


Abstract

In this thesis we have tried to find if or when multiresponse Partial Least

Squares Regression(PLS2)predicts better than uniresponse PLS(PLS1).

With a simulation study and analysis of variance we have investigated

how PLS1 predicts with different simulation parameter settings. The result

showed that if we had small relevant eigenvalues, the predictor based on PLS1

does not predict well. We have also compared the estimated values with the

true values of parameters, with focus on eigenvalues and covariances. Then

we found that if we had small relevant eigenvalues, the estimated values was

often very different from the true parameters.

The estimated regression coefficients found by PLS1 and PLS2 differ.

We found empirical that for one component the PLS2 estimator is a linear

combination of the two PLS1 estimators, one for each response.

For prediction the two PLS1 predictors and PLS2 predictor provide very

similar result. The results showed that with some simulation parameter set-

tings PLS2 was a better predictor than PLS1. This happened if we had only

one common relevant component with a small relevant eigenvalue. Based on

analysis of variance we found that the difference in prediction error between

the two methods was larger, when the number of observations were few and

there was high degree of collinearity simultaneous. However the variation

between replications was found to be large. We have also tested the meth-

ods on real data sets, but PLS2 did not predict better than PLS1 on these.

Therefore we concluded with that as far as we have seen PLS1 is a better

choice as a predictor than PLS2.
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Sammendrag

I denne oppgaven har vi forsøkt å finne ut om eller n̊ar multirespons Par-

tial Least Squares Regression (PLS2) predikerer bedre enn unirespons PLS

(PLS1).

Med en simuleringsstudie og variansanalyse har vi undersøkt hvordan

PLS1 predikerer med forskjellige simuleringparameterinnstillinger. Resulta-

tet viste at hvis vi hadde små relevante egenverdier, s̊a vil prediktoren basert

p̊a PLS1 predikere d̊arlig. Vi har ogs̊a sammenlignet estimerte verdier med

de sanne verdiene fra parameterne, med fokus p̊a egenverdier og kovarianser.

Da fant vi at hvis vi hadde små relevante egenverdier, s̊a var de estimerte

verdiene ofte svært forskjellige fra de sanne parameterne.

De estimerte regresjon koeffisientene funnet av PLS1 og PLS2 er forskjel-

lige. Vi fant empirisk at for en komponent s̊a vil PLS2 estimatoren være en

lineær kombinasjon av de to PLS1 estimatorene, en for hver respons.

For prediksjon ga PLS1 prediktorene og PLS2 prediktoren svært lignende

resultat. Resultatene viste at med noen simuleringsparameterinnstillinger,

s̊a var PLS2 en bedre prediktor enn PLS1. Det skjedde n̊ar vi hadde kun

en felles relevant komponent med en liten relevant egenverdi. Basert p̊a en

variansanalyse fant vi at forskjellen i prediksjonsfeil mellom de to metodene

var større n̊ar antall observasjoner var f̊a og det var høy grad av kollinearitet

samtidig. Men variasjonen mellom replikasjoner ble funnet til å være stor.

Vi har ogs̊a testet metodene p̊a virkelige datasett, men PLS2 predikerte ikke

bedre enn PLS1 p̊a disse. Derfor har vi konkludert med at s̊a langt som vi

har sett, s̊a er PLS1 et bedre valg som prediktor enn PLS2.
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Chapter 1

Introduction

1.1 Introduction

If there are more than one response that is to be predicted, we can either

use an uniresponse or a multiresponse model. Using uniresponse we are con-

structing separate models for each response, while using multiresponse we are

constructing one model for all responses. In [Höskuldsson and Esbensen, 2003]

the authors argue that ’If we cannot distinguish the residuals derived by the

model which is common for all YYY variables from the ones obtained by using

separate models, we may use either approach’. If the separate uniresponse

model provide significant smaller residuals, the uniresponse models should

be used. In some situation it is desirable to use only one model for all re-

sponses, but if the multiresponse model gives the same prediction as or worse

prediction than the separate uniresponse models, there is no point in using

multiresponse in prediction.

Many statistical methods do not yield different prediction, or estimated

regression coefficients, when modeling as seperate uniresponse models com-

pared to one multireponse model. The Least Squares regression does not use
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any possible correlation or other information among the responses. Therefore

it will provide equal predictors. Whereas Partial Least Squares(PLS) is one

method that does not yield similar results for uniresponse and multiresponse

modeling. Uniresponse PLS(PLS1) will fit separate models for each response

while multiresponse PLS(PLS2) will fit one model for all responses. It is only

useful to use PLS2 in prediction if it provides better predictions than PLS1.

Hence our main goal is to find if and when PLS2 predicts better than PLS1.

In [Frank and Friedman, 1993] the authors suggest that, unless response

variables are uncorrelated, there might be something to gain by considering

them together, compared to performing separate regressions.

In [Martens and Næs, 1989] similar argumentation is used, the authors claim

that PLS2 is useful when the responses are strongly intercorrelated by sta-

bilizing the determination of the loading weights against random noise in the

individual responses. The correlation, both conditional and unconditional

between responses, may affect the PLS1 and PLS2 model differently and

have to be considered.

It is not only the response correlations that might result in PLS2 model

predicting better than PLS1. Other aspects as the relevant components, the

size of relevant eigenvalues, collinearity, the number of observations and et

cetera are possible factors that influence the prediction ability of the models.

In this thesis we will first look at a simulation study at how PLS1 predicts in

several situation before looking at how PLS1 and PLS2 estimate regression

coefficient differently and in the end we will try to find if there exist situations

where PLS2 predicts better than PLS1.
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Chapter 2

Stastical model and methods

2.1 Notation

In this thesis we use the following notation with a few exceptions:

All random variables are written with latin letters.

• All one-dimensional random variables are written with capital letter.

Example Y.

• A vector is written with bold, lowercase latin letter. Example

y =


Y1

Y2
...

Yn


• A matrix of random variables is written with capital, bold letters, ex-

ample X. In some situations the dimensions of the matrix is given as

X
n×p

. The matrix has n rows and p columns.

• The transpose of a vector y is written yt
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All parameters are written with greek letters

• A one-dimensional parameter is written with lowercase letter, example

β

• A vector of parameters is written with lowercase, bold letter, example

βββ

• A matrix with parameters is written with a capital, bold letter, example

ΣΣΣ

• An estimate of a parameter is written with a hat. An estimate of β is

written as β̂

2.2 Variables and Models

The number n is the number of observations in the dataset. For each obser-

vation, a response variable Y and p explanatory variables x is measured for

the uniresponse case. The n observations are collected in a response vector

y
n×1

and an explanatory matrix X
n×p

. For the multiresponse case with two

responses the response is a matrix Y
n×2

.

All variables are centred.

y∗j = yj − ȳj1

and

x∗i = xi − x̄i1

Where ȳj is the average of the j-th response vector, and j=1,2 for multire-

sponse, and j=1 for uniresponse. the vector 1 consist of ones. x̄i is the
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average of the i-th explanatory vector, and i=1,...,p. We let xi = x∗i and

yj = y∗j(with a few exceptions).

The models are based on random calibration. The variables are drawn at

random.

2.2.1 Uniresponse Model

For the uniresponse case we assume that Y
1×1

and x
p×1

are multivariate normally

distributed as:

Y
x

 ∼ Np+1

µy
µxµxµx

 ,
 σ2

y σσσtxy

σσσxy ΣΣΣxx

 (2.1)

where µy is the expected value of Y and µxµxµx is a vector with the expected

values for x, σ2
y is the variance of Y, σσσxy

p×1
is the covariance between x and Y

and ΣΣΣxx
p×p

is the variance matrix for x. Due to centring, µy = 0 and µxµxµx = 0.

The variance matrix ΣΣΣxx can be written as

ΣΣΣxx =

p∑
i=1

λieeeieee
t
i (2.2)

where λi is the i-th largest eigenvalue of ΣΣΣxx and eeei is it’s corresponding

eigenvector. All p eigenvectors are orthogonal and has length 1. The matrix

XXX tXXX(which can be used as an estimate of ΣΣΣxx usually by dividing by n− 1)

can be decomposed in a similar way.

XXX tXXX =

p∑
i=1

λ̂iêeeiêee
t
i

Where λ̂i is the i-th largest eigenvalue of XXX tXXX.

