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Abstract

We use a field experiment and a within-subject design based on multiple
Choice Lists (CLs) that integrate time and risk. Diminishing impatience
with extended time horizons is studied by varying time horizons from one
week to two years. Time-dated risky prospects are constant within CLs
and are always compared with time-dated certain amounts to identify time-
dated Certainty Equivalents. Non-linear probability weighting is modeled
with a 2-parameter Prelec function. First, we identify a strong diminishing
impatience associated with longer time delay between prospects. Second,
we test whether non-linear probability weighting can explain and reduce the
observed diminishing impatience by replacing linear probability weighting
with an estimated inverted S-shaped Prelec function. We find that this does
not reduce the observed degree of diminishing impatience. We conclude that
the observed diminishing impatience is neither explained by the combination
of present bias and certainty bias nor by non-linear weighting of risk in future
prospects.
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1. Introduction

Time and risk preferences are fundamentally important for individuals’
savings and investment decisions. Yet, there is no consensus on how best
to measure and estimate these preferences or how they are related (Abdel-
laoui et al., 2013; Andersen et al., 2008; Andreoni and Sprenger, 2012a, 2015;
Cheung, 2019; Miao and Zhong, 2012; Halevy, 2008; Epper et al., 2011). On
time discounting many studies have frequently found behavioral deviations
from Samuelson’s Discounted Utility model (SDU) (Samuelson, 1937) such
as present bias and diminishing impatience and many economists have mod-
eled these as quasi-hyperbolic (QH) discounting, e.g. (Laibson, 1997; Cohen
et al., 2020; Harrison et al., 2022). However, there are also studies that
have identified general hyperbolic discounting but they are less well founded
in terms of the theoretical explanation and have been less well documented
with incentivized experiments (Frederick et al., 2002; Hepburn et al., 2010),
until recently (Grijalva et al., 2014, 2018; Holden and Quiggin, 2017). This
new evidence points towards general hyperbolic discounting or diminishing
impatience as the time horizon is extended. Figure 1 illustrates the distinc-
tion between these.

Figure 1: Alternative discounting models

The seminal contribution that has stimulated a lot of research on the re-
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lationship between risk and time preferences is Andersen et al. (2008). They
used separate Choice Lists (CLs) for risk and time to jointly estimate risk and
time preferences. They argued that time preference estimation that ignores
the concavity of the utility function leads to upward bias in the estimated
discount rates. They estimated the utility curvature with the risk experi-
ment within an Expected Utility framework and demonstrated a substantial
upward bias in the discount rate unless utility curvature is controlled for,
based on a large scale field experiment in Denmark. Their work has later
been contested on several grounds. On theoretical assumptions and their re-
alism many experimental studies have revealed behavior in response to risk
that deviates from Expected Utility theory (EU) and that is more consistent
with non-linear probability weighting as in Rank Dependent Utility (RDU)
theory (Quiggin, 1982). The concavity of the utility function may become
substantially reduced with RDU as compared with EU. More fundamentally,
others have suggested that utility in time is different from utility in risk and
have found that these two forms of concavity even may not be correlated
(Abdellaoui et al., 2013; Cheung, 2016, 2019).

Should one then go back to ignoring behavior under risk when studying
time preferences? This may not be the case. Halevy (2008) linked diminish-
ing impatience in time and probability weighting by contrasting the certainty
of the present and the uncertainty associated with all future prospects. Ep-
per et al. (2011) also explained diminishing impatience as a combination of
uncertainty about future payoffs and subjective probability weighting related
to such delayed payoffs. In this paper we assess the presence of general hyper-
bolic (GH) discounting that implies that diminishing impatience is not only
explained by present bias (quasi-hyperbolic discounting) but is associated
more generally with extended time horizons. It implies that δ(annualized
discount rate)/δ(length of time horizon)< 0 also when the starting point for
the time horizon is into the future and thereby eliminating present bias. Note
that GH nests the constant discounting and the quasi-hyperbolic models. In
this study we investigate whether or not or to what extent non-linear prob-
ability weighting in risky prospects may explain diminishing impatience by
jointly estimating risk and time preferences based on original data from a field
experiment with time-dated risky and certain amounts in a within-subject
design.

To stay away from the complicating portfolio and inter-temporal diversifi-
cation issues (Andersen et al., 2018b; Harrison et al., 2022), we only introduce
risk in one of the time-dated prospects. Our field experiment is in a devel-
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oping country context with a large sample of rural young business group
members in Ethiopia. Their on average low and variable level of education
re-enforced the need to have simple elicitation tools and we used variants of
CLs with binary choices where safe amounts in the near (far) future were
compared to far (near) future safe (risky) amounts. For the risky prospects,
unlike in the standard Holt and Laury (2002) approach, we keep the probabil-
ities for high and low outcomes constant within each CL. Only the time-dated
certain amounts vary within each CL and allow the identification of a time-
dated Certainty Equivalent within an interval of certain amounts bordering
the switch point in the CL. Each subject responded to a total of 14 CLs of
which eight CLs contain risky and safe outcomes at different points in time
and the remaining six CLs contain only certain time-dated amounts. Time
delays vary from one week to six, 12, and 24 months. Subjects had a 10%
probability of one of the 14 CLs to be randomly drawn as a real game. Con-
fidence in future payouts among the respondents was ensured through giving
them reward tickets that can be cashed out at the local credit and savings
institution (DECSI) at the appropriate time.

This allows us to further investigate the theory of Epper et al. (2011);
Epper and Fehr-Duda (2015); Halevy (2008) that an RDU model can explain
diminishing impatience in inter-temporal choice. We utilize variation in the
time-dated amounts in our CLs to elicit utility curvature and to separate it
from probability weighting. We test the Expected Value (EV), the Rank-
Dependent Expected Value (RDEV) (Yaari, 1987) and the RDU (Quiggin,
1982) models for risky prospects versus Samuelson’s constant discounting
(SD), quasi-hyperbolic (QH) discounting, and general hyperbolic (GH) dis-
counting. We test for and identify diminishing impatience in future risky
prospects with longer time horizons. We utilize this to investigate our pri-
mary research question that non-linear probability weighting can explain this
diminishing impatience. We evaluate it by assessing the parameter sizes of
the time horizon dummy variables in the GH models without and with non-
linear probability weighting and the overall performance of the GH models
versus the SD and QH models.

Second, our study allows us also to assess whether we find the same near
linear utility in time as found in a number of recent studies (Andreoni et al.,
2015; Abdellaoui et al., 2013; Cheung, 2019). We regard near-zero discount
rates as a lower bound and thereby impose a restriction on the concavity of
the time-dated utility function.

The results demonstrate strongly diminishing impatience with future time
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horizons expanding from 6 to 12 and 24 months when the reference point was
one week into the future, showing that this is not explained by present bias.
The introduction of non-linear probability weighting through endogenous or
constrained Prelec α and β parameters to answer our key research question,
did not reduce the diminishing impatience in our data (Prelec, 1998). The
answer to our key research question is therefore that the strong diminishing
impatience in our data cannot be explained by probability weighting in time-
dated risky prospects.

The paper proceeds as follows. Section 2 presents our experimental de-
sign, section 3 gives an overview of the sampling and data. Section 4 presents
the theoretical framework and hypotheses and section 5 the estimation strat-
egy. The results are presented in section 6 and these are discussed in relation
to some of the most relevant literature in section 7 before we conclude.

2. Experimental design

We used a multiple Choice List (CL) approach with a within-subject
design to elicit time preferences with safe and risky prospects. An overview
of the full set of 14 Choice Lists (CLs) is presented in Table 1. The first
six CLs are without risk and each CL includes choices between a fixed far
future amount and a fixed time horizon while the near future amounts decline
systematically from the top row to the bottom row of the CL (see Appendix
1 for an example CL). The far future points in time are 6, 12 and 24 months
into the future. The near future point in time is one week into the future to
avoid present bias, while the varying time horizons can detect diminishing
impatience with longer time horizon that is not explained by present bias.
The future amounts are 300 ETB or 1500 ETB to assess the importance of
magnitude effects (utility curvature).1

CLs 7-14 include one risky and one safe outcome. For these eight CLs
we included one risk and one safe prospect2. Two of these CLs contained
a risky near future outcome (CL 9 and 11) while the rest contained a risky

1Due to significant inflation in the study region, future amounts are deflated before
they are used in the analysis. For simplification of exposition, we use nominal future
amounts in tables but we should remember that e.g. 1500 ETB 6 months from now is a
larger amount than 1500 ETB 24 months from now.

