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ABSTRACT 

Wood as a building material is beneficial for the environment; it stores CO2 and saves 

CO2 emissions from other materials. Prediction models of mould growth are 

necessary to estimate the service life of wood. To make accurate models, accurate 

assessments are needed. Todays standard of visual assessment has some 

weaknesses, with different rating scales which can be difficult to compare and a 

subjective rating. Hyperspectral imaging may provide objective and accurate mould 

assessments for use in more accurate mould growth models.  

Untreated wood samples were sprayed with a mould culture before exposed to eight 

different transient climates in a laboratory. Weekly measurements of mould growth 

was assessed by hyperspectral imaging and by visual method EN 927-3. Partial least 

squares discriminant analysis (PLS-DA) was used to differentiate and predict mould 

growth on samples. Mould growth intensity factor of aspen, with the empirical mould 

growth model by Viitanen and Hakku, was estimated and compared with measured 

mould growth. 

Hyperspectral imaging consequently showed less mould than visual assessment. 

There was a large variation in mould growth on aspen under equal climate conditions. 

The growth intensity factor, k1, for aspen in 25C, 85% relative humidity and 2 hours 

daily light showers, was calculated to k1 = 10 ± 10 for mould index larger than 1 and 

k1 = 0,9 ± 0,2 for mould index less than 1.  

Hyperspectral images contain differences, in the spectral bands from 900nm to 

1700nm, between untreated aspen and mould. This can be used to measure amount 

of mould on an untreated aspen cladding.  
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Figure 0 Wooden cladding, northwest facing wall, Astrup Fearnley Museet. Dog pee has 
resulted in a “clean” look compared to the darker, mouldy wood.  

1 INTRODUCTION 

Wood is a renewable, environmentally friendly and CO2 storing, and saving, building 

material. Untreated wooden cladding has become increasingly popular for its natural 

aesthetics and low maintenance. The natural grey colour an untreated wooden 

cladding develops over time, is a result of mould growth and degradation by sunlight. 

Often however, this development is uneven and is regarded a discolouring. Mould 

growth models may predict these discolourings (not the ones in Fig. 0), so they can 

be avoided. They may be a useful tool for architects when designing facades, and for 

estimating life cycle cost. The existing models use a visual method for measuring 

mould growth which is subjective and has several different rating scales which make 

them difficult to compare. A more accurate measurement method may give more 

accurate prediction models, which use percentages instead of a mould rating scale.  

Hyperspectral imaging has already been applied to detect and quantify mould on 

wooden cladding by Burud et al, 2013 and 2015. These studies concluded that more 

research was necessary.  This study will compare hyperspectral imaging to the visual 

assessment method, with the goal of finding an accurate and objective mould 

assessment method.  

The second step is to adapt an existing model to aspen by finding the growth intensity 

factor, and comparing this to the measured values.  
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2 THEORY  

2.1 FUNGUS 

2.1.1 TYPES AND TROUBLES 

Fungus belong to the kingdom of fungi, which includes yeast, mildew, moulds and 

mushrooms. Some types of fungi decay wood, and some do not. Brown rot, soft rot 

and white rot are types of wood decaying fungi, whilst mould normally only causes 

esthetical changes to wood (Byggforsk, Magnussen, 2007). Most decaying fungi also 

need more moisture over a longer period of time than mould to grow. The type this 

paper is concerned with is mould that only stains wooden cladding with a dark grey. 

The dark colour, which can be seen with the naked eye, is often spores, but can also 

be mycelium, which consists of networks of tubular hyphae. Hyphae are very small, 

from 0,5um to 20um, so magnification is needed to see the individual hyphae. Spores 

are formed from hyphae and are carried away with air currents so the fungus can 

reproduce elsewhere. These spores are in the air everywhere and can be dormant 

from days to months (Cochrane, 1958). If spores germinate under good conditions, 

hyphae grow quick and can be visible within a week (Edvardsen and Ramstad, 2012 

Trehusboka) 

Growth needs for fungus are mainly water, oxygen, temperatures 0oC to 45oC, 

digestible substrate, and pH3 to 6. For mould to grow on wood the main 

dependencies are relative humidity (RH), temperature and the surface quality 

(Viitanen, 1994). Enough water for growth can be obtained from the air when relative 

humidity is above 80%. If temperatures are between +5oC and + 50oC and RH > 80%, 

the conditions are good enough for mould growth on pine and spruce sapwood 

(Viitanen, 1994). Growth is fast under conditions with RH of 95-98% and 

temperatures +20oC to +40oC, on untreated pine and spruce sapwood (Viitanen, 

1994). 

Under normal circumstances however, temperature and humidity fluctuate. A lab 

study with fluctuating conditions, with RH alternating between 90% and 60%, showed 

mould growth is slower compared to steady state conditions. Mould growth was 

found to be dependent on both the favourable and unfavourable RH conditions, and 
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not the mean RH value. Fluctuating temperatures between 22oC and 5oC had less 

effect than alternating RH, and mean temperatures could be used in prediction 

(Johansson, 2013). 

Mould does not decay wood like rot fungi, but stained wood is more permeable and 

is not recommended for load bearing constructions (Zabel and Morel, 1992, p. 336). 

Indoors, mould is a problem because of the discolouring, the smell, it can be a sign of 

water leakage, and high concentrations of spores can lead to health problems. 

Outdoors, mould can give an undesired dirty look to a painted wooden facade, but 

on an untreated wooden cladding, it can give a desired effect. 

There are various species of mould that stain wood, the most common one is 

Aureobasidium pullulans. Other genera of mould that also stain wood are Aspergillus, 

Chaetomium, Cladosporium, Penicillium, Stachybotrys, Tricoderma and Ulocladium 

(Mattsson,2004). 

The problem with mould on untreated wooden cladding is the uneven staining, see 

Fig. 6. The uneven staining can be difficult to predict and can give unintended 

colouring effects to a facade.   

