for the samples that lie within the circle given by this
constraint. The other technique is called Lasso, and it uses an L1 penalty function.
The regularisation term is defined with the equation:

λ
m∑
j=1

|wj | (2.31)

This technique takes the absolute weights instead of a square of weights, and the
constraint function gets the shape of a diamond. With this technique, the weights
can become zero, and it can be used for feature selection. Figure 2.15 gives a geo-
metric interpretation of the two regularisation methods. The symbol β is used for
the weights. The Lasso technique is presented on the left and the Ridge regression
technique on the right, with the constraint function as the green areas. The example
in the figure uses the sum of squared errors (SSE) cost function, which is the cost
function used in the Adaline algorithm, described in Sec. 2.3. The same concept
applies to other cost functions [14]. The contours of RSS are shown as red ellipses.
In the figure, the Lasso and Ridge regression weight estimates are given by the first
point where the ellipse meets the constraint region.

Figure 2.15: Lasso on the left and Ridge regression on the right with the

constraint functions in turquoise. Figure adapted from [43].
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A third regularisation method is the Elastic Net, which combines the L1 and the
L2 penalty functions [44]. It uses an L1 penalty to produce sparsity and an L2
penalty for selecting features [14]. The regularisation term is the sum of the two
previous terms, but with different values for the parameter λ:

λ1

p∑
j=1

β2j + λ2

p∑
j=1

|βj | (2.32)

2.4.2 Splitting the data

Before training the model the data is split into training data and test data. The
training data is used to fit the model and learn the weights. The test set is used to
evaluate the already fitted model to see how it performs on unseen data. A portion
of the training data can be used as validation data. Validation data can be used
for evaluating the model while tuning the hyperparameters. Hyperparameters are
discussed in the following section. The final evaluation of the model is done on
the test data. The ratio of the data to use in each set will depend on the size of the
dataset and the model used [14].

2.4.3 Hyperparameters

In Sec. 2.3 a theoretical description of the different models for classification was
given. In practice, these models have hyperparameters that can be adjusted. The
hyperparameters are not the parameters that are derived through training of the
model, the weights. Instead, the hyperparameters control the learning process. An
example of a hyperparameter is k, the number of neighbours used in the KNN
algorithm. To find the best-suited hyperparameter, the model must be evaluated
for different values to see which gives the highest value for the selected scoring
metric.

2.4.4 Cross-validation

Cross-validation is a way of evaluating a model by training the model on part of the
data and evaluating the performance on unseen data. Cross-validation can be used
for finding the best suitable hyperparameters, optimizing the hyperparameters. It
can also be used for comparing several different models. Cross-validation solves
the problem of the reduction of data due to the previously mentioned splitting. The
test data is left out for the final evaluation, but the training data will be divided
into smaller partitions that will be used to evaluate the model. There exist differ-
ent types of cross-validation, but a detailed description will only be given for the
method used in this thesis.
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K-fold cross-validation

K-fold cross-validation is a commonly used cross-validation technique where the
training data is iterated through k times [14]. The training data is split into k parts
in each iteration. k − 1 parts are used for training and the last for validation. Fig-
ure 2.16 shows an illustration of the process with k = 4. The samples are coloured
in red and green, given with class it belongs to. The samples used for validation in
each iteration is highlighted by a square, black rectangle. The validation samples
are referred to as test data in the figure. k = 4 models are created and the average
performance is based on these 4 models. This method can be computationally ex-
pensive but utilizes the available data to make a robust model evaluation. If there
is an imbalance in the distribution of the classes, stratified k-fold cross-validation
is an option to preserve the proportions of the classes in each fold, which can give
better bias and variance estimates [14].

Figure 2.16: Illustration of the process behind k-fold cross-validation.

Figure adapted from [45].

2.4.5 Scoring metrics

In binary classification, the models’ predictions fall into one of four categories
[46]:

• True positive (TP): Actual positive that was predicted positive.

• False positive (FP): Actual negative that was predicted positive.

• True negative (TN): Actual negative that was predicted negative.

• False negative (FN): Actual positive that was predicted negative.
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These categories can be visualised through a confusion matrix as shown in Fig. 2.17.
The actual values are along the vertical axis, and the predicted values are along the
horisontal axis.
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Figure 2.17: Confusion matrix illustrating the four categories of predic-

tion.

There exists different types of metrics for evaluating the performance of a model,
and it is important to choose an appropriate metric for a given problem. A fre-
quently used metric for scoring a classifier is accuracy, which is the fraction of the
correctly predicted samples of all the samples. It and can have a value between 0
and 1 and is described mathematically with the equation:

ACC =
TP + TN

TP + TN + FP + FN
(2.33)

Accuracy is useful for evaluating a model’s performance if the distribution of the
class labels is balanced. When dealing with cases where the class distribution is
unbalanced, other metrics should be considered for evaluating performance. Preci-
sion is a class-specific metric, and defined with the equation:

PRE =
TP

TP + FP
(2.34)

Precision gives the fraction between the correctly predicted positive samples, and
all the samples predicted as positive. Recall is another used metric and is the frac-
tion between the correctly predicted positive samples, and all the positive samples.
It can be described with the equation:

REC =
TP

TP + FN
(2.35)
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Another metric is the F1-score, which is the harmonic mean of precision and recall,
combining the two metrics.

F1 =
2 (PRE) (REC)

PRE +REC
(2.36)

The mentioned metrics have values between 0 and 1. The last metric to be de-
scribed is Matthews correlation coefficient (MCC), which is unaffected by an im-
balance in the distribution of the classes. The value for MCC is in the range from
−1 to 1, where 1 is perfect classification, −1 is perfect misclassification, and 0
can be thought of as random guessing. It can be calculated with the equation
[46]:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)
(2.37)

2.5 Repeated Elastic Net Technique

When working with datasets with many features, it could be beneficial to reduce the
dimensions of the data. There exist different techniques for dimensionality reduc-
tion. As mentioned in Sec. 2.2.3, PCA can be used to reduce the features through
feature extraction. Another way of reducing the dimensions is by feature selec-
tion, reducing the number of features. Reducing the number of features makes the
modelling computational more efficient and reduces the chance of overfitting the
data. A dataset can contain features that don’t contribute to any useful information
for the prediction of the target, and feature selection methods look for the features
that are most useful for that purpose [47].

There are many different techniques used for feature selection and can be catego-
rized into filter-, wrapper-, and embedded methods [48]. The method used in this
thesis is Repeated Elastic Net Technique (RENT), which is an embedded approach
for feature selection. The method is based on an ensemble of elastic net regular-
ized models that are trained on separate subsets of the data [48]. The regularisation
method Elastic net is described in Sec. 2.4. The separate subsets are created by
sampling the original training data with replacement, creating unique subsets for
each model in the ensemble. Using several models gives a more robust estimation
of the importance of features by identifying how often a feature is selected among
many models.
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The number of models in the ensemble, K, can be adjusted by the user. Elastic Net
determines which features are selected in each model. The weights for the features
that are not selected are zero and non-zero for the features selected. Each trained
model has a vector of feature weights, βn, which is combined to a weight matrix,
B. For a N dimensional features space, the weights matrix B has dimensions
(K ×N).

In order for a feature to be selected, RENT uses three criteria that all need to be
satisfied, τ1, τ2 and τ3. The cutoff value for each criteria can be adjusted but has
to be in the interval between 0 and 1 because τ1, τ2 and τ3 can take values in
this interval. τ1 tells how often a feature is selected and is found by using the
equation:

τ1(βn) = c(βn) (2.38)

where c(βn) measures the importance of a feature through average frequency:

c(βn) =
1

K

K∑
k=1

1, [βk,n 6= 0] (2.39)

Finding the percentage of non-zero parameters estimates for each feature, fn by
counting how often this feature was selected on average across the models. τ2
measures the percentage of same polarity (either positive or negative sign) among
the weights that are not zero. The value for τ2 can maximum become as large
as the value for τ1, which only happens when all the non-zero weights have the
same polarity. How often the weights have the same polarity is defined with the
equation:

τ2(βn) =
1

K

∣∣ K∑
k=1

sign(βk,n)
∣∣ (2.40)

τ3 is a criteria that identifies whether the weights are consistently larger than zero.
τ3 represents the cumulative distribution function of Student’s t-distribution with
K−1 degrees of freedom. Using the specific mean, µ, and variance σ of the feature
vectors, it can be calculated with equation:

τ3(βn) = tK−1

 |µ(βn)|√
σ2(βn)
K

 (2.41)
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Figure 2.18 illustrates the procedure of feature selection of RENT, represented by
the blue frame. The input training data, Xtrain, is split into subsets by sampling.
The subsets are used to train the K different models. A feature is selected to form
the new dataset if it satisfies all three criteria.

Figure 2.18: Illustration of the RENT procedure for feature selection, rep-

resented by the blue frame. Figure adapted from [48].

2.6 Ensemble learning

Ensemble learning refers to the process of combining several classifiers into one
model. The advantage of combining multiple classifiers is that it can increase the
performance of a model and reduce the likelihood of unfortunate predictions [49].
Some problems can be too complex for a single classifier to solve on its own. As
mentioned in Sec. 2.4, a classifier can have errors that come from variance and bias,
and that a good model should have a balance between these two errors. Ensemble
learning is a way of finding a good balance. By combining different classifiers, the
weakness of an individual classifier is cancelled out, creating a more robust model
[14]. A strategic combination of classifiers can achieve diversity in the model to
reduce the total error, assuming that the individual classifiers make different errors
[49].

Methods

There exist different methods for creating ensembles, and some will be discussed
further. There are also other methods for combining the predictions of an ensemble.
A widely used technique is majority voting [14]. For classification, each classifier
will predict a class label, and the final prediction is the class that the majority of
the classifiers predict.
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For individual classifiers, Cj , and m classifiers, the predicted class label can be
found with the equation:

ŷ = mode{C1(x), C2(x), ..., Cm(x)} (2.42)

Mode is defined as the most frequent result in a set.

Bagging

Bootstrap aggregating, also known as bagging, is a technique that applies an en-
semble built of similar classifiers [14]. The idea behind bagging is to train the
classifiers on different samples of the training data, creating a diverse group of
members in the ensemble [49]. The same training data is used but split into smaller,
random subsets with replacement. Drawing random combinations of the training
data with repetition can help reduce the variance error, reducing overfitting. The
final prediction of the ensemble is the class predicted by the majority of the clas-
sifiers in the ensemble, as previously described as majority voting. Bagging is the
technique used for the Random Forest classifier, mentioned in Sec. 2.3. The classi-
fiers are all Decisions Trees that are trained on unique subsets of the training data.
Figure 2.19 shows a bagging ensemble with decision trees.

Input 

Combine

Tree 1

Sample 2 Sample 1 Sample 3 Sample 4 

Tree 3Tree 2 Tree 4

Output

Figure 2.19: A bagging ensemble with decision trees. The input data, X ,

is split into samples used for training the different trees, and the decisions

are combined to produce the output.
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Boosting

Boosting is an ensemble of simple classifiers, also called weak learners [14]. The
idea behind boosting is training on samples that are hard to classify and letting the
weak learners improve the ensemble’s performance by learning from the misclassi-
fied samples. The first classifier is trained on a random subset of the training data,
and the next classifier attempts to correct predictions of the misclassified samples
of the first classifier. The process continues through all the classifiers in the ensem-
ble, and weights are adjusted based on the last classification. This process builds a
more robust model and decreases the bias error [49]. Finally, the contribution from
the classifiers is weighted after their performance, and the predictions are combined
using voting or averaging [50]. Figure 2.20 shows a boosting ensemble.

Input

Combine

Model 1
Weighted 
Sample 1 

Model 2

Model 4

Output

Weighted 
Sample 2 

Model 3 Weighted 
Sample 3 

Figure 2.20: Boosting ensemble. The first classifier is trained on a sub-

sample of the input, X , and the second classifier with a weighted sample

from the first classifier. The results are combined to produce the final pre-

diction.
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Stacking

Stacking is an ensemble method that uses different types of classifiers to make
predictions on the same training data. The diversity of this model is achieved
through the use of different classifiers. Different classifiers will make different
assumptions and have fewer correlated errors when predicting [50]. Depending on
the classifiers combined, the ensemble can lead to a decrease in bias or variance
errors. A stacking ensemble consists of layers. The classifiers in the first layer are
referred to as level-0 classifiers and the final classifier as a level-1 classifier. It is
common for the ensemble to consist of two levels, but it is possible to construct
an ensemble with several levels [50]. The final classifier can also be referred to as
a meta-classifier [49]. Cross-validation can be used to train the level-0 classifiers,
and their predictions are used to form a new dataset. The meta-classifier is trained
on this new dataset, along with the actual labels, and learns how to combine the
predictions best. Finally, the meta-classifier makes the final prediction. Figure 2.21
shows an ensemble constructed with the stacking method.

Input

Combine

Model 1 Model 3Model 2 Model 4

Output

Figure 2.21: An ensemble of classifiers using stacking with two levels. The

same data is used to train the four level-0 classifiers and their predictions

are used to form a new dataset. The level-1 classifier is trained on this

dataset and makes the final predictions.

