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Abstract 
In the era of multi-omics, making reasonable statistical inferences through data integration is 

challenged by data heterogeneity, dimensionality constraints, and data harmonization. The 

biological system is presumed to function as a network where the physical relationships between 

genes (nodes) are represented by links (edges) connecting genes that interact. This thesis aims 

to develop a new and efficient workflow to analyse non-model organism multi-omics data for 

researchers who are entangled in the biology questions by using readily available software tools. 

The proposed approach was applied to the transcriptome and metabolome data of Daphnia 

magna under various dose rates of gamma radiation.  

 

The first part of this workflow compares and contrasts the transcriptional regulation of short-and 

long-term gamma radiation exposure. A group of genes which share a similar expression across 

different samples under the same conditions are known as modules, because they are likely to 

be functionally relevant. Modules were identified using WGCNA but biologically meaningful 

modules (significant modules) were selected through a novel approach that associates genes 

with significantly altered expression levels as a result of radiation (i.e. differentially expressed 

genes) with these candidate modules. Dynamic transcriptional regulation was modelled using 

transcription factor (TF) DNA binding patterns to associate TFs with expression responses 

captured by the modules. The biological functions of significant modules and their TF regulators 

were verified with functional annotations and mapped into the proposed Adverse Outcome 

Pathways (AOP) of D. magna, which describes the key events which contribute to fecundity 

reduction. The findings demonstrate that short term radiation impacts are entirely different from 

long term and cannot be used for long term prediction.  

  

The second part investigates the coordination of gene expression and metabolites with 

differential abundances induced by different gamma dose rates and the underlying mechanisms 

contributing to the varying extent of the reduction in fecundity. Significant modules which belong 

to the same design model of dose rates were combined and annotated with new functionality. 

The abundance of metabolites was also modelled with the same design model. Integrated 

pathway enrichment analysis was performed to discover and create pathway diagrams for 

visualising the multi-omics output. Finally, the performance of this workflow on explaining the 

reduction of fecundity of D. magna, which has not been described in previous studies, has been 

evaluated. Combining the information from the metabolome and transcriptome data, new 

insights suggest that the alteration to the cell cycle is the underlying mechanism contributing to 

the varying reduction of fecundity under the effect of different dose rates of radiation. 
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Chapter 1 Introduction 
Organisms are consistently exposed to oxidative stress, ranging from exposure to ultraviolet rays 

from the sun and anthropogenic activities to medical treatments destroying cancerous cells with 

radiotherapy.  As a result, cells are equipped with a healing mechanism to maintain the integrity 

of the genome and prevent the onset of tumorigenesis. The reactive oxygen species (ROS) is a 

group of oxygen-derived free radicals generated, mainly, through aerobic respiration in 

mitochondria. Under the influence of environmental stresses, such as ionizing radiation, the cell's 

interactions with water through radiolysis can lead to an uncontrollable amount of ROS 

generation and ineffective elimination. Excessive accumulation of ROS lets the highly reactive, 

unpaired electrons from the radicals damage all macromolecules including DNA, which can 

famously lead to DNA lesions. Regardless of cell type, a single diploid cell exposed to 1Gy of 

gamma radiation was reported to cause approximately 1000 single-strand breaks, 40 double 

strand breaks and alterations of bases (Olive, 1998). This however is almost negligible compared 

to the roughly 200,000 single strand breaks which occur daily within mammalian cells (Billen, 

1990). However, DNA lesions induced by radiation are more complicated than endogenous 

damage within a cell because it can lead to cluster lesions, double stranded breaks with 

heterogeneous ends, and clusters of non-double-strand break lesions which are more likely to 

trigger apoptosis (Olive, 1998). The self-repair response varies with species and cell type with 

factors including chromatin structure, spectrum of lesion, availability of repair proteins, gene 

induction on cell cycle control and the cellular environment. A study on the effects of ionizing 

radiation on spermatozoa reported that the average mutation rate in mice is higher than in 

Drosophila by approximately 10 to 15 times, and the self-repairing process was postulated to be 

dose rate dependent (Alpen, 1998). 

There are growing concerns around the early life stages of living organisms exposed to ionizing 

radiation because cells are actively dividing, proliferating, and differentiating at these times. 

Stages such as gametogenesis, embryogenesis, and organogenesis have been primarily targeted 

for the study of low-dosage radiation induced by-stander effects, adaptive response and genome 

instability (Streffer, 2004). Studies of the first two effects show that small amounts of radiation 

exposure stimulate cellular response and develops better radioactive resistance but that the 

latter causes chromosomal mutation and uncontrollable gene expression, which could lead to 

permanent toxic impact in life and even be inherited by future generations (Nations, 2000, 

Streffer, 2004).  

The discharge of industrial and municipal waste into the water environment occurs in a 

continuous manner all around the world. Aquatic life in the food web ranging from producers 

(phytoplankton, algae) to consumers (fish, shrimps) are constantly exposed to the radioactive 

waste chronically before they are ingested by the higher consumers (bears, birds, humans) in the 

food web. Based on acute radiation exposure to adult organisms, benchmarks lower than 0.42 

mGy/h and even 0.01 mGy/h were proposed as the maximum ecotoxicological assessment value 



confidently resulting in no adverse effects (Nations, 2000, Garnier-Laplace et al., 2010). Study on 

chronic sublethal effects in the early development life stage of aquatic invertebrates has slowly 

gained the interest of academia in the last five years, especially for organisms from the family of 

Daphniidae. Due to practical benefits such as ecological habitat in a wide variety of water bodies, 

short life spans and colourless bodies, it has regularly been used in toxicity and hazard 

assessments (Oecd, 2008, Cui et al., 2017).  

 
Figure 1: The network of Adverse Outcome Pathways (AOPs) demonstrates the impact of excessive ROS recently proposed 
(Song et al., 2020). 

The network of adverse outcome pathways (Figure 1) describes the mode of actions which 

contributes to the decrease in fecundity for Daphnia magna, exposed to moderately to high 

gamma radiation (1-100 mGy/h), has recently been proposed (Song et al., 2020). The production 

of excessive ROS as a molecular initiating event causes a series of key events that eventually lead 

to the reduction of fecundity. These adverse outcome pathways (AOP) also cause DNA damage, 

ATP depletion and lipid peroxidation-associated reproduction dysfunction. This project focuses 

on developing a systematic workflow to evaluate the adverse outcome pathways using two 

transcriptomic datasets of juvenile D. magna measuring gene expression at different dose rates 

and after 4 days and 8 days of exposure to gamma radiation (Figure 1) as described in detail by 

Song et al. (2020), and finally presented as AOPs (https://aopwiki.org/, AOP #216, #238 and #311) 

The preliminary findings (Song et al., 2020) also suggests that different mechanisms were 

activated upon different dose rates which contributed to varying degrees of reduced fecundity. 

At the low dose rate (1 mGy/h) reproduction was delayed, whereas at the high dose rate (100 

mGy/h) the number of progenies and the brood size were reduced. With the transcriptomic and 

metabolomic data of D. magna exposed to 8 days of gamma radiation provided by Norwegian 

Institute for Water Research (NIVA), this projects also intends to perform an integrated analysis 

to refine the understanding of toxicity pathways and the early impact on the reduction in 

fecundity. This may enhance the biological knowledge of gamma radiation in the biota of other 

species.  

https://aopwiki.org/


1.1 Background 

1.1.1 Omics and the central dogma of molecular biology 
It has long been known that the central dogma of molecular biology describes the cellular flow 

of genetic information from DNA, transcribed into RNA, and translated into protein, with 

metabolites as the products of cellular metabolism. In the era of multi-omics, the “central dogma” 

is proposed to be a single layer of macroscopic integration of information, from an omics wide 

perspective (dos Santos et al., 2021). Metabolomics should be placed at the centre controlling 

the changes to other fields, such as epigenomics, genomics, proteomics, transcriptomics, 

because the metabolite states and constituents can reveal the mode of action of these tiny 

molecules intracellularly and extracellularly. Nonetheless, macro and micro molecules constantly 

work together in every biological process. The biological pathways linking these processes are 

highly chaotic where the smallest changes in any omics field at the molecular levels can cause 

radically different outcomes (Kellert and Sklar, 1997). The emergence of multi-omics 

technologies has created chances to monitor and study the biological system from different 

omics perspectives with each type offering a unique view. Conducting multi-omics research can 

therefore provide a global view which will benefit research in biology. 

The term “omics-” describes a field of molecular study in biological science. In this study, 

transcriptomics and metabolomics data are used in the analysis. Transcriptomics is the study of 

transcriptomes, which are a set of all RNA molecules decoded from DNA (a genome) and 

generally refer to messenger RNAs (mRNA) (dos Santos et al., 2021). The level of gene expression 

is equivalent to the level of mRNA, while the term differentially expressed genes (DEGs) refers to 

genes with a significant difference of expression when exposed to different conditions. The 

expression of genes in the coding region is known as mRNA transcription, and this harbours all 

the necessary information responsible for protein synthesis acting as a blueprint.  

The metabolome of a species is the collection of all small, lightweight molecules known as 

metabolites (Sun and Hu, 2016). Metabolomics refers to the study of these tiny substrates and 

products which are involved in metabolism. It is also a promising approach which directly reflects 

the physiological state of cellular activity, and the underlying biochemistry is strongly related to 

molecular phenotypes. Metabolomics is a crucial piece of the puzzle in omics organisation as it is 

more closely related to the phenotypes than the other omics fields. Metabolites and metabolic 

fluxes represent the end products from upstream regulation in particular conditions and 

moments. Monitoring the level of metabolomes hence revealed the transition of physiological 

states, even on the smallest intra- and extra- cellular perturbations.  



1.1.2 Integration of transcriptomics and metabolomics 

The crosstalk between metabolites and gene expression has also been interpreted as intracellular 

signalling in transcriptional regulation (Donati et al., 2018). The canonical flow of genetic 

information started from the regulation of transcription factor to the end products, metabolites, 

which are then conveyed metabolic feedback to re-interact and change the activity of 

transcription factors. Macromolecules like sugars and amino acids are metabolites that not only 

serve as signalling molecules, but also as the building blocks and precursors of other metabolites 

in response to external stress stimuli. Hence, integrating the transcriptomics and metabolomics 

data provides a deeper set of information elucidating this bidirectional relationship, and enables 

better prediction of responses to the mode of action triggered by gamma radiation. 

 

1.1.3 Transcription Factor Binding Sites (TFBS) 
Transcription factors (TFs) are proteins involved in the regulation of transcription through DNA 

binding activity in the upstream of a transcription start site (TSS) or bind to the enhancers which 

located far away from the TSS (Lawler, 2010). TFs can either refer to a transcriptional activator 

or repressor which binds specifically to the regions of a gene promoter or a distal region from the 

TSS. A DNA binding motif is a known specific binding site of TFs. Unlike prokaryotes (microscopic 

single-celled organisms that have neither a distinct nucleus with a membrane nor other 

specialized organelles), regulation of gene expression in eukaryotes (those that do have a distinct 

nucleus and nuclear membrane) usually requires more than one TF working in a combinatorial 

manner under different conditions (Cole, 2016). The regulatory networks constructed in this 

thesis propose a complex combinatorial transcriptional control involving more than one TF in a 

feedback loop within and beyond the clusters of interest, focussing only on TFs from the 

upstream region on TSS.  

1.1.4 Machine learning 
The advent of machine learning allows for the promising discovery of hidden structures within 

sets of highly complex omics data. Machine learning is a broad term that refers to the method of 

fitting a predictive model to a dataset with a large number of features through the steps of 

identifying new patterns, recognizing existing patterns and making decisions. The first type of 

machine learning used is supervised learning, this is creating a predictive model which fits the 

data given by feeding some ground truths (true labels) into the training so the predictive models 

generated can predict the answers in a test set as accurately as possible without overfitting. 

Overfitting is when a system attaches itself too strongly to a particular set of data, for example a 

model that predicts the number of days in a year and is given the years 2017, 2018, 2019 will give 

wrong results when trying to predict for 2020 (a leap year). Unsupervised learning identifies 

patterns without using predetermined labels. If building a model requires accurate, efficient, 



cost-effective, and unbiased annotations; then combining limited amounts of labelled data with 

unlimited unlabelled data can be a powerful solution. This is known as semi-supervised learning.  

1.1.4.1 Unsupervised learning - Weighted gene co-expression 

network analysis (WGCNA)   
      The Weighted Genes Co-Expression Network Analysis (WGCNA) software package provides a 

comprehensive collection of R functions for construction of networks, identification of gene 

clusters (modules), calculations of topological properties (e.g., network centrality), simulation, 

and visualization of data (Langfelder and Horvath, 2008). WGCNA refers genes, transcripts or 

protein as nodes. In general, the default setting of Pearson’s correlation measures the magnitude 

of the genes/transcripts co-expression values by evaluating the linear correlation between node 

pairs, in which a high correlation coefficient suggests that these genes are likely to co-regulate in 

the same biological process and therefore potentially possess similar functionality. After the 

construction of the correlation network, WGCNA employs unsupervised clustering for module 

detection by using topological overlap measures (TOM) as a proximity measure of network 

interconnectedness. The creation of TOM is to reduce the sensitivity of a network towards 

random or missing connections resulting from noise. A TOM matrix includes the adjacency of two 

nodes and the numbers of 1-step neighbours shared between two nodes.  This further creates a 

dissimilarity matrix, dissTOM (dissTOM = 1 - TOM) which serves as an input to average linkage in 

hierarchical clustering for grouping highly co-expressed nodes into modules.  

      Hierarchical clustering is a common method that works well in high dimensional data because 

it provides visualization and does not limit or specify the number of clusters. However, it is hard 

to control the number of clusters and cluster size generated, especially when capturing 

prominent clusters from a complicated tree through a typical pruning method such as static cut 

(Langfelder and Horvath, 2008). Various tree cutting techniques are available but the default in 

WGCNA is Dynamic Tree Cut as it takes the shape criteria (core scatter, branch gaps and cluster 

size) into consideration. When examining whether the detected modules are biologically 

meaningful or simply a technical artifact/contamination, gene ontology (GO) enrichment analysis 

is very useful. The representative (weighted average) expression of a given module is called a 

module eigengene, which is also known as the first principal component in a principle component 

analysis (PCA).  

      Two common options used to identify condition-associated modules are 1) Correlating 

module eigengene with traits/disease/treatment of interest to associate the module with 

biological meaning, 2) measuring the gene significance (GS) (correlating genes with traits/disease 

of interest) and the module membership (MM) (correlating genes with selected module 

eigengene) and setting a cut off of at least MM > 0.3 and GS > 0.3 for module selection.  However, 

neither of these options were chosen in this study because the non-linear relationship between 

modules and traits will not be detected. This study creatively includes the advantages of 



supervised learning using software package DESeq2 to select differentially expressed modules. 

The details are addressed in the following chapter.   

1.1.4.2 Unsupervised learning - Automatic network 

construction and blockwise module detection 
The WGCNA workflow that is presented in this study implements the function  

to build the correlation network and cluster tree, determine, and merge modules with highly 

correlated eigengenes automatically (and quickly). This function overcomes the limitations of 

memory size and processor speed when handling large datasets by separating the scalar variables 

into clusters beforehand. After pre-clustering of nodes into large blocks (a variant of k-means 

clustering, hierarchical clustering, and automatic module detection), merging is carried out on 

each block. Module membership is hence recalculated. However, it is recommended to always 

keep a dataset in one block of memory.   

Other parameters used in the function  in this workflow were: 

1. networkType = Signed 

2. TOMType = Signed   

The standard workflow of WGCNA requires an adjacency matrix which is then converted into a 

topological overlap matrix (TOM). There are two options for building any of these networks, 

signed or unsigned treatment of pairs of nodes in a weighted correlation network.  An unsigned 

network defines the relations of two genes in a pair of nodes as the absolute value of Pearson 

correlation. It means that the sign of the correlation does not matter, positive and negative 

correlations are treated equally. However, in the context of a gene expression study, positive 

correlation and negative correlation between nodes/genes/transcripts imply different node 

profiles as in where and when the genes are up- or down- regulated, mixing the signs will simply 

ignore this piece of information. Moreover, negatively correlated nodes could belong to a 

different biological category than the positively correlated network, which is usually the case. 

Signed networks preserve the sign information and scale the correlation interval from [-1, 1] into 

[0,1] in an adjacency matrix. Previous study of embryonic stem cells show that signed network 

generated modules outperformed unsigned networks by capturing more specific gene 

expression patterns, despite negatively correlated nodes being classified as unconnected (Mason 

et al., 2009). Therefore, the author recommends using signed networks due to its simplicity in 

biological interpretation and to retain the underlying correlations of node pairs. 

3. Setting a threshold for scale-free topology 

It is assumed that the biological network resembles a scale free graph and the correlation 

between genes vary. The topology of a scale free network is dominated by a few centralised, 

highly connected genes (hub genes) whereas the rest of the genes (most genes) have significantly 

fewer neighbours compared to the hub genes. Hence, the scale free network also refers to 



networks that follow a power law distribution, in which the average degree of node k (number 

of connections to the nearest neighbours) within a network is not representative, despite having 

finite numbers of genes. But the variation in the first neighbours P(k) is a proportional change 

that varies as a power of the average degree (Zhang and Horvath, 2005).  

P(k) ~ k -γ 

In this workflow, a soft threshold is chosen over a hard threshold because the idea is to focus on 

strongly correlated genes over weakly correlated genes but without losing them. Hard 

thresholding turns absolute value (coefficients) which are lower than the threshold into zero. Soft 

thresholding does the same, however it also shrinks the passing values towards zero. Weak 

interactions between genes that are equivalent to noise are represented by smaller coefficients 

whereas the stronger interactions are those with larger coefficients. Choosing a soft threshold 

thus preserves gene pairs with weak interactions and magnifies gene pairs with strong 

interactions, the idea is to resemble the continuous nature of gene interactions in a biological 

system in real life, where all genes are connected in principle, and the strength of connections 

differs from time to time when different responses or reactions are triggered. The value of soft 

thresholding (β) is used to raise the similarity between genes by powering the correlation 

coefficients. The choice on β affects the degree of scale free index (R2) (Zhang and Horvath, 2005). 

Scale-free topology fit index or scale-free index (R2) describes how good a network fulfils a scale 

free topology. R2 comes from the squared correlation of degree distribution log P(k) and average 

degree, log (k). However, there is a trade-off between maximizing the R2 and maintaining a high 

k. So, R2 > 0.80 is a good rule of thumb, because an R2 approaching 1 indicates a very good fit 

which is close enough to achieve scale free topology (Langfelder and Horvath, 2008). Meanwhile 

a mean connectivity, not more than a few hundred, but high enough to be informative is 

important to ensure the detection of meaningful modules.  

1.1.4.3 Supervised learning - Regression analysis 
Simple linear regression can be considered as the simplest form of supervised learning because 

it aims to explain the observed response variable with an explanatory variable. The explanatory 

variable can be represented by features whereas the responding variable is the continuous 

response. The linear regression algorithm will attempt to fit an arbitrary straight line as close to 

as many data points (samples) as possible. After multiple iterations, the best-fit line is found and 

the resulting distance between the line and data points should be minimal. The predicted 

quantitative response and errors for future data relies on the predicted coefficients, which shows 

how well the linear model fits the data. In transcriptomics, it is challenging to model sequencing 

counts and control the prediction performance based on the expression of genes due to 

treatment effects. The expression of genes due to extraneous sources such as experimental 

manipulations, known and unknown technical variability as well as unknown biological variations 

make it challenging to separate the variable of interest from these interferences. Software like 

DESeq2 can come to the rescue by normalising gene counts associated with the changes between 



the conditions by using a more advanced regression algorithm, the negative binomial generalized 

linear model before fitting of the linear model.  

 

1.1.4.4 Supervised learning - Differential expression analysis 

on discrete data with DESeq2 
Transcriptomics data is discrete data, so it requires a software package which is designed for this 

data type, such as DESeq2. The statistical model of DESeq2 assumes that most genes are not 

differentially expressed (DE), so the null hypothesis is true when the log2 fold changes of a gene 

is 0 (Love et al., 2014). Firstly, the transcript’ s raw counts, Yij of gene i from sample j, were 

modelled internally following a negative binomial (NB) distribution Yij ∼ NB (µij, σ2
ij) where µij is 

the fitted mean scaled from normalization and σij is the dispersion. 

µij = sj qij 

log2(qij) = Xj βi 

sj represents the size factor for normalization and qij is proportional to the transcript’s abundance 

of sample j. The application of general linear model (GLM) exponentiates the predictors, whereas 

coefficient βi shows the log2 transformed fold changes for gene i and vector xj indicating the 

design matrix elements for sample j. The expected counts follow log (E (Yij)) = Xj βi + log(sj). The 

simplest comparison of the same gene between two groups in different conditions, g1 and g2, is 

depicted in the hypothesis testing differential expression shown below:  

H0: βg1 = βg2 

H1: βg1 ≠ βg2 

Secondly, the coefficient and dispersion parameters (mean and variance) are estimated with a 

Bayesian shrinkage which shares the information across all genes.  

