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ABSTRACT
Reports on reddish carotenoid-based ornaments in female three-spined sticklebacks
(Gasterosteus aculeatus) are few, despite the large interest in the species’ behaviour,
ornamentation, morphology and evolution. We sampled sticklebacks from 17
sites in north-western Europe in this first extensive study on the occurrence of
carotenoid-based female pelvic spines and throat ornaments. The field results
showed that females, and males, with reddish spines were found in all 17 populations.
Specimens of both sexes with conspicuous red spines were found in several of the
sites. The pelvic spines of males were more intensely red compared to the females’
spines, and large specimens were more red than small ones. Fish infected with the
tapeworm (Schistocephalus solidus) had drabber spines than uninfected fish. Both
sexes had red spines both during and after the spawning period, but the intensity
of the red colour was more exaggerated during the spawning period. As opposed to
pelvic spines, no sign of red colour at the throat was observed in any female from any
of the 17 populations. A rearing experiment was carried out to estimate a potential
genetic component of the pelvic spine ornament by artificial crossing and rearing of
15 family groups during a 12 months period. The results indicated that the genetic
component of the red colour at the spines was low or close to zero. Although reddish
pelvic spines seem common in populations of stickleback, the potential adaptive
function of the reddish pelvic spines remains largely unexplained.

Subjects Animal Behavior, Aquaculture, Fisheries and Fish Science, Evolutionary Studies,
Zoology
Keywords Gasterosteus aculeatus, Stickleback, Ornament, Carotenoid, Pelvic spine, Signal,
Female ornament

INTRODUCTION
Sexual selection has dominated the study of behavioural ecology the last 25 years (Ander-

sson, 1994; Milinski, 2014; Simmons, 2014). Although the main focus has been on female

choice and males’ elaborate ornaments, the evolution of female ornaments has received

attention as well (Amundsen, 2000; Clutton-Brock, 2009; Kraaijeveld, Kraaijeveld-Smit &

Komdeur, 2007). Female ornaments come in different varieties and may be female-specific

or mutual for both sexes. They may be relatively static over longer time-periods or highly
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dynamic, for example as signals of fertility or ovulation (e.g., McLennan, 1994; McLennan,

1995; Rowland, Baube & Horan, 1991; Amundsen & Forsgren, 2001). Authors have

hypothesized that ornaments signal genetic quality of females (e.g., Zahavi, 1975), or direct

benefits for offspring such as non-genetic maternal resources (e.g., Blount, Houston &

Møller, 2000; Massaro, Davis & Darby, 2003; Gladbach et al., 2010). However, the resources

allocated to ornamentation may also lead to reduced resources available for offspring and

thus constrain the females’ investment in offspring (Fitzpatrick, Berglund & Rosenqvist,

1995; Price, 1996; LeBas, Hockham & Ritchie, 2003; Chenoweth, Doughty & Kokko, 2006),

giving dishonest female signals (Funk & Tallamy, 2000; Bonduriansky, 2001).

Several hypotheses have been proposed to explain the evolution of female ornaments

in mutually ornamented species. The “direct selection hypothesis” suggests that female

ornaments are under direct sexual selection by males, or under selection due to compe-

tition among females (Amundsen, 2000; Kraaijeveld, Kraaijeveld-Smit & Komdeur, 2007).

Thus, according to this hypothesis, female ornaments are honest signals of some aspects

of individual quality. The alternative “genetic correlation hypothesis”, predicts that female

ornamentation is a genetically correlated response to selection for male ornamentation

and this received some support already from Darwin (1871). Later, Lande (1980) suggested

that female ornamentation in mutually ornamented species may be just a temporal stage

in the evolution of male ornaments. The evolutionary explanations for females’ ornaments

remain controversial (Nordeide et al., 2013).

The three-spined stickleback (Gasterosteus aculeatus) has been studied for decades to

address diverse topics within ecology, morphology, and evolutionary biology (reviews by

(Wootton, 1976; Wootton, 1984; Bell & Foster, 1994; Őstlund-Nilsson, Mayer & Huntingford,

2007)). Male sticklebacks develop the nuptial blue eyes and yellow—reddish carotenoid-

based throat (reviewed by Rowland, 1994) (for simplicity, we refer to the yellow—reddish

carotenoid-based ornaments as “red” in the rest of this paper). Red serves as a strong

signal eliciting territorial aggression (ter Pelkwijk & Tinbergen, 1937; Tinbergen, 1948) or

a dual effect of aggression and fear in male three-spined sticklebacks (Rowland, 1994),

in addition to being an important mate choice cue for females (Milinski & Bakker, 1990,

reviewed by Rowland, 1994). Sticklebacks’ eyes have four cone pigments with visual peak

absorption maximums around 360 nm (ultra-violet sensitive), 445 nm (short-wavelength

sensitive), 530 nm (middle-wavelength sensitive) and 605 nm (long-wavelength sensitive)

(Rowe et al., 2004, see also Lythgoe, 1979). Female sticklebacks increase sensitivity in the red

spectrum during the spawning period (Cronly-Dillon & Sharma, 1968). Male three- spined

sticklebacks also courted females more when illuminated by full-spectrum light including

ultra-violet, compared to females presented in light lacking ultra-violet light (Rick &

Bakker, 2008a). Especially the long wavelengths (“red” light) and the short wavelengths

(ultra-violet) seem to be important when females courted male three-spined sticklebacks

(Rick & Bakker, 2008b).