52



Chapter 3

Materials

This section describes the material used. In this thesis, patient data were analysed.
The data was provided by Computational Radiology and Artificial Intelligence
(CRAI), in Oslo University Hospital. The data has been collected from several
hospitals in Norway from 2013 to 2022 and consists of 1505 patient assessments
measured with 1733 features. Some of the patients have several assessments, so the
number of unique patients in the dataset is 789. The target feature used in this thesis
is a binary feature where the value 1 indicates biomarker evidence for amyloidosis
and the value 0 that no such evidence is present. The presence of amyloid-beta
does not necessarily mean that a patient has Alzheimer’s disease, but is considered
a candidate for developing the disease. Out of the 1505 patient assessments, 1025
have a measurement for the target used.

3.1 Data collection

The data was collected through different hospitals, and collected from different
sources. Some features contain information about the patient that was collected
through doctor appointments or over the phone. Features containing measurements
from clinical data, such as blood tests or measurements of blood pressure, were
collected through doctor appointments. The dataset also includes images of the
brain as measurements of magnetic resonance imaging (MRI). Features were ex-
tracted from the images and volumetric measurements of brain structures are used
in this analysis. Different types of scanners were used in the collection of these
images.
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3.2 Block structure

Because the data comes from different sources, the features were divided into sim-
ilar groups, called blocks. The variance can be different for each block and it could
be beneficial to make local models adapted to the data rather than using one model
for all the features. Removing the patients with any missing values lead to a differ-
ent number of patients with complete data for the different blocks.

3.2.1 Block A: Background information

The first block consists of only one categorical feature, which is presented in Ta-
ble 3.1. This feature contains background information about the patient before
any tests are taken. It provides information about whether a patient belongs to a
symptom group or a control group. There are seven different categories: cogni-
tive symptom group, cognitive symptom group - extension from previous study,
parkinsonism symptom group, spouse control group, ordinary control group, or-
thopedic control group and family history control group. In summary, there are
three categories related to symptom groups and four categories related to control
groups.

The number of patient assessments with complete data in Block A is 1023. One-
hot-encoding this categorical feature transforms it into a matrix with dimensions
(1023, 7). In Block A there are 777 unique patients.

Table 3.1: Feature in Block A. Containing background information about

the patient.

Feature name Description Data type

subj group
Which group the patient

Categorical
belongs to

3.2.2 Block B: Environment and heritage

The second block contains personal information about the patient, and the features
are listed in Table 3.2.

The youngest patient in this data has an age of 40, while the oldest has an age
of 87. The feature edu years ranges from 4 to 25 and edu level from 0 to 5. For
the feature smok a patient has a value of 0 if they are not smoking and a value
of 1 if they either smoke or previously have smoked. The feature bp recum sys,
measuring blood pressure, has the lowest value of 90 and the highest value of
225.
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The feature cardiovascular disease consist of binary values. If the value for this
feature is 1, the patient has one or more out of ten conditions related to cardio-
vascular disease. If a patient has a mother or father with dementia, they will have
a value of 1 for the feature degree1 dem, while 0 if they don’t. As mentioned
in Sec. 1 everyone has a pair of the three existing forms of the gene apolipopro-
tein. The categories in the feature bl apoe are the six different combinations of the
APOE pairs: e2/e2, e2/e3, e2/e4, e3/e3, e3/e4, e4/e4.

The number of patient assessments with complete data in Block B is 443, where
389 are unique patients. One-hot-encoding the categorical features transforms
Block B into a matrix with dimensions (443, 15).

Table 3.2: Features in Block B. Containing personal information about the

patient related to environmental factors and factors connected to heritage.

Feature name Description Data type
age Age of patient Continuous

edu years Years of education Continuous

edu level Level of education Ordinal

smok Smoking or not Binary

bp recum sys
Systolic blood pressure when

Continuous
patient is lying down

cardiovascular disease Previous cardiovascular disease or not Binary

gender Male or female Categorical

degree1 dem Mother or father with dementia Binary

bl apoe Apolipoprotein E alleles Categorical
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3.2.3 Block C: Cognitive tests

The third block contains seven features that are related to cognitive tests. The
features are listed in Table 3.3 and include standard tests used for determining
if a patient is developing cognitive impairment or dementia. All the features are
continuous and represent the score a patient received on the individual tests.

The first feature, mmse total, is used for determining cognitive function and in-
cluded are tests of orientation, memory, language and visual-spatial skills. In the
data used the values for the score range from 11 to 30. clock score is a test used
to look for signs of dementia and the features have a minimum score of 1 and the
maximum score is 5. tmtb sec and tmta sec are tests used to measure the ability to
focus on one or several things. tmta sec has the lowest value of 4 and the highest
value of 307. A maximum score for this feature was set to 71 and all the values
over this were set to equal to the maximum score. For tmtb sec the values range
from 22 to 694, and a maximum score was set to 166. The vosp tscore feature con-
tains values ranging from 0 to 69.5 and is a test that focuses on object- and space
perception. cowat tscore measures verbal fluency and the lowest score is 18, while
the highest score is 83. The last feature, cerad recall, has a score ranging from 0 to
10.

There are 917 patient assessments with complete data in Block C, where 703 are
unique patients. The dimensions of the data in Block C is (917, 7)

Table 3.3: Features in Block C. This block contains information about

cognitive test results.

Feature name Description Data type
mmse total Mini Mental Status Evaluation total score Continuous

clock score Clock test used in the assessment of dementia Continuous

tmtb sec Trail making test A (TMT-A) measured in seconds Continuous

tmta sec Trail making test B (TMT-B) measured in seconds Continuous

vosp tscore Visual Object and Space Perception Continuous

cowat tscore Controlled Oral Word Association Test Continuous

cerad recall
Consortium to Establish a Registry for

Continuous
Alzheimer’s Disease (CERAD) word list recall

3.2.4 Block D: White matter hyperintensity load by region

The features in the fourth block are all continuous and the original features are
listed in Table 3.4. The features consist of lesion and white matter hyperintensity
measurements, which is a proxy for small vessel diseases in the brain. The lesion
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features are divided into four regions and layers, where the first letter gives infor-
mation about which region, lobe. F is for frontal, P is for parietal, O is for occipital
and T is for temporal. Each region is then divided into four layers. There are 16
features related to lesions. The lesions features are divided on a feature called TIV,
which is a measure of the volume of the cranium. The feature for white matter
hyperintensity, WMHo rV, contains combined measurements for all layers. The
feature PSMD is a measure of vascular damage. In Block D, there are 284 patient
assessments that have complete data. The number of unique patients is 277.

Table 3.4: Original features in Block D.

Feature name Feature name
WMHo rV PSMD

LesF1 LesF2

LesF3 LesF4

LesP1 LesP2

LesP3 LesP4

LesO1 LesO2

LesO3 LesO4

LesT1 LesT2

LesT3 LesT4

Later in the analysis the lesion features were combined, meaning that the four
layers were combined for each region. Table 3.5 shows the combined features
along with the minimum- and maximum value for each feature. The dimensions of
the data in Block D with the combined features is (284, 6).

Table 3.5: Combined features in Block D. The table includes the minimum-

and maximum value for each feature.

Feature name Minimum value Maximum Value
WMHo rV 3.33 ∗ 10−4 2.64 ∗ 10−2

PSMD 1.67 ∗ 10−4 7.52 ∗ 10−4

LesF 2.32 ∗ 10−5 3.51 ∗ 10−2

LesP 1.62 ∗ 10−5 1.37 ∗ 10−2

LesO 1.34 ∗ 10−5 5.41 ∗ 10−3

LesT 4.65 ∗ 10−6 5.30 ∗ 10−3
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3.2.5 Block E: MR images of subcortical brain structures

The fifth block contains ten continuous features that are listed in Table 3.6. The
features are volumetric measurements of subcortical brain structures. The features
are corrected for intracranial volume and mean thickness of cortex areas from MR
images. There is also a correction related to the fact that the measurements come
from different cites and that different scanners have been used for imaging. The
features are combined measurements for the left- and the right side of the brain.
There are 603 patient assessments, and 393 unique patients, with complete data in
Block E. The dimensions of the data in Block E is (603, 10)

Table 3.6: Features in Block E. The features contain thickness measure-

ments for different areas. The table includes the minimum- and maximum

value for each feature.

Feature name Minimum value Maximum Value
Anterior hippocampus 692 2939

Posterior hippocampus 742 2302

MISC −22.8 656

Meninges PHC 4.8 355

ERC 211 885

Br35 227 1042

Br36 1007 3100

PHC 576 1440

ColSul 213 920

Meninges 313 835
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Chapter 4

Methods

This chapter covers the methodology used in this thesis. Sec. 4.2 presents the
workflow used in this study. Sec. 4.3 describes the preprocessing of the data before
model training. Sec. 4.4 covers the methods used for explorative analysis of the
data with PCA and PLSR. The different models used for classification are covered
in Sec. 4.6, including the methods for evaluating and tuning the models. Sec. 4.7
describes the method of feature selection with RENT and Sec. 4.8 describes the
methods used for ensemble learning.

The code used for this thesis is available at GitLab: https://gitlab.com/
charlie_91/alzheimer.

4.1 Software

The software used in this study was implemented as a part of the Anaconda open
source distribution [51]. Python version 3.9.5 was used. For reading the data,
pyreadstat [52] version 1.1.0 was used. Pandas [53] version 1.2.4 and NumPy [54]
version 1.20.2 were used for handling the data. The package Phi k Correlation An-
alyzer [55] version 0.12.0 was used for analysing the correlation between the fea-
tures. The packages Hoggorm [56] version 0.13.3 and Hoggormplot [57] version
0.13.2 were used for exploratory analysis with PCA and PLSR and visualization of
the results. Other packages used for visualization include Matplotlib [58] version
3.4.2, Missingno [59] version 0.4.2, and Seaborn [60] version 0.11.1. Scikit-lego
[61] version 0.6.8 was used for outlier detection. The package Rent [62] version
0.0.1 was used for feature selection, and Scikit-learn [63] version 0.24.2 was used
for data handling and machine learning tasks.
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4.2 Workflow

Fig. 4.1 shows an illustration of the workflow used in this study. This gives an
overview of the steps involved, which are numbered in the figure. Step 1 was
preprocessing the data, which include dividing the data into blocks. Because of
the different number of patients assessments in the blocks, explorative analysis
was performed block-wise (step 2). Step 3 was splitting the data into training-
and test data. Exploratory analysis was again performed on the test data (step 4)
and the training data (step 6). Step 5 covers the baseline analysis using the test
data with all the features combined into one block. Step 7 includes the block-wise
analysis with RENT for feature selection. Using the selected features from RENT,
block-wise modelling was done on the training data (step 8). Using the classifiers
that perform best for the individual blocks, the class labels for the test set were
predicted (step 9). Step 10 was the final step and includes creating an ensemble
using weighted majority voting. The individual steps will be described in more
detail in the following sections.

Figure 4.1: Illustration of the workflow used in this study.
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4.3 Data preprocessing

Step 1 in the workflow was preprocessing the data, and the first step in this process
was to identify patient assessments where a value for the target feature, a, was
missing. After removing the assessments with a missing value for the target feature,
the number of assessments went from 1505 to 1025.

The dataset was then divided into the blocks described in Sec. 3.2. The package
Missingno was used to visualize the number of missing values for the different
features. The patients with any missing values were removed, so only patients
with complete data remained. Most of the missing values appeared as NaN (not a
number). Some of the patients had empty strings in the categorical features. These
were replaced with NaN so that all the NaN entries could be removed using Pandas
dropna function. The number of patient assessments with complete data differs for
the blocks. Table 4.1 gives an overview of the number of patient assessments with
complete data in the different blocks.

Table 4.1: Number of patient assessments with complete data in the differ-

ent blocks.

Block Patient assessments

A 1023

B 443

C 917

D 284

E 603

4.3.1 Target

The target used in this study indicates if there is evidence for biomarker evidence
for amyloidosis. The feature did not need any preprocessing as the values were
binary and ready for use in classification. The target feature was separated as its
own dataframe before preprocessing the rest of the features.

4.3.2 One Hot Encoding

The categorical features in Block A and Block B were converted to numerical
values using the get dummies function in Pandas. The function turns categorical
labels into numerical values using One-hot-encoding, described in Sec. 2.1.
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4.3.3 Data transformation

Different transformations of the data were tested. The scikit-learn package comes
with modules for data transformation. All the features were scaled, and the dis-
tribution of the features was visualized. Due to skewness in the distribution, the
features in Block D were power transformed with two different transformations.
Models were trained separately with the different strategies in order to compare
the results. The main strategies used for transformation are listed below.

1. Standardising all the features with Eq. 2.2.

2. Power transformation of the features in Block D using Yeo Johnson method,
described mathematically in Eq. 2.4. The power transformation was applied
to standardised data. The rest of the features were standardised using Eq. 2.2.

3. Power transformation of the features in Block D using the BoxCox method,
described mathematically in Eq. 2.3. The power transformation was applied
to normalised data using Eq. 2.1 and setting the range between 1 and 2. The
rest of the features were standardised using Eq. 2.2.

4.4 Explorative analysis

This section describes the methods used for exploratory analysis of the data. After
dividing the data into blocks, the correlation between the features in each block was
analysed. PCA, PLSR and outlier detection with scikit-lego was performed on each
block to get an overview over systematic variance in the data and potential outliers.
This is step 2 in Fig. 4.1. After this the data was split into training- and test data as
shown in Fig. 4.2. Using the test data, the RV2-coefficient was calculated to check
for overlapping information between the blocks, which is step 4 in the workflow.
The explorative analysis with PCA and PLSR was performed on the training data
to verify that the variance did not change much before and after splitting. This is
step 6 in the workflow and was performed to confirm no major changes compared
to step 2.