Thirdly, counts from each gene are fitted into the negative binomial GLM followed by performing 

a Wald test to identify DE genes. Typically, the p-values < 0.05 indicates 5 % chance that the 

finding results in false positives. As the numbers of genes increase, the false positive rate are 

correspondingly inflated and therefore in this study, DE genes are filtered only according to the 

criteria of multiple testing. The correcting method, Benjamini-Hochberg (FDR) is applied in which 

the genes are ranked according to the p-value, the rank is then divided by the total number of 

tests and multiply with the false discovery rate of interest.  

The normalization implemented by the DESeq2 package accounts for the sequencing depth (the 

average number of times a portion from the total nucleotides is sequenced), gene length 

(different genes differ in length but which have the same expression level) and RNA composition 

(the varied expression of the same gene in different samples; the high counts from highly 



expressed gene can mask the counts of other differentially expressed genes, etc.). DESeq2 

focusses on the samples comparability by normalizing the counts with a median-of-ratios method. 

This approach divides the counts by a sample specific scaling factor, which is also the median 

ratio of each sample relative to the geometric mean per gene. Non-DE genes for each sample 

should therefore have similar count values after the correction of the estimated size factor.  

Using DESeq2 

Deseq2 requires two input files: (i) un-normalised count data in the form of matrix and (ii) 

metadata with sample names as row names and the grouping variable (dose rates) in the next 

column. The input files are used in the function associated with tilde (~) 

followed by the design matrix. The design matrix indicated by coefficient vector Xj in the GLM 

tells whether a sample j is controlled or treated. The differential gene expression analysis is 

implemented in one step using the  function, which covers size factors, dispersion 

estimation, negative binomial GLM fitting, and hypothesis testing. The  function generates 

the output in a table format with Base Mean, log2 Fold Change, p-values and adjusted p-values. 

1.1.4.5 Supervised learning - Differential expression analysis 

on continuous data with limma 
Metabolomics data is continuous data and can be handled by limma, but not DEseq2. For 
differential metabolite analysis, the limma package creates a gene-wise linear model by 
estimating the gene-specific variance for all samples (Ritchie et al., 2015). Within the matrix of 
metabolomics data, the coefficients and standard errors of the linear regression for each row is 
estimated across all the sample comparisons of interest. The flexibility of the design model 
provided is the same as DESEq2, where the fitted objects that are created can be separated 
according to the groups or factors of interest and can also be compared. This creates a contrast 
matrix which can further be used for the calculation of log2 fold changes and t-statistics. As the 
variance between genes can differ greatly, information of the estimated variances from all the 
genes is borrowed by empirical Bayes. A trend line is hence formed in which the gene-wise 
variances are pushed together to reduce variation among extremely large variances and the 
effects of outliers, as well as to exert strong push for consistently expressed genes with similar 
variance. Extremely small and large variances are adjusted to reduce the number of false 
positives and improve the detecting power for DEGs. The significance of expression (T-stats and 
p-value) of each gene between the contrast or linear model is also computed by the framework 
of empirical Bayes (Ritchie et al., 2015). 

1.1.5 Differential testing with counts data transformations  
In RNA-sequencing (RNA-seq), highly expressed genes tend to have a larger variance in 

expression terms across all samples than lowly expressed genes. The standard deviation per gene 

increased and spanned a large variance range, as the rank of the average expression grew. This 

phenomenon is known as heteroscedasticity as the variance is not evenly distributed across 



different means. This affects the presentation of the plots which rely heavily on the genes with 

the highest counts in differential testing, for example, PCA plot which is a sample clustering plots 

for data quality control before the differential expression analysis. The actual differences 

between low and high-count samples made the interpretation of plots difficult.  

Theory behind VST 

Variance stabilizing transformation (VST) is a normalisation method from the package of DESeq2, 

ensuring a more equal variance along the range of dynamics when measuring either the within-

group or between samples. Genes with low counts are shrunk towards the averages of genes of 

all samples. VST works better than regular logarithmic methods when dealing with lower counts 

as it does not require the additional pseudo count of 1 for the case of 0 counts. VST also prevents 

the inflation of noise from low counts by compressing the differences, particularly when the 

values are very close to zero. The transformed data makes the visualisation on sample clustering 

possible. 

1.1.6 Functional enrichment analysis 
Hypergeometric test is identical to one tailed Fisher’s Exact test. It is a popular method calculating 

the statistical significance on variables of interest, especially to deduce the significance of 

enrichment. Fisher’s exact test is based on the hypergeometric probability distribution in which 

a 2 x 2 contingency table was set up to calculate the probability of non-random association 

between two categorical variables. This study focuses on the over-representation test from sets 

of genes. In the case of radiation exposure on a set of genes, an over-represented 

hypergeometric probability indicates that the chance of a certain biological term, pathway or 

functionality represented by this set of genes happened to be more frequent than expectations. 

Gene Ontology (GO) analysis 

The Gene Ontology (GO) database provides systematic and hierarchical classification for the 

annotation of gene functions with three formalized GO terms: biological process, molecular 

function, and cellular component (Gene Ontology, 2015). Each ontology is organised into a 

directed acyclic graph with each node labelled with a corresponding GO term to facilitate large 

scale computational analysis. The functional coherence of the detected clusters or gene sets can 

be verified by conducting a hypergeometric test which further reveals their speciality associated 

with the given conditions by relating with enriched GO terms. If a subset of genes from an input 

list was consistently associated with a few GO terms, the functionality of the selected module is 

thus represented by those enriched GO terms.  

Reactome Pathway Enrichment analysis 

Reactome pathway analysis makes use of the over-representation test to determine if pathways 

are statistically enriched by several genes submitted from a gene list or a module. All the enriched 

pathways are documented in the Reactome database (https://reactome.org). If a subset of genes 



from a selected module was consistently associated with a few pathways, the functionality of the 

selected module can be inferred using the knowledge from the over-represented pathway.  

Integrating Transcriptomics and Metabolomics data  

Paintomics3 (v0.4.5) is a webtool built in 2018 for multi-omics pathway analysis and visualization 

based on the KEGG pathway database (Hernández-de-Diego et al., 2018). According to the 

recommendation, the tab-delimited input data for each omics (gene, metabolite, region or 

regulatory) requires normalised data, with identifiers in the first column and the log fold changes 

between two conditions as the second column. The second input, feature file, is optional but 

usually it is a list of genes of interest, e.g., DEGs or DEMs. In default Paintomics 3 performs a 

Fisher’s Exact test when the feature files are included and generates a combined P-value (Fisher 

combined probability test) if multi-omics data is provided. The Fisher combine probability test 

calculates the combined probability of separate tests from independent data based on the 

assumptions that the true effect (null hypothesis) of the combination is zero. 

1.2 Aims of the thesis 
Omics data, provided by NIVA, were collected from Daphnia magna which were exposed to low 

dose rates (0, 0.4, 1, 4, 10, 40, and 100 mGy/h) of gamma radiation at the neonatal stage. The 

gene expression profiles reflect the impact of the radiation in the juvenile stage at 4 days and in 

the transition from juvenile to adulthood stage at 8 days. Intuitively, the early transcriptional 

pattern in the juvenile stage should be capable of predicting the adverse outcome pathways 

involved in the late juvenile stage. Nonetheless, such investigations have not been conducted in 

the past, let alone the interactions between transcriptional factor bindings and the regulation of 

gene expression. Based on the transcriptomics data generated from the exposure to different 

dose rates, this study aims to identify the key genes and gene modules (from the co-expression 

network) associated with different exposure periods. The research problem can be solved by 

using linear modelling to make predictions, where the genes act as the predictor and the gamma 

dose rate is the response variable.  

For this purpose, a prediction model provides a precise inference by fitting a statistical model to 

given data to retain potential genes. However, gene regulation is highly dynamic and there is no 

one-model-fits-all algorithm. Popular software packages like DESeq2 models the change in gene 

expression between conditions by conducting a univariate test on each gene individually to test 

for their significance. Based on the assumption that genes of similar expression levels share a 

similar dispersion, DESeq2 does not account for the concordance and correlation between 

clusters of genes. In most conditions, genes within a dynamic co-expression network are 

adequately interconnected to each other, while each gene presents a non-zero effect (though 

the effect of a single gene by itself is almost negligible). While the large amounts of data yielded 

by RNA-sequencing makes the search of these genes important, and in certain conditions difficult, 

there is an insufficient level of aquatic invertebrate molecular understanding documented. 



Certainly not enough to decipher the transcriptional profile in response to the adverse outcome 

pathways. Therefore, without prior knowledge of the gene-expression of toxicity pathways in D. 

magna, an unbiased method which is able to prioritize the most susceptible genes and reveal the 

hidden structures is necessary. 

Unsupervised learning, which reveals gene expression patterns without using prior labelled data, 

is therefore used as it is unbiased. Under the efficient network detection method, modules 

detected from the co-expression network infers a group of highly co-expressed genes which 

correspond to the gamma radiation in a static state. Genes within such clusters are functionally 

connected and correspond to both the exposure period and the dose rate. Yet, the identified 

gene modules from unsupervised learning (WGCNA) are not guaranteed to be biologically 

meaningful. To select the meaningful feature modules for transcriptional response, supervised 

learning is therefore implemented by using generalized linear regression from DESeq2. The 

modules, firstly, are analysed using a linear model to see how well the gene expression fits. 

Secondly a linear combination model (Contrast) is used to compare whether there is a difference 

in expression between groups of genes of different dose rates, based on the estimated log2 fold 

changes.   

The cells respond to external stimuli by assigning transcription factors (TFs) to specific motifs of 

stress-responsive genes. The causal linkage between TFs and observed transcriptional changes 

show the effects of radiation on the unobserved numbers of activated TFs. Genes within a 

module can co-regulate each other or even affect other genes in other modules. Such clusters 

consisting of up-regulated TF-coding genes suggest a potential dose-specific functional role, 

whereas the downregulation of transcript abundance from TF coding gene clusters may indicate 

a suppression or no non-functional role. The regulation on target genes only happens when TFs 

are activated by ligand binding or post-translational modification. Therefore, the transcription 

level of a TF coding gene does not imply the regulatory/binding activity of that TF. Rather, the 

expression profiles of such TF-coding genes represent the quantitative effect of a TF on the 

expression level of transcription. This could further be described as TF-driven hidden regulatory 

effects. 

The first part of the study focuses on finding activated TFs that were primarily regulated by their 

expression level. Based on the expression data, motif enrichment analysis is a useful method to 

detect the enrichment of known binding motifs from the upstream of coding regions. The 

advance of high-throughput technologies has increased the number of TFs with known DNA-

binding models drastically. Identification of enriched motifs from modules of interest may help 

capture any potential dose-rate sensitive TF encoding genes. As there are two different periods 

of gamma radiation exposure, this study also sought to explore the differences in TF-responsive 

genes that react exclusively between different conditions.  

While there is only one set of metabolomics data from the 8 days radiation exposure available, 

the second part of this study hence focusses only on 8 days gamma radiation exposure using the 

integration of transcriptomics and metabolomics to explain the differences in reduction of 



fecundity under low dose rate (1mGy/h) and (100mGy/h) as previously reported by Song et al. 

(2020). 

To identify differentially expressed metabolites (DEMs) whose expression is correlated to the 
incrementing of dose rate, supervised learning can be used by following the design model of 
DEseq2 for DEGs discovery. DEMs can be found by fitting a linear model with genes as predictors, 
and the dose rates as response variables. To relate the regulatory mechanisms of the pathways 
to the levels of the metabolites, while there were many modules identified as significantly 
relevant to the impact of gamma radiation in the previous chapter, selecting relevant genes from 
these modules makes full use of the advantages provided by semi-supervised learning. Significant 
modules corresponding to the design group where the DEGs of DESeq2 belong, were combined 
accordingly. Software performing the integrated pathway analysis could be implemented to 
investigate if there is a significant overlap between the enriched transcriptomics and the enriched 
metabolomics pathways. There are software tools which have been developed for this purpose 
but only to work with non-model organisms, a systematic workflow is required to address the 
technical challenges.  

Compared to fruit fly, nematodes and mouse, there is very little annotation data available for 
Daphnia magna in the publicly available databases, such as UCSC, Gene Ontology (GO) and KEGG. 
Mapping D. magna to a well-studied species allows us to study the gene functions for 
development and the response to abiotic stress. Nonetheless, the choice of model organism used 
for mapping and databases used for investigation will lead to varied results. The advancement of 
systematic collections of biological data comes with several challenges such as data 
heterogeneity, annotation, image construction, updating, architecture, and storage systems 
across different databases. Thus, this study addresses this issue and aims to incorporate this into 
the workflow to help the users decide on the model organism for mapping, setting up pathway 
analysis (PA) based on the KEGG and Reactome databases, and gene ontology (GO) enrichment 
for the study of adverse outcome pathways. Potential candidates for species mapping will be 
compared in terms of average orthologous amino acid identity and amount of documentation in 
the databases, to retain as much biological information as possible.  

  

 

 

 

 

 

 

 

 



Chapter 2 Materials and methods 
In this chapter, a systematic workflow is described for predicting regulation patterns for ionizing 

radiation using transcriptomics data (Part 1), and for investigating the reduction in fecundity 

using transcriptomics and metabolomics data (Part 2). The schematic of overall data analysis 

workflow is present in Figure 2. The software description and computing environment for every 

step of data analysis was documented in Figure 3.  

 

Figure 2: Overall workflow for the multi-omics data analysis. The colour partition separates the workflow into Part 1 and Part 2. 

Part 1 

 

Part 2 



2.1 Culture conditions and exposure studies with 

Daphnia magna 
Three sets of data with two types of omics data in this project were obtained from the Norwegian 

Institute of Water Research (Oslo, Norway). Details regarding the materials performed by NIVA 

is documented below:  

2.1.1 Maintenance of Daphnia culture 
The culture of Daphnia magna DHI strain (DHI Water and Environment, Hørsholm, Denmark), 

was placed in a climate room (20 ± 1 °C and 16 h light: 8 h dark), maintained using M7 media (pH 

7.8 ± 0.2) which was renewed twice every week and fed daily with green algae, Raphidocelis 

subcapitata. 

2.1.2 Laboratory settings for gamma radiation 
The exposure period of 8 days reflects the transitional stage of daphnids from juvenile to 

adulthood (visible and unreleased embryo) while the 4 days exposure reflects the temporal 

change in the juvenile stage. As the juvenile stage was prone to the low dose ionizing radiation, 

the gene expression from the two timepoints can therefore be linked to the transcriptional 

regulation on the adverse outcome pathways to understand the effects of early toxicological 

events. 

Individual neonates (less than 24h old) were removed from the main M7 media and placed in a 

plastic beaker (approx. 5-10 daphnids due to limited gamma beam width) containing 45ml of M7 

medium and exposed to external colbalt-60 (8 Ci) for 4 days and 8 days. Daphnids were fed daily 

with concentrated R. subcapitata, and the media was renewed every two days. Daphnia magna 

were exposed to 7 dose rates of gamma radiation: 0 (control), 0.4, 1, 4, 10, 40, 100 mGy/h which 

correspond to group A, through to G at the FIGARO irradiation facility NMBU, As, Norway. The 

selected dose rates were sublethal (Gomes et al., 2018) and corresponding to the low exposure 

levels around the nuclear accident and contamination area at Chernobyl (Cardis and Hatch, 2011). 

While the pH of medium before and after the exposure of gamma radiation was carefully 

monitored with a WTW multiparameter portable meter MultiLine® Multi 3420 paired with a 

WTW SenTix® pH electrode with temperature sensor (Xylem Analytics, Weilheim, Germany), the 

samples were positioned at distances based on the measured dose-rates to water (DW) 

mentioned in previous study (Gomes et al., 2018, Song et al., 2020) using a nanoDot™ dosimeter 

(Landauer, Glenwood, USA). 



2.1.3 RNA extraction 
5 daphnids were pooled and stored in RNALater (Qiagen, Hilden, Germany) for each replicate, 

with 4 replicates per dose. The RNA was extracted using the RNeasy Mini Kit (Qiagen, Germany) 

following the manufacturer’s protocol. Purity and integrity of the RNA was examined with a 

spectrophotometer Nanodrop® ND-1000 (Nanodrop Technologies, Wilminton, Delaware, USA) 

and an Agilent 2100 Bioanalyzer (Agilent Technologies, California, USA). Intact RNA with clear 

peaks, high purity (A260/A280 > 1.8) and flat base lines as well as sufficient quantity (approximate 

500ng/uL) were kept at -80°C.  

2.1.4 Next Generation Sequencing and Library Preparation 
Next-generation sequencing was performed on the BGISEQ-500 platform at the Beijing Genome 

Institute. The poly-A containing mRNA molecules were purified using poly-T oligo-attached 

magnetic beads, followed by the fragmentation of the mRNA using divalent cations in elevated 

temperatures. The cleaved RNA fragments were reverse transcribed into the first strands cDNA 

with random primers, and the second cDNA strands were formed with DNA polymerase I and 

RNase H. This process created a replacement strand containing dUTP in place of dTTP which 

quenched the amplification of second strands when producing the double-strand cDNA. As the 

synthesized cDNA fragments acquired the additional single ‘A’ base and subsequently ligated to 

the adapter, they were purified and enriched with PCR amplification. The PCR products were 

quantified by Qubit (Thermo Fisher, Waltham, USA) and pooled together to construct a single 

strand DNA circle (ssDNA circle) in the final cDNA library. Throughout the sequencing process, 

DNA nanoballs (DNBs) were constructed from the ssDNA circle with rolling circle replication (RCR) 

to boost the luminescent signals. The patterned nanoarrays were then packed with DNBs and the 

pair-end reads of 100bp were further read through by the combinatorial probe-anchor synthesis 

(cPAS)-based BGISEQ-500 sequencer (Zhu et al., 2018). 

The raw transcriptomics data generated was filtered for low quality reads (more than 20% of the 

bases quality < 10), adaptors, unknown bases (N bases > 5%), and mapped to a reference genome 

of D. magna. 

2.1.5 Metabolite extraction 
Frozen D. magna (10 pooled D. magna per replicate, 10 biological replicates for each dose) were 
added into a micro-centrifuged tube containing 1.35 mL of solvent consisting of 
methanol/chloroform/water of ratio 5:2:2 (v/w=9, μL/mg) for protein precipitation. The process 
of homogenisation was carried out for 1 minute in a Tissuelyser JX-24 (Shanghai Jingxin Industrial 
Development Co., Ltd, China). The homogenates were stored at -20 °C for 24 hours and then 
centrifuged at 16,000g and 4 °C for 15 minutes. A volume of 1080 uL supernatant was drew into 
a new tube, followed by 1080 uL of methanol and topped up again with 540 uL of supernatant. 
180 uL of the mixture was transferred into a GC vial filled with 10uL of amino acids mixture 
labelled with isotopes (0.1 mg/mL of L-Alanine-13C3-15N-L-alanine, 13C5-15N-L-valine, 13C6-15N-L-



leucine and 13C6-15N-L-isoleucine). Next, the mixture dried under a gentle stream of nitrogen. 30 
uL of 20mg/ml methoxamine hydrochloride in pyridine was added into the vial and vigorously 
vortexed for 30 secs. The vial was then kept at room temperature for 90 minutes. The mixture 
went through trimethylsilylation by adding in 30uL of BSTFA (contained 1% TMCS) and was then 
derivatised at 70 °C for 1 hour. 

 2.1.6 GC-MS method and raw data preparation 
The instrumental analysis was performed with an Agilent 7890A gas chromatograph linked to an 
Agilent 5975C inert MSD system (Agilent Technologies Inc., CA, USA). The separation of 
derivatives was done with an HP-5ms fused-silica capillary column (30 m × 0.25 mm × 0.25μm; 
Agilent J&W Scientific, Folsom, CA), with constant Helium gas (>99.99%, 1 mL/min) flow through 
the column. A 1uL sample was injected in split mode (2:1) and the solvent delay period was 6 
minutes. The oven temperature was set to 70 °C for 2 minutes, followed by an increase of 
6 °C/min to 160 °C, continuing at 10 °C/min to 240 °C, and finally 20 °C/min to 300 °C, then held 
for 6 minutes sustaining 300 °C. The impact energy was 70 eV, full scan mode (m/z 50-600) was 
used for data collection, and the temperatures of the sampler injector, transfer line, and electron 
impact ion were respectively adjusted to 250 °C, 290 °C, and 230 °C. Pre-processing steps of raw 
GC-MS data for peak detection, picking, alignment, deconvolution etc. were based on a 
previously published protocol (Gao et al., 2010). The final output was exported as a peak table 
file and the data was normalized against the total peak intensity with an in-house bioinformatic 
pipeline from NIVA.  

