

1

1 Preface

This master thesis represents the �nal stage in my master's degree in Mathematical, Physical and Compu-
tational Sciences at the Norwegian University of Life Science (NMBU) at the Department of Mathematical
Sciences and Technology (IMT).

I would like to thank my supervisors, Geir Halnes, Gaute Einevoll and Espen Hagen for useful com-
ments, great ideas and a lot of patience throughout the process of this master thesis.

Ås, 12.03.15

Torgunn Halvorsen

2

Contents

1 Preface 1

2 Abstract 4

3 Sammendrag 5

4 Introduction 6

5 Theory background 8

5.1 The RC-circuit . 10
5.2 The Hodgkin-Huxley model of action potential . 11

5.2.1 The gating particles . 11
5.2.2 The potassium channel . 12
5.2.3 The sodium channel . 12
5.2.4 The leak channel . 13
5.2.5 The total dynamics . 13

5.3 Multicompartmental model . 15
5.4 The cable equation . 16
5.5 Synapses . 17
5.6 The Hay-model . 20
5.7 NEURON and Python . 21

6 Method 22

6.1 The Hay-model implemented in Python . 22
6.2 Fitting point model EPSPs to EPSPs obtained with the Hay-model 24
6.3 Variation in parameter values as a function of distance from soma 26

7 Results 28

7.1 Modelling synaptic responses in the point model . 28
7.2 Estimation of the cell parameter τm for the point model 31
7.3 Fitting the synapse parameters for the point model . 34
7.4 Fitting synapse parameters for the whole neuron . 38
7.5 Curve �tting synapse parameters to functions to describe trends as distances from soma. . 40
7.6 Statistical analysis to choose the best result functions. 44

7.6.1 The resulting synapse models . 52

8 Conclusion 55

9 Discussion 56

9.1 Limitations with the simpli�ed model . 56
9.2 Current based vs conductance based synapses . 56
9.3 Future prospects . 57

10 Appendix A 59

10.1 Results for the four parts of the neuron for the four �tting methods 59
10.2 Results for the whole neuron with �tting method 4 . 61

3

11 Appendix B, Python codes 62

11.1 The Hay-model . 62
11.2 Fit the synapse parameters . 66
11.3 Curve �tting with sigmoid function . 71
11.4 Statistical analyses for the result functions . 76

4

2 Abstract

The response of a real neuron to a single synaptic input will depend on where on its dendritic tree the
synapse is placed. The synaptic response is a voltage de�ection generated at the synapse location in a
synapse and then propagates from the synapse to the soma, where the membrane potential is typically
measured. If the voltage de�ection in the soma reaches a certain threshold value the neuron may generate
an action potential, which is an output signal to other neurons. The distance from where the synaptic
response is generated and propagates to the soma, decides the amount of weakening and change in shape
the signal experienced before measured in soma. Real neurons will therefore have a diversity of somatic
responses to a single synaptic input, depending on the synaptic location.

In network simulations the use of single compartment models (point models), are customary [1]. A
point model lacks the spatial aspect of a morphological spacious neuron model. A point model has only
one option for synapse placement, directly at its soma (i.e., its single compartment). The diversity of
synapse responses a spacious neuron model can achieve in its soma is not captured by the point model
in a trivial way.

The goal of this project is to create a synapse model for a passive point neuron, that can account for
the diversity of somatic responses obtained in spatially explicit neurons.

�Realistic� somatic responses were obtained by placing synapses at di�erent locations in a previously
published multicompartmental neural model which was taken to represent a �real� neuron. The synaptic
response obtained for a given synapse location was then recreated in a point model. This was done
by using curve �tting methods: Four parameters in the point neuron synapse were varied to obtain an
optimal �t from the response in the �real� neuron. This was repeated for all possible synapse locations
in the realistic neuron's morphology.

The result was two synapse models for a point neuron. One easily implemented and applied, and
one more accurate, but containing more results. The synapse was described by four parameters, each
of which were functions of a single variable d, representing the synaptic distance from the soma in the
realistic neural model. In this way, the variability in somatic response that in real neurons follow from
variability in synaptic position, could be captured by varying a single parameter in a synapse placed at a
point model. These synapse models will contribute to more realistic modelling of sub-threshold dynamics
for point neurons.

5

3 Sammendrag

Et realistisk nevrons respons til et synaptisk innput vil avhenge av hvor på dens dendrittre synapsen
er plassert. Synapseresponsen er en potensialendring som genereres i synapsen og deretter propagerer
til soma, hvor membranpotesialet vanligvis måles. Hvis membranpotensialet i soma oversiger en gitt
terskelspenning, kan nevronet generere et aksjonspotensiale, som er nevronets måte å sende signaler til
andre nevroner. Avstanden fra synapseresponsen genereres og propagerer til soma, bestemmer graden av
svekking og endring i form signalet opplever før det måles i soma. Realistiske nevroner vil derfor ha et
mangfold av responser målt i soma for et synaptisk input, avhengig av synapsens plassering.

I nettverks-simuleringer er det vanlig å bruke én-compartment-modeller (punktmodeller) [1]. En
punktmodell mangler det romlige aspektet til en morfologisk utstrakt nevronmodell. En punktmodell
har kun én mulighet for synapseplassering, direkte på dens soma (dens eneste compartment). Mangfoldet
av somaresponser en romlig kompleks nevronmodell kan måle i soma er ikke en del av punktmodellen.

Målet for denne oppgaven er å lage en synapsemodell for en passiv punktmodell, som gjør punktmod-
ellen egnet til å modellere somaresponser som en romlig kompleks nevronmodell.

"Realistiske" somaresponser ble funnet ved å plassere en synapse på forskjellige steder i en tidligere
publisert �er-compartment nevronmodell som ble valgt til å representere et "realistisk" nevron. Synapsere-
sponsen for en gitt synapseplassering ble deretter gjenskapt i en punktmodell. Dette ble gjort ved kurvetil-
pasning: Fire parametre i punktnevronets synapse ble variert for å �nne den optimale tilpasningen til
responsen fra det "realistiske" nevronet. Dette ble gjentatt for alle synapseplasseringer mulig på det
realistiske nevronets morfologi.

Resultatet var to synapsemodeller for et punktnevron. Én som var lett å implementere og anvende og
én mer nøyaktig, men med �ere resultater som følge. Synapsen var beskrevet av �re synapseparametre,
som hver var funksjoner av en variabel d, som representerte den synaptiske avsanden fra soma i den re-
alistiske modellen. På denne måten ble mangfoldet av somareponser fra et "realistisk" nevron gjenskapt
ved å variere parameteren d i en synapse plassert på en punktmodell. Disse synapsemodellene vil bidra
til mer realistisk modellering av dynamikken til et punktnevron under terskelspenning.

6

4 Introduction

A realistic neuronal morphology has a complex spacious structure consisting of a cell core, the soma, with
branches called dendrites growing out of it. The input-terminals of a neuron, the synapses are located at
the dendrites, while the output-terminals lie on a branch growing out of soma called the axon.

When a synapse receives a signal from another neuron, the synapse responds by an increase or decrease
in the membrane potential, called a synaptic response. The synaptic response is generated in the synapse
and then propagates along the dendrites to the soma, where it is typically measured. If the membrane
potential in soma reaches a threshold value, a rapid increase in the membrane potential, called an action
potential (AP) is sent to the synapses at the axon communicating with other neurons.

Neuron models have di�erent degrees of complexity, depending on what one wishes to model. If it is
the concrete shape and values for a synaptic response one wishes to capture in a model, a complex model
can be a good choice. A model can be complex in both its membrane mechanisms and morphology.
Complexity in membrane mechanisms can be a model containing several active ion channels, while a
complex morphology is a complex model of the neurons structure.

In a complex morphology model the dendrites and soma are modelled as cylinders that are divided
into several compartments where the membrane potential is evaluated at every compartment when a
signal propagates from a synapse at the dendrites to the soma.

When simulating large networks of neurons, one wishes to recreate the trends in signals and not so
much the concrete values. The models of neurons' structure in networks are often simpli�ed. Usually
every neuron in a network simulation is represented by a one-compartment model, called a point model,
to keep the model's conceptual complexity and computational cost low. [1].

A point model lacks the spatial aspect of a real neuron. The structure of the neuron is simpli�ed to
a point, which represents dendrites, axon and soma.

The only option to place a synapse on a point model is at its only compartment, as opposed to a
complex morphology model, where synapses can be placed at arbitrary locations in the dendrites at
various distances from the soma.

A spatial morphology can produce a variety of responses measured in soma, by changing the location
of the synapse. The spread and weakening of the signal as it propagates along the dendrites to soma
from di�erent locations will be a dynamical aspect of a real neuron.

The point model is a di�erent story. The only synaptic response possible to obtain is found by placing
the synapse at its only compartment, the soma.

How can a point model capture the diversity in signals a complex morphology model can produce?
My goal is to create a synapse model for a point neuron, able to capture the variety of excitatory post
synaptic responses [EPSPs], an active, complex morphology model can produce.

I used a model by Hay et. al (the Hay-model) [2] to be my realistic, active and complex structured
model. I measured all the possible EPSPs the Hay-model could produce in its soma, by running a
simulation with a conductance based, two-exponential synapse for each synapse placement possible on
its morphology. The somatic responses obtained from the Hay-model were used as my "realistic" data.

An investigation with many similarities was performed by Wybo et. al in 2013 [1]. They also used a
synapses to reinstate the spatial aspect for a point model, but the model they simpli�ed was passive, as
opposed to the active Hay-model, and the synaptic integration was therefore a more analytical matter.

The synapse I used on the point model was current based. This made it possible to derive an analytical
solution for its synaptic response.

The analytical solution for the point model's synaptic response contained four synapse parameters,
describing the shape of the EPSP. The four synapse parameters were: A, t0, τ1 and τ2; peak value, delay,
decay time constant and rise time constant, respectively.

By letting the four synapse parameters in the expression for synaptic response for the point model
vary and �tting it to the di�erent EPSPs measured for the Hay-model, I obtained values for the point
model's synapse parameters, A, t0, τ1 and τ2, for each EPSP the Hay-model produced.

7

To be able to present my results in an easily implemented and applied way, I wanted to �nd equations
describing the synapse parameters �tted for the point model. I was interested in �nding a trend in these
four synapse parameters, dependent on the somatic distance the EPSP from the Hay-model had travelled
(distance from soma).

I separated the four types of �tted synapse parameters for the point model and indexed each value
with the corresponding distance from soma.

I captured the trend in the �tted synapse parameters through curve �tting with the sigmoid function,
by letting parameters describing the shape of the sigmoid function vary.

I obtained four sigmoid functions, dependent on a single variable d. The variable d represents the
somatic distance for the EPSPs from the Hay-model. When the four sigmoid functions are evaluated for
a given somatic distance, they give the four synapse parameters (A, t0,τ1 and τ2) to build a synapse for
the point model, able to recreate the EPSP from the Hay-model, with the synapse actually placed at the
given distance from soma.

My resulting synapse model can be put on point models and make them model sub-threshold dynamics
and capture dendritic integration in a more realistic way.

My synapse model is mainly meant for network simulations where the use of point models is common
[1].

This thesis has the following structure: I will �rst look at theory background where neuronal structure
and mechanisms and well known ways to model neurons, and synapses are elaborated. Then I look at
methods used in the project, including the Hay-model implemented in Python and the methods for the
�tting processes for �nding the values of the synapse parameters for the point model, and the curve �tting
with the sigmoid function to capture the trends in the �tted parameter to obtain my result functions.
Then follows the Result chapter, where I look at the derivation of the equation for the point model's
response to a synaptic input, how I decided the values for a cell parameter and the results for the �tting
processes, with values and error estimates. I will discuss some of my results in the result section. Then
I summarize my results in the conclusion. Then I discuss my project's limitations and future prospects
among other topics worthy of being discussed, followed by Appendix A, containing some sidelined results
from the curve �tting of sigmoid functions and Appendix B containing Python codes used in the project.

8

5 Theory background

The human brain is an extremely complex organ, with responsibilities from coordinating physical move-
ment of our body to vital unconscious processes as breathing and digesting food. Our brain's uniqueness
gives us our personality and abilities such as language, moral judgements, rational thoughts and memo-
ries [3]. The brain consists of about 100 billion [3] nerve cells and some trillion synapses [4].

The nerve cells in the brain are called neurons and they have rich external anatomy. The anatomy
consists of a cell core, called the soma. Branches, called dendrites grow out of the soma. The input
terminals of the neuron are called synapses, and are where the neurons receive signals from other cells.
The synapses are located at the dendrites. The neuron has one output terminal, called the axon, where
the neuron sends signals to other neurons. [4]. Figure 1 shows the schematic structure of a neuron.

Figure 1. A schematic neuron. The soma is the cell body. Dendrites with their branches grow out of
soma and have synapses which receive signals from other neurons. The axon transfers signals from soma
and sends signals to other neurons.

A neuron receives signals from other neurons in their synapses located at the dendrites. A synapse
input leads to a synaptic response that either increases or decreases the membrane potential of the cell,
dependent of the type of neurotransmitter the synapse received. Di�erent neurotransmitters can either
lead to an excitatory or inhibitory response, increasing or decreasing the membrane potential respectively.

A neuron has a membrane resting potential which lies around -65 mV [5]. Su�ciently strong synapse
inputs can elevate the membrane potential to above the threshold value and trig mechanisms in the ionic
channels, which initiate an action potential (AP). The AP is the neuron's mechanism for sending signals
to other neurons. It is characterized by a steep increase of the membrane potential, about 100 mV above
the threshold value, followed by a less steep decrease to below the neuron's resting potential, before
stabilizing.

The main goal for a neuron model is to recreate the behavior of the real neurons. Typical one uses
recordings from real neurons and want the model to capture the most important characteristics in the
data. What the important characteristics are depends on the level of detail on which one chooses to
simulate, and what one considers to be important. In complex one-cell models one typically wishes to
recreate the neuron's potential response, how the membrane potential, V(t), varies with time , with great
detail. In simpli�ed network models one typical settles to recreate some characteristics of the data. Most
common is recreating the average �ring rate of action potentials (APs), without thinking about the shape
of the APs or recreating the signal V(t) between the them.

Models di�er in complexity with morphology and membrane-mechanisms. The most complex mor-
phology models consist of spatial 3D-reconstructions of the real neuron's morphologies. The structure of
the neuron is split up into a number of parts, called compartments. The number of compartments decides

9

the spatial resoluteness of the model. The simplest morphology model consists of one single compartment
and is called a point model.

A model with only one compartment gives the neuron in�nitely large inner conductance which makes
the whole neuron lie on the same potential ground and the information about how potential can vary
throughout the dendrite-tree and axon is not captured by the model.

For a model with several compartments, the dynamics between the compartments is decided by the
cable equation, see section 5.4. [5]

To model the neurons one uses di�erent neuro-simulators. I used NEURON and Python, described
in section 5.7.

10

5.1 The RC-circuit

A simple model for a membrane and its potential is an RC-circuit known from electronics [5], shown in
�gure 2. An RC-circuit describes a passive one-compartment model's membrane potential and is suitable
to describe a passive point model's sub-threshold dynamics. The current source, Ie models an electrode

Figure 2. The RC-circuit consists of a capacitor, Cm, that models the aspect that a membrane can
store and separate charge. The resistor, Rm describes the conductance of the passive ion channel, where
lower resistance gives higher conductance. The battery, Em models the net di�erence between ion
density inside and outside the cell and sets up the resting potential. The current source, Ie represents
an injected current. Ii is the current �owing through the ionic channel, in and out of the cell. Ic is the
capacitive current due to the change in membrane potential [6].

where current can be injected. Injected current is divided by area of the cell, because this model has
in�nite inner conductance and the current will be homogeneously divided in the cell. [5]

I e
a

= Ic + Ii (1)

Injected current I e
a
gives rise to both a capacitive current Ic and an ionic current Ii, described in equations

2 and 3 respectively.

Ic = Cm
dV

dt
(2)

Ii =
V − Em
Rm

(3)

By substituting equation 2 and 3 into equation 1 we get the equation for an RC-circut in equation 4.

Cm
dV

dt
=
Em− V
Rm

+
Ie
a

(4)

Equation 4 describes the change in an isolated neuron's membrane potential when a current Ie is injected.
This neuron model is isolated, because it does not receive signals from other neurons. Equation 4 is
suitable for modelling sub-threshold membrane potential changes for a passive point model. [5]

11

5.2 The Hodgkin-Huxley model of action potential

The Hodgkin-Huxley (HH-model) model is a one-compartment model, like the RC-circuit and describes
a single compartment's membrane potential

The HH-model includes three types of ionic channels; sodium- (Na+), potassium- (K+), and leak
channel. The sodium and potassium channels' conductances are voltage dependent, so the conductances'
change is dependent on the membrane potential of the neuron, and the model is active.

The HH-model also includes some state variables for the ionic channels, and together with its ac-
tive properties it does not only make the modelling of action potentials possible, but also explains the
mechanisms behind it. The HH-model was the �rst to describe the active ion channel mechanisms quan-
titatively.

The way of modelling ionic �ow through the membrane with the state variables described in this
model is often referred to as HH-formalism and is widely applied on more complex morphology models.
Then the HH-formalism is used on every compartment of the cell's morphology, as in the Hay-model [2].

Hodgkin and Huxley simulated the action potential in the squid giant axons, because these are big
end easy to work with. Their work proceeded in three main stages: They recorded intracellularily in the
squid giant axon with a spacial clamp and found the current-voltage connection. Then they changed the
extracellular sodium concentration and found the amount of current carried by the Na+ and other ions
such as K+. They then �tted these results to a mathematical model containing a circuit and two active
ion-channels (Na+ and K+). They then described the membrane potential in di�erent situations and
found a numerical solution. What the model predicted matched the recorded values.

To decide whether an ionic channel is in open or closed state, Hodgkin and Huxley introduced gating
particles, see �gure 3. [5]

Figure 3. Abstraction of the gating particles. The black boxes describe a membrane with an ion
channel. For the ionic channel to be in open state, neither of the gating particles (red balls) can block
the channel. Here one gating particle is blocking the channel and the channel is in closed state.

5.2.1 The gating particles

Gating particles were meant to decide whether an ionic channel was in open or closed state. A gating
particle has the probability n for not blocking the ionic channel. With x number of gating particles, the
channel has a probability of nx for being in open state, because none of the gating particles can block
the channel for it to be in open state, as shown in �gure 3.
The movement of the gating particles between the two states, open and closed, is described as a reversible
chemical reaction in equation 5.

closed
−−−−→
αn(V)

←−−−−
βn(V) open (5)

αn and βn are rate coe�cients depending on the membrane potential. The fraction of the gating particles
being in open state is n, and the fraction 1-n are in closed state. The change in n per time is described

12

by equation 6.
dn

dt
= αn(1− n)− βnn (6)

dn
dt is the change in the fraction of gating particles being in open state per time. αn is the rate for gating
particles being in closed state changing to open state. βn is the rate of gating particles being in open
state changing to closed state. In other words the change in n per time is the rate particles change from
closed to open state times the particles in closed state minus the rate particles that change from open to
closed state times the particles in open state. [5]

5.2.2 The potassium channel

The dynamics for the active potassium channel is described in equation 7.

Ik = gkn
4(V (t)− Ek) (7)

With gk given by equation 8.
gk = gkn

4 (8)

Ik is the current through the potassium channel. gk is the potassium channel's conductance. gk is a
constant found experimentally. n is the state variable describing the probability for a potassium gating
particle for being in open state. n4 gives the probability for the potassium ionic channel being in open
state, with its four gating particles. V(t) is the membrane potential and Ek is the resting potential for
the potassium channel and its electromotive force.

