
RESEARCH ARTICLE

High-Throughput Biochemical Fingerprinting
of Saccharomyces cerevisiae by Fourier
Transform Infrared Spectroscopy
Achim Kohler1,2*, Ulrike Böcker2, Volha Shapaval2,1, Annabelle Forsmark3,4,
Mats Andersson5, JonasWarringer3,4, Harald Martens2,1, Stig W. Omholt4,
Anders Blomberg3

1 CIGENE, Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences,
Ås, Norway, 2 Nofima AS, Ås, Norway, 3 Department of Chemistry and Molecular Biology, University of
Gothenburg, Gothenburg, Sweden, 4 CIGENE, Department of Animal and Aquacultural Sciences,
Norwegian University of Life Sciences, Ås, Norway, 5 Department of Biological and Environmental Sciences,
University of Gothenburg, Gothenburg, Sweden

* achim.kohler@nmbu.no

Abstract
Single-channel optical density measurements of population growth are the dominant large

scale phenotyping methodology for bridging the gene-function gap in yeast. However, a

substantial amount of the genetic variation induced by single allele, single gene or double

gene knock-out technologies fail to manifest in detectable growth phenotypes under condi-

tions readily testable in the laboratory. Thus, new high-throughput phenotyping technolo-

gies capable of providing information about molecular level consequences of genetic

variation are sorely needed. Here we report a protocol for high-throughput Fourier transform

infrared spectroscopy (FTIR) measuring biochemical fingerprints of yeast strains. It includes

high-throughput cultivation for FTIR spectroscopy, FTIR measurements and spectral pre-

treatment to increase measurement accuracy. We demonstrate its capacity to distinguish

not only yeast genera, species and populations, but also strains that differ only by a single

gene, its excellent signal-to-noise ratio and its relative robustness to measurement bias. Fi-

nally, we illustrated its applicability by determining the FTIR signatures of all viable Saccha-
romyces cerevisiae single gene knock-outs corresponding to lipid biosynthesis genes.

Many of the examined knock-out strains showed distinct, highly reproducible FTIR pheno-

types despite having no detectable growth phenotype. These phenotypes were confirmed

by conventional lipid analysis and could be linked to specific changes in lipid composition.

We conclude that the introduced protocol is robust to noise and bias, possible to apply on a

very large scale, and capable of generating biologically meaningful biochemical fingerprints

that are strain specific, even when strains lack detectable growth phenotypes. Thus, it has a

substantial potential for application in the molecular functionalization of the yeast genome.
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Introduction
A central aim in biology is the understanding of the relation between genetic and phenotypic
variation and between gene and function. To address this issue on a larger scale, a variety of an-
alytical methods are in common use. Single-channel optical density measurements of popula-
tion size have become the preferred methodology for model microorganisms, such as yeast, as
net growth in population size is a direct reflection of fitness and therefore of the organisms re-
lation to its environment. However, it is becoming increasingly clear that the population
growth parameter space is too insensitive, and too low-dimensional, to reveal much of the
inner workings of the cell. Firstly, variations in population net growth in a particular environ-
mental context are often complex phenotypes, making a meaningful decomposition into genet-
ic and molecular components extremely challenging [1]. Secondly, a huge amount of genetic
variation fails to leave an imprint on population growth in environments commonly tested.
This is problematic because every gene present in yeast has a function that at some point in its
recent history has been exposed to purifying selection [2]. This may partially be explained by a
failure to recreate natural environments in the laboratory or relaxation of selection through ep-
istatic buffering in the artificial genomes of laboratory strains. However, it is also possible that
selection acting on these genes is too subtle to detect with our current methods of quantifying
population net growth. It is very possible that removal of such genes, although not leading to a
detectable variation in population net growth because of compensatory mechanisms, neverthe-
less can manifest itself on the molecular and biochemical level. More refined and high dimen-
sional biochemical investigations should be able to reveal such molecular phenotypic
signatures which may be used to fingerprint, or even decode, gene function. Transcriptomics,
proteomics and metabolomics have all been extensively applied to this aim with varying suc-
cess rates. Currently, screening of the metabolome is mainly carried out by GC-MS, LC-MS,
and NMR spectroscopy. Metabolic fingerprinting [3,4] has been used to classify gene mutants
that are silent in terms of growth phenotypes during standard laboratory conditions. Although
valuable, metabolic fingerprinting often requires chemical extraction of components before the
analysis and protocols are tedious, have a low throughput and are difficult to standardize.

Already in 1998, FTIR (Fourier-Transform Infrared) spectroscopy was proposed as a poten-
tially valuable tool for yeast metabolome analysis [5], but the idea failed to generate substantial
interest possibly due to the moderate throughput of existing protocols at this time. The advan-
tage of FTIR spectroscopy is that it can provide a snapshot of the status of whole cells, fluids,
and tissues as it reveals a chemical fingerprint which is caused by the sum of all chemical struc-
tures within the sample. Ever since the early 1990s vibrational spectroscopy, both Raman and
FTIR were used for identification and classification of microorganisms with promising results
[6–9]. FTIR provides very high spectral reproducibility and sensitivity: e.g. it has been shown
that FTIR spectroscopy can distinguish between different isolates of Listeria monocytogenes
[10]. Furthermore, IR spectral fingerprints could differentiate between genetically identical
bacterial strains growing on different nutritional media [11]. With the current availability of
suitable high-throughput instrumentation, IR spectroscopy is gradually emerging as a method
of choice for routine analysis in microbial laboratories [12].

As functional characterization of genes/proteins requires screening of large numbers of
strains, high-throughput methods with potential for automation are highly needed. There al-
ready exist robotized high-throughput phenotyping systems that allow for screening of links
between genotypes and organismal phenotypes on a genome-wide scale [13–15]. It is generally
accepted that FTIR cannot fully replace a metabolic analysis like GC-MS, LC-MS, or NMR
spectroscopy, but it has a high potential for genome-wide screening of thousands of strains
which is not realizable with state of the art”wet” chemical methods.
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The aim of this study was to develop a high-throughput protocol for large scale biochemical
fingerprinting based on FTIR spectroscopy that is robust to both noise and bias. This was ad-
dressed by a microcultivation approach with a semi-automated sample preparation procedure
to achieve samples of suitable quality for IR measurements on 384-microwell plates. We dem-
onstrate the applicability of this FTIR approach characterizing 76 Saccharomyces cerevisiae ho-
mozygote diploid gene knock-outs that lack genes in lipid biosynthesis. Many knock-outs of
genes annotated as involved in lipid biosynthesis and metabolism lack detectable growth phe-
notypes under standard laboratory conditions, but may be expected to have subtle changes in
overall cellular biochemical composition at levels that could be probed by FTIR. Indeed, we
found several of the examined knock-outs to feature characteristic and highly reproducible
FTIR phenotypes over the whole spectral range. Conventional analysis of acyl lipid content
confirmed deviations in lipid profiles for strains with aberrant FTIR phenotypes suggesting
that the spectral data can be causally interpreted with reference to our current understanding
of fatty acid metabolism. Our results show the potential of large scale FTIR phenotyping in the
detection and interpretation of subtle biochemical effects of genetic variation that is not re-
flected in population growth aberrations and hints at the potential for large scale FTIR screen-
ing of large collections of strains with reverse engineered or natural genetic variation.

Materials and Methods

Yeast strains
Knock-out strains in lipid metabolism.We used S. cerevisiae homozygous diploid deletion
strains in the BY4743 background with the genotypeMATa/α his3Δ1/his3Δ1 leu2Δ0/leu2Δ0
lys2Δ0/LYS2 MET15/met15Δ0 ura3Δ0/ura3Δ0, from the EUROSCARF stock center (http://
www.uni-frankfurt.de/fb15/mikro/euroscarf/index.html). The analyzed 76 mutants corre-
sponded to knock-outs of genes involved in lipid biosynthesis pathways (see Table 1 for a com-
plete list of analyzed mutant strains).