The conditional distribution of Y |xxx can be written as

Yi|xxxi = βββtxxxi + εi, i = 1, 2, ..., n
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which is exactly the linear model. Here βββ is an unknown p × 1 parameter

vector that must be estimated and ε is the error-term. Alternative we can

write the model as

yyy = XXXβββ + εεε (2.3)

Where yyy is the n× 1 response vector and XXX is the n× p explanatory matrix.

εεε is multivariate normally distributed

εεε ∼ Nn(000,ΣΣΣε),

where ΣΣΣε is a matrix of parameters. If the error-terms are independent, the

matrix ΣΣΣε is diagonal, and if the variance is constant, then

εεε ∼ N(0, σ2III),

where σ2 is an unknown parameter.

Since Y and x are normally distributed then also (Y | x) is normally

distributed. The expected value of (Y | x) is

E(Y | x) = µy + σσσtxyΣΣΣ
−1
xx (x− µxµxµx)

and the variance is

V ar(Y | x) = σ2
y − σσσtxyΣΣΣ−1xxσσσxy

[Johnson and Wichern, 2007]. Then

(Y | x) ∼ N(µy + σσσtxyΣΣΣ
−1
xx (x− µxµxµx), σ2

y − σσσtxyΣΣΣ−1xxσσσxy)

Since µy = 0 and µxµxµx = 0 due to centring the data

(Y | x) ∼ N(σσσtxyΣΣΣ
−1
xxx, σ2

y − σσσtxyΣΣΣ−1xxσσσxy)
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Since E(Y | x) = βββtx, that means

βββ = ΣΣΣ−1xxσσσxy (2.4)

and that

σ2 = σ2
y − σσσtxyΣΣΣ−1xxσσσxy

The population coefficient of determination R2 is the correlation between Y

and βββtxxx, squared. It can be written as

R2 = Corr(βββtxxx, Y )2 =
σσσtxyΣΣΣ

−1σσσxy

σ2
y

This gives

σ2 = σ2
y(1−R2)

2.2.2 Multiresponse Model

The multiresponse case with two responses is similar to the uniresponse case.

The vectors y
2×1

and x
p×1

is normally distributed:y

x

 ∼ Np+2

µµµy
µµµx

 ,
ΣΣΣyy ΣΣΣt

xy

ΣΣΣxy ΣΣΣxx


where µµµy is a vector with the two expected values for the two corresponding

responses. And ΣΣΣyy
2×2

is the covariance matrix for the responses and ΣΣΣxy
p×2

is the

covariance between x and y. The model used for multiresponse is

yi = βββtxi + εεεi, i = 1, 2, ..., n

where βββ is a p×2 matrix with unknown parameters and εεε is a 2×1 vector

of error terms for the two responses. Alternative we can write the model as

YYY
n×2

= XXX
n×p

βββ
p×2

+ εεε
n×2

(2.5)
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Again it is interesting to look at the conditional distribution (y | x). The

expected value is

E(y | x) = µµµy + ΣΣΣt
xyΣΣΣ

−1
xx (x− µxµxµx)

Since all variables are centred

E(y | x) = ΣΣΣt
xyΣΣΣ

−1
xxx

The variance is

V ar(y | x) = ΣΣΣyy −ΣΣΣt
xyΣΣΣ

−1
xxΣΣΣxy = V ar(εεε) (2.6)

The conditional distribution is then

(y | x) ∼ N2(ΣΣΣ
t
xyΣΣΣ

−1
xxx,ΣΣΣyy −ΣΣΣt

xyΣΣΣ
−1
xxΣΣΣxy)

This means that

βββ
2×p

t = ΣΣΣt
xyΣΣΣ

−1
xx

which is similar to the uniresponse 2.4

βββ
1×p

t = σσσtxyΣΣΣ
−1
xx

The unconditional correlation between the responses is

Corr(Y1, Y2) = ρ =
σy1y2
σy1σy2

The conditional variance based on eq. 2.6 between Y1 and Y2 is

Cov(Y1|xxx, Y2|xxx) = V ar(ε1, ε2) = σ2
y1y2
− σσσtxy1ΣΣΣ

−1
xxσσσxy2 =

ρ
√
σ2
y1
σ2
y2
− σσσtxy1ΣΣΣ

−1
xxσσσxy2
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Using

R2
1 =

σσσtxy1ΣΣΣ
−1
xxσσσxy1
σ2
y1

and R2
2 =

σσσtxy2ΣΣΣ
−1
xxσσσxy2
σ2
y2

the conditional correlation is

Corr(ε1, ε2) = % =
ρ
√
σ2
y1
σ2
y2
− σσσtxy1ΣΣΣ

−1
xxσσσxy2√

σ2
y1
σ2
y2

(1−R2
1)(1−R2

2)
(2.7)

We will look closer at the conditional correlation in section 3.2.

2.3 Estimation

In our models (see eq. 2.3 and 2.5) βββ is unknown and must be estimated.

For this purpose there are many methods to choose among. A natural choice

should be the estimator which has the best performance. The performance

of an estimator is measured by finding the mean square error(MSE) which

can be defined as[Bickel and Doksum, 1977]

MSE = E(θ̂ − θ)2

With some calculations

E(θ̂ − θ)2 =

E[(θ̂ − E(θ̂))− (θ − E(θ̂)]2 =

E[(θ̂ − E(θ̂))2 − 2(θ̂ − E(θ̂))(θ − E(θ̂)) + (θ − E(θ̂))2] =

E(θ̂ − E(θ̂))2 + E(θ − E(θ̂))2 =

V ar(θ̂) + [E(θ̂)− θ]2

So it is a trade-off between biasedness and variance of the estimator. This is

for the one parameter situation. If we have a vector of parameters the MSE

is calculated as

E[(θ̂θθ − θθθ)(θ̂θθ − θθθ)t] = V ar(θ̂θθ) + (E(θ̂θθ)− θθθ)(E(θ̂θθ)− θθθ)t (2.8)
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To compare two estimators(θ̂θθ1 and θ̂θθ2) a suggestion is to use the trace of

MSE. If

tr(E[(θ̂θθ1 − θθθ)(θ̂θθ1 − θθθ)t]) < tr(E[(θ̂θθ2 − θθθ)(θ̂θθ2 − θθθ)t]) (2.9)

then θ̂θθ1 is said to be a better estimator than θ̂θθ2. If we set θ̂θθ2 = β̂ββ2 = 000(the

nullmodel as described in section 2.8.1) and θ̂θθ1 = β̂ββ1 then we get that equation

2.9 turns out to be

tr(E[(β̂ββ1 − βββ)(β̂ββ1 − βββ)t]) < tr(E[(β̂ββ2 − βββ)(β̂ββ2 − βββ)t])

E[(β̂ββ1 − βββ)t(β̂ββ1 − βββ)] < E[(000− βββ)t(000− βββ)]

E[(β̂ββ1 − βββ)t(β̂ββ1 − βββ)]

E(βββtβββ)
< 1

E[(β̂ββ1 − βββ)t(β̂ββ1 − βββ)]

βββtβββ
< 1 (2.10)

The result in eq. 2.10 can also be used as a measure of estimation error of

β̂ββ. For some methods we can not find the E(β̂ββ) or V ar(β̂ββ) by calculations.

Therefore we need to simulate data to be able to estimate them instead. If

the number on the left side of eq 2.10, from now on called the estimation

error, is less than 1 then we have an estimator of β̂ββ that is better than the

nullmodel. To estimate the estimation error we use the following equation

1

r

r∑
i=1

(β̂ββ1 − βββ)t(β̂ββ1 − βββ)

βββtβββ
(2.11)

If βββ
p×2

is a matrix, then eq. 2.10 can not be used to calculate the estimation

error. A solution to this is to split up the matrix into two vectors and split

up the estimator into two vectors.

βββ
p×2

=

[
βββ1
p×1

βββ2
p×1

]
and β̂ββ

p×2
=

[
β̂ββ1
p×1

β̂ββ2
p×1

]
Then for each vector in the matrix with corresponding estimator vector,

we calculate the estimation error as in eq. 2.10. We have then split the

estimation error in two for the p× 2 parameter matrix.
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2.4 Prediction

Prediction is to ”guess” the value of a new response given the corresponding

new explanatory values. We must of course assume that there is some de-

pendencies between the Y variables and the x-variables, which follows from

the models described in 2.3 and 2.5. Since the true βββ is unknown it has to

be estimated by some trainingdata, which is from the same distribution as

the new observation we want to predict. We predict

Ŷ = Ȳ + β̂ββ
t
(xxx− x̄xx) (2.12)

for uniresponse. In 2.12 Ŷ is the prediction of Y, x̄xx is the mean of each

explanatory variable from the trainingdata and Ȳ is the mean of the response

in the training data. For the multiresponse case

ŷyy = ȳyy + β̂ββ
t
(xxx− x̄xx) (2.13)

In 2.13 ŷyy is a vector with the prediction of each element respectively in y

and β̂ββ, ȳyy and x̄̄x̄x is estimated based on the trainingdata.

