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Abstract
This paper assesses the potentiality of certainty factor models (CF) for the best suitable

causative factors extraction for landslide susceptibility mapping in the Sado Island, Niigata

Prefecture, Japan. To test the applicability of CF, a landslide inventory map provided by

National Research Institute for Earth Science and Disaster Prevention (NIED) was split into

two subsets: (i) 70% of the landslides in the inventory to be used for building the CF based

model; (ii) 30% of the landslides to be used for the validation purpose. A spatial database

with fifteen landslide causative factors was then constructed by processing ALOS satellite

images, aerial photos, topographical and geological maps. CF model was then applied to

select the best subset from the fifteen factors. Using all fifteen factors and the best subset

factors, landslide susceptibility maps were produced using statistical index (SI) and logistic

regression (LR) models. The susceptibility maps were validated and compared using land-

slide locations in the validation data. The prediction performance of two susceptibility maps

was estimated using the Receiver Operating Characteristics (ROC). The result shows that

the area under the ROC curve (AUC) for the LR model (AUC = 0.817) is slightly higher than

those obtained from the SI model (AUC = 0.801). Further, it is noted that the SI and LR mod-

els using the best subset outperform the models using the fifteen original factors. Therefore,

we conclude that the optimized factor model using CF is more accurate in predicting land-

slide susceptibility and obtaining a more homogeneous classification map. Our findings

acknowledge that in the mountainous regions suffering from data scarcity, it is possible to

select key factors related to landslide occurrence based on the CF models in a GIS platform.

Hence, the development of a scenario for future planning of risk mitigation is achieved in an

efficient manner.
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Introduction
The Osado Mountain that runs through the Osado region, is a part of Sado Island, Niigata Pre-
fecture, and stretches approximately 20 km off the north-western coast of the Honshu Island in
the Sea of Japan. Over a long period of time, the stormy waves of the Japan Sea have produced
cliffs and bizarrely cut rocks all around the Osado coasts. Geologically, the region is known for
its history of gold and silver mining that started way back in the 8th century. Natural hazards
such as earthquakes or volcanic eruptions are rare compared to other islands of Japan, how-
ever, landslides have been common in the Osado mountain due to rugged topography and
high elevation up to 1172 m [1]. Due to the low population density on Sado Island, effects of
landslides on lives and properties are limited. The population of Sado Island has fallen from
125,597 in 1950, to 63,231 in 2011, representing more than a 45% decrease in the last 60 years
[2]. However, landslides can cause problems to natural ecosystems and road networks in the
Osado region. Therefore, it is necessary to assess the areas susceptible to landslides in order to
mitigate damages associated with them.

Landslide susceptibility maps (LSM) play a vital role in assisting and managing hazards for
land use planning and risk mitigation [3–6]. LSM provide information on the likelihood of
landslides occurring in an area given the local terrain conditions [7]. Using GIS, various meth-
ods for landslide susceptibility mapping have been proposed in the past. These methods can be
grouped into qualitative and quantitative, based on the properties they involve[8,9]. Qualitative
methods denote susceptibility levels in descriptive terms using expert knowledge [10]. Such
techniques are relatively subjective and were extensively used during 1970s and 1980s [11,12].
A main limitation of qualitative method is that the accuracy depends on the knowledge of the
experts who conducts the research. Quantitative methods, on other hand investigates the rela-
tionship between landslide and causative factor to predict the occurrence probabilities [13,14].
Compared to the former one, a more realistic susceptibility map can be obtained from statisti-
cal and numerical methods [3] since they reduce the subjectivity and biases in the process of
weighting landslide causative factors.

A wide range of quantitative methods have been successfully used for landslide susceptibil-
ity mapping by researchers around the globe [3,15,16]. The widely used methods are bivariate,
multivariate [3,17], and logistic regression (LR) [10], neuro-fuzzy [18,19], support vector
machines [19–21], and probabilistic models using Monte Carlo simulation with GIS [22,23].
The bivariate and multivariate statistical methods estimate landslide probabilities based on cor-
relation analysis between causative factors and historical landslide events, whereas the deter-
ministic methods assess slope failures using the factor of safety (FoS) [24,25]. In literature,
statistical index (SI) and LR are considered to be the most commonly used methods for the
assessment of probability of occurrence of landslides at medium and regional scales [26,27]. In
contrast, FoS is used widely for the landslide assessment at large scales [8,16,28]. The advantage
of LR over other multivariate analysis methods is that it is independent on data distribution
and can handle a variety of data sets such as continuous, categorical, and binary data [3,29].
However, if a set of irrelevant independent variables are included, the LR model may have little
to no predictive value. Owing to such constraints, prediction of landslide susceptibility requires
a distributed approach that identifies all the relevant independent aspects of models used. In
addition to that, successful landslide susceptibility mapping require optimal causative factors
as input to the LSMmodels. In landslide studies, causative factors are usually selected based on
the analysis of the landslide types and the characteristics of the study area [1]. Commonly used
causative factors are elevation, slope angle, slope aspect, plan curvature, and distance to drain-
age networks [15]. However, most scholars randomly and subjectively selected the causative
factors such as geological, geomorphological, hydrological and anthropogenic factors to
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produce the landslide susceptibility maps.Hence, selection of landslide causal factors and their
classes are key points in LSM studies [27,30]. Lee and Talib (2005) [31] noted that the selection
of positive factors can improve the prediction accuracy of the LSM. This indicates that the opti-
mized factors are significant to LSM. Thus, before building the susceptibility models, predictive
abilities of the initial selected factors should be quantified and factors with very low or null pre-
dictivity should be removed. This helps to reduce noise and uncertainties and thus the predic-
tion ability of the resulting models will improve [32]. For instance, Pradhan and Lee (2010)
[28] removed the causative factors with small weights and trimmed down the original factors
to smaller numbers viz four, seven and eleven. Their research concluded that seven factors
gave the best predicting accuracy. However, it is difficult to decide the threshold of weight to
select the causative factors. Lee and Talib (2005) [31] used factor analysis method to remove
the correlated variables, however it is a time-consuming process. Jebur et al. (2014) [33] fol-
lowed an optimization technique for detecting best landslide causative factors, but their meth-
ods require preparation of multiple factor sets which is again time consuming. Although
various other techniques have been proposed such as linear correlation [34], Goodman–Krus-
kal’s gamma [30], and GIS matrix combination [35], no standard guideline is available to date.
Here, we address this issue by proposing the Certainty Factor method that has rarely been used
for feature selection in landslide studies [36]. CF is an approach using rule-based expert sys-
tems to resolve certain problem classes. In the past, the search for the probabilistic interpreta-
tion of CF model has received considerable attention from the scholars [16,36–38]. In this
study, CF is applied for selecting the positive causative factors related to landslide occurrence.
Compared with the other methods, CF can be relatively easy to perform when having to inte-
grate different layers using the combination rule [16,36,38].