Natural and industrial yeast strains/species. A set of 74 strains from four species of the
Saccharomyces sensu stricto clade, S.mikatae, S. paradoxus, S. bayanus, S. cerevisiae, as well as
from their closest non-sensu stricto relative S. kudravzevii, obtained from Gothenburg Univer-
sity (Gothenburg, Sweden), as well as strains of four species of genus Candida (C. tropicalis,
C. intermedia, C. zeylanoides, C. inconspicua), four species of genus Pichia (P. anomala, P. fer-
mentans, P. stipitis, P. guilliermodnii), two species of genus Hanseniaspora (H. uvarum and
H. vinea) and one species of genus Debaryomyces (D. hansenii), obtained fromMolecular and
General Microbiology Laboratory, UFR Sciences (Reims, France), was used for experimental
variability measurements.

Cultivation of gene knock-out strains for FTIR spectroscopy
76 strains of the S. cerevisiae homozygote diploid gene knock-outs of the BY4743 series, stored
deep-frozen (-80°C) in 20% glycerol, were initially inoculated in 350 μl of SD medium (0.14%
yeast nitrogen base without amino acids, 0.5% ammonium sulphate, succinic acid buffered at
pH 5.8 and 2% glucose, 20 mg/l histidine, 20 mg/l methionine, 20 mg/l uracil, 20 mg/l lysine,
and 100 mg/l leucine) in honeycomb microtiter plates and incubated for ~72 h at 30°C (termed
pre-pre-culture). This procedure was repeated once (second incubation ~48 h, termed pre-cul-
ture). For experimental runs, pre-cultured strains were inoculated to an optical density OD of
0.03–0.1 in 350 μl of SD medium in honeycomb microtiter plates (as above) and cultivated for
either 24 and 48 hours in a Bioscreen C analyzer (Labsystems Oy, Finland). The optical density
(OD) was measured using a wide band filter (450–580 nm) and the incubation was set at 30.0°
C (±0.1°C) with ten minutes pre-heating time. Plates were subjected to shaking at highest
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Table 1. Strains used for FTIR phenotyping study.

ORF Gene sample # ORF Gene sample #

YHR067W HTD2 11,2 YNL045W YNL045W 40

YGR155W CYS4 2 YNR019W ARE2 42

YML075C HMG1 3 YOR011W AUS1 43

YJR150C DAN1 4 YOR049C RSB1 44

WT WT BY4743 5 YOR100C CRC1 45

YJR019C TES1 6 YOR171C LCB4 46

YDR058C TGL2 7 YOR196C LIP5 471

YJL196C ELO1 8 YOR245C DGA1 481,2

YKR053C YSR3 9 YOR377W ATF1 491

YCR048W ARE1 101,2 YOL002C IZH2 50

YNL130C CPT1 11 YOL011W PLB3 51

YKR067W GPT2 12 YPL147W PXA1 52

YLR450W HMG2 13 YPL057C SUR1 53

YOL101C IZH4 14 YPL006W NCR1 54

YMR313C TGL3 151,2 YBL011W SCT1 55

YOR317W FAA1 16 YBL039C URA7 561

YJL145W SFH5 17 YBR030W YBR030W 57

YJL134W LCB3 182 YBR042C YBR042C 58

YJR073C OPI3 191,2 YBR159W IFA38 59

YJR103W URA8 20 YBR161W CSH1 60

YKL008C LAC1 21 YBR177C EHT1 611

YKL140W TGL1 22 YBR183W YPC1 62

YKL188C PXA2 23 YDL046W NPC2 63

YLL012W YEH1 24 YDL109C YDL109C 65

YLR023C IZH3 25 YDL142C CRD1 661,2

YLR133W CKI1 26 YDR018C YDR018C 67

WT WT BY4743 27 YDR072C IPT1 68

YLR189C ATG26 28 YDR147W EKI1 691

YLR228C ECM22 29 YDR213W UPC2 70

YML059C NTE1 302 WT WT BY4743 71

YML008C ERG6 311,2 YDR294C DPL1 721

YMR015C ERG5 32 YDR297W SUR2 731

YMR205C PFK2 331,2 YDR492W IZH1 74

YMR207C HFA1 341,2 YDR503C LPP1 751

YMR246W FAA4 35 YER044C ERG28 76

YMR272C SCS7 36 YER061C CEM1 771,2

YNL323W LEM3 371,2 YGL012W ERG4 781,2

YNL280C ERG24 381,2 YGL126W SCS3 791,2

YNL123W NMA111 39 YGL144C ROG1 80

1 sample, showed a dominant FTIR phenotype that is different from the wild type after 24 hours of cultivation;
2 sample, showed a dominant FTIR phenotype that is different from the wild type after 48 hours of cultivation;

doi:10.1371/journal.pone.0118052.t001
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shaking intensity with 60 s of shaking every other minute. OD measurements were taken every
20 minutes. Except where otherwise stated, cell cultures were harvested in the stationary phase
(after 24 and 48 h). The cell suspensions were transferred from the 100-well honeycomb plates
to 96-well plates (with conical bottom) and the biomass was cleaned from the remaining
growth medium by washing 4x with 0.1% NaCl solution in a WellWash AC microtiter plate
washer (ThermoScientific, Waltham, MA). After the last washing cycle approximately 50 μl
liquid remained in the wells.

FTIR spectroscopy analysis
After washing, 8 μl of the cell suspension was transferred onto IR-light-transparent Silicon 384-
well microtiter plates, which were dried under moderate vacuum (0.9 bar) for 10 to 15 minutes
to generate an even thin film suitable for IR measurements. A High Throughput Screening eX-
Tension (HTS-XT) unit coupled to a Tensor 27 spectrometer (both Bruker Optik GmbH, Ger-
many) was used for data acquisition. The spectra were recorded in transmission mode in the
spectral region 4000 to 500 cm-1 with a resolution of 6 cm-1, an aperture of 5.0 mm, taking 64
scans that were subsequently averaged. Prior to each sample measurement, background spectra
of the Silicon substrate were collected in order to account for variation in water vapor and CO2.

FTIR phenotypic measurements. The 76 S. cerevisiae homozygote diploid gene knock-outs
were analyzed by FTIR spectroscopy for two growth times during the stationary phase:
24 hours and 48 hours. The data sets for each time point comprised five replicates of the 76
gene knock-outs and five replicates of three wild type strains (sample 5, 27, 71; see Table 1) of
the homozygote diploid wild type strain BY4743, resulting in 390 spectra. For each Bioscreen
run five cultivation replicates of 40 strains were prepared for Bioscreen micro-cultivation re-
sulting in 200 cultivations, which were placed on two honeycomb plates with 100 wells each.
Thus, the 390 spectra per data set had to be prepared during three Bioscreen micro-
cultivations. Measurements were further replicated by a repeated measurement after 3 months
to avoid bias from external conditions. This resulted in 4 data sets consisting in 390 spectra
each: 24 hours (1), 24 hours (2), 48 hours (1) and 48 hours (2).

Time measurements. For studying the effect of cultivation time on the FTIR measurements,
10 strains of the homozygote diploid gene knock-outs of BY4743 including the wild type
(Table 1) were selected. The strains were sampled at various stages of fermentative and respira-
tory metabolism, after 10, 12, 15, 18, 21, 24, 36, 48, 60, and 72 hours of micro-cultivation in the
Bioscreen C analyzer. They were then prepared for FTIR spectroscopy as described earlier.
Each strain was grown in replicate for each sampling time point, i.e. the data set consisted in
200 spectra altogether.