2.4.1 Prediction Error, uniresponse

The predicted value will (nearly) always deviate from the true value. This is

due to the fact that βββ is estimated and to the error terms(ε) in the model.

The prediction error is a measure of how well a model predicts any new

observations. It is defined as

θ2 = E(Ŷ − Y )2 (2.14)

A practician needs either a test-set or to do cross-validation to be able to

estimate the prediction error(see sec 2.5). It is usually done by calculating
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the Mean Square Error of Prediction(MSEP)

MSEP =
1

n

n∑
i=1

(Yi − Ŷi)2

However in simulation studies it is possible to have many replicates, and the

expected values in 2.14 can be estimated by the mean. We assume that the

expected values of xxx is zero to simplify the calculations and it is then shown

that the prediction error is

θ2 = E(Ŷ − Y )2 = E[β̂ββ
t
xxx− (βββtxxx+ ε)]2 =

E[(β̂ββ
t
xxx− Eβ̂ββ

t
xxx)− (βββtxxx− Eβ̂ββ

t
xxx)− ε]2 =

E[(β̂ββ − E(β̂ββ))txxx− (βββ − E(β̂ββ))txxx− ε]2 =

E[xxxt(β̂ββ − E(β̂ββ))(β̂ββ − E(β̂ββ))txxx+ (βββ − Eβ̂ββ)txxxxxxt(βββ − Eβ̂ββ) + ε2] =

tr(V ar(β̂ββ)ΣΣΣxx) + (βββ − Eβ̂ββ)tΣΣΣxx(βββ − Eβ̂ββ) + σ2 =

σ2 + E(β̂ββ − βββ)tΣxx(β̂ββ − β)β)β) (2.15)

Notice that the prediction error does not need any new observations. This

make us able to estimate the prediction error without training-data or cross-

validation. The natural estimator of θ2 is

¯̂
θ2 =

1

r

r∑
i=1

θ̂2 = σ2 +
1

r

r∑
i=1

(β̂ − β)tΣxx(β̂ − β)) (2.16)

Where r is the number of replicates. When r is sufficiently high,
¯̂
θ2 approaches

θ2.

E(
¯̂
θ2)−→θ2 and V ar(

¯̂
θ2)−→0

Then

¯̂
θ2

P−→ θ2, when r −→∞
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Therefore 2.16 is a consistent estimator of θ2. To find how the prediction

error varies between replications we can estimate the standard deviation as

ŝd(θ̂2) =

√√√√√ r∑
j=1

(θ̂2j −
¯̂
θ2)2

r − 1
, j = 1, ..., r (2.17)

If we look closer to eq. 2.15, we see that the lower limit of the prediction

error is σ2. That happens when β̂ββ = βββ which yields Ŷ = E(Y |xxx). In terms

of R2 and σ2
y the lower limit is

σ2 = σ2
y(1−R2)

As R2 increases, σ2 decreases and the lower limit of the prediction error

decreases. With higher R2 we could get better predictions.

R2−→1, then σ2−→0.

There is no upper limit to the prediction error. If the prediction error is

greater than the prediction error for the Null-Model(as described in section

2.8.1), then it is better to use the mean of the response as a prediction instead.

We do not consider or use models that gives a higher prediction error than

that of the Null Model.

If we center the variables, the prediction error is not as described in eq.

2.16. We have to multiply with n+1
n

. This will in most cases(when n is

large enough) not change the prediction error much. Therefore we choose to

estimate the prediction error as described in eq.2.16.

2.4.2 Prediction Error Multiresponse

The combined prediction error for multiresponse can be written on the form

θ2 = E(ŷyy − yyy)tAAA−1(ŷyy − yyy)

13



Where AAA could be III,ΣΣΣyy or ΣΣΣy|x[Vining, 1998].

For uniresponse the prediction error was defined as in eq. 2.14. If we use

a similar measure of prediction error for multi response it could be

θ2 = E(ŷyy − yyy)t(ŷyy − yyy) =
2∑
i=1

E(Ŷi − Yi)2 = θ21 + θ22 (2.18)

which is the sum of two prediction errors as we defined it in eq. 2.14. Here

AAA = III.

There are two possible options for a covariance matrix for AAA. The uncon-

ditional or the conditional covariance matrix for yyy. Using the unconditional

covariance matrix the distance is

θ2 = E(ŷyy − yyy)tΣΣΣ−1yy (ŷyy − yyy) =

Using the conditional covariance matrix

θ2 = E(ŷyy − yyy)tΣΣΣ−1y|x(ŷyy − yyy) =

E(ŷyy − yyy)t(ΣΣΣyy −ΣΣΣt
xyΣΣΣ

−1
xxΣΣΣxy)

−1(ŷyy − yyy)

All 3 options gives us a combined prediction error for the two responses.

By using a combined distance of the two responses it is not possible to detect

if a prediction method does better in predicting the first response and not as

well for the second response. A fourth option is to estimate two prediction

errors, one for each response. Then we can use the same prediction error as

we did for uniresponse(see eq. 2.16) and we can compare the prediction error

for multiresponse directly with the prediction errors for uniresponse models.

2.4.3 Prediction Error and Model Complexity

The prediction error can mainly be explained by three parts. The model er-

ror, the estimation error and the error term ε [Martens and Næs, 1989]. The

14



error term we can not do anything with. The model error is the underlying

bias that is due to not including all components or variables. Adding more

and more terms in the model(it can be explanatory variables, components or

even the number of responses), making it more complex will cause the model

error to decrease(see Figure 2.1). By adding more terms in the model we

will increase the number of parameters to estimate from a set of calibration

data. As a consequence the estimation error will increase and the prediction

error increases. This is what often is called overfitting the model. Using to

few terms, the model error is large, but the estimation error is small because

there are only a few parameters to be estimated with the available calibration

data(underfitting). We should not include to many predictors or to few. To

find the right number of components or predictors we have to find the point

where the estimation error and the model error balance each other to find

the minimum prediction error.

Figure 2.1: How the model complexity affects the prediction error

We can always lower the prediction error by including more observations.

But this might not be possible or to expensive. Later it is shown that in
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some situation, the effect of adding more observations is small.

2.5 Validation

If we don’t know the value of the true parameters, we have to estimate the

prediction error in another way than we did in eq. 2.16. As an estimator

of the prediction error we use Mean Square Error of Prediction(MSEP) the

formula will vary slightly for different validation methods.

2.5.1 Test set

The basic idea is that we split the observations in two groups. One of the

groups of observations is used to fit the model, called training data. The a

observations in the second group, usually called a test set, is predicted using

the fitted model. We then estimate MSEP as

MSEPtest =
1

a

a∑
i=1

(Yi − Ŷi)2

where Yi is a new observation from the test set and Ŷi is the predicted value

of the new observation when using the model fitted with training data. This

requires that we have enough observations to fit the model well and enough

left to get a good estimate of the prediction error.

2.5.2 Cross Validation(CV)

When there are too few observations to split the data in two groups we can

do cross-validation instead. We will consider the Leave One Out Cross Val-

idation. We leave out one observation and fit the model with the remaining

observations. Then we predict the observations left out and estimate it’s pre-

diction error. We repeat the procedure but leave out another observations.
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This we do for all observations and the MSEP can be estimated as

MSEPCV =
1

n

n∑
i=1

(Yi − Ŷi)2

2.6 Relevant Components

A component is a linear combination of the explanatory variables. To be rel-

evant it has to have non-zero correlation to the response. From [Næs and Helland, 1993]

they define a component to be relevant if there is some eigenvector(eeej, see

eq. 2.2) of ΣΣΣxx where

eeetjσσσxy 6= 0 (2.19)

These eigenvectors are called relevant eigenvectors and their corresponding

eigenvalues are called relevant eigenvalues. A relevant component is the

linear combination eeetjxxx. The eigenvectors where eeetjσσσxy = 0 are called the

irrelevant eigenvectors and its corresponding eigenvalues are the irrelevant

eigenvalues. The irrelevant components are the linear combination eeetjxxx of

these eigenvectors.