2We avoided CLs with two risky prospects due to the complexity of analyzing such
prospects (Andersen et al., 2018b).
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far future outcome. A 20-sided die was used to illustrate the probabilities
for the risky prospects. The outcomes for the risky prospects are always a
given probability of a positive outcome or nothing and this prospect is kept
constant within the CL while the dated safe amount varies across rows to
identify the dated certainty equivalent of the risky dated prospect. Three of
the prospects have very short horizons (CLs 10, 12 and 14) where the choice
is between risky amounts one week into the future and sure amounts today.
The remaining three CLs (7, 8 and 13) include far future risky prospects and
sure near future (one week) amounts.

Each CL has 11 rows (see Appendix for full view of all series). If no switch
point were found when reaching the bottom row, additional rows were added
until a switch point was reached. A similar approach was not used at the
top of the lists.

The order of the CLs was randomized to avoid confounding of order effects
with CL design. Within each CL the starting row was randomized and a rapid
elicitation method was used to find the switch point. This method avoided
multiple switch points in each CL. However, it could result in no switch
point in a CL. The design allows us to control for possible bias associated
with random order and random starting point in each CL in the estimation.

We used the random lottery method to provide monetary incentives in our
experiments. The respondents were informed that there was a 10% probabil-
ity of winning in the experiment and that the lucky winners will be randomly
drawn just after the completion of the experiment. Our approach therefore
eliminates the possibility of future uncertainty being confounded with the
timing of the payments (Epper and Fehr-Duda, 2015). A 20-sided die was
used both to illustrate probabilities in the risky prospects and to randomly
draw winners and CLs for payout in the games. For the randomly identi-
fied CL for payout for the winning respondents, a new random draw was
made to identify the winning row in the CL. The choice of the respondent
was then used to identify the payout and the timing of the payout. If this
choice was a risky prospect, this risk was immediately resolved by using the
20-sided die once more. The winners were then given a reward ticket that
could be cashed in at the appropriate date at the local credit and savings
organization’s office (DECSI) and had a guarantee from Mekelle University.
As we have a project that has done research related to the business groups
the respondents belonged to for more than three years, they had experienced
that the researchers were reliable and returned. They were also informed
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that we had a project that would go on for four more years3. These facts
also created trust and credibility of the experiment among our respondents
who could consider future payments as certain.

Table 1: Time and risk preference choice list overview

CL No. P(good) FFT FFA P(good) NFT NFA
FFT months ETB NFT months ETB

1 1 24 300 1 0.25 15-300
2 1 6 300 1 0.25 15-300
3 1 12 300 1 0.25 15-300
4 1 24 1500 1 0.25 75-1500
5 1 6 1500 1 0.25 75-1500
6 1 12 1500 1 0.25 75-1500
7 0.05 12 1500 1 0.25 5-100
8 0.05 6 1500 1 0.25 5-100
9 1 12 15-300 0.05 0.25 1500
10 0.05 0.25 1500 1 0 5-100
11 1 12 15-300 0.15 0.25 500
12 0.15 0.25 500 1 0 5-100
13 0.9 12 100 1 0.25 30-100
14 0.9 0.25 100 1 0 5-100

Note: FFT=far future time, FFA=far future amount, NFT=near future
time, NFA=near future amount, P(good)=probability of good outcome
for risky prospects.

3. Data

3.1. Sampling

The samples consists of rural youth that are members of youth business
groups that are formalized and organized as primary cooperatives in northern
Ethiopia. Resource-poor youth are found eligible to join such youth business
groups that are provided an area of rehabilitated communal land for estab-
lishment of a sustainable business. They live in a risky semiarid environment

3At the time of our experiments nobody expected the civil war that suddenly started
in November 2020.
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and their production activities4 are therefore risky. The business groups are
required to manage their land resource in a sustainable way in order to retain
the right to use it. Our sample comes from four districts (woredas) in Tigray
Region and consists of up to 12 group members from each business group.
For estimation purposes we split the sample in two to retain one sample for
initial estimation and the second sample for assessment of the within-CL sta-
bility of the cumulative switch point distributions. Each sample consists of
approximately 400 respondents and both samples were drawn from the same
pool of business groups in the four districts.

3.2. Cumulative switch point distributions

We see varying degree of right censoring across CLs for CLs 1-6 and 13.
The rows that were added in such cases are not shown in the figures but they
implied that switch points and discount rate ranges were also identified for
these right censored CLs and respondents.

We see left censoring for a number of the CLs with risky prospects. The
largest sample share (40-45%) with left censored observations is observed for
CLs 9 and 11 where the respondents were asked about the preference for a
low probability high outcome far future prospect versus a sure near future
prospect. We return to the issue of how we handled the censored CLs and
respondents in the estimation strategy.

CLs 7, 8, 10 and 12 also have 15-20% left censoring. In these CLs it was
the near future prospect that was risky (low probability of winning). The
last two CLs (13 and 14) contain risky prospects with high probability of
winning with long (12 months) and short (one week) horizons.

4. Theory and Estimation Strategy

4.1. Theoretical model integrating time and risk preferences

We begin with an additive time-separable inter-temporal utility function
with exponential discounting as the benchmark model. We assume that re-
spondents have a linear time-dated utility function within given time periods
(Andreoni and Sprenger, 2012a; Vieider et al., 2019). We focus exclusively
on “gains only” situations so that we can ignore “gain-loss” asymmetries.

4Their production activities included livestock, forestry, horticulture, and irrigation
agriculture, which all are sensitive to the stochastic rainfall pattern.
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Figure 2: Risk-free time-dated prospects, 300 and 1500 ETB future amounts and 6, 12
and 24 months time horizons

Figure 3: Risky far future and near future prospects versus time-dated certain amounts

Figure 4: High- and low-risk prospects and alternative time horizons
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The hyperbolic and magnitude anomalies that we seek to explore are evi-
dent in experiments with gains only and therefore are not a direct effect of
gain-loss asymmetries (Holden and Quiggin, 2017). Respondents are given
the choice between two prospects, MA at time t1 and MB at time t2, where
t2 > t1 > t0 = 0. Decision-makers must choose between UA and UB. In
the dated utility it is assumed that the prospects are integrated with a ba-
sic background consumption b at that point in time.5 The inter-temporal
binary choice between the two time-dated prospects can then be formulated
as follows:

UA = e−δ(t1−t0)u(b+MA) + e−δ(t2−t0)u(b)

UB = e−δ(t1−t0)u(b) + e−δ(t2−t0)u(b+MB)
(1)

where δ is the exponential continuous time discount rate.
Alternatively, the far future prospect (MB) or the near future prospect

(MA) can be made risky. A risky prospect has a probability p < 1 of a
positive outcome, and 1-p probability of zero outcome. We allow subjective
probability weighting for the risky prospects, giving weighted probability
w(p) of winning and weighted probability [1 − w(p)] of not winning. The
binary choice between a risky far future prospect and a certain near future
prospect is modeled as follows:

UA = e−δ(t1−t0)u(b+MA) + e−δ(t2−t0)u(b)

UB = e−δ(t1−t0)u(b) + e−δ(t2−t0)(w(p)u(b+MB) + [1− w(p)]u(b))
(2)

In the other case with the near future prospect (MA) being risky, we may
model the binary choice as follows;

UA = e−δ(t1−t0)(w(p)u(b+MA) + [1− w(p)]u(b)) + e−δ(t2−t0)u(b)

UB = e−δ(t1−t0)u(b) + e−δ(t2−t0)u(b+MB)
(3)

5This base consumption is representing the degree of asset integration that is assumed.
The lower the base consumption, the lower the degree of asset integration. With zero
asset integration (b = 0), the prospects are judged in total isolation (narrow framing
or bracketing). With full asset integration b is the total wealth of the respondents. In
risk preference experiments it has been found that the degree of asset integration is very
limited (Binswanger, 1981; Andersen et al., 2018a). We have chosen to set it at th local
daily wage, following Andersen et al. (2008).
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A general formulation allows both prospects to be risky or safe as w(1) = 1
and w(0) = 0.