The resulting list of metabolites was matched with KEGG compound accession numbers for 
downstream analysis.   

 

 

 

 

 

 

 

 

 

 



2.2 Data analysis and pipelines 
This study, which created a data analysis workflow, starts below in section 2.2:  

 

Figure 3: Overview of software in each step of data analysis. R commands are shown in italic. 

 



2.2.1 Data pre-processing 
Raw counts from the transcriptomics and metabolomics data were normalized using the function 

Variance stabilizing transformation ( ) included in the DESeq2 package to create a matrix of 

values with more consistent variance along the range of mean. For quick assessment on the 

overall similarity between samples, the transformed matrix was input into the principal 

component analysis (PCA) with function and visualised with PCA plot which were included 

in the next chapter.  

2.2.2 Identification of modules and DEGs  
As WGCNA works on normalized RNA-seq data, after variance-stabilizing transformation (  

function from DESeq2), datasets from 4 days (12,072 transcripts) and 8 days (11,921 transcripts) 

were piped into the function  in a single block manner, along with “signed 

network” and “signed TOMType” as parameters. The workstation in this study had access to 

16GB of RAM, therefore it could handle up to 20,000 genes per block, as recommended. 

Differential expression analysis with DESeq2 

Unlike a standard WGCNA workflow which measures the Pearson correlation between gene 

expression and module eigengene, the negative binomial GLM from DESeq2 was used to model 

the differences in gene expression between conditions.  

There were three input parameters in : the count matrix of the raw 

transcriptomics data, the metadata which documented the name of the samples and radiation 

dose rate in matrix form, and the design matrix. The output was piped into  function for 

differential expression analysis. Adjusted p-value < 0.05 was used as the cut-off to select the 

differentially expressed genes. 

Design matrix of Xj 

Various dose rates are treated as different groups or different levels of factors by using the  

function for the organisation. Dose zero was specified as the base-level in the linear model. 

log2(qij) = Xj βi 

● Measure the effects of dose rates by fitting a linear model 

The model matrix consisted of only two groups in this model, control, ctrl (0 mGy/h) and 

treatment, trt (0.4, 1, 4, 10, 40 or 100 mGy/h). The hypothesis testing investigates if there was 

significant difference between the control and the treatment group: 

H0 : βctrl = βtrt 

H1 : βctrl ≠ βtrt 



● Measure dose-specific effects by linear combinations (Contrast) 

To test if the combinations of variables have non-zero effects, the model matrix was modified to 

consist of 7 groups corresponding to various levels of dose rates. The contrast function was used 

to contrast coefficient of interest for the hypothesis testing:  

H0 : βtrt0 = βtrt1                                                                      H0 : βtrt1 = βtrt100 

H1 : βtrt0 ≠ βtrt1                                                                          H1 : βtrt1 ≠ βtrt100 

where the different expression of gene i under different dose rates (0 vs 1 and 1 vs 100 mGy/h) 

were indicated. 

 

2.2.3 Identification and detection of biologically meaningful 

modules 

Module Membership cut off 

The module membership (MM) measures the association between the gene expression and the 

module eigengene. It also depicted the intramodular connectivity because an intramodular hub 

gene that has a high absolute value of MM approaches 1. A cut off of |MM|> 0.05 was applied 

to all modules. 

Fisher’s Exact test 

Every module created by WGCNA contains a unique topological characteristic. To identify 

modules that overlap with differential gene expressions with non-random association, DEGs from 

DESeq2 were loaded into the R package, GeneOverlap. The function  was applied 

for Fisher’s exact test (Shen, 2014). Modules that passed the statistical significance cut-off of p-

value < 0.05 were considered to have a significant association. 

 

2.2.4 Conversion of identifiers 

BLAST2GO for Entrez ID mapping and GO annotation 

Blast2GO (B2G) (v4.1) was used to conduct ‘BLASTing’, mapping and sequence annotation 
between D. magna and D. melanogaster with default settings (Conesa and Götz, 2008). Out of 
23570 transcripts with Refseq accession, 16221 were functionally annotated and mapped to 
Entrez ID.  Entrez IDs which contained null values in the expression data such as base mean, p-
value and adjusted p-value were removed. As multiple transcripts were assigned with the same 
Entrez ID, the remaining went through a duplication check with transcripts that bear the lower 



adjusted p-value being taken into the expression data. After processing, 19512 sequences were 
successfully annotated with GO terms. 

Ortholog detection 

The detection of orthologous genes at the level of amino acids was carried out using OrthoVenn2 
(https://orthovenn2.bioinfotoolkits.net/) with a default setting for the E-value of 1e-12, and an 
inflation value of 1.5 (Xu et al., 2019). The protein sequences of D. magna KIT (our study strain) 
were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/assembly/GCF_003990815.1/) 
whereas the sequences for D. magna xinb3, D. pulex, and Drosophila melanogaster were sourced 
from the Ensembl database connected to the website of Orthovenn2 (Pruitt et al., 2005). Firstly, 
the website also provided DIAMOND (v0.9.24), the embedded analysis tools used to perform all-
vs-all sequence comparison and protein annotation. Afterwards, OrthoMCL (Li et al., 2003) was 
launched to allow the clustering of orthologous genes based on their conserved sequences. 

Ortholog mapping: Daphnia pulex and Drosophila melanogaster 

Out of the 23570 transcripts, 11921 expressed transcripts from Daphnia magna were converted 
to a gene sequence using the command line tool, ncbi datasets (Coordinators, 2015). 11868 gene 
sequences were uploaded to the KEGG Automatic Annotation Server (KAAS) 
(https://www.genome.jp/kegg/kaas/) to look for matching orthologs of Daphnia pulex and 
Drosophila melanogaster in the KEGG database with the single directional hits (SDH) setting. 4848 
and 5420 KEGG Ortholog (KO) IDs were assigned to the corresponding sequences of D. 
melanogaster and D. pulex. The output of D. pulex produced more KO IDs than D. melanogaster, 
meaning D. pulex was the best choice at this stage. The KO IDs were mapped to the expressed 
transcripts through common gene sequence identifiers, followed by removing the transcripts 
without p-values or adjusted p-values.  

 

2.2.5 Detection of biologically meaningful modules and 

construction of transcriptional regulatory network 

Pathway Enrichment Analysis for significant modules 

Due to the unavailability of high-quality pathway annotations for Daphnia magna, DNA-to-

protein BLASTX was implemented in the program BLAST2GO conducting a translated search to 

map the annotations of D. magna to the gene and protein sequences of fruit fly Drosophila 

Melanogaster (Conesa and Götz, 2008). To identify underlying biological pathways associated 

with the effect of gamma radiation, genes from each module were assigned with an Entrez ID if 

they were homologs to D. melanogaster. The output was loaded into Reactome pathway analysis 

using ReactomePA (v1.38) and tested towards the curated pathways of D. melanogaster. A 

hypergeometric model was applied to determine if certain pathways were enriched with the 

function  (Yu and He, 2016). Pathways found within a module containing genes with 

https://orthovenn2.bioinfotoolkits.net/
https://www.ncbi.nlm.nih.gov/assembly/GCF_003990815.1/
https://www.genome.jp/kegg/kaas/


very dissimilar biological functions, were ranked. The statistical cut-off for enriched pathway was 

p-value < 0.05.  

GO analysis to characterize functionality of modules 

Functional annotation with GO requires a gene set where each gene was given a predefined GO 

term. In this study, homologs between D. magna and D. melanogaster that were assigned with 

GO terms were input into the over-representation analysis. The R package clusterProfiler 

provides the  function for hypergeometric tests, chosen to conduct a statistical test with 

user customized annotation (Yu et al., 2012). GO terms which passed the cut-off of p value < 0.05 

were considered significant.  

Transcription factor (TF) motif enrichment analysis and ortholog findings 

The upstream region of 2000bp from all coding sequences were extracted with the unix package, 

bedops(v2.4.40) (Neph et al., 2012a). The selected sequences were piped to the AME (Analysis 

of Motif Enrichment) algorithm, which use all different types of fly (D. melanogaster) motif 

databases Flybase (https://flybase.org) available for motif predictions. Genes that did not belong 

to the selected modules are used as background in the input. Over-represented motifs were 

searched for corresponding Flybase IDs. The protein sequences of Flybase ID were downloaded 

from NCBI and ortholog sequences between D. magna and D. melanogaster were found using 

DIAMOND(v0.9.24), with the setting ‘ultra-sensitivity’ from software package OrthoFinder v2.3.3 

(Emms and Kelly, 2019).  

2.2.6 Integration of metabolomics and transcriptomics data 

Detecting differential metabolites with limma  

PCA plots were first used to examine the quality of metabolome data before the differential 
expression analysis. The R package limma, was used to fit a linear model to the continuous data 
of metabolomic studies. The same design of model matrix for the linear model and linear 
combination from DEseq2 was used to call for differential metabolites in limma (Ritchie et al., 
2015). The  function was used to estimate the log fold changes and the  

function was used to estimate and smooth the standard errors. Empirical Bayes is a modified t-
statistic which makes effect estimation in differential expression analysis. To perform pairwise 
comparisons on dose rates of interest, the function was employed to select groups 

of interest followed by the function  used to generate final coefficients and standard 

errors. The result table was displayed by using  and the same criteria of adjusted p-value 

< 0.05 was used to select DEGs.  

Differentially expressed and co-expressed genes (DEACGs) 

Genes from significant modules based on the Fisher Exact test were combined into three groups: 
linear model, low dose responsive (0 vs 1 mGy/h), and high dose responsive (1 vs 100 mGy/h). 
The combination of unsupervised WGCNA and supervised DESeq2 included all relevant dose-rate 



responsive genes to a greater extent and thus generated differentially expressed and co-
expressed genes (DEACGs). 

Paintomics for integrated transcriptomics and metabolomics analysis  

The model organism chosen was D. melanogaster (because the KEGG database does not include 
D. pulex) and therefore the input identifiers were Entrez ID for gene expression data. For the 
input of metabolomics data, KEGG compound names were used as the identifier.  

Reactome PA for DEACGs 

DEACGs matched to the Entrez ID were filtered for duplicate identifiers by choosing the non-
unique transcripts with the lowest adjusted p-value. Afterwards, the R package, ReactomePA, 
was used with the  function to conduct pathway enrichment analysis on the 

transcriptomics data. By default, the pathway enrichment cut-off of adjusted p-value of < 0.05 
was considered statistically significant in this study. The pathway network was built with gene 
names and top enriched pathways to demonstrate overlapping genes across pathways. 

GO Enrichment Analysis for DEACGs 

DEACGs from the three groups (low- and high dose rate responsive groups, and the linear model 
group) were individually loaded into a Cytoscape plugin (BiNGO v3.0.3; Cytoscape v3.9.0) to 
perform GO enrichment analysis (Maere et al., 2005, Shannon et al., 2003). GO terms with the 
Benjamin-Hochberg Corrected p-value (FDR) below 0.05, considered to be significantly enriched, 
were further piped into EnrichmentMap for visualisation (Merico et al., 2010, Isserlin et al., 2014). 
A GMT format file which served as the background set for all gene sets and corresponding GO 
terms was also added into the analysis. Mutually overlapping gene sets which formed clusters 
were input into AutoAnnotate to assign annotations to each cluster (Kucera et al., 2016).  

 

 

 

 

 

 

 

 



Chapter 3 Results 
This chapter can be divided into two sections: 3.1 and 3.2. The first part demonstrates the 

differences in the transcriptional regulatory networks from the 4 days and 8 days of gamma 

radiation exposure. The second part describes the integration of metabolomics and 

transcriptomics data, with the significant modules combined based on the design groups, then 

formed into DEACGs (differentially expressed and co-expressed genes). The beginning of each 

section introduces the methods used to assess the expression profiles of the genes and 

metabolites. The subsections describe the output from each step in the workflow. In short, 

section 3.1 includes the modules generated from WGCNA selected using the Fisher Exact test 

through overlapping the genes in every module and DEGs from DESeq2. The selected modules 

are termed as significant and processed with functionality characterisation. The transcriptional 

regulatory network was created with significant modules connecting to each other as nodes, 

while the number of edges was decided by the transcription factors and the motif binding sites 

available within and between the modules. Lastly, the similarity between the modules was 

compared and evaluated, followed by the AOP integration. In section 3.2, the significant modules 

were combined according to the design group and aligned with differential metabolites which 

were detected with limma for integrative pathway enrichment analysis. GO and Reactome 

Pathway analyses were conducted with DEACGs to provide insights beyond module specificity. 

3.1 Identification of dose rate responsive co-

expression modules and transcriptional regulatory 

networks 

3.1.1 Initial assessment on gene expression profile with PCA- 

and scatterplots 
This workflow presents a simple diagnostic method using PCA plot, which is also a dimension 

reduction method in the beginning of this workflow to compare the sample similarity from 4 days 

and 8 days. PCA plot is a quick visualization tool which provides unsupervised information on 

directions that explain the most variabilities. After VST, the samples were visualised using a PCA 

plot, where the x-axis is the direction of the first principal component (PC1) which explained the 

most variance, and the y-axis is the second principal component which is perpendicular to PC1 

and explained the variance of the data the second most.  

The first assessment using a PCA plot showed that the clustering of samples is entwined with the 

exposure time (Figure 4A). Both transcriptomics data therefore cannot be combined into a single 

data analysis due to the clustering patterns which revealed the batch effects convolved with the 



exposure time. Removal of the batch effects would have also eliminated the effect of time. Hence, 

the 4- and 8-days transcriptomics data were analysed individually. Clustering gene expression 

data from different samples did not detect any batch effects as shown in the PCA plots (Figure 

4B and 4C). No distinct clustering pattern was observed corresponding to the 7 exposure dose 

rates indicating that the changes for each sample could be very small.  

 

Figure 4: PCA plot showing the samples in a 2D plane spanned by the first two principal components which explained the most 
variance. A: The gathering of circle point on the left and triangle point on the right indicates that the batch effects were 
convolved with the exposure periods (4 days and 8 days). B & C: Sample similarity measure, no obvious clustering pattern 
observed. 

The second diagnostic method used a scatterplot, where the x-axis represents the log fold 

changes of DEGs detected from 4 days, and the y-axis represents the same from 8 days. Both 

datasets were fit to a linear model using DESeq2 and the scatterplot below (Figure 4) compared 

the log fold changes of DEGs between 4 days and 8 days, and whether the numbers of genes 

were presented only in 4 days, 8 days or presented in both exposure periods. The second initial 

assessment (Figure 4) showed that the same genes that were downregulated from 4 days gamma 

radiation exposure were upregulated after 8 days of exposure. In the opposite directionality, the 

same genes that were up-regulated when exposed to a shorter radiation period became down-

regulated when the exposure period increased. Only a small number of genes (red dots) 

maintained the same expression patterns in both datasets. The observed DEGs varied according 

to exposure period and shows that the transcriptomic responses of 8 days data do not follow the 

same expectation as the data from 4 days. As the regulatory magnitude and directionality of each 

gene varies according to the dose rate and exposure period, this study did not categorise each 
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differential gene expression into up and down regulation. Instead, the WGCNA approach was 

applied prior to the differential expression analysis to capture any monotonic and non-

monotonic patterns of expression. 

 

 

Figure 4: Scatterplot showing the log2 fold changes of the same genes exposed to 4 and 8 days of gamma radiation. Exclusive 
DEGs for 8 days are marked in yellow, exclusive DEGs for 4 days are marked in blue and DEGs present in both are marked in red. 

   

3.1.2 Creation of a co-expression network  
A biological system is considered to behave like a molecular interaction network with scale-free 

characteristics because small numbers of genes, or nodes, have exceptionally high numbers of 

interaction compared to the majority. In random biological mutations, the removal of a small 

number of nodes/vertices does not alter the underlying fundamental structure easily because 

the chance of removing a highly connected node is very low, and the removal of peripheral nodes 

which have fewer connections usually does not affect the integrity of the entire network. To 

create a scale-free network which assimilates this property, the transcriptomics data from 4 days 

of gamma radiation exposure requires a soft threshold (β) of 9 to reach scale-free topology as R2 

was maximized at 0.98 and yielded a high mean connectivity of 94 (Figure 5). Meanwhile, β = 25 

is chosen for the transcriptomics data of 8 days of gamma radiation exposure. R2 reached 0.909 

and yielded a mean connectivity of 9.87.   



The proposed WGCNA approach yielded 38 modules among 12907 nodes and 36 modules among 

11921 nodes from the 4 days and 8 days gamma radiation exposure transcriptome data. All 

modules contained at least 30 genes.  
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Figure 5: WGCNA. Diagnostic plots showing various beta fits to reach a scale-free topology network. Analysis of scale-free 
network topology using different soft-thresholding power on 4 days transcriptomics data. On the upper left, A shows the scale 
free fit index (y-axis) and the upper right (B) shows the mean connectivity (degree, y-axis). C shows the numbers of genes in 
every module, which was given an arbitrary colour.  

3.1.3 Differential expression analysis 
The numbers of genes involved in differential expression analysis were the same as in WGCNA, 

12907 and 11921 for 4 days and 8 days data. The data from 4 days has fewer DEGs than the 8 

day’s data when fit to the linear model and assigned into linear combinations/contrasts (1 vs 

100 mGy/h). Yet, 233 low dose rates responsive DEGs (Ctrl vs 1 mGy/h) from the 4 days dataset 

show a significant difference in expression which is more than the 8 days dataset which has 

only 49 DEGs. Table 1 summarizes all DEGs resulting from being fit to a linear model and 

contrast.  

Table 1: The number of differentially expressed genes generated by DESeq2. Except for Ctrl vs 1 which is a low dose rate- 
responsive group, the data from 8 days has more DEGs than from 4 days in the high dose-rate responsive group (1 vs 100) and 
the linear model.  

DESeq2 Number of DEGs 

4 days 8 days 

Linear model 312 1262  

Linear combination 
/contrasts  
(mGy/h) 

Ctrl vs 1 233 49 

1 vs 100 623 1153 

 

3.1.4 Modules with non-random association with DEGS 
To ensure the unbiasedness and retain all highly relevant genes, grey modules (grey bar in Figure 

6: C, D, E, & F) which are formed by genes that could not be assigned to any module due to 

dissimilar co-expression, were included in the module membership filtration (|MM| < 0.05) and 

significance test. The intersection of modules and DEGs detected from DESeq2 selected 11 and 

12 modules that passed the Fisher’s Exact test for significance from 4 days- and 8 days- dataset 

(Table 2). Modules were termed as ‘significant modules’ if they passed the cut-off from Fisher 

Exact test of p value < 0.05. Some significant modules from the 4 days data were found in both 

groups of linear combinations (marked with a £ sign), but such an observation was not found in 

the linear combinations of the 8 days data. This indicates that a shorter exposure period to 

gamma radiation tends to involve more genes from the same clusters and these genes are more 

likely to react in an opposite regulatory direction due to non-monotonic responses as the dose 

rate increases. Longer radiation exposure on the other hand activated different clusters of 

regulatory genes as the dose rate increased, suggesting more complicated functionality is 

involved. 

Table 2: Summary of qualified (significant) modules having an overlap between WGCNA and DESeq2. Double asterisks (**) 
indicate modules that are exclusively found at the intersection of the specific design model (‘linear model’, ‘Ctrl vs 1’ or ‘1 vs 
100’) and WGCNA modules. Pounds sign (£) refers to those that are at the intersection of linear combinations (exists in both 



‘Ctrl vs 1’ and ‘1 vs 100’) and WGCNA. Modules with pound sign only found in 4 days data but not in the 8 days data.  

Design model 

WGCNA ∩ DESeq2 

Modules with non-random association (p-value < 0.05) 

4 days 8 days 

Linear model Black**     Blue        Brown 
Pink           Red         Yellow** 

Blue**              Darkgreen            Green 
Red                   Greenyellow        Lightcyan 
Lightgreen** 

Linear 
Combination 

(Contrast) 
 

Low dose rate 
responsive 
(Ctrl vs 1) 

Blue           Green£     Pink 
Red            Lightcyan£ 
Darkturquoise£     Turquoise
** 

Black**             Brown**              Greenyellow 
Magenta**      Midnightblue** 

High dose 
rate 

responsive 
(1 vs 100) 

Blue     Brown         Cyan**  
Pink     Lightcyan£   Red      
Darkturquoise£      Green£ 

Darkgreen        Green                   Greenyellow 
Grey60**         Lightcyan 
Red 

 



 

Figure 6: The bar plots show the association between WGCNA and DESeq2 after Fisher’s Exact Test. A & B:  Association of gene 
module with the linear model. Modules in red passed the p-value cut-off < 0.05. C, D, E & F: Association of gene module with 
the linear combination (contrast) model. Modules marked with asterisk (*) passed the significant p-value cut-off < 0.05. The 4 
days data yielded 11 significant modules while the 8 days data yielded 12. 