If we have m relevant components we can express these as

zzz = RRRtxxx

where RRR
p×m

consist of the m relevant eigenvectors, not necessarily the eigen-

vectors with largest eigenvalues. The irrelevant components can be expressed

as

vvv = UUU txxx

where UUU
p×(p−m)

consist of the p−m irrelevant eigenvectors. Then

ΣΣΣxx = RRRΛΛΛmRRR
t +UUUΛΛΛp−mUUU

t

17



Where ΛΛΛm is a diagonal matrix with the m relevant eigenvalues and ΛΛΛp−mis a

diagonal matrix with the p−m irrelevant eigenvalues. We have divided the

space spanned by ΣΣΣxx into two orthogonal subspaces spanned by UUU and RRR,

where one spans the relevant space(RRR) and the other the irrelevant space(UUU).

2.7 Collinearity

When the columns of X are linear dependent or nearly linear dependent, then

the X-matrix is said to be collinear(or multicollinear) [Martens and Næs, 1989].

The set (xxx1,xxx2, ...,xxxp) is said to be linear dependent if there exist weights

c1, c2, ..., cp that are not all zero, such that

c1xxx1 + c2xxx2 + ...+ cpxxxp = 000

[Lay, 2012]. When n < p the matrix XXX does not have full rank and the

columns inXXX is linearly dependent and therefore collinearity is present. This

causes a problem for some prediction methods. One example is the Least

Squares Regression as described in section 2.8.2. The method can not be

used when n < p because XXX tXXX is not invertible.

Another problem is when the columns in XXX are nearly collinear

p∑
i=1

cixxxi ≈ 0

When this problem occur, the ratio between the largest and smallest eigen-

value is large. For Least Squares Regression, the smallest eigenvalues in the

matrix

(XXX tXXX)−1 =

p∑
i=1

eie
t
i

λ̂i

causes problems. The smallest eigenvalues has the greatest effect on the

matrix above. A small change in these eigenvalues will change the matrix
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completely. As a result we get a large variation. Many methods(Principal

Component regression, Partial Least Squares are a few examples) handle

this problem by creating some new variables(less then p) that are linear

combinations of the original variables.

2.8 Prediction Methods

It is impossible to find a uniform best estimator of βββ or a method that always

gives the best prediction of a new observation. There exists several methods

to estimate βββ, some are presented in the sections below.

Some prediction methods reduce the number of explanatory variables by

using some linear combinations of the explanatory variables, by creating a

transformation matrix R with rank k < n and k < p. Let

Z
n×k

= XXX
n×p

R
p×k

and use Z instead of X. The matrix Z will hopefully contain much of the

information about Y which already is in XXX. We assume the model

yyy = Zβββz + εεεz

We estimate β̂ββz by Least Squares method.

β̂ββz = (ZtZ)−1Ztyyy

= (RtXXX tXXXRt)−1RtXXX tyyy

We transform back by

β̂ββ = Rβ̂ββz = R(RtXXX tXXXR︸ ︷︷ ︸
k×k

)−1RtXXX tyyy
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The matrix R is dependent on the method used and the number of components(k).

In Partial Least Squares R is dependent on Y , which means that it is im-

possible or extremely difficult to calculate the expectation and variance of β̂ββ

which is needed to find the prediction error(see section 2.4.1).

There are several methods to estimate βββ. A few examples are Principal

Component Regression, Ridge Regression and Lasso [Hastie et al., 2001]. All

these methods will give the same result, whether we model as uniresponse or

multireponse. One of the few methods that will give different result, whether

we model as uniresponse or multiresponse, is Partial Least Squares.

2.8.1 ’The Null Model’

In some situations when there is no or little correlation between Y and xxx it

might be a good idea to predict

Ŷ = Ȳ

by letting β̂̂β̂β = 000. This means that we do not consider any information that

might be in the X-variables. The prediction error for the Null Model is

E(Ȳ − Y )2 = σ2
y (2.20)

when we exclude the n+1
n

term of the prediction error.

2.8.2 Least Squares Regression(LS)

The Least Squares Regression is sort of the opposite of the Null Model,

because it uses all information in X. If k = p and rules for inverting and

transposing [Lay, 2012] we have

β̂ββ = RR−1(XXX tXXX)−1(Rt)−1RtXXX tyyy = (XXX tXXX)−1XXX tyyy (2.21)
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the least squares estimator of βββ. It minimizes the residual sums of squares

[Mardia et al., 1982]. It can also bee shown that the Least Squares estimator

is an unbiased estimator of βββ.

E(β̂ββ) = (XXX tXXX)−1XXX tE(yyy) = ((XXX tXXX)−1XXX t(XXXβββ + E(εεε)) = βββ

And the variance of β̂ββ is

V ar(β̂ββ) = (XXX tXXX)−1XXX tV ar(yyy)XXX(XXX tXXX)−1

= (XXX tXXX)−1XXX tIIIσ2XXX(XXX tXXX)−1 = σ2(XXX tXXX)−1

The MSE of βββ(eq. 2.8) for LS is the same as the variance of the estimator(due

to unbiasedness). The trace of a matrix is equal to the sum of its eigenvalues

[Lay, 2012]. Then

Tr(V ar(β̂ββ)) = Tr(σ2(XXX tXXX)−1) = σ2Tr(Λ̂ΛΛ
−1

) = σ2

p∑
i=1

1

λ̂i
(2.22)

Using this result for the estimation error in eq. 2.10 and using the notation

in sec 3.1 we find the estimation error to be

σ2
p∑
i=1

1

λ̂i

βββtβββ
=

σ2
p∑
i=1

1

λ̂i

σσσtxy(ΣΣΣ
−1
xx )ΣΣΣ−1xxσσσxy

=

(1−R2)
p∑
i=1

1

λ̂i

σσσtzy(ΛΛΛ
−1)2σσσzy

(2.23)

When we have eigenvalues that falls quikly, meaning we have many small

eigenvalues and a few large ones, the estimation by Least Squares method of

βββ has high variation(see sec 2.7).

If there is a linear dependency meaning that X has a rank < p the Least

Squares Estimator can not be estimated as in eq. 2.21, because XXX tXXX is not

invertible. This happens when n < p.
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2.8.3 Partial Least Squares Regression(PLSR)

The PLSR-algorithm tries to find the components that maximizes the cov-

ariance between the response and explanatory variables. The algorithm will

give different results for uniresponse and multiresponse due to that YYY affects

the modeling of XXX(it influences the matrix R). Except for when p com-

ponents are included. Then both the uniresponse PLSR and multiresponse

PLSR will give the Least Squares solution. If zero components are included

the result is the Null Model.

Uniresponse

There are several different PLSR algorithms. The original PLSR algorithm

was developed by Wold [Martens and Næs, 1989] and is presented here. The

algorithm can be divided into several steps.

1. All variables(both explanatory(XXX0) and response(yyy0) are centred and

the number of components to find is set to Kmax. It should at least

be higher then the number of phenomena we expect to find in XXX. The

following 5 steps(a - e) are repeated Kmax times.

(a) Find loading weights wwwk as

ŵwwk = XXX t
k−1yyyk−1

and scale the loading weights to length 1.

(b) Estimate the scores t̂ttk by

t̂ttk = XXXk−1ŵwwk

(c) Estimate the X-loadings p̂ppk by

p̂ppk =
XXX t

k−1t̂ttk

t̂tt
t

kt̂ttk
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(d) Estimate the Y-loadings q̂k by

q̂k =
yyytk−1t̂ttk

t̂tt
t

kt̂ttk

(e) Create new XXX and yyy residuals by subtracting the estimated effect

and set these as XXXk and yyyk

ÊEE = XXXk−1 − t̂ttkp̂pptk = XXXk

f̂ff = yyyk−1 − t̂ttkq̂k = yyyk

k = k + 1

2. Determine the number of components(K) to be included, usually by

using some sort of validation.