Despite the extensive scientific literature, studies on female three-spined sticklebacks

with ornaments, especially red ornaments, are few. In a general overview of fishes in

Maine (U.S.), several species of Gasterosteidae, including three- spined sticklebacks, were
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described to have red colours (Bigelow & Schroeder, 1953). In three-spined sticklebacks

(sex not specified) “. . . the fin membrans often are red”, whereas in female three spine

sticklebacks “. . . the whole body except the top of the back may then be reddish. . . ” during

the spawning season (Bigelow & Schroeder, 1953). In an overview of fishes in western

Europe, the red colour in female three-spined sticklebacks was not mentioned whereas

males were described as having red throats during the spawning period (Pethon, 1985).

More recent and detailed studies reported red pelvic spines in both sexes of a population of

the brook stickleback (Culaea inconstans) from Washington (Hodgson, Black & Hull, 2013,

see also McLennan, 1995). Some gravid female three-spined sticklebacks from a population

in Long Islands have vertical barring on the upper half of the body (Rowland, Baube &

Horan, 1991; Rowland, 1994). Pelvic spines are part of the defensive armour protecting

three- spined sticklebacks from predators (Moodie, 1972), which has been studied in

numerous populations in North America (e.g., Moodie, 1972; Hagen & Gilbertson, 1972;

Rowland, 1994), and Europe (Klepaker & Østbye, 2008; Gross, 1978). Red colour was

observed at the throat of female three-spined sticklebacks from California (Pescadero

Creek, von Hippel, 1999), as well as at the throat and at the membrane of the pelvic spines

of females from two stream-resident three-spined stickleback populations from British

Columbia (Little Campbell River, McKinnon et al., 2000). Moreover, female three-spined

sticklebacks from another site in California (Matadero Creek) were reported to have red

ornaments both at their throat and at their pelvic spines (Yong et al., 2013). McKinnon et al.

(2000), referring to personal communications with colleagues who have observed red or-

naments, wrote that such ornaments “. . . occur at least occasionally in other populations”

of three-spined sticklebacks. Yet, only one population from Europe has been reported to

have red ornamented females (Lake Nedre Vollvatn, Nordeide, 2002; Nordeide, Rudolfsen &

Egeland, 2006). Females in this population were reported to have a red membrane attached

to the pelvic spines but not red throats, whereas the males had both red pelvic spines and

red throats. Extensive studies are absent on the occurrence of pelvic spine ornaments in

male and female sticklebacks, and on carotenoid-based throat ornamentation in female

stickleback populations. The few published studies have reported males to have more

exaggerated red ornaments compared to females, and body lengths to be associated with

the elaboration of the ornament (McKinnon et al., 2000; Yong et al., 2013). The difference

in the intensity of the ornament between ovulating and non-ovulating females seems to be

minor (McKinnon et al., 2000; Yong et al., 2013). Ambiguous results were reported on the

relationship between the elaboration of red ornaments and body condition of sticklebacks

(Hodgson, Black & Hull, 2013; Yong et al., 2013), whereas red ornaments were negatively

affected by the parasitic cestoda Schistocephalus solidus (Milinski & Bakker, 1990; Barber,

2007; Candolin & Voigt, 2001; Folstad et al., 1994).

A large environmental component is expected in carotenoid-based ornaments, since

animals cannot synthesize carotenoids and must acquire them through the feed (Goodwin,

1984). Empirical estimates of the relative roles of genes and environment on ornaments are

contradictory, although the genetic contribution is often low (Pagani-Núñez et al., 2014;

Evans & Sheldon, 2012; Hadfield & Owens, 2006; Hadfield et al., 2006; Hill, 1993a). On the
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other hand, some studies have shown a genetic component in carotenoid-based characters,

like the red ornamented throat in male three-spined sticklebacks (Bakker, 1993), flesh

colour in Chinook salmon (Oncorhynchus tshawytscha) (h2 > 0.71) (Withler, 1986) and in

Arctic charr (Salvelinus alpinus) (h2
= 0.26 ± S.E. 0.16) (Elvingson & Nilsson, 1994).

The aim of this study was to give the first extensive overview of prevalence of red pelvic

spine ornaments of three spine sticklebacks, from north-west European populations.

Additionally, we aimed to test for potential effects of sex, body size, parasitism and season

on the elaboration of the ornament. Finally, we report from an experiment where wild

sticklebacks from one of the populations were crossed and their offspring reared, in order

to estimate a potential genetic component of red pelvic spine ornaments in sticklebacks.