4.4.1 Correlation between features and blocks

When analysing the correlation between the features within the blocks, the coef-
ficient was calculated using the function corr in Pandas. The function calculated
the correlation with the Eq. 2.6. Phi k is a correlation coefficient that is based
on refinements to the mentioned correlation coefficient. It is possible to calculate
the phi k correlation coefficient between categorical and numerical features and is
useful when analysing features of different types. The phi k correlation coefficient
between the features was calculated using the function phik matrix from the Phi K
Correlation Analyzer package.
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As described in Sec. 2.7 the correlation between the blocks can be calculated us-
ing the RV-coefficient, in order to look for common information. The function
RV2coeff from the Hoggorm package was used to calculate the RV2-coefficient
between the blocks. To calculate the RV2-coefficient between all the blocks, the
number of measurements had to be equal and in the same order. The test set
was used, where the patient assessments have complete measurements across the
blocks.

4.4.2 PCA

The Hoggorm package was used to perform PCA on the blocks, with the function
nipalsPCA. The exploratory analysis was done to examine the data for patterns or
systematic variation that could be of interest. Both functions take the values of
the dataframes as input, and it is possible to specify the number of components to
be computed. The explained variance in each block was plotted with the package
Hoggormplot to indicate how many components were necessary for explaining the
variance in the different blocks. As mentioned in Sec. 2.2.4 PLSR is a supervised
technique, and it is also possible to analyse the explained variance for the target, Y.
Visualization of the explained variance was done for analysis, but the dimensions
of the dataset were not reduced using these techniques.

In addition to dimensionality reduction, PCA can also be used for explorative anal-
ysis of the data. Using the Hoggormplot package, the scores, loadings, and corre-
lation loadings were visualized for the different blocks. This was done to look for
outliers and for clustering of features.

4.4.3 PLSR

The Hoggorm package was also used to perform PLSR on the blocks, with the
function nipalsPLS1. Plots were created of the scores, loadings, and correlation
loadings obtained from the PLSR analysis. With PLSR, it was also possible to
visualize the explained variance for the target variable. The plot of the correlation
loadings also includes the target variable.

The procedure used for explorative analysis with PCA and PLSR block-wise was
also performed after splitting the data into training- and test-set, where the splitting
is shown in Fig. 4.2. The analysis was done on the training data to verify that the
systematic variation and patterns before and after splitting were similar. A table
containing the explained variance in X and Y was created.

4.5 Data splitting

As described the features were divided into blocks of similar measurements. The
data were analysed both separately for each block, but also for all blocks concate-
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nated into one large single block to investigate whether block-wise modelling can
provide better performance. The dataset with all the features combined was used
for establishing a baseline. When combined, the total number of features is 33.
After One-hot-encoding the categorical features, the number of features increased
to 45. None of the patients belonged to the category parkinsonism symptom group
from Block A, reducing the number of features to 44. The number of patient as-
sessments with complete data across all the blocks is 172. When looking at unique
patient ID’s there are 154 with complete data across all the blocks. The 172 patient
assessments were used to form the complete dataset, and also the test set for the
different blocks, meaning that the number of patient assessments in the test set was
the same for every block, but the number of features differ. Figure 4.2 gives a vi-
sual illustration of how the patients in the different blocks were split into a training-
and a test set and is step 3 in the workflow presented in Fig. 4.1.

Figure 4.2: A visual representation of how the data was split into training-

and test set for the different blocks. A baseline was established combining

all the features with the patient assessments in the test set.
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The number of patient assessments in the training data is different for the individ-
ual blocks. This is because some of the patient assessments have missing values
for features in some of the blocks and therefore are not present in all blocks. The
dataset used to establish a baseline contained 44 features after combining the fea-
tures from each block.

4.6 Classification

4.6.1 Baseline model

Step 5 in the workflow is the baseline analysis. The dataset for establishing the
baseline is based on the test data and consist of 172 patient assessments and 42
features, after one-hot-encoding the categorical features. The baseline was used
to create a measure for improvement when predictions are made based on models
trained on each block separately. The total sum of features was 44 after one-hot-
encoding, but none of the 172 patients belonged to the category orthopedic control
group from Block A or bl apoe E2/E2 from Block B, reducing the number of fea-
tures by two. The dimensions for the test data was (172, 42). All the samples were
used in repeated stratified k-fold cross-validation with k = 5.

4.6.2 Block-wise models

As mentioned, and illustrated in Fig. 4.2, the data was split into a training- and
a test-set block-wise. Table 4.2 gives an overview of the data dimensions for the
different blocks. For each block models were trained using the classifiers described
in Sec. 2.3, and will also be described in the following section. These models were
trained only on the training data, and for all the models k-fold cross-validation was
used to identify the classifier with the highest MCC performance for the individual
blocks. The block-wise modelling comes after the RENT analysis and is presented
as step 7 in the workflow.

Table 4.2: Dimensions of training and test data for the different blocks

Block Training Test

A (851, 6) (172, 6)

B (271, 15) (172, 15)

C (745, 7) (172, 7)

D (112, 6) (172, 6)

E (431, 10) (172, 10)
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4.6.3 Tuning

The algorithms used for classification are described in Sec. 2.3. These are the
models that were tested and compared, except for the Decision Tree classifier; the
theory behind this model was described to better understand the Random Forest
model. The models are available through the Scikit-Learn package.

As mentioned in Sec. 2.4, the models have hyperparameters that can be adjusted to
increase their performance. Parameter grids for the hyperparameters were defined,
and grid search was performed on each model to find the best hyperparameters.
For this purpose, the scikit-learn function GridSearchCV was applied that carried
out a 5 fold cross-validated grid search over a defined grid of parameters to find the
combination of hyperparameters that provided the best predictive performance on
the training data. The estimator, parameter grid, scoring and number of fold in the
cross-validation was used as input for GridSearchCV. Grid search was performed
on both the baseline model and the block-wise models to get the best parameters
for each individual case. Table 4.3 gives an overview of the different models and
the hyperparameters that were tested.

Table 4.3: List of algorithms, their hyperparameters and a brief descrip-

tion of those.

Model Hyperparameter Description

Logistic Regression
C Inverse of regularisation strength

solver Algorithm for optimization problem

Passive Aggressive
C Maximum step size for regularization

loss Loss function to be used

Random Forest

n estimators Trees in the forest

criterion Function to measure the quality of a split

max depth Maximum depth of the tree

max features Maximum number of features to consider

SVM

C Regularisation parameter

kernel Kernel type to be used

gamma Kernel coefficient

KNN

n neighbors Number of nearest neighbors

weights Weight function for prediction

algorithm To compute the nearest neighbors
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4.6.4 Performance metrics

The distribution of the classes was checked for the baseline data, the data with all
the features combined. Out of 172 targets, 49 were class label 1 and 123 were class
label 0. Given that the distribution of the classes was not even, the metric used for
scoring was Matthews correlation coefficient (MCC), described in Sec. 2.4. The
distribution was also checked for the training data for the different blocks, with
specific numbers presented in Sec. 6.1. Uneven distribution of the classes was
found in all the blocks. MCC was used as the main scoring metric for this thesis,
but in some cases, the accuracy score and the f1-score were also calculated for
comparison. The theory behind these scores is also described in Sec. 2.4.

4.6.5 Evaluation

The different classifiers were initialized with the parameters that gave the best re-
sults from the grid search. For evaluation, the function RepeatedStratifiedKFold
from Scikit-Learn was used. The function was used with 10 repeats and 5 splits.
The mean of the resulting scores was used for evaluating the performance of each
of the classifiers.

4.7 Feature selection

Feature selection was done with Repeated Elastic Rent Technique (RENT), pre-
sented in Sec. 2.5. Referring to the workflow in Fig. 4.1 this is step 7. In addition
to the described parameters τ and K, RENT can take input values for parameters
C and l1 ratios. C is the regularisation parameter for the models in the ensemble.
A lower value for this parameter will lead to stronger regularisation. l1-ratio is the
ratio between l1 and l2 penalty. A value of 0 gives only l2 penalty, and a value of
1 gives only l1 penalty. The input values can be given as a list of numbers to test.
This was done with values for C ranging from 0.01 to 10, and values for l1 ratios
from 0 to 1.

500 models were used in the ensemble, and the parameter autoEnetParSel was
set to True, which uses 5-fold cross-validation, prior to RENT, to identify the best
performing combination of C and l1-ratio for prediction. RENT comes with a
function get enetParam matrices() that returns three dataframes holding results for
all the pair-wise combinations of C and l1-ratio. The results include the average
scores for performance, average percentage of feature weights that were set to zero,
and a scaled harmonic mean between the two previous dataframes. RENT uses the
harmonic mean results to select the best combination of the two parameters, but
they can also be set manually, which is what is done in this study. Heatmaps of
the matrices containing the scores and fraction of feature weights set to zero were
plotted to choose the best value for the parameters.
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After selecting the parameters, RENT was performed with different values for the
parameters τ1 and τ2. This was done for values ranging from 0.2 to 1 in intervals of
0.05 and τ1 = τ2. For each value of τ , a new dataset was created with the features
selected by RENT. Repeated stratified k-fold with 5 splits and 10 repeats was used
to evaluate the different classifiers on the created dataset. This was visualised with
the score as a function of τ1 for the different classifiers in order to make a suitable
selection for τ1 and τ2.

This procedure was done for all the features combined to establish a baseline and
also separately for each block. For the baseline data with combined features, k-fold
cross-validation was performed on all the test data. For the block-wise evaluation
of classifiers using k-fold cross-validation, the training data was used.

For the baseline, a final score for the classifiers was found through repeated strat-
ified k-fold with the selected value for the parameters. In the block-wise analysis,
a repeated RENT procedure was followed to investigate the features selected by
RENT. A repeated method ensures a more robust analysis. The selected values
for the parameters were used for each individual block and a repeated stratified
k-fold procedure with 4 folds and 10 repeats was used, resulting in 40 RENT fea-
ture selections. RENT is performed on 3 out of the 4 folds and, using the selected
features, performance was calculated on the last fold. Using 10 repeats gives 40
feature selections and it is possible to aggregate the results over these 40 sets of
selected features in order to count how often a feature is selected.

4.8 Ensemble learning

Weighted average

A new dataset was created using the features selected through the RENT analy-
sis. Grid search and repeated stratified k-fold were performed block-wise to find
the classifier with the highest performance in each block, which was explained
in more detail in Sec. 4.6. The classifier with the highest MCC performance in
each block was used for predicting the class labels for the test set when using only
the selected features through RENT. In the workflow, this is presented as step 9.
Step 10 in the workflow is the final step and involves creating an ensemble us-
ing a weighted majority vote. The predicted class labels from each block were
used to calculate a weighted average from the best classifier in each block, where
the weights correspond to the MCC-performance for each classifier found through
repeated stratified k-fold. By using the MCC-performance as weights a poor per-
forming classifier will have less influence on the final prediction compared to a
well-performing classifier. The weighted average was created using Numpy’s av-
erage function. The weighted average was compared against the true label for a
final prediction.
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Chapter 5

Results

This chapter will present the results of this analysis. A short explanation will be
given in this chapter, while a more detailed discussion of the results will be covered
in the next chapter, Ch. 6.

Sec. 5.1 will present the results from preprocessing and contains visualisation from
the power transformation of the data and missing values. Results from the explo-
rative analysis will be covered in Sec. 5.2. This includes heatmaps of the correla-
tion coefficients, results from PCA and PLSR analysis.

Sec. 5.3 will present the results from classification for the baseline model and the
block-wise models. Sec. 5.4 will present the results from RENT for feature selec-
tion, first for the baseline analysis and then for the block-wise analysis. Results
from the ensemble of models, the final model, will be covered in Sec. 5.5.
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5.1 Data preprocessing

5.1.1 Power transformation

Different types of transformations of the data were tested. Skewed distributions
were mainly an issue for the features in Block D. Fig. 5.1 shows the distribution
of the four different LesP features in Block D. The figure on the left is the dis-
tribution before transformation, and the figure on the left shows the distribution
after Yeo-Johnson transformation was applied to the data. Later in this study, the
Les-features were combined. Fig. 5.2 shows the distribution before and after Yeo-
Johnson transformation on the combined LesP features. Similar results could be
observed in the transformation of the other Les features.

Figure 5.1: Distribution for four of the features in Block D. The figure on

the left is the original distribution, and the figure on the right shows the

distribution after Yeo-Johnson transformation was applied.

Figure 5.2: Distribution for the combined LesP features in Block D, before

and after power transformation.
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5.1.2 Missing values

Different plots were created for visualisation of the missing values in the features
using the missingno package. The matrix plot, also called the nullity matrix, vi-
sually displays the missing values as white lines and makes it simple to identify
missing values in the different features. The nullity matrix is shown for Block A
in Fig. 5.3. Block A consists of only one feature, labelled at the top of the figure.
Almost all the patient assessments have a category for the feature in Block A, and
it has only 2 missing values. Fig. 5.4 shows the nullity matrix for Block B, and
the features are labelled on the top. As seen by all the white spacing, the feature
degree1 dem is the feature in this block with the highest amount of missing values.
In Block B, 580 assessments were removed due to missing values.