These stains or discolourations are sometimes unwanted and sometimes a desired 

effect.  Blue stain or sapstain are caused by fungi with pigmented hyphae and give a 

blue discolouration, which can often afflict pine sapwood and other sapwoods. 

 

2.1.2 DETECTION AND MEASUREMENT 

Mould is often first detected by the distinctive smell, but can also be seen with the 

naked eye.  When measuring mould growth, a specific method must be used.  

The Norwegian and European Standard EN 16492:2014 contains an assessment 

method for mould growth which uses a rating scale, table A.3 in the standard and 

Table 1 in this paper. This method is done with the naked eye and a microscope is 

only used to exclude other particles than mould. The rating scale is the standard for 

“Evaluation of surface disfigurement caused by fungi and algae on coatings” (NS-EN 
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16492:2014 p. 1) and was assumed to also be suitable for untreated wooden 

surfaces.  

This rating scale has large margins of error in percentage and is a subjective method, 

as two people evaluating may estimate different ratings.   

Table 1 Rating scale for mould growth from to NS-EN 16492:2014, table A.3 

Rating Percentage area of disfigurements 

0 

1 

2 

3 

4 

No growth on the surface of the specimen 

Up to 10% growth on the surface of the specimen 

More than 10% up to 30% growth on the surface of the specimen 

More than 30% up to 50% growth on the specimen 

More than 50% up to 100% growth on the specimen 

 

The mould growth model by Hukka and Viitanen (1999, see 2.1.3) used a slightly 

different scale for measuring mould growth. This model uses a mould index, shown 

in Table 2, which includes the use of a microscope. This was necessary to find the 

growth intensity factor k1 because it relies on the difference from when mould is 

visible in a microscope, mould index 1, to when it is visible to the naked eye, mould 

index 3. 

Table 2  Mould index developed by Viitanen and Hukka, 1999 and updated by Ojanen 

et al in 2010. 

Index Description of Growth Rate 

0 No growth 

1 Small amounts of mould on surface (microscope), initial stages of local 
growth 

2 Several local mold growth colonies on surface (microscope) 

3 Visual findings of mold on surface, < 10% coverage, or < 50% coverage of 
mold (microscope) 

4 Visual findings of mold on surface, 10%–50% coverage, or > 50% coverage 
of mold (microscope) 

5 Plenty of growth on surface, > 50% coverage (visual) 

6 Heavy and tight growth, coverage about 100% 
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Other mould growth rating scales also exist, for example the one Thelandersson used 

in 2013, which only describes growth with adjectives such as sparse, patchy and 

heavy. A more accurate method of quantifying mould growth is desired to make 

prediction models of mould growth on facades. Both of these methods are inaccurate 

when above 10% mould coverage, and they may be too subjective (Bardage, 2004; 

Van den Bulcke et al., 2005; Van den Bulcke et al., 2006). They also depend on 

experienced personnel and comparisons made by different laboratories can be 

difficult (Bardage, 2004). Van den Bulcke, 2005 and 2006, used image processing as 

an alternative to visual assessment of blues stain fungi with good results. 

More recently, Burud et al, 2013, 2015 used hyperspectral imaging and Principle 

Component Analysis (PCA) and partial least squares discriminant analysis (PLS-DA) to 

detect and quantify blue stain fungi. This method gives the amount of mould 

coverage directly as a percentage, which is easier for anyone to relate to, and 

potentially more precise, than a mould rating. The PCA technique was able to extract 

the fungal signal better with near infrared (NIR) spectrum images than with simple 

RGB images, which indicated that fungus has other spectral signals than the visible 

colour.   

 

2.1.3 MOULD GROWTH MODELS 

Modelling the mould growth allows predictions of where and when mould will grow. 

This can be a useful tool for predicting service life, and for architects when designing 

facades, of wooden cladding.   

Many mould growth models have been described and developed, for example 

the isopleth systems, biohygrothermal model, condensation targeter, empirical VTT 

model and time-of-wetness (Adan 1994, Hukka & Viitanen 1999, Johannsson et al 

2010, Krus et al 2007, Sedlbauer 2002). Relative humidity and surface temperature 

are included as they are the most important factors in these models. Time is also 

important, and not included in all these models. A model by Gobakken et al. (2010) 
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used the number of hours the relative humidity was above 80% concurrently with 

temperature above 5⁰C, to make prediction models of mould growth. 

The empirical mould growth model developed by Viitanen and Hukka in 1999, was 

based on laboratory studies of northern wood species. The model was made by using 

regression analysis of the measured data and gives the mould growth as a mould 

index. This mould index is used when measuring mould growth and is then set to an 

integer value from 0 to 6, see Table 2, the model however gives the mould index with 

decimals. With this model, predictions of mould growth can be made from known 

relative humidity, temperature and time under constant or fluctuating conditions.  

This model was updated by Ojanen et al in 2010, to be able to analyse other building 

materials such as concrete, glass wool and EPS. This updated Valtion Teknillinen 

Tutkimuskeskus (VTT) model for wood used the differential equation: 

 

𝑑𝑀

𝑑𝑡
=

1

7 × exp⁡(−0.68ln𝑇 − 13.9ln𝑅𝐻 + 0.14𝑊 − 0.33𝑆𝑄 + 66.02
⁡𝑘1𝑘2⁡⁡⁡⁡⁡⁡⁡(1) 

 

dM is the change in mould index, see fig , dt is the change in time in days, T is the 

temperature, RH is the relative humidity. SQ is the surface quality of the wood, SQ = 

0 for sawn wood and SQ=1 for kiln-dried. For material other than wood, SQ = 0 is 

used. W denotes timber species, W = 0 for pine and W = 1 for spruce. k1 is the growth 

intensity factor depending on material, see eq. (5) and k2 is a moderation of k1 when 

the mould index approaches the maximum value  in the existing conditions, 

calculated with: 