3. Compute β̂ββ with K components

β̂ββ = ŴWW (P̂PP
t
ŴWW )−1q̂qq

where

ŴWW = [ŵww1...ŵwwK ]

P̂PP = [p̂pp1...p̂ppK ]

q̂qq = [q̂1...q̂K ]

Multiresponse

The algorithm for multiresponse is almost the same as for uniresponse. We

replace the vectors fff,yyy and qqq with matrices and introduce the vector ûuuk

that replaces the vector yyyk−1 when finding the loading weights. In the first

iteration ûuuk is given some starting values(ex one of the columns in YYY ). The

following steps are repeated until t̂ttk converges.
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1.

ŵwwk = XXX t
k−1ûuuk and scale it to length 1.

2. estimate the scores, X-loadings and Y-loadings as for uniresponse.

3. check if t̂ttk has converged. If not estimate ûuuk by

ûuuk = YYY k−1q̂qqk(q̂qq
t
kq̂qqk)

−1

and go back to step 1.

When t̂ttk converges we can createXXX and YYY residuals as we did for uniresponse.

And repeat the procedure Kmax times. Then βββ can be estimated the same

way as for uniresponse.

β̂ββ
p×2

= ŴWW (P̂PP
t
ŴWW )−1Q̂QQ

If we include only one component the PLSR-solution is

β̂ββ
p×2

= ŵww(p̂pptŵww︸ ︷︷ ︸
p×1

)−1 q̂qq
1×2

= ŵww(p̂pptŵww︸ ︷︷ ︸
p×1

)−1[q̂1 q̂2] = [β̂ββ1

q̂2
q̂1
β̂ββ1]

Which means that the two β̂ββ’s are parallel when one component is included.

Since (p̂pptŵww)−1 is a scalar, β̂ββ
p×2

can be written as

β̂ββ
p×2

= ŵww[
q̂1

p̂pptŵww

q̂2

p̂pptŵww
] = ŵww[k1 k2] (2.24)

for one component.

For simplicity we will call uniresponse PLSR, PLS1 and multireponse

PLSR, PLS2. The PLS-algorithm used in the simulation study is the Kernel

PLS[Dayal and MacGregor, 1997].
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2.9 Comparing β̂ββ’s from PLS1 and PLS2

Later in this study we had a suspicion that the PLS2 estimators is an average

or linear combination of PLS1 estimators. We let β̂ββPLS2,Yi be β̂ββ when using

PLS2 as estimator for the i-th response. Similar for PLS1. If we fit two

models, one for each PLS2 estimator

β̂ββPLS2,Yi = α1β̂ββPLS1,Y1 + α2β̂ββPLS1,Y2 + εεε, i = 1, 2 (2.25)

with LS for each component included, we should be able to detect if PLS2

β̂ββ’s is an average or linear combination of PLS1 β̂ββ’s.

2.10 Analysis of Variance(ANOVA)

In the simulations we have several parameters which decides the distribution

of the variables. We let each parameter have one high and one low value,

hence we consider the parameters as factors with two levels each. To invest-

igate which of the parameters that affect the prediction error the most, an

Analysis of Variance(ANOVA) can be performed. In a more general situation

lets say that we only have one factor with a levels and one response. We can

use the model

yij = µ+ τi + εij,

i = 1, 2, ..., a

j = 1, 2, ..., n

where yij is the response for the ith factor level and observation number

j. It should not be confused with the response Y or yyy in the models

described in sec. 2.2.1 and sec. 2.2.2. The parameter µ is the over-all

mean. In other words the expected mean of all the observations. And τi

is the effect of treatment or factor level i. This is a single-factor analysis

of variance(ANOVA)[Montgomery, 2013]. The model errors(εij) are assumed
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to be normally and independent distributed with mean 0 and variance σ2

(not the same as σ2 mentioned in sec. 2.2.1). The variance is assumed to be

constant for all factor levels. We have the restriction that

a∑
i=1

τi = 0

What we want to test is if the factor has any effect at all.

H0 : τ1 = τ2 = ... = τa = 0

H1 : τi 6= τj for at least one pair where j 6= i

This is done by using a F-test.

F =
MSG

MSE
∼ Fa−1,N−a

Where N is the total number of observations, MSE is the Mean Sum Squared

Error and MSG is the Mean Sum Squared Group.

MSE =

a∑
i=1

ni∑
j=1

(yij − ȳi.)2

N − a

And

MSG =

a∑
i=1

ni(ȳi. − ȳ..)2

a− 1

Where ni is the number of observations of factor level i.

For two factors, τ and κ with a and b levels, we have the model

yijk = µ+ τi + κj + (τκ)ij + εijk,


i = 1, 2, ..., a

j = 1, 2, ..., b

k = 1, 2, ..., n
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where (τκ)ij is the interaction between the two factors(two-factor interac-

tion). Meaning that the effect of κ is dependent on the level of τ . The effect

of κ is different for the for different levels of τ . We have the restriction that

a∑
i=1

τi = 0,
b∑

j=1

κj = 0,
a∑
i=1

(τκ)ij =
b∑

j=1

(τκ)ij = 0

We can extend the model to l factors, and add more complex interactions up

to l-factor interaction.
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Chapter 3

Simulation

To figure out what structures works better than others we need a method

of simulating data where we know the true structure. The R-package Simrel

gives us the tool to do exactly that [Sæbø, 2015]. With only a few parameters

we can decide the dimensions of the Y and the X matrix and their simulated

distribution with only a few parameters.

3.1 The parameters in the simulation pack-

age for uniresponse

In the uniresponse case we must specify some parameter values. Those are

listed in Table 3.1.
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Table 3.1: Simulation parameters with explanation

Parameter Explanation

n Number of observations

p Number of explanatory variables

m Number of relevant components

q Number of relevant predictors

γ Level of collinearity in ΣΣΣxx

relpos Vector with position for relevant components

R2 The correlation between Y and βββtxxx

The Simrel package simulate data in the following way[Sæbø et al., 2015].

We let the expected values be zero(µy = 0 and µµµx = 000). The variance of Y ,

σ2
y is 1. The matrix EEE

p×p
consist of the p orthonormal eigenvectors(see eq. 2.2)

for ΣΣΣxx. Let

zzz = EEEtxxx

Since E has full rank(p) we can always rotate zzz back to xxx by Ezzz = EEtxxx = xxx,

without loosing any information in xxx.

V ar(zzz) = EEEtV ar(xxx)EEE = EEEtΣΣΣxxEEE = ΛΛΛ

ΛΛΛ is a diagonal matrix with the eigenvalues of ΣΣΣxx on the diagonal. The

eigenvalues are decided by the simulation parameter γ and is calculated with

the function

λj = e−γ(j−1), j = 1...p

The first eigenvalue is e−γ(1−1) = 1. If γ has a high value, then the eigenvalues

fall quickly and the collinearity between the X variables is high. Figure 3.1

gives an example of how quickly the eigenvalues decline for two different γ’s

29



Figure 3.1: The Eigenvalues for each eigenvector or component for two dif-

ferent γ’s. We can see that the Eigenvalues decline much faster for a higher

γ.

Further we have that

Cov(zzz, Y ) = σσσzy = EEEtCov(xxx, Y ) = EEEtσσσxy =


eeet1σσσxy

eeet2σσσxy
...

eeetpσσσxy


If etiσxy = 0 for some i, it’s an irrelevant component. The number of eeetiσxy 6= 0

is m and the parameter relpos tells us which ones of these that are not zero.

To attain values on the m elements in σσσzy that are not zero, the coefficient

of determination(R2) is used.

R2 =
σσσtxyΣΣΣ

−1
xxσσσxy

σ2
y

=
σσσtzyΛΛΛ

−1σσσzy

σ2
y

= σσσtzyΛΛΛ
−1σσσzy =

∑
i∈relpos

(eeetiσσσxy)
2

λi
(3.1)

The simulation draws a random vector (σσσzy) with zeros on the irrelevant
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positions and values on the relevant positions so that eq. 3.4 holds. ThenY
z

 ∼ Np+1

0

000

 ,
 1 σσσtzy

σσσzy ΛΛΛ

 = ΣΣΣzy

 (3.2)

The program draws n × (p + 1) standard independent normal distributed

data an put these in UUU . Let ΣΣΣ
1/2
zy be some square root matrix of ΣΣΣzy so that

(ΣΣΣ
1/2
zy )tΣΣΣ

1/2
zy = ΣΣΣzy. Then we compute WWW = UUUΣΣΣ

1/2
zy . The rows of WWW will

have the distribution as in eq. 3.2. To obtain the correct number of relevant

predictors(q) the matrix W is rotated. We will not go into any further details

of how that is done here.