Variability measurements. In order to estimate variability between replicates and repeats,
different levels of technical and biological replication were considered. In addition, similarity be-
tween strains at different genetic distances, represented by species from rather distant phyloge-
netic levels, was estimated. For the estimation of the replicate variability, the following variability
levels were considered: 1) Technical replicate variability referring to repeated FTIR measure-
ments using the same cell suspension, which was applied to different sample positions on the sili-
con well plate; Herein we also consider the same cell suspension in different concentrations
expressed in optical density (OD). Different cell concentrations are expected to result in different
numbers of cell layers in the films used for FTIR measurements. 2) Cultivation replicate vari-
ability referring to different cultivations obtained in the same Bioscreen experiment and in the
same honeycomb plate; 3)Honeycomb replicate variability referring to replicates obtained from
different honeycomb plates but the same Bioscreen run/experiment; 4) Experiment variability
referring to measurements obtained from different experiments (Bioscreen runs). For estimating
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the similarity between strains at different genetic distances on different following phylogenetic
levels were considered 1) population level; 2) species level; and 3) genus level. The similarity was
estimated by calculating PCC (Pearson Correlation Coefficient) [16] and was expressed as 1–
PCC×10-4 for three spectral regions: 3000–2800 cm-1, 1800–1500 cm-1 and 1200–700 cm-1.

For estimating the replicate variability at the different levels, the S. cerevisiae wt strain from
the EUROSCARF stock center was cultivated in SD medium in two honeycomb plates in the
Bioscreen C analyzer. The growth and washing procedures were performed as described above.
The experiment was performed twice. Variability within different wells of the same honeycomb
microtiter plate (Cultivation replicate variability) was estimated by calculating the average
PCC (Pearson Correlation Coefficient) for the correlation of each honeycomb-well spectrum
with the average spectrum of all spectra of one honeycomb well plate (including 200 spectra).
The variability between replicates obtained from two honeycomb microtiter plates of the same
experimental run (honeycomb replicate variability) was obtained by calculating the average
PCC (Pearson Correlation Coefficient) for the correlation of each honeycomb-well spectrum
of both honeycomb-well plates of one experimental run with the respective average spectrum
of all spectra of both honeycomb plates (including 400 spectra). The experimental replicate
variation was estimated accordingly, considering different experimental runs and calculating
the PCC accordingly (including 800 spectra).

In order to estimate variability on different phylogenetic levels, different yeast strain collec-
tions were used. The 76 S. cerevisiae homozygote diploid gene knock-outs from EUROSCARF
stock center and S. cerevisiae from the natural and industrial strains were used to estimate vari-
ability within species, between species and between genera.

Effect of the cell amount on the quality of IR spectra. S. cerevisiae was used to study the effect
of different cell concentrations on the quality of IR spectra. S. cerevisiae wt BY4743 was cultivated
in 350 μl SDmedium in 10 wells of honeycomb plate in the Bioscreen C analyzer. Cultivation was
done for 24 hours at 30°C. The washing procedure was performed as described above. After wash-
ing was finished, cell suspensions of 10 wells were transferred into one tube. The following serial
number of dilutions were performed: 1.5; 1.4; 1.3; 1.2; 1.0; 0.85; 0.8; 0.75; 0.7; 0.65; 0.6; 0.55; 0.5;
0.45; 0.4, and the corresponding cell suspensions were transferred to the FTIR plates.

As optical density ranges we considered three ranges (0.4–0.55, 0.6–0.8, 1.0–1.5). The range
0.6 to 0.8 is used for FTIR spectroscopy. In order to estimate the stability of the protocol also
neighboring ranges were considered.

Lipid analysis
Cultivation for lipid and parallel FTIR analysis. Ten of the gene knock-outs with an FTIR distin-
guishable phenotype and nine of the non-deviating knock-outs together with wild type were select-
ed for lipid analysis. Selected strains were grown in 35 ml medium in Erlenmeyer flasks for 48 h at
30°C with shaking, in order to get enough biomass for GC analysis. After harvest and washing, 8 μl
of cell suspension was used for the FTIR analysis and the remaining cell biomass was either used di-
rectly or frozen instantly in liquid nitrogen and stored in -40°C for subsequent lipid extraction.

GC-MS measurements. The pellets were re-suspended in 1.6 ml ice-cold water and trans-
ferred to screw cap glass tubes. Lipids were extracted according to Bligh and Dyer [17], with
modifications [18], dried under a stream of nitrogen and re-suspended in chloroform:metha-
nol (2:1). An aliquot was used for analysis total lipid fatty acids and the rest separated by TLC
on silica plates impregnated with 0.1% boric acid. The plates were first developed to 2/3 height
with chloroform/trietylamine/ethanol/water (30/35/35/6, by vol.) and after drying to the full
height with heptane/ethylacetate (50/10, by vol.). Lipids were identified by comparison to chro-
matographed authentic lipid standard and scraped into screw cap vials. Phospholipid fatty
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acids were transmethylated and analyzed by capillary gas chromatography as described [19],
except dinonadecanoylphosphatidylcholine was used as internal standard.

Data analysis
Pre-processing. All FTIR spectra were pre-processed on the level of the second derivative
using a nine point Savitzky-Golay algorithm, in order to enhance the spectral resolution. This
was followed by Extended Multiplicative Signal Correction (EMSC) in order to separate physi-
cal light-scattering effects as baseline, multiplicative, linear and quadratic wavenumber depen-
dent effects from chemical information in the spectra [20].

Principal Component Analysis (PCA). Principal Component Analysis (PCA) was applied
for studying phenotypic variation ([21]). PCA aims at decomposing a large number of variables
of a data matrix X, into a smaller number of latent variables or principal components (PCs) de-
scribing the main variation patterns. Principal components are sorted such that the first PC ac-
counts for the main variation, while the second PC contains the second most variation, and so
on. Each principal component (PC) relates to an independent sample variation pattern and an
independent variable variation pattern, which can be displayed in score plots and correlation
loading plots, respectively. In the score plots usually scores of two components are plotted as
scatter plots at a time. In the correlation loading plots, correlation between variables and scores
are displayed. When scores and correlation loading plots are studied together for the same pair
of components, variable variation patterns can be directly related to sample variation patterns
for the respective components [22].

Partial Least Squares regression. For calibrating FTIR spectral data for fatty acid measure-
ment by GC analysis, power partial least squares regression (PPLSR) was used [23]. For PPLSR
spectra were pre-processed as described above and the spectral regions from 700 cm-1 to 1800
cm-1 and from 2800 cm-1 to 3100 cm-1 were selected. For establishing calibration models, the
following parameters were calculated: saturated, monounsaturated fatty acids, saturated and
monounsaturated phosphatidylcholine (PC) and phosphatidylethanolamine (PE). For estab-
lishing calibration models measured fatty acids were standardized by presenting the fatty acids
as relative amounts of total fatty acids. This was done in order to avoid too optimistic models
due to cross-correlations between single fatty acids and total fatty acids content. In addition ra-
tios of saturated versus monounsaturated fatty acids were used.

All data analysis was done by in-house developed program codes in Matlab 8.0. (The Math-
Works Inc., Natick, United States).

SEMmeasurements
For scanning electron microscopy the yeast cell samples were prepared in the same way as for
FTIR measurements on the Silicon 384-well FTIR microtiter plate and dried at room tempera-
ture. The plate was cut into smaller pieces to fit into the specimen chamber of the Zeiss EVO-
50-EP (Carl Zeiss SMT Ltd, 511 Coldhams Lane, Cambridge CB1 3JS, UK). The specimen was
coated with gold/palladium for 2 x 2 min in a Polaron SC 7640 (Quorum Technologies Ltd.,
Ringmer, UK) sputter coater to achieve sufficient conductive coating on the sample.