In Sado Island, the landslides are triggered mostly by rainfall and partly by snow melting
[1,15]. The dominant lithologic units in Sado Island are volcanic dacite and andesitic lava, with
rhyolitic intrusive at few locations (Geological Survey of Japan). Ayalew et al. (2005) [1]
reported a high frequency of landslide occurrences in the ridges of the Kosado Mountain, a
mountain range that runs parallel to the Osado Mountain. Geologically and topographically,
both mountain ranges are similar. Hazard maps are available for Kosado Mountain from
earlier researches that were prepared using semi-qualitative methods and pre-defined set of
causative factors [1]. The outline of the present research paper is shown in Fig 1: (i) Data prep-
aration and extraction of the landslide causative factors; (ii) Selection of the best subset of the
causative factors using the CF method; and (iii) Landslide susceptibility mapping using the SI
and LR method, (iv) Model validation and comparison.

Study Area and Spatial Data

2.1 Topographical and geological settings in the study area
The study area (Fig 2) is located in Sado Island, Niigata Prefecture, Japan, between longitudes
138°14'-138°32'E, and latitudes 37°57'-38°20'N. It covers an area of nearly 400 km2, mostly cov-
ered by vegetation. Vegetation in red color shown in the Fig 2 reflects high reflectance in the
Near-IR Advanced Land Observing Satellite (ALOS) images. The elevation varies from 0 to
1172 m a.s.l with a mean of 333 m a.s.l. The highest peak of the island is the Mt. Kimpoku in
the Osado Mountains. The geology is composed of Neogene marine volcanic sediments of
dacitic and andesitic composition, associated with pyroclastics and rhyolitic intrusives in green
tuffs. Some coastal slopes involve lately formed semi-consolidated and unconsolidated sand
deposits and gravel. This area is frequently prone to landslides and subjected to tectonic move-
ments that are evidenced by thrust up benches and active faults. The landslides in the study
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Fig 1. Flowchart shows overall methodology adopted for this study.

doi:10.1371/journal.pone.0133262.g001
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Fig 2. False color composite 3D view of the study area prepared from ALOS image.

doi:10.1371/journal.pone.0133262.g002
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area are mostly deep-seated landslides and occasionally shallow landslides, which are triggered
by rainfalls and snow-melt floods.

2.2 Landslide inventory
According to Guzzetti et al. (1999) [39], landslides which occurred in the past and present are
keys to predicting landslides happening in future. Hence, the first step in landslide susceptibil-
ity investigation is to compile the known landslide inventories. The details of the data used in
this study are itemized in Table 1. A total of 825 known landslides (Fig 3) was first obtained for
the model development; these landslides were interpreted by the landslide experts at the
National Research Institute for Earth Science and Disaster Prevention (NIED), Japan. NIED
has been producing landslide inventories since the year 2000 from the repeated acquisition of
multiple aerial photographs. The landslides are depicted as boundary polygons in GIS shape
file format and are available at NIED archives for the end users (http://lsweb1.ess.bosai.go.jp/
gis-data/index.html). The archived landslide inventory database were also used in the previous
researches to produce successful landslide hazard map in other study regions [40]. It is
observed from the landslide inventory map that most landslide areas are greater than 0.01 km2.
The minimum area observed is 0.0006 km2, whereas the largest landslide covers an area of
about 1.65 km2 (Fig 4). The total area of landslides are about 57 km2, and accounts for approxi-
mately 15% of the study area.

Different sampling strategies are available to construct the reliable landslide susceptibility
maps. Several previous researches preferred to use ‘points’ to represent the spatial location of
landslides [13,19]. Dai and Lee (2003) [41] delineated only the source areas during the land-
slide susceptibility assessments and excluded both the transport and the deposition zones of
existing landslides. Few other studies preferred to use the landslide area with depletion and
accumulation zones like “seed cells” to represent pre-failure conditions [40,42,43]. Seed cells
are the zones that are regarded to represent the undisturbed morphological condition [43].
Comparisons of these sampling strategies are however beyond the scope of this study. Here, we
adopted one of the most popular method, the polygon of landslide to represent the spatial loca-
tion [3,9]. For building the CF based LSM models, the landslide inventory was randomly parti-
tioned into two groups: a training dataset (70%, 578 landslides) and a validation dataset (30%,
247 landslides).

2.3 Landslide causative factors
Landslides occurrence are influenced by the interaction of topographic, hydrological and geo-
logical factors [16,30], therefore, the selection of the causative factors is considered to be a fun-
damental step in the susceptibility modeling. In this study, based on analysis of the landslide
inventory map and the underlying geo-morphometric conditions [10,44], a total of fifteen
landslide-causative factors (Fig 5) commonly found in literature were firstly derived. These fif-
teen factors were extracted from their respective spatial database (Table 1). The source data for
the landslide causative factors may vary in their scale and affect the accuracy of landslide sus-
ceptibility models [45]. To be commensurate with the diversity of the data source and differ-
ence in the scales, we converted all the factors to a raster format with a resolution of 10 m that
corresponds the DEM resolution.

2.3.1 Morphometric factors. The 10 m digital elevation model (DEM) obtained from the
Geospatial Information Authority of Japan (GSI) were used to derive elevation, slope angle,
slope aspect, total curvature, profile curvature, plan curvature, compound topographic index
(CTI) and stream power index (SPI) using ArcGIS 10.2 software. The detailed classes and maps
of these factors are shown in Fig 5.
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Table 1. List of data sources used in the study.