All possible values for these simulation parameters span the 7-dimensional

parameter space called Ω. If we pick one value for all parameters in table 3.1

we are in a certain point in Ω, called ω.

3.2 The parameters in the simulation pack-

age for multiresponse

A similar simulation package can be used to simulate data for multire-

sponse(Solve Sæbø ,personal communication, February 20, 2015). Many of

the parameters as explained in the uniresponse simulation in table 3.1 are

also used for the multiresponse simulation. The multiresponse simulation

parameters are presented in Table 3.2.

We let the expected means of the response and explanatory variables be

zero, µµµx = 000 and µµµy = 000. Let

zzz
p×1

= EEEtxxx

as we did for simulation for uniresponse(Sec 3.1). We would like to find

the variance matrix for [Y1 Y2 zzzt]t. The matrix ΣΣΣzz is obtained from
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Table 3.2: The simulation parameters for two responses

Parameter Explanation

n the number of observations

p the number of explanatory variables

q a vector with 3 elements(a,b,c). a - the number of relevant

predictors for the first response, b - the number of predictors

for the second response and c - the number of relevant predictors

that are common for both responses.

γ Level of collinearity in ΣΣΣxx

relpos Two vectors with positions of relevant components for each re-

sponse.

R2 A vector with 2 elements. Corr(Y,βββtxxx) for each response.

(ρ, %) A vector with 2 elements. The simulation parameter ρ is the un-

conditional correlation between the two responses, Corr(Y1, Y2).

And % is the conditional correlation between the two responses.

Corr(Y1|xxx, Y2|xxx) = Corr(ε1, ε2), see eq. 2.7
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the simulation paramter γ the same way as for uniresponse. For ΣΣΣyy we let

σy1 = σy2 = 1, hence the unconditional covariance between Y1 and Y2 is the

unconditional correlation. Let ρ denote this correlation.

ΣΣΣyy =

1 ρ

ρ 1


The covariance between zzz and each response i is

Cov(zzz, Yi) = σσσzyi = EEEtσσσxyi =


eeet1σσσxyi

eeet2σσσxyi
...

eeetpσσσxyi

 , i = 1, 2

The first vector in the simulation parameter relpos decides which of the

eeetkσσσxy1 that should not be equal to zero for the first response. The second

vector in relpos decide which of the eeetkσσσxy2 that should not be equal to zero

for the second response. The rest of the eeetkσσσxyi is zero.

For those eeetkσσσxyi 6= 0 the values are chosen randomly under some restric-

tions. The correlation between zzz and Y1

R2
1 =

σσσtxy1ΣΣΣ
−1
xxσσσxy1
σ2
y1

=
σσσtzy1ΛΛΛ

−1σσσzy1
σ2
y1

= σσσtzy1ΛΛΛ
−1σσσzy1 (3.3)

Similar for Y2

R2
2 = σσσtzy2ΛΛΛ

−1σσσzy2 (3.4)

We let

R12 = σσσtzy1ΛΛΛ
−1σσσzy2

The conditional variance V ar(Y1, Y2|zzz) is then

ΣΣΣyy −ΣΣΣt
zyΛΛΛ

−1ΣΣΣzy = (3.5)1 ρ

ρ 1

−
σσσtzy1
σσσtzy2

ΛΛΛ−1
[
σσσzy1 σσσzy2

]
=
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1− σσσtzy1ΛΛΛ
−1σσσzy1 ρ− σσσtzy1ΛΛΛ

−1σσσzy2

ρ− σσσtzy1ΛΛΛ
−1σσσzy2 1− σσσtzy2ΛΛΛ

−1σσσzy2

 =

1−R2
1 ρ−R12

ρ−R12 1−R2
2


The conditional correlation matrix is

Corr(yyy|zzz) =

1 ρ−R12√
(1−R2

1)(1−R2
2)

ρ−R12√
(1−R2

1)(1−R2
2)

1

 (3.6)

Where % is the conditional correlation.

% = Corr(ε1, ε2) =
ρ−R12√

(1−R2
1)(1−R2

2)
(3.7)

The three equations 3.3, 3.4 and 3.7 are used to draw values for σσσzy1 and

σσσzy2 . We now have constructed a variance matrix for [Y1 Y2 zzzt]t. The

distribution is yyy
zzz

 ∼ N2+p

000

000

 ,
ΣΣΣyy ΣΣΣt

zy

ΣΣΣzy ΛΛΛ

 = ΣΣΣ

 (3.8)

The program draws n × (p + 2) standard independent normally distributed

data and put these in the matrix UUU . As for uniresponse ΣΣΣ1/2 is some square

root matrix of ΣΣΣ. By computing WWW = UUUΣΣΣ1/2 The n rows in WWW will have the

distribution in eq. 3.8. The two first columns in WWW is the two responses(YYY )

and the p columns left is XXX.

Similar as with uniresponse simulation we define that all simulation para-

meters for multiresponse spans the multi-dimensional space Φ. One point in

this space we call φ.

3.2.1 Restrictions on values of simulation parameter

There are some restrictions on the simulation parameters, since there are sev-

eral covariance matrices that all have to be positive definite. The covariance

matrix of the explanatory variables(ΛΛΛ) is always positive definite. And ΣΣΣyy
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is positive definite when −1 < ρ < 1. The second term in the conditional

variance(ΣΣΣt
zyΛΛΛ

−1ΣΣΣzy) and the conditional variance itself(ΣΣΣyyy|xxx) has to be pos-

itive definite. The conditional variance is positive definite when −1 < % < 1.

To determine if a covariance matrix is positive definite it is better to

check the correlation matrix. For a 2× 2 correlation matrix, the off diagonal

element have to be in the interval < −1, 1 >, for the correlation matrix to

be positive definite.

The matrix ΣΣΣt
zyΛΛΛ

−1ΣΣΣzy can be expressed asR2
1 R12

R12 R2
2


Hence

−1 <
R12√
R2

1R
2
2

< 1 (3.9)

for ΣΣΣt
zyΛΛΛ

−1ΣΣΣzy to be positive definite. Using eq. 3.7 we have that R12 can be

written as

R12 = ρ− %
√

(1−R2
1)(1−R2

2)

Then eq. 3.9 can be written as

−1 <
ρ− %

√
(1−R2

1)(1−R2
2)√

R2
1R

2
2

< 1

Therefore there are some combinations of ρ, %, R2
1 and R2

2 that are impossible.

In addition there are some choices of relevant positions that put restric-

tions on the choices of the correlations. Example, if only the first component

is relevant for both responses and R2
1 = R2

2 = R2. Then R2 = σ2
z1y1

=

σ2
z1y2

(the first eigenvalue is 1) and |R12| = R2. The conditional correlation is

then

% =
ρ∓R2

1−R2

Then the conditional correlation is decided by R2 and ρ. There might be

other constraints on the correlations for other choices of relpos as well.
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Chapter 4

Results

In some Figures and tables the simulation parameters are written with latin

letters. Table 4.1 gives a translation

Table 4.1: A translation of parameters from greek letter to latin letters

Parameter n p ρ % γ R2
1 R2

2 m R2

Latin n p rho u rho b gamma R2 y1 R2 y2 m R2

4.1 Estimation Uniresponse

4.1.1 Estimation with Least Squares

To find out how different simulation-parameter-values affect the estimation

of βββ with Least Squares method, we kept all simulation parameters constant,

except the one that was varied. The estimation error was calculated as

described in section 2.3 with eq. 2.11, using 100 replications(r). The constant

values for the simulation parameters were set to the values in table 4.2.
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Table 4.2: Simulation parameter values

n = 20

p = 10

m = 2

relpos = (1, 2, ...,m)

γ = 0.7

R2 = 0.8

The values are based on a distribution that we often find. The first few

components are relevant and the number of observations are not to high and

there are some collinearity between the explanatory variables.

The simulation parameters n, relpos,m,R2, p and γ was investigated. The

Least Squares method was fitted with all explanatory variables, no kind of

variable selection was done. The Estimation Error was plotted against the

selected simulation parameter as shown in Figure 4.1

Form eq. 2.23, we can see that the effect of different n is in the estimation

of the eigenvalues. If n is low the eigenvalues of X tXX tXX tX−1 are low. When n

increases the eigenvalues increases and the estimation error decreases. That

is what we see in Figure 4.1 a).