Each choice by the respondent in CLs 7-14 is between a risky and a safe
option. The risky option gives a high outcome x with probability p and a low
outcome y with probability 1− p. We call the safe amount s. We place the
choice between the risky and safe prospect into a Rank Dependent Utility
(RDU) framework (Quiggin, 1982). The net present (discounted) utility or
value return for a specific risky and a safe option can then be formulated as
follows:

∆RDU = e−δ(tr−t0)(w(p)u(b+x)+[1−w(p)]u(b+y))−e−δ(ts−t0)u(b+s) (4)

with tr giving the time date of the risky prospect and ts giving the time
date of the safe prospect, thus generalizing equations (2) and (3) above in
equation (4). w(p) is the probability weighting function.

The model nests EU when w(p) = p and EV when utility is linear. We
compare models based on EV vs. RDEV vs. RDU (concave vs. linear utility
and linear vs. non-linear probability weighting). We assess how well these
models fit with alternative constant (SD), quasi-hyperbolic (QH) and general
hyperbolic (GH) discounting functions. The possible (degree of) diminishing
impatience is captured by the size of the parameters on the time horizon
dummy variables in the GH specification.

The probability weighting function is modeled with a Prelec (1998) 2-
parameter weighting function:

w(p) = e−β(− ln p)α , α > 0, β > 0 (5)

where α captures the degree of (inverse) s-shape of the weighting function
with α > (<)1, and the β captures the elevation of the function, with β < 1
giving more elevated (optimistic) and β < 1 giving less elevated (pessimistic)
weighting of prospects. The function is strictly increasing and continuous
within the interval [0, 1]6.

Non-linear utility is allowed for with a Constant Elasticity of Marginal
Utility (CEMU) function7:

6Alternative linear and non-linear models can be run by imposing constraints on the α
and β parameters as for EU α = β = 1

7This is also often called a Constant Relative Risk Aversion utility function but in our
case risk aversion is (partially) captured through the probability weighting function.
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u(x) = (1− θ)−1((b+ x)1−θ − 1) (6)

where θ captures the constant elasticity of marginal utility. The utility
function is linear for θ = 0.

Rank-dependent utility theory and cumulative prospect theory introduce
probability weighting and the most common empirical finding is that respon-
dents overweight low probabilities and underweight high probabilities. We
may call this “probabilistic risk preferences”. The inverted S-shape implies
that respondents are probabilistic risk lovers for low probability risks and
probabilistic risk averse for high probability risks.

4.2. Estimation Strategy

The estimation based on the binary choice data is using the maximum
likelihood estimation approach with the Luce error specification ((Holt and
Laury, 2002)). The Luce error specification allows respondents to make errors
in their choices. The error probability is captured by the parameter µ in the
Luce specification.

∇U =
U

1
µ

A

U
1
µ

A + U
1
µ

B

(7)

Equation (7) nests the discounted risky and certain prospects based on
the alternative linear (EV, RDEV)) and non-linear (RDU) utility, probability
weighting, and discounting functions as special cases.

This give rise to the following likelihood function:

lnL(δt, µ, α, β, θ;ChoiceCLp,t,m , Zi, Xj) =∑
i

((ln(Φ(∇U)|Choicet,m = 1) + (ln(Φ(1−∇U)|Choicet,m = 0)) (8)

where Choiceij = 1(0) denotes the choice of alternatively UA or UB for each
row in each CL.

Three different specifications for δt are allowed, including constant (SD),
quasi-hyperbolic (QH) and general hyperbolic8 (GH) specifications:

8With limited variation in time horizons the use of horizon-specific dummy variables
gives more flexibility than imposing a specific hyperbolic functional form. Our approach
is thereby more flexible and agnostic about the functional form.
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SD :δt = δ

QH :δt = δtf + δt0CLt0

GH :δt = δt24CLt24 + δt12CLt12 + δt6CLt6 + δt0CLt0

(9)

The quasi-hyperbolic (QH) specification includes a dummy for the three
CLs that compare current prospects with near future (1 week) prospects
while the δtf estimates the average discount rate for all the other CLs with
longer time horizons and near future equal to one week. This parameter (δt0)
may be high due to a combination of present bias and a short horizon effect.
The full hyperbolic model contains dummies for each time horizon length in
addition to the current vs. one week prospects. With diminishing impatience
the longest horizon (24 months) should give the lowest discount rate (δt24)
and the incremental dummy variable parameters for shorter horizons should
give positive mark-up values as the discount rates are measured in deflated
annualized rates. No diminishing impatience except that caused by present
bias should imply δt12 = δt6 = 0. If ignorance of non-linear probability
weighting is the reason for observed diminishing impatience, implying δt6 >
δt12 > 0, the introduction of the RD-specifications should reduce the size of
these parameters and make them insignificantly different from zero.

The Luce error (µ) is allowed to vary with the order of the CLs, with ran-
dom starting row in the CL, and with enumerators running the experiments
for each subject (enumerator FE). We run representative agent models. We
impose the relevant constraints to assess sequentially models based on the
alternative theoretical assumptions and to assess their relative performance,
see Table 2.

To assess whether probability weighting can explain diminishing impa-
tience, we examine in the models above how the introduction of the RDEV
and RDU models influence the discount rates and the degree of variation in
discount rates by time horizon. If non-linear probability weighting explains
apparent non-linear discounting, the RDEV-SD and RDEV-QH as well as
RDU-SD and RDU-QH models should perform as well as the RDEV-GH
and RDU-GH representative agent models. However, if the time horizon
dummy discount rate parameters in the GH models are large and signifi-
cant for shorter time horizons after the introduction of the RDEV- or RDU-
specifications, probability weighting may not explain the observed diminish-
ing impatience associated with extended time horizon in the data.
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Table 2: Model specifications

Discounting model
Models Samuelson (Constant) Quasi-hyperbolic General hyperbolic

SD QH FH
EV EV-SD EV-QH EV-GH
RDEV RDEV-SD RDEV-QH RDEV-GH
RDU RDU-SD RDU-QH RDU-GH
EV: Linear utility and linear probability weighing, RDEV: Linear utility
and non-linear probability weighting, RDU: Non-linear utility and
non-linear probability weighting.

As additional robustness checks we complement and combine the nine
specifications above with some additional parameter restrictions due to the
following; a) Some models with linear utility failed to converge and were re-
placed by models with almost linear but concave utility functions; b) Fully
flexible probability weighting parameters combined with a fully flexible elas-
ticity of marginal utility (CEMU-θ) parameter resulted in implausible neg-
ative discount rates, very concave utility (very large CEMU-θ), and large
Prelec β. We therefore imposed restrictions on the CEMU-θ and did a sensi-
tivity analysis for the range of the CEMU-θ that gave non-negative discount
rates for all time horizons; c) As the experiment contains limited variation
in probabilities with only high and low p and no intermediate values, the
Prelec parameters may not be very robustly estimated. As a complement
we therefore draw on another risk experiment for the same sample popu-
lation which included much more variation in p but that did not have any
time delayed prospects. As our focus is on representative agents, we use
population-averaged Prelec parameters and in one specification also the risk
based utility curvature estimate, CRRA-r 9 as constrained parameters in the
analysis of our experimental data that combines time-dated utility and risk.

9It is more questionable whether CRRA-r from that experiment can be substituted for
CEMU-θ in our experiment
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5. Results

5.1. EV (linear utility and linear probability weighting) discounting models

The results for the EV models with the three alternative discounting
approaches are presented in Table 2. The model with constant discounting
(SD) gave an average discount rate of 48.6% across all treatments10. The
quasi-hyperbolic model which allowed a separation of the discount rate for
the short-term/ current vs. longer-term prospects, gave an average discount
rate of 318.0% for the short-term/current CLs vs. an average discount rate of
40.9% for the longer-term prospects for the same subjects with our within-
subject design. The third model allows for further differentiation of the
discount rates for six, 12 and 24 months horizons. The average discount
rate is 22.4% for the 24 months horizon, 38.5% for the 12 months horizon,
and 93.2% for the 6 months horizon, and 320.5% for the present vs. one
week horizon CLs11. These results provide strong evidence of diminishing
impatience in these models with linear utility and linear probability weighting
as the time horizon dummies are highly significant and we see a strong decline
in the discount rates as the time horizon is extended.