MATERIALS AND METHODS
Field study
Three-spined sticklebacks were sampled at 17 sites in north-west Europe from 22 May to

20 August 2012, to estimate (i) the occurrence of individuals with red pelvic spines, (ii)

how the intensity of red varied between stickleback populations, and (iii) whether the

intensity of red was affected by sex, parasitism and body size. The sampling strategy was a

compromise between limited financial resources available on one hand and an intension

to cover as large parts of north-west Europe as possible on the other hand. Stations 8–15

(Fig. 1) were chosen due to their relatively close location to the University of Nordland and

due to our prior knowledge about stickleback occurrence. The remaining stations were

chosen based on information from kind colleagues, friends and relatives, on the occurrence

of sticklebacks. All samples were from landlocked freshwater populations except two (no

13 and 14) which were brackish. Ten of the populations were from North Norway, one

(no 7) was from mid-Norway, and the remaining six populations (no 1–6) were from the

southern parts of Norway (Fig. 1 and Table 1). The altitude of the sampling sites varied

from 1 to 150 m (Table 1). The majority of the samples were collected in May–July, whereas

two (no 7 and 16) were sampled in August (Table 1). An additional sample was included

from one (Lake Pallvann, Table 1) of these 17 sites, to examine potential change in intensity

of red at the pelvic spines within the spawning season compared to 3–4 months later.

All fish were caught by traps. The majority of the samples were collected using traps

made by cutting 1.5 l transparent soda bottles into two parts, turning the upper part

(about 1/3 of the bottle) upside down, and assembling the two parts by twine. Fish

from lakes 3–6 were caught by passive traps made of plexiglas (Breder, 1960), and by

minnow-traps made of small-meshed nets of nylon. The traps fished during a period of

20–24 h. The sticklebacks were killed by an overdose of tricaine methanesulfonate (MS222)

immediately after the traps were emptied. After the required exposure time (approximately

1–2 min), the dead sticklebacks were quickly rinsed in freshwater to remove any anaesthetic

residue and placed on ice in a dark container. The sticklebacks were kept in a freezer until

transported to the University of Nordland in Bodø, where they were kept in complete

darkness in a −40 ◦C freezer until they were photographed (see below). This was to ensure

that the carotenoids on the pelvic spines did not oxidize due to light exposure.
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Figure 1 Map of the sampling sites. Locations of sites where the sticklebacks were collected. Numbers
correspond to “No” in Table 1.

Rearing experiment
The rearing experiment lasted from June 2008 to June 2009. Parents were caught 3–16

June 2008 in Lake Nedre Vollvatn (Table 1 and Fig. 1). These fish were kept in the holding

tanks for 4–7 days before sacrificed by an overdose MS222. To fertilize eggs of parents

and rear their sibling groups of offspring we used the method described by Barber &

Arnott (2000), with some modifications. The female’s (mother’s) abdomen was gently

squeezed and eggs and ovarian fluid were collected in a Petri dish. The male’s (father’s)

gonad was first removed then cut into small pieces in the Petri dish before the eggs and

semen were physically mixed and left for fertilization the next 5 min. In the hatchery, the

offspring in each sibling group, produced from each of the fertilizations trials, were reared

separately in plastic boxes with about 160 ml volume and a continuous flow of water,

as described by Rudolfsen et al. (2005). This rearing method removed potential paternal

effects on the offspring. When most of the eggs in a particular sibling group hatched,

the eggs and larvae were moved to a 2 l tank and for the next 3–4 weeks first fed Artemia

nauplii and commercial dry feed (TetraMinBaby; Tetra, Melle, Germany), and later dry

feed and chopped Chironomidae larvae. The fry sibling groups were moved to larger

7.5 l tanks 27 August, and from September–January given only Chironomidae larvae as

food. In three of the 15 sibling groups approximately half of the specimens were 6 January

moved to another and identical tank to avoid too high density of fish (offspring from the

same sibling-group were kept in two identical 7.5 l tanks). From 26 January to 16 April
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Table 1 Information about the samping sites. Site locations number (No), date of capture, whether
sampling in freshwater (F) or marine (M) habitat, longitude/latitude, and altitude for the studied
sticklebacks. The populations are numbered from south to north. One of the populations was sampled
twice, first during the spawning season in May (“No 9s”), then in 3–4 months after the end of the
spawning season (“No 9a”).

No Site Date of capture M/F Longitude, Latitude Altitude (m)

1 Øvre Sundbydam 5–6/6–12 F 59◦38,492′N,10◦35,239′E 50

2 Engenvannet 14/6–12 F 59◦53,754′N, 10◦31,880′E 1

3 Vassnesvannet 12/6–12 F 60◦03,664′N, 05◦22,206′E 4

4 Kvernavannet 11/6–12 F 60◦10,006′N, 05◦23,696′E 4

5 Myrdalsvannet 14/6–12 F 60◦31,423′N, 05◦39,859′E 74

6 Nygårdsparken 14/6–12 F 60◦38,228′N, 05◦32,940′E 2

7 Jonsvannet 19–20/8–12 F 63◦21,941′N,10◦34,879′E 150

8 Torghatten 12/7–12 F 65◦43,08′N, 12◦11,282′E 3

9s Pallvannet 23/5–12 F 67◦18,259′N, 14◦24,471′E 138

9a Pallvannet 7/10–12 F 67◦18,259′N, 14◦24,471′E 138

10 Nedre Vollvann 8–9/6–12 F 67◦18,055′N, 14◦26,767′E 123

11 Frosktjønna 22/5–12 F 67◦18,760′N, 14◦37,658′E 70

12 Vatnvatnet 17–20/6–12 F 67◦20,030′N, 14◦46,460′E 8

13 Nord Valen 26–29/6–12 M 67◦25,298′N, 13◦54,202′E 1

14 Kalven 23–28/6–12 M 67◦25,298′N, 13◦54,202′E 1

15 Åsvannet 8–10/7–12 F 68◦17,215′N, 16◦41,027′E 79

16 Håkøybotn 8/8–12 F 69◦37,658′N, 18◦43,968′E 2

17 Skarsfjord 31/7–12 F 69◦56,769′N, 18◦51,621′E 3

the offspring in the 18 tanks (15 sibling groups) were fed dry feed containing carotenoids

