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Abstract 24 

The goal of this study was to assess the feasibility of across-country genomic predictions 25 

in Norwegian White Sheep (NWS) and New Zealand Composite (NZC) sheep populations with 26 

similar development history. Different training populations were evaluated (i.e., including only 27 

NWS or NZC, or combining both populations). Predictions were performed using the actual 28 

phenotypes (normalized) and the single-step GBLUP via Bayesian inference. Genotyped NWS 29 

animals born in 2016 (N = 267) were used to assess the accuracy and bias of genomic estimated 30 

breeding values (GEBVs) predicted for birth weight (BW), weaning weight (WW), carcass weight 31 

(CW), EUROP carcass classification (EUC), and EUROP fat grading (EUF). The accuracy and 32 

bias of GEBVs differed across traits and training population used. For instance, the GEBV 33 

accuracies ranged from 0.13 (BW) to 0.44 (EUC) for GEBVs predicted including only NWS, from 34 

0.06 (BW) to 0.15 (CW) when including only NZC, and from 0.10 (BW) to 0.41 (EUC) when 35 

including both NWS and NZC animals in the training population. The regression coefficients used 36 

to assess the spread of GEBVs (bias) ranged from 0.26 (BW) to 0.64 (EUF) for only NWS, 0.10 37 

(EUC) to 0.52 (CW) for only NZC, and from 0.42 (WW) to 2.23 (EUC) for both NWS and NZC 38 

in the training population. Our findings suggest that across-country genomic predictions based on 39 

ssGBLUP might be possible for NWS and NZC, especially for novel traits.  40 

 41 

Keywords: carcass, GBLUP, breeding value, Norwegian White sheep, single-step, weight 42 

 43 

Introduction 44 

In various livestock species, the number of genotyped animals has exponentially increased 45 

over the past few years (Koivula, Strandén, Aamand, & Mäntysaari, 2018; Misztal & Legarra, 46 
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2017). However, for some specific populations the number of genotyped animals is still limited, 47 

which can compromise the current success of genomic predictions (VanRaden et al., 2009). 48 

Furthermore, in the case of sheep, there is a much larger number of commonly-raised breeds, with 49 

larger effective population sizes compared to the main livestock species, i.e. dairy cattle, beef 50 

cattle, pigs, and poultry (Brito et al., 2017a; Kijas et al., 2012). For instance, only recently have 51 

producers started to genotype animals from the Norwegian White Sheep (NWS) breed, which has 52 

limited the availability of genotypes from this population. Increasing the size of the training 53 

population by including genetically similar animals with both genotype and phenotype is expected 54 

to increase the prediction accuracy of genomic breeding values (GEBVs; Daetwyler, Villanueva, 55 

& Woolliams, 2008; Oliveira et al., 2019a; Uemoto, Osawa, & Saburi, 2017).  56 

In general, NWS lambs are produced similarly to lambs in New Zealand, i.e., dual purpose 57 

(meat and wool) composite sheep, where about 10-20% of lambs born are derived from terminal 58 

crosses. Moreover, the breeding objectives and evaluation methodology used in both countries 59 

have converged over the years, as both economic returns are primarily derived from lamb meat 60 

production and similar consumers preferences. Details regarding the current indices used in New 61 

Zealand are available at https://www.sil.co.nz/technical/technical-notes, and underlying bio-62 

economic modelling methodology has been outlined most recently by Bryne et al. (2012). In 63 

contrast, trait weighting in Norway is currently based on desired gains after surveying farmers 64 

preferences (e.g., https://www.saueavl.nsg.no/vaer_list.cfm), although previously a bio-economic 65 

model has been used (Eikje et al. 2008).  66 

As expected, in Norway early growth and increased carcass weight have a strong emphasis 67 

both via direct and maternal pathways. Moreover, there is also a weighting against carcass fat and 68 

for lean content. Historically, Norway and New Zealand had strong emphasis on number of lambs 69 



 4 

born, but in recent years this has decreased as reproduction rates have risen. Similarly, the 70 

emphasis on wool type and weight is now negligible. Selection index weighting differences 71 

include a stronger emphasis in New Zealand on lamb survival, improved disease resistance, and 72 

penalties for increased adult live weight. Additionally, it is worth to mention that sheep in Norway 73 

are grazed extensively on unimproved pasture during the summer for around 100 days, indoors on 74 

conserved pasture consisting of timothy for about 200 days during the winter, and on improved 75 

pasture during spring and fall, while New Zealand sheep are grazed and lambed primarily on 76 

improved ryegrass white clover pasture all year long.  77 

Regardless of the breeding objectives and production system used in Norway and New 78 

Zealand, a recent study showed that there are relatively high genetic similarities between NWS 79 

and several New Zealand composite (NZC) sheep populations, because they had similar 80 

development history as a consequence of overlapping founder breeds (Oliveira et al., 2020). 81 

Therefore, the authors suggested that a collaborative initiative among Norway and New Zealand 82 

could be a feasible alternative to increase the accuracy of genomic predictions for traits recorded 83 

in both countries, as well as to allow the prediction of GEBVs for traits recorded in only one of 84 

the countries (or populations). However, no previous attempts have been performed to test this 85 

hypothesis.  86 

The successful use of a training population composed by various populations strongly 87 

depends on the statistical methods used to combine all the information. Studies have shown that 88 

simultaneously combining phenotypic records, pedigree, and genomic information in the single-89 

step Genomic Best Linear Unbiased Prediction approach (ssGBLUP; Aguilar et al., 2010; 90 

Christensen & Lund, 2010; Misztal, Legarra, & Aguilar, 2009) can lead to more accurate and less 91 

biased GEBVs, even when combining different breeds or populations in the training population 92 
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(Carillier, Larroque, & Robert-Granié, 2014). However, when comparing two methods to perform 93 

genomic predictions in dairy cattle, Hayes et al. (2009) concluded that combining different breeds 94 

in the same training population was not as effective as the within-breed analyses, even though the 95 

GEBVs were more accurate than the traditional parent average (PA). In this context, the main 96 

objective of this study was to compare the performance of different approaches to perform genomic 97 

predictions for five traits from NWS (i.e., birth, weaning, and carcass weights, EUROP carcass 98 

classification, and EUROP fat grading), using the ssGBLUP and a high-density SNP panel (~ 99 

606K SNPs). The approaches tested were: 1) including only NWS in the training population; 2) 100 

including NWS and the more genetically similar NZC sheep populations as reported by Oliveira 101 

et al. (2020; i.e., Primera, Lamb Supreme, and “Other Dual-purpose”) in the training population; 102 

and 3) including only the mentioned NZC sheep populations in the training population. 103 

Additionally, when combining NWS and different NZC sheep populations in the training, the 104 

different populations were analyzed under a single-breed approach, and under a multiple-breed 105 

approach considering NWS and NZC as different populations.  106 

 107 

Material and methods 108 

The data used in this study are from the traditional routine genetic evaluations for breeding 109 

flocks performed in Norway by the Norwegian Association of Sheep and Goat Breeders (NSG; 110 

Ås, Norway), and in New Zealand by individual breeders as part of the FarmIQ project 111 

(AgResearch; Mosgiel, New Zealand). Therefore, no Animal Care Committee approval was 112 

necessary for the purposes of this study. 113 

 114 

Phenotypic data 115 
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  The phenotypic data included information from 2002 to 2019 for Norway, and from 1990 116 

to 2015 for New Zealand. Norwegian animals were from the NWS breed, and NZC animals were 117 

from three different NZC sheep populations: Primera, Lamb Supreme, and “Other Dual-purpose”. 118 

Genetic similarities among NWS and these NZC sheep populations are shown in Oliveira et al. 119 

(2020).  120 

As the phenotypic recording systems in both countries are independent, different traits 121 

(and/or data collection methods) were used. The traits available for Norway were: birth weight 122 

(BWNO; kg), weaning weight (WWNO; kg), carcass weight (CWNO; kg), EUROP carcass 123 

classification (EUCNO), and EUROP fat grading (EUFNO). The traits available from New Zealand 124 

were: birth weight (BWNZ; kg), weaning weight (WWNZ; kg), carcass weight (CWNZ; kg), cold 125 

carcass weight (CCWNZ; kg), x-ray estimated carcass weight (XCWNZ; kg), ultrasound eye-muscle 126 

depth (EMDNZ; mm), butt circumference (BUTNZ; cm), carcass fatness at the GR site (FGRNZ; 127 

mm), and ultrasound fat depth (FDMNZ; mm). Details about these traits and data recording 128 

processes performed in Norway and New Zealand can be found in Eikje, Ådnøy, & Klemetsdal 129 