5.2. Non-linear probability weighting with linear utility (RDEV) discounting
models

We present models with 1-parameter and 2-parameter Prelec probability
weighting functions in Tables 3 and 4. This is a first test of whether non-linear
probability weighting can explain (part of) the strong diminishing impatience
we saw in Table 212.

The models with the 1-parameter Prelec functions generate the 1-parameter
Prelec α that varies from 0.907 to 1.02 in Table 3 and that therefore is close
to 1 and this means the probability weighting function remains close to lin-
ear. The implication of this is that also the discount rate (time horizon)
parameters in Table 3 are close to those in the EV-models in Table 2.

Table 4 presents RDEV models with the the 2-parameter Prelec func-
tion that allows for more flexible probability weighting. We see that the

10This model failed to generate a Wald chi2 statistic and p-value for the model. This
was also the case for the later models with the SD specification.

11Note that the intercept in this model represents the 24 months time horizon CLs.
12The 1-parameter (Prelec α) probability weighting function only allows for (inverted)

S-shape of the function, while the 2-parameter (Prelec α and Prelec β) function also allows
for optimism/pessimism.
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Table 3:
Integrated time and risk preference models: EV-models

(1) (2) (3)
EQUATION VARIABLES EV-SD EV-QH EV-GH

Discount rate Present bias 2.771*** 2.981***
Time horizon and 1 week (0.064) (0.061)

6 months 0.708***
(0.024)

12 months 0.161***
(0.022)

24 months 0.224***
(0.024)

Constant 0.486*** 0.409***
(0.041) (0.034)

Luce error CL order FE Yes Yes Yes
Enumerator FE Yes Yes Yes
Start row FE Yes Yes Yes
Constant 0.481*** 0.479*** 0.375***

(0.034) (0.034) (0.026)

Observations 62,862 62,862 62,862
Log likelihood -29161 -28358 -27460
N clusters 404 404 404
p 0.000 0.000
Wald chi2 1883 2650

Discount rates measured in 100% annualized deflated units. EV: Linear
utility, SD: Samuelson Constant Discounting, QH: Quasi-hyperbolic, GH:
General hyperbolic. Cluster-corrected standard errors, clustering on
subjects. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 4:
Integrated time and risk preference models: 1-parameter Prelec function

(1) (2) (3)
EQUATION VARIABLES RDEV-SD RDEV-QH RDEV-GH

Discount rate Present bias 2.882*** 3.177***
Time horizon and 1 week (0.046) (0.043)

6 months 0.717***
(0.022)

12 months 0.095***
(0.022)

24 months 0.222***
(0.025)

Constant 0.490*** 0.394***
(0.041) (0.035)

CEMU-θ Constant 0.000 0.000 0.000
(0.000) (0.000) (0.000)

Prelec α Constant 1.020*** 0.955*** 0.907***
(0.018) (0.016) (0.018)

Luce error CL order FE Yes Yes Yes
Enumerator FE Yes Yes Yes
Start row FE Yes Yes Yes
Constant 0.482*** 0.476*** 0.375***

(0.034) (0.033) (0.025)

Observations 62,862 62,862 62,862
Log likelihood -29149 -28290 -27238
N clust 404 404 404
p 0.000 0.000
Wald chi2 3928 6629

Discount rates measured in 100% annualized deflated units.
RDEV=Rank Dependent Expected Value, SD=Samuelson Constant Discounting,
QH=Quasi-hyperbolic, GH=General hyperbolic. Cluster-corrected standard
errors, *** p < 0.01, ** p < 0.05, * p < 0.1
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SD (constant discounting) model gives a Prelec α = 0.568 and a Prelec
β = 1.593 which indicates a strongly inverted S-shaped and pessimistic
probability weighting and an average discount rate of 50.2%. This changes
dramatically when we open for present bias/short horizon effects in the dis-
counting as can be seen in model (2) in Table 4. This RDEV-QH model
gives again a close to linear probability weighting function, like in Table 3.
The average discount rate for delayed prospects is 39.9% and 324.9% for the
present/short horizon (1 week) prospects. However, with the introduction of
the more flexible time horizon (RDEV-GH) specification, an even stronger
inverse-S and pessimistic function than in the SD model is estimated. The
RDEV-GH model with the highly non-linear probability weighting function
again identifies strong diminishing impatience with increasing time horizon
albeit it failed to estimate the present bias/short-term discount rate prop-
erly. With this strongly inverted-S shaped probability weighting function the
discount rate is 22.6% for the 24 months horizon, 49.2% for the 12 months
horizon, and 96.3% for the 6 months horizon which even implies a stronger
diminishing impatience across these time horizons than in the model with
linear probability weighting in Table 2. We further scrutinize these results in
the next section where we open for non-linear utility as the failure to prop-
erly identify the present bias/short horizon effect in the RDEV-GH model in
Table 4 may affect the other parameters in this model.

5.3. Rank dependent utility (RDU) discounting models

5.3.1. RDU models with endogenous Prelec α and β and constrained CEMU-
θ

As a bridge towards the previous models we introduced models with
weakly concave utility functions. When the CEMU-θ was raised to 0.08
the model also identified the present bias/short horizon parameter in the
RDU-GH specification that failed in the RDEV-GH specification in Table 4,
see Table 513.

There are two important changes to observe when comparing the RDEV
models in Table 4 and the RDU models in Table 5. First, we see that the
discount rates are reduced on average as would be expected with a con-
cave versus a linear utility function. Second, the strongly non-linear prob-

13For CEMU-θ in the range 0-0.07 we obtained only large and implausible negative
numbers for this parameter.
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Table 5:
Integrated time and risk preference models: With unconstrained 2-parameter

Prelec function, CEMU-θ = 0
(1) (2) (3)

EQUATION VARIABLES RDEV-SD RDEV-QH RDEV-GH

Discount rate Present bias 2.850*** -99.625
Time horizon and 1 week (0.057) (0.000)

6 months 0.737***
(0.022)

12 months 0.266***
(0.019)

24 months 0.226***
(0.025)

Constant 0.502*** 0.399***
(0.037) (0.036)

Prelec α Constant 0.568*** 0.914*** 0.523***
(0.030) (0.042) (0.028)

Prelec β Constant 1.593*** 1.047*** 1.635***
(0.059) (0.055) (0.055)

Luce error CL order FE Yes Yes Yes
Enumerator FE Yes Yes Yes
Start row FE Yes Yes Yes
Constant 0.482*** 0.476*** 0.373***

(0.034) (0.033) (0.025)

Observations 62,862 62,862 62,862
Log likelihood -28805 -28288 -27959
N clusters 404 404 404
p 0.000 0.000
Wald chi2 2507 1248

Discount rates measured in 100% annualized deflated units.
RDEV=Rank Dependent Expected Value, SD=Samuelson Constant Discounting,
QH=Quasi-hyperbolic, GH=General hyperbolic. Cluster-corrected standard
errors, *** p < 0.01, ** p < 0.05, * p < 0.1
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ability weighting function is corrected in the RDU-GH model compared to
the RDEV-GH model. The RDU-FH model in Table 5 that also used a 2-
parameter Prelec function produces a close to linear probability weighting
function and discounting parameters that imply strongly diminishing impa-
tience with extended time horizon. The RDU-GH model generates probabil-
ity weighting parameters that are close to those in the RDU-QH in Table 5
and the RDEV-QH specifications in Tables 3 and 4. The RDU-GH model
generates an average discount rate of 16.6% for the 24 months horizon, 26.4%
for the 12 months horizon, 88.3% for the 6 months horizon, and 336.1% for
the present/one week horizon CLs.

As a next step we adjusted the constrained CEMU-θ up until the longest
horizon discount rate in the RDU-FH model is approximately zero. This
occurred for a CEMU-θ = 0.314. When we compare the results in Tables
5 and 6 we see that the discount rate declined from 44.9% to 29.2% in the
RDU-SD models as the result of increasing the CEMU-θ from 0.08 to 0.3. For
the RDU-QH models the average discount rate for future prospects declined
even more, from 43.2 to 19.5%, while it increased slightly, from 286.0 to
289.5%, for the present/one week horizon CLs.