(astaxantin and β, β-carotene, see Appendix S1 for a recipe). The specimens in each sibling

groups were fed in excess, starting with three times a day the first 3–4 weeks from start

feeding, and ending with once a day the last 6 months. Excess food was always available in

the tank the entire 12 months period. From October onwards, the sticklebacks experienced

the natural light regime in Bodø. This feeding of the reared offspring with carotenoids

resulted in intensity of red of daughters and sons overlapping to a large degree with their

wild caught parents, although the offspring were slightly more ornamented than their wild

caught fathers’ and mothers’ (Appendix S2). Thirty-one offspring (10.6%) from the 15

sibling groups died from the start of feeding with carotenoids 26 January to the experiment

terminated 5 1
2 months later.

A potential genetic component of the intensity of red was estimated both by General

Linear Models (GLM, see below) and as heritability (h2). The latter, with standard error,

was estimated by the classical parent–offspring regression method for the 15 fullsib groups

and 301 offspring (after discarding non-mature offspring), and adjusted for unequal

family-sizes as first suggested by Kempthorne & Tandon (1953). A potential sex effect of the

intensity of red (IR, see below) was handled by doing an overall regression between mother

and the mean of daughters and likewise with the fathers and sons. The mean weight in

each offspring group was used as a predictor in the model when estimating the regression

coefficient.
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Common for the field study and the rearing experiment
To quantify intensity of red colour of the spine, we took close up photos of the ventral

part of the fish with raised spines including the red carotenoid-based skinfold at the

basis of the pelvic spine. A standard red cardboard (227N, 1103 0964-Y-23R, Jotun A/S,

Sandefjord, Norway) was included in all photos. We used a Nikon D2X digital camera

(Nikon, Tokyo, Japan) with a Nikon ED AF Micro Nikkor 200 mm 1:D lens and Nikon

Speedlight SB-80DX flash. The digital photos were analysed by Adobe Photoshop SC3 (San

Jose, California, USA) in Red-Green-Blue (RGB) modus. We started by drawing a line in

Adobe Photoshop enclosing an area around each of the right and left pelvic spine. The

average density values for all three primary colours R, G, B (red, green, and blue) were

quantified from all the pixels enclosed by this area for each of the two spines (Villafuerte

& Negro, 1998). This was repeated for the standard cardboard in the photo. The mean

R, G and B values of each of the two pelvic spines were used in further calculations. The

intensity of the red colour (IR) of the skin folds of both the two pelvic spines and the red

cardboard was calculated according to the formulae

IR = R/(R + G + B).

After calculating the IR from both the left and right pelvic spines for the first 266 fish,

we estimated the coefficient of correlation between the left and right spines as RS = 0.87

(P < 0.001, N = 266, Spearman’s). Based on this relatively high correlation coefficient,

we decided to measure the right pelvic spine solely for the remaining fish. We adjusted the

final IR-value of the skin fold of the pelvic spines of each fish according to the IR-value

of the cardboard in each photo relative to the average IR-value of all photos. Similar

methods to quantify colouration have previously been applied by several authors who

discussed this method of quantifying colour in ornaments, and gave more details and

estimates of repeatability (Yong et al., 2013; Nordeide, Rudolfsen & Egeland, 2006; Villafuerte

& Negro, 1998; Nordeide et al., 2008; Skarstein & Folstad, 1996; Skarstein, Folstad & Rønning,

2005; Neff et al., 2008). An alternative method to quantify colour, spectrophotometry, was

discarded because of the small size, difficult accessibility of the ornament, and (in some

individuals) un-even distribution of the colour at different parts of the spine (Fig. 2) would

impede the IR-estimates. Red coloration is caused by pteridines in some fishes (Grether,

Hudon & Endler, 2001). Pteridines have similar spectral properties as carotenoids, but

pteridines are not extracted in acetone contrary to carotenoids (Grether, Hudon & Endler,

2001). The spines became colourless after extracting carotenoids by acetone (ES Egeland,

2005, unpublished data), which means that the red colour at the pelvic spines is caused by

carotenoids and not pteridines.

All fish were measured for total length (nearest mm) and total wet weight (nearest

0.001 g) and gonads were examined for sex and whether or not they were sexually mature.

All fish were visually examined externally for the microsporidian Glugea anomala and in

the body cavity for potential specimens of the tapeworm S. solidus.