Figure 5.3: Nullity matrix for the feature in Block A.

Figure 5.4: Nullity matrix for the features in Block B. The columns are

labelled with the name of the feature at the top.
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Fig. 5.5 shows the nullity matrix of the features in Block C. The individual features
don’t contain many missing values, but patients are removed if they have missing
values in any of the features. This reduces the number of patients by 108 for this
block. Fig. 5.6 and 5.7shows the nullity matrix for Block D and E, respectively.
Block D is the block missing most values for the measurements and resulted in the
removal of 740 patient assessments. For Block E the figure illustrates that some
patients have no measurement for any of the features. 422 patient assessments were
removed due to missing values in Block E.

Figure 5.5: Nullity matrix for the features in Block C.

Figure 5.6: Nullity matrix for the features in Block D.

72



Figure 5.7: Nullity matrix for the features in Block E.

5.2 Explorative analysis

5.2.1 Correlation

Correlation between the blocks

The RV2-coefficient was calculated between the blocks using the test data, where
the patient assessments have complete data for all the blocks. This was done in
the exploratory analysis in step 4 from the workflow presented in Fig. 4.1. Values
for the RV2-coefficient is shown as a heatmap in Fig. 5.8. The block names are
listed on both the horizontal axis and the vertical axis. Along the diagonal is the
RV2-coefficient between the individual blocks themself, giving the value 1. The
low values for the coefficient between the different blocks indicate that the blocks
contain little common or overlapping information.

Figure 5.8: Heatmap of theRv2 correlation coefficient between the blocks.
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Feature correlation within blocks

The correlation coefficient between the features in each block is part of the explo-
rative analysis presented as step 2 in the workflow, and are also presented graphi-
cally as heatmaps. For some of the blocks, the PhiK coefficient was used. All the
heatmaps contain a colour bar ranging from −1 to 1. The darker the colour the
more strongly the features are correlated, and the lighter the colour the higher the
negative correlation is between the features.

Block A contains only one categorical feature, so no correlation could be calcu-
lated initially. After one-hot-encoding the categorical feature, the PhiK correlation
coefficient was calculated between the categories in the feature. The heatmap of
the correlation coefficients between the features in Block A is presented in Fig. 5.9.
There is a low correlation between most of the features in this block. The category
cognitive symptom group is the category that shows the most correlation with the
other categories, especially the categories family control group, orthopedic control
group and the ordinary control group.

cognitive_symptom

previous_study

family_control
control

orthopedic_control

spouse_control

cognitive_symptom

previous_study

family_control

control

orthopedic_control

spouse_control

1.00 0.14 0.87 0.56 0.61 0.28

0.14 1.00 0.00 0.00 0.00 0.09

0.87 0.00 1.00 0.11 0.12 0.00

0.56 0.00 0.11 1.00 0.04 0.00

0.61 0.00 0.12 0.04 1.00 0.00

0.28 0.09 0.00 0.00 0.00 1.00

Block A

1.00

0.75

0.50

0.25

0.00

0.25

0.50
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1.00

Figure 5.9: Heatmap of the PhiK correlation coefficient between the cate-

gories in Block A.

Block B consists of both categorical and continuous features and the PhiK correla-
tion coefficient was calculated and shown in Fig. 5.10. The heatmap shows a high
correlation between the feature edu years and edu level. The feature age shows a
value for correlation coefficient of 0.35 and 0.37 between the features edu years
and edu levels respectively. The feature age also shows values for the PhiK corre-
lation coefficient that indicates correlation with the features bp recum sys, cardio-
vascular disease and degree1 dem.
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Figure 5.10: Heatmap of the PhiK correlation coefficient between the fea-

tures in Block B.

For Block C the heatmap of the PhiK correlation coefficients is shown in Fig. 5.11.
The PhiK correlation coefficient was used in this block as the continuous values
represent scores, so they could be considered as an ordinal data type. The high-
est correlated features in this block are the feature tmta sec and tmtb sec, with a
value for the coefficient of 0.64. The heatmap also indicates a high correlation be-
tween the features mmse total and clock score, with a value for the coefficient of
0.58.
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Figure 5.11: Heatmap of the PhiK correlation coefficient between the fea-

tures in Block C.
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Fig. 5.12 presents the results for Block D. The value for the coefficient indicates a
strong correlation between the features, with the lowest value being 0.32 between
the features PSMD and LesO. The highest value for the correlation coefficient is
between the features LesP and Lest, with a value of 0.90.
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Figure 5.12: Heatmap of the correlation coefficient between the features

in Block D.

Block E is the block with the most features before one-hot-encoding, and the
heatmap is presented in Fig. 5.13. The values for the correlation coefficient vary,
but none of the features indicates strong anticorrelation. Some strong correlations
that can be pointed out are between the feature Anterior hippocampus the features
Posterior hippocampus, ERC and Br35. The features that show a strong correla-
tion with Anterior hippocampus, also show a strong correlation with the feature
Posterior hippocampus. Br35 indicate a strong correlation between the features
PHC, Br36 and ERC, with a value for the coefficient of 0.59, 0.53 and 0.65 respec-
tively.
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Figure 5.13: Heatmap of the correlation coefficient between the features

in Block E.

5.2.2 PCA

Results from the exploratory analysis using PCA include figures of the scores,
loadings, correlation loadings and explained variance, and were computed for each
block. The following results are based on Block B, while results for the remaining
block are included in the Appendix, Sec. 7. For this section and the sections regard-
ing PLSR and outlier detection, all the results are presented from the exploratory
analysis performed in step 2 from the workflow. For the exploratory analysis in
step 6, tables with results from the PLSR analysis is presented in Sec. 6.3.

The plot of the PCA scores is presented in Fig. 5.14. The first principal component
is represented by the horizontal axis and the second component by the vertical axis.
The percentage of the explained variance that each of the components contribute to
is given in the parenthesis. The plot indicates a clustering of the samples into two
groups, but show no extreme outliers.

The plot of the PCA loadings is presented in Fig. 5.15, which have the same axis
as the plot of the scores. It shows that the two clusters in the scores plot represent
male and female since gender male and gender female are on the opposite side
along the second component.
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Figure 5.14: PCA scores. The first principal component is along the hor-

izontal axis and the second along the vertical axis. The percentage of the

explained variance that each of the components contribute to is given in

the parenthesis.

As mentioned in Sec. 2.2.3 a plot of the loadings shows how strongly each feature
influences the components. The features edu level and cardiovascular disease lie
on the opposite side along the horizontal axis. This can be interpreted that pa-
tients with a high level of education contribute to a relatively low proportion of
cardiovascular-related disease.

Figure 5.15: Plot of PCA loadings.
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The correlation loadings plot is shown in Fig. 5.16. The features gender female,
gender male, edu levels and edu years are the only features where the first com-
ponent and the second component explain more than 50% of their variance. Both
gender features are explained almost 100%. Fig. 5.17 shows the explained variance
in x as a function of the number of principal components. The variance is accu-
mulated and the vertical axis shows the value for the percentage. The explained
variance increases approximately linearly until it reaches a maximum of 70% vari-
ance with 6 components.

Figure 5.16: Correlation loadings plot from PCA.

Figure 5.17: Explained variance, given as a function of the number of

principal components. The blue line is the calibrated variance, and the

red line is the validated variance.
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5.2.3 PLSR

The results from the explorative analysis with PLSR include the same type of plots
as used with PCA. The results differ because PLSR is a supervised technique,
including the target feature in the analysis. In the correlation loadings plot, the
target is included, and it is possible to analyse the explained variance in the target.
The results from Block B are presented in this section. The results for the other
blocks can be found in the Appendix, Sec. 7.

Fig. 5.18 presents the PLSR scores plot, with the first component along the hori-
zontal axis, and the second component along the vertical axis. The percentage of
the explained variance that each of the components contribute to is given in the
parenthesis. The first number represents the explained variance in x, and the sec-
ond number the explained variance in y. The scores plot does not show the same
grouping as the PCA. The plot of the loadings is shown in Fig. 5.19. It is plotted
on the same axis as the scores, but only the explained variance in x is shown for
each component.

Compared to PCA the features gender male and gender female are not so dom-
inating along the second component, and other features like smok, cardiovascu-
lar disease, edu level and edu years contribute in the direction of the second com-
ponent. Features including bl apoe were insignificant in PCA, having low values
for the first component, but have more influence on the first component in PLSR.
This is because they are relevant for the modelling of the target.

Figure 5.18: Plot of the scores from the PLSR analysis. The first com-

ponent is along the horizontal axis, including the percentage of explained

variance in both x and y. The second component is along the vertical axis.
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Figure 5.19: Plot of the loadings from the PLSR analysis.

Fig. 5.20 shows the correlation loadings plot. In comparison to the PCA plot, it
contains the target feature. The red labels are the features, and the blue label is the
target feature. High values for the target feature seem to be correlated with high
age and high values for bl apoe E4/E4. The patient assessments in the scores plot
that lies on the right side are those with high value for the target feature a high age
and high bl apoe E4/E4. Both the target feature a and bl apoe E4/E4 have binary
values, where the highest value is 1.

Figure 5.20: Plot of the x and y correlation loadings.
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Fig. 5.21 present the explained variance in x. The number of components is given
along the horizontal axis, and the percentage of the explained variance is shown
along the vertical axis. The validated explained variance increases almost linearly
until it reaches about 80% with 10 components. The explained variance in y is pre-
sented in Fig. 5.22. The validated explained variance is almost at its highest level
at around 22% after only one component. It does increase some with two com-
ponents, but more than two components do not contribute to any more explained
variance in the target.

Figure 5.21: Explained variance in x as a function of the number of com-

ponents used in the analysis..

Figure 5.22: Explained variance in the target.
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5.2.4 Outlier detection

The package scikit-lego automatically produces figures that can be used for iden-
tifying outliers. Decomposition based outlier detecting with PCA was used, and
the analysis with two components is presented in Fig. 5.23. The figure on the left
is the outlier detection shown through parallel coordinates, and the figure on the
right shows a scatter plot of the outlier analysis. The figure on the right was only
possible to produce when using two components, but using two components was
not sufficient to separate out potential outliers, which are coloured in purple. From
the figure on the left, it is clear to see that the feature bl apoe E2/E2 contains some
abnormal measurements. Analysing this further it showed to have an abnormal
value due to the effects of standardisation, so the patient was not removed. Figures
for the rest of the block can be found in the Appendix, Sec. 7.

Figure 5.23: Results from decomposition based outlier detection using two

components.

5.3 Classification

5.3.1 Baseline model

Step 5 in the workflow was establishing a baseline. Fig. 5.24 shows the first re-
sults in evaluating the classifier Logistic Regression on the complete dataset, the
test dataset containing all the features. The figure shows the learning curve with
the training and validation score as a function of the number of training samples
used in learning. The scores are produced using a 5-fold cross-validation with
an increasing amount of training samples. The Logistic Regression classifier was
fitted with the best-suited hyperparameters found through grid search, which are
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presented in Table 5.1. The figure shows that 110 samples are enough for this clas-
sifier to get a low enough difference between training- and test performance, and
the highest validation score of around 0.5. The green area around the validation
curve is calculated with one standard deviation above and below the mean value,
indicating a high variance in the performance for the validation set.

Figure 5.24: Validation curve for Logistic Regression.

The same figures for the Passive Aggressive Classifier are presented in Fig. 5.25.
Fitted with the best-suited hyperparameters, Passive Aggressive Classifier shows
an MCC score for the validation curve around 0.5, this for 90 samples and all the
samples.

Figure 5.25: Validation curve for Passive Aggressive Classifier
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Fig. 5.26 shows the results for Random Forest Classifier, with the highest validation
score of around 0.36. The large gap between the training and validation score
indicates that the model is overfitted on the training data. This can also be seen
in the validation curve for the KNN classifier and the SVM classifier, shown in
Fig. 5.27 and Fig. 5.28 respectively. For the KNN classifier, the highest validation
score is just above 0.3, while for the SVM classifier it is just above 0.4.

Figure 5.26: Validation curve for Random Forest classifier.

Figure 5.27: Validation curve for KNN classifier.

Table 5.1 shows an overview of the best-suited hyperparameters for each classifier
found through gridsearch. The table also includes the highest obtained MCC score
for each classifier, which was the resulting score using the given values for the
hyperparameters. A short description of the listed hyperparameters was given in
Table 4.3.
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Figure 5.28: Validation curve for SVM classifier.

Table 5.1: List of algorithms, their hyperparameters and the value that

gave the highest MCC score through gridsearch. The last column shows

the MCC score.

Model Hyperparameter Value MCC score

Logistic Regression
C 0.01

0.4852
solver liblinear

Passive Aggressive
C 0.0001

0.4248
loss hinge

Random Forest

n estimators 40

0.4831
criterion gini

max depth 10

max features auto

SVM

C 10

0.4112kernel rbf

gamma 0.01

KNN

n neighbors 10

0.4073weights distance

algorithm auto

.
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The different classifiers were also evaluated with different types of transformation
of the data, as mentioned in Sec. 4.3. The classifiers were fitted with the best-suited
parameters found through grid search, and the scores were found by calculating
the mean of repeated stratified k-fold. The results are presented in Table 5.2. The
first column is the mean MCC score using standardised data. The second column
contains the MCC scores when the features from Block D were transformed using
Yeo-Johnson transformation and the rest of the features were standardised. In the
third column, the features in Block D were normalised to a range between 1 and 2
before power transformation using the BoxCox method, and the rest of the features
are standardised.