Spatial database Data GIS/RS data type Scale / Resolution Data source

Landslide inventory map Landslide Polygon coverage 1:50,000 NIED

Geological map Lithology Polygon coverage 1:200,000 GSJ

Faults Line coverage

Geological boundary Line coverage

Topographic maps Morphometric factors ARC/INFO Grid 10×10 m GSI

ALOS NDVI Raster 10×10 m JAXA

Aerial photographs Landslide direction Raster 0.25×0.25 m Midori Niigata and Sado City

doi:10.1371/journal.pone.0133262.t001

Fig 3. (a) Landslide inventory map for the study area randomly divided into two groups overlaid the shaded relief (10 m DEM): training dataset and validation
samples: (b) enlarged view of boxed area in (a) overlaid on 2005 aerial photographs provided by the Midori Niigata and Sado city acquired in 2005.

doi:10.1371/journal.pone.0133262.g003
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Elevation is widely used for the assessment of landslide susceptibility. The variation in eleva-
tion may be related to different environmental settings such as vegetation types and rainfall
[46]. Slope angle is typically considered to be one of the influential factor for landslide model-
ing because it controls the shear forces acting on hill slopes [29,47,48]. Slope aspect, that relates
to sunlight exposure and drying winds control the soil moisture were also considered an
important factor in landslide studies [17]. Total curvature is defined as the change in slope
along a small arc of the curve. The profile curvature is the curvature in the down slope direc-
tion, while the plan curvature is the curvature of the topographic contours. All of them were
found to influence the triggering of landslides [15]. Profile curvature influences the driving and
resisting stresses within a landslide in the direction of motion and controls the change of veloc-
ity of mass movement flowing down the slope, whereas the plan curvature controls the conver-
gence or divergence of landslide material and water in the direction of the landslide motion
[49]. CTI and SPI are hydrological factors that are frequently used for the assessment of land-
slides [33]. According to Beven and Kirkby (1979) [50] and Gessler et al. (1995) [51], CTI and

Fig 4. Histogram showing the distribution of landslide sizes.

doi:10.1371/journal.pone.0133262.g004
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SPI could be calculated as follows:

CTI ¼ ln ðAs=tanbÞ ð1Þ

SPI ¼ As � tanb ð2Þ
where As is the specific catchment area per unit channel width orthogonal to the flow direction
(m2/m) and β is the slope angle (degree).

2.3.2 Geology-related factors. Lithology is considered one of the most influential factors
in landslide susceptibility mapping because of its influence on the geo-mechanical characteris-
tics of a terrain [30]. In this study, the lithology and faults were derived from the geology map
at 1:200,000 scale obtained from the Geological Survey of Japan (GSJ). A total of ten lithological
units were constructed: metamorphic, plutonic and intrusives, sedimentary (mudstone), sedi-
mentary (sandstone), sedimentary (slate and sandstone), volcanic (andesite lava), volcanic
(basalt), volcanic (dacite lava), volcanic (dacite), and volcanic (rhyolite lava).

It is found that geologic boundaries often relates to the rock strength. A high density of geo-
logic boundary means lower stability and may lead to increase in landslide occurrences. There-
fore the distance to geological boundaries also considered as a factor in this study. The closer
the geological boundary, higher the probability for landslide occurrence [16]. All faults have
been regarded as a critical factor in triggering landslide in tectonically active areas [29]. Addi-
tionally, the strength of fracturing and shearing stresses crucially influence the slope instability.
Hence, distance to faults was also considered in this study to investigate the relationship
between lineaments and landslide occurrence.

2.3.3 Normalized difference vegetation index (NDVI). The vegetation cover and the
land use patterns often found to be of great influence in the landslide occurrences, because they
relate to the anthropogenic interference on hill slopes [28,52]. The Normalized difference vege-
tation index (NDVI), an index of vegetation fraction was generated from the available cloud
free ALOS (10 m resolution) satellite images which acquired on November 5th, 2006. NDVI is
an indicator that reflects the amount of green vegetation [53] and can be computed using the
following equation:

NDVI ¼ ðNIR � REDÞ=ðNIR þ REDÞ ð3Þ
where, NIR and RED represents the spectral reflectance of near infrared and red bands of the
electromagnetic spectrum, respectively. The values of NDVI vary from -1 to 1 and a higher
value implies a denser green vegetation whereas lower values indicate sparse vegetation. High
NDVI values are due to high concentration of chlorophyll that cause a relatively lower reflec-
tance in the red band implying high stacking of leaves. Conversely, low NDVI values indicates
less chlorophyll and less leaves [28].

Methodology

3.1. Feature selection using Certainty Factor
The certainty factor (CF) is a rule based expert system method developed by Shortliffe and
Buchanan (1975) [54] for the management of uncertainty in computational studies. CF pro-
vides probable favorability functions (FF) for integrating heterogeneous data [55] and can be

Fig 5. Landslide causative factors: a) elevation, b) slope angle, c) slope aspect, d) total curvature, e) profile curvature, f) plan curvature, g) CTI, h)
SPI, i) drainage density (m-1), (j) distance from drainage networks, k) lithology, l) density of geological boundaries, m) distance to geological
boundaries, n) distance to faults, and o) NDVI.

doi:10.1371/journal.pone.0133262.g005
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calculated using the following functions:

CF ¼

PPa � PPs

PPað1� PPsÞ
if PPa � PPs

PPa � PPs

PPsð1� PPaÞ
if PPa < PPs

ð4Þ

8>><
>>:

where PPa is the conditional probability of landslides in class a and PPs is the prior probability
of total number of landslides in the study area.

The CF values range between -1 and 1, and it indicates a measure of belief and disbelief
[37]. A positive value measures decreasing uncertainty whereas negative values imply an
increasing uncertainty of landslide occurrence. If CF value equals 0, no information on the cer-
tainty is indicated. Once the CF values for classes of the causative factors are obtained, these
factors are then incorporated pairwise using the combination rule [36] as follows:

Z ¼

CF1þ CF2�CF1CF2 CF1; CF2 � 0

CF1þ CF2þ CF1CF2 CF1; CF2 < 0

CF1þ CF2
1�minðjCF1j; jCF2jÞ CF1; CF2; opposite signs

ð5Þ

8>>><
>>>:

The pairwise combination is carried out until all the CF layers are brought together. The
causative factors are optimized by computing the Z values. If the Z values are positive, we
regard those factors have high relationship with landslide occurrence.

Based on the range of CF values, feature weights were obtained. The weights are estimated
as the sum of the ratio computed relative causative factors that provides a measurement of cer-
tainty in forecasting the landslides [36]. Based on the results, CF weights were then categorized
into six classes. The description of the six classes is shown in Table 2.

3.2. Statistical index
The statistical index method (SI) proposed by Van Westen et al. (1997) is based on the assess-
ment of correlation of the landslide inventory map and causative factors. In SI models, the
weight for each class of the landslide causative factors was firstly determined. Landslide suscep-
tibility indexes were then obtained by summing up the weights.