Several people were involved in sampling the sticklebacks at the 17 different sites, and

the time from death of the fish until they were frozen differed between sites. We carried
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Figure 2 Photos of a pelvic spine from three different sticklebacks. Photo of the right pelvic spine from
three different three-spined sticklebacks from site number 10 (see Table 1). An elaborately ornamented
male with intensity of red (IR = 0.46) is shown in (A), an intermediately ornamented female (IR = 0.37)
is shown in (B), and a drab female (IR = 0.35) is shown in (C). Photos by Jarle Tryti Nordeide.

out a small experiment to test if this time difference could affect our estimates of IR. Thirty

sticklebacks were captured from Lake Pallvannet (Table 1, site 9) May 16 2012, transported

alive to the University of Nordland, and kept in a 300 L tank of freshwater containing

hides made of plastic tubes to reduce the stress level. The fish were not fed. On May 18 the

fish were killed by MS-222, and photographed three times: immediately after death (0 h),

after one hour (1 h), and after four hours (4 h). The fish were held in a dark room at 4 ◦C

between photographs. Quantifying IR-values (as explained above) revealed a mean (±S.D.)

of 0.414 (±0.0318) just after death (0 h), 0.423 (±0.0238) at 1 h, and 0.414 (±0.0200) four
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hours after death. The difference in IR during the time interval from 0 to 4 h after death was

non-significant (paired t-test: t < 0.001, P > 0.99, d.f. = 29).

The red ornament at the throat of the male sticklebacks clearly faded and nearly

disappeared during handling and transportation as judged by the eye, during a period of

30–60 min (JT Nordeide, 2012, unpublished data). This observation concurs with a report

by Frischknecht (1993). Contrary, the red colour of the pelvic spine ornament was much

more stable and apparently not affected during the transport and handling (JT Nordeide,

2012, unpublished data).

Statistical analyses were carried out by General Linear Models (GLM) in SPSS version

20.0 (SPSS Inc., Chicago, Illinois, USA) according to Grafen & Hails (2002). None

of the variables needed to be transformed to meet the assumptions of independence,

heterogeneity of variance, normality of error, and linearity (Grafen & Hails, 2002).

This study was carried out in accordance with ethical guidelines stated by the Norwegian

Ministry of Agriculture through the Animal Welfare Act.

RESULTS
Field study
Photos of the carotenoid-based pelvic spine ornament of a relatively ornamented fish

(IR = 0.46), and a relatively drab fish (IR = 0.35) are shown in Figs. 2A and 2C, respectively.

A third photo (Fig. 2B) demonstrates the spine coloration of a moderately ornamented

(IR = 0.37) but still clearly red (or reddish) fish. Individuals with carotenoid-based

ornamented pelvic spines with an intensity of red (IR) ≥ 0.37 were found in all the 17

examined populations (Fig. 3). The median IR of both males and females was higher

than 0.37 for both sexes in all sites except three (no 3, 4, 7), whereas in another two

sites (no 11 and 15) only males (not females) had median IR ≥ 0.37 (Fig. 3). The most

elaborately ornamented individuals were found in population no 10 and no 14, where

a few individuals had IR > 0.50 (Fig. 3). “Sex” of the fish (entered the model as a

“fixed factor”) had the strongest effect on IR in a linear mixed model (GLM) including

sticklebacks from all the 17 populations (F = 101.417, Table 2). Males had a higher IR

as compared to females (Figs. 3 and 4). “Population” (entered the model as a random

factor) had a strong effect on IR as well (F = 64.114, Table 2 and Fig. 3). Body “length” of

the sticklebacks (entered the model as a covariate) had an effect of IR (Table 2) and this

association was positive (Fig. 4 and Table 2). Finally, sticklebacks infected by the parasite

S. solidus had a lower IR than non-infected fish (Table 2 and Appendix S3). S. solidus were

found in seven of the populations (no 6, 7, 8, 10, 12, 15 and 17) and one population (no

4) was infected by G. anomala. Running the model again including all 17 populations

but excluding all parasitized fish, or only including (all) fish from the seven parasitized

population only, both lead to only minor changes in the estimated parameters.

No correlation was found between mean intensity of red at each of the 17 sampling sites

and either the longitude of the sites (rS = 0.313, P = 0.221, N = 17, Spearman’s correlation

coefficient), or mean intensity or red and altitude at each site (rS = −0.142, P = 0.588,

N = 17).
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Figure 3 Intensity of red (IR) at the pelvic spines of three-spined sticklebacks from 17 different
sites. Box-Whiskers plot of intensity of red (IR) at the pelvic spines of three spine stickleback males (open
bars) and females (hatched bars), from 17 different sites. “Site number” refers to Table 1. The numbers in
the figure show sample size. The three dotted horizontal lines are at IR-values 0.46, 0.37 and 0.35, which
represent IR-values of the pelvic spines from the three fish shown in Fig. 2.

Table 2 Testing if intensity of red at the pelvic spines is affected by the predictors. Test statistics from
a GLM type III (adjusted) sums of squares (SS) with “Intensity of red (IR)” as the response variable, and
the predictors “sex” and whether or not the fish were “parasitized” (by Schistocephalus solidus) as fixed
factors, “population” as random factor, and “length” as covariate. Included were sticklebacks from all the
17 different populations where sex could be categorized by inspecting their gonads.