The highest MCC score is obtained using the Logistic Regression classifier, with
around 0.46 for both the different power transformation methods.

Table 5.2: Mean MCC scores for the different classifiers with repeated

stratified k-fold, and for different types of transformation of the data.

Classifier Standardised Yeo-Johnson BoxCox
Logistic Regression 0.4384 0.4551 0.4578

Passive Aggressive Classifier 0.4501 0.4320 0.4335

Random Forest 0.3531 0.3312 0.3464

KNN 0.2533 0.3173 0.3804

SVM 0.4483 0.4414 0.4425

5.3.2 Block-wise models

Some initial testing of the models for the block-wise analysis was done before
the RENT analysis, but is not described as an own step in the workflow. Using
repeated stratified k-fold with 5 splits and 10 and ten repeats, the average MCC
score was obtained to get an overview of the performance of the classifier after the
features were divided into blocks. Table 5.3 shows the results for the standardised
training data. For Block D the features are power transformed using the Yeo-
Johnson method. All of the classifiers show a score around 0 when being trained
on the data in Block A, which is the same as random guess using the MCC metric.
The highest MCC score is found in Block B, with a value of around 0.55 for both
the Logistic Regression classifier and SVM.
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Table 5.3: MCC scores for the different classifiers block-wise. The scores

are the mean value obtained through with repeated stratified k-fold.

Classifier Block A Block B Block C Block D Block E
Logistic Regression 0.0 0.5480 0.4059 0.3199 0.3918

Passive Aggressive
0.073 0.5028 0.4027 0.3243 0.3759

Classifier

Random Forest 0.006 0.5174 0.3580 0.3123 0.3604

KNN -0.007 0.3805 0.3403 0.3527 0.3106

SVM 0.0 0.5435 0.3993 0.3631 0.3755

5.4 RENT

RENT analysis for feature selection was performed on both the baseline data and
block-wise. For the baseline data, this was part of step 5 in the workflow. For the
block-wise data, the RENT analysis is step 7 in the workflow.

5.4.1 Baseline

The first step in the RENT analysis was finding a good balance between a high
MCC score and a high fraction of features with weights equal to 0, which is done
by finding the best combination of the parameters C and l1-ratio. Figure 5.29
shows the heatmaps that were produced. The value for the parameter C is along
the horizontal axis, and the value for the l1-ratio is along the vertical axis. The
first heatmap shows the MCC scores for the different combinations and the second
figure shows the fractions of features having weight zero, The best combination
was found with a value of C=0.1, and l1-ratio=0.5. This gives an MCC score of
0.3662, and a fraction of zeroes of 0.663, meaning that 66.3% of the variables were
removed.

Figure 5.30 shows a plot of the selection frequency of the features. The features
are along the horizontal axis, numbered by the index position. Along the vertical
axis is the value for the cutoff parameter τ . Selecting a value for τ to 0.8 means
only including the five features that lie above this value. Figure 5.31 shows the 500
elementary models used in RENT along the horizontal axis. The figure contains
the value for the MCC score and the fraction of weights that are set to zero for the
different models. The MCC score varies over the 500 elementary models, where
the lowest score is −0.1 and the highest score is around 0.7.
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Figure 5.29: Heatmaps of the scores and zeroes from the RENT analysis.

The value for the parameter C is along the horizontal axis, and the value

for l1-ratio is along the vertical axis.

Figure 5.30: The selection frequency of the features. The features are

numbered by index along the horizontal axis, and the vertical axis shows

the value for the cutoff parameter τ .
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Figure 5.31: Value for scores and zeroes for the 500 elementary models

used in RENT. The horizontal axis shows the different models, and the

vertical axis is the value for scores and fraction of zeroes.

Figure 5.32 shows the MCC score as a function of different values for the parame-
ters τ1 and τ2. The value for the parameter is shown on the horizontal axis. Scores
for the five different classifiers are shown in the figure. The highest score is ob-
tained for a value of τ1 at 0.35 for Logistic Regression, but for a higher value, the
dimensions of the dataset are further reduced as it removes more features. The
value for τ was selected to be 0.6, as the performance is reduced for several classi-
fiers for larger values of τ1 and τ2.

The features selected by RENT for some of the different values for τ are listed in
Table 5.4. A reduced dataset was created using the features listed for the value for
τ at 0.6.
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Figure 5.32: MCC scores for the different classifiers, and for increasing

values for the parameters τ1 and τ2.

Table 5.4: Listing of the selected features for some of the different values

for the parameters τ1 and τ2.

0.6 0.7 0.8 0.9
gender female bl apoe E3/E3 bl apoe E3/E3 bl apoe E3/E3

gender male bl apoe E4/E4 bl apoe E4/E4 bl apoe E4/E4

bl apoe E3/E3 mmse total mmse total mmse total

bl apoe E4/E4 clock score clock score tmtb sec

mmse total tmtb sec tmtb sec cowat tscore

clock score cowat tscore cowat tscore cerad recall

tmtb sec cerad recall cerad recall WMHo rV

cowat tscore WMHo rV WMHo rV

cerad recall Meninges

WMHo rV

LesO

Meninges

.
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Classifiers were trained on a reduced dataset containing only the selected features,
and an average of the MCC score was obtained by repeated stratified k-fold. The
mean score and the standard deviation for the different classifiers are listed in Ta-
ble 5.5. The highest obtained value for the MCC score was at 0.5604 with the SVM
classifier.

Table 5.5: Scores for the different classifiers with repeated stratified k-fold

using selected features from RENT with τ = 0.6.

Classifier Mean score Std
Logistic Regression 0.5492 0.1340

Passive Aggressive Classifier 0.5593 0.1363

Random Forest 0.4381 0.1727

KNN 0.4302 0.1437

SVM 0.5604 0.1500

5.4.2 Block-wise

The same procedure used in the RENT analysis for the baseline data was used on
the individual blocks. Figure 5.33 shows the heatmaps for scores and zeroes and
for Block A. The highest score for this block was 0.0, which is the same as random
guessing. Looking at the heatmap of zeroes, three of the parameter combinations
that produce this score removes all the features. Due to this, and the low perfor-
mance overall, there are fewer results presented for Block A.

Heatmaps of the scores and zeroes can be found in the Appendix, Sec. 7 for the
rest of the blocks. The best combination of the parameters C and l1 ratio for the
different blocks are listed in Table. 5.6.

Table 5.6: The parameters used in RENT for the different blocks.

Block C l1-ratio
B 1.0 0.9

C 0.1 0.9

D 1.0 0.9

E 0.1 0.5
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Figure 5.33: Heatmaps of the scores and zeroes for Block A from the RENT

analysis. The value for the parameter C is along the horizontal axis, and

the value for l1-ratio is along the vertical axis.

Fig. 5.34, Fig. 5.35, Fig. 5.36 and Fig. 5.35 contain three plots from the RENT
analysis for the different blocks. The plot on the top is the MCC score as a function
of the parameter τ , where values for the parameter are given on the horizontal axis.
The plot in the middle is of the selection frequency with values for the parameter
τ is given on the vertical axis. The horizontal axis in this plot represents the index
position of the features in the given block. The plot on the bottom is of the 500
elementary models used in RENT, with the fraction of features set to zero and
the MCC score on the vertical axis. The value for τ was set to 0.8 for all the
blocks.
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Figure 5.34: Block B: MCC score for different values of τ , selection fre-

quency and elementary models.
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Figure 5.35: Block C: MCC score for different values of τ , selection fre-

quency and elementary models.
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Figure 5.36: Block D: MCC score for different values of τ , selection fre-

quency and elementary models.
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Figure 5.37: Block E: MCC score for different values of τ , selection fre-

quency and elementary models.
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The number of times a feature was selected by RENT over the 40 RENT feature
selections was counted. The procedure using 40 RENT feature selections was de-
scribed in Sec. 4.7. For Block B the results are listed in Table 5.7. The features age,
bl apoe E4/E4 and bl apoe E3/E4 are selected by all the models. After One-hot-
encoding, this is the block consisting of the highest number of features and also
have the highest number of features selected by RENT. The last four features, gen-
der female, gender male, bl apoe E3/E3 and edu years, are selected less than 25%
of the time. The only feature that was not selected once is bl apoe E2/E2.

Table 5.7: Block B: name of the feature selected and how many times it

was selected across the 40 feature selections.

Feature Times selected
age 40

bl apoe E4/E4 40

bl apoe E3/E4 40

bl apoe E2/E4 37

smok 30

degree1 dem 29

cardiovascular disease 18

bl apoe E2/E3 16

edu level 15

bp recum sys 11

gender female 5

gender male 5

bl apoe E3/E3 2

edu years 1

Table 5.8 presents the results for Block C. As the feature vosp score was only se-
lected by one model, this indicates that it is not an important feature. The block
consist of seven features and the features clock score and tmta sec were not se-
lected by any of the 40 RENT feature selections.
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Table 5.8: Block C: name of the feature selected and how many times it

was selected across the 40 feature selections.

Feature Times selected
mmse total 40

cerad recall 40

cowat tscore 35

tmtb sec 22

vosp tscore 1

Table 5.9 present the results of features selected in Block D. The featureWMHo rV
represent white matter hyperintensity and was selected every time. LesO was cho-
sen more often than the other three regions and belongs to the occipital region of
the brain. The two features LesT and LesP were not selected by any of the 40
feature selections. Table 5.10 shows the features in Block E. The block contains
10 features, where four of them were not selected. This includes the features An-
terior hippocampus, Meninges, Br 35 and Br 36.

Table 5.9: Block D: name of the feature selected and how many times it

was selected across the 40 feature selections.

Feature Times selected
WMHo rV 40

LesO 32

PSMD 15

LesF 5

Table 5.10: Block E: name of the feature selected and how many times it

was selected across the 40 feature selections.

Feature Times selected
Posterior hippocampus 40

PHC 40

MISC 40

ERC 39

ColSul 20

Meninges PHC 3
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A score for the performance was obtained by predicting the test labels in the k-fold
validation, using a Logistic Regression model. Logistic Regression was chosen
since RENT uses this model with elastic net regularisation for feature selection.
The model was trained with the dataset containing the features selected by RENT.
The metric MCC was mainly used through this study, but other metrics for scoring
the performance were calculated in this case in order to get an understanding of
how good the performance is. This includes the metrics accuracy and F1-score.
By flipping the labels, the F1-score for the negative class, in this case, 0, was
also calculated. The average results are presented in Table 5.11. Fig 5.38 shows
boxplots of the MCC scores for the 40 feature selections. The average is marked
with an orange line. The highest score was obtained with the data in Block B. The
boxplot also shows that the scores in Block D have the largest spread.

Table 5.11: Average scores over the 40 models. The table shows the MCC-,

accuracy-, and the f1-score. The f1-score is calculated for both the positive

and negative classes.

Block MCC Accuracy F1-positive F1-negative
B 0.5519 0.8310 0.6449 0.8880

C 0.4048 0.7612 0.5230 0.8401

D 0.3422 0.7741 0.4157 0.8586

E 0.3712 0.7475 0.4971 0.8310

Figure 5.38: Boxplot of the MCC score for the 40 feature selections. The

vertical axis represents the score, and the average value is marked with an

orange line.
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5.5 Ensemble

The first step towards creating the ensemble was the block-wise modelling on the
selected features to find the best-suited classifier for each block, which is step 8
in the workflow. The selected features are presented in Table 5.12. It was unsure
whether to include all the features selected by RENT or use a limit for how many
times a feature was selected to determine if a feature should be included. The final
selection was mainly based on results from repeated RENT, but also in collabora-
tion with the neurologists. For Block B it was decided to remove features that were
selected less than 10 times, which corresponds to 25%. For Block C vosp tscore
was only selected once and removed. For Block D all the features selected were
included, even though LesF was only selected 5 times. For Block E, the features
ColSul and Meningens PHC were removed, even though ColSul was selected 20
times.

Table 5.12: The features from each block used in further analysis.

Block B Block C Block D Block E
age mmse total PSMD ERC

bl apoe E4/E4 cerad recall WMHo rV PHC

bl apoe E3/E4 cowat tscore LesO MISC

bl apoe E2/E4 tmtb sec LesF Posterior hippocampus

smok

degree1 dem

cardiovascular disease

bl apoe E2/E3

edu level

bp recum sys

For each block, the best-performing classifier along with the best-suited hyper-
parameter for each classifier was found through grid search. The classifiers and
hyperparameters tested are listed in Table 4.3. Repeated stratified k-fold was used
to evaluate the classifiers fitted with the best parameters. The best classifier for
each block was selected by finding the classifier that gave the highest score with
repeated stratified k-fold. The classifiers are listed in Table 5.13, along with the
k-fold scores.
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Table 5.13: The final models for each block, using the best result for the

test score in repeated stratified k-fold.

Block Best classifier k-fold score
A Passive Aggressive Classifier 0.0324

B Passive Aggressive Classifier 0.5862

C Logistic Regression 0.4035

D SVM 0.3888

E Logistic Regression 0.3893

The classifiers listed in Table 5.13 were used for predicting the labels for the test
data, step 9 in the workflow. A heatmap of the predictions made for the individual
block is shown in Fig. 5.39. The heatmap also includes the actual test labels in
the last column. Dark blue indicates a label of 1 and light blue a label of 0. The
predictions are sorted after the column that contains the actual test labels. This also
gives a visualisation of the imbalance in the distribution of the two classes.