Results

High-throughput cultivation and FTIR spectroscopy
A set of 76 S. cerevisiae homozygote diploid gene knock-outs of genes encoding proteins involved in
various aspects of lipid metabolism (Table 1) were selected for examining a developed a high-
throughput protocol (Fig. 1) for FTIR spectroscopic phenotyping. These strains are congenic and

High-Throughput Biochemical Fingerprinting of Saccharomyces cerevisiae

PLOSONE | DOI:10.1371/journal.pone.0118052 February 23, 2015 7 / 22



differ from the wt control only by the absence of a single gene. In Fig. 1, the workflow of the sample
preparation and the high-throughput FTIR screening is shown. The basis of the high-throughput
phenotyping protocol is the use of well-controlled liquid microcultivation and a growth monitoring
system, where yeast strains were cultivated for 24 or 48 hours in a Bioscreen Cmicrocultivation in-
strument. The microcultivation device allows simultaneous cultivation of up to 200 strains that are
grown under the exact same condition. There are a number of technical challenges in the use of
FTIR for analysis of yeast, and we here tackle and evaluate them systematically to generate a robust
platform for large-scale phenotypic analysis. As further illustrated in Fig. 1, after cultivation, cells
were thoroughly washed after growth by aWellWash ACmicrotiter plate washer. Samples are re-
suspended and a film of 8 μl suspension is transferred to IR-transparent plates. Samples are then
dried to form a thin film and subsequently measured by using a Bruker Tensor 27 spectrometer with
an eXTension (HTS-XT) unit. The measurement time is approximately 3 hours per plate. (see
Fig. 1). Different protocols of drying the yeasts into thin cell-films was evaluated using Scanning
ElectronMicroscopy (SEM). In Fig. 2 SEM images of yeast films on FTIRmicroplates used for FTIR
analysis are shown. In Fig. 2a and b two intact films of the knock-out strain 19 (mutant YJR073C,
Table 1) and the wt are shown, respectively. In Fig. 2c a defect film formed by the yeast knock-out
strain 24 (YLL012W) is shown. The defect area makes it possible to estimate the number of cell lay-
ers as approximately 8 (Fig. 2c). This was validated by visually inspecting SEM images of other non-
intact films. The complete protocol takes approximately 6 hours for measuring 200 strains. The
preparation of 200 samples for FTIR spectroscopy takes approximately three hours, while the fully
automatic FTIRmeasurements per well-plate (with 154 positions covered) took another three hours.

Time measurements, Growth status
For laying the foundations for a robust and reproducible large scale FTIR phenotyping proto-
cols there is a need for high-throughput cultivation, sample processing and FTIR spectroscopy
measurements. A critical issue is the influence of growth status on FTIR readouts as cell popu-
lations with different growth properties in a high-throughput set-up will be asynchronous and
therefore at the time of harvest in different stages of growth.

To investigate the effect of the growth status on the FTIRmeasurements, 10 strains (including
the wt) were sampled at 10 specific growth stages in mid to late exponential phase and early to
mid-stationary phase, i.e. after 10, 12, 15, 18, 21, 24, 36, 48, 60, and 72 hours. Spectra were pre-
processed and replicate samples were averaged. For sampling at 10 hours, several of the popula-
tions provided too few individuals to allow for collecting informative spectra. Thus, the complete
dataset consisted of 181 spectra of theoretically 200 possible spectra (2 replicates times 10 strains
times 10 time points). To investigate the stability of the FTIR measurements as a function of
physiological state (growth stage), principal component analysis (PCA) was used and the first/
PC1 and second/PC2 scores were plotted as a function of time. Fig. 3a and b show the scores as a
function of time for the first and second component, respectively. Samples are measured after
10, 12, 15, 18, 21, 24, 36, 48, 60, and 72 hours. The numbers of the strains are given in the leg-
ends. Overall, scores are unstable during the first 24 hours, but stabilize after 24 hours when vir-
tually all populations have depleted the limiting nutrients and entered the stationary phase.
Thus, the robustness of the spectral signature is significantly higher during the stationary phase
and that harvesting cells in this phase is to be preferred for FTIR high-throughput phenotyping.

Reproducibility and Variability of FTIR spectroscopic measurements
Instrumental variability due to light scattering, and sample thickness was minimized using
model-based pre-processing EMSC [20], which allows separation of informative signals from
spectral artifacts ([11,24,25]).

High-Throughput Biochemical Fingerprinting of Saccharomyces cerevisiae

PLOSONE | DOI:10.1371/journal.pone.0118052 February 23, 2015 8 / 22



Fig 1. The workflow of sample preparation and high-throughput screening FTIR spectroscopy is
shown. In the first step strains were cultivated for 24 or 48 hours in a Bioscreen C microcultivation
instrument. Then samples are transferred to a 96-well plate for washing. Washing is performed in WellWash
ACmicrotiter plate washer. At the last step, samples are re-suspended and a film of 8 μl suspension is
applied to the FTIR plates. Finally spectra are measured using a Bruker Tensor 27 spectrometer with an
eXTension (HTS-XT) unit. The measurement time is approximately 3 hours per plate.

doi:10.1371/journal.pone.0118052.g001
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For the estimation of the remaining variability between technical (the FTIR methodology
including washing and drying) and biological (growth) replicates, Pearson’s correlation coeffi-
cient (PCC) was used. Since the obtained PCC-values were very close to one, for comparison
and better presentation, results were expressed as 1–PCC. Thus, the closer the obtained values
were, the lower the variability in the respective data set (details about the calculation of the var-
iability for the different sets investigated are given in the Materials and Methods section). Re-
sults are shown in Table 2. Overall, the technical variability was 100 times lower than
variability in biological replicates, showing that the robustness of the sample loading, the FTIR
measurement and the analysis procedure is excellent. For the technical variability due to differ-
ences in the optical density (OD), three different OD ranges were considered (see Table 2). The
OD range from 0.6 to 0.8 is the range we use for FTIR spectroscopy, since it refers to an optimal
range of the absorbance signal in the amide I, which is usually the strongest absorption band in
the FTIR spectra of biological cells. This range shows values for (1–PCC) which are close to
zero in all spectral regions.

Moreover, it was observed that different spectral regions have differences in variability. For
example, the carbohydrate region 1200–700 cm-1 showed the highest variability for technical
and for most of the types of biological replicates investigated (see Table 2). The variability

Fig 2. SEM images of films used for FTIRmicro-spectroscopy are shown. In (a) and (b) the intact films of strain 19 and the wild type are shown,
respectively. In (c) a deficient film formed by a suspension of cells of strain 24 is shown, revealing that the film consists of approximately 8 layers.

doi:10.1371/journal.pone.0118052.g002

Fig 3. The first and the second scores of the PCA of timemeasurements of a selection of yeast knock-out strains are shown in (a) and (b),
respectively. Samples are measured after 10, 12, 15, 18, 21, 24, 36, 48, 60, and 72 hours. The numbers of the strains are given in the legends.

doi:10.1371/journal.pone.0118052.g003
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between three types of biological replicates (cultivation replicates, honeycomb replicates and
experiment replicates, see section 2.3.3) was studied and no difference in variability between
the different types of biological replicates was observed (Table 2). Thus, most of the biological
variability is due to spatial differences between wells on the same plate, and separating samples
in time and instrument does not introduce further noise.