(2008) and Brito et al. (2017b), respectively.  130 

 Phenotypic quality control was performed independently for each trait/country. Phenotypes 131 

were discarded if they were lower or higher than the mean ± 3.0 standard deviations (SD) within 132 

contemporary group. Contemporary groups were defined by the combination of country, flock, 133 

year, sex, and litter size. In addition, it was required that each contemporary group contained at 134 

least five animals, and that all animals with phenotypic data had age recorded. Descriptive statistics 135 

for each trait, after the quality control, are shown in Table 1. Average (SD) age of animals at the 136 

weaning and slaughter date were 137.45 (13.43) and 156.50 (20.18) days in Norway; and 88.76 137 

(14.38) and 158.10 (27.54) days in New Zealand, respectively.  138 
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 139 

Test of homogeneity. In order to assure the homogeneity of traits for the genomic 140 

predictions (i.e., to confirm that the same traits were measured in both countries), a bootstrapping 141 

method (with replacement) was used to test for significance. In this context, 1,000 independent 142 

samples of 50 animals (with records) were used in a two-tailed F-test (Snedecor & Cochran, 1989) 143 

to evaluate the homogeneity of variances among residuals from the NWS and NZC populations. 144 

Residuals were estimated after adjusting for the systematic (i.e., fixed) effects in the model, i.e., 145 

flock, year, sex, litter size, and age. In addition, an independent t-test (Snedecor & Cochran, 1989) 146 

was used to statistically determine differences among trait means in the two populations. The t-147 

test performed considered either equal or unequal variances, depending on the results of the F-test 148 

for each trait comparison. The pair of traits compared were: 1) BWNO and BWNZ; 2) WWNO and 149 

WWNZ; 3) CWNO and CWNZ; 4) CWNO and CCWNZ; 5) CWNO and XCWNZ; 6) EUCNO and EMDNZ; 150 

7) EUCNO and BUTNZ; 8) EUFNO and FGRNZ; and 9) EUFNO and FDMNZ.  151 

For both F- and t-test, significance was assumed when more than 5% of the tests (performed 152 

in the 1,000 independent samples) showed p-value < 0.05. Traits were normalized (following the 153 

Student's t-statistic; Snedecor & Cochran, 1989) after defining the pair of traits in which the F- 154 

and/or t-test was significant. Therefore, the normalized trait in the animal i (ti) was calculated as: 155 

ti =  Xi−X
�

s
 , 156 

in which Xi is the phenotyped measured in the animal i, X� is the country trait mean, and s is the SD 157 

estimated for the trait within each country.  158 

 159 

Pedigree and genomic data  160 
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 The pedigree file contained 3,174,345 and 206,180 animals from Norway and New 161 

Zealand, respectively, which included up to 10 generations back from the phenotyped animals. 162 

From these animals, a total of 792 NWS and 16,912 NZC animals were genotyped using a high-163 

density (HD) SNP panel (Ovine Infinium® HD SNP Beadchip; developed through the 164 

International Sheep Genome Consortium and the FarmIQ project, AgResearch, New Zealand). 165 

From the NZC genotyped animals, 8,554; 6,092; and 1,831 animals were from Primera, Lamb 166 

Supreme, and “Other Dual Purpose” populations, respectively. 167 

Three different genotypic quality controls were performed: 1) individually for NWS; 2) for 168 

NZC plus 267 NWS animals used in the validation (explained in the “Training and validation 169 

populations” section under the “Genomic predictions” topic); and 3) considering all sheep 170 

populations together. During the quality control, SNPs with unknown genomic positions and/or 171 

located in the sexual chromosomes, minor allele frequency (MAF) lower than 0.05, sample or SNP 172 

call rate lower than 95%, and extreme departure from the Hardy Weinberg equilibrium (p-value < 173 

10−15) were excluded. Genotypic quality controls were performed using the preGSf90 software 174 

(Aguilar at al., 2014; Misztal et al., 2002). The total number of genotyped animals and SNPs that 175 

remained after the quality control were 792 and 486,945 considering only NWS; 16,171 and 176 

508,026 considering NZC and NWS validation animals; and 16,696 and 508,856 considering all 177 

sheep populations together, respectively.  178 

 179 

Genomic predictions 180 

Training and validation populations. After the quality control, reduced datasets were 181 

created from the full datasets, which included all phenotypic information available until 2015. 182 

Thereafter, the reduced datasets were used to predict GEBVs (using ssGBLUP), and traditional 183 
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breeding values (EBVs; using BLUP) in the three different scenarios: considering only NWS 184 

animals, only NZC animals, and both NWS and NZC animals together in the training population. 185 

Details about the training population used for each trait are included in the Table S1 186 

(Supplementary Material).  187 

The full dataset from Norway, which included phenotypic data up to 2019, was used to 188 

predict current EBVs for NWS animals. The current EBVs were used as a benchmark to validate 189 

GEBVs and EBVs obtained from the reduced datasets by assessing the accuracy and bias (defined 190 

in the “Accuracy and bias” section) of genomic predictions in the validation population. Using a 191 

more accurate EBV, such as the current EBV (i.e., EBV predicted using animals’ own phenotypes 192 

and/or phenotypes from their offspring), as a benchmark for the genomic predictions has been an 193 

usual practice in animal breeding to represent the unknown true breeding values (e.g., Hayes et al., 194 

2009; Edel et al., 2011; Badke et al., 2014; Weller et al., 2015; Oliveira et al., 2019b). Genotyped 195 

NWS animals born in 2016 (N = 267 males) were used as validation population in all the analyses.  196 

 197 

Systematic effects. Systematic effects included in the model were contemporary group 198 

(defined by the combination of country, flock, year, sex, and litter size; for all traits), age of the 199 

dam (for BW), and the age of the animal at the measurement (for all traits, except BW), as they 200 

were found to be significant (p-value < 0.05) for both countries. Ages (i.e., age of the dam and 201 

animal) were assumed as linear covariables in the model.  202 

 203 

BLUP and variance components estimation. The EBVs were predicted using BLUP, 204 

based on single-trait models. In matrix notation, the general model used for all traits in this study 205 

is defined as: 206 
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𝐲𝐲 = 𝐗𝐗𝐗𝐗 + 𝐙𝐙𝐙𝐙 + 𝐞𝐞,           [1] 207 

where 𝐲𝐲, 𝐗𝐗, 𝐙𝐙, and 𝐞𝐞 are the vectors of observations (normalized when needed), systematic effects 208 

(i.e., contemporary group and age, as previously described), additive genetic random effects, and 209 

random residuals, respectively. The 𝐗𝐗 and 𝐙𝐙 are the incidence matrices for b and u, respectively. 210 

The assumptions made for the model [1] under the single-breed approach (used when 211 

including only NWS, only NZC, or when including both NWS and NZC animals in the training 212 

population without any differentiation among them) are: 213 

𝐲𝐲|𝐗𝐗,𝐙𝐙,σu2 ,σe2 ~ N(𝐗𝐗𝐗𝐗 + 𝐙𝐙𝐙𝐙, σe2 ); 𝐗𝐗~ N(0,Σ𝐗𝐗), and 𝐙𝐙|σu2 ,𝐀𝐀~ N(0,σu2⨂𝐀𝐀),                        [2]  214 

in which σu2  and σe2 are the additive genetic and residual variances, respectively; Σ𝐗𝐗 is a diagonal 215 

matrix with large values to represent vague prior knowledge; and A is the traditional pedigree-216 

based relationship matrix. Under this approach, σu2  and σe2 were assumed a priori to follow an 217 

inverted chi-square distribution, such that σu2|vu, Su2 ~ 𝜒𝜒−2(vu, Su2) and σe2|ve, Se2 ~ 𝜒𝜒−2(ve, Se2). 218 

Variance components and EBVs were not estimated using the traditional pedigree-based 219 

relationship matrix under the multiple-breed approach because no covariance exists between NWS 220 

and NZC (i.e., pedigree files are independent).  221 

All variance components were estimated using a Bayesian approach, using the Markov 222 

chain Monte Carlo (MCMC) framework and the Gibbs sampler algorithm available in the 223 

gibbs2f90 software (Misztal et al., 2002). A MCMC chain length of 250,000 cycles, considering a 224 

burn-in period of 50,000 cycles, and a sampling interval (thin) of 10 cycles were used in all 225 

analyses. The convergence was verified through graphical analysis and the Geweke criterion 226 

(Geweke, 1992), both available in the Bayesian Output Analysis package (Smith, 2007) of the R 227 

software (R Core Team, 2016). Variance components were estimated using the A matrix in the 228 

reduced and full datasets. Thereafter, variance components estimated based on the reduced datasets 229 
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were considered in the ssGBLUP analyses and used to estimate the genetic parameters 230 