Figure 5.39: Heatmap of the final predictions of the test labels for each

block. The last column represents the actual test label. Dark blue indicates

a target value of 1, and light blue a value of 0.

102



Step 10 in the workflow is the final prediction of the class labels for the test data
using predictions from each block. For the final prediction, a weighted average was
calculated using the predictions from each block. The k-fold scores presented in
Table 5.13 were used as weights for each block, meaning that the predictions from
Block A had almost no influence on the final prediction, while the predictions from
Block B got the most influence.

To determine whether the weighted average should be predicted as class label 0
or class label 1, different values for a threshold were tested. The initial value was
set to 0.5, meaning that if the weighted average had a value over 0.5 the final
prediction would be class label 1. This gave an MCC score of 0.3528 and an
accuracy of 0.7674. The highest value for the MCC score was obtained by setting
the threshold value at 0.3. This gave a value for the MCC at 0.4669 and accuracy
of 0.7965.
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Chapter 6

Discussion

6.1 The data

As already mentioned in Sec. 3 the target used in this analysis is a measure of
the presence of amyloid-beta and does not necessarily mean that a patient has
Alzheimer’s disease. The classification in this thesis was between patients that
are considered candidates for developing AD and patients that are not at risk of de-
veloping the disease. Out of the 1025 patients assessments investigated here, 698
belong to class 0 and 327 belong to class 1. There is an imbalance in the distribu-
tion of the classes, where 68% belongs to class 0. For the baseline study with 172
patient assessments, 72% belongs to class 0. Checking the distribution after split-
ting the data into training- and test set (see figure 4.2), the blocks of the training
data contained 67% of the patient assessments belonging to class 0 for Block A,
73% for Block B, 68% for Block C, 74% for Block D and 68% for Block E. The
distribution of the classes was similar for all the blocks and for the test data. The
metric MCC was used throughout this study and is unaffected by the imbalance in
the distribution of the classes.

In this analysis, the focus was on using the available data with no missing values
in the features used. As described in Ch. 3 a patient can have several assessments.
The number of assessments and the number of unique patients are given for each
block in this chapter. Using only unique patients would have resulted in fewer
samples to use for the analysis, but it is unknown how it would affect the final
results. In this analysis, all the assessments were treated as individual samples. In
the case of splitting the data into training- and test, this approach might not have
been optimal, as some of the patients appeared in both the training and the test
data with different assessments. The data used for training and the data used for
test should be independent of one another and using the same patient for both sets
could cause the information to leak into the test set.
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Using only the first assessment for each patient results in 789 patients before re-
moving any missing values. 646 of these patients have a value for the target feature
and 135 patients have complete data for all the features used in this study, meaning
that the test set used for the baseline analysis would have contained 135 samples
when using unique patient ID’s, compared to 172 when using patient assessments.
Due to the time limit, the analysis was not repeated using only the first assessment
for each patient, but it could be of interest to test in further analysis.

6.2 Data preprocessing

Power Transformation

Different transformations of the data were tested, where the main types were listed
in Sec. 4.3. Given that the range of the values did differ in some of the features,
standardisation was performed on all the features. When it comes to power trans-
formation, the Yeo-Johnson method was preferable over the BoxCox method. This
is because it was possible to apply directly to the standardised data which typically
contains negative values. The BoxCox method does not work for negative num-
bers, so the data was chosen to be normalised to a range between 1 and 2. During
testing of what features to power transform, the results were different for the indi-
vidual classifiers. Only the Logistic Regression model showed better performance
on only standardised data when working with the test set in the baseline modelling.
The rest of the classifiers increased their performance when the features in Block
D were power transformed. It was therefore concluded to continue to work with
the features in Block D with Yeo-Johnson power transformation. The effect of the
transformation is shown in Fig. 5.1 and Fig. 5.2 for the LesP features.

Combining features

At the beginning of the analysis, the Les features did consist of 16 different fea-
tures. LesF, LesO, LesP, LesT were all divided into four regions, shown in Ta-
ble 3.4. When analysing the results from the selected features from RENT, it was
suggested by the neurologist who owns the data that the regions should be com-
bined. Part of this suggestion was because the feature WMHo rV already is a
combined feature for the four different regions of the brain. This was not known
at the beginning of the study, and for an equal assessment of the features through
RENT, the Les features were combined.

An alternative would have been to separate the WMHo rV feature into regions. Af-
ter combining the Les features, the average MCC score obtained through repeated
RENT increased by almost 0.1. This shows that the separation did not contribute
to any useful information for the model, but may have increased the noise.
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Framingham Risk Score

Later in the study, a feature was added with a score related to Framingham Risk
Score. The score combines features to calculate the risk related to developing
cardiovascular vascular disease [64]. Since cardiovascular disease and AD are
related, the score is also useful when analysing patients with AD. When added to
Block B, the features age, gender, smok, cardiovascular disease, and bp recum sys
could be removed as they are all involved in the score feature. The score feature
also includes information related to diabetes and body mass index (BMI). Since the
feature was added late in the analysis, only part of the total workflow was repeated
with the use of this feature. The block-wise RENT analysis gave similar results for
the average MCC score. It could be useful to use the score in further analysis due to
the fact that it is a score combining several factors related to the risk of developing
cardiovascular disease. The Framingham score could be of high importance when
analysing patients with the risk of developing AD but was not appropriately tested
in this study.

6.3 Explorative analysis

Correlation between features

The correlation between the features in the different blocks was included in the
explorative analysis, which is step 2 in the workflow presented in Fig. 4.1. For
Block B, the heatmap of the correlation coefficient was shown in Fig. 5.10. The
heatmap showed a high correlation between the features edu level and edu years.
They were both included in the analysis as the number of years of education does
not necessarily contribute to the same level of education. As seen in Table 5.7 the
level of education appeared as a more important feature than the years of education.
The feature edu years was removed when making the final dataset. In Block C the
features tmta sec and tmtb sec show a high value for the correlation coefficient, as
seen in the heatmap presented in Fig. 5.11. tmtb sec was selected 22 times out of
the 40 RENT feature selections, as listed in Table 5.8. The feature tmta sec was
not selected once and removed from the dataset. When looking at the plot of the
loadings in PCA, given in Appendix, Sec. 7, the two features tmta sec and tmtb sec
are correlated. This indicates that they contribute to the same information.
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Chemometrics

The explorative analysis using PCA and PLSR was performed in both step 2 and
step 6 presented in the workflow. PCA and PLSR are both techniques for ex-
ploratory analysis. PCA is an unsupervised technique, while PLSR is a supervised
technique and the target is included in the analysis. For the block-wise analysis,
the methods for exploratory analysis was first applied to all the patient assessments,
which is step 2 in the workflow. The results presented in Sec. 5.2 are from step 2.
From the plot of the scores, none of the techniques showed any indication of pa-
tients that could be considered as outliers. From the analysis with PCA, Block B
shows clustering of the patients into two groups. When compared to the plot of the
loadings, it indicates a separation of female and male patients. Whether a patient is
female or male appear as an essential feature in the baseline analysis using RENT.
Including the target in the analysis with PLSR, reduced the contribution related to
gender in the direction of the second component, while the features smok, cardio-
vascular disease, edu years and edu level showed higher contribution compared to
PCA.

To ensure that the systematic variation in the data did not change after splitting
into training and test, the exploratory analysis was performed again on the patient
assessments in the training data, which is step 6 in the workflow. The explained
variance as a function of the number of components was compared. Results from
the PLSR analysis are presented in Tables 6.1, 6.2, 6.3, 6.4 and 6.5 for the
different blocks. The tables include the cumulative calibrated explained variance
for the components for both the data and the target. The rows including ’train’ are
results for the analysis only including the training data. Comparing the results from
all the samples and the samples in the training set, there is not much difference in
explained variance across the number of components. It can be assumed that the
systematic variance is similar and did not change after splitting the data.

Table 6.1: Block A: Cumulative explained variance using 5 components.

Component: 1 2 3 4 5
Variance X 30% 45% 60% 80% 100%

Variance X, train 29% 47% 63% 82% 100%

Variance Y 3.8% 4% 4% 4% 4%

Variance Y, train 4.3% 4.5% 4.5% 4.5% 4.5%
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Table 6.2: Block B: Cumulative explained variance using 6 components.

Component: 1 2 3 4 5 6
Variance X 10% 20% 30% 38% 50% 60%

Variance X, train 9% 20% 30% 39% 49% 56%

Variance Y 23% 27% 27% 27% 27% 27%

Variance Y, train 27% 32% 33% 33% 33% 33%

Table 6.3: Block C: Cumulative explained variance using 6 components.

Component: 1 2 3 4 5 6
Variance X 45% 50% 60% 70% 80% 90%

Variance X, train 44% 55% 65% 72% 83% 94%

Variance Y 16% 21% 21% 21% 21% 21%

Variance Y, train 16% 21% 21% 21% 21% 21%

Table 6.4: Block D: Cumulative explained variance using 6 components.

Component: 1 2 3 4 5 6
Variance X 70% 75% 82% 90% 95% 100%

Variance X, train 75% 79% 89% 95% 97% 100%

Variance Y 12% 13% 13% 13% 13% 13%

Variance Y, train 14% 16% 16% 16% 16% 16%

Table 6.5: Block E: Cumulative explained variance for 6 components.

Component: 1 2 3 4 5 6
Variance X 30% 60% 65% 75% 80% 85%

Variance X, train 35% 60% 67% 76% 80% 84%

Variance Y 11% 13% 15% 16% 16% 16%

Variance Y, train 14% 17% 18.5% 19% 19% 19%

.
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6.4 Classification

Classifiers

There exist many different classifiers, and choosing the best classifier depends on
the problem. In this thesis, five different classifiers were used during the analysis
to compare performance. The first evaluation of the different classifiers was in the
baseline analysis, step 5 in the workflow. Referring to the overview presented in
Table 5.2, Logistic Regression, Passive Aggressive classifiers and SVM were the
best performing classifiers. Common for all the three classifiers is that they have
an adjustable regularisation parameter, C. As described in Sec. 2.3, the Passive
Aggressive classifier belongs to a different category of machine learning algorithms
than the other classifiers, which is Online learning algorithms. It uses incremental
learning and is commonly used for classifying massive streams of data. The Passive
Aggressive classifiers performed well on the data used in this study, even though
it is mostly used for online streaming and large datasets. Similar to the SVM
classifier, it uses a margin to separate the two classes. SVM can solve linear and
non-linear problems by changing the parameter for the kernel, and both linear and
non-linear were tested. Through grid search, the non-linear kernel was found to
be the best performing for the baseline data. When comparing results for the used
types of transformation of the data, the scores vary some for the different classifiers.
KNN is the classifier that shows the highest increase in performance when using
power transformations compared to just standardisation.

When analysing the results from the block-wise analysis, presented in Table 5.3,
none of the classifiers performs well on Block A. This is discussed in further de-
tail in the following section. Excluding the results from Block A, the difference
between the minimum and maximum scores was calculated. Table 6.6 shows the
minimum and maximum scores for the different classifiers when their performance
is measured for the different blocks. The difference in percentage is calculated as
the difference between the values divided by the average. Table 6.7 shows the
minimum and maximum scores for the different blocks obtained by the different
classifiers.

Table 6.6: Comparing the minimum and maximum scores obtained block-

wise for the different classifiers.

Classifier Min. score Max score Difference
Logistic Regression 0.3199 0.5480 52.6%

Passive Aggressive Classifier 0.3243 0.5028 47.8%

Random Forest 0.3123 0.5174 49.4%

KNN 0.3106 0.3805 20.2%

SVM 0.3631 0.5435 39.8%
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Table 6.7: Comparing the minimum and maximum scores for the different

classifiers in each block.

Block Min. score Max score Difference
B 0.3805 0.5480 36.1%

C 0.3403 0.4059 17.6%

D 0.3123 0.3631 15.0%

E 0.3106 0.3918 23.1%

When looking at the difference between the minimum and maximum score in the
two tables presented, there is a larger difference between the blocks than within
the blocks. This could indicate that the information in the blocks affects the score
more than the choice of classifier. The biggest difference between the worst- and
best performing classifiers is in Block B. This is also the block that obtains the
highest scores. KNN is the model that performs worst across all the blocks and is
also the classifier with the lowest difference between the worst- and best perfor-
mance. As mentioned in Sec. 4.6 and in the beginning of this chapter, the dataset
is imbalanced, with the highest number of patients belonging to class 0. The im-
balance may affect the performance of the KNN classifier, as it may have a bias
towards the majority class, which is class label 0. The KNN classifier is sensitive
to outliers and missing values, but the exploratory analysis did not reveal any obvi-
ous outliers and all the missing values were removed. The KNN algorithm always
performs better with power transformed data, so it seems to be sensitive to shewed
data. Skewed data could have a negative effect when it comes to calculating the
distance to the neighbouring points.

The final evaluation of the performance takes place when creating the ensemble
of best performing classifiers for each block. This is done when using the selected
features after the RENT analysis and is step 8 in the workflow. Block B had overall
the best results throughout this analysis, with the highest MCC score of 0.5862
with the Passive Aggressive classifier. The best-suited classifier for each block
was decided by using the highest MCC score obtained through repeated stratified
k-fold.