Further variability within different phylogenetic levels (strain, species, genus) was studied.
Table 2 demonstrates clearly that variability between strains of the same species is much higher
than the variability in biological and technical replicates. The variability within the different phylo-
genetic levels is about 10–100 times higher than on the replicate level, depending on the spectral
region considered. Further we notice that the variability within the set of gene-knock-out S. cerevi-
siae strains and the variability in the natural and industrial set of S. cerevisiae strains was on the
same level, despite the much higher genetic variance in the Sanger set (hundreds of thousands of
polymorphisms) than in the gene knock-outs set (congenic and in principle only one gene differs;
in reality there might be more mutations introduced during the laboratory cultivation, however,
there should be less than a hundred variations). The variability within species of the Saccharomy-
ces genus from the Sanger set was close to the variability observed on strain level in the Sanger set.
At the same time, the variability for the species of Candida,Hansenulaspora,Debaryomyces and
Pichia genera was significantly higher. The highest variability was observed between genera.

Strain differentiation
To further evaluate the ability of FTIR spectra to distinguish between yeast strains, PCA was
performed on each experimental run for 24 hours and 48 hours, separately. For growth on

Table 2. Variability within technical and biological replicates of S. cerevisiae wt. Variability within yeast strains, species and genera.

Type of variability IR regions

3200–2800 cm-1 1800–1500 cm-1 1200–700 cm-1

(1-PCC*)×10-4 (1-PCC*)×10-4 (1-PCC*)×10-4

Variability within technical replicates** 0.06 0.082 0.64

Variability within IR-spectra for samples with OD 0.4–0.55 0.0–1.0 1.0–5.0 1.0–12.0

Variability within IR-spectra for samples with OD 0.6–0.8 0.0–1.0 0.0–1.0 0.0–1.0

Variability within IR-spectra for samples with OD 1.0–1.5 1.0–6.0 1.0–32.0 1.0–15.0

Variability within biological replicates (Bioscreen wt in run1 on honeycomb plate 1) 4.0 6.3 6.1

Variability within biological replicates (Bioscreen wt in run 1 on honeycomb plate 2) 1.4 1.6 5.4

Variability within biological replicates (Bioscreen wt in run 1 on honeycomb plate 1 and 2) 5.2 8.2 8.3

Variability within biological replicates (Bioscreen wt in run 2 on honeycomb plate 1) 2.2 1.8 6.4

Variability within biological replicates (Bioscreen wt in run 2 on honeycomb plate 2) 7.3 1.7 8.1

Variability within biological replicates (Bioscreen wt in run 2 on honeycomb plate 1and 2) 4.4 2.4 11

Variability within biological replicates (Bioscreen wt in run 1 and run 2) 19 6.9 32

Variability within knock-out S. cerevisiae strains 87 59 415

Variability within S. cerevisiae strains from Sanger set 89 40 320

Variability within species*** of genus Saccharomyces from Sanger set 78 35 306

Variability within species of genera Candida, Hanseniaspora,Pichia, Debaryomyces 105 48 897

All variability tests were done after 24 hours growth.

*Pearson Correlation Coefficient (PCC)

**Technical replicates were obtained from the one sample S. cerevisiae wt.

***Species included in analysis: S. cerevisiae, S. paradoxus, S. bayanus, S. kudriavzevii, S. mikatae, S. castelii from Sanger set

doi:10.1371/journal.pone.0118052.t002
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standard medium, the time point 24 hours is at the end of the exponential phase, while the
time point 48 hours is in the stationary phase. Each of the experimental runs contained 390
spectra. The score plots for the first and second principal components are shown in Fig. 4a-d,
for the two harvest times and two spectral regions, respectively. In Fig. 4a and b the score plots
for the spectral region 2800 cm-1–3100 cm-1 are shown for the harvest times 24 and 48 hours,
respectively. In Fig. 4c and d the score plots for the spectral region 900 cm-1–1800 cm-1 are
shown for the harvest times 24 and 48 hours, respectively. Many of the strains show a domi-
nant FTIR phenotype that is different from the wild type both for 24 hours and 48 hours culti-
vation time. The strains showing a clear phenotype are listed in Table 3. On the PCA score plot
it is clearly visible that the FTIR phenotype is highly reproducible: all 5 independent cultiva-
tions and FTIR measurements are clustering closely for each deletion strain. Many of the
strains exhibiting a distinct phenotype and being different to the wild type after 24 hours also
show a distinct phenotype after 48 hours. The 24 hours phenotype and 48 hours phenotype are
similar distinctive. Notwithstanding, the level of variation between the independent cultiva-
tions of each strain is lower after 48 hours compared to 24 hours growth time. Based on these
results and the previous results of time series analysis (Fig. 3), we decided to continue further
FTIR spectroscopic analysis with 48 hours cultivation time.

When investigating two experimental runs (repeated experiments) in one principal compo-
nent analysis, a higher degree of variability was observed between the same strains grown in in-
dependent experiments. Fig. 5a and b show the score plot using the two experimental runs of
strains that were harvested after 48 hours for the regions 3100–2800 cm-1 and 1800–900 cm-1,
respectively. The principal component models were built on the respective spectral region
3100–2800 cm-1 (a) and 900–1800 cm-1 (b) of the first experimental run and the second experi-
mental runs were projected into these models for each spectral region, respectively. Thus
Fig. 5a and b demonstrated to what degree the phenotypes of run 2 are explained by the model
built on run 1. Although the variability between replicates originating from different experi-
mental runs is higher than the variability between replicates referring the same run, the same
tendencies as in Fig. 5 are clearly observable. Yet, different runs introduce block variation, re-
flecting bias emerging through separation of samples in time, detectable by the
FTIR phenotype.

Mapping FTIR vs acyl-lipid analysis
To calibrate the FTIR biochemical fingerprint of strains to biochemical information that is di-
rectly interpretable from a biological perspective, we analyzed the lipid composition of a subset
of deletion strains with distinct FTIR signatures (Tables 4–6). Two independent repeat cultiva-
tions of 21 strains were subjected to acyl lipid analysis by GC of fatty acid methyl esters and
each of these 42 samples was analyzed in triplicate by FTIR analysis. A total lipid extract was
subjected to transmethylation and the total fatty acid content determined by GC. In addition,
the glycerolipids were separated by TLC and the major membrane lipid phosphatidylcholine
was subjected to transmethylation and analysis of fatty acid methyl esters by GC. The lipid
analysis results for the four major fatty acids palmitic (16:1), palmitoleic (16:1), stearic (18:0)
and oleic (18:1) are shown in Tables 4 and b, which represent results for both runs separately.
It is obvious that there is a considerable variation in the GC measurements from run to run.
This variation can be visualized by plotting the results of the two experimental runs against
each other. In Fig. 6a the ratio of saturated versus unsaturated trans fatty acids is plotted as a
scatter plot with values for run 1 on the abscissa and values for run 2 on the ordinate. The vari-
ation between run 1 and run 2 is considerable and even more pronounced than the run to run
variation revealed in Fig. 5.
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In Fig. 6 the parallel GC and FTIR results of a selection of samples grown in Erlenmeyer
flasks are shown. In Fig. 6a the experimental run to run variability for the ratio of saturated ver-
sus monounsaturated fatty acids is shown. Data are plotted as a scatter plot, where the first ex-
perimental run is plotted on the x-axis and the second experimental run is plotted on the y-
axis. In Fig. 6b and c the score plot and the correlation loading plot of the first and second prin-
cipal component are shown for the fatty acid analysis. In Fig. 6d the first and the second scores
of the PCA of the fatty acid region (2800–3100 cm-1) of the FTIR analysis are shown. The PCA
sample variation patterns displayed in the score plots for the FTIR results and the fatty acid
analyses in Fig. 6b and d shows two main directions. While the variation pattern from the bot-
tom to the upper right is carried by most of the samples, the variation pattern from the right to-
wards the upper left is only borne by very few samples: It is based on the variation caused by
the samples 19 (OPI3—Phospholipid methyltransferase (methylene-fatty-acyl-phospholipid
synthase), catalyzes the last two steps in phosphatidylcholine biosynthesis) and 13 (HMG2—
HMG-CoA reductase; converts HMG-CoA to mevalonate, a rate-limiting step in sterol biosyn-
thesis). In Fig. 6c the cause of the variation pattern is explained in the correlation loading plot.