𝑘2 = max[1 − 𝑒𝑥𝑝(2. 3⁡.⁡(𝑀 −𝑀𝑚𝑎𝑥)) , 0]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2)  

 

where M is the mould index and Mmax is the maximum mould index value in the 

existing conditions.  
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Mmax was calculated with: 

 

𝑀𝑚𝑎𝑥 = 𝐴 + 𝐵⁡⁡. ⁡
𝑅𝐻𝑐𝑟𝑖𝑡 − 𝑅𝐻

𝑅𝐻𝑐𝑟𝑖𝑡 − 100
−⁡𝐶 ⁡⁡.⁡(

𝑅𝐻𝑐𝑟𝑖𝑡 − 𝑅𝐻

𝑅𝐻𝑐𝑟𝑖𝑡 − 100
)
2

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

 

here RH is the relative humidity of the air, RHcrit is the lowest relative humidity in 

which mould will start to grow. Mmax is the maximum mould index value in the 

existing conditions. A, B and C are coefficients depending on the material and are 

estimated from experiments under constant temperature and RH conditions. For 

pine, and similar materials in the “very sensitive” class in Fig. 1, their approximations 

were A = 1, B = 7 and C = 2. 

 RHcrit was estimated from constant humidity condition experiments and depends on 

the temperature: 

 

𝑅𝐻𝑐𝑟𝑖𝑡 =⁡ {
−0.00267𝑇3 + 0.160𝑇2 − 3.13𝑇 + 100.0, when⁡𝑇 ≤ 20

𝑅𝐻𝑚𝑖𝑛, when⁡𝑇 > 20
⁡}⁡⁡⁡⁡⁡⁡⁡⁡(4) 

 

Here RHcrit is the critical, lowest relative humidity for mould to grow, and T is the air 

temperature. RHmin was set to 80% for wood and wood-based products. k1 is as 

described earlier, a growth intensity factor, this factor is also a key when translating 

the model for different materials. The reference material was pine sapwood, so 

measurements of pine are needed in addition to the new material desired modelled.  
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The k1 factor is calculated: 

𝑘1 =⁡
𝑡𝑀=1,𝑝𝑖𝑛𝑒

𝑡𝑀=1
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡when⁡𝑀 < 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

𝑘1 = 2⁡. ⁡
(𝑡𝑀=3,𝑝𝑖𝑛𝑒 −⁡𝑡𝑚=1,𝑝𝑖𝑛𝑒)

(𝑡𝑀=3 −⁡𝑡𝑀=1)
⁡⁡⁡⁡⁡⁡⁡⁡⁡when⁡𝑀 ≥ 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

where k1 is the growth intensity factor, tM=1, pine is the time needed for pine to reach 

mould index M = 1, tM=1 is the time for the new material to reach mould index  M = 1 

under the same conditions as pine. M is the mould index. tM=3, pine is the time it takes 

for pine to reach mould index M = 3 and tM=3 is the time it takes the new material to 

reach mould index  M = 3.  

From experiments, k1 was found for various building materials and these were 

divided into four sensitivity classes, see Fig. 1. For example, pine sapwood was 

classified as very sensitive, spruce as sensitive and concrete as medium resistant. 

Aspen was not included in these experiments. The uncertainty of the model was 

approximated to be ± 0,5 in the mould index. 

 

 

Figure 1  Sensitivity classes of the k1 mould growth intensity factor. Pine is classified 

as sensitive, spruce as sensitive and concrete as medium resistant. Figure from 

Ojanen et al, 2010. 

 

  



12 
 

2.2 HYPERSPECTRAL IMAGING 

Hyperspectral images are taken with specialized cameras that use a spectrograph to 

split light into the wavelengths it consists of, before it hits the image sensor. With this 

technique pictures with several hundred spectral bands, narrow wavelength ranges, 

can be stored. Compared to a normal RGB picture, which only stores three spectral 

bands, these images contain a lot more information, see Fig. 2. This information can 

be used to detect, for example, mould.  

Before the light enters the spectrograph, it passes a thin slit, so only a narrow line of 

light hits the spectrograph, where it is split, and then stored to the sensor. This means 

it only takes pictures in one spatial direction at a time, so either the subject or the 

camera needs to move in the other spatial direction to obtain a two dimensional 

image.  

Many hyperspectral cameras also include near infrared light (NIR) up to 2500nm, 

whereas the human eye only can see up to 700nm. With several hundred spectral 

bands, including infrared light, it is easier to differentiate between the materials, 

objects or substances in the picture, because there is a high possibility that they differ 

in some of the spectral bands they reflect or radiate. This differentiation requires 

image processing and analysis with for example PCA, partial least squares 

discriminant analysis (PLS-DA) or spectral angle mapper (SAM) (Burud et al 2015). 

 

Figure 2 Hyperspectral images to the left and RGB images to the right. Each pixel in a 

RGB image contains three spectral bands, red, green and blue. Hyperspectral images 

contain up to several hundred. The graph shows a signature curve with the 

reflectance of the spectral bands. Figure adapted from Guolan Lu and Baowei Fei, 

2013 
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2.3 CLIMATE 

The scheffer index is “a climate-index for estimating potential for decay in wood 

structures above ground” – Scheffer (1970, p 25.) and has been used by several 

authors to make new estimates (Setliff 1986; Francis and Norton 2006). More lately 

Brischke et al, 2011, compared it to their decay hazard model for Europe. The 

Scheffer index is calculated from temperature and precipitation.  

Northern Europe may expect more precipitation and higher temperature in the years 

to come, see Fig. 3 and Fig. 4 (van der Linden and Mitchell, 2009). Calculating future 

decay risk with the Scheffer index will therefore give higher risk estimates than today. 