For the RDU-GH models in Table 6 the reduction of the discount rate is
from 16.6 to 0% for the 24 months horizon, from 26.4 to 11.2% for the 12
months horizon, and from 88.2 to 71.5% for 6 months horizon, and from 336.1
to 323.4% for the present/one week horizon CLs. These changes are accom-
panied with a slightly more non-linear and optimistic probability weighting
function as the endogenously determined parameter values for Prelec α de-
clined from 0.905 to 0.858 and the Prelec β declined from 0.948 to 0.848.
A more concave utility function is therefore leading to a more inversely S-
shaped and optimistic probability weighting function. However, the degree
of diminishing sensitivity has not been affected much and remains strong and
highly significant.

5.3.2. RDU models with constrained Prelec α and β parameters

The models above attempt to estimate the Prelec α and β parameters but
may not provide accurate estimates as they are based on a limited number of
CLs with high and low values of p. We benefit from having access to estimates

14Models with CEMU-θ equal to 0.1 and 0.2 are included in the Appendix and give
intermediate results between those in Tables 5 and 6.
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Table 6:
Integrated time and risk preference models: With unconstrained

2-parameter Prelec function, and constrained CEMU-θ = 0.08
(1) (2) (3)

EQUATION VARIABLES RDU+SD RDU+QH RDU+GH

Discount rate Present bias 2.860*** 3.195***
Time horizon and 1 week (0.057) (0.047)

6 months 0.716***
(0.022)

12 months 0.098***
(0.021)

24 months 0.166***
(0.025)

Constant 0.449*** 0.346***
(0.037) (0.036)

CEMU-θ Constant 0.080 0.080 0.080
(0.000) (0.000) (0.000)

Prelec α Constant 0.556*** 0.899*** 0.905***
(0.029) (0.042) (0.040)

Prelec β Constant 1.526*** 1.006*** 0.948***
(0.055) (0.052) (0.047)

Luce error CL order FE Yes Yes Yes
Enumerator FE Yes Yes Yes
Start row FE Yes Yes Yes
Constant 0.439*** 0.432*** 0.342***

(0.031) (0.030) (0.022)

Observations 62,862 62,862 62,862
Log likelihood -28698 -28180 -27137
N clusters 404 404 404
p 0.000 0.000
Wald chi2 2530 6290

Discount rates measured in 100% annualized deflated units.
RDU=Rank Dependent Utility, SD=Samuelson Constant Discounting,
QH=Quasi-hyperbolic, GH=General hyperbolic. Cluster-corrected standard
errors, *** p < 0.01, ** p < 0.05, * p < 0.1

21



Table 7:
Integrated time and risk preference models: With unconstrained

2-parameter Prelec function, CEMU-θ = 0.3
(1) (2) (3)

EQUATION VARIABLES RDU-SD RDU-QH RDU-GH

Discount rate Present bias 2.895*** 3.234***
Time horizon and 1 week (0.057) (0.047)

6 months 0.712***
(0.021)

12 months 0.112***
(0.019)

24 months 0.001
(0.026)

Constant 0.292*** 0.195***
(0.035) (0.034)

CEMU-θ Constant 0.300 0.300 0.300
(0.000) (0.000) (0.000)

Prelec α Constant 0.520*** 0.852*** 0.858***
(0.026) (0.042) (0.040)

Prelec β Constant 1.346*** 0.898*** 0.848***
(0.045) (0.046) (0.041)

Luce error CL order FE Yes Yes Yes
Enumerator FE Yes Yes Yes
Start row FE Yes Yes Yes
Constant 0.323*** 0.316*** 0.254***

(0.022) (0.022) (0.016)

Observations 62,862 62,862 62,862
Log likelihood -28377 -27854 -26849
N clusters 404 404 404
p 0.000 0.000
Wald chi2 2608 6249

Discount rates measured in 100% annualized deflated units.
RDU=Rank Dependent Utility, SD=Samuelson Constant Discounting,
QH=Quasi-hyperbolic, GH=General hyperbolic. Cluster-corrected standard
errors, *** p < 0.01, ** p < 0.05, * p < 0.1

22



of these parameters from a large sample from the same population where more
comprehensive atemporal risk preference experiments were used to estimate
these parameters more accurately (Holden and Tilahun, 2021b). This study
found an average Prelec α = 0.62 and an average Prelec β = 0.915. In Table
7 we present the results for the three types of discounting models with these
as constrained Prelec parameters and a near-linear utility function (CEMU-
θ = 0.03). Table 7 shows that the average discount rate in the RDU-SD
model increases to 82.9%, to 72.1% for the future prospects in the RDU-QH
model and retains strong diminishing impatience in the RDU-GH model.
There are therefore no indications that the stronger degree of non-linear
probability weighting can explain the diminishing impatience associated with
longer time horizons in our data.

A further robustness check for a CEMU-θ = 0.3 is presented in Table
8, with overall lower discount rates as would be expected but without any
substantial reduction in the degree of diminishing impatience.

Table 9 presents models where the CEMU-θ is set equal to the average
CRRA-r estimated by Holden and Tilahun (2021b). We see that this leads to
close to zero discount rate in the SD-model and for longer time horizons in the
QH-model and to strongly negative discount rates for the 24 months horizon
in the GH-model. This is consistent with the findings in other studies that
question the use of risk-based utility in the estimation of time-dated utility
curvature.

The key discount rate estimates are summarized in Figure 6 with the
insights about our main research question; whether probability weighting
can explain diminishing impatience associated with longer time horizons in
our data. To answer definitely yes to this question, the models that incor-
porate non-linear probability weighting based on observed responses in our
experiments should eliminate all signs of diminishing impatience and make
the time horizon dummies in the models with rank dependent probability

15Holden and Tilahun (2021b) found these parameters to be affected by recent shocks
and also studied the individual variation but we utilize only the population averages for
these parameters in our representative agent analysis in this study. Their study also
estimated the utility curvature simultaneously based on 12 CLs. However, the recent
literature has questioned whether the utility curvature estimated in an atemporal risk
experiment applies to time-dated utility such as in our experiment (Cheung, 2016, 2019).
Estimates of utility curvatures in such risk experiments tend to be higher than those found
in inter-temporal time-dated experiments.
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Table 8:
Integrated time and risk preference models: With constrained 2-parameter

Prelec function, Prelec α = 0.62, Prelec β = 0.9, CEMU-θ = 0.03
(1) (2) (3)

EQUATION VARIABLES RDU-SD RDU-QH RDU-GH

Discount rate Present bias 3.249*** 3.740***
Time horizon and 1 week (0.058) (0.049)

6 months 0.902***
(0.020)

12 months 0.310***
(0.017)

24 months 0.228***
(0.026)

Constant 0.829*** 0.721***
(0.062) (0.055)

CEMU-θ Constant 0.030 0.030 0.030
(0.000) (0.000) (0.000)

Prelec α Constant 0.620 0.620 0.620
(0.000) (0.000) (0.000)

Prelec β Constant 0.900 0.900 0.900
(0.000) (0.000) (0.000)

Luce error CL order FE Yes Yes Yes
Enumerator FE Yes Yes Yes
Start row FE Yes Yes Yes
Constant 0.457*** 0.437*** 0.335***

(0.042) (0.040) (0.029)

Observations 62,862 62,862 62,862
Log likelihood -31155 -30158 -28646
N clusters 404 404 404
p 0.000 0.000
Wald chi2 3159 6281

Discount rates measured in 100% annualized deflated units.
RDU=Rank Dependent Utility, SD=Samuelson Constant Discounting,
QH=Quasi-hyperbolic, GH=General hyperbolic. Cluster-corrected standard
errors, *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 9:
Integrated time and risk preference models: With constrained 2-parameter

Prelec function, Prelec α = 0.62, Prelec β = 0.9, CEMU-θ = 0.3
(1) (2) (3)

EQUATION VARIABLES RDU-SD RDU-QH RDU-GH

Discount rate Present bias 3.189*** 3.513***
Time horizon and 1 week (0.052) (0.049)

6 months 0.814***
(0.022)

12 months 0.176***
(0.018)

24 months 0.010
(0.026)

Constant 0.443*** 0.330***
(0.052) (0.042)

CEMU-θ Constant 0.300 0.300 0.300
(0.000) (0.000) (0.000)

Prelec α Constant 0.620 0.620 0.620
(0.000) (0.000) (0.000)