Fig 4. The first and the second scores of the PCA of one experimental run are shown for two harvest time points and two spectral regions. In (a)
and (b) the score plots are shown for the spectral region 2800 cm-1

–3100 cm-1 for harvest times 24 hours and 48 hours, respectively. In (c) and (d) the score
plots are shown for the spectral region 900–1800 cm-1 for harvest times 24 hours and 48 hours, respectively.

doi:10.1371/journal.pone.0118052.g004

High-Throughput Biochemical Fingerprinting of Saccharomyces cerevisiae

PLOSONE | DOI:10.1371/journal.pone.0118052 February 23, 2015 13 / 22



The strongest variation carried only by the samples 19 and 13 is due to the ratio of saturated
versus monounsaturated fatty acids in phosphatidylcholine (Table 5). The second and more
sustainable variation formed by the rest of the samples is explained by the ratio of saturated
versus monounsaturated total fatty acids. In order to compare the variation in the GC data,
with the FTIR analyses, we performed PCA on the FTIR spectra of the fatty acid region of
FTIR spectra obtained from identical samples as used for the GC measurements. The score
plot of the first and second PCA component is shown in Fig. 6c. Surprisingly the PCA of the
FTIR fatty acid region in Fig. 6c shows the same variation pattern as the PCA of the fatty acid
analysis shown in Fig. 6b. Again the strongest variation pattern is due to difference of the sam-
ples 19 and 13, while this time the replicates of the strain 13 lay on the other side of the cloud
formed by the rest of the samples. This proves that the fatty acid phenotype as obtained by the
GC measurements is captured by the FTIR fatty acid region, i.e. the C-H stretching region
from 3100 cm-1 to 2800 cm-1.

In order to estimate if FTIR spectra can be used to predict measurements of fatty acid com-
position obtained on identical samples, a PPLSR regression model was established using the
FTIR spectra as descriptor variables (X) and the fatty acid measurements as independent vari-
ables (Y). The PPLSR measurements were based on 42 independent GC measurements ob-
tained from independent cultivations. For each sample and GC measurement 3 FTIR replicate
spectra were obtained which were averaged before the PPLSR regression. For each GC

Table 3. Strains used for FTIR phenotyping study and GC.

ORF Gene sample #

YHR067W HTD2 1a,b

WT WT BY4743 4

YDR058C TGL2 7

YKR067W GPT2 12

YLR450W HMG2 13

YJR073C OPI3 19 a,b

YJR103W URA8 20

YKL140W TGL1 22

YLL012W YEH1 24

YML008C ERG6 31 a,b

YMR205C PFK2 33 a,b

YMR207C HFA1 34 a,b

YMR272C SCS7 36

YNL323W LEM3 37 a,b

YNL280C ERG24 38 a,b

YOR100C CRC1 45

YBL011W SCT1 55

YDL142C CRD1 66 a,b

YER061C CEM1 77 a,b

YGL126W SCS3 79 a,b

WT WT BY4743 wt

a sample, showed a dominant FTIR phenotype that is different from the wild type after 24 hours of

cultivation;
bsample, showed a dominant FTIR phenotype that is different from the wild type after 48 hours of

cultivation;

doi:10.1371/journal.pone.0118052.t003
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measurement variable a separate regression model was established. The PPLSR models were
validated by full cross-validation where one sample was taken out at the time. The selection of
the model size, i.e. the selection of the number of components that were used for the prediction,
was very conservative. In most cases only one component was used. The results are shown in
Table 7. The prediction results are moderate, which is probably due to the high variability in
the GC data. Saturated, monounsaturated (the respective ratio) and the saturated phosphati-
dylcholine are relatively well explained by the respective prediction models, which mirror the
results of the PCA analysis of Fig. 6a, where it was shown that the same fatty acids explain the
variation in the GC and FTIR analysis in the first and the second component. For the predic-
tion of the phosphatidylethanolamine by the FTIR spectra no reasonable models could be ob-
tained. The reason for this may be that they are present in very small amounts (see Table 6).

In Fig. 7a, the predicted ratio of saturated and monounsaturated fatty acids is plotted against
the GC measurements. For the prediction the spectral regions from 700 cm-1 to 1800 cm-1 and
from 2800 cm-1 to 3100 cm-1 of the FTIR spectra were used. On the x-axis the measured values
and on the y-axis the predicted values are plotted. The calibrated results are shown in blue,
while validation results are shown in red. In order to investigate if the regression model is
based on meaningful spectral bands we investigated the regression coefficients. The respective
regression coefficients are shown in Fig. 7b and c. In (c) the fatty acid region from 2800 cm-1 to
3100 cm-1 is enlarged for the regression coefficient shown in (b). The advantage of the PPLSR
model compared to ordinary partial least squares regression is that the PPLSR is very selective
with respect to spectral bands and thereby improving the interpretability of the model. In
Fig. 7b we can clearly see that the regression coefficient has its strongest positive and negative
values in the fatty acid region from 3100 cm-1 to and 2800 cm-1. There are also signatures se-
lected in other spectral regions, which is due to the fact that there are also bands related to fatty
acids in the range below 1500 cm-1. Fig. 7c shows an enlarged presentation of the fatty acid re-
gion from 3100 cm-1 to and 2800 cm-1. The important bands in this region which are

Fig 5. The first and the second scores of both experimental runs are shown for strains harvested after 48 hours for the spectral regions 2800–3100
cm-1 and 900–1800 cm-1, in (a) and (b), respectively. The principal component model is built on the data collected in run 1for the fatty acid region (2800–
3100 cm-1) and the region 900–1800 cm-1, in (a) and (b) respectively. The data of run two is projected into these models.

doi:10.1371/journal.pone.0118052.g005
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emphasized by the regression coefficient are 2935 cm-1 (asymmetric CH3 stretch), 2915 cm
-1

(asymmetric CH2 stretch), 2860 cm
-1 (symmetric CH3 stretch) and 2845 cm

-1 (symmetric CH2

stretch). The bands related to CH3 bands are positive in regression coefficients while CH2

bands are negative. This is meaningful, since second derivative spectra were used in the regres-
sion model: In second derivative spectra the bands appear as minima. Thus, a relatively higher
share of CH2 stretching bands compared to CH3 bands in the saturated fatty acids compared to
the monounsaturated fatty acids is expressed as positive regression coefficients for CH3 bands
and negative regression coefficients for CH2 bands. This shows that the regression models are
meaningful from a chemical point of view.