3.1.5 Whole proteome comparison and ortholog identification 

shared by Drosophila and Daphnia 
The closest model organism to Daphnia magna, which has been extensively used in the study of 
evolution, toxicology, developmental biology, and genetics over hundreds of years is Drosophila 
melanogaster (Devineni and Heberlein, 2013, Campos et al., 2018). As the crustaceans have been 
proposed to be the sister group of monophyletic hexapods (insects), together they form the 
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Pancrustacea, Daphnia and Drosophila are thus likely to have shared related genes and 
developmental patterns throughout their evolution (Regier et al., 2005, Zrzavý and Štys, 1997). 
The functional annotation in this study relies heavily on mapping between different species; it is 
therefore important to get a quick glimpse on the homologous relationship between sequences 
before the mapping of gene identifiers for the functional enrichment analysis. In computational 
biology, inferring the orthology is an essential part to elucidate the evolutionary process, i.e., 
speciation or gene duplication.  

 

*Daphnia_magna labelled with asterisk (*) sign refers to Daphnia magna xinb3, a different strain from our study species 

D.magna KIT. 

Figure 7: Comparison of orthologues genes between different clones of Daphnia magna, Daphnia pulex and Drosophila 
melanogaster. A: Venn diagram showing the numbers of shared orthologous groups between D. pulex, D. magna xinb3, D. 
magna KIT and D. melanogaster. B: The bar graph above shows the numbers of protein clusters found in each species, while the 
bar plot below displays the number of orthologous clusters shared by 1, 2, 3 and 4 species. C: Pairwise heatmap with number of 
overlapping clusters between different pairs of species. The overlapping cluster numbers were indicated in the cells and the 
colour intensity followed the shared number of orthologous groups: the darker the colour, the more orthologs shared between 
species. 

In Figure 7, 16681 clusters were shown in the Venn diagram, with 5279 orthologs shared in all 4 
species, 13361 ortholog clusters shared by at least two species, and 3203 clusters containing 
orthologous genes which have only one copy in each species (single copy gene clusters). A total 
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of 3320 clusters uniquely belong to only one species. The clone D. magna KIT shared the most 
orthologous genes with D. magna xinb3, followed by D. pulex, and then D. melanogaster.  

3.1.6 Mapping of transcripts to gene identifiers 
The decision on ID conversion is not only determined by the model organism but also by the type 
of identifiers adopted by various database platforms. Entrez ID is probably the most popular 
identifier that supports multiple databases, but it is not available for D. magna. On the other 
hand, the KEGG database contains species from the same genus, D. pulex, which makes it a 
potential target of conversion for D. magna.  

Overall, the gene sequence of D. magna KIT into D. melanogaster generated around 6470 unique 
matches and 4645 unique matches for Entrez ID and KO ID, whereas mapping with D. pulex 
generated 5189 matches for KO ID. The mapping with Entrez ID of D. melanogaster was able to 
retain more expression data and so it was chosen for functional enrichment analysis. 

The clones D. magna xinb3 and D. pulex were undoubtedly the first and second choice target to 
map to due to being the same species, but the limited data available in the KEGG and Entrez 
database would naturally limit the applicability in functional annotation analysis.  

Table 3:  Mapping of identifiers from expressed transcripts of D. magna to Entrez IDs of D. melanogaster and to KO ID of D. 
pulex. Entrez ID was chosen for the mapping of ID from D. magna to D. melanogaster because it retained more transcripts than 
KO IDs from D. pulex. 

ID conversion Expressed 
transcripts 

DEACGs Conversion into Entrez ID (D. 
melanogaster) 

KEGG Ortholog ID 

(D. pulex) 

Mapped, non-
duplicated, 
expressed 

transcripts 

Mapped, 
non-

duplicated 

DEACGs 

Mapped, non-
duplicated, 
expressed 
transcripts 

Mapped, 
non-

duplicated 

DEACGs 

Low dose rate 
responsive 

(0 vs 1 
mGy/h) 

11921 1535 5214 767 2077 278 

High dose 
rate 

responsive 

(1 vs 100 
mGy/h) 

11921 1352 4923 726 1933 287 

Linear model 11921 1979 4922 1208 1932 487 

 

The number of transcripts associated with KEGG Ortholog (KO) IDs was almost halved. This is a 
very common issue in mapping because each gene is associated with multiple transcript isoforms 
and the transcripts representing the isoform are not kept. 

The number of transcripts was reduced further by removing those that share the same KO ID 
because software packages for enrichment analysis and visualization do not accept non-unique 



identifiers. Transcripts which bore the lowest adjusted p-value were retained along with their KO 
ID, log fold change, p-value and adjusted p-value for the final expression data. 

 

3.1.7 Pathway and GO Enrichment Analysis (Gene modules) 
Reactome Pathway Analysis (PA) was implemented along with GO enrichment to integrate 

functional information with gene module identification. The addition of GO terms provides 

relevant pre-defined terms based on the functionality; meaning that the specific purposes which 

span across several pathways, usually not easily deciphered, can be revealed. This especially 

applies to pathways that are involved in multiple cellular functions. The top 20 enriched pathways 

and GO terms of all significant modules were displayed in bar and dot plots (S1 & S3 – page 92,97).  

GO analysis demonstrated that 1436 and 1686 over-represented GO terms with p-value < 0.05 

were found from the significant modules from 4 and 8 days of gamma radiation exposure, 

respectively. To compare the enriched GO terms between the 4- and 8-days data, the Venn 

diagram in Figure 8 shows the number of differences in biological processes, cellular components, 

and molecular functions. More than 99% of over-represented GO terms in the significant 

modules from the 4 days data also existed in the data from 8 days.  

Mapping of D. magna into D. melanogaster for Reactome PA revealed 269 and 299 enriched 

pathways. Pathways related to RNA turnover, mitochondrial energy generation, cell cycle, and 

stress response were predominantly affected after 8 days of radiation exposure. Meanwhile, the 

data from 4 days shows that translation relevant pathways for initiation silencing and termination, 

ribosomal interaction, and formation were mostly affected. The difference between enriched 

Reactome pathways were correlated to biological and molecular functions annotated by GO.  

However, it is noticeable that some exclusively affected cellular components from the 4 days data 

were distinctively opposite of those from the 8 days data. In the 4 days data, the affected 

photoreceptor outer segments are embedded with photoreceptor proteins which convert light 

into signals to trigger various biological processes. Some studies have proven that exposure to 

radiation damages the membrane of outer segments and leads to increased ROS production 

derived from the NAPDH oxidase (Nox) in the outer segment. It is therefore reasonable to suggest 

that the enriched pathway nonsense-mediated decay (NMD) which exists exclusively in the data 

from 4 days of exposure is employed to get rid of the build-up of the Nox protein and their 

isoforms (Roehlecke et al., 2013). Whereas in the 8 days data the affected cellular component, 

photoreceptor inner segments, contains mitochondria which is also responsible for high ROS 

production. Which again aligns with the top enriched Reactome pathway for TCA cycle, ATP 

synthesis, and electron transportation. Other cellular components such as the male pronucleus, 

female pronucleus (responsible for fertilization), and condensed nuclear chromosomes 

(responsible for chromosomal meiotic and nuclear mitotic process) also correlated well with the 

impact of radiation on the age and developmental stages of D. magna. A complete list of over-



represented GO and Reactome pathways can be found in supplemental documents (S1 & S3 – 

Page 92 & 97). 
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Figure 8: Venn diagram comparing GO terms and Reactome pathway between 4 days and 8 days data. The upper diagrams 
(8A,8B,8C) correspond to the GO domain: biological processes, cellular components, and molecular functions. Diagram 8D 
shows the difference of radiation affected pathways between 4 and 8 days of gamma radiation exposure arranged in a 
descending order according to the number of genes. 

 

3.1.8 Transcriptional regulation by active transcription factors 
The analysis of motif enrichment analysis (AME) identified 8 modules containing significant 

enrichment of motif binding sites in the promoter regions from both transcriptome data. The 59 

TF-coding genes recognizing the motif sites of D. melanogaster were preceded with an ortholog 

search in the significant modules of D. magna. The putative ortholog output from OrthoFinders 

was narrowed down to 26 (4 days) and 30 (8days) TF candidate genes. A module usually contains 

multiple transcription factors but not every one of them will be activated. The TFs were 

considered activated and involved in transcriptional regulation if they belonged to significant 

modules and presented corresponding motif sites in the upstream of transcription start site (TSS). 

The enriched motif sites of significant modules (S1 – page 92) and TF encoding genes (Table 4 

E.g., of CC – 4 days 

• photoreceptor outer 

segments 

• condensed nuclear 

chromosome 

 

E.g., of CC - 8 days 

• Photoreceptor inner 

 segments  

• Male pronucleus 

• Female pronucleus 

 

Top Enriched Pathway 

•Nonsense-Mediated Decay (NMD) 
•Nonsense Mediated Decay (NMD) 
enhanced by the Exon Junction Complex 
(EJC) 
•Translation  
•Nonsense Mediated Decay (NMD) 
independent of the Exon Junction 
Complex (EJC)  
•SRP-dependent co-translational protein 
targeting to membrane  
•Formation of a pool of free 40S subunits 
•L13a-mediated translational silencing of 
Ceruloplasmin expression  
•GTP hydrolysis and joining of the 60S 
ribosomal subunit  
•Eukaryotic Translation Initiation
  
•Cap-dependent Translation Initiation 

 

Top Enriched Pathway 

•The citric acid (TCA) cycle and 
respiratory electron transport 
•Processing of Capped Intron-
Containing Pre-mRNA  
•Cell Cycle  
•Cell Cycle, Mitotic  
•Cellular responses to stress 
•Cellular responses to external 
stimuli 
•Respiratory electron transport, 
ATP synthesis by chemiosmotic 
coupling, and heat production by 
uncoupling proteins. 
•mRNA Splicing - Major Pathway 
•mRNA Splicing  
•Transport of Mature Transcript to 
Cytoplasm 
 

A B C 

D 



and Table 5) across different dose rates were combined; 17 and 28 active TFs from 4 days and 8 

days data, respectively, were found. The transcriptional regulatory relationship between 

modules and corresponding TFs are described in Figure 9 and Figure 18. The expression profile 

of all activated TF encoding genes were documented in the Supplementary data (S2 & S3 - page 

95 & 100). 

Table 4: TF orthologs and their corresponding modules from the data of 4 days of gamma radiation exposure. Gene symbol and 
gene names followed the nomenclatures of D. melanogaster as documented in Flybase. TFs are considered activated if a 
corresponding enriched motif was found and the ortholog genes which encoded for the TFs were present in that module.  

Transcript ID Gene 
Symbol 

Gene name Module 
Name 

Activated? 

XM_032938013 Lim3 Lim3 black Y 

XM_032922018 Sp1 Sp1 black N 

XM_032939826 NK7.1 NK7.1 blue Y 

XM_032933675 lola longitudinals lacking blue N 

XM_032940896 br broad brown Y 

XM_032921876 ovo ovo brown N 

XM_032927221 lola longitudinals lacking cyan N 

XM_032925470 lola longitudinals lacking cyan N 

XM_032921859 exex extra-extra cyan Y 

XM_032935662 ap apterous green Y 

XM_032935992 ken ken and barbie lightcyan Y 

XM_032927636 Blimp-1 mammalian B lymphocyte-induced 
maturation protein 1 

pink Y 

XM_032923201 br broad pink Y 

XM_032928081 pnr pannier pink Y 

XM_032925696 Spps Sp1-like factor for pairing sensitive-
silencing 

red N 

XM_032943003 HHEX Hematopoietically expressed 
homeobox 

red Y 

XM_032922964 Awh Arrowhead turquoise Y 

XM_032927749 Awh Arrowhead turquoise Y 

XM_032933804 Awh Arrowhead turquoise Y 

XM_032936275 lola longitudinals lacking turquoise N 

XM_032936557 ken ken and barbie turquoise Y 

XM_032930893 Lim1 LIM homeobox 1 turquoise Y 

XM_032929238 sr stripe yellow N 

XM_032922650 ap apterous Yellow Y 
 

Table 5: TF orthologs and their corresponding modules from the data of 8 days of gamma radiation exposure. TFs are 
considered activated if a corresponding enriched motif was found and the ortholog genes which encoded for the TFs were 
present in that module. 

Transcript ID Gene 
Symbol 

Gene name Module 
Name 

Activated? 

XM_032925433.1 br broad black Y 

XM_032930893.1 ap apterous black Y 

XM_032922964.1 Lmx1a LIM homeobox transcription factor 
1 alpha 

black Y 



XM_032927749.1 Lmx1a LIM homeobox transcription factor 
1 alpha 

black Y 

XM_032926422.1 Sp1 Sp1 black Y 

XM_032920460.1 ken ken and barbie black N 

XM_032921220.1 hbn homeobrain black Y 

XM_032927420.1 dati datilografo blue Y 

XM_032936085.1 dati datilografo blue Y 

XM_032934852.1 dati datilografo blue Y 

XM_032943597.1 CG7368 uncharacterized protein blue Y 

XM_032935044.1 PHDP Putative homeodomain protein brown Y 

XM_032929033.1 ttk tramtrack brown Y 

XM_032936275.1 lola longitudinals lacking brown Y 

XM_032923756.1 lola longitudinals lacking brown Y 

XM_032923740.1 srp serpent green Y 

XM_032930933.1 Klf15 Kruppel-like factor 15 green Y 

XM_032928317.1 exd extradenticle green Y 

XM_032924480.1 br broad green Y 

XM_032939826.1 Antp Antennapedia green Y 

XM_032922650.1 ap apterous green Y 

XM_032925696.1 btd buttonhead green Y 

XM_032926090.1 Dbx Dbx green Y 

XM_032937297.1 opa odd paired green Y 

XM_032938232.1 E5 E5 green Y 

XM_032934371.1 ken ken and barbie greenyellow N 

XM_032942013.1 lbl ladybird late lightcyan Y 

XM_032934613.1 fru fruitless magenta Y 

XM_032929670.1 Abd-B Abdominal B Red Y 

XM_032941531.1 br broad Red Y 

 

3.1.9 Transcriptional regulatory network between 4 days and 

8 days exposure to gamma radiation 
Despite being qualified as a significant module; dark turquoise did not contain any enriched motif 

sites or TF orthologs and is therefore absent from the network (Figure 9). Except light cyan and 

dark turquoise, the rest of the significant modules shared a specific regulatory target, blue 

module. The functional enrichment analysis of the blue module shows that it is involved in the 

pathways related to metabolism of RNA and translational regulation. Due to the crucial role of 

the blue module in the network, the affected pathway may explain the overall radiation impact 

in a shorter period of gamma radiation exposure. Interestingly, the blue module is heavily 

transcriptionally regulated by transcription factors from almost all the other significant modules 

and self-regulation, but provides neither positive nor negative transcriptional feedback 

regulation to the other modules.  



 

Figure 9: Network showing the changes of transcripts abundance and the eigengene expression across different dose rates. The 
size of the nodes corresponds to the number of enriched motifs. The pointing direction of the arrows indicate the regulation of 
TFs on the targeted node. The transcriptional regulatory direction is highly focussed on the central module, blue, and shows 
that it is the key module as it contains the most motif binding sites. 

 

In the 8 days transcriptional regulatory network, modules such as lightgreen, midnightblue, 

darkgreen, and grey60 were excluded due to the absence of enriched TFs and motif binding sites. 

A more evenly distributed regulation between modules is shown in the network, with 

bidirectional transcriptional regulation observed between the biggest module, green, and the 

surrounding modules directly and indirectly such as: magenta, red, black, brown, greenyellow, 

and blue (Figure 10). The functionality of modules confirmed that longer exposure to gamma 

radiation affected various developmental processes to a larger extent; for example, axon 

guidance (green), signalling response from the immune system (brown), ribosomal biogenesis 

(blue), energy production (black), membrane trafficking (red), cell cycle (red) etc.  



 

Figure 10: Network showing the changes of transcripts abundance and the eigengene expression across different dose rates. 
Size of the nodes are corresponding to the numbers of enriched motifs. The pointing direction of the arrows indicates the 
regulation of TF on the targeted node. The interactions between most modules were bidirectional. 

 

3.1.10 Module similarity assessment to predict the outcome 

of 8 days of exposure to gamma radiation based on 4 days 
Depending on the exposure length, any up-regulated genes could change to be down-regulated 

as the activation of different stress-defence mechanisms occur. To investigate whether the 

module eigengene expression generated using WGCNA aligns with previous deductions, a 

heatmap of module dissimilarity between the two exposure periods was plotted to demonstrate 

whether the eigengene expression of 4 days modules can be used to predict the eigengene 

expression of 8 days modules (Figure 11). 



  

Figure 11: The eigengene expression of the 4 and 8days module networks show an entirely different regulatory relationship. 4d 
and 8d in the end of every row name represents the radiation exposure period of each module. 

 

The dendrogram initially branches into three clades followed by 8 branches which share a rather 

similar dissimilarity distance. The 8 branches represent the 8 clusters labelled with different 

colours. MEgrey60 from 8 days and MEturquoise from 4 days could be two outliers with very 

distinctive expressions when compared to the rest. Most clusters contain modules from the same 

period of exposure, except for cluster 3 and cluster 8. However, the branching splits of 

MEblack.4d was higher than MEred.4d of the same exposure period and within the same cluster. 

The same applies to MEblue.4d with a relatively higher dissimilarity than MElightcyan and 

MEgreen from the 8 days of exposure. The observation confirmed that the differences between 

module expressions from the same exposure period were mostly non-monotonic across different 

dose rates. As the modules of 4 days mostly did not blend into the same clusters with the modules 

of 8 days, the results again demonstrate that the gene expression at 4 days of exposure cannot 

be used to predict the expression at 8 days.  

3.1.11 AOP Integration 
The previous study (Song et al., 2020) proposed a hypothetical AOP to describe the impact of 

oxidative stressors on the reduced fecundity of aquatic life based on the detected GO terms. 

Unfortunately, key events like oxidative DNA damage, follicular atresia, mitochondrial 
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hyperpolarisation, and lipid oxidation that is central to the proposed AOP do not exist in GO 

terminology.   

Integration of AOPs by matching the key words of key events with GO terms was demonstrated 

in Table 6 and Table 7. Key words such as “DNA damage”, “follicle cell”, and “lipid catabolic” were 

used in the search for key events that did not exist in the GO terminology. The modules consist 

of the enriched GO terms of key events labelled in green whereas the non-enriched terms are 

given a ‘tick’ to represent the presence of the gene. Toxicologically affected biological processes 

or signalling pathways that were discovered in other gamma radiation related studies (such as 

response to oxidative stress, cell cycle checkpoint and regulation, neurotransmitter signalling, 

neuron development, immune system process, inflammatory, autophagy, chitin development, 

and multicellular organismal development as well as lipid/protein/ion transport) have also been 

detected in both datasets disregarding the enrichment cut off of p-value < 0.05 (Song et al., 2020). 

The 4 days data shows that the enriched key events (green labels in Table 6) were distributed by 

4 modules and most of the key events which were not enriched (ticks) were found in other 

modules. While in the 8 days data, key events were mostly found in the black module, more key 

events were found than in the 4 days data. However, there are three modules which do not 

contain any key events compared to 4 days which only has one module. 

Table 6: Integration of significant modules with key events derived from AOP for the 4 days-transcriptome data. Modules which 
consist of enriched GO terms in the key events are labelled in green whilst for the non-enriched GO term in the key events, they 
are given a ‘tick’ to represent the presence of the gene in a specific significant module. 

 
Key Events 

Integration of significant modules 

Blue Pink Red Turquoise Light 
cyan 

Yellow Brown Green Dark 
turquoise 

Cyan Black 

Oxidative DNA damage ✓ - - - - - ✓ - - ✓ - 

Apoptosis - - ✓ ✓ - - ✓ ✓ - ✓ ✓ 

Follicular atresia - - - - - - - - - - - 

Mitochondrial 
hyperpolarisation 

- - - - - - - - - - - 

Oxidative 
phosphorylation 

- ✓ - ✓ - - - - - - - 

Mitochondrial ATP 
production 

- - - ✓ - - - - - - - 

Lipid peroxidation - - - - - - - - - - - 

Lipid storage - - - - - ✓ - - - - - 

Oogenesis - - ✓ - - - - - - - - 

Fatty acid oxidation - ✓ - - - - - - ✓ - ✓ 

 

Table 7: Integration of significant modules with key events derived from AOP for 8 days-transcriptome data. Modules which 
consist of enriched GO terms in the key events are labelled in green whilst for the non-enriched GO term in the key events, they 



are given a ‘tick’ to represent the presence of the gene in a specific significant module. 