(heritabilities and genetic correlations). Estimating variance components and genetic parameters 231 

based solely on the A matrix has been a strategy currently performed in several recent ssGBLUP 232 

studies (e.g., Kang et al., 2018; Oliveira et al., 2019b).   233 

 234 

 The single-breed ssGBLUP approach. The ssGBLUP was used to predict the GEBVs by 235 

jointly combining phenotypic, pedigree, and genotypic information using the blupf90 software 236 

(Misztal et al., 2002). The same statistical model and assumptions used in BLUP (i.e., models and 237 

assumptions showed in [1] and [2]) were made in the ssGBLUP. However, the A matrix was 238 

replaced by the H matrix (Aguilar et al., 2010; Christensen & Lund, 2010; Misztal et al., 2009). 239 

The H matrix is defined as: 240 

𝐇𝐇−1 = 𝐀𝐀−1 +  �0 0
0 (0.95𝐆𝐆 + 0.05𝐀𝐀22)−1 − 𝐀𝐀22

−1�,                             [3] 241 

where A is the pedigree-based relationship matrix, 𝐀𝐀22 is the portion of the A matrix related to the 242 

genotyped animals, and G is the genomic relationship matrix, which was created as follow 243 

(VanRaden, 2008): 244 

𝐆𝐆 =   𝐖𝐖𝐖𝐖′

2∑ pj(1−pj)n
j=1

 ,          [4] 245 

in which 𝐖𝐖 = (𝐌𝐌− 𝐏𝐏), M is a matrix containing the centered genotypes (−1, 0, and 1 representing 246 

AA, Aa, and aa,  respectively), and P is a matrix that contains the allele frequency for  the SNP j 247 

[i.e., 2(pj − 0.5)] in its jth column.  248 

 249 

The multiple-breed ssGBLUP approach. As an attempt to estimate the additive genetic 250 

covariance among populations and improve the accuracy of genomic predictions, variance 251 
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components and GEBVs were also estimated using the H matrix using multiple breed groups. The 252 

assumptions made for the model [1] under the multiple-breed approach are: 253 

𝐲𝐲|𝐗𝐗,𝐙𝐙,𝐆𝐆𝟎𝟎,𝐑𝐑𝟎𝟎 ~ N(𝐗𝐗𝐗𝐗 + 𝐙𝐙𝐙𝐙,𝐑𝐑𝟎𝟎⨂𝐈𝐈 ); 𝐗𝐗~ N(0,Σ𝐗𝐗⨂𝐈𝐈), and 𝐙𝐙|𝐆𝐆𝟎𝟎,𝐀𝐀~ N(0,𝐆𝐆𝟎𝟎⨂𝐇𝐇);            [5] 254 

in which 𝐆𝐆𝟎𝟎 and 𝐑𝐑𝟎𝟎 are the additive genetic and residual (co)variance matrices, respectively; I is 255 

an identity matrix; and all the other terms were previously defined. The 𝐆𝐆𝟎𝟎 and 𝐑𝐑𝟎𝟎 matrices were 256 

assumed to follow an inverted Wishart distribution, 𝐆𝐆𝟎𝟎|vu,𝐕𝐕u2 ~ IW(vu,𝐕𝐕u2) and 257 

𝐑𝐑𝟎𝟎|ve,𝐕𝐕e2 ~ IW(ve,𝐕𝐕e2); and they can be described as: 258 

𝐆𝐆𝟎𝟎 = �
σuNWS
2 σuNWS,NZ

σuNWS,NZ σuNZ
2 �, and 𝐑𝐑𝟎𝟎 = �

σeNWS
2 0
0 σeNZ

2 �,                                                           [6] 259 

where σuNWS
2  and σuNZ

2  are the additive genetic variances for NWS and the NZC populations, 260 

respectively, and σuNWS,NZ is the additive genetic covariance between NWS and the NZC 261 

populations. The σeNWS
2  and σeNZ

2  are the residual variances for NWS and the NZC populations, 262 

respectively.  263 

 264 

Accuracy and bias. For each trait, the accuracy of genomic prediction was estimated as the 265 

Pearson correlation coefficient calculated between GEBVs predicted using the reduced dataset and 266 

the EBVs predicted using the full dataset, for the validation population. In addition, the bias of 267 

GEBVs of validation animals was assessed using the regression coefficient estimated using a linear 268 

regression of GEBVs (predicted using the reduced datasets) on the EBVs predicted using the full 269 

datasets (i.e., b1 obtained from EBVfull = b0 + b1 × GEBV). In order to estimate the changes in 270 

accuracy and bias due to the use of genomic information, accuracies and bias were also estimated 271 

for the EBVs predicted using the reduced datasets (using the Pearson correlation and EBVfull =272 

b0 + b1 × EBV, respectively), for the validation animals.  273 
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 274 

Results 275 

Traits comparison 276 

In order to assure the homogeneity of phenotypes for the genomic predictions, nine pairs 277 

of traits were compared: 1) BWNO and BWNZ; 2) WWNO and WWNZ; 3) CWNO and CWNZ; 4) 278 

CWNO and CCWNZ; 5) CWNO and XCWNZ; 6) EUCNO and EMDNZ; 7) EUCNO and BUTNZ; 8) 279 

EUFNO and FGRNZ; and 9) EUFNO and FDMNZ. The percentage of statistical tests with p-value < 280 

0.05, for both F- and t-tests, are shown in Table 2.    281 

Based on the results from the F- and t-test (Table 2), all the pair of traits compared have 282 

different variance and trait means (before trait normalization; except for BWNO and BWNZ, in 283 

which no significant difference among means was observed). These results suggest that the traits 284 

are recorded differently between countries, and they indicate that data normalization is needed 285 

before combining the data from Norway and New Zealand in the same genomic evaluation. 286 

Therefore, genetic parameters and estimation of breeding values performed in this study used 287 

normalized phenotypes for all traits. 288 

 289 

Heritabilities 290 

 Heritabilities estimated for each trait under the single-breed approach, in each scenario 291 

using the reduced datasets, are shown in Table 3. Posterior means and 95% highest posterior 292 

density intervals (inside brackets) for heritability estimated for NWS using the full datasets were 293 

0.48 [0.477-0.478], 0.40 [0.404-0.408], 0.53 [0.531-0.533], 0.45 [0.452-0.455], and 0.46 [0.460-294 

0.463], for BWNO, WWNO, CWNO, EUCNO, and EUFNO, respectively.   295 
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 Similar heritabilities were estimated when including only NWS in the analysis, using either 296 

the full or reduced datasets. In general, the heritabilities estimated for NZC were lower than the 297 

estimates for NWS (except for BWNO and BWNZ, in which both had similar heritabilities). The 298 

heritabilities estimated when combining data from Norway and New Zealand under the single-299 

breed approach tended to have intermediate values when compared to the use of these populations 300 

separately. However, especially for the carcass traits (i.e., CWNO, CWNZ, CCWNZ, and XCWNZ) 301 

combining both data yielded higher heritability estimates. Heritabilities estimated using the 302 

multiple-breed approach were similar to the heritabilities estimated using NWS and NZC 303 

separately, for each trait. Heritabilities and genetic correlations estimated for each trait under the 304 

multiple-breed approach are shown in Table S2 (Supplementary Material). 305 

 306 

Genomic predictions 307 

Accuracy and bias of EBVs and GEBVs predicted using the reduced datasets and the 308 

single-breed approach are shown in Figure 1. Corresponding results predicted using the multiple-309 

breed approach are shown in Figure S2 (Supplementary Material). Accuracies and biases of 310 

predictions of GEBVs, were similar when using either the single- and multiple-breed approaches.  311 

The lowest accuracies were found for BW (ranged from 0.06 to 0.13), regardless of the 312 

information included in the training population (Figure 1a). On the other hand, the highest 313 

accuracies tended to be estimated for EUC and EUF (from 0.10 to 0.56 for EUC, and from 0.09 to 314 

0.40 for EUF). However, different patterns were observed among traits. For instance, EBVs tended 315 

to be more accurately predicted than GEBVs for EUC (regardless of the genomic information 316 

included in the training population), and less accurately predicted than GEBVs when including 317 

NWS in the training population (either alone or combined with NZC data) for EUF. Accuracies 318 
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estimated for WW (0.08 to 0.27) and CW (0.13 to 0.25) were intermediate (higher than accuracies 319 

estimated for BW and lower than accuracies estimated for EUC and EUF), and similar for EBVs 320 

and GEBVs predicted using NWS data (alone or combined with NZC). Predictions using only 321 

NZC yielded the lowest accuracies for all traits (it ranged from 0.06 to 0.15 among traits). 322 