Mould sets in, as mentioned earlier, quicker and in lower moisture than decay rot. 

Gobakken, 2010, concluded the article “Effects of climate change on mould growth”, 

that “moulds will most likely benefit from climate change”. 

 

 
Figure 3 Projected changes in annual precipitation, in percent, for the years 2021 – 

2050 compared to the 1961 – 1990 mean. From van der Linden and Mitchell, 2009, 

the  ENSEMBLES project, A1B scenario. 
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Figure 4 changes in annual mean surface air temperature, in Kelvin, for the years 2021 

– 2050, compared to the 1961 – 1990 mean. From van der Linden and Mitchell, 2009, 

the  ENSEMBLES project, A1B scenario. 

Mould growth on facades, however, is not only controlled by the macroclimate, the 

microclimate is also a major factor. Fig. 5 shows differences of hours with 

condensation and wind driven rain within the same façade (Nore, 2009). The shorter 

condensation hours higher on the wall are mostly from less radiation loss due to the 

roof overhang. Small details like this can make big differences in mould growth on a 

façade, see Fig. 6 . 

 
Figure 5 Wooden facade with variation in calculated hours of condensation and 
accumulated wind driven rain. Less condensation near the roof overhang due to less 
radiation loss. Adapted from Nore, 2009. 
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Figure 6 Ås high school. Less mould growth under the overhang. 

 

 

2.4 WOOD 

Wood is an environmental friendly building material; it stores CO2 and is a renewable 

source. Using untreated wood as outside cladding takes it a step further by not using 

chemicals or needing any maintenance, which also means less work and cost for the 

builders and the owners. Therefore, wood as an outside cladding material has 

increased in popularity. The aesthetic quality is also a desired factor, and this can be 

difficult to predict because of discolouring.  

The most commonly used types of wood for cladding in Norway are pine (Pinus 

sylvestris), spruce (Picea abies), and aspen (Populus tremula). In recent years, 

imported wood has also been used; oak (Quercus robur), larch (Larix sibirica) and 

Western red cedar (Thuja plicata) (Larsen, 2008). 

Most tree trunks have two grades of wood, sapwood and heartwood. Sapwood is 

closest to the bark and transports water and stores nutrients (Forest Products 

Laboratory, 1987, p. 2-2). Heartwood is in the middle of the trunk and no longer 

transports water, but stabilizes the tree. In for example pine sapwood, the nutrients 

and the relatively permeable and open structure which absorbs water, make it less 
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resistant to fungus (Øvrum and Flæte, 2008; Larsen, 2008). Pine heartwood however, 

is less permeable to water and contains extractives that protect against fungus, which 

makes it more resistant (Øvrum and Flæte, 2008). In pine, the heartwood is darker 

than the sapwood, but in for example aspen, they are not visually distinguishable 

(Walker, 1989, p. 126). There is however physical differences, Wengert showed, in 

1976, a way to use the difference in permeability to distinguish the heartwood from 

the sapwood. An alcohol-dye mixture stained the more permeable sapwood, whilst 

the heartwood was unstained. 

As described earlier, mould stains wood with a grey colour, and is the main factor in 

the colour change of wood. Dust and pollution will also grey a cladding, but another 

factor is degradation of lignin by sunlight (Larsen, 2008). When the lignin is oxidized 

by sunlight, it turns brown, this can give more colour variation to the surface of the 

wood.  

 

2.5 MOISTURE TRANSPORT 

In general, the transport mechanisms of moisture are vapour diffusion, surface 

diffusion and capillary conduction, see Fig. 7. Vapour diffusion occurs when there are 

differences in vapour pressure. Water vapour will diffuse from high to low vapour 

pressure, if the material is dry enough or not hygroscopic. Surface diffusion can occur 

when the material contains enough hygroscopic moisture, which is moisture held as 

a film of water, and is driven by relative humidity. Surface diffusion and vapour 

diffusion happen when the air relative humidity is up to 98%, Whygr, with RH above 

this, capillary conduction also transports water, see Fig. 8. With constant access to 

water, from example rain or a leakage, capillary action continues until the saturation 

point, Wmax in the same figure. Capillary conduction is driven by the surface tension 

and adhesive forces between the water and the material. This capillary tension can 

be seen as a function of the relative humidity because of the relation between 

capillary tension and the equilibrium humidity in the pore in front of the water 

surface.  
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Figure 7 High relative humidity outside, high vapour pressure inside. The relationship 
between the three moisture transport mechanisms. Vapour diffusion from high to 
low vapour pressure. Surface and capillary conduction from high to low relative 
humidity. Figure from Fraunhofer IBP, overview of WUFI, 2009.  

 
Figure 8 Moisture transport in porous materials. Pore model and sorption curve. 
Hygroscopic area with vapour and surface diffusion and capillary area with capillary 
conduction.  Figure adapted from Geving, 2005. 
 

The moisture content of wood is measured in percent of the woods dried weight. 

Living wood has above 30% MC, and when dried, free water in the cells evaporates 
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until it reaches the fibre saturation point, which for example pine, is 30% MC. When 

dried more, water in the cell walls dries out. 

  
Figure 9 Sorption curve for pine wood.  
 

Wood is hygroscopic, which means it absorbs and exudes moisture from and to the 

surrounding air. It reaches equilibrium moisture content when in balance with the RH 

of the air, the equilibrium states of a type of wood can be described with sorption 

curves, see Fig. 9.  The cell structure of wood is built so it transports water most 

effectively parallel to the growth rings. Moisture content above 20%, which is the 

equilibrium moisture content at 80% RH, sets the wood at risk for mould attack. 
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3 METHODOLOGY 

Wooden samples have been exposed to eight different transient climates in a 

laboratory. Mould growth has been measured weekly with two methods. The mould 

growth on aspen has been modelled with the empirical VTT model.  