Source SS d.f. F P-value

Analysis of variance

Sex 0.062 1 101.417 <0.001

Parasitized 0.002 1 4.035 0.045

Population 0.629 16 64.114 <0.001

Length 0.004 1 6.381 0.012

Term Coeff. SE Coeff. t P-value

Coefficients

Constant 0.3847 0.00933 41.51 <0.001

Sex* 0.0210 0.00206 10.07 <0.001

Parasitized**
−0.0093 0.00463 −2.01 0.045

Length 0.00418 0.00166 2.52 0.012

Notes.
* Females were coded as “1” and males as “2” before running the model.

** Non-infected fish were coded “0” and infected fish “1” before running the model.

As opposed to red pelvic spines, no sign of red colour at the throat was observed

in any female from any of the 17 populations. Most males in all populations sampled

during the spawning season (May–June/July) had at least some red colouration at

their throat, although we did not quantify male throat colour due to its volatile nature

(Frischknecht, 1993).
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Figure 4 Intensity of red at the pelvic spines to body length. Scatter-plot of intensity of red (IR) at the
pelvic spines plotted to body length of individual three-spined sticklebacks. Included were individuals
from all 17 populations where sex could be categorized by inspecting their gonads. Open and filled circles
show males and females respectively. The upper and lower lines are the regression line for males and
females respectively. Note that some circles overlap.

To test for seasonality of the ornament, three-spined sticklebacks from one of the lakes

(Lake Pallvann) were sampled both in the spawning season (May 2012) and 3–4 months

after the end of spawning (October 2012, see Table 1). Including data from only these two

samples from Lake Pallvann showed that both “Season” and “Sex” (as fixed factors) were

significant, and they explained 30.1% of the variation of IR in a General Linear Model

(Table 3 and Fig. 5). The effect size of the IR between the seasons was moderate especially

for the females (Fig. 5), but still significant between seasons when the model was run again

with only females included (F1,59 = 7.764, P = 0.007). Re-running the same model (as

in Table 3) and adding body length of the fish as a covariate, gave a non-significant effect

of length (F1,104 = 2.763, P = 0.099) and only minor changes for the other predictors

(“Season” and “Sex”).

We then tested for association between condition of the fish and IR of the pelvic spines

of the three-spined sticklebacks from the October-sample from the same lake (Lake

Pallvannet, no 9a in Table 1). Condition was estimated as the residuals of fish weight (g) on

length cm in a GLM, (weight needed no ln-transformation to be linearly associated with

length). None of the predictors “Residuals of weight on length” (as explained above) as a

covariate (F1,43 = 2.555, P = 0.117) or “Sex” as a fixed factor (F1,43 = 2.882, P = 0.097)
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Figure 5 Intensity of red of the pelvic spines of sticklebacks from Lake Pallvann. Box-Whisker plot
showing median intensity of red (IR) of the pelvic spine of female and male three-spined sticklebacks
from Lake Pallvann in northern Norway (Table 1 and Fig. 1). The fish were caught during the spawning
season (“Spring”) and 3–4 months after the end of spawning (“Autumn”). The “Spring” and “Autumn”
samples refer to “No 9s” and “No 9a” in Table 1, respectively.

Table 3 Testing for the effect of season and sex on redness of the pelvic spines. Testing for effect of
season and sex on intensity of red (IR) on the pelvic spines of three-spined sticklebacks. The table shows
test statistics from a GLM type III (adjusted) sums of squares (SS) with “Intensity of red (IR)” as the
response variable, and the predictors “sex” and “season” as fixed factors. Included are fish from Lake
Pallvannet which could be categorized by sex by inspecting their gonads. “Season” is whether the fish
were sampled during the spawning season (23 May) or 3–4 months after the end of the spawning season
(7 October). The model explained 30.1% of the variation in the data (Adjusted R2

= 0.301).

Source SS d.f. F P-value

Analysis of variance

Sex 0.012 1 20.864 <0.001

Season 0.012 1 21.702 <0.001

Error 0.060 105

Total 17.695 108

was associated with the response variable IR of the pelvic spines. Running the same model

again after including (body) “Length” (as a covariate) as a third predictor did not explain a

significant part of the variation in the response variable either (F1,42 = 0.064, P = 0.802).
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Table 4 Intensity of red at the pelvic spines from the rearing experiment. Daughters from the rearing
experiment: Test statistics from a GLM type III (adjusted) sums of squares (SS) with intensity of red
colour of the offsprings’ pelvic spines (IR) adjusted for body length as the response variable. Predictors
are “length,” and IR of father’s pelvic spines (“Fathers’ IR”) and IR of mothers pelvic spines (“Mothers’
IR”), and these were entered the model as covariates. Adjusted R2

= 0.251.

Source SS d.f. F P-value

Analysis of variance

Length 0.006 1 19.210 <0.001

Father’s IR 0.001 1 4.786 0.030

Mother’s IR 0.002 1 5.175 0.025

Mother’s IR∗ Father’s IR 0.001 1 4.801 0.030

Error 0.038 129

Total 21.680 134

Term Coeff. SE Coef. t P-value

Coefficients

Constant −1.693 0.893 −1.896 0.060

Length 0.001 <0.001 4.913 <0.001

Father’s IR 5.203 2.378 2.188 0.030

Mother’s IR 5.546 2.438 2.275 0.025

Rearing experiment
No association was found between the mean intensity of red spines in each of the tanks

with offspring groups (as the response variable), and the mean weight gain during the

period when fed carotenoids which started 26 January and ended 16 April, as covariate

(F1,17 = 0.034, P = 0.855, R2
= −0.060). This indicates that the intensity of red of the

specimens in each of the 18 tanks in total (15 sibling groups) was not a direct effect of the

amount of carotenoid-feed consumed during this period.