Prelec β Constant 0.900 0.900 0.900
(0.000) (0.000) (0.000)

Luce error CL order FE Yes Yes Yes
Enumerator FE Yes Yes Yes
Start row FE Yes Yes Yes
Constant 0.313*** 0.305*** 0.245***

(0.026) (0.024) (0.017)

Observations 62,862 62,862 62,862
Log likelihood -30019 -28891 -27474
N clusters 404 404 404
p 0.000 0.000
Wald chi2 3813 5258

Discount rates measured in 100% annualized deflated units.
RDU=Rank Dependent Utility, SD=Samuelson Constant Discounting,
QH=Quasi-hyperbolic, GH=General hyperbolic. Cluster-corrected standard
errors, *** p < 0.01, ** p < 0.05, * p < 0.1
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Table 10:
Integrated time and risk preference models: With constrained 2-parameter

Prelec function, Prelec α = 0.62, Prelec β = 0.9, CEMU-θ=CRRA-r=0.9
(1) (2) (3)

EQUATION VARIABLES RDU-SD RDU-QH RDU-GH

Discount rate Present bias 1.718*** 2.168***
Time horizon and 1 week (0.209) (0.211)

6 months 0.665***
(0.023)

12 months 0.464***
(0.021)

24 months -0.458***
(0.027)

Constant -0.016 -0.019
(0.028) (0.028)

CEMU-θ Constant 0.900 0.900 0.900
(0.000) (0.000) (0.000)

Prelec α Constant 0.620 0.620 0.620
(0.000) (0.000) (0.000)

Prelec β Constant 0.900 0.900 0.900
(0.000) (0.000) (0.000)

Luce error CL order FE Yes Yes Yes
Enumerator FE Yes Yes Yes
Start row FE Yes Yes Yes
Constant 0.098*** 0.098*** 0.077***

(0.008) (0.008) (0.006)

Observations 62,862 62,862 62,862
Log likelihood -28729 -28676 -28031
N clusters 404 404 404
p 0.000 0.000
Wald chi2 67.48 1072

Discount rates measured in 100% annualized deflated units.
RDU=Rank Dependent Utility, SD=Samuelson Constant Discounting,
QH=Quasi-hyperbolic, GH=General hyperbolic. Cluster-corrected standard
errors, *** p < 0.01, ** p < 0.05, * p < 0.1
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Figure 5: Discount rate estimates for 6x3 different model specifications
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weights, insignificant. Or, if probability weighting partially can explain di-
minishing impatience, the models that take such probability weighting into
account should reduce the size of the time horizon parameters compared to
models with linear probability weighting.

Figure 6 shows that the time horizon dummy parameters in the RDEV-
FH and RDU-FH models are also highly significant and no smaller than
those in the EV models. The answer to the main research question is there-
fore a clear No. Our data and models based on different assumptions about
probability weighting and utility curvatures provide evidence of strongly di-
minishing impatience with extended time horizon. The FH models perform
much better than the QH models and indicate that there is more to this
diminishing impatience than present bias although the very high discount
rates estimated for present versus one week delayed prospects also revealed
the importance of taking present bias into account although we are unable,
with our design, to separate the effect of present bias and the very short
horizon of one week.

As a further robustness check of the data and distribution of the switch
points in each CL, the cumulative distributions of switch points are com-
pared in two separate random samples drawn from the same population.
These cumulative distributions are presented in Appendix, Figures A.5 and
A.6. The distributions look strikingly similar for the training sample and the
validation sample and is a further indication that the data are robust.

6. Discussion

Our paper’s main attributes and contributions are that we a) include more
time horizon variation than most other studies that jointly study risk and
time (one week to two years), b) we vary the timing of risky prospects and
the timing of certain prospects, c) in each CL the risky prospect is constant
and compared to varying time-dated certain amounts to minimize certainty
bias, d) we carry out substantial robustness checks for alternative functional
forms for the probability weighting function and the utility function to assess
how these influence the discount rates, e) we used a fairly large scale field
experiment with 404 business group members in a developing country setting
and a within-subject design and f) we assess the stability of the switch point
distributions for two random samples from the same population.

We will now discuss our findings and compare them with other related
studies to highlight how our study adds to the literature on time and risk
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preferences. In the introduction we showed how we depart from recent much
cited and influential studies on time and risk preferences. We built on two
major findings in this literature; 1) that utility in time is different from
utility in risk and is close to linear; and 2) present bias is best controlled for
by comparing time-dated future prospects.

Other studies than those we already have discussed that jointly assess
time and risk preferences include Coble and Lusk (2010) who combined the
Holt and Laury (2002) risk experimental design with a time preference design
within a discounted expected utility (DEU) framework. This allowed them
to estimate the inter-temporal elasticity of substitution as well as a simple
discount factor. Their time preference CLs built on Harrison et al. (2002).
An important difference in this design compared to ours is that they fixed
the near future amount and varied the far future amount. In a developing
country setting where respondents often can have very high discount rates
their approach would lead to a lot of top censoring of the discount rates
(Pender, 1996; Holden et al., 1998). We avoided this by fixing the far future
amount and varied the near future amount and if necessary added rows at the
bottom for even smaller near future amounts for respondents with extremely
high discount rates. This at the same time allowed us also to have an upper
limit for future payouts in the game.

A complicating issue related to time-dated risky prospects is whether
risks are correlated or uncorrelated over time and whether respondents may
make decisions to pool such risks and diversify their portfolio (Andersen
et al., 2018b). Andreoni and Sprenger (2012b) find evidence of such risk-
pooling behavior and inter-temporal diversification that resulted in a much
smaller share of corner solutions in their CTB lists with risk than lists with-
out risk. Epper and Fehr-Duda (2015) show that an RDU model can be
fitted to the data used by Andreoni and Sprenger (2012b). They show that
the data exhibit sub-proportionality in probability weights in line with an
inverted S-shaped probability weighting function. They conclude that an
RDU model provides a unified explanation of all the key findings in An-
dreoni and Sprenger (2012b). RDU is not only suitable in atemporal but
also inter-temporal situations (Epper and Fehr-Duda, 2015).

Andreoni and Sprenger (2012a) used a Convex Time Budget (CTB) ap-
proach for the estimation of time preferences. This approach allows respon-
dents to combine varying levels of near future and far future amounts rather
than just corner solutions of either near future or far future amounts and
may be used to study inter-temporal substitutability or trade between near-
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future and more far-future selves. They also estimated the concavity of the
utility function with their approach and found it to be close to linear. They
argued that using a risk experiment to elicit utility curvature in a riskless
setting is questionable. Abdellaoui et al. (2013), Miao and Zhong (2012), and
Cheung (2019) provide further evidence that utility under risk and over time
are different and that utility over time is close to linear. Cheung (2019) used
an innovative design based on Holt and Laury (2002) to include time-dated
outcomes and was able to jointly estimate utility under risk and over time.
His design gave much stronger concavity under risk than over time and the
two measures were uncorrelated at the individual level. The finding of sig-
nificant but weak concavity of utility in time resulted in a very small bias in
estimated discount rates compared to a linear utility over time assumption.

We need to discuss the certainty effect as we in our CLs with risk compare
certain and a risky prospects that occur at different points in time. The
certainty effect goes back to Keren and Roelofsam (1995) who found that
present bias disappears when risk in terms of 90% chance of getting current
versus future amounts replaces certain payments. Halevy (2008) associates
diminishing impatience and certainty bias to the certainty of the present
and the uncertainty of the future. We combine two design characteristics to
avoid this confound as the explanation for diminishing impatience. First, we
compare near future and more far future prospects16. Second, all our CLs
were risky in the sense that they did not guarantee a payout, only a 10%
probability of payout for participants and each of the 14 CLs had the same
likelihood of payout for the winners. Still, there may be a certainty framing
effect in prospects that compare risky and safe amounts within CLs. Vieider
(2018) has demonstrated that such an apparent effect may depend on the
specific design of the CLs. By a slight change of a design that creates a
certainty effect, he demonstrates a bias in opposite direction. He attributes
this so-called certainty effect to the relative salience of the risky and certain
prospects and reference dependent utility. Such reference dependence is also
demonstrated by Holden and Tilahun (2021a) using the risky investment
game of Gneezy and Potters (1997). They find preference for a more risky
portfolio when the reference point is a risky prospect than when it is a safe
prospect. In all our CLs with risk the risky prospect is the reference point
in the CL and is compared with alternative safe amounts.