3.1 EXPERIMENTAL SETUP 

In a laboratory, eight chambers were set up with different transient climates, see 

Table 3. Each chamber had a fixed temperature, relative humidity and time period of 

showers. Showering was simulated daily at 17:00, with one minute showering per 30 

minutes in the showering period. This equals 4 x 1 min showering in the chambers 

with 2 hour showering and 8 x 1 min for the chambers with a 4 hour period. 

 

Table 3 Chambers with different climates and showering periods. 

Chamber Temperature Humidity Period with showers 

8a 10oC 65% RH 2h 

8b 10oC 65% RH 4h 

9A 10oC 85% RH 2h 

9B 10oC 85% RH 4h 

10A 25 oC 65% RH 2h 

10B 25 oC 65% RH 4h 

11A 25 oC 85% RH 2h 

11B 25 oC 85% RH 4h 

 
 
 
As this was part of a larger experiment, many types of wood were set up for each 

chamber, see Table 4. The wood samples were cut to 18*50*200 mm and sealed at 

each end with End Grain Sealer. A metal hook was screwed into the back of each 

substrate and they were hung up in rig, see Fig. 10. The order and placements of the 

substrates were rotated weekly. 

 



20 
 

 

 
Table 4 Wood types in each chamber 

Wood type Sapwood/Heartwood Number of 

Spruce (high density) Heartwood 5 

Spruce (low density) Heartwood 5 

Spruce (low density) Sapwood 5 

Pine Sapwood 5 

Pine Heartwood 5 

Larch Heartwood 5 

Aspen - 5 

Oak Heartwood 5 

Pine/spruce Heat treated 5 

 

 

 
Figure 10 Climate chamber with wood samples. Wood samples with wires logged 

moisture. Samples were rotated every week. 
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A suspension was made from three mould cultures; Ulocladium atrum 06/55, 

Cladosporium cladosporioides 06/54 and Aureobasidium pullulans BAM 9. These 

fungi are some of the most likely to grow in an exterior environment (NS-EN 

15457:2014). The samples were sprayed with the suspension.  

Differences in temperature and RH affected how long the substrates were wet after 

showering. Moisture, measured with a resistance humidity sensor, and temperature 

were continuously logged. Additionally a dielectric leaf sensor, rotated weekly 

between the chambers, measured moisture. Normal incandescent bulbs were used 

for lighting 12 hours on and 12 hours off.  

 

3.2 HYPERSPECTRAL IMAGING 

Mould on three samples each of aspen, spruce heartwood and spruce sapwood, were 

evaluated weekly with a hyperspectral camera, see setup Fig. 11. When handling the 

samples, sterile gloves were used and ffp3 masks were used whilst inside chambers 

to reduce the amount of mould spores breathed in. A hyperspectral camera HySpex 

SWIR-320i from Norsk Elektro Optikk was used for imaging. This camera has 320 

pixels in width, 150 spectral bands and has a spectral range of 900 nm – 1700nm. The 

sample was pictured from a distance of 30 cm, which resulted in an image resolution 

of 3,1 pixel/mm. A translation stage moved the sample to obtain the 2D image.  

Two halogen lights, one on each side, where used to provide enough lighting for the 

pictures. As the pictures were taken in a greenhouse, there was a high amount of 

natural lighting in addition to the lights. When the natural lighting was too high, shade 

from the sun was given by a sheet of paper. A white reference calibration plate from 

Specim was pictured with each substrate to correct for variations in light conditions 

The program used was Hyspex GROUND 3.5, with the exposure time varying between 

3500µs to 10000µs, due to varying light conditions, and frame period at 17000µs. For 

each week taking pictures, a new dark image was taken for each exposure time used, 

and automatically subtracted from the images of samples. 
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Figure 11 Hyperspectral imaging setup. Translation stage with sample and white plate 

on table. Hyperspectral camera 30cm above the sample and halogen lighting from 

above. Normally two halogen lights were used, one on each side.  

 

The hyperspectral images were analysed in Matlab with MIA and PLS toolboxes from 

Eigenvector. A script written by a team at IMT, NMBU read the Hyspex files into 

Matlab. First, the white balance was fixed by dividing each pixel with the average 

pixel on the white plate, this was done with a script also written the team at IMT, 

NMBU. The pictures were then cropped to include only the wooden cladding. A 

sample with visible fungus was chosen to make a model with PLSDA (Vinzi et al, 2010). 

Within an area with clearly visible mould, a small selection was classified as mould. 

In the same way selections within areas without visible mould were classified as 

wood. These selections act as references for mould and wood, so the program can 

predict what is mould and what is wood in other pictures. This technique is called 

supervised classification. Pre-processing was set to mean centre and autoscale and 

the model was processed. This mould model was utilized to make the prediction 

models for all other samples. The prediction probability for the class mould, gave a 

black and white picture, mould as white, wood as black, which was stored as a .tiff 

image and further processed in Fiji ImageJ (Schindelin et al., 2012). In Fiji, Otsu (Otsu, 

1979) auto threshold was applied to each picture and the percentage of white area 
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was estimated. Excel was utilized to make graphs of the mould growth from the 

percentages obtained.  

 

 
Figure 11 Hyperspectral image in greyscale on top, after PLS-DA processing showing 

mould white and wood black, bottom. Sample 35 after 7 weeks was estimated with 

Fiji to have 13% mould coverage. 

 

3.3 VISUAL ASSESSMENT VS HIM 

Visual assessment was done by fellow students with a slightly modified version of NS-

EN 16492:2014, table A.3, see table 1 in this paper. When rating 4, an estimation of 

percentage was noted in addition to the rating, for example: rating 4, 85% coverage. 

Also, when mould was only visible with a magnifying glass, it was denoted [1] and 

used as an approximation of tM=1. 