In a GLM with “offsprings’ IR” as the response variable, and the predictors “sex,”

“length,” “mother’s IR,” and “father’s IR” as covariates, only the latter predictor (“father’s

IR”) was non-significant (see Appendix S4). This model explained 31.3% of the total

variance. Males had highest “offsprings’ IR” values (residuals after adjusting for “length”)

(mean ± S.E.: 0.36 ± 0.099), followed by immatures (−0.19 ± 0.146), and females

(−0.203 ± 0.076). When running the same model after excluding immature offspring,

the predictor “sex” was still significant (p < 0.001). Based on these results, we decided to

analyse male and female offspring in separate models.

Starting with female offspring, “offspring IR” was associated with “length” and with the

interaction term between the two other covariates “father’s IR” and “mother’s IR” (Table 4).

The p-values of “father’s IR” and “mother’s IR” were less than 0.031. The model explained

25.1% of the variation, with “length” explaining 21.1% and the remaining (“genetic”)

terms (“father’s IR”, “mother’s IR”, and “father’s IR” x “mother’s IR”) explaining 4.0% of

the variance in the model. The residuals of daughters’IR (adjusted for body length) plotted

against their mother’s IR, is shown in Fig. 6A.
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Figure 6 Association between ornaments in mothers and their offspring. Scatter plot of the intensity
of the red pelvic spines (IR) of (A) mothers and daughters and (B) mothers and sons, and their linear
regression lines. Y-axis shows residuals of IR after adjusting for length of the (A) daughters and (B) sons.
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Concerning male offspring, residuals of offspring IR was positively associated only with

“length” (F = 27.223, P = < 0.001), whereas the p-value of “mothers IR” was slightly

non-significant (F = 3.202, P = 0.077) (Appendix S5). This model explained 23.1% of the

variation, with “length” explaining 21.4% leaving 1.7% of the variation to be explained by

the (“genetic”) term “mothers IR.” Scatter plot of residuals son’s IR (adjusted for length)

against “mother’s IR” is shown in Fig. 6B. Running the model again after removing the

one male offspring (“outlier”) with a very drab mother (“mother’s IR” <0.34), resulted in

also “mother’s IR” becoming significant (F = 2.068, P = 0.040), and the model explained

slightly more of the variance (R2
= 0.244).

Finally, including only “immature” offspring, their IR as response variable was not

significantly associated with neither “length” (F1,54 = 0.432, P = 0.514), or their “mother’s

IR” (F1,54 = 0.044, P = 0.835) as covariates, and the model did not explain much variation

(R2
= 0.009).

The classical parent-offspring regression method (see ‘Materials and Methods’) gave

an estimated heritability of 0.14 (S.E. = 0.22) when data from all mature offspring and all

parents were pooled. This heritability estimate was not significantly different from zero.

DISCUSSION
Field study
This first extensive study of prevalence of female ornaments in three spine stickleback

populations suggested that carotenoid-based pelvic spine ornament is widespread among

north-west European populations. Females and males with red ornamented pelvic

spines were present in all the 17 populations examined, abundant in most of them, and

quite conspicuous in several populations. This widespread occurrence of the red pelvic

spines among populations has not been reported before, and adds another interesting

aspect to the three-spined stickleback as a model species in studies of sexual selection.

Individuals with red spines have so far been reported in only three North-American

populations of sticklebacks (McKinnon et al., 2000; Yong et al., 2013) and one population

from Europe (Nordeide, 2002; Nordeide, Rudolfsen & Egeland, 2006). The great variation

in the exaggeration of carotenoid-based ornaments in the 17 stickleback populations

in the present study concurs with similar studies on male and female House Finches

(Carpodacus mexicanus) in North America (Hill, 1993a; Hill, 1993b). The variation

between populations of House Finches was suggested to reflect local and regional

variation in dietary carotenoids pigments availability (Hill, 1993a). We have no data about

carotenoids availability in the 17 study cites and hence cannot confirm or dispute the

importance of variation in available pigments in the present study.

Some of the results from the present study concur with previous studies on stickleback

ornaments, whereas other results do not. For example, the red throat ornament (contrary

to red spines) was totally absent in all females from the 17 populations and this is contrary

to findings in the three abovementioned North American three-spined stickleback

populations (McKinnon et al., 2000; Yong et al., 2013). We have also confirmed that the

pelvic spines of males are more intensely red than the spines of the females, as reported by
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Yong et al. (2013) for both throat and pelvic spine ornaments, and McKinnon et al. (2000)

for the throat ornament in sticklebacks. Body length of the fish was associated with IR of

the pelvic spines when all 17 populations were analysed together. This result agrees with

reports on female body size and throat colour by McKinnon et al. (2000) and both body

size and throat colour and body size and pelvic spine colour by Yong et al. (2013). Presence

and absence of the parasite S. solidus explained a significant although minor part of the

variation in IR, supporting previous studies suggesting a negative association between

red (throat) ornament and infection of several parasite species including S. solidus (see

references in ‘Introduction’). The elaboration of the red spine ornament was higher during

the spawning season compared to 3–4 months after spawning for both sexes, although

many male and female sticklebacks were still red outside the spawning season (Fig. 5).