The weight (Wi) of each class i is defined as the natural logarithm of the landslide density in
the class over the landslide density in the factor map as follows[56]:

Wi ¼ ln
DensClass
DensMap

� �
¼ ln

NpixðSiÞ=NpixðNiÞP
NpixðSiÞ=PNpixðNiÞ

!
ð6Þ

0
@

whereWi is the weight given to a certain parameter class (e.g., lithology and slope aspect);

Table 2. CF weights classification according to the range of CF values.

Code Range Description

1 −1.0–−0.09 Extremely low certainty

2 −0.09–0.09 Uncertainty

3 0.09–0.2 Low certainty

4 0.2–0.5 Medium certainty

5 0.5–0.8 High certainty

6 0.8–1.0 Extremely high certainty

doi:10.1371/journal.pone.0133262.t002
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DensClass is the landslide density within the parameter class; DensMap is the landslide density
of the entire factor map for all classes; Npix(Si) is the number of landslide pixels in a certain
class; Npix(Ni) is the total number of pixels in all classes.

3.3. Binary Logistic regression
Binary logistic regression is one of the most frequently used multivariate analysis methods for
creating landslide susceptibility maps. The LR approach is useful for situations in which one
want to be able to predict the presence or absence of a characteristic outcome from a set of pre-
dictor variables [10,38]. The purpose of LR is thus to simulate the relationships between a
dependent variable and multiple independent parameters [29]. The merit of LR is that it does
not compulsorily require a normal distribution data. Additionally, both continuous and dis-
crete data types can be used as an input for the LR model.

The dependent variable (Y) in the LR method is a function of the probability and can be
computed as follows [57]:

PðY ¼ 1jxÞ ¼ expð
X

bxÞ
1þ expð

X
bxÞx ð7Þ

where P is the estimated probability of landslide occurrence and ranges from 0 to 1; Y is an
indicator variable, X is the independent variables (landslide causative factors), X = (x0, x1, x2,
. . . xn), x0 = 1; b is regression coefficient.

To linearize the mentioned method as well as remove the 0/1 boundaries for the original
dependent variable, the estimated P probability is transformed by the following formula:

P
0 ¼ lnð P

1� P
Þ ð8Þ

The alteration is referred to as the logit transformation. Theoretically, the logit transforma-
tion of binary data can ensure that the dependent variable is continuous and the logit transfor-
mation is boundless. Moreover, it can ensure that the probability surface will be continuous
within the range [0, 1]. Using the logit transformations, the standard linear regression models
can be obtained as follows:

P
0 ¼ lnð P

1� P
Þ ¼ b0 þ b1 x1 þ b2 x2 þ . . .þ bn xn þ ε ð9Þ

where, b0 is the constant or intercept of the formula, b1, b2, . . . bn represents the slope coeffi-
cients of the independent parameters, x1, x2, . . . xn in the logistic regression and ε is standard
error.

The LR model mainly involves five steps in generating the LSM models: 1) pre-selection of
parameters based on the analysis of the spatial distribution; 2) selection of statistically signifi-
cant parameters via a p-value significance test; 3) The LR model with these parameters has to
pass the significance test (via the goodness of fit by inputting a parameter or eliminating a
parameter); 4) evaluation of the multicollinearity among the parameters (diagnosis via two
indicators, namely, tolerance<0.1 and variance inflation factor>5); 5) assessment of the accu-
racy in the model.
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Results

4.1. The relationship between landslide occurrence and causative
factors
Fig 6 shows the results of frequency analysis that explore the relationship between the landslide
causative factors and landslide occurrence. It could be seen that the frequency of landslides is
less than 10 percent at the elevation less than 100 m due to the gentle terrain characteristics
(Fig 6A). At the intermediate elevation (100–300 m), the frequency of landslide occurrences is
tending to increase, as slopes may be prone to slide due to the cover by the thin colluvium
deposit. As expected, in the high elevation, the frequency increases. It is worth to point out that
for elevation greater than 600 m, the areal extent of land is low and therefore the frequency of
landslide occurrences is also lower. The correlation analysis between landslide occurrence and
slope angle is shown in Fig 6B. It could be observed that gentle slopes have a low landslide fre-
quency because of the lower shear stress at the slope angles 0–10° (Fig 6B). It is obvious that
the landslide frequency increases for slope angles 15–35°. Followed by this a decrease of land-
slide occurrences at> 45° slope category was observed.

It is believed that slope angle and aspect may affects the vegetation patterns in the region. It
may influence the soil strength and in some cases makes it susceptible to landslides. It is
observed that the landslide frequency in a north-direction slope is relatively low, and it
increases with the orientation angle, reaching the maximum on the south-direction slope, and
then decreases (Fig 6C). Fig 6D shows that landslides mostly occurred at 0–5 category for the
total curvature, while for the profile curvature landslides frequently occurred at the -2–0 cate-
gory followed by the 2–4 group (Fig 6F). For the plan curvature (Fig 6E), the landslides usually
occurred in the concave space because it increases the moisture content of the soil and leads to
slope failure. But in this study, most landslides occurred in the convex space. This is possibly
because the mountain ridges in Osado tend to collapse due to the local tectonics that causes
higher ground acceleration.

For the hydrological factors CTI and SPI, landslides mostly occurred at 0–3 and at 0–2
respectively (Fig 6G–6H). It is noted that increasing density in the drainage network causes
increasing occurrences of landslide frequencies. However, in this study landslides frequently
occurred at 1–3 m-1and then decreased (Fig 6I). For the distance to drainage networks, land-
slide frequency reached the maximum at 60–120 m followed by 120–200 m (Fig 6J). It is attrib-
uted to the fact that topography change caused by gully erosion might affect the initiation of
landslides.

As far as geological factors such as lithology, density of geological boundaries, distance to
geological boundary, and distance to faults (Fig 6K–6N) are considered, they affect the strength
and permeability that are associated with the slope failure. The results show that landslides
mostly occurred in the volcanic (dacite) and volcanic (andesite lava) lithology. With respect to
the density of geological boundaries, the landslide frequency mostly occurred at the 0–70 m-1,
followed by 170–270 m-1 because higher geo-tectonic activity causes instability (Fig 6L). For
the distance to a geological boundary, it is found that the weaker boundaries lead to instability.
The landslide frequency decreases with increasing distance and has maximum at the<100 m
(Fig 6M). Regarding the distance to faults, the results show that the majority of landslides falls
into the category of the biggest distance to faults (>400 m) in the Fig 6N. The reason may relate
to the parent material of the soil content and this class accounts for largest proportion of the
area.