To compare HIM and visual assessment method the mould ratings have been 

converted by using the average percentage of each rating, see Table 5. Uncertainties 

equal the percentage range in the rating, except for rating 4 when an estimation of 

percentage has been made, the uncertainty is assumed to be up to 10 percentage 

points. 
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Table 5 Rating conversion. The average percentage used to compare HIM to visual 
assessment graphs in the rightmost column.  

Mould 
Rating 

Percentage area of disfigurements (NS-EN 
16492:2014) 

Average percentage 

0 0 0 

1 Up to 10% 5% 

2 10% to 30% 20% 

3 30% to 50% 40% 

4 50% to100% 75% or estimated 
value 

 

 

3.4 THE VTT MODEL 

The VTT model described has been tested with conditions and results from chamber 

9A. An Excel spreadsheet from Viitanen calculated all necessary values, k2 from eq. 

(2) and Mmax from eq. (3), with A = 1, B = 7, C = 2. The duration of time the surface of 

the samples were wet, was calculated in the model as 100% RH. The number of hours 

the surface was wet was estimated from the dielectric leaf wetness sensor, see Fig. 

13. With a threshold of 350mV, the sensor was wet 8 hours the fourth week, and 3 

hours two months later in chamber 9A, see Fig. 33. This was approximated to six 

hours 100% RH. RHcrit was calculated with eq. (4), with T = 10oC. The mould growth 

rate, 
𝑑𝑀

𝑑𝑡
 was calculated from eq. (1), with T = 10oC, SQ = 0 and W = 0. The growth 

intensity factor, k1, was calculated from the visual ratings for pine and aspen with 

equations (5) and (6).  This was done by taking the averages of tM=1, pine and tM=3, pine 

from five samples of pine and the averages of tM=1 and tM=3 from four samples of 

aspen.  
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Figure 23 Dielectric leaf wetness measured the 23/2 -24/2 and two months later, 

23/4 -24/4 in chamber 9A. The showering started at 17:00 each day, which can be 

seen by the spike in mV. 

 

3.5 UNCERTAINTIES 

The uncertainty in k1, δk1, when M < 1 and uncertainties in tM=1 and tM=3 for pine and 

aspen assumed independent and random, was calculated with the formula: 

𝛿𝑘1
|𝑘1|

= ⁡√(
𝛿𝑡𝑀=1,𝑝𝑖𝑛𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑡𝑀=1,𝑝𝑖𝑛𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)

2

+⁡(
𝛿𝑡𝑀=1,𝑎𝑠𝑝𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑡𝑀=1,𝑎𝑠𝑝𝑒𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)

2

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7)⁡ 

where δk1 is the uncertainty in k1 when M < 1 and 𝑘1 is the mould growth intensity 

factor. 𝛿𝑡𝑀=1,𝑥̅̅ ̅̅ ̅̅ ̅̅  is the uncertainty in 𝑡𝑀=1,𝑥̅̅ ̅̅ ̅̅ ̅̅ , and 𝑡𝑀=1,𝑥̅̅ ̅̅ ̅̅ ̅̅  is the average of tM=1,x where 

x indicates pine or aspen. tM=1 is the time it takes to reach mould index 1, see eq. (5) 

and (6). The uncertainty 𝛿𝑡𝑀=1,𝑥̅̅ ̅̅ ̅̅ ̅̅  was calculated as the standard deviation of the 

mean: 

𝛿𝑡𝑀=1,𝑥̅̅ ̅̅ ̅̅ ̅̅ = ⁡
𝜎𝑡𝑀=1,𝑥

√𝑁
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 

here, 𝛿𝑡𝑀=1,𝑥̅̅ ̅̅ ̅̅ ̅̅  is the uncertainty in 𝑡𝑀=1,𝑥̅̅ ̅̅ ̅̅ ̅̅ , 𝜎𝑡𝑀=1,𝑥
 is the standard deviation of tM=1, x 

and N is number of measured samples, five for pine and four for aspen. x indicates 
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pine or aspen. The uncertainty 𝜎𝑡𝑀=1,𝑥
 was calculated with the sample standard 

deviation: 

𝜎𝑡𝑀=1,𝑥
=⁡√

∑ (𝑡𝑀=1,𝑥𝑖 −⁡𝑡𝑀=1,𝑥̅̅ ̅̅ ̅̅ ̅̅ )
2𝑁

𝑖=1

𝑁 − 1
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

Where 𝜎𝑡𝑀=1,𝑥
 is the standard deviation of tM=1,x and 𝑡𝑀=1,𝑥1, 𝑡𝑀=1,𝑥2,…… 𝑡𝑀=1,𝑥𝑁 are 

the measured times for the samples to reach mould rating 1. 𝑡𝑀=1,𝑥̅̅ ̅̅ ̅̅ ̅̅  is the average of 

tM=1,x, N is number of samples and x denotes pine or aspen. 

For M > 1, the uncertainty in k1, assumed the uncertainties in tM=1 and tM=3 were 

independent and random, was calculated with: 

𝛿𝑘1 =⁡

√
  
  
  
  
  
  
  
  
  
  
  
 

(
2⁡.⁡𝛿𝑡𝑀=3,𝑝𝑖𝑛𝑒⁡⁡

(𝑡𝑀=3,𝑎𝑠𝑝𝑒𝑛 −⁡𝑡𝑀=1,𝑎𝑠𝑝𝑒𝑛)
)

2

+⁡(
−2⁡.⁡𝛿𝑡𝑀=1,𝑝𝑖𝑛𝑒⁡⁡

(𝑡𝑀=3,𝑎𝑠𝑝𝑒𝑛 −⁡𝑡𝑀=1,𝑎𝑠𝑝𝑒𝑛)
)