The dynamics for state variable n is described by equation 9

dn

dt
= αn(1− n)− βn · n (9)

The rate coe�cients αn, describing the rate potassium gating particles move from closed to open state and
βn, describing the rate potassium gating particles move from open to closed state, follow the equations
10 and 11 respectively. [5]

αn = 0.01
V + 55

1− e−
v(t)+55

10

(10)

βn = 0.123e−
V (t)+65

80 (11)

5.2.3 The sodium channel

The sodium channel has two state variables, m and h. m is probability for a sodium gating particle for
being in open state, equivalent to the potassium channel's state variable n. h is an inactivation state
variable. The dynamics for the active sodium channel is described in equation 12.

INa = gNa(V (t)− ENa) (12)

With gNa given by equation 13.
gNa = gNam

3h (13)

INa is the current through the sodium channel. gNa is the sodium conductance. gNa is a constant found
experimentally. m is the state variable for the fraction of sodium gating particles being in open state. m3

gives the probability of the sodium ionic channel being in open state, with its three gating particles. V(t)
is the membrane potential and ENa is the resting potential for the sodium channel and its electromotive

13

force.
The dynamics for the state variable m is described in equation 14.

dm

dt
= αm(1−m)− βm ·m (14)

The rate coe�cients αm, describing the rate sodium gating particles move from closed to open state and
βm, describing the rate sodium gating particles move from open to closed state, follow the equations 15
and 16 respectively.

αm = 0.1 · V + 40

1− e−V−40
10

(15)

βm = 4 · e−
v+65
18 (16)

The state variable h describes the level of inactivation for the sodium ionic channel. The dynamics of the
inactivation state variable h is described in equation 17.

dh

dt
= αh(1− h)− βh · h (17)

The rate coe�cients αh, describing the rate h move from inactivating to activating the sodium channel,
and βh, describing the rate h move from activating to inactivating the sodium channel, follow equations
18 and 19 respectively. [5]

αh = 0.07 · e−
V+65

20 (18)

βh =
1

e−
V+35

10 + 1
(19)

5.2.4 The leak channel

Besides the active potassium and sodium channels, there are a lot of other ionic currents �owing through
a realistic neuron's membrane. The extra �ow of ions through the membrane is mostly caused by chloride
ions but also calcium ions and other potassium and sodium ions. These currents contribute to the cell's
negative resting potential. All of these currents are gathered in one ionic channel in the Hodgkin-Huxley
model, called the leak ionic channel. The leak ionic channel follows the quasi- ohmic current-voltage
relationship described in equation 20.

IL = gL(V (t)− EL) (20)

IL is the current through the cell membrane due to the other ions besides Na+ and K+. gL is the
leak channel's conductance, a constant found experimentally. It di�ers from the sodium and potassium
conductances by not depending on the cell's membrane potential and is a passive element in the model.
V(t) is the membrane potential and EL is the leak channel's resting potential and electromotive force. [5]

5.2.5 The total dynamics

The complete Hodgkin-Huxley model is described by equation 21.

Cm
dV

dt
= −gL(V (t)− EL)− gNam3h(V (t)− ENa)− gKn4(V (t)− EK) + I (21)

Cm is the membranes conductance, V(t) is the membrane potential at time t. I is the local circuit
current; the net contribution of axial current from neighbour compartment. I can be modelled by the
cable equation, see equation 25. The other terms are speci�ed in the equations 20, 12 and 7 respectively.

14

The Hodgkin-Huxley model describe the mechanisms behind the action potential; When the membrane
is depolarized to above its threshold value the sodium current is activated, and the state variable m and
the sodium conductance increase. Because of the sodium channel's high reversal potential, both the
sodium conductance and membrane potential continue to increase. Potassium activates after sodium and
cause a re-polarization of the membrane, because positive ions are �owing out of the cell due to its low
reversal potential. The in-activation variable h, for sodium also contributes to the re-polarization, because
it decreases when the membrane potential increases. Sodium deactivates and the cell is under resting
potential. The active mechanisms are no longer present and the cell re-establish its resting potential. [5]

15

5.3 Multicompartmental model

Di�ering from the RC-neuron and the HH-model, which are one-compartment models, where the cell
is assumed to be isopotential, a multicompartmenal model splits the cell's morphology into cylindrical
parts of length l and diameter d. Each compartment is isopotential, but di�erent compartments can
have di�erent membrane potentials. Current can �ow through the cell's membrane and longitudinally
(inside the cell) in each compartment as shown in �gure 4. How the membrane potential changes from
one compartment to the next is modelled by the fundamental equation for a compartmental model, in
equation 22. [5]

Figure 4. The idea behind a multicompartmental model. The neuron's morphology is split into
cylinders of length l and diameter d, called compartments. Each compartment is isopotential, but
di�erent compartments can have di�erent membrane potentials. Current can �ow through the
membrane and longitudinally in each of the compartments.

Cm
dVj
dt

=
Em − Vj
Rm

+
d

4 ·Ra

(
Vj+1 − Vj

l2
+
Vj−1 − Vj

l2

)
+

Ie,j
πd · l

(22)

Cm is the cell's membrane capacitance. Vj is the membrane potential for compartment with index j,
Vj+1 is the membrane potential for compartment with index j+1. Vj−1 is the membrane potential for
compartment with index j-1. Em is the cell's reversal potential. Rm is the cell's membrane resistance. Ra
is the cell's axial resistance. d is the diameter of each compartment. l is the length of each compartment.
Ie,j is the current injected into compartment with index j. [5]

16

5.4 The cable equation

The cable equation is a partial di�erential equation which gives an analytical solution to the multicom-
partmental model in section 5.3. The idea is to split the neurite into in�nitely many in�nitesimally small
compartments. The membrane is modelled as a cylinder as shown in �gure 5.

Figure 5. The idea behind the cable equation is to split a neurite into in�nitely many in�nitesimally
small compartments of length δx and diameter d

Cm
∂V (x, t)

∂t
=
Em − V (x, t)

Rm
+

d

4Ra
·[1

δx
(
V (x+ δx, t)− V (x, t)

δx
−V (x, t)− V (x− δx, t)

δx
)]+

Ie(x, t)

πd
(23)

1

δx
(
V (x+ δx, t)− V (x, t)

δx
− V (x, t)− V (x− δx, t)

δx
) =

∂2V (x, t)

∂x2
(24)

when δx→ 0

Cm
∂V (x, t)

∂t
=
Em − V (x, t)

Rm
+

d

4Ra

∂2V (x, t)

∂x2
+
Ie(x, t)

πd
(25)

The membrane potential V(x,t) is a function of x; position along the cable and time; t . Em is the
membrane resting potential and electromotive force. Rm is the membrane resistance. Ie(x, t) is the
injected current per unit length at position x at time t. The term Em−V (t,x)

Rm
describes that the neuron

works to keep itself at equilibrium. The second term at the right side of the equation describes the local
circuit current; the net contribution of axial current from neighbour compartments. [5]

17

5.5 Synapses

Synapses are the neuron's input-terminals and are where the communication with other neurons happens.
Synapses can be chemical or electrical. An electrical synapse is a direct electrical contact between cells
through channels which span the membrane of both cells. A chemical synapse has a pre- and post-
synaptic terminal separated by a synaptic cleft, see �gure 6.

The mechanisms of synaptic transmission in a chemical synapse are well established. An action
potential at the pre-synaptic side of the synapse depolarizes the synaptic terminal which this makes
the calcium-ion channels of the synaptic terminal open and causes a �ow of calcium-ions through the
membrane. The calcium ion �ow leads to a release of neurotransmitters into the synaptic cleft. The
neurotransmitters di�use to the post-synaptic side of the synapse and are temporarily bound to post-
synaptic receptors. This opens the ion channels, allowing ions to �ow in and out of the cell, initiating a
synaptic response. [7]. The synaptic response is either excitatory or inhibitory, increasing or decreasing
the membrane potential respectively, dependent on the type of neurotransmitter the respective synapse
uses [5].

Figure 6. An abstraction of a chemical synapse. It consists of a pre- and a post-synaptic side
separated by a synaptic cleft where neurotransmitters (red dots) di�use from the pre-synaptic side to
receptors (blue dots) at the post-synaptic side.

There are two types of models for chemical synapses: current based synapses and conductance based
synapses. For current based synapses the synapses current response is described by equation 26. Isyn(t)
is the synaptic current due to to a synaptic input. Isyn is the maximum current. f(t) is a function of
time, describing the time course of the synaptic current.

Isyn(t) = Isyn · f(t) (26)

For conductance based synapses the synapse current is described in equation 27.

Isyn(t) = gsyn · f(t) · (V (t)− Esyn) (27)

Isyn(t) is the synaptic current due to to a synaptic input. gsyn(t) is the maximum synaptic conductance.
f(t) is the time course for the synaptic current. Esyn is the synapse's resting potential. The conductance
based synapse is dependent on the membrane potential because of the factor V (t)− Esyn.

There are several di�erent ways to model the time course, f(t), for the synaptic conductance for
the conductance based synapses. The time course, f(t) is often modelled using simple waveforms. The
three most commonly used waveforms are; single exponential decay, described in equation 28, the alpha

18

function, described in equation 29 and the beta function, also called two exponential function, described
in equation 30. [7].

f(t) = gsyn · e(−
t−t0
τ) (28)

The single exponential waveform, see �gure 7 (a) and equation 28.
The equation is valid for t≥ t0. At t=t0 the conductance goes straight up to its amplitude: gsyn. τ
describes the rate of decay [7]. At t=τ the signal has dropped to ∼ 63 % of its starting value and
continues to drop by the factor e−1 when t goes an interval of τ . At t=3τ the signal has dropped 95
%. [8]

f(t) = gsyn
t− t0
τ
· e1−(t−t0τ) (29)

The alpha function, see �gure 7 (b) and equation 29. The alpha function describes the rising process
better than the single exponential decay using the coe�cient t−t0τ . At t=t0 the signal rises to its amplitude
gsyn at time t = τ + t0 and then drops by a factor e−1 when t goes an interval of τ [7]. One often see
the alpha function without the term 1 in the exponent [5], this term normalizes the equation and assures
gsyn to be the amplitude.

f(t) = gsyn
τ1 · τ2
τ1 − τ2

(
e

(
− t−t0τ1

)
− e

(
− t−t0τ2

))
(30)

The beta function or the two exponential function, see �gure 7 (c) and equation 30, is the most complex
waveform of the three I look at. The beta function describes both the decay and rise with separate
constants, τ1 and τ2 respectively. [5]
It is easier to see the physics behind the normalized beta function, see equation 31, with the normalization
coe�cient C in equation 33 and tpeak in equation 32.

f(t) = gsyn · C
(
e

(
− t−t0τ1

)
− e

(
− t−t0τ2

))
(31)

tpeak = t0 +
τ1 · τ2
τ1 − τ2

· ln
(
τ1
τ2

)
(32)

C =
1

−e−
(
tpeak−to

τ2

)
+ e
−
(
tpeak−to

τ1

) (33)

Equation 31 peaks at t = tpeak and has an amplitude equal to gsyn [7].

The time course for the synaptic current for current based synapses, are the same waveforms as the
conductance based synapses use for their conductance.

19

(a) single exponential decay

(b) alpha function

(c) betha function

Figure 7. The waveforms used to model the synapse's conductance. All graphs are normalized and has
a 0.5 ms delay. For �gure (a) τ = 2 ms, (b) τ = 1 ms , (c) τ1 = 3 ms and τ2 = 1 ms

20

5.6 The Hay-model

The model used in this study is the Hay-model [2]. This is a model for the layer 5b pyramidal cells (L5b
PCs).

The L5b PCs have been subjects of many experimental and modelling studies, because they are major
building blocks in the mammalian neocortex and extend their dendritic trees to all its six layers.

The Hay-model is the �rst model that reproduces perisomatic Na+-spiking behavior and active den-
dritic properties such as Ca2+ spikes and the interaction between these two spiking regions, back propa-
gating action potentials and experimental variability.

The model was based on recordings in adult rats. Using "an evolutionary algorithm" 21 free pa-
rameters were �tted, among them channel densities for nine ionic channels. The channels follow the
Hodgkin-Huxley formalism (as described in the subsection 5.2) and the ionic currents are modelled on
the form shown in equation 34.

I = gmxhy(V (t)− Esyn) (34)

I is the ionic current. Esyn is the ionic channel's reversal potential. V(t) is the membrane potential. x is
the number of gating particles. y is the number of gating inactivation particles. m is the probability of
a gating particle being in open state. h is the level of activation of an inactivation particle.

The model was made by looking at other models that optimized either of the two target behaviors
(perisomatic Na+-spiking and active dendritic Ca2+ spiking). Hay et. al looked at the parameters
that di�ered between the models in range, size or range values, because these di�erences pointed in the
direction that the given ionic channel had to change and was important to the target behavior. Statistics
of electrophysiological features such as spike frequency, spike width and adaptation index were grouped
into separate objectives and �tted to a model of a L5b PC by the "evolutionary algorithm".

The morphology was split into compartments up to 200 µ m long and the cells had an average of 200
compartments. The optimization and simulations were conducted in NEURON and runtime was between
2 and 5 days. [2]

The Hay-model implemented on the layer 5b pyramidal cell was used as my "realistic neuron". The
Pyramidal cell has long apical dendrites at the top, that di�ers from the shorter proximal dendrites
around soma at the bottom. When an action potential is �red at the soma it can propagate all the way
to the top of the apical dendrites. The apical dendrites can �re action potential locally themselves, if
they get enough synaptic input [9].

It has been suggested that L5b PCs could be important in the learning process. The apical and
proximal dendrites get input from di�erent parts of the brain, and can therefore serve as a detecting
device for events happening at the same time, since the response in soma gets larger when the signals
received in the apical- and proximal dendrites occur with short time between them [10].

Similar phenomena can occur locally at dendrites. For example synapse activation on more than
one synapse happening at the same time can give a response higher than linear summation of single
responses [11].

Recordings show that pyramidal neurons in awake animals are bombarded by synaptic input and
are in "high conductance state". This bombarding of input leads to a depolarization of the membrane.
Therefore it lies on a higher potential than the resting potential and more ion channels are in open state
than for an isolated cell. Open ion channels means higher conductance (or lower resistance). In this state
the membrane potential of the cell will di�er (±4mV) and the response to a signal will be dependent on
how the membrane potential was when the input arrived. [9]

21

5.7 NEURON and Python

NEURON is a simulation environment for modelling single neurons or networks.
Expertise in numerical methods or programming is not necessary when using NEURON, given its

e�cient tools for constructing, running and managing models.
NEURON uses the programming language hoc. A hoc-�le speci�es the morphology and biophysical

features as ionic channels. It is also possible to implement models directly in the GUI (graphical user
interface).

NEURON uses the cable equation to describe the membrane potential for each segment of a cell,
and evaluates it at the mid-point of each segment. NEURON uses linear interpolation of the potential
between the midpoints of two neighbor compartments and sets each compartment on the same potential
ground [12].

For multicompartmental models the most common formalism used for modelling ion channels and
membrane mechanisms is the Hodgkin-Huxley formalism (HH-formalism), see section 5.2. The HH-
formalism is easily implemented in a NEURON model.

Python has a wide range of analysing tools built for scientists and engineers. Adding Python to
NEURON makes it possible to create complex programs using Python's wide spread of built-in functions
from �tting algorithms to statistical analyses [13]

I am going to use the open source Python package LFpy (Local Field Potentials in Python), which
runs on top of NEURON. LFPy contains classes for de�ning cells, synapses and point processes as Python
objects. [14]

22

6 Method

6.1 The Hay-model implemented in Python

The Hay-model was chosen as my realistic neuron. Therefore its EPSPs measured in soma were used as
data in the same way others use recorded data from ex. rat brains.

The Hay-model was implemented in Python and NEURON by Espen Hagen, see section 11.1 in
Appendix B for code. The Hay-model implemented in Python has 642 compartments and therefore 642
options for placing a synapse. The synapse gets an input at time t= 500 ms which generates an EPSP
that travels from the synapse to the soma where the membrane potential is recorded.

The model's cell and synapse parameter values are listed in table 1, and �gure 8 show its morphology.
For use in the following sections, 6.2 and 6.3 I split the Hay-models morphology into four parts; apical,

stem, basal and branches, see �gure 9.

Cell parameter value unit Explanation
Rm 30000 Ωcm2 membrane resistivity
Cm 1 S/cm2 membrane capacitance
Ra 150 Ωcm axial resistance
a 31200 µm2 area of the cell
Vinit -75 mV initial potential
Synapse parameter value unit Explanation
e 0 mV reversal potential of synapse
τ1 0.25 ms time constant rise
τ2 1.0 ms time constant decay
weight 0.01 µS synaptic weight

Table 1. The cell and synapse parameters used for the Hay-model implemented in Python by Espen
Hagen.

23

Figure 8. The morphology for the cell the
Hay-model was implemented on. The red represents
a synapse. Here it is placed in soma at index = 0.

Figure 9. The morphology for the Hay-neuron
split into four parts. The coloured dots represent
synapse indexes. Red dots are in the basal region,
yellow dots are forks growing out of the stem, called
branches, the stem is green and the apical part is
blue.

24

6.2 Fitting point model EPSPs to EPSPs obtained with the Hay-model

I derived an analytical solution for the point model's synapse response due to a synapse input, in section
7.1, equation 58. Equation 58 contains some synapse parameters deciding the strength and shape of the
EPSP for the point model. They are: A, t0, τ1 and τ2.

A is the amplitude [mV] and the maximum �uctuation of the EPSP above resting potential. t0 is the
delay [ms], which decides the starting time of the EPSP. τ1 is the decay time constant [ms] which decides
the rate the EPSP decays towards resting potential after it peaks and τ2 is the rise time constant [ms]
and decides the time rate for the rise of the signal towards the peak value.

I let these four synapse parameters vary in equation 58 and �tted it to the EPSPs obtained from the
Hay-model. The results were sets of the four synapse parameters for the point model for each EPSP the
Hay-model produced.

To link the �tted synapse parameters for the point model to the Hay-model, I calculated the distance
each EPSP from the Hay-model travelled to soma and pinned this value to the respective set of �tted
synapse parameters.

The �tting process was conducted in Python using the package scipy.optimize.minimize [16] with the
�tting method TNC. TNC (Trunctated Newton method) [15] is a non-linear �tting algorithm that makes
it possible to use bounds on the parameters [16]. For Python code, see section 11.2 in Appendix B. I
chose to �t the synapse parameters for the point model in four di�erent ways using di�erent bounds on
the parameters and length for the interval for the curve �tting:

1. Fit 1, The �tting process was done with bounds on the delay, it could range from 500 ms to the
time where the Hay signal has reached 3% of its amplitude.
The interval where the curves were �tted was from 500 ms to the end time of the simulation.

2. Fit 2, The �tting process was done with bounds on both delay and amplitude. The delay could
range from 500 ms to the time where the hay signal has reached 3% of its amplitude and the
amplitude was �xed at the Hay-model's EPSPs amplitude value.
The interval where the curves were �tted was from 500 ms to the end time of the simulation.

3. Fit 3, The �tting process was done with equal bounds on the delay and amplitude as Fit 2.
The interval where the signals were �tted where shortened. The signals were �tted from 500 ms to
the time where the EPSP from the Hay-model reached its resting potential after peaking, to avoid
�tting the part of the Hay-models EPSP going below the resting potential before stabilizing.