Including genomic information from NWS in the training population seems to increase the 323 

accuracies compared to EBVs for BW.  324 

 In general, EBVs and GEBVs predicted for BW using data from both NWS and NZC in 325 

the training population were strongly deflated (regression coefficient equal to 1.76), while EBVs 326 

and GEBVs predicted using either NWS or NZC alone were strongly inflated (regression 327 

coefficients ranged from 0.19 to 0.29; Figure 1b). For WW, GEBVs predicted using the different 328 

approaches were inflated (regression coefficients ranged from 0.35 to 0.42). For CW, combining 329 

NWS and NZC in the training population yielded the least biased predictions (i.e., regression 330 

coefficients ranged from 0.93 to 0.95) when compared to EBVs and GEBVs using the other 331 

training populations (regression coefficients ranged from 0.31 to 0.52). For EUC, regression 332 

coefficients closer to one were obtained for EBVs (0.78) and GEBVs predicted using only NWS 333 

in the training population (0.68). However, strongly biased predictions were obtained for EUC 334 

when using only NZC (regression coefficients were 0.11 and 0.17 when using BUT and EMD, 335 

respectively), or both NWS and NZC (1.51 for BUT and 2.23 for EMD) in the training population, 336 

regardless of the phenotype measured in New Zealand. For EUF, less biased predictions were 337 

obtained for GEBVs predicted using only NWS (0.65) or both NWS and NZC (regression 338 

coefficients ranged from 0.44 to 0.53) in the training population, when compared to EBVs (0.25) 339 

and GEBVs predicted using only NZC (regression coefficients were 0.19 to 0.24 when using FGR 340 

and FDM, respectively). 341 
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 342 

Discussion  343 

The performance of genomic prediction relies, among other factors, on the size of the 344 

training population (Daetwyler, Villanueva, & Woolliams, 2008; Oliveira et al., 2019a; Uemoto, 345 

Osawa, & Saburi, 2017). In this context, some countries have agreed on sharing data to enlarge 346 

the training population for the genomic predictions in some livestock species. For instance, the 347 

SMARTER project (https://www.smarterproject.eu) has brought together data from multiple 348 

countries. This is an recent initiative that aims to improve resilience and efficiency in small 349 

ruminants across a range of different environments. However, official attempts to perform across-350 

country genomic evaluations for sheep are still scarce in the literature. For instance, Legarra et al. 351 

(2014) performed within- and across-breed genomic predictions for various Western Pyrenees 352 

dairy sheep breeds raised in France and Spain, using single- and multiple-breed predictions. The 353 

authors concluded that genomic evaluations are more accurate than pedigree-based ones, but that 354 

no advantages were observed when combining all data together for the genomic predictions.  355 

Official genomic multiple across-country evaluations (GMACE) have been routinely 356 

performed for dairy cattle by Interbull (VanRaden & Sullivan, 2010). In general, GMACE use the 357 

Mendelian sampling deviations as dependent variables in the evaluation model, which is calculated 358 

from the difference between GEBVs predicted inside the country and the parent average predicted 359 

using the traditional (pedigree-based) multiple across-country evaluation (MACE) method 360 

proposed by Schaeffer (1994). Thus, the success of the genomic prediction relies on the 361 

performance of the traditional MACE, which requires the use of pseudo-phenotypes (i.e., 362 

deregressed proofs) to assure that the phenotypes are independent (Fragomeni et al., 2019; 363 

Vandenplas et al., 2017).  364 

https://www.smarterproject.eu/
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It is important to highlight that several challenges have been faced when performing 365 

GMACE, such as: 1) high number of steps needed before performing the evaluations; 2) 366 

differences in the genetic and genomic evaluation systems performed inside each country; 3) 367 

estimation of deregressed proofs and their potential differences in accuracies depending on the 368 

deregression method used in each country (Oliveira et al., 2018; Oliveira et al., 2019a); 4) bias 369 

generated due to the preselection (Masuda, VanRaden, Misztal, & Lawlor, 2018); and 5) it usually 370 

requires strong trade in semen/animals between countries. In order to overcome similar challenges 371 

observed in multiple-step genomic evaluations, the ssGBLUP method has been recommended for 372 

within-country genetic evaluations (Aguilar et al., 2010; Misztal et al., 2009). However, to our 373 

best knowledge, few studies have used ssGBLUP for across-country genomic evaluations. In this 374 

context it is worth noting that the method used in this study (based on actual phenotypes) is 375 

different from the methods previously published (e.g., Legarra et al., 2014; Vandenplas et al., 376 

2017; Colinet et al., 2018). For instance, previous studies have focused on the use of pseudo-377 

phenotypes (i.e., daughter yield deviations; Legarra et al., 2014), or in the correction of the system 378 

of equations using EBVs and their associated reliabilities, without any explicit deregression step 379 

(Colinet et al., 2018; Vandenplas et al., 2017). In this context, Legarra et al. (2014) commented 380 

that using pseudo-phenotypes usually brings bias in the genomic predictions. 381 

Even though the methods used by Vandenplas et al. (2017) and Colinet et al. (2018) have 382 

contributed to reduce the potential bias generated due to the previous inability to include foreign 383 

data in national evaluations (i.e., incomplete data) and overcome the challenges of pseudo-384 

phenotypes, strong connections between the populations is preferred, and the estimation of EBVs 385 

is still required. In this context, including actual phenotypes from different countries in the same 386 

genomic evaluation using ssGBLUP might provide reasonably accurate GEBV predictions based 387 



 18 

on phenotypes even if no recent connection between pedigrees exists (i.e., if the populations have 388 

similar development history and genetic connectedness). Among the reasons for the lack of studies 389 

in the literature using actual phenotypes from different countries is the difficulty to assure that the 390 

same traits have been measured, because the data recording is usually independent among 391 

countries. As an attempt to evaluate if the same selected traits have been recorded between Norway 392 

and New Zealand, similarities between country trait means and variances were investigated for 393 

nine pre-defined pair of traits (Table 2). Differences among trait means and variances indicate the 394 

need for data normalization before combining data from Norway and New Zealand in ssGBLUP.  395 

 Heritabilities estimated in this study for the traits measured in Norway are, in general, 396 

higher than the heritabilities estimated in the official genetic evaluations performed by NSG for 397 

NWS (Blichfeldt & Lewis, 2015; NSG, 2020). These differences are likely a consequence of the 398 

phenotypes used, as well as the different effects included in the statistical models. For instance, 399 

official evaluations performed by NSG usually include genetic and permanent environment effects 400 

of the biological (for BW) and foster (for WW, CW, EUC, and EUF) dams, which were not 401 

accounted for in this study. In order to have the same statistical model for both countries (required 402 

by the single-breed approach), maternal effects were not included in this study due to limited data 403 

structure from New Zealand. Liu et al. (2015) has reported and explained this inflation in 404 

heritability estimates when not accounting for important maternal effects in the statistical model, 405 

using simulated data. The inflated heritabilities estimated in this study might result in 406 

overestimated genetic gains for the traits measured in Norway, which are not realistic and will 407 

likely disappear when the optimal statistical models are used to estimate the variance components. 408 

Jia (2017) has shown alternatives to control de overfitting of heritabilities in genomic evaluations 409 

using cross-validation.  410 
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Heritabilities estimated for WWNZ, CWNZ, EMDNZ, and FGRNZ were similar to the 411 

heritabilities estimated by Brito et al. (2017c) for a New Zealand sheep population composed of 412 

several pure or composite breeds, in which the main contributing ones were Primera, Texel, Lamb 413 

Supreme, Coopworth, Romney and East Friesian. However, slightly higher heritabilities were 414 

found for XCWNZ, BUTNZ, FDMNZ compared to the authors [Brito et al. (2017c) reported 415 

0.17±0.02, 0.25±0.03, 0.28±0.03 for XCWNZ, BUTNZ, FDMNZ, respectively]. Heritabilities 416 

estimated for BWNZ in this study were higher than heritabilities reported by McRae et al. (2016) 417 

in a New Zealand sheep population composed mainly of Romney, Coopworth, Perendale, and 418 

Texel (0.24 ± 0.04). These differences in heritability estimates are likely related to the different 419 

populations included in the analyses, as well as the different effects included in the statistical 420 

models.  421 

 Similar heritabilities, accuracies and biases were estimated using both the single- and 422 

multiple-breed approaches, for all analyzed traits (Tables 3 and S2, and Figure S1). These similar 423 

results are likely due to the fact that the additive genetic covariance estimated between NWS and 424 