 
Key Events 

Integration of significant modules 

Black Blue Brown Dark 
green 

Green Green 
yellow 

Grey 
60 

Light 
cyan 

Light 
green 

Magenta Midnight 
blue 

Red 

Oxidative DNA damage ✓ ✓ ✓ - - - - - ✓ - - ✓ 

Apoptosis ✓ ✓ - - - ✓ - - - ✓ - - 

Follicular atresia - ✓ - - ✓ - - - - - - - 

Mitochondrial 
hyperpolarisation 

- - - - - - - - - - - - 

Oxidative 
phosphorylation 

✓ - - - - - - - - - - - 

Mitochondrial ATP 
production 

✓ - - - - - - - - - - - 

Lipid peroxidation - - - - - - - - - - - - 
Lipid storage - - - - - - - - - - - - 

Oogenesis ✓ ✓ - - ✓ - - - - - - - 

Fatty acid oxidation ✓ ✓ ✓ - ✓ ✓ - - - ✓ ✓ - 

 

  

3.2 Multiomics integration of differentially 

expressed and co-expressed genes (DEACGS) with 

metabolite profiles 
Supervised learning using DESeq2 revealed the differentially expressed genes with 1262 
monotonic and 1202 non-monotonic responses from 8 days of gamma radiation exposure. While 
the gene expression reflects a genome wide response associated with different dose rates, it 
does not apply direct influence on the phenotypic changes. Due to factors such as epigenetic 
regulation, post- transcriptional and translational modification, inactivation of the substrates, 
and action of cofactors, there is a need to integrate the transcriptomes and metabolomes data 
to explain the observation and develop a more accurate mechanistic understanding of the 
phenotypes. 

3.2.1 Differential expression analysis of metabolomics. 
The PCA plot was made to examine the overall differences between the samples. No clustering 
patterns were observed, despite groups of samples being exposed to different dose rates (Figure 
12 A). This indicates that the level of metabolite expression could be very small and so results in 
a small variation. 



A total of 195 expressed metabolites were fit to a linear model and linear contrast, with 51, 93, 
and 123 of them differentially expressed in low-, high-dose responsive, and linear model groups, 
respectively. The abundance of differential metabolites and directionality of regulation is 
documented in Table 9. While there were 141 differentially expressed metabolites (DEMs) out of 
the 195 metabolites, the high dose responsive group shared almost half of the DEMs (62) with 
the linear model, corresponding to the findings of their overall module similarity (Figure 12B, C). 
Notably, the linear model group has the highest number of exclusive DEMs, despite the low dose 
rate responsive group having the most DEACGs. Interestingly, non-monotonic responses were 
observed with opposite trends in the two main DEM clades (labelled 1 and 2 in Figure 12 C) 
suggesting that two different sets of metabolites were produced in the low and high levels of 
dose rates. 

 

Figure 12: Plots show the initial analysis on metabolites abundance. A: PCA plot showed the sample of metabolites in 2D plane 
spanned by the first two principal components which explained the most variance. No clustering pattern observed indicates an 
extremely small difference between samples. B: Venn diagram comparing the numbers of DEMs shared and uniquely existing 
between low dose-responsive, high-dose responsive and linear model groups. C: Heatmap showing the gene expression of all 
metabolites and all samples; red to blue colour scale represents high to low gene expression and the colour of dose rates was 
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represented by the legend on the right. 

 

Table 8: The number of differentially expressed metabolites from each group of the design model. The linear expression group 
has the highest number of metabolites, but it also shares about half of them (62 from Figure 12B) with the high dose rate 
responsive group. 

Design model No. of DEMs Up-regulated DEMs Down-regulated DEMs 

Low dose rate responsive 51 23 28 

High dose rate responsive 93 53 40 

Linear expression 123 57 66 

3.2.2 Generate DEACGs corresponding to the design models  
To recap, Table 9 (A copy of Table 2) shows the overlapping of WGCNA modules and DEGs from 
DESeq2 (linear model and linear combination) narrowed down to 12 modules (blue, red, 
lightcyan, green, greenyellow, lightgreen, darkgreen, black, brown, midnightblue, magenta and 
grey60) to show a non-random association in the Fisher’s Exact test, meaning that they are 
significant modules.  

Table 9: Significant modules from the previous chapter and their corresponding groups. Double asterisk (**) indicates modules 
that are exclusively found in the design model. The low dose rate responsive group has more exclusive modules than the linear 
model- and high dose rate responsive- groups. 

Design model  
(WGCNA ∩ DESeq2) 

Modules with non-random association (p-value < 0.05) from 8 days 
gamma radiation exposure 

Linear model   Blue**               Darkgreen          Red                         Lightcyan 
  Green                Greenyellow      Lightgreen**                   

Contrast 
(mGy/h) 

Low dose responsive 
(Ctrl vs 1) 

  Black**             Brown**             Midnightblue** 
  Greenyellow    Magenta**         

High dose responsive 
(1 vs 100) 

  Darkgreen        Green                  Red 
  Greenyellow    Grey60**            Lightcyan 

 

The heatmap in Figure 13 demonstrates module eigengene expression across different dose rates. 
Samples from the lower dose rate groups (10 mGy/h and below) were not clustered according to 
the dose rates of exposure. Notably, modules from the low dose responsive group formed the 
middle clade (left dendrogram) and were mostly upregulated in the early increments of dose rate 
and downregulated in the mid dose range. Non-monotonic responses observed throughout the 
dose rates suggest genes within these modules are activated in early toxicological events. While 
the opposite expression direction was observed between the upper and lower clade (left 
dendrogram), significant modules from linear models largely co-exist in high dose responsive 
groups indicating that some modules from the linear model and high dose rates may have 
interacted antagonistically to each other.  



 

Figure 13: Heatmap showing gene expression profiles of all significant modules and all samples, red to blue colour scale 
represent high to low expression and the colour of dose rates was represented by the legend on the right. 

Genes from the significant modules which qualified from the Fisher Exact test were combined 
into three groups: linear model, low dose responsive (0 vs 1 mGy/h), and high dose responsive (1 
vs 100 mGy/h). The combination of unsupervised WGCNA and supervised DESeq2 detected all 
dose-rate-responsive genes to a greater extent and thus gave rise to more differentially 
expressed and co-expressed genes (DEACGs) being found. 

 

3.2.3 Integrative pathway analysis (Paintomics3) (DEACGs and 

metabolites) 
The pathway enrichment analysis was conducted using the KEGG database, one of the most 
comprehensive pathway collections in terms of molecular interactions with: manually curated 
maps categorised into metabolisms, genetic processes, environmental information processes, 
cellular processes, human diseases, drug developments, and organismal developments. 

138 metabolites with KEGG compound IDs were converted to use their KEGG compound names, 
which resulted in 29, 52 and 74 DEMs matched with the KEGG Compound database. 
Approximately 50% of the expressed transcripts along with DEACGs were converted to the Entrez 
ID of D. melanogaster prior to integrative pathway enrichment analysis using Paintomics3. Based 
on the KEGG database, a total of 137 pathways were identified, with more than 60% being 
metabolic processes (predominated by carbohydrate, amino acid, lipid and glycan metabolism), 
16.06 % and 9.49 % are genetic and environmental information processes, respectively (Figure 



14). In terms of significant pathways, the low-dose responsive group surprisingly possessed 31, 
compared to the high dose responsive and linear model groups which had only 4 and 7 pathways.  

 

 

Figure 14: Parts of the output from Paintomics3. A: Pie chart demonstrating the pathway categories resulting from 
the overall transcriptomics and metabolites data. B: Pathway network from low-dose rate responsive group, the 
node represents the names of the pathway, and the edges show the shared features (DEACGs) between pathways. 
C, D & E: Pathway enrichment results from low dose-, high dose rate responsive group and linear model. Tables of 
enriched pathways are ordered in ascending order of P-value, the red colour intensity changes according to the level 
of enrichment/significance and the grey scale means no corresponding omics data was found in the pathway. 

Table 10: Significant modules and the values in the bracket indicate the numbers of transcript paired with Entrez ID. Double 
asterisk (**) indicates modules that are exclusively found in the design model. The linear model- and high dose rate responsive- 
group share many modules, with the green module containing the highest number of genes. The blue module has the highest 
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number of genes overall and it is exclusive to the linear model group.  

Design model Significant modules (No. of transcripts matched with Entrez ID) 

Linear model ** Blue (516)            Darkgreen (28)        Red (311)                                   
** Lightgreen (27)   Lightcyan (31)          Greenyellow (111)   
      Green (396)                      

Contrast 
(mGy/h) 

Low dose rate responsive 
(Ctrl vs 1) 

** Black (369)       **Midnightblue (71)   Greenyellow(111) 
** Brown (427)     **Magenta (169)            

High dose rate responsive 
(1 vs 100) 

     Darkgreen (28)       Green (396)            Greenyellow (111) 
     Red (311)           ** Grey60 (13)             Lightcyan (31) 

 

In the low-dose responsive group, DEACGs (which comprised of black, greenyellow, brown, 
midnightblue, and magenta modules) were significantly enriched in oxidative phosphorylation, 
carbon metabolism, valine-leudine-isoleucine degradation, TCA cycles, fatty acid degradation, 
peroxisome, starch, and sucrose metabolism etc. 44 pathways from DEACGs alone were 
significantly enriched, suggesting genes from these modules were responsible for the adaptation 
and resistance in the early increment of gamma radiation dose rates by primarily altering their 
energy metabolism. However, none of the DEMs passed the p-value cutoff < 0.05, despite having 
several unique metabolites which were discovered in pathways such as carbon metabolism, ABC 
transporters, biosynthesis of amino acids, Aminoacyl-tRNA biosynthesis and so on. Significance 
tests of metabolomics revealed pathways like glycerophospholipid metabolism, histidine 
metabolism, glycine-serine-threonine metabolism, valine-leucine, and isoleucine biosynthesis 
and degradation, etc. bearing the smallest p-values of all, yet they were insignificant.  

Meanwhile in the high-dose responsive group, only 4 enriched pathways were enriched by 
DEACGs, namely the Hedgehog signaling, dorso-ventral axis formation, TGF-beta signaling and 
ECM receptor interaction pathways. The FoxO signaling pathway was significantly enriched by 
gene expression (p=0.045) but lost its status after being combined with the p-value from the 
metabolomics data (p = 0.08). There were no unique metabolites or DEMs found in the 4 
significant pathways. Top pathways bearing the smallest p values from the metabolomics data 
were involved in pyrimidine metabolism, phosphatidylinositol signaling system, amino sugar, and 
nucleotide sugar metabolism and so on. Nonetheless, the significant pathways from 
transcriptomics data further proposes that these modules in the later stages of dose rate 
increments were heavily involved in signal transduction, body formation and immune system 
development.  

In Table 10, except for the grey60 module which consists of only 13 genes, the rest of the modules 
from the high-dose responsive group were shared with the linear model. Intuitively, significant 
pathways from this group were likely to also exist in the linear model. However, the linear model 
group consists of the largest module, blue, therefore significant pathways from the high-dose 
responsive group are mostly insignificant. A total of 7 significant pathways enriched in linear 
model group did not consist of any unique metabolites: ribosome biogenesis in eukaryotes, notch 
signaling pathway, mismatch repair, RNA transport, Hippo signaling pathway, TGF beta signaling 
pathway, and nucleotide excision repair.  



Different from the low and high dose rate responsive groups, significant pathways enriched by 
DEACGs and metabolites from the linear model group suggest that changes in translation, DNA 
replication and repair as well as signal transduction were consistently and dominantly occurring 
throughout the exposure to gamma radiation at all increments of dose rate.  

Although valuable insights were made incorporating biochemical perturbations into biological 
pathways, insufficient metabolites were identified and a lack of KEGG annotations in more than 
a quarter of metabolic compounds in the current study limited biological interpretation. In the 
KEGG database, the deposit of high-quality information such as cell, treatment, and species-
specific pathways and metabolite information remains challenging. The absence of relevant 
information of D. magna in the KEGG database has forced the conversion of identifiers to Entrez 
ID of D. melanogaster leading to further lost data before the enrichment analysis.  

3.2.4 Pathway and GO enrichment analysis (DEACGs)  

3.2.4.1 Reactome Pathway Analysis 
KEGG-based metabolomics pathway enrichment analysis showed that most metabolites were 
not significantly enriched, so the output of the transcriptomic pathway enrichment analysis were 
prioritised. In this part, all the genes (DEACGs) from significant modules were split into three 
different groups for transcriptomics pathway analysis using the Reactome database, another high 
quality manually curated database. Unlike the Paintomics3, Reactome pathway analysis does not 
take a customized background population into consideration. The major advantage of the 
Reactome database are the regular updates, including all curated entities which crosslink to other 
databases (Fabregat et al., 2017).  

In Figure 15, the pathway output was different from the KEGG based pathway analysis, but they 
mostly belonged to the same categories and contributed to the same purpose. 39 pathways were 
significantly enriched by the DEACGs in the low-dose rate responsive group with the top 
pathways mainly being involved in energy metabolism: the citric acid (TCA) cycle, respiratory 
electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling 
proteins, etc. The DEACGs input from this group was slightly up-regulated suggesting that the 
early impact of low-dose gamma radiation exposure resulted in a small increase in the gene 
expression and co-expression of the 39 pathways. On the other hand, significant pathways in the 
high-dose responsive group were involved in morphogenesis and the nervous system while those 
in the linear model group were mostly related to RNA metabolism. Despite sharing almost half 
of the genes, higher levels of gene up-regulation were observed in the pathways of the high dose 
responsive group whereas lower levels of up-regulation, and predominantly, down-regulated 
genes were observed in the significant pathways of the linear group. The findings agree with the 
output of KEGG based PA. 



 

 

Figure 15: Network of top over-represented pathways and features genes associated with (A) low level of dose rates exposure, 
(B) high level of dose rates exposure and (C) linear response to gamma radiation. Nodes coloured in red, and green indicate 
whether the log fold change is positive or negative; the name of the node shown where the gene symbol corresponds to Entrez 
ID; the central node coloured in cream shows the name of the pathway with the size representing the number of genes 
involved in the pathway. 

 

Table 11: The number of unique Entrez ID from each dose group and their composition to up- and down-regulation. The 
number of enriched pathways from Reactome PA is shown in the last column. The low-dose responsive group contains mostly 
up-regulated DEACGs in the enriched pathway, the high dose rate responsive group contains a similar amount of DEACGs in 
terms of the directionality, lastly the linear model consists of the most down-regulated DEACGs in the top enriched pathways. 

Design model Entrez (DEACGS) inputs in 
Reactome PA 

Down regulated 
DEACGs 

Up regulated 
DEACGs  

No. of enriched 
Pathways 

(adj. p < 0.05) 
Low-dose rate 

responsive 
767 19 748 39 

High dose rate 
responsive  

726 353 373 37 

Linear model  1208 836 372 70 



3.2.4.2 The coherence of results between the gene sets 

annotated from GO- and pathway-analysis 
The functionality of DEACGs was characterized by the overrepresentation of GO terms relating 
to biological processes. More than 97% of DEACGs exposed to early increments of dose rates 
(Figure 16, green labelled network) were downregulated (Table 11) indicating the disturbances 
of energy metabolism, induce of endoplasmic reticulum stress, lipid peroxidation, and catabolic 
metabolism. In the high dose rate responsive group, the enriched GO terms of up-regulated 
genes (such as immune response, neuron development, signaling process etc.) suggest high dose 
rates promote a critical inflammatory process and CNS injury which activates the immune system 
through signal transduction. Also, cell morphogenesis development proposes that the embryonic 
stem cells are predominantly affected because they are highly radiosensitive (Sanzari et al., 2013). 
The up-regulatory trends of genes suggest an irregularity such as uncontrollable cell division.  As 
the high dose rate responsive DEACGs overlap with the linear expressive group, similar cluster 
annotations like cell morphogenesis development and response external biotic were also found 
in the linear group. The significantly down-regulated genes in the linear responsive group largely 
contributed to other clusters. Particularly in the rRNA regulation process and mitotic cycle, over-
representation of relevant GO terms indicates a reduction of control over gene expression 
because ribosomal synthesis promotes cell growth and under normal conditions, it is under strict 
control to ensure a proper cell cycle, cell growth and proliferation (Chakraborty et al., 2011). 



 

Figure 16: GO enrichment analysis made with the Cytoscape plugins BiNGO, EnrichmentMap and AutoAnnotate.  Nodes 
represent the enriched GO term; node size corresponds to the number of genes and the thickness of edge depicts the number 
of overlapping genes 

 

 

 

 

 

 

 

 

Cell morphogenesis development: 
•MULTICELLULAR ORGANISMAL 

DEVELOPMENT 

•NERVOUS SYSTEM DEVELOPMENT 

•SYSTEM DEVELOPMENT 

•NEURON PROJECTION DEVELOPMENT 

•NEURON DEVELOPMENT 

•CELL MORPHOGENESIS INVOLVED IN 

DIFFERENTIATION 

•AXONOGENESIS 

Etc … 

 

Response external biotic 
•INNATE IMMUNE RESPONSE 

•IMMUNE SYSTEM PROCESS 

•CENTRAL NERVOUS SYSTEM DEVELOPMENT 

•SIGNALING PROCESS 

•RAB PROTEIN SIGNAL TRANSDUCTION 

•SIGNAL TRANSMISSION 

ETC … 

 

 

 

 

Drug process metabolic: 
•ATP METABOLIC  

•PURINE NUCLEOSIDE TRIPHOSPHATE 

METABOLIC PROCESS 

•ENERGY DERIVATION BY OXIDATION OF 

ORGANIC COMPOUNDS 

•RIBONUCLEOSIDE TRIPHOSPHATE 

METABOLIC PROCESS 

•RESPIRATORY ELECTRON TRANSPORT 

CHAIN 

•PHOSPHORYLATION 

•PHOSPHORUS METABOLIC PROCESS 

•MITOCHONDRIAL ATP SYNTHESIS 

COUPLED ELECTRON TRANSPORT 

Etc… 

 

etc… 

 

rRNA Regulation Process: 
•RNA SURVEILLANCE 

•NUCLEAR MRNA SURVEILLANCE 

•NUCLEAR RNA SURVEILLANCE 

•REGULATION OF RNA METABOLIC 

PROCESS 

•ENDONUCLEOLYTIC CLEAVAGE OF 

TRICISTRONIC RRNA TRANSCRIPT 

(SSU-RRNA, 5.8S RRNA, LSU-RRNA) 

•MACROMOLECULE METABOLIC 

PROCESS 

•NCRNA METABOLIC PROCESS 

Etc… 

 

Neuron morphogenesis 

development: 
•NEURON PROJECTION 

DEVELOPMENT 

•GENERATION OF NEURONS 

•NEURON DIFFERENTIATION 

•NEURON DEVELOPMENT 

•NEUROGENESIS 

•CELL MORPHOGENESIS INVOLVED 

IN DIFFERENTIATION 

•AXONOGENESIS 

•LOCOMOTORY BEHAVIOR 

Etc… 

 



Chapter 4 Discussion 
To recap, the first part of this proposed workflow created the regulatory network for short (4 

days) and long (8 days) gamma radiation exposure periods by integrating supervised (DESeq2) 

and unsupervised learning (WGCNA), to reassemble the relationship within and between the 

modules and establish the differences between regulatory mechanisms activated based on the 

period of radiation exposure. The second part of this workflow integrated transcriptomics and 

metabolomics data with a focus on D. magna exposed to gamma radiation for 8 days using 

DEACGs generated from combining the significant modules and DEMs detected from limma, 

utilising only supervised methods. The characterisation of functionality based on the design 

groups of DEACGs and DEMs successfully unveiled the hidden mechanisms behind the key events 

of AOPs which is proposed to contribute to a reduction in fecundity.  

In this chapter, section 4.1 discusses the technical challenges, limitations, and improvements that 

can be made in this workflow. Section 4.2 addresses the biological interpretations from the 

output of Part 1 of the workflow. Section 4.3 compares the coherence with existing AOPs, the 

performance of module integration with AOPs and potential future improvements. Section 4.4 

covers the in-depth biological knowledge discovered using multi-omics. Lastly, section 4.5 

explains the effects of gamma radiation on fecundity and potential further research.  