For the vegetation factor, landslide frequency normally occurred in the lower NDVI value
(<0.05 and below) [58] because the roots of vegetation can retain the slope surface, especially
for the shallow landslides. Nevertheless, in the case of relationship between landslide frequency
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Fig 6. Correlations between landslide frequency and the causative factors.

doi:10.1371/journal.pone.0133262.g006
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and NDVI, the landslide mostly occurred in the high vegetation cover (NDVI> 0.25) because
the shallow roots of vegetation seldom influence large landslide occurrence.

4.2. Feature selection using CF
The results of the correlation analysis between the landslide occurrence and causative factors
are shown in Table 3. The result of CF analysis shows that the Z value is positive for slope angle
(0.05), slope aspect (0.03), drainage density (0.34), lithology (0.3), distance to geological bound-
ary (0.4) and distance to faults (0.35). It reveals that these six factors have positive relationships
with the landslide occurrence. The Z value is negative for the other factors. Therefore, these six
factors are selected to generate the landslide susceptibility mapping.

A detailed analysis shows that slope angle has the highest influence on the slope stability.
CF values are positive at slopes from 5° -30° (Table 3). The percentage of landslide occurrence
at the slope class 10° -15°, 15° -20°, and 25° -30° are 17.82%, 21.79%, and 15.4%, respectively.
The results indicate that the landslide occurrence increases with an increasing slope angle up to
20°, and then it decreases. The conclusion is in agreement with the landslide frequency in Fig
6C. In the case of slope aspect, landslides mostly occurred along east, southeast, and south fac-
ing slopes with positive CF values from 0.09 to 0.15. The highest percentage of landslides with
the maximum CF value (0.15), 15.9% occurred along the southern slopes, followed by the east
slopes (14.19%). The snow in the study area is normally blown out by the wind from the north-
west; therefore, southeast slopes accumulate snow that during the snow melting is causing
slides to occur. With respect to the drainage density, it shows positive values for the classes 2–3
and 3–5. The maximum positive CF value of 0.3 is with the 3–5 class. The highest percentage
of landslide occurrence is 40.48% at 2–3 class. In the case of lithology, the results show that six
lithology classes have positive CF values. The highest percentage of landslides in the lithology
class (volcanic-dacite) is 49.31% with a CF value of 0.22. It could be observed that> 50% of the
landslides occurred along the margins of dacite and dacite lava. These lavas once covered by
ocean may transform into pelitic rocks that further may change to materials rich in smectite
clay and become subject to sliding. The class “Distance to geological boundary” shows positive
values for classes>100 m in Table 3, however, the highest percentage of landslides occurred
for less than 100m. It indicates that the closer to geological boundary, the more occurrences of
landslides. The distance to faults shows a positive value for the classes, 0–100 m, 100–200 m,
and 200–300 m and then the CF values become negative over 300 m. The maximum CF value
is 0.25 at 0–100 m.

4.3. Landslide susceptibility mapping using SI method
The correlation between the landslide occurrence and causative factors using SI is represented
in Table 3. Two landslide susceptibility maps were generated: (i) using the six selected factors
(CF value> 0) and (ii) using originally selected fifteen factors. The results that indicate the spa-
tial probability of landslide occurrence is shown in Fig 7. Based on the natural breaks inherent
in the data, the susceptible level is eventually divided into six classes; i.e., extremely low, low,
moderate, high, very high and extremely high. Table 4 shows the boundary classes for two sus-
ceptibility maps. It can be noticed from the visual observation that there are much more red
color areas in Fig 7B, whereas there are more dark blue areas in Fig 7A. In the figures, black
lines denotes main scarp and the blue lines denotes dissected crown. Fig 8 shows that 90.18%
of the total number of landslides occurred in the 69.66% of the area classified as having high,
very high and extremely high susceptibility using the optimized six factors, while 73.41% of the
total number of landslides occurred in the 93.1% of the area classified as having high, very high
and extremely high susceptibility using the original fifteen factors.
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Table 3. Spatial relationship between the causative factors and landslide occurrence by the CFmethod and SI method.

Causative factors Class Percentage of
domain (%)

No. of
landslides

No. of landslide
pixel

CF Z SI

Elevation (m) <100 21.3266 38 8103 -0.6949 -0.4172 -1.5948

100–300 30.6789 220 62288 0.1969 0.0811

300–400 13.0918 97 31464 0.2232 0.2498

400–600 17.7436 120 50504 0.1475 0.4189

600–800 11.7973 74 29400 0.0797 0.286

>800 5.3619 29 5460 -0.0652 -0.609

Slope angle (°) 0–5 11.7719 18 6317 -0.683 0.0514 -1.247

5–10 9.0556 58 26860 0.2563 0.4627

10–15 8.9907 103 27721 0.5897 0.3197

15–20 10.3467 126 31045 0.6147 0.4742

20–25 11.9734 86 23115 0.3382 0.0332

25–30 13.3891 89 28873 0.2839 0.1439

30–35 13.9796 47 21260 -0.2997 -0.2053

35–45 18.0504 45 18667 -0.4818 -0.591

>45 2.4425 6 3361 -0.4895 -0.3054

Slope aspect North 5.7447 32 10672 -0.0368 0.0295 -0.0078

Northeast 12.6420 65 25359 -0.1119 0.069

East 12.8910 82 25931 0.0927 0.0718

Southeast 12.5850 80 24548 0.0921 0.044

South 13.4147 92 27897 0.1596 0.1051

Southwest 14.6818 74 23033 -0.1296 -0.0167

West 11.8353 59 20342 -0.1393 -0.0855

Northwest 10.6724 54 19635 -0.1262 -0.0175

Flat 5.5332 40 10802 0.2034 0.0419

Total curvature <-6 21.3266 5 3321 -0.96 -1 -2.4868

-6–-2 30.6789 50 23168 -0.721 -0.9079

-2–0 13.0918 183 64542 0.5952 0.9682

0–5 17.7436 334 93753 0.7033 1.0375

5–15 11.7973 6 2433 -0.9132 -2.2059

>15 5.3619 0 2 -1 -8.521

Profile curvature <-8 0.0254 0 7 -1 -1 -1.91678

-8–4 0.8660 3 1189 -0.4042 -0.3101

-4–2 5.8053 27 9310 -0.1976 -0.1547

-2–0 40.0014 275 76347 0.1616 0.0192

0–2 9.0359 42 11779 -0.1981 -0.362

2–4 36.7382 204 75185 -0.0398 0.089

4–8 5.8333 21 10719 -0.3806 -0.0186

>8 1.6943 6 2690 -0.3908 -0.1648

Plan curvature Concave 8.0198 34 15730 -0.2694 -0.2237 0.0465

Flat 36.2449 212 69796 0.012 0.0282

Convex 55.7353 332 101693 0.0301 -0.0258

(Continued)
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Table 3. (Continued)