4. Fit 4, The �tted parameters for the point model were obtained by calculating the mean values of
each of the �tted synapse parameters from Fit 1, 2 and 3.

The synapse parameters for the point model were �tted for all the EPSPs from the Hay-model by the
four methods listed above.

I also chose to split the EPSPs from the Hay-model into four groups, dependent on which part of the
Hay-models morphology they were generated (apical, stem, basal and branches). The four parts of the
morphology for the Hay-model is showed in �gure 9 on page 23. The idea was that EPSPs generated in
the same part of the morphology would encounter about equal change in shape and wakening in strength,
because they propagated about the same distance to soma were they were recorded.

In a �tting process the cost function is what one wishes to minimize. The cost function used for my
�tting process was the sum of least squares in equation 35. The minimized cost function value was used
as error estimates for Fit 1 and 2. The synapse parameters in Fit 3 are �tted on a shorter interval than
Fit 1 and 2 and the cost function's minimized value would naturally have a lower value than the cost
function ranging over a longer interval. I used the �tted synapse parameters from Fit 3 and estimated
the errors on the interval 500 [ms] to the end time of the simulation, using equation 35. The same was
done for the synapse parameters from Fit 4.

25

Cost function / Error estimate

te∑
ts

(V (t)pointmodel − V (t)Haysoma)2 (35)

ts is the time for the synapse stimuli [ms](I did not start the calculation at t0, because I wanted equal
length intervals to evaluate the error estimates/ cost function for the di�erent EPSPs).
te is the end time of the signal [ms].
V (t)pointmodel is the point models synapse response from equation 58 at time t [mV].
V (t)Haysoma is the Hay-model's EPSP recorded in soma at time t [mV].

26

6.3 Variation in parameter values as a function of distance from soma

In section 6.2 I went through the method for �tting synapse parameters for the point model. The result
was sets of four synapse parameters for the point model (amplitude, t0, τ1 and τ2) for each EPSP the
Hay-model generated. The sets of synapse parameters for the point model were linked to the Hay-model
by the somatic distance for each EPSP from the Hay-model.

I wanted to present my results as functions for each of the four di�erent synapse parameters, dependent
on distance from soma. If you wanted a synapse for the point model able to recreate the EPSP from the
Hay-model generated at a given distance from soma, you use this somatic distance as a variable in the four
equations for the synapse parameters and evaluate them. The result would be four synapse parameters
for the point model able to build a synapse that could recreate the EPSP from the Hay-model actually
generated at the given somatic distance.

I needed a �exible function that could capture di�erent trends in the parameters, dependent on the
distance from soma. The choice fell on the sigmoid function, see equation 36.

The sigmoid function can capture linear, decaying, rising and S-shaped relationships between the
parameters and the distance from soma. I modi�ed the sigmoid function to be able to �ip and scale it
more, see equation 37.

Figure 10 shows a special case for equation 37, where it acts like the simple sigmoid function in
equation 36, because of the choice of parameters (x0, x1, x2, x3, and d0).

Figure 11 shows the �exibility of the sigmoid function and how one easily can manipulate its shape
through parameter choices.

Through curve �tting with the sigmoid function and the four sets of synapse parameters dependent
on distance from soma, I obtained �tted values for the sigmoid function's parameters,x0, x1, x2, x3, and
d0. The �tting process used the same package in Python as section 6.2. For Python code, see section
11.3 in Appendix B. The cost function was the sum of least squares in equation 38, which was used as
error estimate when it was minimized.

s(d) =
1

1 + e−d
(36)

s(d) = x0 +
x1

x2 + e−x3(d−d0)
(37)

de∑
d0

(S(d)− Synparam(d))2 (38)

d0 is the starting point of the interval for distances from soma [µm]. de is the end point of the interval
for distances from soma [µm]. S(d) is the sigmoid function's value at distance from soma d [unit for the
synapse parameter]. Synparam(d) is the parameter value at distance from soma d [unit for the synapse
parameter].
The parameters in the sigmoid function, x1, x2, x3, x4 and d0 describe di�erent aspects of its shape. d0
is the delay and shifts the graph horizontally. When d=d0 the function changes its slope. x3 makes
it possible to let the sigmoid function be both decreasing and increasing. A positive x3 makes the
exponential term in the denominator a decaying exponential and the sigmoid function rises with t. A
negative x3 makes the exponential term a rising exponential and the sigmoid function decays with time.
In the case of a positive x3 the sigmoid function will approach the value x0 when t→ −∞ and the value
x0 + x1

x2
when t→ ∞. For the case of a negative x3 the function will approach the value x0 + x1

x2
when

t→ −∞ and the value x0 when t→∞. The value of x3 describes how fast the sigmoid function changes
in other words how steep the slopes are. The larger x3, the steeper curve.

27

Figure 10. Sigmoid function from equation 37, with parameters: x0=0, x1= 1, x2=1, x3=1, and d0=0,
gives the special case where the modi�ed sigmoid function behaves like the original sigmoid function
from equation 36.

(a) sigmoid function behaving like a decaying exponential (b) sigmoid function behaving like a rising exponential

(c) sigmoid function on a positive interval (d) sigmoid function behaving linear

Figure 11. Examples of the sigmoid function in equation 37 with di�erent parameters:
[x0,x1,x2,x3,x4,t0].
(a): [0,1000,1,1,-7], (b): [0, 25,1,1,5], (c): [10,1,1,1,5], (d): [10,1,1,0.1,5]

28

7 Results

7.1 Modelling synaptic responses in the point model

To be able to �t the point neuron's response to the Hay-models EPSPs, I needed an analytical solution
for its response to a synapse input.
I started with the equation for a simple RC-neuron, from section 5.1.

Cm ·
dV

dt
= −ii − isyn (39)

I write the quasi-ohmic relation for the ionic current, ii. The synapse used on the point model is current
based, which means that the synaptic current response, isyn to a synaptic input is proportional to the
chosen time course function f(T) for the synaptic current. isyn can be expressed as the time course of
the synaptic current f(t) multiplied with a scaling constant K.

Cm ·
dV

dt
= −g(V − Vrest)−K · f(t) (40)

g = 1
Rm

and the membrane time constant τm = Cm ·Rm

dV

dt
= − (V − Vrest)

τm
− K · f(t)

Cm
(41)

Multiply both sides by e
t
τm

dV

dt
e

t
τm = −V − Vrest

τm
e

t
τm − K · f(t)

Cm
e

t
τm (42)

(
dV

dt
+

V

τm
)e

t
τm =

Vrest
τm

e
t
τm − K · f(t)

Cm
e

t
τm (43)

The left side is the derivative of V e
t
τm .

(V e
t
τm)′ =

(
Vrest
τm
− K · f(t)

Cm

)
· e

t
τm (44)

Integrate both sides from 0 to T.

V e
T
τm − V (0) =

∫ T

0

((
Vrest
τm
− K · f(t)

Cm
)e

t
τm)dt (45)

Use the initial condition: V (0) = Vrest.

V e
T
τm − Vrest =

∫ T

0

Vrest
τm

e
t
τm dt−

∫ T

0

K · f(t)

Cm
e

t
τm dt (46)

V e
T
τm − Vrest =

Vrest
τm

τm(e
T
τm − 1)−

∫ T

0

K · f(t)

Cm
e

t
τm dt (47)

(V − Vrest)e
T
τm = −

∫ T

0

K · f(t)

Cm
e

t
τm dt (48)

Switch places for T and t.

V · e
t
τm = Vreste

t
τm −

∫ t

0

K · f(T)

Cm
e
T
τm dT (49)

29

V (t) = Vrest −
∫ t

0

K · f(T)

Cm
e

(T−t)
τm dT (50)

I chose the beta function to describe the synapse's current time course. It is valid for T ≥ t0 and zero
for T < t0. The beta function is given by equation 51.

Isyn(T) ∝ e
−(T−t0)

τ1 − e
−(T−t0)

τ2 = f(T) (51)

The synaptic current is given per area of the point neuron, denoted a. I divide f(t) by a.

f(T) =
K · Isyn(T)

a
=
K(e

−(T−t0)
τ1 − e

−(T−t0)
τ2)

a
(52)

I use the expression for f(T) in equation 52 in equation 50 and get equation 53.
Because the conductance for the synapse is zero for T < t0, the limits for the integral were changed

to from t0 to t.

V (t) = Vrest −
K

Cm · a
· e

−t
τm

∫ t

t0

(e
−(T−t0)

τ1 − e
−(T−t0)

τ2)e
T
τm dT (53)

V (t) = Vrest −
K

Cm · a
· e

−t
τm

(∫ t

t0

e
−(T−t0)

τ1 · e
T
τm dT −

∫ t

t0

e
−(T−t0)

τ2 · e
T
τm dT

)
(54)

V (t) = Vrest −
K

Cm · a
· e

−t
τm

(
t0
τ1

∫ t

t0

eT (
τ1−τm
τ1·τm)dT − e

t0
τ2

∫ t

t0

eT (
τ2−τm
τ2·τm)dT

)
(55)

V (t) = Vrest −
K

Cm · a
· e

−t
τm

(
τ1 · τm
τ1 − τm

· e
t0
τ1

[
eT (

τ1−τm
τ1·τm)

]T=t

T=t0
− τ2 · τm
τ2 − τm

· e
t0
τ2

[
eT (

τ2−τm
τ2·τm)

]T=t

T=t0

)
(56)

Equation 57 was normalized before implemented in Python, to make the constant K
Cm·A the maximum

V (t) = Vrest+
K

Cm · a
·e

−(t−t0)
τm

(
τ1 · τm
τ1 − τm

− τ2 · τm
τ2 − τm

)
+

K

Cm · a

(
τ2 · τm
τ2 − τm

· e
−(t−t0)
τ2 − τ1 · τm

τ1 − τm
· e

−(t−t0)
τ1

)
(57)

Equation 57 is valid for t≥ t0 and has the value Vrest for t<t0.

Figure 12. The synaptic potential response for a point neuron with a current based synapse with
conductance modelled by the beta function.

value of the function and the amplitude of the synaptic response.
The normalized synaptic response for the point model is given by equation 58 in �gure 13.

30

V (t) = Vrest − Vmax ·
(

p(t)

p(t)max

)
(58)

where:

p(t) =

(
τ1 · τm
τ1 − τm

− τ2 · τm
τ2 − τm

)
e

−(t−t0)
τm − τ1 · τm

τ1 − τm
· e

−(t−t0)
τ1 +

τ2 · τm
τ2 − τm

· e
−(t−t0)
τ2 (59)

p(t)max = |p(t)|max (60)

Vrest is the cells resting potential and Vmax is the amplitude taken from Vrest.

Figure 13. The normalized synaptic response for a current based synapse with conductance modelled
by the beta function, for a point neuron.

31

7.2 Estimation of the cell parameter τm for the point model

The analytical solution for the point model's response to synaptic input in equation 58 on page 30 contains
a cell parameter, τm, this is the membrane time constant. τm decides how fast the membrane potential
responds to an increase or decrease in potential di�erences across the membrane [5].
I have to decide the value for τm for the point model. Because I wanted the point model to act the same
way as the Hay-model as far as possible, I wanted to �t the cell parameter τm for the point model through
curve �tting with the Hay-model.

I need an equation for the membrane potential's response due to a current stimuli, containing τm for
the point model.

I could have used the analytical solution for the point model's synaptic response, from section 7.1,
but a simpler equation can be obtained by using a current injection instead of a synapse input. With a
current injection instead of a synapse input I get an equation without the synapse parameters, and do
not have to use their �tted values.
I began with the equation for the RC-circuit, from section 5.1 [5].

Cm
dV

dt
=
Em − V
Rm

+
Ie
a

(61)

This is an ordinary di�erential equation that can be solved using the method of integrating factors [17]

dV

dt
+ p(t) · V = q(t) (62)

p(t) = V
τm
, q(t) = Em

τm
+ Ie

a The integrating factor is e
∫
p(t)dt. In my case this gives e

t
τm . Next step is to

multiply both sides by the integrating factor.

e
t
τm [

dV

dt
+

V

τm
] = e

t
τm [

Em
τm

+
Ie
a

] (63)

The left side of the equation can be written as a derivative.

(e
t
τm · V)′ (64)

I look at the case for t<te and integrate both sides of the equation from 0 to t with respect to t.

e
t
τm · V − V (0) =

∫ t0

0

e
t
τm [

Em
τm

]dt+

∫ t

t0

e
t
τm [

Em
τm

+
Ie

Cm · a
]dt (65)

I use the initial condition V(0)=Vrest and the condition τm = Rm · Cm → τm
Cm

= Rm

V (t)e
t
τm − Vrest = Em(e

t0
τm − 1) + Em(e

t
τm − e

t0
τm) +

Ie ·Rm
a

(e
t
τm − e

t0
τm) (66)

I use that for a point model with one passive ion channel, the resting potential equals the membrane's
reversal potential Em. Equation 69 in �gure 14 describe the point model's membrane potential for
t0 ≤ t ≤ te.
For the equation describing the decay back to resting potential for t>te I start by changing limits in the
integrals from equation 65 to from te to t, getting equation 67.

e
t
τm · V (t)− V (te)e

te
τm =

∫ t

te

e
t
τm [

Em
τm

]dt (67)

e
t
τm · V (t) = V (te)e

te
τm + Em(e

t
τm − e

te
τm) (68)

32

V (t) = Vrest +
Ie ·Rm
a

(1− e
t0−t
τm) (69)

Figure 14. Equation 69 describes the point model's response due to a constant injected current Ie and
is valid for the t0 ≤ t ≤ te.

V (t) = Vrest + (V (te)− Vrest)e
te−t
τm (70)

V (te) = Vrest +
Ie ·Rm
a

(1− e
t0−te
τm) (71)

Figure 15. Equation 70 describes how the point model decays towards its resting potential after the
current injection stops at t = te. The membrane potential starts at the value Vte, described by equation
71 at time t = te and then decays towards Vrest as t increases. The equation is valid for t > te. V(te) is
the maximum response for the point model due to the injected current. Evaluating equation 69 for t=te
gives an expression for V(te) in equation 71 for use in equation 70.

I use that for a point model with one ion passive channel, the resting potential equals the membranes
reversal potential Em. The point models decay towards resting potential for t > te is described in equation
70 in �gure 15.

The equations 69 and 70 describe the membrane responses for the rise of the membrane potential
and the decay respectively. The cell parameters Rm, speci�c membrane resistance and a, the area of the
point model are present in the two equations and I have to decide their values as well.

To be able to decide the value of the cell parameter τm through curve �tting with the Hay-model, I
need a response for the Hay-model to an injected current.

I placed an electrode in its soma, and gave it a current injection of 0.1 n amp for 200 ms with a delay
of 200 ms. The current injection, Ĩe, is a heavy side function, because it rises and decays instantaneously.{

Ĩe = 0 t < t0

Ĩe = Ie t0 < t < te

The parameters for my case are listed below.

Ie 0.1 nA The current injected
t0 200 ms The start time for the current injection
te 400 ms The end time for the current injection
tend 600 ms The end time of the simulation

I chose to �t τm for the point models decay process towards resting potential after the current injection,
using equation 70. The equation 70 was implemented in Python with τm and the ratio Rm/a as unknown
constants and �tted against the Hay-models response to the current injection for the time interval te to
tend. Figure 16 show the �tted equation 70 for the point model's decay process and the Hay-model's
response to the current injection.

The result was τm=9.67 [ms] and the ratio Rm/a = 44.34 [Ω]

33

The result τm = 9.69 [ms] was used in the derived expression for the point model's response to a synapse
input in equation 58 on page 30.
The reason why I can compare the response in the active Hay-Model with the passive point model's

Figure 16. The point models decay towards resting potential after a current injection has stopped, at
time te=400 ms, described by equation 70 (green) �tted against the Hay-models response to an equal
injected current (blue). The interval for the curve �tting was from te=400 ms to tend= 600 ms. The
signals were �tted to decide the point models membrane time constant, τm. The result was a τm for the
point model with value 9.67 ms.

response to the injected current, is because of the low amount of current I injected. The active channels
will have a low activation for these changes in the membrane potential and can be neglected.

34

7.3 Fitting the synapse parameters for the point model

In this section I will go through the results for �tting the synapse parameters for the point model.
I �tted the synapse parameters for the point model in four di�erent ways, described in section 6.2.

The four ways for �tting synapse parameters resulted in four sets of synapse parameters for each EPSP
generated by the Hay-model. The results for the four �tting methods are called Fit 1, 2,3 and 4.

Figure 17, 18 and 19 show that the di�erent �tting methods could fail �tting EPSPs from the Hay-
model, and that Fit 4, which used mean parameter values from Fit 1, 2 and 3 smooths the error. Error
estimates are given in mV. The EPSPs from the Hay-model are indexed by their compartment number
on the morphology. As mentioned in section 6.2, I divided the EPSPs from the Hay-model into four

(a) Fit 1, error: 119 (b) Fit 2, error: 119 (c) Fit 3, error: 198 (d) Fit 4, error: 139

Figure 17. Fitting EPSP: 411 from the apical region, generated at 1186 µm from soma. The graphs
and the error estimates show that, �t 3 fails �tting this EPSP

(a) Fit 1, error: 122 (b) Fit 2, error: 122 (c) Fit 3, error: 81 (d) Fit 4, error: 102

Figure 18. Fitting EPSP: 516 from the apical region, generated 951 µm from soma. The graphs and
error estimates show that �t 1 and 2 fails �tting this EPSP.

(a) Fit 1, error: 286 (b) Fit 2, error: 266 (c) Fit 3, error: 299 (d) Fit 4, error: 279

Figure 19. Fitting EPSP: 305 from the stem, generated 200 µm from soma. This is an example on �t
4s ability to smooth out errors, even when the other �ts does not seem to fail.

groups; apical, stem, basal and branches. This resulted in sets of synapse parameters (A, t0, τ1 and τ2)
for each part of the neuron, for each of the four �tting methods (Fit 1, Fit 2, Fit 3 and Fit 4). This made

35

a total of 64 sets of �tted parameters. Figure 20 shows the �tted synapse parameters, with corresponding
error estimates in table 2. Fit 1 is coloured magenta, �t 2 is blue, Fit 3 is red and �t 4 is cyan.
To gain more insight into the �tting process I also computed the standard deviations of the error estimates,
see table 2, and graphed the errors for each �t against EPSPs from the Hay-model for each �tting method,
dependent of somatic distance for the EPSPs, see �gure 21.

(a) The �tted parameters for the stem (b) The �tted parameters for the apical

(c) The �tted parameters for the basal (d) The �tted parameters for the branches

Figure 20. The �tted synapse parameters for the point model. The four synapse parameters are �tted
in four di�erent ways for the four parts of the neuron. Magenta: Fit 1, blue: Fit 2, red: Fit 3 and cyan:
Fit 4. The blue dots are not showing for the amplitude, this is because �t 2 and 3 are have the same
bounds on this parameter, it is �xed to the Hay-neuron's amplitude for the given index. The blue dots
are all in the same places as the red.

36

(a) Apical (b) Stem

(c) Basal (d) Branches

Figure 21. The error estimates for the four �tting methods plotted for all synapse placements possible
in the Hay-model, divided into the four parts of the morphology and dependent on somatic distance for
the EPSPs from the Hay-model. The dots represent error estimates for the point model's attempt to
recreate the Hay signal with its set of the four �tted synapse parameters. Magenta: Fit 1, blue: Fit 2,
red, Fit 3 and cyan: Fit 4

Fit 1 Fit 2 Fit 3 Fit 4
apical 97 93 93 93
stem 241 240 228 234
basal 191 194 190 191
branches 192 192 185 191

Table 2. The error estimates for the four �tting methods for the four parts of the neuron. There are
642 possible synapse placements for the Hay-model, this resulted in 642 sets of synapse parameters and
the same number of error estimates. This magnitude of data is too big to analyse one by one, therefore
errors are given in error/fitting [mV] for each �tting method for each part of the neuron. The error
estimates describe how good the �tted synapse parameters in sets create synapses able to recreate the
Hay-model's EPSPs.