4.1 Analysis and integration of data (technical 

discussion)  

4.1.1 Non-conventional modules selection  
Different from typical WGCNA proposed workflows which either correlate the module eigengene 

with conditional variables of interest or set a cut off value on the gene significance (GS) 

(correlating genes with variable of interest) and module membership (MM) (correlating genes 

with module eigengene) for module selection, this study utilised the intersection between DEGs 

and modules from WGCNA to discover important modules. This is because correlating the 

module eigengene with condition of interest uses Pearson correlation to measure only the linear 

relationships between the modules and traits of interest, meaning some transcriptional 

responses could be non-monotonic and could therefore result in a loss of information. Ideally, a 

monotonic dose response means that the increase of one variable results in relative 

changes/effects in other variables (Vandenberg et al., 2012). Whilst non-monotonic response 

refers to biphasic, U shaped and inverted U-shaped curves (Hong and Yang, 2017). Most 

biological responses are sigmoidal and non-linear. Measuring the values of GS and MM also 

makes the use of Pearson correlation, modules that pass the cut-off, again exclude the non-



monotonic expression, and lose some meaningful expression patterns whilst having extreme 

expression levels for some samples. 

4.1.2 Software selections 
Undeniably, there is still room for improvement in the software choices used in this study. The R 

packages DESeq2 and WGCNA are the most popular packages in omics analysis and therefore 

served as a blueprint to demonstrate the implementation of an efficient approach which 

incorporated supervised and unsupervised learning. While DESeq2 is known to be a very user-

friendly software which also provides a very reasonable algorithm for DE analysis, it was also 

known for being more conservative when dealing with marginally expressed isoforms, therefore 

detecting fewer true positives (Khang and Lau, 2015, Mou et al., 2020). The ability for DESeq2 to 

detect small transcriptional changes from extremely low gamma radiation dose rates and non-

monotonous pattern of expression at dose rate < 1 mGy/h is uncertain. On the other hand, 

module detection with WGCNA clustered co-expressed genes disregards any prior biological 

knowledge. Integrating the two methods covered up the drawbacks from each other and 

undoubtedly allowed for better exploitation of the high-dimensional data while retaining the 

biological sense. Better software algorithms can be employed in the future to replace the two 

current R packages for unsupervised learning and supervised learning.  

4.1.3 Design model 
In the past, a linear no-threshold model has been used in the risk assessment of radiation 

exposure assuming there was no threshold between radiation dose rates triggering cellular 

defence mechanisms. Such guidance is useful when the exposure dose rates are very high and 

acute, for example in the study of survivors, animals, and plants from the affected regions of 

atomic bombs. Recently, there is a growing interest in examining the health risks of long, chronic 

exposure to low dose rates of radiation. The applicability of a linear-no-threshold-model is 

challenging when the exposure dose rates are less than 100 mGy/h because the effects on cells 

are sublethal, a background influence, and cause the activation of natural repair. Sometimes, the 

adverse effects also require a longer period of exposure to overload the capacity of repair before 

causing real damage. As the effect of the lowest dose rates are variable due to animal species, 

age, radiation type etc., the experimental setup in this study has chosen to follow previous 

studies which investigated the effects of gamma radiation on the reproduction rate of Daphnia 

magna.  

In this proposed workflow, the initial assessment on the expression profile showed that the 

radiation response of DEGs was non-monotonic because the direction and gradient of most DEGs 

in the low dose rate responsive- and high dose rate responsive groups were different. The 

response DEGs are sigmoidal, U shaped, inverted U shaped or biphasic. Therefore, apart from a 

linear model, linear combination was also implemented using software package, DESeq2, to 

demonstrate the dose dependent patterns. Since a dose rate of 1 mGy/h has been demonstrated 



as the lowest observed effect level and employed a different mechanism affecting reproductive 

efficiency than high dose rates (100mGy/h), the comparison between control (background) vs 1 

mGy/h and 1mGy/h vs 100mGy/h was performed.  

One may argue that method is not without its weaknesses. Some DEGs that have a good fit to a 

linear model also belong to DEGs from the linear combinations. For example, a linear relationship 

can also mean there are significant changes between low doses (0 vs 1 mGy/h) and high doses (1 

vs 100 mGy/h).  However, this is not much of an issue because none of the eigengene expression 

profiles that overlap with the linear model show an exact linear relationship. As a result, there 

are likely very small numbers of DEGs that demonstrate this behaviour. The strength of this 

method is in discovering hidden non-monotonic responses of genes outweighed by their 

weakness by including genes that will not be picked up simply by using a GLM model. If one’s 

interest is to focus only on the linear trend, it can be achieved in two ways following the workflow 

above: (i) select DEGs from a linear model that are not present in linear combination and look at 

their individual expression profiles; (ii) select DEGs that exist in the linear model, low and high 

dose group, and filter them according to the gradient of interest (logFC) from linear combination. 

4.1.4 The conversion of identifiers and loss of information  
Entrez records only document genomes that have been fully sequenced and those that are being 
actively used for research purposes (Wheeler et al., 2007, Maglott et al., 2005). It is probably the 
most widely used identifier for tracking other identifiers (RefSeq, GO consortium, Uniprot, 
Reactome, Ensembl etc.) which are also integrated in the Entrez system but named differently in 
other internal or external databases for gene-specific information. However, Entrez ID is not 
available for daphnids.  

Meanwhile, the KEGG database has its own independent genome annotation system which 
contains two branches: KO (KEGG Orthology) assignment and KEGG mapping (Pathway, Brite and 
Module database) (Kanehisa et al., 2019, Kanehisa and Goto, 2000, Kanehisa et al., 2021a, 
Kanehisa et al., 2021b). The KEGG in-house annotation tools, BlastKOALA and KOALA or KAAS 
assigned KO IDs to genes corresponding to their own database, ID conversion between non-
model and model organisms is smoother when KO IDs were adopted. KEGG annotation is 
available for Daphnia pulex, hence it was included in this workflow. On the other hand, 
metabolomics data were annotated using the KEGG compound database because the number of 
metabolites discovered in this study was fewer than 200, and KEGG compound ID are widely 
accepted by pathway visualisation tools. They also easily convert to other metabolites 
databases.  

At least 50% of DEACGs and potential significant pathways were lost in the conversion of 
identifiers. Selection of the matched DEACGs and metabolites was based on lowest adjusted p-
values for those sharing same identifiers with others, causing more differentially expressed 
features to be lost. Limited metabolomics annotation from mapping into mainstream databases 
led to a quarter of the data being lost and no differential metabolomics pathways being produced. 
Thus, current analysis did not take all transcripts, genes, and metabolites of D. magna into 



consideration, but rather presents an unbiased quantitative approach to measure the 
significance of biological pathways for those that were mapped to their respective identifiers.  

Functional and pathway enrichment analysis was conducted using multiple databases due to 
inconsistent nomenclature of pathways, accuracy of automatic pathway data curation, 
subsequent annotations, updates, and reconstruction. Manual curation of literature and 
pathway data is required to relate the observed differential metabolites with differential 
pathways. There are no specific guidelines when it comes to functional annotations, but with 
cross-referencing to multiple databases using popular and convertible identifiers, such as Entrez 
ID, end users of this workflow can easily retrieve the information of interest.  

4.1.5 Significant modules in the network of transcriptional 

regulation 
One gene module from the 4 days data and four gene modules from the 8 days data were 

classified as significant modules from the overlap between WGCNA and DESeq2. Reactome 

pathway enrichment and GO enrichment analysis confirmed their significance in response to 

oxidative stress. However, these modules were excluded from the network of transcriptional 

regulation because they contained neither enriched motif sites nor TF encoding orthologs.  

This problem occurred because of the limitation of WGCNA in monitoring expression changes 

which are not gradual. Firstly, while WGCNA successfully clustered gene expression based on the 

co-expression of all samples, clustering methods neglected the effect of local co-expression 

among a subset of samples which could contribute to the activation of certain TFs (Neph et al., 

2012b). The responsible genes which were co-expressed differently or oppositely for the same 

regulator were assigned into different modules. Using TF activity to bind specifically on motif 

sites requires ligand binding, but the activity profiles of TFs were not monitored in this study. This 

is also connected to our second point in which the combinatorial effect of proteins has not been 

taken into consideration. As one gene can only belong to one module, information regarding the 

combination of gene products such as TFs and hormones taking part in multiple pathways is again 

missed (Saelens et al., 2018). If the target genes of a TF lie within the absent modules, the 

expression of absent modules might be explainable by the expression of the TF (Marbach et al., 

2012). One can thus deduce the regulatory relationship between genes and enhance the 

detection of modules. Methods like generalised singular value decomposition and bi-clustering 

have been proposed to overcome the limits of local co-expression and intersection of multiple 

modules because they allow the differential co-expression of genes between different samples. 

For bi-clustering, the prior classification of samples is not even required (Van Dam et al., 2018). 

Their flexibility in employing only a subset of genes to explain the variation of gene expression is 

very useful in TF regulation which is very context specific, yet these methods require a very high 

quality of data (Van Dam et al., 2018). This is because the theory behind these methods makes 

them very sensitive to outliers and affects the module eigengene expression. 



Table 12: Numbers of genes in each module. 

Module name Darkturquouise-4 Lightgreen-8 Midnightblue-8 Darkgreen-8 Grey60-8 

No. of gene 103 51 101 41 53 

 

 

 

 

Figure 17: Significant modules that are excluded from the regulatory networks. The module with black border is from 4 days 
data while the rest are from 8 days data (top left). 

 

4.1.6 Choices on motif database in AME 
TF databases used in the AME analysis were from the fly databases available at MEME suite. The 

choice of databases determined the enriched TFs produced by finding a match between the input 

sequences to the motifs of interest. The TFs generated in this study were not directly related to 

radiation impact despite proposing the impact on phenotype appearances. The model organism, 

D. melanogaster, is not frequently used in studies investigating the effect of ionizing radiation 

compared to mammals and fish. Due to clinical concerns from existing medical treatments like 

radiotherapy, humans are the prioritized study target and relevant animals like mice and 

zebrafish have a closer biota to humans compared to flies. To improve the findings from this 

workflow, future study on the enrichment of TF binding sites can replace the motif databases 

with a more general choice for example “eukaryotes DNA”, “vertebrates (in silico and in vivo)” or 

“JASPAR CORE” (curated TF binding sites for eukaryotes) and “HUMAN AND MOUSE” to give 

results with different perspectives as mammalian and fish model species have undergone more 

extensive studies with ionizing radiation.  



4.1.7 Confounding variables in the metabolomics data  
The metabolomics data used in this study does not take the biomarkers of metabolites (blood, 
serum, interstitial fluid, etc.) and gender into consideration. The metabolomics workflow 
assumes all differences in all gene expression are simply due to the differences in treatment. 
Lacking this piece of information could result in bias in the data as metabolites from the samples 
which shared similar genetics are more likely to be treated as significant and produce a more 
confident result if they are the majority within each treatment. A minority of samples within the 
same block might be treated as outliers and the variance will be removed from normalization. 

Besides, metabolites can be thought of as the downstream output from transcriptomic and 
proteomic activity. Detected differential metabolites may not explain the full picture of the 
transcriptomic changes despite being more sensitive and accurate to environmental and genetic 
changes than molecular observation. Future work beyond these two omics fields, such as 
including proteomic data, will improve the findings on the toxicological impact of low dose rate 
gamma radiation. 

4.1.8 Conventional linear regression on the metabolomics 

data 
It was decided to not include unsupervised machine learning with metabolomics data in this 
workflow. This workflow focuses on creating an efficient semi-supervised method through 
overlapping the linear combinations and linear model with unsupervised modules for highly 
dimensional data. While the author of WGCNA suggests sample size more than 30 is enough for 
the unsupervised learning, the availability on number of samples (n=70) with 10 replicates for 
each treatment and only 195 metabolites (features) from the metabolomics data, made the 
linear model sufficiently reliable when modelling the dose rate-dependent response (Langfelder, 
2017). Even when the sample size is lower than 15, with clean data and strong differential signals, 
the output is likely not going to give insights which differs from what a conventional regression 
DE analysis could provide.  

4.1.9 Creating DEACGs based on design model 
Major weakness in the first part of this workflow is the exclusion of some significant modules 

from the transcriptional regulatory network. The selection on potential modules was based on 

non-random association (overlap) between the modules from WGCNA and DEGs from DEseq2 

through the Fisher’s Exact test. Some selected significant modules, despite proven functionally 

relevant to the impact of gamma radiation (by functional enrichment analysis), were however 

not included into the network of regulation. This problem was due to the choices on motif site 

database that were used in motif site enrichment analysis and the organisms used to look for 

orthologous TF encoding genes. As there are no motif database available for D. magna, motif 

databases of D. melanogaster and orthologs of TF encoding genes were used to find matching 

sequences for motif binding sites and the TF orthologs in D. magna. Besides, real time TF activities 



are not monitored in this study. Novel TFs from D. magna are likely to be missed out in this case. 

Hence, the absence of TF motifs and TF encoding genes in the selected potential modules simply 

excluded the significant potential modules from the regulatory networks, but their importance 

should not be neglected despite having unknown regulatory contributions. 

The integration of transcriptomics and metabolomics data hence began with a supervised 

learning method. To ensure the enrichment analysis produces statistically significance result, it 

required all significant modules and DEMS that correspond to the design models. The 

combination of modules produced DEACGs based on their design model group, resolving the 

issue of module exclusion, and yielding meaningful outputs in functional annotations.  

4.2 Network based inter-modular transcriptional 

regulation  
The transcriptional regulatory networks (Figure 9 and Figure 10) under chronic exposure to 

radiation at low dose rates suggests that different transcriptional regulatory mechanisms were 

responsible for the adverse outcomes, and contributions to the morphological and nervous 

development in D. magna in both study periods. The pattern of regulatory network and the 

module similarities at 8 days are different; therefore, the short-term exposure to gamma 

radiation yielded unpredictable results if the length of exposure increased. At 4 days, the 

transcriptional regulation between modules was highly centralised in the largest module, having 

the most genes, in which it possessed the most motif binding sites for being regulated by other 

modules and self-regulated at the same time. Meanwhile in 8 days, the transcriptional regulation 

between modules were not correlated to the numbers of genes. The regulation was more 

distributed between modules, most of them regulating and being regulated by each another. 

While the functional annotation of modules revealed that the impact of gamma radiation was 

different between 4 days and 8 days of exposure, the heatmap of modules similarity comparison 

(Figure 11) also supported the findings in which the clustering of all modules was based on their 

exposure period.  

4.2.1 Networks of TF regulation after 4 days of radiation 

exposure 
TF encoding genes usually possess multiple roles besides acting as a transcriptional regulator. 

The Pink module consists of TFs from the homeobox family and zinc finger protein family. The 

homeobox gene is known for encoding TFs that control the body plan and morphology of bilateral 

animals throughout evolutionary development whereas the proteins of the zinc family are more 

complex and serve different purposes in different taxa (Ferrier, 2016). The TFs of broad (br) and 

blimp-1 from the pink module belong to the C2H2 Zinc Finger family. Blimp-1 controls the 

differentiation of retinal cells and tracheal tissue. It also acts as a repressor controlling the 



expression of mid-prepupal gene for the induction of ecdysone in (cultured salivary gland) which 

is responsible for metamorphosis, embryogenesis, progenitor cells and molting. Reduction in 

expression of Blimp-1 is lethal to prepupal (Ferrier, 2016). On the other hand, the TF of br is 

transcriptionally activated when steroid hormone ecdysone is secreted. This explains the 

contrary expression profiles of the pink and turquoise modules.  

Br is found in the photoreceptors of eyes and involved in eye disc morphogenesis. Recent studies, 

which investigated the effect of excessive sex hormones on non-reproductive organs, showed 

that over-proliferation and mis-differentiation of intestinal stem cells due to excessive ecdysone 

promotes gut dysplasia and tumorigenesis. The TF of Br is hence activated to suppress cell 

proliferation (Ahmed et al., 2020).  

The gene of the third enriched TF, pannier (pnr) has been reported to express in dorsal mesoderm 

(Mandal et al., 2004). It is responsible for thoracic development, abdominal segmentation and 

head structure around the eyes (Ferrier, 2016). The presence of GATA TF pannier stimulates 

cardiac mesoderm to form part of the dorsal mesoderm and contributes to the lymph gland. Due 

to functional conservation among bilaterians, GATA TF pannier was also reported to trigger cell 

differentiation in cardiac cells, sensory organs, and the dorsal thoracic closure of embryos 

(Immarigeon et al., 2019). Previous studies also showed that the GATA TF of pnr requires the 

presence of LIM domain proteins to ensure proper specification of cardiac primordium in 

invertebrates. Interestingly, genes containing the LIM domain: ap (green, yellow), Lim1 

(turquoise), and Awh (turquoise) which are commonly expressed in the muscles, heart, brain, 

nervous system, lymph glands, early stage limb development, and the dorsal ventral axis of eyes 

in D. melanogaster were found and enriched in the 4 days TF regulatory networks (She et al., 

2021). LIM domain proteins belong to a subfamily of the super class – homeobox. LIM domain 

proteins exist in the form of TFs or structural proteins, both can regulate cardiac and 

hematopoietic systems: Lim homeobox 1 (Lim1), Lim homeobox3 (Lim3) and ap are expressed 

exclusively in the different subtypes of motor-neurons along the ventral cord and interacted 

closely with the nervous system. LIM mRNAs were found in lymph glands, muscles systems, and 

the circulatory system while the TFs of LIM domains were involved in the regulation of serpent 

(srp), one of the three TF members of the GATA family which control the differentiation of gland, 

cardiac or pericardial cells.  Other TF encoding genes like awh, blimp-1 and ap were also present 

in the lymph gland, central nervous system (CNS) and brain of eukaryotes (She et al., 2021).  

NK-like TFs also belong to the homeobox family with TFs such as exex (cyan), NK7.1 (red) and 

HHEX (blue). Studies in development biology revealed that the NKL genes are primarily involved 

in neural development. Gene products of exex from cyan module were documented to negatively 

interact with the TFs of Lim3 in neuronal differentiation. TFs of exex regulate the fate of cells 

within the motor neurons. Meanwhile, the TF role of hhex and NK7.1 were reported to be varied 

across different taxa. In D. melanogaster, the expressions are observed in midgut primordia, gut 

section, brain, and CNS. However, research in vertebrates has shown their role as a 



transcriptional repressor to inhibit cell hyperproliferation and other oncogenic activity (Marfil et 

al., 2015, Treffkorn and Mayer, 2019). 

In addition, orthologs of genes encoded for activated TFs: ap (green, yellow), br (pink, brown), 

ken and barbie (light cyan, turquoise), awh (turquoise) were presented more than once, with 

only br demonstrating different isoforms. While the regulation of ap, awh and br are highly 

relevant to CNS, the ken and barbie (ken) encodes TFs that are responsible for the formation of 

genitalia and animalia in the juvenile stage.  

4.2.2 Investigating a cyclical relationship in the 4 days 

regulatory network 

 

 

Figure 18: Top over-represented pathways from Reactome pathway analysis in blue-, pink-, turquoise- and red modules. 

The blue module showed the most motif binding sites detected by AME yet contained no 

orthologs of TF encoding genes. The blue module also presents a distinctively different 

expression profile than the rest of the modules in the network below: the plummeting of gene 

expression upon exposure to the gamma radiation stayed rather consistent, until a sharp rise as 

the dose rate reached 100mGy/h. The blue module was self-regulated by NK7.1 and regulated 

by at least one active TF from other significant modules in the network, except lightcyan. 



  

Figure 19: The gene expression of NK7.1 from the blue modules (left) and the output from GO analysis (right). 

 

Turquoise was another self-regulated module by the TF ken within the same module and by the 

same TF from the lightcyan module on the same motif. The combined module eigengene 

expressions of lightcyan and turquoise from Table 2, which contains the differential expression 

of ken (Ctrl vs 1mGy/h) with the ken expression profile shown in Figure 20, displays that the 

initial increase of transcript abundance from the lightcyan module at 0.4 mGy/h triggered a 

drastic increase in the gene expression of the turquoise module. This could indicate the 

promotion of transcription by the active TFs of ken. Further increases of dose rate at 1 mGy/h 

spiked the transcript abundance of ken to the highest level, yet potentially triggered the 

deactivation of TFs and reduced the module expression of turquoise. Genes from the turquoise 

modules participated in a wide range of activities related to the resistance and adaptation to 

gamma radiation such as immune response, extracellular matrix organisation, digestion, 

signalling and growth development. 

Despite sharing the same motif binding sites and orthologous relationship with D. melanogaster, 

ken-encoding genes from turquoise and lightcyan have an entirely opposite expression profile 

across all dose rates (Figure 20): “n” shaped vs “increasing” trend changes observed at low dose 

rates (0 to 1 mGy/h) and “raising” vs “decreasing” changes as the dose rate increases from 1 to 

100 mGy/h. The observed TF activities of ken in D. magna could be functionally divergent from 

Drosophila and further study is required to explore the existence of ken isoforms where the TFs 

generated might act antagonistically towards each other. The lightcyan module is mainly 

involved in cellular defence and signalling pathways. 