Blocks

Both the features used in this study and how they were divided into blocks were
based on suggestions from the neurologist that provided the data. Adjustments and
different approaches were tested throughout this study.

Block A consists of only one feature, subject group. In the original dataset, this
feature had seven categories, three of the different types of symptom groups and
four control groups. As shown in Table 5.3 all the classifiers showed an MCC
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score equivalent to random guessing. Different approaches to how to combine the
categories were tested. One of them was combining them into four categories -
two types of symptom groups and two types of control groups. Another approach
was making two categories - a symptom group and a control group. All of the
approaches gave similarly poor results when evaluating the performance of classi-
fication. Whether a patient belongs to a symptom- or control group should be of
significance when predicting the target, and it is not clear why none of the models
finds any information in this block.

Block B contains factors related to environment and heritage and has throughout
this study been the block that has obtained the highest MCC scores. As having
the form e4 of the APOE gene is related to a higher risk of developing AD, some
testing was done by only investigating the presence of this form. This was done
by creating a feature that had the value 1 if e4 was present in the APOE pair, and
removing the features regarding the other forms - e2 and e3. This did not improve
the performance, so all the combinations were included.

Block C contains cognitive tests and no changes were done to the features in this
block. Some of the tests are correlated and it was suggested that the features
cerad recall and vosp tscore should be calculated to the same scale and only use
the feature with the lowest score. Due to the time limit, this was not tested in
this study. Only the feature cerad recall was used when training classifiers in the
final prediction, as vosp tscore was only selected once in the repeated RENT anal-
ysis.

Block D contains measurements of white matter hyperintensity load, lesion in dif-
ferent parts of the brain and vascular damage in the brain. During a meeting with
the neurologists, this block was mentioned as the one with the most significant
features related to AD. The average MCC score from repeated RENT was 0.3422,
but the boxplot shown in Fig. 5.38 shows a wide spread in the scores. This block
showed varying results throughout this study. As seen in Fig. 5.6 and Fig. 4.2
Block D contains a lot of missing values and ends up with only 112 patients in the
training data, and there are more patients in the test data. Using repeated stratified
k-fold, the classifiers are trained on a low number of patients, which could explain
the high variation in the results. Training data with few samples can also make it
harder for the models to capture the relevant patterns in the data.

Block E contains features measuring subcortical brain structures, and different ap-
proaches were also tested with the features in this block. The features used are
combined measurements for the left- and the right side of the brain. The original
dataset also contains the features separated, resulting in 20 features in the block.
Different approaches for the correction of the scanners used in obtaining these im-
ages are also available in the original dataset. Two different corrections were tested,
both with the combined and separated features, resulting in four different versions
of this block. There was no significant difference in the corrections, but the com-
bined features gave a higher MCC score compared to the separated ones.
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6.5 RENT

Parameters

Referring to the workflow in Fig. 4.1, RENT for the baseline analysis is step 5 and
for the block-wise analysis step 7. For both the baseline- and block-wise analysis,
heatmaps were produced in order to manually select the best suitable parameters.
If a block contains few features, it may be desirable to find a combination of the
parameters that give a higher value for the MCC score, even though the fraction of
features set to zero is not at its highest value. For blocks with many features, the
focus could be on a combination of parameters that give a wanted reduction of the
features but still a reasonable MCC score. The parameters were manually chosen
in collaboration with the supervisors involved in this thesis.

The default value for the cutoff-parameters τ1 and τ2 is 0.9. After visualising the
scores as a function of the value for this parameter, this showed to be a too high
value in the baseline analysis. As shown in Fig. 5.32, several classifiers show a
decrease in the MCC score after 0.6. The parameter is also involved in the decision
of how many features are finally selected. By visualising the MCC score as a
function of the parameter, it was possible to choose the value that gave the highest
MCC score.

Referring to Fig. 5.34, τ1 = 0.8 shows to be the best value for the parameter in
Block B. For Block C, the value for τ was also set to 0.8, but a value between 0.2
and 0.9 would have resulted in the same selection of features. This can be seen
from the plot of selection frequency in Fig. 5.35, which shows a clear boundary
between which features are selected by the elementary models in the RENT anal-
ysis. 4 features are above 0.95, while 3 of the features lie below 0.2. The plot of
the MCC score as a function of τ shows a consistent MCC score for Logistic Re-
gression, KNN and SVC. Passive Aggressive Classifier and Random Forest show
some variation in the MCC score even though the selected features are the same,
which can come from internal randomness in the classifiers.
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For Block D, the best choice for parameter τ is 0.8, as shown in Fig. 5.36. For
Block E, the value was set to 0.8, but 0.85 was also considered. The plot of selec-
tion frequency in Fig. 5.37 shows the case of a feature that lies on the value 0.85,
which means that the feature is selected with a fraction of 85% over the 500 ele-
mentary models. The MCC score for KNN significantly increases when removing
this feature, while the score decreases some for SVM when removing the feature.
Again, the MCC score for Passive Aggressive Classifier and Random Forest vary
more than for the other classifiers.

The final choice for the cutoff-parameter τ was decided in collaboration with the
supervisors involved in this thesis.

Selected features

Looking at the selected features in the baseline analysis for the value of τ equal to
0.6, presented in Table 5.4, 4 of the features are from Block B, 5 of the features
are from Block C, 2 from Block D and 1 from Block E. None of the categories
from Block A appear among the selected features. As mentioned in Sec. 1, the e4
form of the APOE gene is related to an increased risk of developing AD, and it was
unexpected that bl apoe E3/E3 came out as more significant than bl apoe E4/E3.
Comparing the features that are from Block B to the block-wise analysis of se-
lected features, shown in Table 5.7, there are several differences. The feature age
does not appear as an important feature in the baseline analysis, while gender is
more significant than for the block-wise analysis. In the baseline analysis, most
of the selected features are from Block C, indicating that the cognitive tests are of
importance for the classification task. Both the baseline- and block-wise analyses
seem to agree on which of the tests are important, except for the clock score. From
the PCA loadings plot, the features clock score and vosp score are correlated, in-
dicating that they contain the same information. The plots are shown in Appendix,
Sec. (7. Still - vosp score was only selected once over the 40 models. There are
two features from Block D in the baseline analysis, WMHo rV and LesO. These
two features came out as the most important features in Block D, as shown in Ta-
ble 5.9. There is only 1 feature selected from Block E, Meninges, which shows
a low count for Block E, referring to Table 5.10. When all the features are com-
bined, the features from Block E do not come out as significant compared to the
other features. It is important to note that the baseline analysis was done with only
one RENT model. For a more robust analysis of the feature importance, repeated
RENT should be used, as in the case of the block-wise analysis.
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The final features selected for creating a new dataset, shown in Table 5.12, were
mainly based on results from repeated RENT but is also selected after a discussion
with the providers of the dataset. It was unsure if all the features selected by RENT
should be included, or if a limit should be set for how many times a feature was se-
lected to determine if a feature should be included. The neurologists could provide
suggestions on what features should be included or removed based on background
knowledge of AD. This is why LesF was included in the final dataset even though
it was only selected 5 times, and the feature ColSul was excluded despite the fact
that it was selected 20 times.

Classifiers and scores

RENT uses Logistic Regression with elastic net regularisation for feature selection.
The features selected through RENT could therefore be more compatible with the
Logistic Regression classifier compared to the other classifiers, and this could give
the classifier an advantage when it comes to scoring the performance.

For the baseline analysis, Logistic Regression, Passive Aggressive Classifier and
SVM show similar performance for repeated stratified k-fold when using all the
features, as shown in Table 5.2. Using the features selected by RENT, the per-
formance of the classifiers was evaluated by using repeated stratified k-fold. The
scores are presented in Table 5.5. All classifiers showed an increase in performance
when using features selected by RENT. For the baseline analysis, Table 6.8 gives
an overview of the average MCC score using all the features compared to the aver-
age MCC score using features selected by RENT. The increase in MCC score after
the RENT analysis is given in the last column as a percentage.

Classifier All features Selected features Change
Logistic Regression 0.4551 0.5492 20.7%

Passive Aggressive Classifier 0.4320 0.5593 29.5%

Random Forest 0.3312 0.4381 32.2%

KNN 0.3173 0.4302 35.6%

SVM 0.4414 0.5604 26.9%

Table 6.8: Comparing average MCC score with for all the features in the

test data and using the features selected by RENT. Since performance for

all the classifiers did increase using the selected features, the change is

given as an increase in percentage.

Before feature selection, Logistic Regression shows the highest value for the MCC
score for Block B, Block C and Block E, referring to Table 5.3. The average MCC
score for repeated RENT, shown in Table 5.11, is obtained using a Logistic Regres-
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sion for prediction. Comparing the MCC score for Logistic Regression before and
after feature selection with RENT does not show improvement in the performance.
For Block B, the MCC score increases by 0.71% after using selected features by
RENT. For all the other blocks, the performance slightly decreases. The reduction
of features and increase in interpretability makes the minor reduction in perfor-
mance acceptable. The procedure for obtaining the scores are not the same, so the
comparison is not as accurate as for the baseline analysis. Repeated RENT was
used for more robust results for the feature selection, so only the Logistic Regres-
sion classifier was used to get an indication of the performance over the 40 feature
selections. The repeated RENT procedure was not used in the baseline analysis.
After creating new datasets with the selected features, the performance of the other
classifiers was again evaluated through grid-search.

Squared- and combined features

RENT also includes an option to define a parameter named poly. By default, it is
set to ’OFF’. When defining the parameter to ’ON’, the interaction of features and
squares of features are included. If the parameter is set to ’ON’ new features are
created and could result in more features than originally used, and is not a useful
approach if the performance does not increase significantly. Initial testing with the
parameter set to ’ON’ was done early in the block-wise analysis. Creating squared
and interactions between features from the results did not improve performance
compared to the analysis done with the parameter set to ’OFF’. Running the RENT
analysis with the parameter set to ’ON’ comes with a computational cost, and the
resulting squared- and combined features have to be created for further analysis.
Due to the fact that the performance showed similar results using this technique and
that the procedure was more time consuming, further analysis was done with poly
set to ’OFF’, and the results from the combined features are not included.

Misclassified patients

The summaries for the 40 RENT feature selections used in repeated RENT was
aggregated and the misclassified patients were analysed. This was done in step 7
in the workflow. The summary contains an overview of the percentage of patient
assessments that were misclassified across the 500 elementary models. Adjusting
for the fact that an assessment could be in either the RENT-set or the test-set for
the 40 different RENT feature selection, the percentage of misclassification was
aggregated. A list of misclassified patients was created. PCA analysis was done
with the reduced dataset of selected features and different colours for the correctly-
and incorrectly classified patients.
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The results are presented in Fig. 6.1, Fig. 6.2, Fig. 6.3 and Fig. 6.4 for Block B,
Block C, Block D, and Block E respectively. The figures show the PCA scores
with the first component along the horizontal axis and the second component along
the vertical axis. The correctly classified patients have a green colour, while the
incorrectly classified patients have a red colour. None of the blocks shows any
sign of obvious clustering between the correctly- and incorrectly classified patients,
and no further analysis was done. For further work, it could be interesting to do
further analysis on these results to find out what separates the two groups of pa-
tients.
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Figure 6.1: PCA scores for Block B.
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Figure 6.2: PCA scores for Block C.
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Figure 6.3: PCA scores for Block D.
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6.6 Weighted Average

The three last steps in the workflow include finding the best classifier for each
block, predicting test labels block-wise and combining the predictions from each
block into a final prediction. Several different strategies were tested when creating
an ensemble using predictions from each block, and a final prediction using soft
majority voting. This includes how the final classifier for each block was selected,
whether to use best results from grid-search or k-fold scores. Different weights for
the prediction of the best model for each block were tested, and also the threshold
for when the final label should be predicted to be the value 0 or 1. The procedure
and results presented in Sec. 5.5 was what produced the highest value for the fi-
nal MCC score. Further adjustments made could have improved the final score,
including different approaches for finding the best classifier and how the predic-
tions from the different blocks are combined to make the final prediction. The final
MCC score was lower than anticipated. Although the separation of the features
into blocks did contribute to more patients being included in the analysis, it was
hoped that the use of blocks would contribute to better performance when finding
individually adapted classifiers for each block. It is not fair to compare the final
MCC score to the score obtained for the baseline analysis. Predicting labels for
unseen data typically gives a lower score than the score obtained through repeated
stratified k-fold.

6.7 Further work

This section concludes the discussion chapter. Even though some have been men-
tioned already, this section contains an overview of further work that can be done.

1. Analysis using only the first assessment for each patient.

2. Repeated RENT analysis for more robust analysis of selected features when
using all the features combined.

3. Further analysis regarding the misclassified patients.

• See if any clear differences can be found that separates these from the
patients that are classified correctly.

4. Using dynamic ensembles for final prediction.
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Chapter 7

Conclusions

Overall, this study showed that the block containing the factors related to environ-
ment and heritage gave the highest MCC score when classifying between patients
with the presence of amyloid-beta and patients without. The average score with re-
peated RENT for this block was similar to the score for the baseline analysis with
RENT. With all the features combined, the factors related to environment and her-
itage, and cognitive tests were identified as the most important features. Among
the features regarding images of the brain, the features measuring white matter
hyperintensity load and lesion in the occipital lobe came out as important for the
classification task in this study.