The simulation parameter relpos will affect the denominator in eq. 2.23.

If the relevant components are in the first positions, the estimation error will

be larger because the relevant components corresponds to the highest eigen-

values. If the relevant components corresponds to the smallest eigenvalues

the estimation error will be lower. This is what we see in Figure 4.1 b).

Different values of m will change the denominator in 2.23. A higher

m will increase the number of σziy 6= 0 which will increase the value of

the denominator as m increases. The estimation error will decrease as m
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Figure 4.1: The Estimation Error for β when fitting with Least Squares

method with one simulation parameter varying at a time. a) The Estima-

tion Error when n is increasing. b) The Estimation Error for the increasing

relpos. If relpos is 2, the relevant components is 2 and 3. c) Estimation

Error when the number of relevant components(m) is increasing d) Estima-

tion Error for increasing R2 e) Estimation Error for increasing collinearity

(γ). f) Estimation Error for increasing p.

increases. This is what we see in Figure 4.1 c)

When the correlation(R2 = Corr(βββtxxx, Y )) between the explanatory vari-

ables and the response increases the estimation error decreases. This is seen

in Figure 4.1 d). Looking at eq. 2.23 we can see that it is due to the para-

meter σ2 = 1 − R2 and the denominator. As R2 increases the denominator

will increase. The difference between the denominator and R2 is that in the

denominator we square the eigenvalues. Both the scaling(denominator) and

σ2 will result in a decrease of the estimation error when increasing R2.
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Collinearity is a well known problem when using Least Squares method.

And the higher the collinearity the worse LS performs. Looking at Figure 4.1

e) it can be observed how the level of collinearity increases the Estimation

Error increases.

The simulation parameter p affects the estimation error greatly. When p

is larger than 10 the estimation error increases rapidly as seen in Figure 4.1.

In eq. 2.23 we see that p will change the sum of the estimated eigenvalues. By

increasing p, the number of variables, the number of eigenvalues to estimate

increase. The eigenvalues that are added by increasing p gets lower as p

increases, which results in a larger estimation error.

Investigating the y-axis in Figure 4.1 we observe that some simulation

parameters result in much larger estimation error than others. The paramet-

ers that resulted in the highest estimation errors are the parameters R2, γ, p

and n. The estimation of the eigenvalues affect the estimation error heavily

and the simulation parameters that affect the estimation of the eigenvalues

are gamma, n and p.

4.1.2 Estimation with PLS1

We performed a similar simulation study as in section 4.1.1, but using PLS1

to estimate βββ instead of Least Squares method. The same values on the

simulation parameters were used (see Table 4.2). The number of components

used for each replication was chosen to be the number of components that

gave the smallest estimation error. The results can be seen in Figure 4.2.

For the PLS1 estimator we can not find an expression for the estimation

error as a function of data as for the Least Squares method, since E(β̂ββ)

and V ar(β̂ββ) are unknown. We can estimate the estimation error as in eq.

2.11. Some of the simulation parameters act the same way as when using
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Figure 4.2: The Estimation Error for β, when using PLS1 as estimator with

one simulation parameter varying at a time. a) The Estimation Error when n

is increasing. b) The Estimation Error for the increasing relpos. If relpos is

2, the relevant components is 2 and 3. c) Estimation Error when the number

of relevant components(m) is increasing d) Estimation Error for increasing

R2 e) Estimation Error for increasing collinearity (γ). f) Estimation Error

for increasing p

Least Squares method. The main difference is that all estimation errors are

much smaller than for Least Squares method by investigating the y-axis. In

Figure 4.2 a) we can see that as n increases the estimation error decreases.

It is natural to think that we get better estimation when we have more

observations.

In Figure 4.2 b) something strange happens. As relpos increases the

estimation error increases at first, but at relpos = 6, 7 the estimation error

decreases. This might be a scaling effect, due to that we divide on βββtβββ and

as in Least Squares as the relpos increases the estimation error decreases.
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The effect we see for the first relpos’s might be explained by that we have

high γ and two relevant components that are the first components. This is a

situation where PLS1 is known to estimate well, but as the relevant positions

is on the components that are not one of the first components, the estimation

error increases. There might be some interaction effects with γ

Looking at Figure 4.2 c) we can see that the opposite happens compared

to the Least Squares method. As m increases the estimation error increases.

This shows that if we have many relevant components it is hard to estimate.

It also might be explained by the values decided on the simulation para-

meters. We have somewhat high collinearity(high γ) and if we have many

relevant components we have components with small eigenvalues which are

relevant. For a lower γ the situation might be different. There might be some

interaction effect between m and γ or some of the other simulation paramet-

ers. Another possibility is that if there are more relevant components the

method will require more components included to reach minimum estima-

tion error. This requires more components to be estimated and a higher

estimation error.

In Figure 4.2 d) we see that the estimation error decreases as the correlation(R2)

increases. As the correlation between the response and explanatory variables

increases we get better estimation.

Looking at Figure 4.2 e) we can see that the opposite happens compared

to the Least Squares method. The estimation error decreases as γ increases.

High collinearity is better than low collinearity. This might be explained

by that m = 2 and relpos = 1, 2. The relevant components are the two

first components and the PLS1 estimator then get better estimation error as

there is high degree of collinearity and have many small irrelevant eigenvalues

and only a few large relevant eigenvalues. The opposite might happen when
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the relevant positions is not the two first components, but some of the last

components.

We suspect there might be some interaction effects between relpos, m and

γ. We do not investigate the interactions between simulation parameters for

estimation error. As we have seen, some of the effects of the simulation

parameters might be explained by that we divide by βββtβββ. Therefore it might

not be such a good idea after all. The prediction error and estimation error

are quite similar so many of the effects of the simulation parameters on

estimation error might be similar when using prediction error instead.

4.2 Prediction Uniresponse

4.2.1 PLS1 with two-levels of Simulation-parameters

Since we suspect that there might be some interaction effects between the

simulation parameter as described in sec. 4.1.2 for estimation error there

might also be some for prediction error. We can do some full-scale simu-

lation with different levels on the simulation parameters to potentially find

important interactions and the effects of the simulation parameters has on

the prediction error. In the first full-scale simulation the parameter val-

ues was decided to be as in Table 4.3. One high and one low value on

each simulation parameter. In total we are investigating 26 = 64 ω’s(see

end of section 3.1). For each point in the parameter space 100 replicates

were done, and for each replicate a PLS1-model was fitted with 1-14 com-

ponents. The limit of 14 components was to make the programming a bit

easier and faster and that all points in the parameter space would have

the same number of total components. So for each replicate, we have 14

θ̂2 calculated from eq. 2.16, one for each number of components. In total
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14(components)×100(replicates)×64(ω’s) = 89600 θ̂2’s was estimated.

Table 4.3: Parameter values used in the first round of simulations

Parameter Low value High value

n 20 100

p 15 50

m 2 10

γ 0.3 0.95

relpos (1, 2,...,m) (5, 6,...,m)

R2 0.5 0.95

4.2.2 Points in parameter space with large prediction

error

We have plotted the prediction error as a function of components, with two

curves, one for each choice of n. After investigating the plots it was discovered

that for some ω’s the prediction error (
¯̂
θ2) was much greater than 1 for any

choice of number of components included (see Figure 4.3). That means that

the null model is a better predictor at these points in the parameterspace.

The estimated standard deviation for the estimated prediction error(θ̂2)

in each ω was calculated for each number of PLS1-components with eq 2.17.

The largest standard error was as large as almost 12000. This indicates that

for some combination of number of components and ω the estimation of βββ

varies greatly. When only the number of component giving lowest
¯̂
θ2 for each

ω is chosen, the maximum standard error is reduced to about 80. This is still

very large, when we consider that the prediction errors(θ2) for useful models

should be between 1 − R2 and 1(discussed in section 2.4.1). Therefore the

null-model is a better predictor for these points in the parameter space.
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Figure 4.3: The average prediction error against the number of components

for two different ω’s that gave high prediction error(higher than for the null

model) for all choices of components.

The 14 average θ̂2 was computed for each ω(one for each number of com-

ponents included). The ω′s with no
¯̂
θ2 below 1 was removed. The removed

ω’s is presented in Table 4.4. The standard deviation was estimated for

the number of component included with lowest
¯̂
θ2 for the ω’s left and the

maximum standard error was now below 1.