Fit 1 Fit 2 Fit 3 Fit 4
Apical 38 29 32 30
Stem 89 92 88 83
Basal 78 80 79 78
Branches 58 59 59 55

Table 3. The standard deviations for the error estimates in table 2. The standard deviations for the
errors describe how often a �t fails for the given �tting method in a given part of the neuron. A failed
�t will give synapse parameters that might deviate from the trend I hoped to capture.

37

In �gure 20 on page 35 there are some trends in the �tted parameters, dependent on distance from
soma.

The trend is showing especially for the amplitude which is decreasing by distance from soma for all
the �tting methods and parts of the neuron. It can obviously be �tted as a sigmoid or an exponential
function, with small errors.

The delay is increasing with distance from soma, but the clearest result is in the apical. This can be
explained by the placement of the apical on the Hay-models morphology, which is located at the longest
distance from soma. The delay will be larger and is easier detected by the �tting process.

Delay from the other parts of the neuron also have an increasing trend, but the �tted points di�er
from the trend and some are quite low. Some lie at 500 ms. This can be explained by the Hay-signal's
shape, which the passive point neuron cannot recreate. It therefore tries to start the EPSP earlier, to get
a better �t.

I tried to �t the EPSPs without any bound, but then the �tted delay went far below 500 ms. This
indicated that the �tting process chose to start the �tted EPSP for the point model, early in some cases
to avoid the large error that came from the di�erent natures of the Hay-model's EPSPs and the point
model's attempt to recreate them. I used bounds on the delays in the �tting processes. The delays could
not go below 500 ms in value, because a delay under 500 ms would be unphysical (nothing can happen
before the neuron receives a synaptic input at time t = 500 ms).

I expected tau rise and tau decay to increase with distance, because the EPSPs get broadened when
they are generated at longer distances from soma and experience more spread and weakening [18]. A
�attened signal use more time rising and decaying, and therefore have larger expected rise and decay
time constants.

Most of the �tted parameters express an increasing trend in rise and decay time constants, but there
is much spread. The magnitude of scattered parameter values for the time constants can be explained by
the Hay-EPSPs shape arising from its active nature and the choice of synapse parameters we �t and their
bounds. The �tting process can only change four parameters to achieve the best �t to the Hay-model's
EPSPs. Some of the synapse parameters are even bounded. The most important parameters to decide
the shape of the signal are the rise and the decay time constants. The rise and decay time constants
probably get the responsibility of being both rise and decay and compensating for the active properties
of the Hay-model. Because the amplitude and delay express only the basic properties for the EPSPs, the
peak value and the time the signal arrived in soma.

The errors plotted for the parameter �tting in �gure 21 show a clear decreasing trend in error as the
distance from soma increases. Because the errors are estimated using the absolute di�erence between the
Hay-model's EPSPs and the point model's recreation of the Hay-models EPSPs I can not amortize this
with a bigger amplitude giving rise to bigger errors.

The reason for the decrease in error with distance might be because a signal generated at a long dis-
tance from soma encounters more �attening by propagating longer in the dendrites. A signal propagating
longer distances in the dendrites gets more broadened [18], and the point point models analytical solution
to synapse input seem to �t broadened EPSPs better than steep EPSPs.

The error estimates and standard deviation for the error estimates are summarized in table 2 and 3,
respectively. The standard deviation for the error estimate expresses the mean aberration from the mean
error estimate and can be used to indicate whether a �tting method often fails drasticly and give synapse
parameters deviating from the trend I hoped to capture. The two tables show that �tting method 1 and 2
have (for the most parts of the neuron) the largest error estimates and the largest standard deviation for
the error estimates. Fit 3 has the lowest error estimate, followed by Fit 4. Fit 4 has the lowest standard
deviation for the error estimates followed by Fit 3.

I expect Fit 4 to capture the trend in the �tted synapse parameters best among the di�erent �tting
methods, because it has low error estimates and the lowest standard deviation for the error estimates,
for most of the parts of the neuron.

38

7.4 Fitting synapse parameters for the whole neuron

I also �tted synapse parameters with the four �tting methods described in section 6.2, for all the synapse
placements without splitting the Hay-neuron's morphology into four parts.

This would be a more easily applied and implemented result, because the number of result functions
would be reduced from 16 to four.

Figure 22 shows the �tted parameters for each of the four �tting methods, with corresponding error
estimates and standard deviations for the error estimates in table 4. The error estimates are graphed for
each synapse placement in �gure 23. Synapse parameters �tted with di�erent �tting method are color
coded as following: Fit 1 is magenta, Fit 2 is blue, Fit 3 is red and Fit 4 is cyan.

Figure 22. The �tted parameters for the whole neuron, containing 642 synapses. Fit 1 is magenta, �t
2 is blue, �t 3 is red and �t 4 is cyan. The blue dots are not showing for the amplitude, this is because
�t 2 and 3 are have the same bounds on this parameter, it is �xed to the Hay-neuron's amplitude for
the given EPSP. The blue dots are all in the same places as the red.

Fit 1 Fit 2 Fit 3 Fit 4
Error/�tting 168 168 164 166
SD Error 79 81 79 78

Table 4. The error estimates for the four �tting methods for all the 642 synapse placements in the
Hay-model.The errors are given as error/fitting [mV] for each �tting method. The error estimates
describe how good the �tted synapse parameters in sets create synapses able to recreate the
Hay-model's EPSPs. The standard deviations for the error estimates describe how often a �t fails for
the given �tting method. A failed �t will give synapse parameters that might deviate from the trend I
hoped to capture.

39

Figure 23. The error estimates for the four �tting methods, dependent on somatic distance from the
Hay-model. The error estimates represent the point model's attempt to recreate the Hay signal with its
sets of the four �tted synapse parameters. Magenta: Fit 1, blue: Fit 2, red: Fit 3 and cyan: Fit 4.

40

7.5 Curve �tting synapse parameters to functions to describe trends as dis-

tances from soma.

In section 6.3 I described that I captured the trend in the �tted synapse parameters by curve �tting them
against the sigmoid function in equation 72.

s(d) = x4 + (
x0

x1 + e−x2·(d−x3)
) (72)

The result was 64 sigmoid result functions with �ve parameters each (x0, x1, x2, x3 and x4). One result
sigmoid function for each of the 64 synapse parameter sets described in section 7.3. For the parameter
values for the �tted sigmoid functions, see tables 14, 15, 16 and 17 in Appendix A.

Table 5 show the error estimates for the curve �tting and �gure 24 show the 64 �tted sigmoid functions
and the respective synapse parameters.

The Sigmoid result functions were dependent on the somatic distance the EPSP from the Hay-model
was generated. The result functions give the synapse parameters to recreate a given EPSP from the
Hay-model, when evaluated for the distance from soma the given EPSP was generated.

(a) Apical (b) Stem

(c) Basal (d) Branches

Figure 24. The �tted sigmoid function (blue lines) and the synapse parameters (red dots) from Fit 1,
2, 3 and 4. The synapse parameters are divided into four groups; apical, stem, basal and branches,
dependent on which part the EPSP from the Hay-model they were �tted against were generated.

In section 7.3 I stated that I expected Fit 4 to capture the trend in the �tted synapse parameters best
among the di�erent �tting methods.

41

Part of neuron Synapse parameter Error �t 1 Error �t 2 Error �t 3 Error �t 4

Apical

amplitude 0.0899 0.0869 0.0869 0.0877
tau rise 1.44 0.869 1.07 0.811
tau decay 1.52 0.902 1.01 0.793
delay 0.317 0.303 0.315 0.280

Stem

amplitude 0.0766 0.0549 0.0549 0.0518
tau rise 0.669 0.726 1.26 0.644
tau decay 1.19 1.40 1.51 0.836
delay 0.206 0.180 0.147 0.0895

Basal

amplitude 0.336 0.311 0.311 0.318
tau rise 0.351 0.373 0.456 0.305
tau decay 0.561 0.661 0.706 0.485
delay 0.125 0.141 0.131 0.0806

Branches

amplitude 0.201 0.182 0.182 0.185
tau rise 0.947 0.808 0.947 0.642
tau decay 1.26 1.18 1.18 0.811
delay 0.210 0.240 0.188 0.134

Table 5. Error estimates for the curve �tting for the �tted synapse parameters against the sigmoid
function. The errors describe the mean di�erence between the �tted sigmoid function and the synapse
parameters for the point model in every point, for a given part of the neuron.

Table 5 shows that parameters �tted with method 4 gave smaller errors than the parameters �tted
with other �tting methods, when �tted against sigmoid functions. There is an exception for the amplitude
in apical, basal ans branches, but here the error is low for all the �tting methods.

It is important to have in mind that this �tting process captures a trend I believe, but do not know
if exist in the synapse parameters. The errors only tell us that �t 4 have synapse parameters dependent
on distance most suitable to be captured by a sigmoid function, and not that �t 4 have the most correct
synapse parameters to recreate the Hay-model's EPSPs.

42

In section 7.4 I �tted synapse parameters for the point model with the four di�erent �tting methods
without dividing the Hay-model into four parts. I only �tted sigmoid functions to the synapse parameters
obtained by �tting method 4. The results were four sigmoid functions, describing A, t0, τ1 and τ2,
dependent of somatic distance from the Hay-model. Figure 25 shows the four sigmoid functions �tted
against synapse parameters obtained by �tting method 4 against all the EPSPs the Hay-model produced.

The errors per point for the curve �tting with the sigmoid function for the whole neuron as one are
listed in table 6.

Figure 25. The �tted sigmoid functions (blue lines) and the synapse parameters (red dots) from Fit 4.
The synapse parameters are obtained by �tting all the Hay-models EPSPs with �tting method 4.

Amplitude Delay Tau Rise Tau Decay
0.356 0.203 0.571 0.690

Table 6. The errors per point for �tting the sigmoid curve to synapse parameters for Fit 4.

43

To investigate whether splitting the neuron into four parts was necessary to preserve the trends in the
synapse parameter or not, I compared the values in the tables 6 and 18 on pages 42 and 60 respectively.
Table 6 describe the mean di�erence between the �tted sigmoid curve and the synapse parameters for
the whole neuron without splitting it up in the four parts. Table 18 describe the mean di�erence between
the �tted sigmoid curve and the synapse parameters, with curve �tting done for each part of the neuron
and then weighted by the fraction of synapses each part of the Hay-neuron contained. The values in
the two tables can be compared, because they both describe an error estimate for the whole neuron per
point. As I see the curve �tting done for the four parts of the neuron separately gives smaller error
estimates per point. For amplitude and delay I see the largest di�erences in error estimates, 0.152 and
0.053, respectively, but for the rise and decay time constants the di�erences are only 0.02 and 0.016. This
indicates that splitting the neuron into four parts gives a better �t for amplitude and a slightly better �t
for delay, but for rise and decay the di�erences were almost insigni�cant.

44

7.6 Statistical analysis to choose the best result functions.

To end up with a synapse model with one set of sigmoid equations, describing its parameters, I had to
decide which of the four �tting method that gave the best sigmoid functions. The best sigmoid result
functions would be decided by which could recreate the EPSPs from the Hay-model with least deviation.

I tested the sigmoid result functions for each part of the neuron for each �tting method statistically
using Python. For Python code, see section 11.4 in Appendix B. A statistical investigation was chosen,
because my results are meant for point models in network simulations, were trends are more important
than speci�c values.

The characteristics of an EPSP can be quanti�ed by looking at values as the maximum soma-response
[mV], the time for the maximum soma-response [ms], the half of the maximum soma-response [mV], the
time for the half maximum soma-response [ms] and the time between the two half maximum soma-
responses, as shown in �gure 26.

Figure 26. The values that captures the characteristics of an EPSP. Vmax is the maximum soma
response [mV], t_Vmax is the time for the maximum soma response [ms], Vmax_half is the value for
half the maximum soma response [mV] and time between the two half maximum soma responses is ∆t
Vmax_halfs [ms].

The statistics used for testing the sigmoid functions arising from di�erent �tting methods are listed in
table 7.

Statistical value Symbol
mean amplitude µ A
mean delay µ t0
mean time between half amplitudes µ ∆t

standard deviation for amplitude sd A
standard deviation for delay sd t0
standard deviation for time between half amplitudes sd ∆t

Table 7. The statistical values I calculated and investigated to choose which of Fit 1, 2, 3 and 4 that
gave the sigmoid functions that described synapse parameters for the point model that best recreated
the EPSPs from the Hay-model.

Means (µ A, µ t0, µ ∆t) were calculated with equation 73 and standard deviations (sd A, sd t0, sd ∆t)
were calculated with equation 74 [19].

The three statistical values tells us much about the EPSPs shape. When the potential starts to rise
is captured by delay, t0, the amplitude, A, shows its maximum value and the time interval between the
half value of the amplitude tells us if the point model's EPSPs have about right values for tau rise, τ2,

45

and tau decay, τ1.

x =
1

n

n∑
i=1

(xi) (73)

sd =

√√√√ 1

n

n∑
i=1

(xi − x)2 (74)

Figure 27 shows the results for the apical, with corresponding statistical analysis in table 8. Figure 28
shows the results for the stem, with corresponding statistical analysis in table 9. Figure 29 shows the
results for the basal, with corresponding statistical analysis in table 10. Figure 30 shows the results for
the branches, with corresponding statistical analysis in table 11.

46

(a) Results apical, Fit 1 (b) Results apical, Fit 2

(c) Results apical, Fit 3 (d) Results apical, Fit 4

Figure 27. The �gure shows the point model's recreation of the Hay model's EPSPs that were
generated in the apical. The sigmoid result functions give synapse parameters to recreate an EPSP from
the Hay-model when evaluated for the distance from soma the given EPSP was generated. Equation 58
on page 30 gives the point model's response when evaluated with synapse parameters obtained by the
result sigmoid functions. The di�erent �ts (Fit 1, 2 ,3 and 4) arise from the di�erent �tting methods for
synapse parameters in section 6.2. Sigmoid result functions were �tted to the synapse parameters
obtained by the four �tting methods, giving four sets of result sigmoid function for the apical. Each set
of sigmoid result functions contains functions describing the synapse parameters, A, t0, τ1 and τ2.

µ amp µ del µ∆time vmax-halfs sd amp sd del sd∆ time vmax-halfs
Fit 1 0.27256 503.78 21.678 0.16440 1.5923 0.83292
Fit 2 0.26639 503.68 22.302 0.14361 1.7543 0.18840
Fit 3 0.26639 503.58 23.439 0.14361 1.8250 0.38355
Fit 4 0.26830 503.66 22.472 0.14667 1.7254 0.48396
Hay-signal 0.26611 503.88 23.865 0.18365 1.4885 1.2849

Table 8. Statistical analysis for the EPSPs generated in the apical by the Hay-model and the point
model's recreation using parameters given by the sigmoid functions. The di�erent �ts (Fit 1, 2 ,3 and 4)
arise from the di�erent �tting methods for synapse parameters in section 6.2. Sigmoid result functions
were �tted to the synapse parameters obtained by the four �tting methods, giving four sets of result
sigmoid function for the apical. Each set of sigmoid result functions contains functions describing the
synapse parameters, A, t0, τ1 and τ2. The statistical values investigated are explained in the beginning
of this section.

47

(a) Results stem, Fit 1 (b) Results stem, Fit 2

(c) Results stem, Fit 3 (d) Results stem, Fit 4

Figure 28. The �gure shows the point model's recreation of the Hay model's EPSPs that were
generated in the stem. The sigmoid result functions give synapse parameters to recreate an EPSP from
the Hay-model when evaluated for the distance from soma the given EPSP was generated. Equation 58
on page 30 gives the point model's response when evaluated with synapse parameters obtained by the
result sigmoid functions. The di�erent �ts (Fit 1, 2 ,3 and 4) arise from the di�erent �tting methods for
synapse parameters in section 6.2. Sigmoid result functions were �tted to the synapse parameters
obtained by the four �tting methods, giving four sets of result sigmoid function for the stem. Each set
of sigmoid result functions contains functions describing the synapse parameters, A, t0, τ1 and τ2.

µ amp µ del µ∆time vmax-halfs sd amp sd del sd∆ time vmax-halfs
Fit 1 1.7501 500.22 16.020 0.95217 0.061531 3.6613
Fit 2 1.7030 500.26 16.577 0.99350 0.079972 3.5599
Fit 3 1,7030 500.26 16.923 0.99350 0.095574 3.8777
Fit 4 1.7208 500.24 16.461 0.97718 0.088558 3.6359
Hay-signal 1.7036 500.56 19.107 0.99563 0.32438 4.6672

Table 9. Statistical analysis for the EPSPs generated in the stem by the Hay-model and the point
model's recreation using parameters given by the sigmoid functions. The di�erent �ts (Fit 1, 2 ,3 and 4)
arise from the di�erent �tting methods for synapse parameters in section 6.2. Sigmoid result functions
were �tted to the synapse parameters obtained by the four �tting methods, giving four sets of result
sigmoid function for the stem. Each set of sigmoid result functions contains functions describing the
synapse parameters, A, t0, τ1 and τ2. The statistical values investigated are explained in the beginning
of this section.

48

(a) Results basal, Fit 1 (b) Results basal, Fit 2

(c) Results basal, Fit 3 (d) Results basal, Fit 4

Figure 29. The �gure shows the point model's recreation of the Hay model's EPSPs that were
generated in the basal. The sigmoid result functions give synapse parameters to recreate an EPSP from
the Hay-model when evaluated for the distance from soma the given EPSP was generated. Equation 58
on page 30 gives the point model's response when evaluated with synapse parameters obtained by the
result sigmoid functions. The di�erent �ts (Fit 1, 2 ,3 and 4) arise from the di�erent �tting methods for
synapse parameters in section 6.2. Sigmoid result functions were �tted to the synapse parameters
obtained by the four �tting methods, giving four sets of result sigmoid function for the basal. Each set
of sigmoid result functions contains functions describing the synapse parameters, A, t0, τ1 and τ2.

µ amp µ del µ∆time vmax-halfs sd amp sd del sd∆ time vmax-halfs
Fit 1 1.6924 500.16 12.028 0.78856 0.015648 1.6221
Fit 2 1.6433 500.19 12.346 0.80580 0.068552 1.7262
Fit 3 1.6433 500.19 12.578 0.80580 0.020883 1.7676
Fit 4 1.6556 500.18 12.385 0.80001 0.043068 1.7471
Hay-signal 1.6399 500.34 13.760 0.89542 0.16188 2.4560

Table 10. Statistical analysis for the EPSPs generated in the basal by the Hay-model and the point
model's recreation using parameters given by the sigmoid functions. The di�erent �ts (Fit 1, 2 ,3 and 4)
arise from the di�erent �tting methods for synapse parameters in section 6.2. Sigmoid result functions
were �tted to the synapse parameters obtained by the four �tting methods, giving four sets of result
sigmoid function for the basal. Each set of sigmoid result functions contains functions describing the
synapse parameters, A, t0, τ1 and τ2. The statistical values investigated are explained in the beginning
of this section.