NZC (i.e., σuNWS,NZ) was based exclusively on the genotyped animals (i.e., small proportion of 425 

data), as the pedigree files from both countries were not connected. The uncertainty of σuNWS,NZ 426 

can be inferred based on the large 95% highest posterior density intervals observed for the genetic 427 

correlations estimated between both countries (Table S2, Supplementary Material). In this context, 428 

it is worth to highlight that the multiple-breed approach has several theoretical advantages 429 

compared to the single-breed approach, such as the use of different statistical models and variance 430 

components for each population, and that these advantages were not fully explored due to the weak 431 

relationship between animals from the two countries. Moreover, the multiple-breed approach can 432 

allow us to make inferences regarding genotype by environment interaction (G×E), as G×E is often 433 
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analyzed as the genetic correlation estimated between one trait recorded at different environments 434 

(Falconer and Mackay, 1996). Thus, if this relationship increases, or if the proportion of genotyped 435 

animals increases in both countries, reliable G×E estimates and higher gains in accuracies might 436 

be expected when using the multiple-breed approach. This hypothesis is in agreement with Legarra 437 

et al. (2014), who commented that advantages of across-country genetic evaluations are only 438 

clearly shown when the populations are interbreed often, or when the traits evaluated are under 439 

control of quantitative trait loci (QTLs) with large effects.  Similar results were also reported by 440 

Carillier, Larroque, & Robert-Granié (2014), who compared the variance components estimation 441 

and the prediction of GEBVs using similar approaches (i.e., single- and multiple-breed) in Alpine 442 

and Saanen goats.  443 

The accuracy of genomic predictions in combined training populations depends on the size 444 

of training population and similarities between the breeds grouped. Moreover, Daetwyler et al. 445 

(2012) suggest that across-breed genomic predictions might be limited with the 50k SNP chip. In 446 

our case, similarities between NWS and the NZC populations used in this study have been 447 

previously reported in Oliveira et al. (2020), using several genetic diversity metrics such as 448 

consistency of gametic phase, runs of homozygosity, signatures of selection, and admixture. As 449 

conclusions, these authors commented that there is relatively high genetic diversity within each 450 

sheep population, and that NWS is more genetically related to the Primera, Lamb Supreme and 451 

“Other Dual Purpose” populations raised in New Zealand due to the high number of common 452 

ancestral breeds used in their development (Oliveira et al., 2020). This relatively high genetic 453 

diversity among some NZC and NWS might indicate that they can likely contribute in the genomic 454 

evaluations, specially using HD SNP panels. 455 
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In this study, the performance of the genomic predictions (in terms of accuracy) varied 456 

across traits (Figure 1a), which might be related to the number of phenotypes available for each 457 

trait (Table 1), trait heritability (Table 2), and number of animals with both phenotypes and 458 

genotypes in the training population (Table S1, Supplementary Material). However, in general, 459 

our results suggest that across-country genomic predictions based on ssGBLUP might be possible 460 

for NWS and NZC. Thus, even though the accuracies estimated when including only NZC in the 461 

training population were lower than the accuracies reported by Brito et al. (2017b), they show a 462 

promising opportunity to predict GEBV for traits not currently recorded in Norway. Differences 463 

between the accuracies reported by Brito et al. (2017b) and this study are due to the fact that Brito 464 

et al. (2017b) predicted GEBVs using a multiple-breed sheep population including only animals 465 

from New Zealand, and due to the fact that accuracies reported in this study were not adjusted by 466 

the square root of heritabilities. It is important to highlight that different gains in accuracy were 467 

observed by Legarra et al. (2014), depending on the breeds included in the analyses. However in 468 

their case, the authors commented that the improvement in accuracy observed when combining 469 

the Manech Tête Noire and Latxa Cara Negra Navarre breeds was unexpected, as there is low 470 

genetic relationship between these breeds. Similarly, Daetwyler et al. (2012) showed that the 471 

accuracy of genomic predictions for carcass and meat quality traits when combining data from 472 

several sheep breeds raised in Australia tended to be higher for the traits with the larger training 473 

population size. However, the mentioned authors also commented that using adjusted phenotypes 474 

as a benchmark for the GEBVs resulted in less variable accuracies compared to the use of 475 

unadjusted phenotypes (Daetwyler et al., 2012).  476 

The expected benefit of genomic selection for NWS (i.e., difference between the black bars 477 

and diagonal strips in Figure 1) reported in this study was nearly small for the majority of traits, 478 
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which is related to both the relatively accurate EBVs predicted for this population and the small 479 

number of NWS animals with genotypes and phenotypes. In this context, a stronger impact of 480 

inclusion of genomic information might be observed when increasing the number of genotyped 481 

animals (mainly progeny tested sires) in the training population. However, it is important to 482 

highlight that our results suggest an opportunity for genetic improvement of novel traits (i.e., traits 483 

where the amount of phenotypes recorded is still limited), if countries share both phenotypes and 484 

genotypes, especially if the connection between populations increases (Carillier, Larroque, & 485 

Robert-Granié, 2014). However, more studies are needed to validate this hypothesis. A greater 486 

exchange of genetic material across countries is also recommended to increase the genetic 487 

connectedness among populations from both countries.   488 

The regression coefficients used to assess bias of GEBVs also varied across traits. 489 

However, for the majority of traits and scenarios, the GEBVs were biased, indicating that the use 490 

of optimal scaling factors to combine the G−1 and 𝐀𝐀22
−1 matrices should be investigated while 491 

performing across-country genomic evaluations based on ssGBLUP. The use of optimal scaling 492 

factors have the potential to reduce bias in the ssGBLUP analysis (Misztal et al., 2013; Tsuruta, 493 

Misztal, Aguilar, & Lawlor, 2011). In addition, Tsuruta et al. (2019) showed that strong selection 494 

amplifies inflation in genomic predictions, and that using approximated inbreeding coefficients 495 

considering unknown parents group (UPG) can potentially reduce the bias. In this regard, Macedo 496 

et al. (2020) suggested that the use of metafounders should be preferred instead UPG for sheep, as 497 

they yield less biased genomic predictions in a population with only genotyped males. Using only 498 

genotyped males might yield more biased estimates due to the stronger selection performed for 499 

them compared to females. Anyhow, similar range in the regression coefficients were reported by 500 

Colinet et al. (2018) and Carillier, Larroque, & Robert-Granié (2014), while analyzing cattle and 501 
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goats, respectively. However, Carillier, Larroque, & Robert-Granié (2014) commented that using 502 

a within-breed model provided better dispersion of GEBVs. No clear difference was observed in 503 

this study (results not shown).  504 

Future studies comparing the predictive performance of different statistical methods (such 505 

as GMACE and single-step correcting the system of equations using EBVs and their associated 506 

reliabilities) with the method reported in this study are recommended. Moreover, optimal statistical 507 

models and scaling factors for the H matrix, as well as the use of UPG and metafounders, should 508 

be investigated before implementing official genomic evaluations combining NWS and NZC.  509 

 510 

Conclusions 511 

Our findings support the feasibility of across-country genomic predictions based on 512 

ssGBLUP for birth weight, weaning weight, carcass weight, EUROP carcass classification, and 513 

EUROP fat grading, using NWS and NZC. Moreover, accuracies and biases estimated using only 514 

NZC in the training population show a promising opportunity to predict GEBV for novel traits or 515 

traits not currently recorded in Norway.  516 

 517 

Acknowledgements 518 

The authors gratefully acknowledge: FarmIQ (Ministry for Primary Industries’ Primary 519 

Growth Partnership fund) for funding the work, Pāmu Farms and Focus Genetics for undertaking 520 

the progeny test evaluation, and Silver Fern Farms for processing the animals. We would also like 521 

to recognize the significant and on-going contribution of AgResearch farm and technical staff in 522 

management, trait recording and genotyping. Financial contributions from the Norwegian 523 

Research Council are gratefully acknowledged. 524 



 24 

 525 

Conflict of interest 526 

All authors declare that they have no conflict of interest. 527 

 528 

Data availability  529 

The data supporting the results of this article are included within the article and in its 530 

Supplementary Material. The raw data cannot be made available, as it is property of the sheep 531 

producers in New Zealand and Norway and this information is commercially sensitive. 532 

 533 

References 534 

Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., & Lawlor, T. J. (2010). Hot 535 

topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for 536 

genetic evaluation of Holstein final score1. Journal of Dairy Science, 93(2), 743–752. 537 

https://doi.org/10.3168/jds.2009-2730 538 

Aguilar, I., Misztal, I., Tsuruta, S., Legarra, A., & Wang, H. (2014). PREGSF90 – POSTGSF90: 539 

Computational Tools for the Implementation of Single-step Genomic Selection and 540 

Genome-wide Association with Ungenotyped Individuals in BLUPF90 Programs. 541 

Proceedings, 10th World Congress of Genetics Applied to Livestock Production, (August). 542 

https://doi.org/10.13140/2.1.4801.5045 543 

Badke, Y. M., Bates, R. O., Ernst, C. W., Fix, J., & Steibel, J. P. (2014). Accuracy of estimation 544 

of genomic breeding values in pigs using low-density genotypes and imputation. G3: 545 