2

+

⁡(
−2⁡.⁡(𝑡𝑀=3,𝑝𝑖𝑛𝑒 −⁡𝑡𝑀=1,𝑝𝑖𝑛𝑒)⁡.⁡⁡𝛿𝑡𝑀=3,𝑎𝑠𝑝𝑒𝑛

(𝑡𝑀=3,𝑎𝑠𝑝𝑒𝑛 −⁡𝑡𝑀=1,𝑎𝑠𝑝𝑒𝑛)
2 ⁡)

2

+

⁡(
2⁡.⁡(𝑡𝑀=3,𝑝𝑖𝑛𝑒 −⁡𝑡𝑀=1,𝑝𝑖𝑛𝑒)⁡.⁡⁡𝛿𝑡𝑀=1,𝑎𝑠𝑝𝑒𝑛⁡

(𝛿𝑡𝑀=3,𝑎𝑠𝑝𝑒𝑛 − ⁡𝛿𝑡𝑀=1,𝑎𝑠𝑝𝑒𝑛)
2 )

2

⁡⁡⁡⁡⁡(10) 

 

Where 𝛿𝑘1 is the uncertainty in k1 when M > 1, 𝑡𝑀=3,𝑝𝑖𝑛𝑒 is the time it takes for pine 

to reach mould index 3 and 𝛿𝑡𝑀=3,𝑝𝑖𝑛𝑒 is the uncertainty in 𝑡𝑀=3,𝑝𝑖𝑛𝑒. 𝑡𝑀=1,𝑝𝑖𝑛𝑒 is the 

time it takes for pine to reach mould index 1 and 𝛿𝑡𝑀=1,𝑝𝑖𝑛𝑒  is the uncertainty in 

𝑡𝑀=1,𝑝𝑖𝑛𝑒 . 𝑡𝑀=3,𝑎𝑝𝑒𝑛 is the time it takes for aspen to reach mould index 3 and 

𝛿𝑡𝑀=3,𝑎𝑠𝑝𝑒𝑛 is the uncertainty in 𝑡𝑀=3,𝑎𝑠𝑝𝑒𝑛. 𝑡𝑀=1,𝑎𝑠𝑝𝑒𝑛 is the time it takes for aspen 

to reach mould index 1 and 𝛿𝑡𝑀=1,𝑎𝑠𝑝𝑒𝑛 is the uncertainty in 𝑡𝑀=1,𝑎𝑠𝑝𝑒𝑛 
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4 RESULTS 

4.1 HYPERSPECTRAL IMAGING  

Mould growth, in percentage of surface covered, from the hyperspectral imaging 

method (HIM) described, using Matlab and Fiji for image processing and Excel for 

graphs, are shown in Fig. 14, 15, 16 and 17. In chambers 8A, 8B, 10A and 10B, see 

Table 3 in methodology, HIM did not detect any mould growth after 7 weeks. Mould 

growth on spruce sapwood and heartwood was also too little to detect. 

HIM, in chamber 9A, Fig. 14, with climate conditions 10oC, 85% RH and 2 hours of 

light showers, showed up to 85% surface coverage after 11 weeks, and sample 47 

showed no mould growth.  

 

 
Figure 14 Mould growth curves from hyperspectral images of untreated aspen in 

laboratory climate of 10 degrees Celsius, 85% relative humidity and 2 hours of daily 

showers. Shows percentage of surface covered with mould.  

 

In chamber 9B with climate conditions 10oC, 85% RH, 4 hours light showers, HIM 

showed up to 100% percent mould coverage after 4 weeks, and on sample 238, no 

growth after 11 weeks, see Fig. 15. 
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Figure 15 Mould growth curves from hyperspectral images of untreated aspen in 

laboratory climate of 10oC, 85% relative humidity and 4 hours of daily showers. Shows 

percentage of surface covered with mould. 

 

In chamber 11A, HIM showed up to 85% mould coverage after 7 weeks and no growth 

on sample 12, see Fig. 16. 

 
Figure 16 Mould growth curves from hyperspectral images of untreated aspen in 

laboratory climate of 25 degrees Celsius, 85% relative humidity and 2 hours of daily 

showers. Shows percentage of surface covered with mould. 
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In chamber 11B HIM showed up to 100% mould coverage after 4 weeks and one 

sample with no growth, see Fig 17. 

 
Figure 17 Mould growth curves from hyperspectral images of untreated aspen in 

laboratory climate of 25oC, 85% relative humidity and 4 hours of daily showers. Shows 

percentage of surface covered with mould. 

 

4.2 VISUAL ASSESSMENT 

Mould indexes from visual assessment method have been converted to percentages 

as shown in Table 5. Uncertainties are assumed to be up to 10 percentage points for 

the visual method. Below are graphs comparing HIM with visual assessment of one 

sample from each chamber. Sample 53 shows a difference between HIM and visual 

assessment of approximately 20 percentage points after 9 weeks, see Fig. 18. 
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Figure 18 Hyperspectral imaging and visual assessment mould growth curves for 

sample 53 from chamber 9A.  

 

Sample 267 from chamber 9A has a noticeable hump in week eight from the HIM 

method only, see Fig. 19, and has up to 55 percentage points difference compared 

with visual assessment. 

 
Figure 19 Mould coverage with HIM and visual assessment for sample 267 from 

chamber 11A, shows up to 55 percentage points in difference.  
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Sample 35 in chamber 11A, and sample 206 in chamber 11B, HIM showed up to 30 

percentage points less than visual assessment method, see Fig. 20 and 21. 

 
Figure 20 Mould coverage with HIM and visual assessment for sample 35 shows up 

to 30 percentage points in difference. 

 

 

 
Figure 21 Mould coverage with HIM and visual assessment for sample 206 shows up 

to 30 percentage points in difference. 
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4.3 HYPERSPECTRAL IMAGING VS MODEL 

The k1 factor for aspen in chamber 9A was calculated to be k1 = 10 ±10 with (5) and 

(6) and with uncertainties from equations (6) and (9) for M > 1. For M < 1, k1 = 0,9 ± 

0,2 with equations In calculations for the model however, k1 = 6,4 has been used. The 

mould growth was then calculated with equation (1) and is presented in Fig. 22 

together with the curves for HIM and visual assessment, which are the averages of 

the three samples in chamber 9A. 