 

Figure 20: The gene expression profile of ken and barbie from the turquoise and lightcyan modules. 

 

The TFs from the turquoise module are antagonistic to the blue module as shown by the TFs: 

Lim1 and Awh. A similar expression change can also be seen in the red module, with HHEX as the 

active TF acting on the blue module. The pink module regulated the blue module directly with br 

and potentially exert an indirect effect on the blue module with TFs (Blimp-1 and pnr) acting on 

the turquoise and red modules. Distinct opposing trends were observed in the expression 

profiles of the TF encoding genes of the pink module, from the red and turquoise (Ctrl vs 1 mGy/h) 

modules. 

 

Figure 21: The expression profile of TF encoding genes from the turquoise-, red- and pink modules. 

 

  



4.2.3 Module specific findings from a longer exposure to 

gamma radiation 
In comparison to TFs from the 4 days network, br and ap were presented more often than the 

rest, with three different isoforms of br othologs (I, J and L) and one isoform C for ortholog of ap 

in the 8 days network (Figure 10). The expression of Br in the neuron leads to the pathway of 

neutron maturation which links to certain levels of behavioural control in Drosophila (Li et al., 

2004). While the network of 4 days showed that only isoform J of br was presented multiple times, 

except for isoform Q and P (Br Z1-Z4) which were found earlier. Unfortunately, few studies have 

been carried out on the detailed functionality of these isoforms as they were only discovered in 

the last decade.  

The gene, ap, is most known for being involved with normal dorsal ventral and wing formation, 

but studies have found the expression of ap in many tissue types are related to reproduction, 

central nervous systems, brains and viability in drosophila. Recently, a study focusing on the wing 

patterning of hemimetabolous insects refined that the role of Apterous A (apA) functions as both 

activator and repressor for wing size, patterning (sexual trait), bristle formation and potentially 

ventral development of eyespots, while apB serves as a backup of apA with minor defects if 

mutated (Liu et al., 2015, Prakash and Monteiro, 2018). The TFs of apA and apB exist exclusively 

in the network of 4 days but their morphological effect on D. magna needs further investigation. 

On the other hand, only isoform C of ap (apC) was found twice in the green and black modules’ 

8 days radiation exposure. apC is involved mainly in neuronal fasciculation and the ectopic 

expression of apC was reported to have minor defects on dorsal wing discs but caused a large 

reduction in juvenile hormones and uncoordinated movement (Lundgren et al., 1995). Despite 

sharing the same ortholog of apC, the observed difference in expression profiles at low dose rates 

(0 – 1mGy/h) could be explained by the spatial expression of ap on the two transcripts in the 

different tissues of D. magna (Figure 22).  

 

Figure 22: The expression profile of TF encoding genes from the green and black module. 

In contrast to the network of 4 days data, the transcriptional regulation between modules from 

8 days data is more evenly distributed. Forward and backward regulation were observed in most 

modules and the regulation between modules involved more than one target. However, modules 



such as lightgreen, darkgreen, grey60, and midnightblue were not shown in this network 

because no TF orthologs or motif enrichment sites were found.  

While the 4 days-network captured one of the three GATA ZF homolog, pnr, the 8 days-network 

presented another GATA ortholog serpent isoform E (srpE). The absence of pnr at the late stage 

of embryogenesis is expected, because previous studies have shown the repression of pnr was 

either mediated or directly controlled by Abd-B. The expression of pnr is specifically inhibited 

during the formation of spiracles.  

No detailed functionality of srpE is documented, but the TF of Srp is best known for 

haematopoiesis by acting as an activator of an enhancer for metamorphosis in response to 

ecdysone in the final developmental stage of larval. Overall, prolonged radiation exposure 

activates more TFs from a variety of gene groups such as: Pair-like homeobox, Kruppel-like family 

(KLF), and TALE homeobox. TF-encoding genes like br, Exd, Lmx1a, sp1, E5, lbl, btd, opa, klf15, 

hbn, CG7368, lola, and ttk which were exclusive to the 8 days network are related to the growth 

of organs and body plans. Studies of other bilaterian with ectopic expression of these genes are 

accompanied with organ failure, cardiac defects, neurodegeneration, tumorigenesis, and 

metabolism disorders (Ahmed et al., 2020, Cheng et al., 2016, Chung et al., 2014, Qian and 

Bodmer, 2009, Dinges et al., 2017, Petersen et al., 2013). Longer exposure to gamma radiation 

will therefore compromise fitness and increase the susceptibility to diseases which potentially 

reduce the lifespan of the studies’ subjects. Meanwhile, ectopic expression from other active TF-

encoding genes like lola, dati, fru, Lmx1a, and Abd-B also implicate abnormalities in the brain, 

endocrine systems, reproductive organs, and nervous system development which can lead to 

irregular mating behaviour and a reduction of fecundity (Newell et al., 2016, Schinaman et al., 

2014, Allbee et al., 2018).  

These findings align with the age and development of experimental subjects, during which the 

female daphnia would become fertile. According to a previous study focused on fecundity in D. 

magna, most daphnids were transforming into an adult at this stage (8 days) and the embryo 

within was visible but not yet released. The integration of TF motif binding with module 

eigengene expression profiles in 4 and 8 days demonstrates a temporal pattern of expression, 

enabling a quick and comprehensive assessment on early toxicological events.  

Reactome pathways and GO analysis from the largest module, green, showed a focus on the adult 

developmental process and signalling pathways (eg. Nervous system, neurogenesis and WNT 

signalling). Other highly interconnected modules in the network (black, blue, brown, and red) 

also revealed their significance in transcriptional regulation, ATP metabolism, cell cycle 

regulation, cell-to-cell signalling, reproduction, chitin synthesis, DNA damage checkpoints, DNA 

repair, and the immune system. 

Overall, interesting insights were discovered from the exposure-period-specific modules and 

genes responsible for transcription factor encoding and other biological purposes. However, TFs 

that were linking modules in the regulatory network were considered activated as the transcripts 



level of TF encoding genes correspond to the eigengene expression, but there is no way to 

confirm whether it is a negative or positive regulation. Real time TF activity monitoring could 

become the focus of future projects focusing on transcriptional regulation. 

4.3 Limitation of GO-based module integration 

with AOPs and the new prospects  
Gene ontology analysis is one of the most popular approaches for providing biological 

interpretations due to its flexibility in connecting any gene and gene products regardless of the 

upstream analysis procedure. In common practice, GO annotation relies heavily on 

hypergeometric tests to identify over or under-represented GO terms for a group of genes of 

interest. However, the hierarchical structure of GO in the form directed acyclic graphs (DAG) 

makes the interpretation challenging, especially when there are large numbers of GO terms 

(Manjang et al., 2020). The hypergeometric approach simply neglects the fact that GO terms are 

highly dependent on each other and possess a disadvantage in the integration of AOPs in this 

workflow. 

Semantic measure which uses the frequency to measure the distance of GO terms has been 

proposed as a solution, but studies show that bias due to preference on biological applications 

will compromise the accuracy of the result (Mazandu and Mulder, 2014). Limiting a certain 

degree of GO connections in the enrichment analysis is another option but this method is very 

complicated and uncommon (Grossmann et al., 2007). Therefore, future work should focus on 

exploring existing automated tools that can further categorise GO terms into different GO levels 

(e.g., regular nodes, jump nodes or leaf nodes) (Manjang et al., 2020) to simplify structural 

information and for efficient DAG interpretation.  

In this study, the integration of GO and AOPs was accomplished manually. Despite functionality 

assessment from Reactome PA and GO analysis discovering many toxic pathways and biological 

processes, Table 6 and Table 7 that matched the key events with the key words of GO term from 

Part 1, showed that many modules did not contain the expected key events. For example, the 

green module from the 8 days data consists mostly of genes and motif sites for TFs, like sp1 

(response to DNA damage, apoptosis, chromatin remodelling), which were not enriched with 

relevant GO terms of those cellular responses. As such, the automatic integration might need 

more specific names of key events or expansions on the types of key events to integrate massive 

numbers of GO terminology into the AOP. 

In comparison to the previous study (Song et al., 2020) which discovered many enriched GO 

terms and turned it into the AOP, less enriched GO was found in this study. The differences in 

outputs were most likely caused by the inputs to the enrichment test, in which the previous study 

used all genes, whereas this proposed workflow used WGCNA to split the genes into different 

clusters before being piped into the enrichment individually. The enriched GO term is hence 



module specific. The non-enriched GO terms in this study could simply just be ‘diluted’ because 

genes that possess the same functionality demonstrate a different expression pattern and are 

assigned into different modules. Therefore, to produce a result that is similar to the findings of 

Song et al. modules can be combined and turned into DEACGs, which is design-group specific for 

GO analysis in future studies, to reduce the effect of dilution. However, this method will neglect 

the advantages of module specific findings.  

Tables below show the parent term or child term of GO terms that linked to the key events were 

assessed manually to demonstrate the potential of modules in the proposed AOP. For example, 

‘lipid peroxidation’ was replaced with ‘lipid catabolic’ in the search, and child terms such as 

‘glycolipid catabolic’ and ‘sphingolipid catabolic process’ were frequently found in many modules. 

Another example for mitochondrial hyperpolarisation was replaced with ‘synaptic transmission’ 

and ‘voltage-gated potassium channel’ due to the role of hyperpolarization-activated cyclic 

nucleotide-gated cationic (HCN) channels, ATP gated potassium channel, and the establishment 

of synaptic transmission in the inner membrane of mitochondria during polarisation. These GO 

terms were predominantly not enriched in individual modules, but they were involved in the 

pathways or processes that contribute to the key events. Such a replacement is reasonable yet 

labour-intensive, the reproducibility of result was compromised, and the existence of parent or 

child terms sometimes do not guarantee the occurrence of key events. Since a key event should 

be stringently specific, it is therefore discouraged to do so. Table 13, Table 14, and Table 15, 

below, depict the hidden potential (#) of each module discovered based on the alternative terms 

used in the search: 

 

Table 13: Alternative keywords used in the search for Key events.  

Key events Alternative term (parent term /child term / other relevant)  

Oxidative DNA 
damage 

DNA damage 

Apoptosis Apoptotic process, apoptotic 

Follicular atresia Ovarian follicle cell, border follicle cell 

Mitochondrial 
hyperpolarisation 

synaptic transmission, potassium channel, voltage-gated 
potassium channel 

Oxidative 
phosphorylation 

oxidoreductase activity, alcohol dehydrogenase (NADP+) activity 

Mitochondrial ATP 
production 

Mitochondrial ATP synthesis, ATP generation from ADP, ATP 
biosynthesis, electron transport chain 

Lipid peroxidation Lipid catabolic 

Lipid storage Lipid localization 

Oogenesis Female gamete generation, ovarian follicle cell, gamete generation 

Fatty acid oxidation Fatty acid metabolic process 

 



Table 14: Integration of significant modules with potential key events for the 4 days-transcriptome data. Modules which consist 
of enriched GO terms in the key events are labelled in green whilst for the non-enriched GO term in the key events, they are 
given a ‘tick’ to represent the presence of the gene. Hashtag (#) indicates that alternative terms have been used in the search 
for key events. 

 
Key Events 

Integration of significant modules 
Blue Pink Red Turquoise Light 

cyan 
Yellow Brown Green Dark 

turquoise 
Cyan Black 

Oxidative DNA damage ✓ - # - # # ✓ # - ✓ # 
Apoptosis # - ✓ # - # ✓ ✓ # ✓ ✓ 

Follicular atresia - - - - - - - - - - - 
Mitochondrial 

hyperpolarisation 
# # # # - # # # - - # 

Oxidative 
phosphorylation 

# ✓ # ✓ - # # # # # # 

Mitochondrial ATP 
production 

# # # ✓ - # - - # # # 

Lipid peroxidation # # # # - # # # # # # 
Lipid storage # - # # - ✓ # # - # # 

Oogenesis - - ✓ - - # # - v - - 
Fatty acid oxidation # ✓ # # - # # # ✓ # ✓ 

 

Table 15: Integration of significant modules with potential key events for the 8 days-transcriptome data. Modules which consist 
of enriched GO terms in the key events are labelled in green whilst for the non-enriched GO term in the key events, they are 
given a ‘tick’ to represent the presence of the gene. Hashtag (#) indicates that alternative terms have been used in the search 
for key events. 

 
Key Events 

Integration of significant modules 

Black Blue Brown Dark 
green 

Green Green 
yellow 

Grey 
60 

Light 
cyan 

Light 
green 

Magenta Midnight 
blue 

Red 

Oxidative DNA damage ✓ ✓ ✓ - # # # # ✓ # - ✓ 
Apoptosis ✓ ✓ # # # ✓ # # - ✓ # # 

Follicular atresia - ✓ - - ✓ - - - - - - - 
Mitochondrial 

hyperpolarisation 
# # # - # - - - - - # # 

Oxidative 
phosphorylation 

✓ # # # # # - - # # # # 

Mitochondrial ATP 
production 

✓ - # - - - - - - # - - 

Lipid peroxidation # # # - # # - # # # # # 
Lipid storage # # ✓ - # # # - - # - # 

Oogenesis ✓ ✓ - - ✓ - - - - - - # 

Fatty acid oxidation ✓ ✓ ✓ - ✓ ✓ - - # ✓ ✓ # 

 



4.4 Summary toxicity pathways: Integrating the 

response of differential metabolites with 

differential transcriptomics pathways 
Despite no statistically significant metabolomics pathways and integrated transcriptomics-
metabolomics pathways being generated from Paintomics3, the output from KEGG, the 
Reactome pathway, and GO enrichment analysis, this study could still provide some useful 
insights using the expression of metabolites from the whole-body gamma radiation exposure of 
D. magna. A literature search on other model animals exposed to radiation was also performed 
to provide scientific evidence to elaborate the relationship between differential metabolites and 
the enriched transcriptomics pathways.  

Note that the biological interpretations in the integration of metabolomics and transcriptomics 
shows that significantly enriched pathways found from the integrated pathway enrichment 
analysis and functional enrichment analysis (using DEACGs) using studies beyond crustacean, for 
example, human and mammals. Unfortunately, there is far less research on the impact of ionizing 
radiation on crustaceans, than there is on humans and mammals. This may give rise to questions 
of relevance because different species may not share commonalities in response to radiation. 
Hence, the findings are suggestions and should be used as a reference, more thorough study 
should be performed in the future to confirm the biological interpretation.  

 

4.4.1 Low dose group 
Activation of anaerobic- and aerobic-glycolysis results in energy disturbance 

The unusual disturbance in energy homeostasis shows a significant depletion of DEMs such as 3-

hydroxybutyric acid (-0.88 fold, pval < 9.25E-05), verbascose (-0.5 fold, pval < 2.17E-07), glycerol-

2-phosphate (-0.17 fold, pval < 0.003), which are known as the alternate sources of energy 

commonly used in the state of ketosis, dehydration, or hypoxic environment. (Jorge and António, 

2018, Bartmann et al., 2018, Hasikova et al., 2020). On the other hand, there were large numbers 

of significantly upregulated genes from the enriched pathway, oxidative phosphorylation. A 

gradual reduction in glucose levels in low dose irradiated cells suggest that there was a 

graduation shift from oxidative phosphorylation to glycolysis possibly due to an increased energy 

demand. The decrease in aspartic acid (-0.35 fold pval < 0.007) is an example of glucogenic amino 

acid indicating that non-carbohydrates products are converted into pyruvate to provide glucose 

for catabolic reactions (Kreamer et al., 2001). This could jeopardise the TCA cycle and explain the 

accumulation of pyruvic acid because tumor cells can obtain energy from glycolysis and carry out 

anaerobic respiration, rather than relying on the TCA cycle (Figure 23). The elevation of pyruvate 

(Figure 25: TCA cycle) indicates downregulated or impaired mitochondria pyruvate carriers which 

failed to the transport of pyruvate from cytosol to the mitochondrial matrix for oxidative 



phosphorylation (Navas and Carnero, 2021). Thus glutaminolysis is presumably activated as an 

energy compensation strategy to support TCA when glycolytic carbon is not available (Yang et al., 

2014, Navas and Carnero, 2021). Cancer cells usually store large amounts of glutamate and are 

made readily to convert to glutamine to channel into the TCA cycle for permanent functioning. 

On top of that, the accumulation of pyruvic acid probably resulted from aerobic glycolysis which 

is preferred by highly proliferating tumor cells. However, such mechanisms have also been found 

in immune cells to fuel inflammatory responses (Soto‐Heredero et al., 2020). Pro-inflammatory 

cells such as macrophages and T-cells require large amounts of energy in very short periods of 

time. In the presence of oxygen, glucose was taken up by glycolysis to produce pyruvate, which 

was further fermented into NADH and 2 ATPs, instead of turning into lactate. Free energy from 

NADH was released through re-oxidation in the electron transport chain to create ~30 extra ATP 

molecules as one of the defense mechanisms in the immune system (Navas and Carnero, 2021). 

This also explains the up regulation of DEGs in oxidative phosphorylation (Figure 23) to support 

anaerobic glycolysis. The deposition of pyruvate in the presence of oxygen prevents the 

conversion into lactate.  

 

Figure 23: Top enriched pathways from Paintomics3: oxidative phosphorylation(left), TCA cycle(right). Map of the most 
significantly enriched pathway, blue shades represent down-regulated genes, red shades represent up-regulated genes, and the 
DEACGs are enclosed in a thicker border. 

 

Disruption of the energy balance and amino acid biosynthesis in one carbon 

metabolism  

The enrichment of the glutathione (GSH) synthesis pathway in carbon metabolism was reported 
to mediate the repair mechanism and particularly promote the survival of cancerous cells upon 
exposure to ionizing radiation, despite being an excellent defense against ROS build up and lipid 
peroxidation (Pujari et al., 2009, Estrela et al., 2006). Glutathione is made of amino acid glutamine, 
cysteine, and glycine. In this study, the key metabolites for GSH synthesis were differentially 
expressed. For instance, cysteine (-0.14 fold, pval < 0.001) was depleted, indicating a strong need, 
but glutamic acid (precursor of endogenous GSH), betaine (oxidative metabolites of choline 
which also participate in GSH metabolism), cystine (precursor of cysteine), pyroglutamic acid 



(known as 2-oxoproline, 0.24 fold, pval < 0.001), methionine (0.11 fold, pval < 0.06), and betaine 
(0.17 fold, pval < 0.0003) were elevated. This could probably be explained by the findings in 
mammalian cells which do not synthesise and store cysteine; plenty of methionine and cysteine 
were reported as required to maintain the normal synthesis of GSH. GSH is the most prevalent 
low-molecular weight thiol found to counteract ROS mediated production and protect cysteines 
from over-oxidation (Ulrich and Jakob, 2019). However, insufficient GSH due to a shortage of 
cysteine triggers ferroptosis. Despite no metabolite trace of GSH being found, the constituents 
suggest an increase in GSH synthesis is one of the early defenses induced by ionizing radiation 
(Pujari et al., 2009, Kim et al., 2003, Wang et al., 1997). However, the accumulation of GSH is also 
another major source of energy to replace glucose in rapidly dividing cells, and could also 
promote fatty acid beta oxidation (Aledo, 2004, Golla et al., 2017). Irregularity in methionine 
cycle from the one-carbon metabolism was reported contribute to tumor growth, necrosis and 
brain damage. In Figure 24, the overall up-regulation of most DEACGs (depletion of glucose and 
alternative macromolecules, elevation of the precursor of GSH, up-regulated enriched carbon 
metabolism, fatty acid metabolism, amino sugars, and nucleotide sugar metabolism 
corresponding to the de novo fatty acids biosynthesis), is the usual sign known for uncontrollable 
cell proliferation (Shuvalov et al., 2017).  



 

 

Figure 24: Enriched transcriptomics and metabolomics pathways from Paintomics3 output. A: Biosynthesis of amino acid. B: 
Valine, leucine and isoleucine degradation. C: glutathione metabolism. D: fatty acid biosynthesis. 

 

Resistance and damages 

In Figure 25, the activation of the immune system was identified as a TP by changes  in some 
metabolites: the elevation of histidine (0.6 fold, pval < 0.0002), precursor of histamine - an 
inflammatory agent in in immune system; tryptophan (0.2 fold, pval < 0.001), and riboflavin (0.3 
fold, pval < 6.39E-0.5). Their increase is known to suppress the free radical oxygen species. 
Allantoin (-0.5 fold, pval < 0.007), an antioxidant which is produced through purine metabolism, 

A 
B 

C D 



was depleted; gamma-Linolenic acid (0.32 fold, pval < 0.005) was accumulated to increase the 
chance of apoptosis in irradiated cells (Irani et al., 2018, Antal et al., 2015). 