49

(a) Results branches, Fit 1 (b) Results branches, Fit 2

(c) Results branches, Fit 3 (d) Results branches, Fit 4

Figure 30. The �gure shows the point model's recreation of the Hay model's EPSPs that were
generated in the branches. The sigmoid result functions give synapse parameters to recreate an EPSP
from the Hay-model when evaluated for the distance from soma the given EPSP was generated.
Equation 58 on page 30 gives the point model's response when evaluated with synapse parameters
obtained by the result sigmoid functions. The di�erent �ts (Fit 1, 2 ,3 and 4) arise from the di�erent
�tting methods for synapse parameters in section 6.2. Sigmoid result functions were �tted to the
synapse parameters obtained by the four �tting methods, giving four sets of result sigmoid function for
the branches. Each set of sigmoid result functions contains functions describing the synapse parameters,
A, t0, τ1 and τ2.

µ amp µ del µ∆time vmax-halfs sd amp sd del sd∆ time vmax-halfs
Fit 1 1.4350 500.20 16.565 0.48204 0.045664 8.1117
Fit 2 1.3830 500.28 16.250 0.50131 0.11497 2.1149
Fit 3 1.3830 500.24 17.082 0.50131 0.050599 5.4243
Fit 4 1.3974 500.23 16.249 0.48885 0.080164 2.5325
Hay-signal 1.3764 500.59 18.253 0.57487 0.24268 2.6610

Table 11. Statistical analysis for the EPSPs generated in the branches by the Hay-model and the
point model's recreation using parameters given by the sigmoid functions. The di�erent �ts (Fit 1, 2 ,3
and 4) arise from the di�erent �tting methods for synapse parameters in section 6.2. Sigmoid result
functions were �tted to the synapse parameters obtained by the four �tting methods, giving four sets of
result sigmoid function for the branches. Each set of sigmoid result functions contains functions
describing the synapse parameters, A, t0, τ1 and τ2. The statistical values investigated are explained in
the beginning of this section.

50

To analyse how well each �tting method did their job, I calculated the percentage deviation for the
point model's statistics from the Hay-models statistics from tables 8, 9, 10 and 11, using equation 75.
The percentage deviations were calculated for all the statistical values I investigate, in each part of the
neuron and for all four �tting methods. The results are summarized in table 12.

px =
xpoint − xHay

xHay
· 100% (75)

x is one of the statistical values I investigate, xpoint is the statistical value for the point model, xHay is the
statistical value for the Hay-model. px is the percentage deviation for the point model's statistics from
the Hay-models statistics for the statistical value x, for a given part of the neuron and �tting method.

The percentage deviations in table 12 are di�cult to analyse, because of the amount of values for
each part of the neuron. I wanted statistical values for each �tting method, independent of the parts of
the neuron.

To get rid of the dependence on which part of the neuron the synapse was placed for the statistical
values in table 12, I weighted them using equation 76.

Table 13 shows the percentage deviation for the statistical values for each �tting method, independent
of part of the neuron. The weighted error estimates makes comparing the di�erent �tting methods easier
and more fair. More fair, because statistics calculated with more data (more synapses) is more credible
than statistics calculated with less data(less synapses).

The last column in table 13 is an error estimate for the statistics for each �tting method. It was
estimated by summing the values for each �tting method in the same table. The error estimates are easy
to compare and make the choice of �nal result functions from one of the �tting methods easier.

pwx =
pApicalx · 180 + pStemx · 38 + pBasalx · 263 + pBranchesx · 161

642
(76)

px is the percentage deviation for a statistical value for a given �tting method, from one of the four parts
of the neuron. papicalx is the percentage deviation for a statistical value, for a given �tting method in the
apical, etc. pwx is the percentage deviation for a given statistical value for a given �tting method, for the
whole neuron as one (independent of which part of the neuron the synapses were placed). The Apical
has 180 synapses, the stem has 38, the basal has 263 and the branches has 161, which makes a total of
642 synapses.

51

µ A µ t0 µ ∆t sd A sd t0 sd ∆t

Apical

Fit 1 2.42 0.0198 9.16 10.5 6.97 35.2
Fit 2 0.105 0.0397 6.55 21.8 17.9 85.33
Fit 3 0.105 0.0595 1.79 21.8 22.6 70.1
Fit 4 0.823 0.0437 5.84 20.1 15.9 62.3

Stem

Fit 1 2.73 0.0679 16.2 4.37 81.0 21.6
Fit 2 0.0352 0.0599 13.2 0.214 75.3 23.7
Fit 3 0.0352 0.0599 11.4 0.214 70.5 16.9
Fit 4 1.01 0.0639 13.8 1.85 72.7 22.1

Basal

Fit 1 3.20 0.0360 12.6 11.9 90.3 34.0
Fit 2 0.207 0.0300 10.3 10.0 57.7 29.7
Fit 3 0.207 0.0300 8.59 10.0 87.1 28.0
Fit 4 0.957 0.0320 10.0 10.7 73.4 28.9

Branches

Fit 1 4.26 0.0779 9.25 16.1 81.2 205
Fit 2 0.480 0.0619 11.0 12.8 52.6 20.5
Fit 3 0.480 0.0699 6.42 12.8 79.1 104
Fit 4 1.53 0.0719 11.0 15.0 67.0 4.83

Table 12. The percentage deviations for the point model's statistics from the Hay-model's statistics.
With values from tables 8, 9, 10 and 11 I calculated the percentage deviations using equation 75.

µ A µ t0 µ ∆t sd A sd t0 sd ∆t Error esimate
Fit 1 3.22 0.0439 11.0 12.1 64.1 76.5 167
Fit 2 0.237 0.0425 9.60 13.4 46.3 42.6 112
Fit 3 0.237 0.0500 6.31 13.4 66.0 58.2 145
Fit 4 1.07 0.0472 9.31 13.9 55.6 31.8 111

Table 13. The weighted percentage deviations for each statistical value for the four �tting methods,
independent on the di�erent parts of the Hay-neuron. Each statistical value for a given �tting method
were weighted by the fraction of synapses, the part it came from contained and the summed, using
function 76. The column Error estimates is the sums of rows and gives error estimates for each �tting
method.

52

7.6.1 The resulting synapse models

As can be seen in table 13, �tting method 4 has the lowest error estimate, when recreating the Hay-
model's EPSPs. It was naturally to choose the sigmoid functions arising from �tting method 4 to be my
main result.

The result equations for �tting method 4, for the four parts of the Hay-models morphology was my
main synapse model. The 16 equations arise from inserting the �tted sigmoid function parameters in
table 17 on page 60 into the sigmoid function, described in equation 72 on page 40. The 16 sigmoid
functions describing the synapse parameters for this synapse model are summarized in �gure 31.

In section 7.4 on page 38 I �tted synapse parameters for the point model without splitting the neu-
ron into four parts. Because I have decided that �tting method 4 gives the best results, the sigmoid
functions, describing synapse parameters for the whole neuron arise from synapse parameters �tted with
�tting method 4.

The result was four sigmoid functions arising from inserting �tted function parameters for the sigmoid
function in table 19 on page 61 into the sigmoid function, described in equation 72 on page 40.
The four sigmoid equations describing the synapse parameters for this synapse model are summarized in
�gure 32

53

The equations for the apical are valid for d ε [637-1291µm]

Aapical(d) = −0.48486 · 6.0111

1.5793 + e0.0014006(d+299.62)
(77)

tapical0 (d) = 500.18 · 0.93106

0.14311 + e−0.0082072(d−787.04)
(78)

τapical2 (d) = 0.30105 · 0.24439

0.050617 + e−0.011020(d−398.92)
(79)

τapical1 (d) = 0.013853 · −212.83

−38.124 + e−0.010239(d−825.02)
(80)

The equations for the stem are valid for d ε [8-617µm]

Astem(d) = −0.0018240 · 0.48596

−0.42209 + e0.0012222(d−527.25)
(81)

tstem0 (d) = 499.98 · 1.1811

−0.18931 + e−0.0018811(d−1159.7)
(82)

τstem2 (d) = 0.026216 · 3.7897

0.10165 + e−0.0054307(d−591.62)
(83)

τstem1 (d) = 0.64334 · 26.072

5.0104 + e−0.017599(d−285.02)
(84)

The equations for the basal are valid for d ε [0-272µm]

Abasal(d) = −0.11904 · 0.42072

−0.31757 + e0.0034918(d−257.05)
(85)

tbasal0 (d) = 499.91 · 1.8872

0.35925 + e−0.0029808(d−744.21)
(86)

τ basal2 (d) = −0.38962 · 6.2114

−1.0814 + e−0.0046929(d−546.46)
(87)

τ basal1 (d) = −0.15656 · 21.808

5.0073 + e−0.015379(d−200.11)
(88)

The equations for the branches are valid for d ε [15-478µm]

Abranch(d) = −0.55906 · 0.58890

−0.35605 + e0.0011595(d−616.94)
(89)

tbranch0 (d) = 500.15 · 0.78493

0.13001 + e−0.010582(d−521.31)
(90)

τ branch2 (d) = −0.22803 · 1.5846

0.82517 + e−0.012222(d−185.19)
(91)

τ branch1 (d) = −0.58806 · 29.237

4.4077 + e−0.010437(d−311.47)
(92)

Figure 31. Functions for my main synapse model. The synapse model consists of 16 sigmoid equations,
dependent on a single variable d, representing the somatic distance from soma from the Hay-model.
The 16 sigmoid functions are sets of four, describing the synapse parameters (A, t0, τ1 and τ2), for each
of the four parts of the neuron (apical, stem, basal and branches). The four functions for a given part of
the neuron, evaluated for a given somatic distance from the Hay-model give four synapse parameters
(A, t0, τ1 and τ2) that when implemented in equation 58 on page 30 give the point model's recreation of
the Hay-model's EPSP generated at the given somatic distance, in the given part of the neuron.

54

The equations are valid for d ε [0-1291µm]

A(d) = 0.3113 · 0.28919

−0.56287 + e0.0017692(d−255.59)
(93)

t0(d) = 499.93 · 1.8466

−0.070623 + e−0.0027474(d−876.11)
(94)

τ2(d) = −0.23480 · 2.8125

0.49507 + e−0.0045088(d−378.75)
(95)

τ1(d) = −0.11874 · 51.202

8.7795 + e−0.010842(d−354.09)
(96)

Figure 32. Functions for the easily implemented and applied synapse model. The synapse model
consists of four sigmoid equations, dependent on a single variable d, representing the somatic distance
from the Hay-model. The four functions evaluated for a given somatic distance give four synapse
parameters (A, t0, τ1 and τ2) that when implemented in equation 58 on page 30 give the point model's
recreation of the Hay-model's EPSP generated at the given somatic distance.

55

8 Conclusion

I presented two synapse models for a passive point neuron, able to model the sub-threshold dynamics from
an active and spacious morphology model, achieving results previously limited to the realm of complex
structured models. One synapse model was more accurate and the other easier implemented and applied.

My two synapse models contained �tted sigmoid functions, that when evaluated for a distance from
soma, gave synapse parameters for a current based synapse for the point model and made it able to
recreate the EPSP actually generated at the given distance from soma by the Hay-model.

The synapse parameters, obtained by using one of the two synapse models gave the point model's
EPSP when implemented in equation 58 on page 30.

My �rst and main synapse model is presented in �gure 31 on page 53. This synapse model consisted
of 16 sigmoid equations, describing four synapse parameters (A, t0, τ1 and τ2) for each of four parts of
the neuron (apical, stem, basal and branches).

To recreate an EPSP from the Hay-model in the point model, one had to use the synapse index for the
synapse placement on the Hay-model, to classify which part of the neuron it lied in. When the synapse
placement was classi�ed one used the four corresponding sigmoid equations and evaluated them with the
distance from soma the given EPSP was generated.

My second synapse model is presented in �gure 32 on page 54. This synapse model was easier
implemented and applied and consists of four sigmoid equations, describing the four synapse parameters
(A, t0, τ1 and τ2) for the point model. The four equations were dependent on distance from soma, but
independent of which part of the neuron the Hay-model's EPSPs were generated.

To recreate an EPSP from the Hay-model in the point model, one evaluated the four sigmoid functions
with the distance from soma the given EPSP was generated.

My work also lead to an analytical solution for an RC-neuron's (point neuron's) potential response
due to a synapse input, with a current based synapse with conductance modelled by the beta function.
The derived equation is presented in equation 57 on page 29. The derived equation might be useful for
others working with point model's synaptic responses.

56

9 Discussion

9.1 Limitations with the simpli�ed model

One limitation with my synapse model is that I operated below threshold and only looked at single EPSPs
and no action potential was �red by the Hay-model. The current based synapse model could be used on
a point model with a spiking mechanism, ex. an integrate-and-�re model, but the drastic rise in potential
in the Hay-model when �ring an action potential would initiate its active properties fully and the passive
point model would get into big problems trying to recreate this.

One possible error source is that the synapse parameters originally were �tted in sets of four, in section
7.3 on page 34. This sets of four synapse parameters were �tted together to create a synapse for the
point model, able to recreate an EPSP for a given synapse placement in the Hay-model. When I �tted
the sigmoid function for the synapse parameters, in section 7.5 on page 40, the four synapse parameters
got split and �tted separately. A �t of one EPSP from the Hay-model that gave a too big value for
one of the synapse parameters, might correspond to another synapse parameter given a too big or too
small value within the same set of �tted synapse parameters. It could therefore have been of interest
to investigate the correlation between the synapse parameters in each set of four, �tted together. This
would give a clearer picture of how one outlier value for one synapse parameter in a given set of four
synapse parameters, corresponded to outlier values for the other synapse parameters arising from the
same �t.

When looking at the �tted parameters in �gure 20 on page 35, I see that the delay for the stem,
branches and basal had a lot of delays with the value 500. This is clearly not right. I expect a clear
increasing trend with the distance from soma. The delays lying around 500 ms, give the sigmoid functions
problems �tting the right trend, and the sigmoid functions for delay probably gives too low values for
delay. The error for given �ts, producing delays with a too low value, might be re�ected in the other
synapse parameters from the same �ts, giving tau rise and tau delay to big values, because the signal
starts too early and gains some extra ms.

Another error source is the morphology of the Hay-model. The branched structure of the dendrites
is not uniform but unsystematic. How much an EPSP from the Hay-model gets �attened and weakened
while propagating to the soma depends on how much spread and weakening it experiences. A signal
travelling across more branched structure will encounter more spread and get more �attened. The point
model recoups for this in its �tted parameter, but the trend will be deranged. A morphology with no
branching would probably give a clearer trend in the �tted parameters, but this would make the project
less realistic and the results less useful in a network simulation of realistic neurons.

9.2 Current based vs conductance based synapses

The Hay-model uses a conductance based synapse and the point model uses a current based synapses.
The synapses in both models have time course modelled by the beta function(two-exponential function).

There are reasons why the choice of synapse type for the point model should not be a big problem.
The amount of current used as synaptic input is low. The membrane potential V(t) does not change too
much throughout a simulation and the extra factor for the conductance based synapse Esyn − V (t) will
not give drastic changes to the synaptic current .

I looked at single EPSPs and the model never had to account for more than one signal at a time.
A realistic neuron will get synaptic input to di�erent synapses constantly, but my synapse model is not
suitable for integration of more than one signal at a time.

The conductance based and current based synapse work di�erently when it comes to signal integration.
The additive properties in a current based synapse has no ceiling level for integrating synaptic inputs. If
more than one synaptic input arrive in a current based synapse, the synaptic current will be the sum of
the two synaptic currents. The conductance based synapse has a di�erent behavior The factor Esyn−V (t)

57

makes the synaptic current voltage-dependent, as the membrane potential increase, the synaptic current
decrease, because the factor Esyn − V (t) decrease. If the membrane potential V(t) reaches the reversal
potential of the synapse Esyn, the synaptic current is zero. The synaptic current can even be negative,
if the membrane potential exceeds the reversal potential, causing ions to �ow against a decrease in
membrane potential. In my case the reversal potentials for the synapses are zero, and the peaks of the
EPSPs are not near this value.

The changes in morphology from the spatial Hay-neuron to the point model and the transition from
an active to a passive model, are drastic simpli�cations. To give the two models the same type of synapse,
would surely make their synapses integrate signals in a more similar way, but because the two models
have such di�erent natures it would probably not have a large impact when it comes to making the point
model recreate the somatic responses from the Hay-model.

The main reason why I chose a current based synapse for the point model was because it is impossible
to derive an analytical solution for the point model's synaptic response with a conductance based synapse,
because of its dependence of the membrane potential V(t). One would have to use numerical solutions
and this was not my intention for this project.

9.3 Future prospects

It could be of interest to give the point model an active ion channel and see if it more easily could �t
the Hay-models EPSPs. If the point model had an active ion channel, it could probably account for
more of the Hay-model's active nature and give better �ts against its EPSPs. Better �ts against the
Hay-models EPSPs would probably give clearer trends in the �tted parameters, better sigmoid functions
for the parameters and better statistical results for the synapse models.

It would be interesting to expand this study to a case with more than one synapse receiving synaptic
input at a time, this would be a more realistic project, but the signal integrating process would probably
be far more complicated.

A better choice for the di�erent �tting methods (Fit 1, 2, 3 and 4) would have been to choose the
synapse parameters from the �tting method that gave the lowest error estimate for each individual EPSP
�tted. This would give synapse parameters for the point model with lower errors than any of the four
�tting methods I used did. It would also make the amount of �tted parameters and sigmoid functions
smaller and the thesis more readable. This choice of �tted parameters was something I thought of at a
late stage in the process of this thesis, when I had no time to redo my work.

58

References

[1] Willem AMWybo, Klaus M Stiefel, and Benjamin Torben-Nielsen. The green's function formalism as
a bridge between single-and multi-compartmental modeling. Biological cybernetics, 107(6):685�694,
2013.

[2] Etay Hay, Sean Hill, Felix Schürmann, Henry Markram, and Idan Segev. Models of neocortical
layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS
computational biology, 7(7):e1002107, 2011.

[3] National Geographic. Brain. http://science.nationalgeographic.com/science/

health-and-human-body/human-body/brain-article/, 2015.

[4] Tanya Lewis. Human brain: Facts, anatomy & mapping project. http://www.livescience.com/

29365-human-brain.html, 2014.

[5] David Sterratt, Bruce Graham, Andrew Gillies, and David Willshaw. Principles of computational

modelling in neuroscience. Cambridge University Press, 2011.

[6] Katie M Dabrowski, Diego J Castaño, and Jaime L Tartar. Basic neuron model electrical equivalent
circuit: An undergraduate laboratory exercise. Journal of Undergraduate Neuroscience Education,
12(1):A49, 2013.

[7] Arnd Roth and Mark CW van Rossum. 6modeling synapses. 2009.

[8] Paul A Tipler and Gene Mosca. Tipler. WH Freeman & Co., 2008.

[9] Alain Destexhe, Michael Rudolph, and Denis Paré. The high-conductance state of neocortical neurons
in vivo. Nature reviews neuroscience, 4(9):739�751, 2003.

[10] Matthew Larkum. A cellular mechanism for cortical associations: an organizing principle for the
cerebral cortex. Trends in neurosciences, 36(3):141�151, 2013.

[11] Nelson Spruston. Pyramidal neurons: dendritic structure and synaptic integration. Nature Reviews
Neuroscience, 9(3):206�221, 2008.

[12] Nicholas T Carnevale and Michael L Hines. The NEURON book. Cambridge University Press, 2006.

[13] Michael L Hines, Andrew P Davison, and Eilif Muller. Neuron and python. Frontiers in neuroinfor-

matics, 3, 2009.