Genes, Genomes, Genetics, 4(4), 623-631. 10.1534/g3.114.010504 546 

Blichfeldt, T., & Lewis, R. (2015). Sheep Breeding in Norway. Retrieved from 547 



 25 

https://www.nationalsheep.org.uk/workspace/pdfs/blichfeldtthor22112015103318.pdf 548 

Brito, L. F., McEwan, J. C., Miller, S. P., Pickering, N. K., Bain, W. E., Dodds, K. G., … Clarke, 549 

S. M. (2017a). Genetic diversity of a New Zealand multi-breed sheep population and 550 

composite breeds’ history revealed by a high-density SNP chip. BMC Genetics. 551 

https://doi.org/10.1186/s12863-017-0492-8 552 

Brito, L. F., Clarke, S. M., McEwan, J. C., Miller, S. P., Pickering, N. K., Bain, W. E., … 553 

Schenkel, F. S. (2017b). Prediction of genomic breeding values for growth, carcass and 554 

meat quality traits in a multi-breed sheep population using a HD SNP chip. BMC Genetics. 555 

https://doi.org/10.1186/s12863-017-0476-8 556 

Brito, L. F., McEwan, J. C., Miller, S., Bain, W., Lee, M., Dodds, K., … Clarke, S. (2017c). 557 

Genetic parameters for various growth, carcass and meat quality traits in a New Zealand 558 

sheep population. Small Ruminant Research, 154, 81–91. 559 

https://doi.org/10.1016/j.smallrumres.2017.07.011 560 

Byrne, T. J., Ludemann, C. I., Amer, P. R., Young, M. J. (2012). Broadening breeding objectives 561 

for maternal and terminal sheep. Livestock Science, 144, 20–36. 562 

https://doi.org/10.1016/j.livsci.2011.10.010 563 

Carillier, C., Larroque, H., & Robert-Granié, C. (2014). Comparison of joint versus purebred 564 

genomic evaluation in the French multi-breed dairy goat population. Genetics Selection 565 

Evolution, 46(1), 67. https://doi.org/10.1186/s12711-014-0067-3 566 

Christensen, O. F., & Lund, M. S. (2010). Genomic relationship matrix when some animals are 567 

not genotyped Genomic prediction models. Genetics Selection Evolution, 42(2). 568 

Colinet, F. G., Vandenplas, J., Vanderick, S., Hammami, H., Mota, R. R., Gillon, A., Hubin, X., 569 

Bertozzi, C., Gengler, N. (2018). Bayesian single-step genomic evaluations combining local 570 



 26 

and foreign information in Walloon Holsteins. Animal. 571 

https://doi.org/10.1017/S1751731117002324 572 

Daetwyler, H. D., Swan, A. A., van der Werf, J. H., & Hayes, B. J. (2012). Accuracy of pedigree 573 

and genomic predictions of carcass and novel meat quality traits in multi-breed sheep data 574 

assessed by cross-validation. Genetics Selection Evolution, 44(1), 1-11. 575 

Daetwyler, H. D., Villanueva, B., & Woolliams, J. A. (2008). Accuracy of predicting the genetic 576 

risk of disease using a genome-wide approach. PLoS ONE. 577 

https://doi.org/10.1371/journal.pone.0003395 578 

Edel, C., Hamann, H., Neuner, S., Emmerling, R., & Götz, K. U. (2011). The German-Austrian 579 

genomic evaluation system for Fleckvieh (Siemmental) cattle. Interbull Bulletin, 44. 580 

Eikje, L. S., Ådnøy, T., & Klemetsdal, G. (2008). The Norwegian sheep breeding scheme: 581 

description, genetic and phenotypic change. Animal, 2(2), 167–176. 582 

https://doi.org/10.1017/S1751731107001176 583 

Falconer, D. S., and T. F. C. Mackay. "Introduction into quantitative genetics." Essex: Prentice 584 

Hall (1996). 585 

Fragomeni, B., Masuda, Y., Bradford, H. L., Lourenco, D. A. L., & Misztal, I. (2019). 586 

International bull evaluations by genomic BLUP with a prediction population. Journal of 587 

Dairy Science. https://doi.org/10.3168/jds.2018-15554 588 

Geweke, J. (1992). Evaluating the Accuracy of Sampling-Based Approaches to the Calculation 589 

of Posterior Moments. Bayesian Statistics. 590 

Hayes, B. J., Bowman, P. J., Chamberlain, A. C., Verbyla, K., & Goddard, M. E. (2009). 591 

Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genetics 592 

Selection Evolution, 41(1), 51. https://doi.org/10.1186/1297-9686-41-51 593 



 27 

Jia, Z. (2017). Controlling the overfitting of heritability in genomic selection through cross 594 

validation. Scientific reports, 7(1), 1-9. 10.1038/s41598-017-14070-z. 595 

Kang, H., Ning, C., Zhou, L., Zhang, S., Yan, Q., & Liu, J.-F. (2018). Short communication: 596 

Single-step genomic evaluation of milk production traits using multiple-trait random 597 

regression model in Chinese Holsteins. Journal of Dairy Science, 101(12), 11143–11149. 598 

https://doi.org/10.3168/jds.2018-15090 599 

Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Neto, L. R., Cristobal, M. S., Servin, B., 600 

McCulloch, R., Whan, V., Gietzen, K., Paiva, S., Barendse, W., Ciani, E., Raadsma, H., 601 

McEwan, J., Dalrymple, B. (2012). Genome-wide analysis of the world’s sheep breeds 602 

reveals high levels of historic mixture and strong recent selection. PLoS Biology. 603 

https://doi.org/10.1371/journal.pbio.1001258 604 

Koivula, M., Strandén, I., Aamand, G. P., & Mäntysaari, E. A. (2018). Reducing bias in the dairy 605 

cattle single-step genomic evaluation by ignoring bulls without progeny. Journal of Animal 606 

Breeding and Genetics, 135(2), 107–115. https://doi.org/10.1111/jbg.12318 607 

Legarra, A., Baloche, G., Barillet, F., Astruc, J. M., Soulas, C., Aguerre, X., Arrese, F., Mintegi, 608 

L., Lasarte, M., Maeztu, F., Beltrán de Heredia, I., Ugarte, E. (2014). Within-and across-609 

breed genomic predictions and genomic relationships for Western Pyrenees dairy sheep 610 

breeds Latxa, Manech, and Basco-Béarnaise. Journal of Dairy Science, 97(5), 3200-3212. 611 

https://doi.org/10.3168/jds.2013-7745 612 

Liu, C., Dupuis, J., Larson, M. G., Cupples, L. A., Ordovas, J. M., Vasan, R. S., Meigs, J. B., 613 

Jacques, P. F. and Levy, D. (2015). Revisiting heritability accounting for shared 614 

environmental effects and maternal inheritance. Human genetics, 134(2), pp.169-179. 615 

10.1007/s00439-014-1505-6 616 



 28 

Macedo, F. L., Christensen, O. F., Astruc, J. M., Aguilar, I., Masuda, Y., & Legarra, A. (2020). 617 

Bias and accuracy of dairy sheep evaluations using BLUP and SSGBLUP with 618 

metafounders and unknown parent groups. Genetics Selection Evolution, 52(47). 619 

https://doi.org/10.1186/s12711-020-00567-1 620 

Masuda, Y., VanRaden, P. M., Misztal, I., & Lawlor, T. J. (2018). Differing genetic trend 621 

estimates from traditional and genomic evaluations of genotyped animals as evidence of 622 

preselection bias in US Holsteins. Journal of Dairy Science. 623 

https://doi.org/10.3168/jds.2017-13310 624 

McRae, K. M., Baird, H. J., Dodds, K. G., Bixley, M. J., & Clarke, S. M. (2016). Incidence and 625 

heritability of ovine pneumonia, and the relationship with production traits in New Zealand 626 

sheep. Small Ruminant Research. https://doi.org/10.1016/j.smallrumres.2016.11.003 627 

Misztal, I., & Legarra, A. (2017). Invited review: efficient computation strategies in genomic 628 

selection. Animal, 11(5), 731–736. https://doi.org/10.1017/S1751731116002366 629 

Misztal, I., Legarra, A., & Aguilar, I. (2009). Computing procedures for genetic evaluation 630 

including phenotypic, full pedigree, and genomic information. Journal of Dairy Science, 631 

92(9), 4648–4655. https://doi.org/10.3168/jds.2009-2064 632 

Misztal, I., Tsuruta, S., Aguilar, I., Legarra, A., VanRaden, P. M., & Lawlor, T. J. (2013). 633 