On the other hand, the level of deoxy carnitine (0.16 fold, pval < 0.012), the precursor of carnitine 
which aids the conversion of ATP to ADP in mitochondrial oxidation, was elevated. Essential 
metabolites such xanthine (0.3 fold, pval < 0.001), and 2-Deoxy-D-ribose 5-phosphate (0.3 fold, 
pval < 8.32E-0.5) were elevated, which shows evidence of base deamination from DNA and RNA 
strands that can contribute to mutagenic lesions. This is likely the result of nucleic acid damage 
caused by autophagy or sclerosis (Golla et al., 2017, Chaurasia et al., 2016). 

 

Figure 25: The relationship between Glutathione (GSH) synthesis, Tricarboxylic acid cycle (TCA) and methionine metabolism as 
the critical alteration in carbon metabolism.  

 

4.4.2 High dose rate responsive group 
Metabolic reprogramming revealed an adaptation strategy on de novo synthesis 

and salvaging of purine and pyrimidine from endogenous mechanisms 

Similar findings in gluconeogenesis show a significant depletion in glucose (-0.4 fold, pval < 0.012), 
fructose (-0.08, p val < 0.003) along with verbascose (-0.5 fold, p < 5.4E-10). This suggests highly 
active glycolysis for expressed pathways like glycosphingolipid synthesis, and also nucleotide 
metabolism (Wang et al., 2009). However, the most representative DEMs in the high dose rate 
responsive group were structural components from nucleic acids. Significant depletions were 
found in nitrogenous bases sugar cytosine and uracil by at least 0.2fold (pval < 0.015), and in 
nucleosides such as cytidine, xanthosine by at least 0.07 fold (pval < 0.001) and nucleotides for 



example GMP (0.07, pval < 0.0001), UDP (0.4, pval < 0.013) as well as AMP which is also the most 
depleted metabolite (0.8 fold, pval < 0.01). Proliferating cells in high dose rates require a 
substantially larger amount of substrate for nucleotide production and energy to support the 
metabolism than those in the low dose rate group. 

Purine and pyrimidine synthesis starting from glycolysis and their salvaging processes are 
regulated by the phosphatidylinositol 3-kinase signaling (Akt/PI3K) pathway through controlling 
the amount of phosphoribosylpyrophosphate (PRPP) (Wang et al., 2009). The underlying 
mechanism includes vigorous glucose uptake and conversion of citrate to acetyl-CoA through ATP 
citrate lyase for synthesis of fatty acid. Extracellular purine molecules were discovered as the 
main receptor ligands of oncogenic cells and the purigenic signaling on the surface receptors was 
reported controlling the speed of metastasis. Depletion of glucose, AMP and GMP seems to 
correlate with the increase of uridine (0.58 fold, pval < 6.38E-07) and creation of large amounts 
of ATP. Previous studies have also reported both oxidative and non-oxidative sources are 
involved in building ribose-5-phosphate for purine synthesis (in abnormal conditions), in 
agreement with the elevation of ribose-5-phosphate by 0.17 fold (pval < 0.0005) (Wang et al., 
2009). ATP plays a crucial role in energy metabolism and acts as a neuro-signal for intercellular 
communication in CNS (Haydon, 2012). The unusual increase in GABA, by 0.4 fold (pval < 0.007), 
indicates more neurotransmitters released from the glia cells into the microenvironment made 
available for scavenging to meet the needs of neuroactivity (Haydon, 2012). On the other hand, 
pyrimidine metabolites such as thymidine, thymine, uracil (-0.27 fold, pval < 0.013), dCMP, 
cytosine (-0.21, pval < 0.015) , cytidine (-0.07, pval < 0.007), dUMP, and uridine (0.59 fold, pval < 
6.38E-07) secreted by non tumour entities (see Figure 25) have also been proposed as oncogenic 
metabolites (Siddiqui and Ceppi, 2020). The top metabolomic pathway, pyrimidines metabolism 
for pyrimidine synthesis and scavenging is hence likely to enhance radio-resistance. Since more 
than 80% of DEACGs in over-represented pathways showed up-regulatory expression, a great 
amount of ATP generated is likely to supply the underlying abnormal cellular activity like the 
cellular communication and metastasis. 

Another expressed pathway, TGF-β signaling, is known for its dual role for inhibiting cell growth 
in early carcinogenesis and being pro-oncogenic in tumor development and facilitating cell 
invasion in the late stage. Secretion of TGF-β stored in the extracellular matrix (ECM) is activated 
once the straining from injured fibrotic cells is detected (Hinz, 2015). Downstream metabolomics 
expression was therefore associated with the gene expression of the TGF-β pathway and 
extracellular matrix (ECM) receptor interaction. Activated TGF-β requires specific ECM escort 
proteins to bind to the receptor protein on the cell surface to promote cell signaling (Todorovic 
and Rifkin, 2012). The differential expression of both pathways likely indicates that the rapid 
proliferation of tumor cells creates vascular and inflammatory stress which leads to remodelling 
and unterminated ECM signals on healthy cells. Profibrotic ECM in the extracellular environment 
could also mislead the nearby healthy cells into fibrogenesis (Shimbori et al., 2013, G. Gritsenko 
et al., 2012).  

Under irradiated situations, signaling from TGF-β received by the receptor tyrosine kinase (RTK) 
will activate the PI3K/AKT signaling pathway (Zhang et al., 2013). PI3K signaling is involved in the 
regulation of glucose metabolism, cell growth, proliferation, protein translation and mediating 



cell cycles in G1 and the transition of G1 to S phase (DNA synthesis) (Wang et al., 2009). Activation 
of PI3K/AKT prevents the TGF-beta induced pro apoptotic response. The interplay of the two 
pathways enhances cancer survival and proliferation. On top of that, in both the linear and high 
dose rate responsive groups, another expressed pathway forkhead transcription factor pathway 
(FOXO) is reported to produce FOXO substrate to facilitate TGF-beta induced growth inhibition 
under normal circumstances. However, phosphorylation of FOXO from PI3K/AKT truncated the 
localization on the nuclear and contributes to the uncontrollable cell growth (Zhang et al., 2013). 
Furthermore, activated PI3K/AKT regulates the level of PRPP to synthesize and salvage purine 
and pyrimidine in the intercellular and extracellular environment (Wang et al., 2009, Fumagalli 
et al., 2017). All metabolites involved in the metabolism of purine and pyrimidine as shown in the 
Figure 26 were differentially regulated as the dose rates went from 1 to 100 mGy/h. Therefore, 
the activity of the PI3K/AKT pathway was correlated to the high signaling activity between the 
stimuli of the extracellular environment into the intracellular signaling network, which is 
coherent with the findings of GO analysis for the high dose rate group (Zhang et al., 2013). 

 

Figure 26: Schematic of purine and pyrimidine metabolism regulated by PI3K/Akt signaling. The level of 
phosphoribosylpyrophosphate (PRPP ) is the key substrate regulated by PI3K/Akt. 

Other metabolites, which pointed towards the morphological impacts include depletion of level 
of myo-Inositol (-0.2, pval <2.18E-0.6), have been associated with chronic hepatic disease and 
hypoxic encephalopathy; and the accumulation of the derivatives, myo-Inositol-1-phosphate 
which was reported found in the testes and brains of mammals, is involved in phospholipid 



biosynthesis and the controlling of the metabolic flux of inositol (Lackey et al., 2003, Pittner and 
Hoffmann-Ostenhof, 1976, Chhetri, 2019).  

Finally, the low dose rate group had 13 types of lysophospholipids (LysoPC, LysoPE, LysoPA…) 
that were significantly depleted after the radiation exposure, whilst 20 types were found in the 
high dose rate group. Lysophospholipids, reported as the by-product of radiation-induced lipid 
peroxidation in the process of ferroptosis (iron dependent cell death), were however decreased 
in this study indicating that resistance against ferroptosis was established through the elevation 
of oleic acid (0.12 fold, pval < 0.001) and GSH (Ubellacker et al., 2020). In fact, lysophospholipids 
contributed to cell growth and oleic acid secreted by the lymph was reported to protect against 
the metastasizing of cancerous cells. Lysophospholipids were excluded in pathway analysis due 
to no documentation being found in the KEGG compound database (Ye et al., 2020). 

 

4.4.3 Linear model group 
Fitting a linear model to the metabolic data resulted in differential metabolites (DMs) with very 
small log fold changes (-0.006 to 0.006) due to non-monotonic expression of the DMs. The top 
expressed transcriptomics pathways in the linear model group were very similar to the top 
pathways from the high-dose responsive group but with RNA metabolism (GO analysis), ribosome 
biogenesis (Reactome PA) and ribosome biogenesis in eukaryotes (KEGG) topping the overall 
pathways from different databases. Hence, the linear model provides a different perspective 
describing that the metabolism of RNA was conducted in a linear trend.  

miRNA promotes metastasis of the malignant cells with EMT 

miRNA is known for regulating the gene expression (mRNA) through mRNA cleavage and 
deadenylation (Eulalio et al., 2009).  Recently, miRNA was reported to act as a positive feedback 
regulator for TGF-beta/SMAD, by hindering the negative regulator protein, SMAD and PTEN 
(Zhang et al., 2013). Consequently, PI3K/AKT signaling was hyperactivated, leading to the 
metastatic transition of epithelial-to-mesenchymal (EMT). EMT occurred during embryonic 
development and tissue regeneration. Cancer EMT expressed in the form of hybrid cells (a mix 
between epithelial and mesenchymal) allow it to migrate collectively and invade more 
aggressively than other cancer cells (Jolly et al., 2015). As tumor tissues established enhanced 
stiffness through extracellular matrix remodelling (significantly over-represented pathway in this 
study), miRNA was also reported to be upregulated to control cell matrix interaction for the 
invasion of cancerous cells. For example, TGF-β-induced miRNA increased the integrin signaling 
and fortified the ECM for malignant mammary epithelial tissues (Taylor et al., 2013).  

Impaired ribosomal biosynthesis is a defense mechanism against the 

proliferation of oncogenic cells 

Apart from DNA repair and replication in the high dose rate group, the massive depletion of 
nucleotides metabolites in the linear model group can be linked to the massive production of 
ribosomes. Ribosomes are essential in carrying the free amino acids for protein translation. The 



pressure on nucleotide deficiency was greater in oncogenic cells leading to a higher demand for 
ribosomal biogenesis in tumorigenesis. Besides, ribosomal biogenesis was also reported to play 
a crucial role controlling the progression of cell cycle, cell division, cell growth and triggering of 
the EMT (Derenzini et al., 2017, Prakash et al., 2019). Recent studies have pointed out that 
impaired ribosome biogenesis acts as the first barrier against chromosomal DNA instability by 
triggering the activation of p53-mediated cell cycle checkpoints (Pelletier et al., 2020). Induced 
impaired ribosomal biogenesis can be achieved through lowering the level of guanine, and the 
effects can be enhanced with the gradual inhibition of inosine-5'-monophosphate 
dehydrogenase (IMPH) (Pelletier et al., 2020). IMPH can speed up the synthesis of GMP for 
nucleotide deficiency. The oxidation of IMPH produces xanthosine monophosphate (XMP) which 
can be converted to GMP (Huang et al., 2018). In the linear group, inosine-5-monophosphate 
(IMP) was slightly elevated and exclusive to the group. The increase of IMP indicates the 
reduction of IMPH produced and suggests an ongoing IMPH inhibition in the high dose rates 
responsive group. Hence, the significant depletion in xanthosine observed could lower the 
amount of XMP and amination of XMP to GMP (Figure 26). As such, the differential depletion of 
GMP and guanosine depicts a low amount of GTP available and exaggerates replicative stress in 
the nucleotide pool of oncogenes.  

 

4.5 Contributions and future prospect: Integrating 

multi-omics revealed an altered nature, prioritizing 

survivorship over reproduction 
The dose rates used in this study were set according to a previous study which examined the 
toxicity pathways of gamma radiation leading to a reduction in fecundity (Song et al., 2020). Dose 
rate as low as 1 mGy/h was known as the benchmark response to cause reproduction delay but 
a high dose rate of 100 mGy/h sped up the cycle of reproduction with a compromised brood size. 
An intermediate dose rate was reported to not contain significant changes from the output of 1 
mGy/h. 

4.5.1 The energy consumption of DNA repair enzymes and 

regaining homeostasis 
Differential metabolites from the low-dose group showed a significant expression when the dose 
rates proceeded from 0 to 1 mGy/h. High energy demands in this group suggest that the cellular 
system prioritised DNA lesion repair over reproduction for survival, since the delay in production 
is not associated with a decreased number of progenies. Combined with the output from 
functional enrichment analysis (Figure 15A), production of antioxidant enzymes, and the 
disruption of endogenous thiols (e.g., deficiency in GSH) slowed down the rate of cell division in 
normal cells also contributing to the delay. This study proposes that the detention in the cell cycle 



for phases such as G1, and S for DNA synthesis is due to inefficient energy distribution, a lack of 
nutrients and building blocks (Blakely et al., 1989). Future work focusing on examining the cell 
cycle analysis can provide novel insights on the genotoxicity of gamma radiation on D. magna. 

4.5.2 Perturbances from cell cycle arrest and the maintenance 

of genomic stability 
Surprisingly, the intermediate dose rate from 1 to 10 mGy/h however found obvious opposite 
trends to the low-dose group (see metabolites expression in Figure 25) and such intermediate 
changes were not observed from the differential metabolites of the high-dose group either. The 
observed changes revealed some sort of adaptation could probably be built up at the 
intermediate dose which required different levels of metabolites compared to the low dose 
group. Since there was no significant difference in the reproduction output from 1 mGy/h, after 
combining the expression profile of all module eigengenes and differential metabolites from the 
low dose rate group, this study proposes that the delay of reproduction at this stage was similar 
to the low dose group. This is most likely because the detention was due to investigation from 
various checkpoints within the cell cycle and the process of repair taking longer than in the lower 
dose group (Blakely et al., 1989). Surviving cell cycles at this stage are likely to be more sensitive 
to ROS damage in DNA and cause the same sort of delay to repopulate the germinal cells (De 
Felice et al., 2019).  Future integrated analysis with metabolomics should probably include an 
intermediate dose rate of 1 to 40 mGy/h as a separate dose responsive group of interest.  

4.5.3 Accelerated cellular metabolism 
As the dose rate reaches 100 mGy/h, the differential metabolites in the top differential pathways 
demonstrate more drastic changes than 40 to 100 mGy/h while the eigengene expressions 
showed more consistent changes from 1 to 100 mGy/h. Most of the metabolites which were 
differentially expressed in this group were not differentially expressed in the low dose group. The 
GO analysis on cellular components (See Figure 8: Cellular Components) for 8 days D. magna 
found GO terms such as female and male pronuclei, along with neuron and morphological 
development being enriched in the pathway enrichment analysis indicating the alteration of 
reproduction strategy from parthenogenesis into sexual reproduction when the environmental 
condition is not favorable (Hiruta and Tochinai, 2012, Hiruta and Tochinai, 2014). Male pronuclei 
is required to activate the female pronuclei from the resting stage. Mammal cells were highly 
radiosensitive at M phase in the cell cycle and were reported to be the most susceptible to 
radiation induced cell death (Onozato et al., 2017, Hafer et al., 2010). The reduction in brood size 
is likely caused by an induced permanent degeneration in nurse cells, either due to damage that 
is beyond repair, or a lack of raw entity supply due to alterations of the biological priority in 
survival. Notably, the significantly enriched Hippo signaling pathway, which controls the size of 
organs through apoptosis especially in stem and progenitor cells, is an evolutionary conserved 
signaling pathway found in Drosophila and mammals. While the inhibition of key genes (hpo and 
wts) were found to encourage tissue overgrowth and prevent apoptosis, these genes were up-
regulated in this study and probably explain the reduction in brood size (Snigdha et al., 2019). 



Besides, other studies also discovered that dysregulated hippo signaling contributes to 
unsuccessful mitotic exit and cell cycle defects, future study could focus on evaluating the impact 
of defective Hippo signaling on the follicle cells (de Sousa et al., 2018). 

Meanwhile, the acceleration in the reproductive cycle proposed is due to abnormal cell cycle 
progression. In the study on human and other mammalian tissues, rapidly dividing cells regulated 
by the cell cycle-dependent radioprotection capacity, established from the early radiation 
exposure, were reported to be very resistant to radiation induced apoptosis (Hafer et al., 2010). 
Previous studies in humans and yeast have concluded that the apoptotic resistance in highly 
dividing cells are stronger than slowly dividing cells whilst remaining protectable by antioxidants. 
Such protection was reported absent in cells from the stationary phase (Hafer et al., 2010). In 
agreement with the findings from this group, excess demands on sugar and amino acids can be 
presumed to fulfil the urge of cell cycle progression as a defence mechanism against apoptosis. 
As the response to stress stimuli and activation of DNA damage repair are modulated by the cell 
cycle, the survival strategy has thus prioritised cell proliferation over repairing genome 
abbreviations. The accelerated reproductive cycle is one of the observed phenotypic changes. 
While faster cell cycles can undoubtedly facilitate DNA damage repair, the study target or the 
progeny could possibly suffer from compromised health and shorter lifespans. 

The progression of cell cycle is highly relevant to the expression of DEGs, transcriptional 
regulation and binding of activators/ co-activators to TFs at motif sites and the level of differential 
metabolites. Future study should include monitoring of the cell cycle progression with AOP to 
explain the adverse effects of radiation.   

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 Summary 
The workflow in this chapter provides an efficient pipeline which successfully captures the 

temporal and dose dependent expression of genes and their association with the level of 

metabolites. The first part of this workflow talked about the detection of co-expression modules 

which are biologically meaningful and how they were formed into a regulatory network, based 

on the transcriptional regulation between modules. The aim was to determine if the 

transcriptional regulation from the 4 days of gamma radiation exposure can be used to predict 

the adverse outcomes of the 8 days of radiation exposure. Every module was represented by a 

node and the edges were formed when transcription factors (TF) and their motif sites were found 

within or between modules. The selection of potential modules was based on non-random 

association (overlap) between the modules from WGCNA and DEGs from DEseq2 through Fisher’s 

Exact test. The functionality of significant modules was verified with functional enrichment 

analysis and the functional annotations were also mapped into the proposed Adverse Outcome 

Pathways (AOP) of D. magna. The analysis also proved that the impact of gamma radiation from 

a shorter period of exposure cannot be used to predict the adverse outcomes at 8 days of 

radiation exposure due to dissimilarity in the module expression profiles and transcriptional 

regulation. There is a weakness due to the availability of motif databases which causes the 

exclusion of significant modules from the transcriptional regulatory network. Improvements in 

terms of computational algorithms has been discussed and relevant solutions in terms of 

integration with metabolomics has also been demonstrated in the second part of this workflow.  

The second part took advantage of significant modules generated from the previous chapter with 

an attempt to solve the problems and bias introduced by the exclusion of significant modules. 

The aim was to explore the differences of underlying mechanisms in inefficient reproduction due 

to varying chronic dose rates shown in the preliminary findings of a previous study. A supervised 

learning model was used to analyse the 195 metabolites from 70 samples. Using the same design 

model from the transcriptomics study: linear model and linear combinations (contrast), the 

design model groups for metabolomics were low dose rate responsive, high dose rate responsive, 

and linear model. Significant modules from the 8 days transcriptomics data were overlapped with 

DEGs that were modelled from the same design, significant modules from the same group were 

combined and the genes were termed differentially expressed and co-expressed genes (DEACGs). 

This combination took all the significant modules into consideration for the integrated analysis 

with metabolomics data. However, the comprehensiveness of the output was compromised due 

to the loss of data in mapping the identifiers from D. magna to D. melanogaster. Other issues 

such as insufficient metabolites identified has also lowered the power of the metabolomics data 

in the Fisher probability combined test, having contained no enriched metabolomics pathways. 

Therefore, some manual curation and literature research on the relationship of enriched 

pathways and key metabolites was performed. This workflow also performed other functionality 

enrichment analysis with different databases to provide a different perspective using DEACGs. 



The final output matched the previous reported findings and provided a new insight explaining 

the underlying mechanism for the observed reproductive differences induced by different 

gamma dose rates which has not been described in previous studies. Combining the information 

from metabolome and transcriptome data, new insights suggest that the alteration to the cell 

cycle contributes to the varying reduction of fecundity under the effect of different dose rates of 

radiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 Supplementary Data 

S1 Functional Enrichment – modules from 4 days data 
The top 20 enriched pathway (left) and GO terms (right) are arranged according to the order of 

significance on the y-axis. Gene ratio is the number of genes related to the pathways or GO 

term divided by the total number of pathways in the module. 

  

  





 

 



   

 

S2 TF gene expression profiles – 4days 

       

   

   



   

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 



S3 Functional Enrichment - modules from 8 days data 

  

  



 

 

 

 



 

 

  

  



  

  

S4 TF expression profiles – 8days 
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