16The exceptions are CLs 10, 12 and 14 that include current and near future prospects.
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A recent study that compares utility of risk and time is Cheung (2019).
He uses a transformation of the Holt and Laury (2002) design with payouts
at different points in time to measure utility over time. He suggests that his
design overcomes weaknesses in earlier designs such as the confounding of
marginal utilities, estimation methods and experimental design by using one
unifying design and estimation framework (binary choice). The study uses
six CLs which vary the future time in each list while payouts at near future
and far future points in time stay constant in the two prospects in each CL.
The curvature of utility over time can then be studied by observing how the
switch point changes across the six CLs. In addition, a single standard HL
choice list is used to get a measure of utility under risk. The study uses a
standard one week delay as the near future time horizon and could there-
fore identify one exponential discount rate, a utility in time parameter and
a utility in risk parameter. Based on a student sample from University of
Sidney, models based on EU and RDU are used to estimate representative
agent models. A discounted utility model based on the six CLs give near
linear utility and a fairly high discount rate. Joint estimation with the risk
CL under EU, forcing time and risk utilities to be the same, gives substantial
utility curvature and a much lower discount rate. With a Prelec I function
to capture probability weighting, a joint estimation of time and risk CLs
still gives substantial utility curvature and an inverted S-shaped probability
weighting function. With only one risky CL per respondent it is not pos-
sible to make a clear separation of utility in risk curvature and probability
weighting for a representative agent from a heterogeneous sample of respon-
dents. The study also estimates a discounted incremental utility model based
on Blavatskyy (2016) and this model finds an intermediate utility curvature
and discount rate. An interesting finding is that the individual estimates of
utility curvature in time and in risk are very different and are very weakly
correlated. Our estimates in this study are consistent with these findings
and indicate that time-dated utility is weakly concave while utility in risk
can be substantially more concave. Such utility curvature estimates should
therefore not be used as substitutes.

An important difference between our model and the models estimated by
Cheung (2019) is that we allow partial asset integration, that is we assume
that the experimental payouts are combined with a short term basic income
(daily wage rate) in the time-dated utility function at each point in time.
Cheung, on the other hand, estimates a discounted incremental utility model
which assumes that payouts over time in the game are integrated. However,
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we find it implausible, at least in our case, that it is more appropriate to
integrate payouts over time than to integrate time-dated background income
with payouts at the time of payout when payout points in time are six to 24
months apart. The discounted incremental utility model makes more sense
when payouts are not very far apart. However, partial asset integration with
background income also makes sense when comparing time-dated utilities
over shorter time horizons. In this study we have relied on a constant par-
tial asset integration (with a daily wage rate) in time-dated utility and have
demonstrated that diminishing impatience with longer time horizons can-
not be attributed to non-linear probability weighting associated with risky
future prospects. Another possible explanation for diminishing impatience
has been provided by Holden and Quiggin (2017). Their study did, however,
not attempt to jointly estimate risk and time preferences based on CLs that
combined risk and time. Instead they rely on a strongly concave utility func-
tion based on risk estimated utility in the same study area. We suggest that
future work should use CLs that combine risk and time horizon variation and
that, like Holden and Quiggin (2017), investigate how varying assumptions
about asset integration influence the degree of diminishing impatience. Is
behavior in time and risk better explained by a combination of non-linear
probability weighting and variable asset integration than by non-linear util-
ity? We think this is an interesting area for future research. Variable asset
integration may not only explain diminishing impatience but also magnitude
effects in inter-temporal choice (Holden and Quiggin, 2017; Sun and Potters,
2021).

The trend has been towards joint estimation of risk and time preferences
because of the theoretical links from utility function curvature and non-linear
probability weighting. However, our study provides empirical evidence that
none of these two links had a strong influence on subjects’ discount rates
and diminishing impatience. Does this imply that we may go back to sim-
pler ways of estimating discount rates that can be done without at the same
time eliciting risk or uncertainty preferences? We have not explicitly included
uncertainty preferences in our study. One question is how closely risk prefer-
ences and uncertainty preferences are correlated in the probability weighting
dimension. If such preferences are quite strongly positively correlated, our
findings may also carry over to the world of uncertainty. Another issue is how
the variation in time horizon affects unobservable uncertainty. We will not
draw any conclusions on these issues as we think further studies are needed
before conclusions can be drawn.
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7. Conclusion

We have used a field experiment that used time-dated and risky prospects
to assess whether non-linear probability weighting can explain diminishing
impatience associated with longer time horizons based on a within-subject
design. First, our data provides strong evidence of falling discount rates from
very high rates for very short horizons of one week to horizons of six, 12 and
24 months. The dominant theory within economics to explain diminishing
impatience has been present bias and an associated certainty bias and a re-
lated uncertainty necessarily associated with all future events. We avoided
such a certainty bias by comparing future prospects that necessarily all ex-
hibit an element of uncertainty on top of the varying risk that we explicitly
imposed on the different treatments in our experiment. Even our treatments
with potential immediate payout were risky and therefore only gave a prob-
abilistic likelihood of payout. The risky prospects with high and low payout
probabilities revealed an invested S-shaped probability weighting function in
line with many other studies. Our main research question was whether such
probability weighting could explain the diminishing impatience associated
with longer time horizons in our data as proposed by Halevy (2008) and
Epper et al. (2011). After careful testing of a range of functional forms for
utility and probability weighting we conclude that the pattern of diminishing
impatience is not explained by the non-linear probability weighting derived
from our experiments with risky future prospects. Our study therefore pro-
vides strong empirical experimental evidence that diminishing impatience
is not a behavioral attribute that can be solely explained by present bias
and certainty bias and therefore be fully captured through quasi-hyperbolic
discounting and non-linear weighting of risky future prospects.

Declarations

Acknowledgments
This research has been conducted as a collaboration between Norwegian

University of Life Sciences (NMBU) and Mekelle University. The authors
acknowledge good support from local government authorities, local Youth
Associations, and Mekelle University, and committed efforts by our team of
enumerators and field supervisors.

• Funding

33



Data collection, cleaning, organization and analyses: Stein T. Holden
Grant Number: 288238 The Research Council of Norway

https://www.forskningsradet.no/en/. The funding institutions had no
role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

• Coauthor contributions: Stein T. Holden: Conceptualization of this
study, Methodology, Training of field staff, Data checking and organi-
zation, Analysis, Write-up. Mesfin Tilahun: Training of field staff,
Field testing, Fieldwork organization and supervision, Data checking
and cleaning, Commenting on drafts. Dag Einar Sommervoll: Com-
menting on early drafts, Preparation of Figure 1

• Conflict of interest/Competing interests

The authors declare no conflicts of interest.

• Ethics approval

Funding was approved based on an independent assessment and ap-
proval of ethical standards being met by the project by a scientific
committee.

• Consent to participate

All subjects participating in the project participated on a voluntary ba-
sis and were always asked up-front about their willingness to participate
after having received information about what participation implied and
that the project adhered to strict confidentiality and anonymity of in-
dividual information (informed concent).

• Consent for publication

The article will be published as an open access article as required by
the funding institution.

References

Abdellaoui, M., Bleichrodt, H., l’Haridon, O., and Paraschiv, C. (2013). Is
there one unifying concept of utility? an experimental comparison of utility
under risk and utility over time. Management Science, 59(9):2153–2169.

34



Andersen, S., Cox, J. C., Harrison, G. W., Lau, M. I., Rutström, E. E., and
Sadiraj, V. (2018a). Asset integration and attitudes toward risk: Theory
and evidence. Review of Economics and Statistics, 100(5):816–830.

Andersen, S., Harrison, G. W., Lau, M. I., and Rutström, E. E. (2008).
Eliciting risk and time preferences. Econometrica, 76(3):583–618.

Andersen, S., Harrison, G. W., Lau, M. I., and Rutström, E. E. (2018b).
Multiattribute utility theory, intertemporal utility, and correlation aver-
sion. International Economic Review, 59(2):537–555.

Andreoni, J., Kuhn, M. A., and Sprenger, C. (2015). Measuring time pref-
erences: A comparison of experimental methods. Journal of Economic
Behavior & Organization, 116:451–464.