Causative factors Class Percentage of
domain (%)

No. of
landslides

No. of landslide
pixel

CF Z SI

CTI <-2 14.4751 94 23738 0.1108 -1 -0.1338

-2–0 0.3435 0 480 -1 -0.2926

0–3 52.9836 270 94694 -0.1199 -0.0464

3–8 29.6776 210 62790 0.1859 0.1223

8–10 1.4678 2 3866 -0.7669 0.3414

>10 1.0525 2 1651 -0.6745 -0.1769

SPI <-9 3.4962 11 3023 -0.4593 -0.6077 -0.7725

-9–-5 11.0713 83 20789 0.2324 0.003

-5–0 26.5513 120 39004 -0.2206 -0.2425

0–2 42.3751 250 84561 0.0206 0.0638

2–4 12.5642 92 28670 0.2138 0.1979

4–12 3.9418 22 11172 -0.0349 0.4147

Drainage density (m-1) 0–1 10.3116 35 10261 -0.4164 0.3444 -0.6311

1–2 40.9824 221 70163 -0.068 -0.0885

2–3 37.9238 234 78979 0.0642 0.1074

3–5 10.7822 88 27907 0.2962 0.3248

Distance to drainage
networks (m)

0–60 25.4378 142 64448 -0.0347 -0.818 0.302

60–120 22.9935 208 49926 0.3664 0.1477

120–200 23.6065 148 39592 0.0792 -0.1105

200–250 11.1821 32 15262 -0.5086 -0.3165

250–350 12.8205 39 15250 -0.4774 -0.4541

>350 3.9595 9 2832 -0.6103 -0.9627

Lithology 1. Sedimentary (sandstone) 15.4136 27 8082 -0.7 0.2977 -1.273

2. Sedimentary (mudstone) 3.9514 11 1500 -0.522 -1.596

3. Plutonic and intrusives 2.2348 15 5005 0.1411 0.1789

4.Volcanic (basalt) 0.6317 6 1207 0.3974 0.02

5. Volcanic (rhyolite lava) 0.6294 3 281 -0.1773 -1.4338

6. Volcanic (dacite) 38.8175 285 95356 0.2161 0.2713

7.Volcanic (dacite lava) 5.7499 52 12766 0.3664 0.1702

8. Volcanic (andesite lava) 30.9204 162 60295 -0.0946 0.0407

9.Sedimentary (slate and
sandstone)

1.0510 7 1308 0.1343 -0.4084

10.Metamorphic 0.6002 10 1430 0.6629 0.241

Density of geological
boundaries (m-1)

0–70 30.2616 184 65069 0.0501 -0.0279 0.1385

70–170 21.9598 112 41448 -0.1192 0.0081

170–270 23.5557 138 48197 0.0136 0.0888

270–400 17.4113 105 23067 0.0422 -0.3458

>400 6.8116 39 9498 -0.0096 -0.2947

Distance to geological
boundary (m)

0–100 48.5691 255 74525 -0.0929 0.3989 -0.199

100–240 25.6755 154 54091 0.0369 0.118

240–400 13.7894 82 30935 0.0284 0.1809

400–700 9.7160 69 21069 0.1889 0.1469

>700 2.2500 18 6659 0.2816 0.0009

(Continued)
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According to Table 3, the slope angle class (15° -20°) with the highest SI value of 0.47 is
most susceptible, having the highest percentage of landslide occurrence 16.58%. The results
indicate that the landslide susceptibility gradually increases with increasing slope angle and
then it drops after 35°. This result is similar to that of CF.

Landslide susceptibility map shows that the areas along northeast, east, southeast and south
facing slopes are highly susceptible. The highest percentage of landslides with the maximum SI
value (0.1) is 14.9% along the southern slopes, followed by the 13.85% for the east facing slopes.
This also agree with the results obtained from CF.

With an increase in drainage density, the SI values are amplified suggesting that landslides
are more prone to occur at the classes of SI value 2–3 m-1and 3–5 m-1. The highest percentage
of landslide occurrence inside this class is 42.19%. This result is also in agreement with those
obtained from the CF analysis.

With respect to lithology, the results also display that six lithology classes (similar with CF)
have a high relationship with landslide occurrence. The highest percentage of landslides
among the lithology class (volcanic-dacite) is 50.93% with a maximum SI value of 0.27. It is
perceived that landslide occurrence along the margins of dacite and dacite lava are greater than
50%. The distance to geological boundary indicates that classes>100 m have a high probability
of landslide occurrence (Table 3). The highest percentage of landslides for the class, occurred
at less than 100 m and is 39.81%. The distance to faults exhibits negative SI values for the clas-
ses, 0–100 m, 100–200 m, and 200–300 m, and 300–400m and then the SI values become posi-
tive after 400 m.

4.4. Landslide susceptibility mapping using LR model
In this study, the forward stepwise logistic regression approach was used to incorporate predic-
tor variables with a main contribution to the presence of landslides, using the SPSS 20. In the
training dataset 578 landslides represented the presence of landslide points and were assigned
the value 1. In agreement with the equal proportions of landslide and non-landslide, the same
number of non-landslide points were randomly sampled from the landslide-free area and
assigned the value 0.

The result is shown in Table 5. It shows that all the causative factors have a P-value less than
0.1, indicating a statistical correlation between factors and the susceptibility of landslides at the
90% confidence level [29]. The interpretation of the logistic regression coefficient for each
causative factor shows that elevation, slope angle, slope aspect, total curvature, SPI, drainage
density, lithology, distance to drainage network, distance of geological boundary, and NDVI
have positive values (Table 5). Distance to drainage network has the highest value (1.7),

Table 3. (Continued)

Causative factors Class Percentage of
domain (%)

No. of
landslides

No. of landslide
pixel

CF Z SI

Distance to faults (m) 0–100 13.1941 101 23269 0.2485 0.3481 -0.0601

100–200 11.8204 81 20520 0.1588 -0.0759

200–300 10.6687 72 16936 0.1456 -0.1653

300–400 9.2542 52 14905 -0.0283 -0.1508

>400 55.0625 272 111638 -0.1473 0.0793

NDVI <0.05 24.4313 89 24965 -0.3749 -0.2216 -0.2082

0.05–0.25 37.6047 218 49489 0.003 0.0448

0.25–0.65 37.9640 271 51402 0.1945 0.0733

doi:10.1371/journal.pone.0133262.t003
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Fig 7. LSMmaps generated by the SI method using: a) six factors, and b) fifteen factors. The maps (c) and (d) are enlarged views of the LSMmaps (red
color boundary shown in (a) and (b)).

doi:10.1371/journal.pone.0133262.g007
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followed by slope angle (1.2). On the other hand, the excluded factors have a negative effect on
landslide occurrence.