Using the features selected by RENT improved the performance of all classifiers
in the baseline analysis, even though the features came from different sources.
The performance remained approximately the same for the block-wise models, but
the RENT analysis resulted in a reduction of features and easier interpretation.
Through a repeated RENT procedure it was possible to aggregate the results over
the models to investigate how many times a feature was selected. Dividing the
features into blocks resulted in a larger number of patient assessments block-wise
compared to the patient assessments that had complete data for all the features,
meaning that the classifiers had more samples to use for training. Compared to the
baseline, the MCC score did not improve when creating a weighted ensemble with
block-wise predictions.

Overall, the predictive performance achieved in this study was not extremely good.
The highest obtained MCC score was 0.5862 using the Passive Aggressive classi-
fier trained on data from Block B. Still, there is a fair amount of information con-
tained in the data that can be used for interpretation. The features selected through
the repeated RENT analysis provided insight into the importance of all features and
are in accordance with the domain knowledge of the neurologists working with the
patients.

121



122



Bibliography

[1] “What to know about alzheimer’s disease,” https://www.medicalnewstoday.
com/articles/159442, accessed: 2021-06-07.

[2] “2020 alzheimer’s disease facts and figures,” Alzheimer’s & Dementia,
vol. 16, no. 3, pp. 391–460, 2020. [Online]. Available: https:
//alz-journals.onlinelibrary.wiley.com/doi/abs/10.1002/alz.12068

[3] BruceBlaus, “Pet scan-normal brain-alzheimers disease brain,” 2018.
[Online]. Available: https://commons.wikimedia.org/wiki/File:Alzheimers
Disease.jpg

[4] Health and H. S. Department, “Pet scan-normal brain-alzheimers disease
brain,” 2013. [Online]. Available: https://commons.wikimedia.org/wiki/File:
PET scan-normal brain-alzheimers disease brain.PNG

[5] J. Tian, G. Smith, H. Guo, B. Liu, Z. Pan, Z. Wang, S. Xiong, and R. Fang,
“Modular machine learning for alzheimer’s disease classification from retinal
vasculature,” Scientific Reports, vol. 11, p. 238, 01 2021.

[6] I. R. R. da Silva, G. dos Santos Lucas e Silva, R. G. de Souza,
M. A. de Santana, W. W. A. da Silva, M. E. de Lima, R. E. de
Souza, R. Fagundes, and W. P. dos Santos, “Chapter four - deep learning
for early diagnosis of alzheimer’s disease: a contribution and a brief
review,” in Deep Learning for Data Analytics, H. Das, C. Pradhan, and
N. Dey, Eds. Academic Press, 2020, pp. 63–78. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128197646000053

[7] “Diagnosing alzheimer’s: How alzheimer’s is diagnosed,” https:
//www.mayoclinic.org/diseases-conditions/alzheimers-disease/in-depth/
alzheimers/art-20048075, accessed: 2021-08-04.

[8] “Dementia statistics,” https://www.alzint.org/about/dementia-facts-figures/
dementia-statistics/, accessed: 2021-06-08.

[9] G. Castellazzi, M. G. Cuzzoni, M. Cotta Ramusino, D. Martinelli, F. Denaro,
A. Ricciardi, P. Vitali, N. Anzalone, S. Bernini, F. Palesi, E. Sinforiani,

i

https://www.medicalnewstoday.com/articles/159442
https://www.medicalnewstoday.com/articles/159442
https://alz-journals.onlinelibrary.wiley.com/doi/abs/10.1002/alz.12068
https://alz-journals.onlinelibrary.wiley.com/doi/abs/10.1002/alz.12068
https://commons.wikimedia.org/wiki/File:Alzheimers_Disease.jpg
https://commons.wikimedia.org/wiki/File:Alzheimers_Disease.jpg
https://commons.wikimedia.org/wiki/File:PET_scan-normal_brain-alzheimers_disease_brain.PNG
https://commons.wikimedia.org/wiki/File:PET_scan-normal_brain-alzheimers_disease_brain.PNG
https://www.sciencedirect.com/science/article/pii/B9780128197646000053
https://www.mayoclinic.org/diseases-conditions/alzheimers-disease/in-depth/alzheimers/art-20048075
https://www.mayoclinic.org/diseases-conditions/alzheimers-disease/in-depth/alzheimers/art-20048075
https://www.mayoclinic.org/diseases-conditions/alzheimers-disease/in-depth/alzheimers/art-20048075
https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/
https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/


A. Costa, G. Micieli, E. D’Angelo, G. Magenes, and C. A. M. Gandini
Wheeler-Kingshott, “A machine learning approach for the differential
diagnosis of alzheimer and vascular dementia fed by mri selected features,”
Frontiers in Neuroinformatics, vol. 14, p. 25, 2020. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fninf.2020.00025

[10] “Detecting alzheimer’s earlier with the help of machine-
learning algorithm,” https://www.genengnews.com/news/
detecting-alzheimers-earlier-with-the-help-of-machine-learning-algorithm/,
2020, accessed: 2021-09-14.

[11] J. Giorgio, S. M. Landau, W. J. Jagust, P. Tino, and Z. Kourtzi, “Modelling
prognostic trajectories of cognitive decline due to alzheimer’s disease,”
NeuroImage: Clinical, vol. 26, p. 102199, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S221315822030036X

[12] “Machine learning for comprehensive forecasting of alzheimer’s disease
progression,” Scientific Reports, vol. 9, no. 1, p. 13622, 2019. [Online].
Available: https://doi.org/10.1038/s41598-019-49656-2

[13] “What causes alzheimer’s disease?” https://www.nia.nih.gov/health/
what-causes-alzheimers-disease, accessed: 2021-06-07.

[14] S. Raschka and V. Mirlalili, Python machine learning, Third Edition, 3rd ed.
Birmingham: Packt Publishing, 2019.

[15] “Difference between classification and regression in
machine learning,” https://machinelearningmastery.com/
classification-versus-regression-in-machine-learning/, accessed: 2021-
11-10.

[16] V. Agarwal, “Research on data preprocessing and categorization technique
for smartphone review analysis,” International Journal of Computer Applica-
tions, vol. 131, no. 4, pp. 30–31, 2015.

[17] J. Brownlee, “How to use power transforms for machine learning,”
https://machinelearningmastery.com/power-transforms-with-scikit-learn/,
accessed: 2021-01-28.

[18] S. Weisberg, “Yeo-johnson power transformations,” https://www.stat.umn.
edu/arc/yjpower.pdf, accessed: 2021-01-28.

[19] A. Fawcett, “Data science in 5 minutes: What is one hot encoding?” 2021.
[Online]. Available: https://www.educative.io/blog/one-hot-encoding
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An overview,” Critical Reviews in Analytical Chemistry - CRIT REV ANAL
CHEM, vol. 36, pp. 41–59, 01 2006.

[22] A. Smilde, H. Kiers, S. Bijlsma, C. Rubingh, and M. Erk, “Matrix correla-
tions for high-dimensional data: The modified rv-coefficient,” Bioinformatics
(Oxford, England), vol. 25, pp. 401–5, 02 2009.

[23] V. Gupta, G. Singh, R. Singh, R. Singh, and H. Singh, “An introduction to
principal component analysis and its importance in biomedical signal pro-
cessing,” vol. 11, 2011.

[24] D. Lay, S. Lay, and J. McDonald, Linear Algebra and Its Applications, Global
Edition, 5th ed. London: Pearson, 2015.

[25] A. Sykes, “An introduction to regression analysis,” Coase-Sandor Working
Paper Series in Law and Economics, 10 1993.

[26] T. Haslwanter, “Residuals for linear regression fit,” 2013. [Online].
Available: https://commons.wikimedia.org/wiki/File:Residuals for Linear
Regression Fit.png

[27] D. V. Guebel and N. V. Torres, Partial Least-Squares Regression (PLSR).
New York, NY: Springer New York, 2013, pp. 1646–1648. [Online].
Available: https://doi.org/10.1007/978-1-4419-9863-7 1274

[28] Mitchell, “Rosenblattperceptron,” 2012. [Online]. Available: https://
commons.wikimedia.org/wiki/File:Rosenblattperceptron.png

[29] Chrislb, “Sigmoidfunction,” 2006. [Online]. Available: https://commons.
wikimedia.org/wiki/File:SigmoidFunction.svg

[30] C. Zhang, X. Shao, and D. Li, “Knowledge-based support vector classifica-
tion based on c-svc,” Procedia Computer Science, vol. 17, pp. 1083–1090, 12
2013.

[31] Larhmam, “Svm margin,” 2008. [Online]. Available: https://commons.
wikimedia.org/wiki/File:SVM margin.png

[32] H. Patel and P. Prajapati, “Study and analysis of decision tree based classi-
fication algorithms,” International Journal of Computer Sciences and Engi-
neering, vol. 6, pp. 74–78, 10 2018.

[33] Pkuwangyan06, “Decision trees,” 2015. [Online]. Available: https:
//commons.wikimedia.org/wiki/File:Decision Trees.png

[34] V. Jagannath, “Random forest diagram complete,” 2017. [Online]. Avail-
able: https://commons.wikimedia.org/wiki/File:Random forest diagram
complete.png

iii

https://commons.wikimedia.org/wiki/File:Residuals_for_Linear_Regression_Fit.png
https://commons.wikimedia.org/wiki/File:Residuals_for_Linear_Regression_Fit.png
https://doi.org/10.1007/978-1-4419-9863-7_1274
https://commons.wikimedia.org/wiki/File:Rosenblattperceptron.png
https://commons.wikimedia.org/wiki/File:Rosenblattperceptron.png
https://commons.wikimedia.org/wiki/File:SigmoidFunction.svg
https://commons.wikimedia.org/wiki/File:SigmoidFunction.svg
https://commons.wikimedia.org/wiki/File:SVM_margin.png
https://commons.wikimedia.org/wiki/File:SVM_margin.png
https://commons.wikimedia.org/wiki/File:Decision_Trees.png
https://commons.wikimedia.org/wiki/File:Decision_Trees.png
https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png
https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png


[35] J. Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random forests and decision
trees,” International Journal of Computer Science Issues(IJCSI), vol. 9, 09
2012.

[36] S. Dreiseitl and L. Ohno-Machado, “Logistic regression and artificial neural
network classification models: a methodology review,” Journal of Biomedical
Informatics, vol. 35, no. 5, pp. 352–359, 2002. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1532046403000340

[37] A. Ajanki, “Knnclassification,” 2007. [Online]. Available: https://commons.
wikimedia.org/wiki/File:KnnClassification.svg

[38] S. Gupta and P. Meel, “Fake news detection using passive-aggressive classi-
fier,” in Inventive Communication and Computational Technologies, G. Ran-
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Appendix

Appendix A: Figures from exploratory PCA

This section includes the figures from the exploratory PCA. Separated into blocks,
the figures include 4 plots. The plots on the top are the scores and loadings for
the first two principal components. The plot in the bottom left is the explained
variance in x as a function of the number of components. The correlation loadings
for the first two principal components is shown in the plot in the bottom right of
the figure.

Figure 7.1: Block A: Figures from PCA.
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Figure 7.2: Block B: Figures from PCA.

Figure 7.3: Block C: Figures from PCA.
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Figure 7.4: Block D: Figures from PCA.

Figure 7.5: Block E: Figures from PCA.
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Appendix B: Figures from exploratory analysis with PLSR

This section includes the figures from the exploratory analysis with PLSR. Sepa-
rated into blocks, the figures include 4 plots. The plots on the top are the scores
and correlation loadings for the first two principal components. The correlation
loadings are for x and y. The plots on the bottom are the explained variance as a
function of the number of components. The left plot is of the explained variance in
x, and the right is the explained variance in y.

Figure 7.6: Block A: Figures from PLSR analysis.
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Figure 7.7: Block B: Figures from PLSR analysis.

Figure 7.8: Block C: Figures from PLSR analysis.
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Figure 7.9: Block D: Figures from PLSR analysis.

Figure 7.10: Block E: Figures from PLSR analysis.
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Appendix C: Figures from Outlier detection

This section includes the figures from the decomposition based outlier detection
with the scikit-lego package. For each block the figure includes two plots. The
plot on the left is outlier detection via parallel coordinates. The plot on the right is
outlier detection for the first two principal components.

Figure 7.11: Block A: Outlier detection.

Figure 7.12: Block B: Outlier detection.
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Figure 7.13: Block C: Outlier detection.

Figure 7.14: Block D: Outlier detection.

Figure 7.15: Block E: Outlier detection.
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Appendix D: Heatmaps from RENT analysis

This section includes the heatmaps from the block-wise RENT analysis. Two
heatmaps are provided for each block. The first is the heatmap of the scores, where
the values are the MCC score. The second heatmap presents the zeroes, which is
the fraction of variables set to zero. The axis are the same for all the plots, with the
value for the parameter C along the horizontal axis and the value for the l1-ratio
along the vertical axis.

Figure 7.16: Block A: heatmaps of scores and zeroes.
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Figure 7.17: Block B: heatmaps of scores and zeroes.

Figure 7.18: Block C: heatmaps of scores and zeroes.
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Figure 7.19: Block D: heatmaps of scores and zeroes.

Figure 7.20: Block E: heatmaps of scores and zeroes.
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