Andreoni, J. and Sprenger, C. (2012a). Estimating time preferences from
convex budgets. American Economic Review, 102(7):3333–56.

Andreoni, J. and Sprenger, C. (2012b). Risk preferences are not time pref-
erences. American Economic Review, 102(7):3357–76.

Andreoni, J. and Sprenger, C. (2015). Risk preferences are not time prefer-
ences: reply. American Economic Review, 105(7):2287–93.

Binswanger, H. P. (1981). Attitudes toward risk: Theoretical implications of
an experiment in rural india. Economic Journal, 91(364):867–890.

Blavatskyy, P. R. (2016). A monotone model of intertemporal choice. Eco-
nomic Theory, 62(4):785–812.

Cheung, S. L. (2016). Recent developments in the experimental elicitation of
time preference. Journal of Behavioral and Experimental Finance, 11:1–8.

Cheung, S. L. (2019). Eliciting utility curvature in time preference. Experi-
mental Economics, pages 1–33.

Coble, K. H. and Lusk, J. L. (2010). At the nexus of risk and time preferences:
An experimental investigation. Journal of Risk and Uncertainty, 41(1):67–
79.

Cohen, J., Ericson, K. M., Laibson, D., and White, J. M. (2020). Measuring
time preferences. Journal of Economic Literature, 58(2):299–347.

35



Epper, T. and Fehr-Duda, H. (2015). Risk preferences are not time prefer-
ences: balancing on a budget line: comment. American Economic Review,
105(7):2261–71.

Epper, T., Fehr-Duda, H., and Bruhin, A. (2011). Viewing the future through
a warped lens: Why uncertainty generates hyperbolic discounting. Journal
of Risk and Uncertainty, 43(3):169–203.

Frederick, S., Loewenstein, G., and O’donoghue, T. (2002). Time discounting
and time preference: A critical review. Journal of economic literature,
40(2):351–401.

Gneezy, U. and Potters, J. (1997). An experiment on risk taking and evalu-
ation periods. The Quarterly Journal of Economics, 112(2):631–645.

Grijalva, T. C., Lusk, J. L., Rong, R., and Shaw, W. D. (2018). Convex time
budgets and individual discount rates in the long run. Environmental and
Resource Economics, 71(1):259–277.

Grijalva, T. C., Lusk, J. L., and Shaw, W. D. (2014). Discounting the dis-
tant future: An experimental investigation. Environmental and Resource
Economics, 59(1):39–63.

Halevy, Y. (2008). Strotz meets allais: Diminishing impatience and the
certainty effect. American Economic Review, 98(3):1145–62.

Harrison, G. W., Hofmeyr, A., Kincaid, H., Monroe, B., Ross, D., Schnei-
der, M., and Swarthout, J. T. (2022). Subjective beliefs and economic
preferences during the covid-19 pandemic. Experimental economics, pages
1–29.

Harrison, G. W., Lau, M. I., and Williams, M. B. (2002). Estimating indi-
vidual discount rates in denmark: A field experiment. American Economic
Review, 92(5):1606–1617.

Hepburn, C., Duncan, S., and Papachristodoulou, A. (2010). Behavioural
economics, hyperbolic discounting and environmental policy. Environmen-
tal and Resource Economics, 46(2):189–206.

Holden, S. T. and Quiggin, J. (2017). Bounded awareness and anomalies
in intertemporal choice: Zooming in google earth as both metaphor and
model. Journal of Risk and Uncertainty, 54(1):15–35.

36



Holden, S. T., Shiferaw, B., and Wik, M. (1998). Poverty, market imperfec-
tions and time preferences: of relevance for environmental policy? Envi-
ronment and Development Economics, pages 105–130.

Holden, S. T. and Tilahun, M. (2021a). Endowment effects in the risky
investment game? Theory and Decision, pages 1–16.

Holden, S. T. and Tilahun, M. (2021b). Shocks and stability of risk prefer-
ences.

Holt, C. A. and Laury, S. K. (2002). Risk aversion and incentive effects.
American Economic Review, 92(5):1644–1655.

Laibson, D. (1997). Golden eggs and hyperbolic discounting. The Quarterly
Journal of Economics, 112(2):443–478.

Miao, B. and Zhong, S. (2012). Separating risk preference and time prefer-
ence. Available at SSRN 2096944.

Pender, J. L. (1996). Discount rates and credit markets: Theory and evidence
from rural india. Journal of Development Economics, 50(2):257–296.

Prelec, D. (1998). The probability weighting function. Econometrica, pages
497–527.

Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic
Behavior & Organization, 3(4):323–343.

Samuelson, P. A. (1937). A note on measurement of utility. The Review of
Economic Studies, 4(2):155–161.

Sun, C. and Potters, J. (2021). Magnitude effect in intertemporal allocation
tasks. Experimental Economics, pages 1–31.

Vieider, F. M. (2018). Violence and risk preference: experimental evidence
from afghanistan: comment. American Economic Review, 108(8):2366–82.

Vieider, F. M., Martinsson, P., Nam, P. K., and Truong, N. (2019). Risk
preferences and development revisited. Theory and Decision, 86(1):1–21.

Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica:
Journal of the Econometric Society, pages 95–115.

37



Appendix A. Additional robustness checks: Models and Figures
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Table A.11:
Integrated time and risk preference models: With unconstrained

2-parameter Prelec function, CEMU-θ = 0.1
(1) (2) (3)

EQUATION VARIABLES RDU-SD RDU-QH RDU-GH

Discount rate Present bias 2.863*** 3.198***
Time horizon and 1 week (0.057) (0.047)

6 months 0.716***
(0.022)

12 months 0.099***
(0.021)

24 months 0.151***
(0.025)

Constant 0.435*** 0.333***
(0.037) (0.036)

CEMU-θ Constant 0.100 0.100 0.100
(0.000) (0.000) (0.000)

Prelec α Constant 0.553*** 0.895*** 0.901***
(0.029) (0.042) (0.040)

Prelec β Constant 1.509*** 0.996*** 0.939***
(0.054) (0.052) (0.046)

Luce error CL order FE Yes Yes Yes
Enumerator FE Yes Yes Yes
Start row FE Yes Yes Yes
Constant 0.428*** 0.421*** 0.334***

(0.030) (0.029) (0.022)

Observations 62,862 62,862 62,862
Log likelihood -28671 -28152 -27112
N clusters 404 404 404
p 0.000 0.000
Wald chi2 2537 6289

Discount rates measured in 100% annualized deflated units.
RDU=Rank Dependent Utility, SD=Samuelson Constant Discounting,
QH=Quasi-hyperbolic, GH=General hyperbolic. Cluster-corrected standard
errors, *** p < 0.01, ** p < 0.05, * p < 0.1
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Table A.12:
Integrated time and risk preference models: With unconstrained

2-parameter Prelec function, CEMU-θ = 0.2
(1) (2) (3)

EQUATION VARIABLES RDU-SD RDU-QH RDU-GH

Discount rate Present bias 2.878*** 3.215***
Time horizon and 1 week (0.057) (0.047)

6 months 0.714***
(0.022)

12 months 0.105***
(0.020)

24 months 0.077***
(0.025)

Constant 0.365*** 0.265***
(0.036) (0.035)

CEMU-θ Constant 0.200 0.200 0.200
(0.000) (0.000) (0.000)

Prelec α Constant 0.537*** 0.874*** 0.881***
(0.027) (0.042) (0.040)

Prelec β Constant 1.426*** 0.946*** 0.893***
(0.049) (0.049) (0.044)

Luce error CL order FE Yes Yes Yes
Enumerator FE Yes Yes Yes
Start row FE Yes Yes Yes
Constant 0.375*** 0.368*** 0.293***

(0.026) (0.025) (0.019)

Observations 62,862 62,862 62,862
Log likelihood -28527 -28007 -26981
N clusters 404 404 404
p 0.000 0.000
Wald chi2 2570 6276

Discount rates measured in 100% annualized deflated units.
RDU=Rank Dependent Utility, SD=Samuelson Constant Discounting,
QH=Quasi-hyperbolic, GH=General hyperbolic. Cluster-corrected standard
errors, *** p < 0.01, ** p < 0.05, * p < 0.1
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Figure A.6: a. Sample 1 vs. b. Sample 2 Cumulative distributions
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