Discussion and Conclusion
To investigate the feasibility of large scale FTIR phenotyping to detect subtle biochemical ef-
fects arising from known genetic variation with, if at all, marginal consequences on growth, we
subjected a selected subset of all viable S. cerevisiae gene knock-outs to high-resolution FTIR
spectroscopy. With few exceptions, these 76 gene knock-outs show no loss of fitness during
standard growth conditions, suggesting that the biochemical consequences of gene loss are sub-
tle and inaccessible even to the most precise growth phenotyping technologies. The FTIR sig-
natures of these 76 gene knock-outs were precisely quantified over spectral regions in the FTIR
spectra known to predominantly reflect characteristics of distinct biochemical bonds [8]. The
spectra were corrected according to an Extended Multiplicative Signal Correction (EMSC)

Table 4. GC results for total fatty acids.*

16:0 16:01 18:00 18:1 SUM tot FA

sample Run1 Run2 Run1 Run2 Run1 Run2 Run1 Run2 Run1 Run2

1 36.2 40.7 36.5 27.0 9.8 13.5 17.6 18.8 455.7 122.6

4 40.0 38.9 27.8 31.0 13.5 10.5 18.7 19.7 379.9 389.7

7 39.1 37.2 35.8 30.7 8.8 9.5 16.2 22.6 553.7 303.4

12 37.7 38.2 31.4 33.5 10.2 7.6 20.7 20.7 359.1 352.6

13 35.9 39.7 36.2 28.4 10.1 13.6 17.7 18.3 383.6 137.2

19 25.1 27.3 38.0 38.3 10.8 10.9 26.1 23.6 746.9 800.5

20 37.4 35.3 34.6 34.4 11.1 8.5 16.9 21.7 303.8 302.6

22 38.8 40.0 34.9 29.0 11.0 12.6 15.2 18.3 374.5 187.4

24 40.6 42.6 31.4 30.2 11.1 11.4 17.0 15.9 459.6 179.1

31 31.2 31.6 34.4 29.2 10.9 13.0 23.6 26.1 516.3 278.0

33 30.8 31.5 37.1 32.8 8.1 9.7 24.0 26.0 456.0 243.3

34 32.2 41.4 33.2 31.0 9.1 10.9 25.4 16.6 258.2 157.6

36 35.8 28.7 36.8 38.3 9.1 7.3 18.2 25.8 469.2 764.1

37 36.5 41.1 39.3 32.3 6.3 9.0 17.9 17.5 1406.9 469.2

38 29.4 25.6 36.9 38.8 10.3 9.4 23.3 26.2 368.9 425.0

45 38.7 37.3 35.3 37.9 8.9 8.4 17.1 16.4 637.4 407.2

55 36.3 28.4 38.6 35.9 8.5 9.0 16.7 26.6 1104.6 389.3

66 35.7 30.1 41.4 39.3 8.3 8.2 14.6 22.4 1176.8 402.1

77 30.4 32.6 41.2 36.4 7.1 8.6 21.3 22.5 1174.5 688.9

79 40.4 40.5 34.5 26.6 10.8 14.2 14.3 18.7 593.8 259.8

WT 37.5 30.9 37.7 37.6 7.8 7.6 17.1 23.9 600.1 375.7

*-amount of fatty acids is given in nmol;

doi:10.1371/journal.pone.0118052.t004
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protocol to separate physical light-scattering effects from chemical information in the spectra
[20,21], and after this pre-processing spectra are expected to contain predominantly biochemi-
cal information. The biochemical information that contributes to the establishment of regres-
sion models can be investigated by means of the regression coefficients. It has been shown that
the biochemical information contributing to the regression models is meaningful with respect
to the fatty acid variables predicted. Yet, it is important to exclude that differences shown in
the FTIR phenotype are partially explained by physical variations. Mutant 19 (OPI3) which
shows a dominant FTIR phenotype for all FTIR measurements (Figs. 4, 5 and 6d) and is obvi-
ously different in the saturation of phosphatidylcholine (Fig. 6b and c) was therefore further in-
vestigated by SEM analysis and compared to the SEM analysis of the wild type. The SEM
analyses were directly performed on the films used for the FTIR measurements (Fig. 2a and b)
showing that there are no apparent morphological differences in the cells and the formation of
the films used for FTIR analyses. Thus, this gives further confidence that the FTIR signature
obtained predominantly contains biochemical information. Since molecular phenotypes of
yeast strains strongly depend on growth status [26], the time of harvest for the FTIR analysis is
an important issue. In order to harvest yeast strains in a growth status which involves not too
strong metabolic changes and thus reduces variability, the stability of the FTIR signal was eval-
uated as a function of the growth time (Fig. 3). During the first 24 hours of growth strong bio-
chemical changes were detected suggesting against a harvest of the mutants during the first 24
hours. After 24 hours the situation stabilizes, showing that from a variability point of few,

Table 5. GC results for phosphatidylcholine.*

16:0 16:01 18:00 18:1 SUM PC-FA

Sample Run1 Run2 Run1 Run2 Run1 Run2 Run1 Run2 Run1 Run2

1 38.6 37.9 42.2 25.8 6.8 13.8 12.4 22.6 99.4 29.8

4 40.4 39.4 37.8 38.0 8.4 7.5 13.3 15.0 95.7 111.2

7 39.0 39.6 39.8 33.0 9.0 9.4 12.2 18.1 130.2 74.8

12 40.8 39.6 38.7 38.5 6.7 7.5 13.7 14.4 54.2 78.7

13 54.4 45.9 29.0 27.7 10.9 12.8 5.7 13.7 58.4 21.9

19 46.1 51.2 11.9 9.8 20.1 23.4 21.9 15.6 7.0 10.2

20 36.9 25.5 37.2 42.3 9.5 8.1 16.4 24.1 73.0 94.9

22 34.8 44.1 37.4 35.3 9.7 8.7 18.1 11.9 106.2 38.3

24 45.8 37.1 36.0 32.5 8.7 12.9 9.5 17.5 101.1 47.8

31 25.4 19.6 35.9 26.2 13.2 17.8 25.5 36.4 135.7 93.6

33 29.6 29.4 46.3 34.8 6.4 11.3 17.7 24.5 130.7 55.3

34 36.3 33.9 37.1 33.5 10.4 11.7 16.2 20.9 53.6 60.0

36 38.1 28.4 43.8 44.1 7.3 6.7 10.8 20.8 131.9 108.0

37 35.9 39.5 46.9 44.3 5.6 5.4 11.5 10.8 360.3 117.7

38 35.5 19.5 42.2 31.7 8.3 14.8 14.0 33.9 109.2 103.6

45 38.8 31.3 43.5 39.3 7.1 8.1 10.6 21.4 177.2 78.1

55 36.6 25.5 43.0 45.1 7.8 8.1 12.6 21.3 125.6 105.3

66 34.0 25.1 50.0 42.7 5.4 9.5 10.6 22.7 131.3 91.9

77 32.9 28.8 46.6 41.2 5.6 8.6 14.9 21.5 185.7 145.8

79 40.7 42.4 36.7 36.1 9.0 9.8 13.5 11.7 200.4 100.3

WT 36.4 27.5 44.3 36.2 6.5 11.5 12.7 24.8 54.2 77.4

*-amount of fatty acids is given in nmol;

doi:10.1371/journal.pone.0118052.t005
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strains may be harvested after 24 hours and until 72 hours corresponding to the maximum
growth time in the investigated time frame. Nevertheless, the exact time of growth that is finally
chosen for the analysis by FTIR or any other method depends on the aim of the study and on
the biological question to be answered. But the investigation of the question in focus in this
study, i.e. how we should standardize procedures for high-throughput phenotypic analysis of
thousands of mutant strains, certainly indicate that 48 hours (stationary phase cells) would be
the best.