Similarly, McKinnon et al. (2000) and Yong et al. (2013) reported small and non-significant

differences in the throat ornament between ovulating and non-ovulating females, and they

suggested that IR of females does not signal readiness to spawn (McKinnon et al., 2000; Yong

et al., 2013).

In the autumn sample from Lake Pallvann we found no association between body

condition of the fish and the intensity of red at their pelvic spines. Again, our result

concurs with the report by Yong et al. (2013) on lack of association between red throat

ornament and condition in three spine sticklebacks, and these authors suggested sexual

selection to be of limited importance in the evolution of female ornaments. In female

brook sticklebacks, however, Hodgson, Black & Hull (2013) reported a positive association

between pelvic spine colour and condition.

We cannot rule out the possibility that lack of detailed information about start and end

of the spawning season for each of the 17 populations and our sampling of populations

over a several weeks long period, might have influenced our estimates of IR. Different

stickleback populations were probably sampled in different parts of their spawning period

and the intensity of the ornaments may vary during the spawning period. For example,

fish in southern populations probably start spawning earlier than in northern populations.

On the other hand, we find large variation in IR between fish from different populations

located geographically close to each other at similar altitude and sampled within a few days,

like for example populations 3–6 and populations 9 and 11. These observations leave little

doubt that ornaments from different populations vary in exaggeration. This interpretation

received support from the relatively small effect size revealed by comparing IR during and

3–4 months after the spawning season for site number 9.

Rearing experiment
The results from the rearing experiment may be interpreted as the genetic component

of red pelvic spines is weak or even perhaps not different from zero. The significant

association between the response variable “daugther’s IR” and each of the predictors

(i) “father’s IR,” and (ii) “mother’s IR,” and (iii) the interaction between “father’s IR”

and “mother’s IR,” together explain only 4% of the variation in the model. Such a weak

genetic component concurs with our low heritability estimate, which was not significantly
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different from zero. The lack of significance in our heritability estimate was due to

the large standard error which is evidently a direct function of the number of crosses

and offspring (e.g., Dupont-Nivet, Vandeputte & Chevassus, 2002). A larger data set

would be needed to reveal a significant estimate when heritability is this low in order

to avoid Type II-errors. Such a low genetic component concurs with previous estimates

in other species like plumage coloration in blue tits (Cyanistes caeruleus) (Hadfield et

al., 2006) and canaries (Serinus canaria) (Muller et al., 2012). A low correlation between

carotenoid-based coloration of nestlings and that of their parent great tits (Parus major)

(Pagani-Núñez et al., 2014) has also been documented. On the other hand, a significant

genetic component has been reported for both ornamental and non-ornamental traits in

several fishes including sticklebacks (see ‘Introduction’). Fish utilize carotenoids poorly

and retention of astaxanthin in the muscle of for example Atlantic salmon (Salmo salar) is

less than 12% (Bjerkeng, 2008). This is partly due to poor absorption of astaxanthin from

the gut (Bjerkeng, 2008). Individual variation in the efficiency to utilize carotenoids for

ornamental display may be a functional explanation for the significant genetic component

in carotenoid-based throat and flesh coloration in sticklebacks and salmon, and may

explain individual variation in the redness of pelvic spines in sticklebacks as well.

We cannot rule out the importance of assumptions not accounted for in this

experiment. Firstly, our estimate of a weak genetic component may be influenced by

the different environmental conditions experienced by parents and offspring in this study.

Additionally, potentially different variants of carotenoids in wild-caught parents and their

reared offspring may have contributed to low heritability estimates. Our design removed

potential effects of fathers on the offsprings’ ornament (see Material and Methods).

However, we cannot exclude potential effects of mothers, although we do not expect

large maternal effects in IR of the offspring ornament. This is based on observations of

the offspring’s spines initially being very drab. The spines turned red after the offspring

were given feed containing carotenoids from January onwards (see Material and Methods)

(JT Nordeide, 2009, unpublished data). Finally, some of the variation in the intensity

of the ornamentation of the offspring may be due to differences in the amount of food

eaten, and hence amount of carotenoids consumed. On the other hand, feed containing

carotenoids were available to the fish in excess at all times, and no association was found

between weight gained during feeding with carotenoids and mean IR of their ornament

(see Material and Methods).

To conclude, this study suggests that both male and female individuals with reddish and

often conspicuously red ornamented pelvic spines, are common in north-west European

three-spined stickleback populations. Males were more ornamented than females, and the

fish were more ornamented during the spawning period than after spawning. The genetic

component of the intensity of red spines seems to be low. This study gives little support for

either red spines signalling spawning readiness, or of sexual selection being important for

the evolution of the ornament. The potential adaptive function of the ornament, and how

it evolved, remain largely unexplained.
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