 
Figure 22 Mould growth model for aspen in climate conditions 10oC, 85% RH and 2 
hours showering, compared to measured mould growth by HIM and visual 
assessment. 

 

Calculations of k1 for chambers 9B, 11A and 11B was not possible because of 

insufficient data. 
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5 DISCUSSION AND CONCLUSION 

The hyperspectral imaging method has consequently shown less mould than by visual 

assessment. In Fig. 19, sample 267, week 8, there is a bump in the percentage of 

mould, from 40% to 60% down to 40% again. Considering the visual evaluation is 

approximately the same in week 7, 8 and 9, and no noted decline of mould on the 

sample, this bump is regarded as an error. This means the uncertainty can be up to 

20/40 x 100% = 50%. This is an extreme case but gives an indication of the 

uncertainty. For hyperspectral imaging to be useful, it should be accurate, and this I 

believe, is not accurate enough.  

The method used was not entirely objective. When making the PLS-DA model using 

the supervised classification technique, areas of mould were chosen to represent the 

mould. How big, and which areas sampled as mould made a difference to the 

percentage of mould estimated.  

Though the HIM used in this study neither gave a very accurate or entirely objective 

assessment, it may have potential as a mould assessment tool on wooden cladding.  

The adaptation of the VTT model to aspen worked, although not accurate. The 

growth intensity factor for aspen found of k1 = 10 ±10 has such a large uncertainty, 

its value is questionable. Which sensitivity class, see Fig. 1, aspen belongs to, is not 

determinable with this accuracy. 

 

5.1 CRITICAL ASSESSMENT 

As described, the HIM gave up to 50% error. This specific instance, sample 267, see 

Fig. 19, is most likely to be from light issues. Clouds passing by in a blue sky, during 

taking a picture, could result in the picture being darker on one side. Normally, a new 

picture was taken, but not every time was noticed. The light conditions also changed 

from week to week. An even and equal exposure each time proved difficult. These 
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shifting light conditions are the main source of error for the HIM. The white reference 

plate did counteract some of these shifting light conditions, but also this may be a 

source of error, as it might not be perfectly white. 

The image analysis may also have introduced some error. As mentioned, the 

objectivity was not absolute. In addition, when selecting areas to represent wood, 

with the picture quality in Fig. 12, there may have been mould in the area classified 

as wood. This may have lead to a smaller estimate of mould, as some mould would 

be regarded as wood. Using more time in this stage, with the supervised classification 

and with different types of pre-processing, may give results that are more accurate. 

The aspen wood samples were homogenous in colour and almost without visible 

growth rings. This made it quite easy to distinguish the mould from the wood and in 

this case, a normal RGB may be equally as good as hyperspectral images. Pine and 

spruce however often have more visible growth rings, which are darker than the 

surrounding wood, this would most likely make it difficult for a RGB image to separate 

the mould from the growth rings. In addition, this was an indoor experiment without 

other degradation from outside elements. Outdoors, lignin degradation may make it 

more difficult for a RGB image to differentiate between the mould and the wood. 

The high variation in mould coverage within the same chambers for aspen was one 

of the reasons for the high uncertainty in k1. This variation may be due to no 

differentiation between heartwood and sapwood of aspen. There is a difference in 

permeability, as earlier described, which may give a longer time of wetness for the 

more permeable sapwood, which would result in heavier mould growth.  

The other, and likely largest, source of error in k1, is the approximation of using mould 

index [1] as tM= 1. In the VTT model tM=1 is the time in days it takes until small amounts 

of mould are visible with a microscope on the surface. The method used in this study, 

used only magnifying glasses, at best, to detect mould, which means that tM=3 is 

approximately the same as tM=1, or that in fact, no tM=1 was measured. In chamber 9A 

however, growth was slow enough to differentiate more between stages of growth, 

which gave a more reliable mould index [1]. The equations (5) and (6) are fractions, 

so if both tM=1,pine and tM=1,aspen were equally shorter, the approximation may not have 
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very large consequences. Some samples had no initial stage [1], but went from mould 

index 0 to 1, or 2, within a week, tM=3 was then used as tM= 1. These increased the error 

largely and could have been excluded. Another major flaw, tM= 1 is measured in days, 

whilst the method used only measured weekly. For a more accurate k1, microscopes 

must be used and mould growth must be measured more often. 

The time with 100% RH was an approximation from the dielectric leaf sensor 

measurements. This is also a source of error. How the wetness of the leaf sensor 

corresponded to the wetness of the surface of the wood, was not known. The VTT 

model is not developed for use with simulations of rain, and does not take into 

account the moisture content of the wood. The moisture content is simulated by the 

RH, which may be a weakness. As seen in Fig. 23, the wetness time changed over the 

two months, why this happened or if it is an error is unknown. If it is correct, the time 

the wooden surface is wet is a variable with time, it decreases over the two months. 

This may give less rise in the model curve in Fig. 22. Pine sapwood and aspen are 

assumed to be fairly similar in resistance to mould, with a k1 =2 for aspen, the model 

curve would have even less rise 

 

 

5.2 CONCLUSION 

Mould and untreated aspen have differences in reflectance and/or radiation in the 

wavelength area of 900nm – 1700nm. This can be used to measure amount of mould 

on an untreated aspen cladding with hyperspectral cameras. The light conditions may 

be important for accuracy. With technological advancements in cameras, this 

method may become a quick and easy mould assessment method. 

Higher accuracy is needed to estimate the sensitivity class of aspen, by use of 

microscope and daily mould assessments. 
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