[14] Henrik Lindén, Espen Hagen, Szymon �¦ski, Eivind S Norheim, Klas H Pettersen, and Gaute T
Einevoll. Lfpy: a tool for biophysical simulation of extracellular potentials generated by detailed
model neurons. Frontiers in neuroinformatics, 7, 2013.

[15] Stephen G Nash. A survey of truncated-newton methods. Journal of Computational and Applied

Mathematics, 124(1):45�59, 2000.

[16] The Scipy community. Scipy.org. http://docs.scipy.org/doc/scipy/reference/

generated/scipy.optimize.minimize.html#scipy.optimize.minimize, 2008.

[17] Erwin Kreyszig. Advanced engineering mathematics. John Wiley & Sons, 2006.

[18] Vaneeda Allken, Joy-Loi Chepkoech, Gaute T Einevoll, and Geir Halnes. The subcellular distribution
of t-type ca2+ channels in interneurons of the lateral geniculate nucleus. PloS one, 9(9):e107780,
2014.

[19] Gunnar G Løvås. Statistikk for universiteter og høgskoler. Universitetsforlaget, 2010.

59

10 Appendix A

10.1 Results for the four parts of the neuron for the four �tting methods

Part of neuron Synapse parameter x0 x1 x2 x3 x4

apical

amplitude -4.0004·10−1 5.9998 1.4000 -1.6514·10−3 -1.9999·102

tau rise 5.3524·10−1 2.3361 ·10−1 5.4739 ·10−2 9.1208 ·10−3 3.7914 ·102

tau decay 9.8459 ·10−5 -2.0690 ·102 -3.9584·101 -2.0086 ·10−3 7.9076 ·102

delay 5.0054·102 1.0098 1.6074 ·10−1 7.6944·10−3 7.9862 ·102

stem

amplitude -6.5074 ·10−2 5.4585 ·10−1 -3.7924 ·10−1 -1.2644 ·10−3 5.5158 ·102

tau rise 6.3451 ·10−2 2.3290 ·101 -1.4398 5.9972·10−3 8.8485 ·102

tau decay 5.9254 ·10−1 2.7288 ·101 6.3606 1.8472 ·10−2 2.7466 ·102

delay 4.9999 ·102 6.8544 ·10−1 1.5461 ·10−1 1.6820 ·10−3 9.6202 ·102

basal

amplitude -7.2406·10−2 1.3072 -4.8237 ·10−1 -5.0032 ·10−3 4.9839 ·101

tau rise -5.0391 ·10−1 6.5422 -1.2984 4.1649 ·10−3 5.9360 ·102

tau decay -8.1854 ·10−1 3.0162 ·101 4.1417 8.6399 ·10−3 3.2281 ·102

delay 5.0010 ·102 5.2698 ·10−1 2.5031 ·10−1 4.3847 ·10−3 5.8518 ·102

branches

amplitude -5.2025 ·10−1 7.3073 ·10−1 -4.7918 ·10−1 1.0940 ·10−3 4.0016·102

tau rise -4.0477 ·10−1 1.3479 5.0302·10−1 1.0913 ·10−2 1.6055 ·102

tau decay -9.4981 ·10−1 2.7749 ·101 4.2260 8.7457 ·10−3 3.1832 ·102

delay 5.0018 ·102 8.4436 ·10−1 1.0069 ·10−1 2.6787 ·10−2 5.0354 ·102

Table 14. The sigmoid function's parameters found by curve �tting in section 6.3. The parameters for
the sigmoid functions were �tted against the sets of synapse parameters obtained by �tting method 1.

Part of neuron Synapse parameter x0 x1 x2 x3 x4

apical

amplitude -3.9929·10−1 5.7733 1.9375 -1.6046 ·10−3 -1.6319 ·102

tau rise 4.0603 ·10−2 2.3324 ·10−1 4.7543 ·10−2 1.2465 ·10−2 3.8298 ·102

tau decay -1.6226 ·10−1 -2.1300 ·102 -3.7658 ·101 1.1615 ·10−2 8.3227·10−2

delay 4.9906 ·102 9.5729·10−1 1.0937·10−1 5.4785 ·10−3 6.1544 ·102

stem

amplitude 1.6452 ·10−2 4.6979 ·10−1 -4.1634 ·10−1 -1.2643·10−3 5.2585 ·102

tau rise 5.3069 ·10−1 2.6298 -9.9640 ·10−1 7.2160 ·10−3 7.2218·102

tau decay 7.2079 ·10−2 2.5558 ·101 3.8879 1.2211 ·10−2 3.0775 ·102

delay 4.9998 ·102 1.0459 -8.2243 ·10−2 1.6065 ·10−3 1.1599 ·103

basal

amplitude -1.6440 ·10−1 3.0588 ·10−1 -3.0090 ·10−1 -2.8905 ·10−3 3.4892 ·102

tau rise -2.2643 ·10−1 4.0752 4.1062·10−1 6.8677 ·10−3 3.3481 ·102

tau decay -1.1360 2.7062·101 2.9018 6.9745 ·103 3.4966·102

delay 5.0007 ·102 3.7527 -1.3019 ·10−2 8.9794 ·10−3 5.0007 ·102

branches

amplitude -7.7428 ·10−2 3.7204 ·10−1 -3.1389 ·10−1 -1.4603·10−3 6.3563 ·102

tau rise -5.5810 ·10−1 1.9079 8.9404·10−1 8.1302·10−3 1.3272·102

tau decay -1.8451 1.8240·101 2.2927 9.7990 ·10−3 2.1450 ·102

delay 5.0018 ·102 1.5307 9.1644 ·10−1 1.3585·10−2 5.0894 ·102

Table 15. The sigmoid function's parameters found by curve �tting in section 6.3. The parameters for
the sigmoid functions were �tted against the sets of synapse parameters obtained by �tting method 2.

60

Part of neuron Synapse parameter x0 x1 x2 x3 x4

apical

amplitude -3.9929·10−1 5.7733 1.9375 -1.6046 ·10−3 -1.6319 ·102

tau rise -2.4204 1.9275 ·10−1 2.3977 ·10−2 1.3532 ·10−2 3.6284 ·102

tau decay -2.9650 ·10−1 -2.2262·102 -3.6402 ·101 1.2006 ·10−2 8.4599·102

delay 4.9994 ·102 9.7177 ·10−1 1.3852·10−1 8.0153 ·10−3 7.8945·102

stem

amplitude 1.6452 ·10−2 4.6980 ·10−1 -4.1634·10−1 -1.2643·10−3 5.2585 ·102

tau rise -1.3609 ·10−1 5.0957 -4.3513 ·10−1 3.3503·10−3 8.0161 ·102

tau decay 6.0034 ·10−1 2.7201 ·101 4.6837 1.8186·10−2 2.8190·102

delay 4.9985·102 1.1082 -1.7228·10−1 1.2653·10−3 1.1599·103

basal

amplitude -1.6440·10−1 3.0588·10−1 -3.0090·10−1 -2.8905 ·10−3 3.4892·102

tau rise -2.9830 ·10−1 5.3667 -1.2394 4.9279 ·10−3 5.2863·102

tau decay -5.9021 ·10−1 .2.4637 ·101 4.8804 1.3667·10−2 1.9907 ·102

delay 5.0467·102 -1.0172·101 2.0115 -7.4462·10−4 1.9300·103

branches

amplitude -7.7428 ·10−2 3.7204 ·10−1 -3.1389·10−1 -1.4603·10−3 6.3563 ·102

tau rise -1.6930 1.7275 -1.3778 ·10−1 1.5338·10−3 1.5017·10−2

tau decay -2.4204 ·10−1 2.6692·101 3.9767 1.2490 ·10−2 2.9272·102

delay 5.0002·102 8.8341·10−1 9.9672·10−2 2.6399·10−3 7.9996·102

Table 16. The sigmoid function's parameters found by curve �tting in section 6.3. The parameters for
the sigmoid functions were �tted against the sets of synapse parameters obtained by �tting method 3.

Part of neuron Synapse parameter x0 x1 x2 x3 x4

apical

amplitude -4.8486 ·10−1 6.0111 1.5793 -1.4006·10−3 -2.9962·102

tau rise 3.0105·10−1 2.4439·10−1 5.0617·10−2 1.1020·10−2 3.9892·102

tau decay 1.3853·10−2 -2.1283·102 -3.8124·101 1.0239·10−2 8.2563·102

delay 5.0018·102 9.3106·10−1 1.4311·10−1 8.2072·10−3 7.8704·102

stem

amplitude -1.8240·10−3 4.8596·10−1 -4.2209·10−1 -1.2222·10−3 5.2725·102

tau rise 2.6216·10−2 3.7897 1.0165·10−1 5.4307·10−3 5.9162·102

tau decay 6.4334·10−1 2.6072·101 5.0104 1.7599·10−2 2.8502·102

delay 4.9998·102 1.1811 -1.8931·10−1 1.8811·10−3 1.1597·103

basal

amplitude -1.1902·10−1 4.2072·10−1 -3.1757·10−1 -3.4918·10−3 2.5705·102

tau rise -3.8962·10−1 6.2114 -1.0814 4.6929·10−3 5.4646·102

tau decay -1.5656·10−1 2.1808·101 5.0073 1.5379·10−2 2.0011·102

delay 4.9991·102 1.8872 3.5925·10−1 2.9808·10−3 7.4421·102

branches

amplitude -5.5906·10−1 5.8890·10−1 -3.5605·10−1 -1.1595·10−3 6.1694·102

tau rise -2.2803·10−1 1.5846 8.2517·10−1 1.2222·10−2 1.8519·102

tau decay -5.8806·10−1 2.9237·101 4.4077 1.0437·10−2 3.1147·102

delay 5.0015·102 7.8439·10−1 1.3001·10−1 1.0582·10−2 5.2131·102

Table 17. The sigmoid function's parameters found by curve �tting in section 6.3. The parameters for
the sigmoid functions were �tted against the sets of synapse parameters obtained by �tting method 4.

Amplitude Delay Tau Rise Tau Decay
0.204 0.150 0.551 0.674

Table 18. Weighted error estimates for the sigmoid curve �tting for �tting method 4. The error
estimates are taken from table 5 on page 41 and weighted by the fraction of synapses each part of the
neuron contains, using equation 76 on page 50. The weighted error estimates describe the mean
di�erence between the �tted sigmoid function and the synapse parameters for the point model in every
point, independent on which part of the neuron the synapse was placed in.

61

10.2 Results for the whole neuron with �tting method 4

Synapse parameter x0 x1 x2 x3 x4
amplitude 3.1113·10−1 2.8919·10−1 -5.6287·10−1 -1.7692·10−3 2.5559·102

tau rise -2.3480·10−1 2.8125 4.9507·10−1 4.5088·10−3 3.7875·102

tau decay -1.1847·10−1 5.1202·101 8.7795 1.0842·10−2 3.5409·102

delay 4.9993·102 1.8466 -7.0623·10−2 2.7474·10−3 8.7611·102

Table 19. The �tted parameters for the sigmoid function, describing synapse parameters independent
on where in the Hay-model's morphology the EPSPs were generated.

62

11 Appendix B, Python codes

This Appendix contains the most important python scripts used in this thesis.

11.1 The Hay-model

' ' 'Run model by Hay et a l . (2011) , runs the model a g iven number o f synapse indexes . ' ' '
#module imports
import numpy as np
import u r l l i b as u r l l i b 2
import z i p f i l e
import os
import p lat form
import LFPy
import neuron

#i n t e r a c t i v e p l o t t i n g and c l o s i n g o ld f i g u r e s
#i f not p l t . rcParams [' i n t e r a c t i v e '] :
p l t . ion ()

#c l o s e open windows
#p l t . c l o s e (' a l l ')

###
model pre−setup
###
modelur l = "http :// s en s e l ab .med . ya l e . edu/ModelDB/eavBinDown . asp ?o=139653&a=23"
#Fetch Hay et a l . 2011 model f i l e s , i f they are miss ing
i f not os . path . i s f i l e (' L5bPCmodelsEH/morpholog ies / c e l l 1 . asc ') :

i f p lat form . plat form () . r f i n d ("Windows") >= 0 :
i f not os . path . i s f i l e (' L5bPCmodelsEH . zip ') :

p r i n t "download model f i l e s manually from : %s " % modelur l
e l s e :

#get the model f i l e s :
u = u r l l i b 2 . ur lopen (modelur l)
l o c a l F i l e = open (' L5bPCmodelsEH . zip ' , 'w')
l o c a l F i l e . wr i t e (u . read ())
l o c a l F i l e . c l o s e ()
u . c l o s e ()

#unzip :
myzip = z i p f i l e . Z ipF i l e (' L5bPCmodelsEH . zip ' , ' r ')
myzip . e x t r a c t a l l (' . ')
myzip . c l o s e ()

#assuming f i l e s are present , compi le NMODL language f i l e s ones
i f p lat form . plat form () . r f i n d ('Windows ') >= 0 :

d l l pa th = os . path . j o i n ("L5bPCmodelsEH" , "mod" , "nrnmech . d l l ")

63

i f not os . path . i s f i l e (d l l pa th) :
dllcmd = "cd L5bPCmodelsEH\\mod\\ & \\nrn73w64\\mingw\\ bin
\\ sh \\nrn73w64\\ l i b \\mknrndll . sh \\nrn73w64\\ "
os . system (dllcmd)

e l s e :
i f not os . path . i s d i r (os . path . j o i n ("L5bPCmodelsEH" , "mod" , p lat form . machine ())) :

os . system (' ' '
cd L5bPCmodelsEH/mod/
nrnivmodl
' ' ')

#load compiled mod− f i l e s from th e i r s epara t e l o c a t i o n :
i f p lat form . plat form () . r f i n d ("Windows") >= 0 :

i f d l l pa th in neuron . nrn_dll_loaded :
p r i n t "%s a l ready loaded " % d l lpa th

e l s e :
neuron . h . nrn_load_dll (d l l pa th)
neuron . nrn_dll_loaded . append (d l l pa th)

e l s e :
neuron . load_mechanisms (' L5bPCmodelsEH/mod/ ')

##
Simulat ion parameters
##

#de f i n e c e l l parameters used as input to c e l l−c l a s s as a python d i c t
c e l lParamete r s = {

'morphology ' : 'L5bPCmodelsEH/morpholog ies / c e l l 1 . asc ' , #morphology f i l e
' t emp l a t e f i l e ' : [' L5bPCmodelsEH/models /L5PCbiophys3 . hoc ' , #model spec s

'L5bPCmodelsEH/models /L5PCtemplate . hoc '] ,# d i t t o
' templatename ' : ' L5PCtemplate ' , #LFPy need t h i s
' templateargs ' : 'L5bPCmodelsEH/morpholog ies / c e l l 1 . asc ' , #morphology
' pass ive ' : False , #the template− f i l e s a s s i gn pa s s i v e membrane params
' nsegs_method ' : None , #d i t t o f o r compartmenta l i zat ion
'timeres_NEURON ' : 2∗∗−4 , #(ms) time r e s o l u t i o n f o r s imu la t i on in NEURON
' timeres_python ' : 2∗∗−4 , #(ms) d i t to , in python namespace
' tstartms ' : 0 , #(ms) s t a r t time o f s imu la t i on
' tstopms ' : 700 , #(ms) end time o f s imu la t i on
' v_init ' : −75, #(mV) as s i gned membrane p o t e n t i a l s at t=0
' pt3d ' : False , #opt i ona l bool , j u s t f o r f a n c i e r p l o t t i n g below
' e x t r a c e l l u l a r ' : False , #turn o f f c a l c u l a t i o n s o f membrane cu r r en t s

}

#de f i n e synapse parameters used as input to synapse−c l a s s as a python d i c t
synapseParameters = {

' idx ' : 0 , # i n s e r t synapse on index "0" , the soma , you can
ove r r i d e t h i s when c r e a t i n g the c e l l commenting
out here , and supply any i n t e g e r number on

64

[0 , c e l l . t o tn s eg s) , c e l l . t o tn s eg s being the
t o t a l number o f compartments

' e ' : 0 . , # r e v e r s a l p o t e n t i a l o f synapse
' syntype ' : 'Exp2Syn ' , # bu i l t−in , conductance based double−exponent i a l synapse
' tau1 ' : 0 . 25 , # Time constant , r i s e
' tau2 ' : 1 . 0 , # Time constant , decay
' weight ' : 0 . 01 , # Synaptic weight , un i t s o f uS
' record_current ' : True , # Wil l enable synapse cur rent r e co rd ing
' record_potent ia l ' : True , # enable synapse s i t e vo l tage r e co rd ing
' co lo r ' : ' r ' , # j u s t f o r p l o t t i ng ,
'marker ' : ' . ' , # d i t t o

}

##
Main s imu la t i on procedure , s e t t i n g up c e l l , synapse
##
#

#run l i s t dec ide s which indexes f o r synapses the s imu la t i on i s run f o r
run_l i s t =[]

#making some l i s t s f o r use in other s c r i p t s
counter = 0
soma_voltage = np . z e r o s (shape=(l en (run_l i s t) , 11201))
synapse_distance =[]
voltage_max =[]
index_tops= []
t0_idx_l i s t =[]
time_between_vmax_halfs =[]
#s e t s the synapse index to va lue s in run_l i s t
f o r i in run_l i s t :

synapseParameters [' idx ']= i

#de l e t e o ld s e c t i o n s and load compiled mechs from the mod−f o l d e r ,
#needed f o r s u c c e s s i v e runs

neuron . h(" f o r a l l d e l e t e_se c t i on () ")

#I n i t i a l i z e c e l l in s tance , us ing the LFPy . TemplateCell c l a s s , a l i g n c e l l
c e l l = LFPy . TemplateCel l (∗∗ ce l lParamete r s)
c e l l . s e t_rota t i on (x = 4 .729 , y =−3.166)

#se t up a synapse ob j e c t attached to the c e l l , and s e t the input sp ike time (s)
synapse = LFPy . Synapse (c e l l=c e l l , ∗∗ synapseParameters)
synapse . set_spike_times (np . array ([5 0 0 .]))

#perform NEURON simulat ion , r e s u l t s saved as a t t r i b u t e s in the c e l l i n s t anc e
#synapse cur rent and synapse s i t e vo l t age response r e co rd ing s i s now switched on

c e l l . s imulate (rec_isyn=True , rec_vmemsyn=True , rec_vmem=False)

65

##
f i nd i n g s e v e r a l th ing s used in f i t t i n g
##

" f i nd i ng the maximum soma response , i t i s used in f i t t i n g "
vo l tage_sta r t=c e l l . somav [8 0 0 0 :]
vmax=np . amax(vo l tage_star t)

' ' ' f i nd i n g time f o r maximun soma−re sponse : ' ' '
index_top=(abs (vo l tage_sta r t)−vmax) . argmin ()
vmax=c e l l . somav [index_top+8000]

" f i nd i n g the index where soma po t en t i a l i s 3% o f maximum value
on i t ' s way up , used as t0 "
t0_value=abs (((vmax−c e l l . somav [8000])∗3)/100)+ c e l l . somav [8 0 0 0]

t 0_ l i s t=np . where (vo l tage_start>=t0_value)
t0_idx=t0_ l i s t [0] [0]+8000

" f i nd i n g time f o r maximun soma−re sponse : "
f o r po s i t i on , item in enumerate (vo l tage_sta r t) :

i f item==vmax :
index_top=po s i t i o n

" time between two vmax_halfs"
vmax_half=((vmax−c e l l . somav [8000])/2)+ c e l l . somav [8 0 0 0]

index_half_up =(abs (vo l tage_sta r t [: index_top]−vmax_half)) . argmin ()
index_half_down =(abs (vo l tage_sta r t [index_top :]−vmax_half)) . argmin ()

time_between_vmax_halfs . append (abs (c e l l . tvec [index_half_up+8000]−
c e l l . tvec [index_half_down+8000+index_top]))

" f i nd i n g the d i s t anc e from the synapse to soma"
_, secname , f r a c = c e l l . get_idx_name (idx = 0) #soma idx i s 0 .
neuron . h (' a c c e s s %s ' % secname) #make soma the cu r r en t l y acce s s ed s e c t i o n
neuron . h . d i s t ance (f r a c) #se t the root po int from were we ' re computing the d i s t ance
_, secname , f r a c = c e l l . get_idx_name (idx = synapse . idx)
neuron . h (' a c c e s s %s ' % secname) #make branch the cu r r en t l y acce s s ed s e c t i o n
distance_to_syn = neuron . h . d i s t ance (f r a c) #get the d i s t ance to synapse s i t e .