A key issue for the impact of a large scale effort aimed at the FTIR phenotyping of very large
yeast collections is whether the FTIR spectra provide biochemical interpretation that can be
transformed into the understanding of gene-function relationships. This, however, is mostly
difficult due to the complex nature of FTIR spectra reflecting the summation of all chemical
bonds in the cell. Notwithstanding, the causal basis for various spectral bands in the FTIR spec-
tra can be inferred from their co-variation with the detailed measurements of metabolites. As
GC signatures for many biochemical compounds are known these can be obtained and com-
pared to FTIR signatures [27,28]. In total, 15 knock-out strains with a distinct phenotype for
FTIR measurements as well as 7 strains with no FTIR phenotype plus the wild type BY4743
(2x) were selected for lipid profiling by gas chromatography. Since the growth for GC analysis
and parallel FTIR analysis was done in 35 ml medium in Erlenmeyer flasks, it is expected that
not exactly the same strains that showed a phenotype in the Bioscreen growth have an FTIR
phenotype or a GC phenotype after growth in Erlenmeyer flasks. The growth conditions,

Table 6. GC results for phosphatidylethanolamine.*

16:0 16:01 18:00 18:1 SUM PE-FA

Sample Run1 Run2 Run1 Run2 Run1 Run2 Run1 Run2 Run1 Run2

1 28.7 40.4 26.0 32.1 20.8 14.4 24.5 13.1 9.3 9.9

4 21.8 31.3 19.2 29.2 21.1 5.3 37.8 34.1 16.5 45.5

7 19.3 31.9 19.8 33.7 20.6 8.9 40.3 25.5 9.5 31.4

12 34.1 35.9 31.0 30.4 13.4 7.0 21.4 26.7 46.6 23.1

13 18.8 29.0 25.0 27.6 21.5 15.0 34.8 28.4 47.5 19.7

19 25.4 23.5 22.5 34.5 23.5 14.7 28.6 27.3 10.2 30.3

20 35.3 21.4 30.7 30.1 10.9 13.6 23.2 34.9 50.2 33.7

22 31.2 29.5 34.7 30.7 10.5 12.1 23.7 27.7 18.1 15.1

24 41.5 36.5 42.4 22.5 3.9 13.4 12.2 27.6 19.4 8.3

31 21.2 28.3 30.5 23.8 13.0 11.8 35.4 36.2 39.6 9.3

33 17.5 15.5 29.6 25.3 14.2 19.8 38.8 39.4 64.9 21.2

34 18.7 20.5 36.3 32.8 20.2 13.9 24.7 32.8 43.7 48.0

36 38.7 27.8 33.2 40.2 9.9 4.1 18.1 28.0 21.3 37.0

37 32.6 32.7 43.4 38.9 1.9 5.6 22.0 22.7 125.4 55.1

38 25.6 27.0 34.5 29.2 4.1 7.5 35.8 36.3 62.8 15.9

45 33.0 24.5 38.3 37.3 5.1 8.3 23.6 29.9 43.5 68.6

55 29.3 26.6 43.0 46.1 5.3 2.6 22.3 24.7 36.7 47.4

66 30.4 28.7 42.0 39.7 4.1 4.9 23.5 26.7 38.5 43.7

77 25.9 28.5 46.3 43.8 3.1 2.4 24.7 25.3 81.6 65.8

79 31.4 39.6 42.2 36.1 5.4 6.8 21.0 17.4 64.6 23.9

WT 9.3 22.9 26.0 35.0 22.2 9.2 42.5 32.8 5.6 40.7

*-amount of fatty acids is given in nmol;

doi:10.1371/journal.pone.0118052.t006
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including the medium volume and the level of aeration, is expected to influence the phenotype
of the mutants [29]. When analyzing the GC and FTIR results of the strains grown in Erlen-
meyer flasks, analyses obtained from the same cultivations could be compared. Surprisingly,
when comparing the phenotypic variation in the GC analysis with the phenotypic variation in
the fatty acid region of the FTIR spectra, identical patterns could be detected (Fig. 6b and d).
This strongly suggests that our FTIR experimental setup actually provides relevant and reliable
fatty acid information, while being fast and cheap enough to be used for high-throughput
screening. It also showed that the levels of specificity in GC and FTIR analysis are comparable,
since the two main fatty acid variation patterns in the investigated set of samples could be de-
tected by the FTIR and GC analysis. This main variation patterns were given by the variation

Table 7. Prediction results.

PredictionParameters RMSECV Mean Y R2 CV at AOpt Relative RMSECV % AOpt

sat/mon total 0.2 0.85 0.59 24 1

sat/mon PC 0.4 0.92 0.39 43 2

sat total 0.06 0.45 0.58 13 1

mon total 0.06 0.55 0.58 11 1

sat PC 0.04 0.1 0.37 40 1

mon PC 0.05 0.13 0.32 38 1

doi:10.1371/journal.pone.0118052.t007

Fig 6. The parallel GC and FTIR results of a selection of samples grown in Erlenmeyer flasks are shown. (a) The experimental run to run variability for
the ratio of saturated versus monounsaturated fatty acids is shown. Data are plotted as a scatter plot, where the first experimental run is plotted on the x-axis
and the second experimental run is plotted on the y-axis. (b) The first and the second scores of the PCA of the GC analyses are shown. (c) The correlation
loading plot corresponding the PCA of the GC analyses is shown (d) The first and the second scores of the PCA of the fatty acid region (2800–3100 cm-1) of
the FTIR analysis are shown.

doi:10.1371/journal.pone.0118052.g006
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in saturated versus unsaturated fatty acids and the variation in saturated versus
monounsaturated phosphatidylcholine.

The biological variability in the growth experiments of the yeast knock-out strains is very
high. This is revealed both by the GC analysis and the FTIR analysis. In the GC analysis of rep-
licated growth in Erlenmeyer flasks, a strong variability between two different and independent
runs could be detected. This was confirmed by the FTIR analysis of the independent runs of
the strains grown in Erlenmeyer flasks and by the FTIR analysis of strains grown in the Biosc-
reen system (Fig. 5). This biological variability seems to be independent from the method used
for the chemical and biophysical analysis and in the future it needs to be investigated to what
extent it can be further reduced.

The technical variability in the GC analysis is also expected to be high due to the extraction
steps involved when isolating fatty acid fractions from yeast strains [30]. Yet, the technical vari-
ability of FTIR measurements is very small, as can be seen by the small variability in the repli-
cate measurements of different cultivation grown in the same Bioscreen run (Fig. 4). Thus,
FTIR spectroscopy has a very high reproducibility while it is at the same time rather specific.

The disadvantage of FTIR spectroscopy compared to GC analysis and other wet chemical
methods is clearly that fatty acid analysis cannot be done independently, i.e. FTIR spectra need
to be calibrated against standard analytical methods in order to become biologically interpret-
able. The consequence is that if there is a high variability in the wet chemical analysis, the cali-
bration model will always suffer from this variability. Yet, the calibration models presented in
this paper show that some of the fatty acid variation is clearly captured by both the GC analysis
and FTIR analysis and there is a potential of using FTIR spectroscopy to predict some of the
most abundant fatty acids in yeast (Table 7).

For improving calibration results further, the biological variability during growth needs to
be further reduced and growth conditions need to be standardized. This may be achieved by
developing a fully automated growth and harvesting systems involving the different steps of
the protocol (Fig. 1). In order to achieve maximum throughput, such a system may be

Fig 7. The prediction results for the prediction of GC fatty acids by FTIR data are shown. (a) The predicted ratio of saturated and monounsaturated fatty
acids is plotted against the respective GCmeasurements. For the prediction the spectral regions from 700 cm-1 to 1800 cm-1 and from 2800 cm-1 to 3100 cm-

1 of the FTIR spectra were used. On the x-axis the measured values and on the y-axis the predicted values are plotted. The calibrated results are shown in
blue, while validation results are shown in red. (b) The corresponding regression coefficients are shown. In (c) the fatty acid region from 2800 cm-1 to 3100
cm-1 is enlarged for the regression coefficient shown in (b).

doi:10.1371/journal.pone.0118052.g007
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integrated together with the FTIR analysis. We are currently developing a fully automated sys-
tem for growth and subsequent FTIR analysis of microorganisms in the EU project (http://
www.fust.eu.com/), with sufficient throughput for genome-wide phenotyping of gene-knock-
out strains by FTIR spectroscopy. Using this system enable us to grow and analyze by FTIR
spectroscopy 384 samples per day fully automated. Thus, high-throughput FTIR spectroscopy
can constitute a substantial technological advancement for functional genomics and can pro-
vide for screening of large collections of knock-out strains or other mutant/strain collections.
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