Additionally, it is necessary to examine the effect of correlation because logistic regression is
sensitive to collinearity among the independent variables. The variance inflation factor (VIF)

Table 4. The classes used for susceptibility maps.

Susceptibility class SI method LR method

fifteen factors six factors fifteen factors six factors

Extremely low −12.31–-3.41 −3.83–−2.07 0.00–0.13 0.03–0.20

Low −3.41–-2.17 −2.07–−1.20 0.13–0.32 0.20–0.38

Moderate −2.17–-0.94 −1.20–−0.57 0.32–0.51 0.38–0.51

High −0.94–0.23 −0.57–−0.04 0.51–0.67 0.51–0.64

Very high 0.23–1.33 −0.04–0.44 0.67–0.81 0.64–0.75

Extremly high 1.33–4.26 0.44–1.85 0.81–0.98 0.75–0.91

doi:10.1371/journal.pone.0133262.t004

Fig 8. Comparison of landslide susceptibility class obtained from the SI model.

doi:10.1371/journal.pone.0133262.g008
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and tolerance (TOL) are widely used indexes of the degree of multi-collinearity. A VIF value
greater than or equal to 5 and a TOL value less than 0.2 indicates a serious multi-collinearity
problem [59]. In this study, both of these indexes were calculated (Table 5), the maximum VIF
and minimum TOL were 1.028 and 0.973, respectively. Therefore, there is no multi-collinearity
between these variables in the study.

Lastly, the regression coefficients of the predictors were imported to generate the landslide
susceptibility map (Fig 9) in GIS by using the Eqs (7) and (9). The two maps of classes are also
both applied the natural break classification to divide the boundaries of each class (Table 4).
Fig 10 shows that 91.39% of the total landslides took place in the 72.96% of the area classified
as high, very high and extremely high using the optimized six factors, while 68.23% of the total
landslides occurred in the 90.79% of the high, very high and extremely high area using the orig-
inal fifteen factors.

4.5. Accuracy assessment of susceptibility maps
LSM results can be validated using the known landslide locations. Accuracy assessment was
performed by comparing the existing landslide spatial distribution data, that was not included
in the data used to create the LSM maps. The area under curve (AUC) is a useful indicator to
validate the prediction performance of the model. An area of 1 in the AUC represents a perfect
test; an area of 0.5 represents a worthless test. In this study, both the training (70% of 825 land-
slide polygons) and validation (the rest 30% of 825 landslide polygons) datasets were selected
to assess the models. The training data was used for the LSM success rate and the validation
data for the prediction rate. To obtain both values, the landslide susceptibility index (LSI) val-
ues of all cells were sorted in descending order. Then the ordered grid values of the LSI were
categorized into 100 classes with 1% cumulative intervals, for which the cumulative percentage
of landslide occurrence in the classes was calculated to get the AUC.

Table 5. Coefficients, statistics of the factors (S.E.-standard error, VIF- variance inflation factor) and the multi-collinearity diagnosis indexes for
variables used in the logistic regression equation.

Causative factors Coefficient (B) S.E. P-value Exp (B) Collinearity Statistics

Tolerance VIF

Elevation 0.956 0.133 0 2.601 1 1

Slope angle 1.209 0.193 0 3.350 0.977 1.023

Slope aspect 0.283 1.574 0.085 1.327 1 1

Total curvature 0.308 0.121 0.011 1.361 1 1

Profile curvature -0.756 1.695 0.065 0.470 0.994 1.006

Plan curvature -1.186 3.666 0.074 0.305 0.997 1.003

CTI -0.23 0.985 0.081 0.795 0.987 1.013

SPI 0.699 0.491 0.015 2.012 0.995 1.005

Drainage density 0.123 0.429 0.077 1.131 0.999 1.001

Distance to drainage networks 1.706 0.329 0 5.507 0.997 1.003

Lithology 0.879 1.564 0.023 2.408 0.994 1.006

Density of geological boundaries -0.045 0.538 0.093 0.956 0.999 1.001

Distance of geological boundaries 0.853 0.571 0.013 2.347 0.973 1.028

Distance to faults -0.441 0.888 0.061 0.643 0.988 1.012

NDVI 0.283 0.839 0.073 1.327 0.992 1.008

Constant 0.791 0.121 0.000 2.206

doi:10.1371/journal.pone.0133262.t005
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From Fig 11, it can be seen that for the SI method the AUC value of the success rate curve
(80.1%) using six factors is higher than for the model using all fifteen factors (73.4%). For the

Fig 9. LSMmaps generated by the LRmodel using: a) six factors, and b) fifteen factors. The maps (c) and (d) are enlarged views of the LSMmaps (red
color boundary shown in (a) and (b)).

doi:10.1371/journal.pone.0133262.g009
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prediction rate curve, the results have a similar trend as the success rate curve. In the LR
model, the AUC value of the success rate curve (81.7%) using six factors is higher than that of
(73.2%) using all fifteen factors as shown in Fig 12. At the same time, the prediction rate has
similar results as the success rate. Hence, it is observed that using the six factors give higher
accuracy than that of using all the fifteen factors. Additionally, compared with the SI method,
LR has a slightly higher accuracy in both success rate and predication rate.

Discussion
The results presented here deals with two main topics: (i) a procedure to select the best land-
slide causative factors, and (ii) mapping landslide susceptibility in the Osado region based on
the selected causative factors using statistical index and logistic regression.