Methods to approximate reliabilities in single-step genomic evaluation. Journal of Dairy 634 

Science. https://doi.org/10.3168/jds.2012-5656 635 

Misztal, I., Tsuruta, S., Strabel, T., Druet, T., & Lee, D. (2002). BLUPF90 and related programs 636 

(BGF90). Proc. 7th World Congr. Genet. Appl. to Livest. Prod. 637 

NSG (2020). Referat fra møte nr 2/2020 i Avlsrådet for sau. Retrieved from 638 

https://www.nsg.no/getfile.php/13136489-1594690051/_NSG-PDF-639 



 29 

filer/Sau/Møtereferat%20Avlsrådet%20for%20sau/Avlsrådsmøte%2017062020%20-640 

%20Referat.pdf 641 

Oliveira, H. R., Brito, L. F., Sargolzaei, M., e Silva, F. F., Jamrozik, J., Lourenco, D. A. L., 642 

Schenkel, F. S. (2019a). Impact of including information from bulls and their daughters in 643 

the training population of multiple-step genomic evaluations in dairy cattle: A simulation 644 

study. Journal of Animal Breeding and Genetics. https://doi.org/10.1111/jbg.12407 645 

Oliveira, H. R., Lourenco, D. A. L., Masuda, Y., Misztal, I., Tsuruta, S., Jamrozik, J., … 646 

Schenkel, F. S. (2019b). Application of single-step genomic evaluation using multiple-trait 647 

random regression test-day models in dairy cattle. Journal of Dairy Science. 648 

https://doi.org/10.3168/jds.2018-15466 649 

Oliveira, H. R., McEwan, J. C., Jakobsen, J., Blichfeldt, T., Meuwissen, T., Pickering, N., … 650 

Brito, L. F. (2020). Genetic Connectedness Between Norwegian White Sheep and New 651 

Zealand Composite Sheep Populations With Similar Development History. Frontiers in 652 

Genetics, 11, 371. https://doi.org/10.3389/fgene.2020.00371 653 

Oliveira, H. R., Silva, F. F., Brito, L. F., Guarini, A. R., Jamrozik, J., & Schenkel, F. S. (2018). 654 

Comparing deregression methods for genomic prediction of test-day traits in dairy cattle. 655 

Journal of Animal Breeding and Genetics. https://doi.org/10.1111/jbg.12317 656 

R Core Team. (2016). R: A Language and Environment for Statistical Computing. R Foundation 657 

for Statistical Computing. 658 

Schaeffer, L. R. (1994). Multiple-Country Comparison of Dairy Sires. Journal of Dairy Science. 659 

https://doi.org/10.3168/jds.S0022-0302(94)77209-X 660 

Smith, B. J. (2007). boa : An R Package for MCMC Output Convergence. Journal of Statistical 661 

Software. https://doi.org/http://dx.doi.org/10.18637/jss.v021.i11 662 



 30 

Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods, 8thEdn. Ames: Iowa State Univ. 663 

Press Iowa. 664 

Tsuruta, S., Lourenco, D. A. L., Masuda, Y., Misztal, I., & Lawlor, T. J. (2019). Controlling bias 665 

in genomic breeding values for young genotyped bulls. Journal of Dairy Science, 102(11), 666 

9956–9970. https://doi.org/10.3168/JDS.2019-16789 667 

Tsuruta, S., Misztal, I., Aguilar, I., & Lawlor, T. J. (2011). Multiple-trait genomic evaluation of 668 

linear type traits using genomic and phenotypic data in US Holsteins. Journal of Dairy 669 

Science, 94(8), 4198–4204. https://doi.org/10.3168/jds.2011-4256 670 

Uemoto, Y., Osawa, T., & Saburi, J. (2017). Effect of genotyped cows in the reference 671 

population on the genomic evaluation of Holstein cattle. Animal, 11(3), 382–393. 672 

https://doi.org/10.1017/S1751731116001762 673 

Vandenplas, J., Spehar, M., Potocnik, K., Gengler, N., & Gorjanc, G. (2017). National single-674 

step genomic method that integrates multi-national genomic information. Journal of Dairy 675 

Science. https://doi.org/10.3168/jds.2016-11733 676 

VanRaden, P. M. (2008). Efficient Methods to Compute Genomic Predictions. Journal of Dairy 677 

Science, 91(11), 4414–4423. https://doi.org/10.3168/jds.2007-0980 678 

VanRaden, P. M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D., Taylor, 679 

J. F., & Schenkel, F. S. (2009). Invited Review: Reliability of genomic predictions for 680 

North American Holstein bulls. Journal of Dairy Science, 92(1), 16–24. 681 

https://doi.org/10.3168/jds.2008-1514 682 

VanRaden, P. M., & Sullivan, P. G. (2010). International genomic evaluation methods for dairy 683 

cattle. Genetics Selection Evolution. https://doi.org/10.1186/1297-9686-42-7 684 

Weller, J. I., Stoop, W. M., Eding, H., Schrooten, C., & Ezra, E. (2015). Genomic evaluation of a 685 



 31 

relatively small dairy cattle population by combination with a larger population. Journal of 686 

Dairy Science, 98(7), 4945-4955. http://dx.doi.org/10.3168/jds.2014-9086 687 

  688 



 32 

TABLES AND FIGURES 689 

Table 1. Descriptive statistics for the traits analyzed in this study. 690 

Trait1 N Mean (SD) Minimum Maximum CV (%) 
Norway      

BWNO 2,241,222 4.87 (1.02) 1.00 9.00 21.05 
WWNO 3,425,100 43.89 (7.9) 14.00 89.00 18.00 
CWNO 2,395,830 20.16 (3.02) 6.10 41.40 14.97 
EUCNO 2,395,170 8.43 (1.65) 1.00 15.00 19.58 
EUFNO 2,399,072 5.78 (1.49) 1.00 15.00 25.73 

New Zealand      
BWNZ 68,717 4.85 (1.05) 0.50 9.30 21.60 
WWNZ 195,932 29.85 (7.4) 6.00 65.50 24.78 
CWNZ 34,970 17.21 (3.28) 7.90 31.70 19.05 

CCWNZ 16,845 17.85 (3.32) 7.70 30.90 18.58 
XCWNZ 16,439 17.74 (3.32) 7.73 31.51 18.72 
EMDNZ 120,048 26.28 (3.16) 12.00 39.00 12.01 
BUTNZ 19,800 65.15 (3.34) 52.50 77.00 5.12 
FGRNZ 37,703 5.43 (3.48) 1.00 22.00 64.14 
FDMNZ 120,237 2.51 (1.14) 0.50 9.00 45.29 

1The traits measured in Norway were: birth weight (BWNO; kg), weaning weight (WWNO; kg), 691 

carcass weight (CWNO; kg), EUROP carcass classification (EUCNO), and EUROP fat grading 692 

(EUFNO). The traits measured in New Zealand were: birth weight (BWNZ; kg), weaning weight 693 

(WWNZ; kg), carcass weight (CWNZ; kg), cold carcass weight (CCWNZ; kg), x-ray estimated 694 

carcass weight (XCWNZ; kg), ultrasound eye muscle depth (EMDNZ; mm), butt circumference 695 

(BUTNZ; cm), carcass fatness at the GR site (FGRNZ; mm), and ultrasound fat depth (FDMNZ; mm). 696 

N: number of records. SD: standard deviation. CV: coefficient of variation.  697 

 698 

 699 

 700 

 701 

 702 
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Table 2.  Percentage of tests with p-value lower than 0.05, for the F- and t-test used to compare 703 

the homogeneity among traits recorded in the different countries.  704 

Comparison1 F (%) t (%) 
BWNO and BWNZ 6.4 4.9 

WWNO and WWNZ 7.7 100.0 
CWNO and CWNZ 13.7 98.8 

CWNO and CCWNZ 13.4 92.7 
CWNO and XCWNZ 14.9 94.5 
EUCNO and EMDNZ 98.6 100.0 
EUCNO and BUTNZ 99.7 100.0 
EUFNO and FGRNZ 100.0 12.9 
EUFNO and FDMNZ 51.9 100.0 

1Traits measured in Norway were: birth weight (BWNO; kg), weaning weight (WWNO; kg), carcass 705 

weight (CWNO; kg), EUROP carcass classification (EUCNO), and EUROP fat grading (EUFNO). 706 

Traits measured in New Zealand were: birth weight (BWNZ; kg), weaning weight (WWNZ; kg), 707 

carcass weight (CWNZ; kg), cold carcass weight (CCWNZ; kg), x-ray estimated carcass weight 708 