" va lue s f o r each s imu la t i on appended to l i s t "
synapse_distance . append (distance_to_syn)
voltage_max . append (vmax)
index_tops . append (index_top)
t0_idx_l i s t . append (t0_idx)
soma_voltage [counter]= c e l l . somav
counter += 1

66

11.2 Fit the synapse parameters

' ' ' s c r i p t f o r f i t t i n g synapse parameters f o r po int model from Hay−model ' ' '

import numpy as np
from sc ipy . opt imize import minimize
import matp lo t l i b . pyplot as p l t
import Hay

"The an a l y t i c a l s o l u t i o n f o r the po int model"
de f exp2 (x , t) :

' ' '
d i f f e r e n c e o f two exponen t i a l s f unc t i on implementation
kwargs : x : l i s t [delay , tau_rise , tau_decay , constant , amplitude]

t : np . ndarray , time vec to r o f s i g n a l
r e tu rn s : : np . array , the d i f f e r e n c e o f two exponen t i a l s
' ' '
Tm=9.67
y=np . z e ro s (t . s i z e)+Hay . c e l l . somav [8 0 0 0]
[i] = np . where ((t >500))
t=t−x [2]
t [t<=0]=0
A= (x [0] ∗Tm)/(x [0]−Tm)
B= (x [1] ∗Tm)/(x [1]−Tm)
num=abs ((A−B)∗np . exp(−t [i] /Tm)−A∗np . exp(−t [i] / x [0])+B∗np . exp(−t [i] / x [1]))
i f i . s i z e >0:

denom=abs ((A−B)∗np . exp(−t [i] /Tm)−A∗np . exp(−t [i] / x [0])+
B∗np . exp(−t [i] / x [1])) . max()
y [i]=Hay . c e l l . somav [8000]+x [3] ∗ (num/denom)
return y

" co s t f un c t i on f o r the f i t t i n g "

de f co s t fun (x , t , data) :
' ' ' c o s t func t i on that should be minimized ' ' '
r e turn ((exp2 (x , t) − data)∗∗2) . sum()

"making empty ar rays f o r the synapse parameters and e r r o r e s t imate s "
r e s u l t s 1= np . z e ro s (shape=(Hay . counter , 4))
r e s u l t s 2= np . z e ro s (shape=(Hay . counter , 4))
r e s u l t s 3= np . z e ro s (shape=(Hay . counter , 4))
e r r o r_ l i s t 1= []
e r r o r_ l i s t 2= []
e r r o r_ l i s t_ t o t a l= []
error_l ist3_cut_extended =[]

f o r i in range (Hay . counter) :
t = Hay . c e l l . tvec
data = Hay . soma_voltage [i]
amplitude = Hay . voltage_max [i]

67

t0_index=Hay . t0_idx_l i s t [i]
index_top= Hay . index_tops [i]+8000
stop=np . where (data [index_top :]<=data [8 0 0 0])
stop_spot=stop [0] [0]
stop_point= stop_spot+index_top
data3=data [: stop_point]
t3=t [: stop_point]

" i n i t i a l guess f o r f i t t i n g process , [tau_decay , tau_rise , delay , amplitude] "
x = [1 , 0 .25 , t [t0_index] , (amplitude−data [8 0 0 0])]

" F i t t i n g method 1 , 2 and 3"

re s1= minimize (cost fun , x0=x , args=(t [500< t] , data [500< t]) , method='TNC' ,
bounds=((None , None) , (None , None) , (500 , t [t0_index]) , (None , None)) ,
opt i ons={' disp ' : True })

r e s2= minimize (cost fun , x0=x , args=(t [500< t] , data [500< t]) , method='TNC' ,
bounds=((None , None) , (None , None) , (500 , t [t0_index]) , (amplitude−data [8 0 0 0] ,
amplitude−data [8 0 0 0])) , opt i ons={' disp ' : True })

r e s3= minimize (cost fun , x0=x , args=(t3 [500< t3] , data3 [500< t3]) ,
method='TNC' , bounds=((None , None) , (None , None) , (500 , t [t0_index]) ,
(amplitude−data [8 0 0 0] , amplitude−data [8 0 0 0])) , opt i ons={' disp ' : True })

r e s u l t s 1 [i]= re s1 . x
r e s u l t s 2 [i]= re s2 . x
r e s u l t s 3 [i]= re s3 . x

" e r r o r e s t imate f i t t i n g method 1"
e r r o r 1 = (np . sq r t ((exp2 (r e s u l t s 1 [i] , t)− (data))∗∗2))
e r r o r 1 = (e r r o r 1 [t >=500]).sum()
e r r o r_ l i s t 1 . append (e r r o r 1)

" e r r o r e s t imate f i t t i n g method 2"
e r r o r 2 = (np . sq r t ((exp2 (r e s u l t s 2 [i] , t)− (data))∗∗2))
e r r o r 2 = (e r r o r 2 [t >=500]).sum()
e r r o r_ l i s t 2 . append (e r r o r 2)

" e r r o r e s t imate f i t t i n g method 3"
error3_cut_extended = (np . sq r t ((exp2 (r e s u l t s 3 [i] , t)−(data))∗∗2))
error3_cut_extended = (error3_cut_extended [t >=500]).sum()
error_l ist3_cut_extended . append (error3_cut_extended)

tau_r i se_tota l =[]
tau_decay_total =[]
de lay_tota l =[]
ampl itude_total =[]

68

tau_rise1 =[]
tau_decay1=[]
de lay1 =[]
amplitude1 =[]

tau_rise2 =[]
tau_decay2=[]
de lay2 =[]
amplitude2 =[]

tau_rise3 =[]
tau_decay3=[]
de lay3 =[]
amplitude3 =[]

f o r i in range (l en (r e s u l t s 1)) :
tau_decay1 . append (r e s u l t s 1 [i , 0])
tau_rise1 . append (r e s u l t s 1 [i , 1])
de lay1 . append (r e s u l t s 1 [i , 2])
amplitude1 . append (r e s u l t s 1 [i , 3])

f o r i in range (l en (r e s u l t s 2)) :
tau_decay2 . append (r e s u l t s 2 [i , 0])
tau_rise2 . append (r e s u l t s 2 [i , 1])
de lay2 . append (r e s u l t s 2 [i , 2])
amplitude2 . append (r e s u l t s 2 [i , 3]

f o r i in range (l en (r e s u l t s 3)) :
tau_decay3 . append (r e s u l t s 3 [i , 0])
tau_rise3 . append (r e s u l t s 3 [i , 1])
de lay3 . append (r e s u l t s 3 [i , 2])
amplitude3 . append (r e s u l t s 3 [i , 3])

" F i t t i n g method 4"
f o r i in range (l en (r e s u l t s 3)) :

tau_decay_total . append ((tau_decay1 [i]+tau_decay2 [i]+tau_decay3 [i]) / 3)
tau_r i se_tota l . append ((tau_rise1 [i]+ tau_rise2 [i]+ tau_rise3 [i]) / 3)
de lay_tota l . append ((de lay1 [i]+delay2 [i]+delay3 [i]) / 3)
ampl itude_total . append ((amplitude1 [i]+amplitude2 [i]+amplitude3 [i]) / 3)

f o r i in range (l en (Hay . run_l i s t)) :
parameters = [0 , 0 , 0 , 0]
t = Hay . c e l l . tvec
data = Hay . soma_voltage [i]
t0_index=Hay . t0_idx_l i s t [i]
index_top= Hay . index_tops [i]+8000
stop=np . where (data [index_top :]<=data [8 0 0 0])
stop_spot=stop [0] [0]

69

stop= stop_spot+index_top
data3=data [: stop]
t3=t [: stop]

parameters [0]= tau_decay_total [i]
parameters [1]= tau_r i se_tota l [i]
parameters [2]= de lay_tota l [i]
parameters [3]= ampl itude_total [i]

" e r r o r f o r f i t t i n g method 4"
e r r o r_to ta l = (np . s q r t ((exp2 (parameters , t)− (data))∗∗2))
e r r o r_to ta l = (e r r o r_to ta l [t >=500]).sum()
e r r o r_ l i s t_ t o t a l . append (e r r o r_to ta l)

" p l o t r e s u l t s f o r f i t t i n g method 4"
p l t . p l o t (t [7 2 00 : 1 0 400] , exp2 (parameters , t) [7 2 0 0 : 1 0 4 0 0])
p l t . p l o t (t [7 2 00 : 1 0 400] , data [7 2 0 0 : 1 0 4 0 0])
p l t . s u p t i t l e (' F i t 4 ' , f o n t s i z e =15)
p l t . x l ab e l (' [ms] ' , f o n t s i z e =15)
p l t . y l ab e l (' [mV] ' , f o n t s i z e =15)
p l t . show ()

" s o r t the l i s t s the same way as d i s t an c e s from soma"
Hay . synapse_distance , tau_rise_tota l , tau_rise1 , tau_rise2 ,
tau_rise3 , tau_decay_total , tau_decay1 , tau_decay2 , tau_decay3 ,
de lay_tota l , delay1 , delay2 , delay3 , amplitude_total , amplitude1 ,
amplitude2 , amplitude3 , e r r o r_ l i s t 1 , e r r o r_ l i s t 2 , e r r o r_ l i s t_to ta l ,
error_l ist3_cut_extended \
= z ip (∗ so r t ed (z ip (Hay . synapse_distance , tau_rise_tota l , tau_rise1 ,
tau_rise2 , tau_rise3 , tau_decay_total , tau_decay1 , tau_decay2 ,
tau_decay3 , de lay_total , delay1 , delay2 , delay3 , amplitude_total ,
amplitude1 , amplitude2 , amplitude3 , e r r o r_ l i s t 1 , e r r o r_ l i s t 2 ,
e r r o r_ l i s t_to ta l , error_l ist3_cut_extended)))

" p l o t the f i t t e d parameters with d i s t ance from soma"
p l t . subp lot (221)
p l t . p l o t (Hay . synapse_distance , amplitude1 , 'mo')
p l t . p l o t (Hay . synapse_distance , amplitude2 , ' bo ')
p l t . p l o t (Hay . synapse_distance , amplitude3 , ' ro ')
p l t . p l o t (Hay . synapse_distance , amplitude_total , ' co ')
p l t . y l ab e l (' Amplitude [mV] ')

p l t . subp lot (222)
p l t . p l o t (Hay . synapse_distance , tau_rise1 , 'mo')
p l t . p l o t (Hay . synapse_distance , tau_rise2 , ' bo ')
p l t . p l o t (Hay . synapse_distance , tau_rise3 , ' ro ')
p l t . p l o t (Hay . synapse_distance , tau_rise_tota l , ' co ')
p l t . y l ab e l ('Tau r i s e [ms] ')

70

p l t . subp lot (223)
p l t . p l o t (Hay . synapse_distance , tau_decay1 , 'mo')
p l t . p l o t (Hay . synapse_distance , tau_decay2 , ' bo ')
p l t . p l o t (Hay . synapse_distance , tau_decay3 , ' ro ')
p l t . p l o t (Hay . synapse_distance , tau_decay_total , ' co ')
p l t . y l ab e l ('Tau decay [ms] ')
p l t . x l ab e l (' Distance from soma [μm] ')

p l t . subp lot (224)
p l t . p l o t (Hay . synapse_distance , delay1 , 'mo')
p l t . p l o t (Hay . synapse_distance , delay2 , ' bo ')
p l t . p l o t (Hay . synapse_distance , delay3 , ' ro ')
p l t . p l o t (Hay . synapse_distance , de lay_total , ' co ')
p l t . y l ab e l (' Delay [ms] ')
p l t . x l ab e l (' Distance from soma [μm] ')
p l t . show ()

" p l o t the e r r o r e s t imate s with d i s t anc e from soma"
p l t . p l o t (Hay . synapse_distance , e r r o r_ l i s t 1 , c o l o r= 'm')
p l t . p l o t (Hay . synapse_distance , e r r o r_ l i s t 2 , c o l o r = 'b ')
p l t . p l o t (Hay . synapse_distance , error_l ist3_cut_extended , ' r ')
p l t . p l o t (Hay . synapse_distance , e r r o r_ l i s t_to ta l , c o l o r ='c ')
p l t . y l ab e l (' Error [mV] ')
p l t . x l ab e l (' Distance from soma [μm] ')
p l t . show ()

" f i nd mean e r r o r and standard dev i a t i on s f o r the e r r o r e s t imate s "
mean_error1=(sum(e r r o r_ l i s t 1))/ l en (Hay . run_l i s t)
mean_error2=(sum(e r r o r_ l i s t 2))/ l en (Hay . run_l i s t)
mean_error3=(sum(error_l ist3_cut_extended))/ l en (Hay . run_l i s t)
mean_error4=(sum(e r r o r_ l i s t_ t o t a l))/ l en (Hay . run_l i s t)
sd_1=0
sd_2=0
sd_3=0
sd_4=0

f o r i in range (l en (Hay . run_l i s t)) :
sd_1+=(mean_error1−e r r o r_ l i s t 1 [i])∗∗2
sd_2+=(mean_error2−e r r o r_ l i s t 2 [i])∗∗2
sd_3+=(mean_error3−error_l ist3_cut_extended [i])∗∗2
sd_4+=(mean_error4−e r r o r_ l i s t_ t o t a l [i])∗∗2

sd_1=(np . sq r t ((sd_1)/(l en (Hay . run_l i s t))))
sd_2=(np . sq r t ((sd_2)/(l en (Hay . run_l i s t))))
sd_3=(np . sq r t ((sd_3)/(l en (Hay . run_l i s t))))
sd_4=(np . sq r t ((sd_4)/(l en (Hay . run_l i s t))))

71

11.3 Curve �tting with sigmoid function

import numpy as np
from sc ipy . opt imize import minimize
import matp lo t l i b . pyplot as p l t
import f i t t i n g

de f s igmoid (x , t) :
' ' '
d i f f e r e n c e o f two exponen t i a l s f unc t i on implementation
kwargs : x : l i s t / tup l e / array , [a , b , c , t0]

t : np . ndarray , time vec to r o f s i g n a l
r e tu rn s : s igmoid func t i on as a l i s t

' ' '
s igmoid =[]
f o r i in range (l en (t)) :

y=x [4]+(x [0] / (x [1]+np . exp(−x [2] ∗ (t [i]−x [3]))))
s igmoid . append (y)

re turn sigmoid

" co s t func t i on f o r the curve f i t t i n g "
de f cost fun_sigmoid (x , t , data) :

' ' ' c o s t func t i on that should be minimized ' ' '
r e turn ((s igmoid (x , t) − data)∗∗2) . sum()

" i n i t i a l gue s s e s f o r the f i t t i n g proce s s "
x_sigmoid_amp_total = [0 .2 , −0 .3 , −0 .002 ,250 , −0 .18]
x_sigmoid_amp_1 = [0 .2 , −0 .3 , −0 .002 , 50 ,−0.18]
x_sigmoid_amp_2 = [0 .2 , −0 .3 , −0 .002 , 350 ,−0.18]
x_sigmoid_amp_3 = [0 .2 , −0 .3 , −0 .002 , 350 ,−0.18]

x_sigmoid_rise_total = [3 . 7 1 , 0 . 1 6 1 , 0 . 0 0 4306 , 600 ,0]
x_sigmoid_rise_1 = [3 . 7 1 , 0 . 1 6 1 , 0 . 0 0 4306 , 600 ,0]
x_sigmoid_rise_2 = [3 . 7 1 , 0 . 1 6 1 , 0 . 0 0 4306 , 600 ,0]
x_sigmoid_rise_3 = [3 . 7 1 , 0 . 1 6 1 , 0 . 0 0 4306 , 850 ,0]

x_sigmoid_decay_total = [2 6 . 5 , 4 . 505 , 0 . 014918 ,195 ,0]
x_sigmoid_decay_1 = [2 6 . 5 , 4 . 505 , 0 . 014918 ,195 , 0]
x_sigmoid_decay_2 = [2 6 . 5 , 4 . 505 , 0 . 014918 ,195 , 0]
x_sigmoid_decay_3 = [2 6 . 5 , 4 . 505 , 0 . 014918 ,200 , 0]

x_sigmoid_delay_total= [3 . 7 , 0 . 0 9 , 0 . 0 0 3 5 , 500 , 499]
x_sigmoid_delay_1 = [3 . 7 , 0 . 0 9 , 0 . 0 0 3 5 , 500 , 499]
x_sigmoid_delay_2 = [3 . 7 , 0 . 0 9 , 0 . 0 0 3 5 , 500 , 499]
x_sigmoid_delay_3 = [3 . 7 , 0 . 0 9 , 0 . 0 0 3 5 , 500 , 499]

"data used in the f i t t i n g "
' ' ' data 1 i s parameters f i t t e d with bouds on de lay ' ' '
data1_amplitude=np . z e r o s (l en (f i t t i n g . amplitude1))
data1_delay=np . z e r o s (l en (f i t t i n g . de lay1))

72

data1_rise=np . z e r o s (l en (f i t t i n g . tau_rise1))
data1_decay=np . z e ro s (l en (f i t t i n g . tau_decay1))

' ' ' data 2 i s parameters f i t t e d with bounds on delay and amplitude ' ' '
data2_amplitude=np . z e r o s (l en (f i t t i n g . amplitude1))
data2_delay=np . z e r o s (l en (f i t t i n g . de lay2))
data2_rise=np . z e r o s (l en (f i t t i n g . tau_rise2))
data2_decay=np . z e ro s (l en (f i t t i n g . tau_decay2))

' ' ' data 3 i s parameters f i t t e d with bounds on delay
and amplitude and time vec to r i s cut when Hay−s i g n a l
r eaches V_rest a f t e r peaking ' '
data3_amplitude=np . z e r o s (l en (f i t t i n g . amplitude3))
data3_delay=np . z e r o s (l en (f i t t i n g . de lay3))
data3_rise=np . z e r o s (l en (f i t t i n g . tau_rise3))
data3_decay=np . z e ro s (l en (f i t t i n g . tau_decay3))

' ' ' t o t a l data set , the mean o f datase t 1 , 2 and 3 ' ' '
data_total_amp=np . z e r o s (l en (f i t t i n g . amplitude3))
data_total_del=np . z e r o s (l en (f i t t i n g . de lay3))
data_tota l_r i se=np . z e r o s (l en (f i t t i n g . tau_rise3))
data_total_decay=np . z e r o s (l en (f i t t i n g . tau_decay3))

' ' ' the d i s t anc e from soma , used f o r a l l the f i t t i n g proce s s e s ' ' '
t=np . z e r o s (l en (f i t t i n g .Hay . synapse_distance))

f o r i in range (l en (f i t t i n g . amplitude1)) :