A prior knowledge of appropriate causative factors related to landslide events is required to
map landslide susceptibility [39]. Several studies [30,60] in the past have shown that a manual
selection of the causative factors by a subject specialist was considered the best approach, but it
is rather subjective. Indeed, so far there is no general criteria or guidelines available on how to

Fig 10. Comparison of landslide susceptibility class obtained from the LRmodel.

doi:10.1371/journal.pone.0133262.g010
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identify and select the number of landslide causative factors. Due to this fact, numerous schol-
ars have used a varied number of different causative factors to produce the landslide hazard
map. In literatures, it is found that sometimes 20–60 factors have been used for building

Fig 11. Area under curve (AUC) represents: a) success rate, and b) prediction rate using SI method.

doi:10.1371/journal.pone.0133262.g011

Fig 12. Area under curve (AUC) represents: a) success rate, and b) prediction rate using LRmodel.

doi:10.1371/journal.pone.0133262.g012
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discriminant susceptibility models [39]. Nevertheless, most frequently 10–15 factors were used
based on availability and accessibility of information [60]. Hence, it is possible to narrow down
the factors based on the knowledge of triggering mechanism involved. For instance, in earth-
quake-induced landslides, the triggering factors associated are no way related to precipitation
and their varieties, but are linked to ground acceleration and intensity. In such case, it is a com-
mon understanding that one can easily omit those unnecessary factors in the analysis. How-
ever, when the triggering mechanism is unknown, where the landslide inventory database were
created from multiple imageries in different period of time, the screening out process requires
statistical or computational models. Lee et al (2008) [60], on computing the standardized dif-
ference of causative factors, screened six factors out of 14 for landslide susceptibility mapping
in the parts of Taiwan. Although this method includes less computation, it requires to catego-
rize the data into landslide and non-landslide groups which is rather tedious. Similar statistical
equations based on correlation or association indexes limit the predictive performances on
multivariate models. On the other hand, Costanzo et al. (2012) [30] identified the factors based
on the ranks associated with the factor’s expected contribution to the predictive skill of a multi-
variable model. Approaches adopting discriminant analysis and logistic regression on the for-
ward selection of variables, however fail when most of the variables are statistically significant.
For the same reason, this study did not consider the stepwise LR model because we found most
of the variables are significant in the statistical tests (P< 0.1, Table 5). As indicated in the
results, none of the factors were screened with the stepwise LR model. Furthermore, stepwise
LR model in landslide susceptibility assessment requires both landslide and non-landslide pix-
els in the calculation. The proposed model using CF eliminated these limitations because it
used only landslide pixels in the computation, and hence is very fast. Prior definition of hazard
classes is not required in CF approach and it also supplies advantage of rendering the definition
of susceptible classes transparent. Moreover, the proposed model is a relatively straightforward
method that allows the causative factors to be ranked according to their certainty values in the
range between -1 to 1. It is assumed that positive CF values have a strong influence on the land-
slide occurrence, and vice versa. As shown in the result, and the criterion discussed in the sec-
tion 3.1, six causative factors were finally identified and they were ranked from 1 to 6 based on
their CF values; where 1 indicates “low certainty” and 6 indicates “high certainty”. We believe,
CF based factor screening process for the identification of the most determinant factors is an
important step in the landslide hazard mapping.

The identified six landslide causative factors (slope angle, aspect, drainage density, lithology,
and distance to geological boundary and distance to faults), all have high correlation with land-
slide occurrence. Moreover, the results were also validated by the success rate and predication
rate. It is found that the LSM produced from the six factors always have higher accuracy than
that of the original fifteen factors in both the statistical index and logistic regression models.
The results demonstrated that a larger number of causative factors does not necessarily obtain
a better landslide predictability map. This is probably either because of the data redundancy or
spatial self-correlation with the study area. For instance, one of the causative factors, NDVI has
no significant effect on the landslide occurrence in this study, as most of the landslides were
large. Relatively short roots of the vegetation cover do not considerably influence large land-
slides and should be obvious to our understandings. In addition, geology and faults may have a
positive influence on triggering deep-seated landslides. As demonstrated in section 4.1, land-
slide activity is mostly concentrated in the lithologies dominated by volcanic dacites, and volca-
nic andesites, followed by volcanic dacite lava and sandstone. Volcanic dacite and andesite are
characterized by a high silica and alumina content and low in potash, they generally have rela-
tively low shear strength and are strongly fractured, resulting in most concentrated landsliding
in these rocks. Furthermore, slopes consisting of these lithologies are relatively more steep and
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susceptible to failure (Fig 5K). Some authors [29,38] invoked faults as the triggering cause of
many deep-seated landslides. Ayalew et al. (2005) reported presence of active faults in Sado
Island that could potentially trigger landslides. This is in agreement with our results as con-
firmed from the CF analysis.

Although the method proposed in this study has not been tested at other sites, there are
indications, which suggests its applicability to other landslide prone regions. Firstly, notwith-
standing the fact that CF methods have seldom been used in identifying causative factors in
landslide susceptibility mapping, they are used worldwide for managing uncertainty in rule-
based systems. Because of their favorability functions to handle different data layers and the
heterogeneity and uncertainty of the data, CF models are largely appreciated in slope stability
studies [18,29,36,38]. Further, the causative factors used for successful preparation of landslide
susceptibility mapping in Kosado region by Ayalew et al. (2005), is similar with the results
obtained from this model. Although we selected fifteen factors initially, CF identified the major
6. In addition, the results obtained from both the training and testing data sets yield high
accuracy.

Conclusions
Landslide susceptibility mapping is essential to describe the propensity of a landslide in a sus-
ceptible area. This study demonstrates the usefulness of the certainty factor model in identify-
ing the best fitted causative factors for landslide susceptibility mapping. Based on the CF
model, six influencing factors with high correlation to landslide occurrence were selected from
a set of fifteen factors. The LSM maps were then produced by applying both the SI and LR
methods for the CF identified causative factors and the original set of factors. Both the success
rate and prediction rate indicated for both the SI and LR methods that the six factors achieve
better results than that of all fifteen factors. In addition, we noticed that the maps prepared
from using six causative factors have much more homogeneous classes than the fifteen factors.
Also, it is noted that the LR has slightly higher prediction performance (81.7%) than SI
(80.1%). The proposed method provides a compact way to select the controlling factors of
landslides in particular where data redundancy or scarcity is critical.

Finally, the results of such studies can provide helpful information for the disaster manag-
ers, for urban planners, and decision makers in the landslide-prone area. These maps can be
helpful for them to select the suitable spatial locations to implement reconstruction strategies.
They can use produced maps to avoid development in landslide threatened areas; the practice
will represent the most efficient and economic way to decrease future damages and loss of lives
in the local region.
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