(XCWNZ; kg), ultrasound eye muscle depth (EMDNZ; mm), butt circumference (BUTNZ; cm), 709 

carcass fatness at the GR site (FGRNZ; mm), and ultrasound fat depth (FDMNZ; mm). 710 

 711 

 712 

 713 
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Table 3. Posterior means and 95% highest posterior density intervals (inside brackets) for 720 

heritabilities (h2) estimated in the different scenarios, using the reduced datasets and the single-721 

breed approach.  722 

Scenario Traits1 h2 

Only Norway 
 

BWNO 0.47 [0.472-0.474] 
WWNO 0.41 [0.409-0.411] 
CWNO 0.53 [0.529-0.531] 
EUCNO 0.44 [0.442-0.445] 
EUFNO 0.46 [0.457-0.461] 

Both Norway and 
New Zealand 

BWNO and BWNZ 0.47 [0.472-0.473] 
WWNO and WWNZ 0.39 [0.391-0.392] 
CWNO and CWNZ 0.55 [0.548-0.551] 

CWNO and CCWNZ 0.55 [0.549-0.551] 
CWNO and XCWNZ 0.55 [0.549-0.552] 
EUCNO and EMDNZ 0.39 [0.388-0.390] 
EUCNO and BUTNZ 0.40 [0.402-0.406]  
EUFNO and FGRNZ 0.41 [0.414-0.418]  
EUFNO and FDMNZ 0.44 [0.446-0.448] 

Only New Zealand 

BWNZ 0.46 [0.457-0.467] 
WWNZ 0.31 [0.300-0.313] 
CWNZ 0.22 [0.196-0.234] 

CCWNZ 0.30 [0.274-0.329] 
XCWNZ 0.27 [0.239-0.296] 
EMDNZ 0.37 [0.363-0.375] 
BUTNZ 0.37 [0.350-0.392] 
FGRNZ 0.26 [0.243-0.282] 
FDMNZ 0.39 [0.379-0.391] 

1The traits measured in Norway were: birth weight (BWNO; kg), weaning weight (WWNO; kg), 723 

carcass weight (CWNO; kg), EUROP carcass classification (EUCNO), and EUROP fat grading 724 

(EUFNO). The traits measured in New Zealand were: birth weight (BWNZ; kg), weaning weight 725 

(WWNZ; kg), carcass weight (CWNZ; kg), cold carcass weight (CCWNZ; kg), x-ray estimated 726 

carcass weight (XCWNZ; kg), ultrasound eye-muscle depth (EMDNZ; mm), butt circumference 727 

(BUTNZ; cm), carcass fatness at the GR site (FGRNZ; mm), and ultrasound fat depth (FDMNZ; mm). 728 

 729 
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 730 

Figure 1. Accuracy (a) and bias (assessed based on the regression coefficient; b) of traditional 731 

breeding values (black bars) and genomic breeding values predicted using only Norwegian 732 

(diagonal strips), only New Zealand (grey), and both Norwegian and New Zealand (dotted) 733 

animals in the training population. The traits measured in Norway were: birth weight (BWNO; kg), 734 

weaning weight (WWNO; kg), carcass weight (CWNO; kg), EUROP carcass classification (EUCNO), 735 

and EUROP fat grading (EUFNO). The traits measured in New Zealand were: birth weight (BWNZ; 736 

kg), weaning weight (WWNZ; kg), carcass weight (CWNZ; kg), cold carcass weight (CCWNZ; kg), 737 

x-ray estimated carcass weight (XCWNZ; kg), ultrasound eye-muscle depth (EMDNZ; mm), butt 738 

circumference (BUTNZ; cm), carcass fatness at the GR site (FGRNZ; mm), and ultrasound fat depth 739 

(FDMNZ; mm). 740 

 741 

 742 



 36 

SUPPLEMENTARY MATERIAL 743 

Table S1. Number of animals with both genotypes and phenotypes in the training population of 744 

each trait.  745 

Scenario Traits1 N Noffspring 

Only Norway 
 

BWNO 133 191,560 
WWNO 300 298,555 
CWNO 0 134,970 
EUCNO 0 134,938 
EUFNO 0 134,960 

Only New 
Zealand 

BWNZ 1,513 7,157 
WWNZ 15,870 36,541 
CWNZ 14,894 8,496 

CCWNZ 14,841 8,760 
XCWNZ 14,470 8,878 
EMDNZ 7,846 23,774 
BUTNZ 14,841 8,690 
FGRNZ 14,880 8,834 
FDMNZ 7,848 23,762 

The traits measured in Norway were: birth weight (BWNO; kg), weaning weight (WWNO; kg), 746 

carcass weight (CWNO; kg), EUROP carcass classification (EUCNO), and EUROP fat grading 747 

(EUFNO). The traits measured in New Zealand were: birth weight (BWNZ; kg), weaning weight 748 

(WWNZ; kg), carcass weight (CWNZ; kg), cold carcass weight (CCWNZ; kg), x-ray estimated 749 

carcass weight (XCWNZ; kg), ultrasound eye muscle depth (EMDNZ; mm), butt circumference 750 

(BUTNZ; cm), carcass fatness at the GR site (FGRNZ; mm), and ultrasound fat depth (FDMNZ; mm). 751 

N: number of animals with both genotypes and phenotypes in the training population. Noffspring: 752 

number of offspring from genotyped animals that have phenotypes in the training population.  753 

 754 

 755 

 756 
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Table S2. Posterior means and 95% highest posterior density intervals (inside brackets) for 758 

heritabilities estimated for different traits measured in Norway (hNO2 ) and New Zealand (hNZ2 ), and 759 

their genetic correlation (rg), using the reduced datasets and the multiple-breed approach. 760 

Traits 𝐡𝐡𝐍𝐍𝐍𝐍𝟐𝟐  𝐡𝐡𝐍𝐍𝐙𝐙𝟐𝟐  rg 
BWNO and BWNZ 0.47 [0.470-0.472] 0.46 [0.451-0.460] 0.21 [0.038-0.337] 

WWNO and WWNZ 0.41 [0.410-0.414] 0.33 [0.328-0.335] 0.04 [-0.005-0.084] 
CWNO and CWNZ 0.53 [0.529-0.531] 0.23 [0.215-0.237] 0.15 [0.036-0.268] 

CWNO and CCWNZ 0.53 [0.529-0.530] 0.28 [0.269-0.290] -0.07 [-0.194-0.079] 
CWNO and XCWNZ 0.53 [0.529-0.531] 0.26 [0.237-0.262] 0.11 [-0.002-0.198] 
EUCNO and EMDNZ 0.44 [0.442-0.445] 0.35 [0.343-0.355] 0.32 [0.174-0.435] 
EUCNO and BUTNZ 0.44 [0.441-0.445] 0.32 [0.318-0.330] 0.45 [0.362-0.510] 
EUFNO and FGRNZ 0.46 [0.457-0.460] 0.19 [0.180-0.201] 0.12 [-0.034-0.217] 
EUFNO and FDMNZ 0.46 [0.457-0.460] 0.35 [0.347-0.360] 0.00 [-0.080-0.077] 

The traits measured in Norway were: birth weight (BWNO; kg), weaning weight (WWNO; kg), 761 

carcass weight (CWNO; kg), EUROP carcass classification (EUCNO), and EUROP fat grading 762 

(EUFNO). The traits measured in New Zealand were: birth weight (BWNZ; kg), weaning weight 763 

(WWNZ; kg), carcass weight (CWNZ; kg), cold carcass weight (CCWNZ; kg), x-ray estimated 764 

carcass weight (XCWNZ; kg), ultrasound eye muscle depth (EMDNZ; mm), butt circumference 765 

(BUTNZ; cm), carcass fatness at the GR site (FGRNZ; mm), and ultrasound fat depth (FDMNZ; mm). 766 

  767 



 38 

 768 

Figure S1. Accuracy (a) and bias (assessed using a regression coefficient; b) of genomic breeding 769 

values predicted using Norwegian and New Zealand animals in the training population under the 770 

single-breed (black bars) and multiple-breed (diagonal strips) approaches. The traits measured in 771 

Norway were: birth weight (BWNO; kg), weaning weight (WWNO; kg), carcass weight (CWNO; kg), 772 

EUROP carcass classification (EUCNO), and EUROP fat grading (EUFNO). The traits measured in 773 

New Zealand were: birth weight (BWNZ; kg), weaning weight (WWNZ; kg), carcass weight (CWNZ; 774 

kg), cold carcass weight (CCWNZ; kg), x-ray estimated carcass weight (XCWNZ; kg), ultrasound 775 

eye muscle depth (EMDNZ; mm), butt circumference (BUTNZ; cm), carcass fatness at the GR site 776 

(FGRNZ; mm), and ultrasound fat depth (FDMNZ; mm). 777 
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