' ' ' da tase t 1 ' ' '
data1_amplitude [i]= f i t t i n g . amplitude1 [i]
data1_delay [i]= f i t t i n g . de lay1 [i]
data1_rise [i]= f i t t i n g . tau_rise1 [i]
data1_decay [i]= f i t t i n g . tau_decay1 [i]

' ' ' da tase t 2 ' ' '
data2_amplitude [i]= f i t t i n g . amplitude2 [i]
data2_delay [i]= f i t t i n g . de lay2 [i]
data2_rise [i]= f i t t i n g . tau_rise2 [i]
data2_decay [i]= f i t t i n g . tau_decay2 [i]

' ' ' da tase t 3 ' ' '
data3_amplitude [i]= f i t t i n g . amplitude3 [i]
data3_delay [i]= f i t t i n g . de lay3 [i]
data3_rise [i]= f i t t i n g . tau_rise3 [i]
data3_decay [i]= f i t t i n g . tau_decay3 [i]

' ' ' d i s t ance from soma used f o r a l l the f i t t i n g peoces se s ' ' '
t [i]= f i t t i n g .Hay . synapse_distance [i]

73

' ' ' Synapse parameters f o r f i t t i n g method 4 ' ' '
f o r i in range (l en (data1_amplitude)) :

data_total_amp [i]=((data1_amplitude [i]+data2_amplitude [i]+data3_amplitude [i]) / 3)
data_total_del [i]=((data1_delay [i]+data2_delay [i]+data3_delay [i]) / 3)
data_tota l_r i se [i]=((data1_rise [i]+ data2_rise [i]+data3_rise [i]) / 3)
data_total_decay [i]=((data1_decay [i]+data2_decay [i]+data3_decay [i]) / 3)

' ' 'FITTING' ' '
' ' ' da tase t to ta l ' ' '
res_total_sigmoid_amp = minimize (costfun_sigmoid , x0=x_sigmoid_amp_total ,
a rgs=(t , data_total_amp) ,method='TNC' , opt ions={' disp ' : True })

res_total_sigmoid_del = minimize (costfun_sigmoid , x0=x_sigmoid_delay_total ,
a rgs=(t , data_total_del) , method='TNC' , opt ions={' disp ' : True })

res_tota l_s igmoid_r ise = minimize (costfun_sigmoid , x0=x_sigmoid_rise_total ,
a rgs=(t , data_tota l_r i se) , method='TNC' , opt ions={' disp ' : True })

res_total_sigmoid_decay = minimize (costfun_sigmoid , x0=x_sigmoid_decay_total ,
a rgs=(t , data_total_decay) , method='TNC' , opt ions={' disp ' : True })

' ' ' da tase t 1 ' ' '
res1_sigmoid_amp = minimize (costfun_sigmoid , x0=x_sigmoid_amp_1 ,
args=(t , data1_amplitude) , method='TNC' , opt ions={' disp ' : True })

res1_sigmoid_del = minimize (costfun_sigmoid , x0=x_sigmoid_delay_1 ,
args=(t , data1_delay) , method='TNC' , opt ions={' disp ' : True })

res1_sigmoid_rise = minimize (costfun_sigmoid , x0=x_sigmoid_rise_1 ,
args=(t , data1_rise) , method='TNC' , opt ions={' disp ' : True })

res1_sigmoid_decay = minimize (costfun_sigmoid , x0=x_sigmoid_decay_1 ,
args=(t , data1_decay) ,method='TNC' , opt ions={' disp ' : True })

' ' ' da tase t 2 ' ' '
res2_sigmoid_amp = minimize (costfun_sigmoid , x0=x_sigmoid_amp_2 ,
args=(t , data2_amplitude) , method='TNC' , opt ions={' disp ' : True })

res2_sigmoid_del = minimize (costfun_sigmoid , x0=x_sigmoid_delay_2 ,
args=(t , data2_delay) , method='TNC' , opt ions={' disp ' : True })

res2_sigmoid_rise = minimize (costfun_sigmoid , x0=x_sigmoid_rise_2 ,
args=(t , data2_rise) , method='TNC' , opt ions={' disp ' : True })

res2_sigmoid_decay = minimize (costfun_sigmoid , x0=x_sigmoid_decay_2 ,
args=(t , data2_decay) ,method='TNC' , opt ions={' disp ' : True })

' ' ' da tase t 3 ' ' '
res3_sigmoid_amp = minimize (costfun_sigmoid , x0=x_sigmoid_amp_3 ,

74

args=(t , data3_amplitude) , method='TNC' , opt ions={' disp ' : True })

res3_sigmoid_del = minimize (costfun_sigmoid , x0=x_sigmoid_delay_3 ,
args=(t , data3_delay) , method='TNC' , opt ions={' disp ' : True })

res3_sigmoid_rise = minimize (costfun_sigmoid , x0=x_sigmoid_rise_3 ,
args=(t , data3_rise) , method='TNC' , opt ions={' disp ' : True })

res3_sigmoid_decay = minimize (costfun_sigmoid , x0=x_sigmoid_decay_3 ,
args=(t , data3_decay) ,method='TNC' , opt ions={' disp ' : True })

" e r r o r e s t imat i on "
' ' ' F i t t i n g method 4 ' ' '
error_total_sig_amp = (np . s q r t ((s igmoid (res_total_sigmoid_amp . x , t)−
(data_total_amp))∗∗2))
error_total_sigmoid_amp = error_total_sig_amp . sum()

er ror_tota l_s ig_de l = (np . sq r t ((s igmoid (res_total_sigmoid_del . x , t)−
(data_total_del))∗∗2))
error_total_sigmoid_del = error_tota l_s ig_de l . sum()

e r ro r_to ta l_s i g_r i s e = (np . s q r t ((s igmoid (res_tota l_s igmoid_r ise . x , t)−
(data_tota l_r i se))∗∗2))
er ror_tota l_s igmoid_r i se = er ro r_to ta l_s i g_r i s e . sum()

error_total_sig_decay = (np . s q r t ((s igmoid (res_total_sigmoid_decay . x , t)−
(data_total_decay))∗∗2))
error_total_sigmoid_decay = error_total_sig_decay . sum()

' ' ' F i t t i n g method 1 ' ' '
error1_sig_amp = (np . sq r t ((s igmoid (res1_sigmoid_amp . x , t)−
(data1_amplitude))∗∗2))

error1_sigmoid_amp = error1_sig_amp . sum()

error1_s ig_del = (np . sq r t ((s igmoid (res1_sigmoid_del . x , t)−
(data1_delay))∗∗2))
error1_sigmoid_del = error1_s ig_de l . sum()

e r ro r1_s i g_r i s e = (np . sq r t ((s igmoid (res1_sigmoid_rise . x , t)−
(data1_rise))∗∗2))
error1_s igmoid_r i se = er ro r1_s ig_r i s e . sum()

error1_sig_decay = (np . sq r t ((s igmoid (res1_sigmoid_decay . x , t)−
(data1_decay))∗∗2))
error1_sigmoid_decay = error1_sig_decay . sum()

' ' ' F i t t i n g method 2 ' ' '
error2_sig_amp = (np . sq r t ((s igmoid (res2_sigmoid_amp . x , t)−
(data2_amplitude))∗∗2))

75

error2_sigmoid_amp = error2_sig_amp . sum()

error2_s ig_del = (np . sq r t ((s igmoid (res2_sigmoid_del . x , t)−
(data2_delay))∗∗2))
error2_sigmoid_del = error2_s ig_de l . sum()

e r ro r2_s i g_r i s e = (np . sq r t ((s igmoid (res2_sigmoid_rise . x , t)−
(data2_rise))∗∗2))
error2_s igmoid_r i se = er ro r2_s ig_r i s e . sum()

error2_sig_decay = (np . sq r t ((s igmoid (res2_sigmoid_decay . x , t)−
(data2_decay))∗∗2))
error2_sigmoid_decay = error2_sig_decay . sum()

' ' ' F i t t i n g method 3 ' ' '
error3_sig_amp = (np . sq r t ((s igmoid (res3_sigmoid_amp . x , t)−
(data3_amplitude))∗∗2))
error3_sigmoid_amp = error3_sig_amp . sum()

error3_s ig_del = (np . sq r t ((s igmoid (res3_sigmoid_del . x , t)−
(data3_delay))∗∗2))
error3_sigmoid_del = error3_s ig_de l . sum()

e r ro r3_s i g_r i s e = (np . sq r t ((s igmoid (res3_sigmoid_rise . x , t)−
(data3_rise))∗∗2))
error3_s igmoid_r i se = er ro r3_s i g_r i s e . sum()

error3_sig_decay = (np . sq r t ((s igmoid (res3_sigmoid_decay . x , t)−
(data3_decay))∗∗2))
error3_sigmoid_decay = error3_sig_decay . sum()

76

11.4 Statistical analyses for the result functions

import numpy as np
import matp lo t l i b . pyplot as p l t
import Hay

"making l i s t to c l a s s i f y in which part a synapse i s p laced "
Apical_indexes= []
f o r i in range (380 , 560) :

Apical_indexes . append (i)

Basal_indexes = []
f o r i in range (0 , 2 6 3) :

Basal_indexes . append (i)

Branches_indexes= []
f o r i in range (274 , 305) :

Branches_indexes . append (i)
f o r i in range (308 , 333) :

Branches_indexes . append (i)
f o r i in range (336 , 341) :

Branches_indexes . append (i)
f o r i in range (344 , 347) :

Branches_indexes . append (i)
f o r i in range (349 , 359) :

Branches_indexes . append (i)
f o r i in range (362 , 367) :

Branches_indexes . append (i)
f o r i in range (560 , 642) :

Branches_indexes . append (i)

Stem_indexes= [263 , 264 , 265 , 266 , 267 , 268 , 269 , 270 , 271 , 272 , 273 , 305 ,
306 , 307 , 333 , 334 , 335 ,341 , 342 , 343 ,347 ,348 ,359 , 360 , 361 , 367 , 368 , 369 ,
370 , 371 , 372 , 373 , 374 , 375 , 376 , 377 , 378 ,379]

"Parameters Fi t 4"
"Parameters f o r the s igmoid funct ion ,
l i s t e d as : Amplitude ; tau_rise , tau_decay and delay "
Apical_parameters = np . ndarray (shape =(4 ,5))
Apical_parameters [0]= [6 .0111 , 1 .5793 , −0.0014006 , −299.62 , −0.48486]
Apical_parameters [1]= [0 . 2 4439 , 0 .050617 , 0 .011020 , 398 .92 , 0 . 30105]
Apical_parameters [2]=[−212.83 , −38.124 , 0 .010239 , 825 .63 , 0 . 013853]
Apical_parameters [3]= [0 .93106 , 0 .14311 , 0 .0082072 , 787 .04 , 5 00 . 1 8]

Stem_parameters = np . ndarray (shape =(4 ,5))
Stem_parameters [0]= [0 .48596 , −0.42209 , −0.0012222 , 527 .25 , −0.0018240]
Stem_parameters [1]= [3 .7897 , 0 .10165 , 0 .0054307 , 591 .62 , 0 . 026216]
Stem_parameters [2]= [26 .072 , 5 .0104 , 0 .017599 , 285 .02 , 0 . 64334]
Stem_parameters [3]= [1 . 1 811 , −0.18931 , 0 .0018811 , 1159 .7 , 4 99 . 9 8]

77

Basal_parameters= np . ndarray (shape =(4 ,5))
Basal_parameters [0]= [0 .42072 , −0.31757 , −0.0034918 , 257 .05 , −0.11902]
Basal_parameters [1]= [6 .2114 , −1.0814 , 0 .0046929 , 546 .46 , −0.38962]
Basal_parameters [2]= [21 .808 , 5 .0073 , 0 .015379 , 200 .11 , −0.15656]
Basal_parameters [3]= [1 .8872 , 0 .35925 , 0 .0029808 , 744 .21 , 4 99 . 9 1]

Branches_parameters = np . ndarray (shape =(4 ,5))
Branches_parameters [0]= [0 . 5 8890 , −0.35605 , −0.0011595 , 616 .94 , −0.55906]
Branches_parameters [1]= [1 . 5 8 46 , 0 .82517 , 0 .012222 , 185 .19 , −0.22803]
Branches_parameters [2]= [2 9 . 2 37 , 4 .4077 , 0 .010437 , 311 .47 , −0.58806]
Branches_parameters [3]= [0 . 7 8439 , 0 .13001 , 0 .010582 , 521 .31 , 5 00 . 1 5]

de f s igmoid (x , d i s t anc e) :
' ' '
d i f f e r e n c e o f two exponen t i a l s f unc t i on implementation
kwargs : x : l i s t / tup l e / array , [xo , x1 , x2 , t0 , x3 , x4]

t : np . ndarray , time vec to r o f s i g n a l
r e tu rn s np . ndarray , s igmoid func t i on

' ' '
y=x [4]+(x [0] / (x [1]+np . exp(−x [2] ∗ (d i s tance−x [3]))))

re turn y

de f exp2 (x , t) :
' ' '
d i f f e r e n c e o f two exponen t i a l s f unc t i on implementation
kwargs : x : l i s t [delay , tau_rise , tau_decay , constant , amplitude]

t : np . ndarray , time vec to r o f s i g n a l
r e tu rn s : np . array , the d i f f e r e n c e o f two exponen t i a l s
' ' '
Tm=9.67
t=t−x [2]
y=np . z e ro s (t . s i z e)+Hay . c e l l . somav [8 0 0 0]
[i] = np . where ((t>=0))
A= (x [0] ∗Tm)/(x [0]−Tm)
B= (x [1] ∗Tm)/(x [1]−Tm)
num=abs ((A−B)∗np . exp(−t [i] /Tm)−A∗np . exp(−t [i] / x [0])+B∗np . exp(−t [i] / x [1]))
i f i . s i z e >0:

denom=abs ((A−B)∗np . exp(−t [i] /Tm)−A∗np . exp(−t [i] / x [0])+
B∗np . exp(−t [i] / x [1])) . max()
y [i]=Hay . c e l l . somav [8000]+x [3] ∗ (num/denom)
return y

t=Hay . c e l l . tvec
amp= []
r i s e =[]
decay = []
de lay = []

78

counter=0

f o r i in Hay . run_l i s t :
data = Hay . soma_voltage [counter]

i f i in Apical_indexes :
parameters=Apical_parameters
p r i n t ' Apical '

i f i in Basal_indexes :
parameters=Basal_parameters
p r i n t ' Basal '

i f i in Branches_indexes :
parameters=Branches_parameters
p r i n t ' Branches '

i f i in Stem_indexes :
parameters=Stem_parameters
p r i n t ' stem '

amp . append (s igmoid (parameters [0] , Hay . synapse_distance [counter]))
r i s e . append (s igmoid (parameters [1] , Hay . synapse_distance [counter]))
decay . append (s igmoid (parameters [2] , Hay . synapse_distance [counter]))
de lay . append (s igmoid (parameters [3] , Hay . synapse_distance [counter]))
counter+=1

" f i nd the s t a t i s t i c a l va lue s "
synapse_parameters= np . ndarray (shape=(counter , 4))
f o r i in range (counter) :

synapse_parameters [i] [0]= decay [i]
synapse_parameters [i] [1]= r i s e [i]
synapse_parameters [i] [2]= delay [i]
synapse_parameters [i] [3]=amp [i]

soma_voltage = np . z e r o s (shape=(counter , 11201))
f o r i in range (counter) :

soma_voltage [i]=exp2 (synapse_parameters [i] , t)

time_between_vmax_halfs =[]

f o r i in range (counter) :
" f i nd i n g time f o r maximun soma−re sponse : "
data=soma_voltage [i]

" f i nd the time between vmax−h a l f s f i t t e d s i g n a l "
vo l tage_sta r t=data [8 0 0 0 :]
index_top=(np . abs (vo l tage_sta r t)−amp [i]) . argmin ()
vmax_half=((amp [i])/2)+ data [8 0 0 0]
index_half_up= (np . abs (vo l tage_sta r t [: index_top]−vmax_half)) . argmin ()
index_half_down= (np . abs (vo l tage_sta r t [index_top :]−vmax_half)) . argmin ()

79

time_between_vmax_halfs . append (abs (Hay . c e l l . tvec [index_half_up+8000]
−Hay . c e l l . tvec [index_half_down+8000+index_top]))

" c a l c u l t e mean va lue s f o r the f i t t e d s i g n a l : "
mean_amp=sum(amp)/ counter
mean_delay=sum(delay)/ counter

" c a l c u l a t e mean va lue s f o r the Hay s i g n a l : "
voltage_max=Hay . voltage_max−Hay . c e l l . somav [8 0 0 0]
mean_Hay_amp=sum(voltage_max)/ counter
mean_Hay_delay=sum(Hay . t 0_ l i s t)/ counter
mean_time_between_vmax_halfs=sum(time_between_vmax_halfs)/ counter
mean_Hay_time_between_vmax_halfs=sum(Hay . time_between_vmax_halfs)/ counter

" c a l c u l a t e the standard dev i a t i on s f o r the f i t t e d s i g n a l : "
sd_amp=0
sd_delay=0
sd_time_between_vmax_halfs=0
f o r i in range (counter) :

sd_amp+=(amp [i]−mean_amp)∗∗2
sd_delay+=(delay [i]−mean_delay)∗∗2
sd_time_between_vmax_halfs+=(time_between_vmax_halfs [i]−
mean_time_between_vmax_halfs)∗∗2

sd_amp=np . sq r t (sd_amp/ counter)
sd_delay=np . sq r t (sd_delay/ counter)
sd_time_between_vmax_halfs=np . sq r t (sd_time_between_vmax_halfs/ counter)

" c a l c u l a t e the standard dev i a t i on f o r the Hay s i g n a l : "
sd_Hay_amp=0
sd_Hay_delay=0
sd_Hay_time_between_vmax_halfs=0

f o r i in range (counter) :
sd_Hay_amp+=(voltage_max [i]−mean_Hay_amp)∗∗2
sd_Hay_delay+=(Hay . t 0_ l i s t [i]−mean_Hay_delay)∗∗2
sd_Hay_time_between_vmax_halfs+=(Hay . time_between_vmax_halfs [i]−mean_Hay_time_between_vmax_halfs)∗∗2

sd_Hay_amp=np . sq r t (sd_Hay_amp/ counter)
sd_Hay_delay=np . sq r t (sd_Hay_delay/ counter)
sd_Hay_time_between_vmax_halfs=np . sq r t (sd_Hay_time_between_vmax_halfs/ counter)

" p l o t the EPSPs f o r po int model an Hay−model s epa r a t e l y "
p l t . subp lot (211)
f o r i in range (counter) :

p l t . p l o t (t , exp2 (synapse_parameters [i] , t))
p l t . y l ab e l (' F i t t ed s i g n a l [mV] ')
p l t . subp lot (212)
f o r i in range (counter) :

data=Hay . soma_voltage [i]

80

p l t . p l o t (t , data)
p l t . y l ab e l ('Hay s i g n a l [mV] ')
p l t . x l ab e l (' [ms] ')
p l t . show ()

Postboks 5003
NO-1432 Ås, Norway
+47 67 23 00 00
www.nmbu.no

	tittel: Neuron model reduction: From spatially extended biophysical models to simplified point models
	institutt: Norwegian University of Life SciencesFaculty of Environmental Science and TechnologyDepartment of Mathematical Sciences and Technology
	dato og studiepoeng: Master Thesis 201560 credits
	forfatter: Torgunn Halvorsen