When investigating the removed ω′s in Table 4.4 the most common com-

bination among them was m = 10 and γ = 0.95. In other words many relev-

ant components and high collinearity causes a problem. In this situation we

have a few large relevant eigenvalues and many small relevant eigenvalues. It

might be the number of small relevant eigenvalues that causes the prediction

error to be large. Even though we have a few large relevant eigenvalues, it

does not seem to compensate for the many small eigenvalues. The question

44



Table 4.4: The 19 ω’s removed because of to high
¯̂
θ2 for any choice of num-

ber of components included. The value of comp is the number of PLS1-

components that gave the lowest θ̂2. If relpos is 1 it means that the first

m components are relevant. If relpos is 5 it means that the first relevant

component is the 5th component.

¯̂
θ2 comp n p m γ relpos R2

1.07 4 20 15 2 0.95 5 0.50

1.09 2 20 15 10 0.30 1 0.50

1.13 2 20 50 10 0.30 1 0.50

1.21 3 20 50 10 0.30 5 0.50

1.47 3 20 15 10 0.30 5 0.50

8.42 10 20 50 10 0.95 1 0.95

9.61 10 20 15 10 0.95 1 0.95

9.76 10 100 15 10 0.95 1 0.50

10.49 10 100 50 10 0.95 1 0.50

16.11 14 100 50 10 0.95 5 0.95

29.45 13 100 15 10 0.95 5 0.95

34.66 12 100 50 10 0.95 5 0.50

42.07 7 20 50 10 0.95 1 0.50

46.13 8 20 15 10 0.95 1 0.50

51.48 11 100 15 10 0.95 5 0.50

59.92 9 20 15 10 0.95 5 0.50

62.11 9 20 50 10 0.95 5 0.50

73.51 12 20 50 10 0.95 5 0.95

101.74 11 20 15 10 0.95 5 0.95
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is if there are any interactions between γ and m that causes the prediction

error to be large or if it is some other effect that causes these ω’s to have

large prediction errors.

4.2.3 Analysis of effects of simulation parameter values

on prediction error

An analysis of variance of the main effects was done with prediction error as

response and the simulation parameters as factors with two levels of each.

This was first done without removing the ω’s in Table 4.4. For each ω we

choose the number of components having lowest average prediction error. An

analysis of variance was run and the estimated effects can be seen in Table

4.5. The parameterization of the effects was done as described in section

2.10, with the model

θ̂2ijklstu = µ+ ni + pj + γk +ml +R2
s + relpost + εijklstu

and with the restriction that sum of all effects of a factor to be zero for all

six factors.

Looking at the estimated effects we see that all of them are quite high.

All are above 1. That means that by changing the level on any of the factors

keeping the others the same the estimated prediction error will be above 1 and

the Null Model would be a better suggestion. These strange estimated effects

may be an indication of some interaction effect. The simulation parameters

that has the most effect on the prediction error is m and γ. This is what

we expected since high value on m and γ gave prediction errors that was so

large that they were later removed from the dataset.

Investigating the two-factor interaction effects, with all ω’s included, we

can see that the most significant interaction is between m and γ. This is
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Table 4.5: The estimated main effects of the simulation parameters and their

p-values with all ω’s included.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.0338 0.3130 28.87 0.0000

relpos(1) -4.7478 0.3130 -15.17 0.0000

R2(0.5) 1.4122 0.3130 4.51 0.0000

p(15) 0.9675 0.3130 3.09 0.0020

n(20) 3.9862 0.3130 12.74 0.0000

gamma(0.3) -8.5724 0.3130 -27.39 0.0000

m(2) -8.6765 0.3130 -27.72 0.0000

illustrated in Figure 4.4. The two lines are not parallel, and therefore there

Figure 4.4: Effect plot of the interaction between m and γ.

is an interaction between m and γ. High degree of collinearity(large γ) is

only a problem when we have many relevant components(large m). This is

what we saw in sec. 4.2.2.

We removed the ω’s as mentioned in 4.2.2(because of high prediction

errors and high variation in prediction error) and did some analysis on the

data left. We can see the estimated main effects in Table 4.6. All the
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estimated effects of the simulation parameters are below 1 and higher than -1.

The most significant simulation parameter is R2 as expected. If R2 is large,

σ2 is small and the prediction error is small. This corresponds with a positive

effect of R2 at level 0.5 in Table 4.6. Looking at some of the other effects we

Table 4.6: The estimated main effects of the simulation parameters and their

p-values after removing ω’s with θ̂2 > 1.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4879 0.0049 98.58 0.0000

relpos(1) -0.0304 0.0040 -7.50 0.0000

R2(0.5) 0.2389 0.0042 57.08 0.0000

p(15) 0.0148 0.0040 3.68 0.0002

n(20) 0.0511 0.0042 12.20 0.0000

gamma(0.3) -0.0750 0.0044 -16.90 0.0000

m(2) -0.1404 0.0048 -29.15 0.0000

can notice that the effect of relpos is negative. Meaning that if the relevant

components corresponds to the first and largest relevant eigenvalues, the

prediction error is smaller compared to the relevant components starting at

position 5. The effect of p is negative, meaning that by increasing the number

of explanatory variables gives better prediction. This is a bit weird, because

it means that by adding variables that are uncorrelated to the response we get

better prediction. The effect of low n is positive, meaning that by increasing

the number of observations the prediction error decreases. The effect of γ

is positive, meaning that if the eigenvalues decreases faster the prediction

error increases. But we know that if the first components are relevant and

the number of relevant components are few the PLS1 predictor predicts well

when there is high degree of collinearity(γ is large). Therefore we suspect that
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there still are some interaction effects between the simulation parameters.

One can argue that we should not remove ω’s from our study because of

high prediction error. By removing ω’s we don’t have a 26 factorial design,

making it difficult to look at some interactions. Therefore it was decided to

do a second simulation, changing the high level of m from 10 to 4. It turned

out that 4 ω’s had
¯̂
θ2 > 1 for the number of components with average lowest

prediction error. The highest at 1.78. Estimating the standard deviation as

in eq. 2.17, we find that the largest is 0.916 and the smallest is 0.001. It is

still a big difference, but it is not as bad as for the first simulation. Therefore

we decide to not remove any of the ω’s even if not all
¯̂
θ2 is below 1.

Performing the main effect ANOVA as for the first simulation gave similar

effects as for the analysis with removed ω’s. We decided to go further to

investigate any interaction effects. Running an analysis of variance on two-

factor interactions of all the simulation parameters gave the estimated effects

in Table 4.7. Still the effect of R2 is the most significant. The intercept is

the average prediction error for the ω’s included in the study. Investigating

the different interactions we see that the interaction between relpos and γ is

the most significant. In Figure 4.5 we can see the interaction between these

two simulation parameters.

It’s the combination of high collinearity and the first relevant component

at position 5 that causes the prediction error to increase. That happens if

we have a small eigenvalue with a corresponding relevant component.
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Table 4.7: The estimated effects of the simulation parameters included effects

of two-factor interaction effects on the prediction error.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4305 0.0033 128.97 0.0000

relpos(1) -0.0975 0.0033 -29.19 0.0000

R2(0.5) 0.2767 0.0033 82.89 0.0000

p(15) 0.0442 0.0033 13.25 0.0000

n(20) 0.0988 0.0033 29.58 0.0000

m(2) -0.0744 0.0033 -22.28 0.0000

gamma(0.3) -0.0818 0.0033 -24.50 0.0000

relpos(1):R2(0.5) -0.0096 0.0033 -2.88 0.0040

relpos(1):p(15) -0.0406 0.0033 -12.18 0.0000

relpos(1):n(20) -0.0587 0.0033 -17.59 0.0000

relpos(1):m(2) 0.0460 0.0033 13.78 0.0000

R2(0.5):m(2) -0.0151 0.0033 -4.52 0.0000

p(15):m(2) -0.0186 0.0033 -5.56 0.0000

n(20):m(2) -0.0426 0.0033 -12.75 0.0000

m(2):gamma(0.3) 0.0590 0.0033 17.68 0.0000

relpos(1):gamma(0.3) 0.0722 0.0033 21.62 0.0000

R2(0.5):p(15) -0.0028 0.0033 -0.83 0.4061

R2(0.5):n(20) 0.0233 0.0033 6.96 0.0000

R2(0.5):gamma(0.3) -0.0141 0.0033 -4.21 0.0000

p(15):n(20) 0.0234 0.0033 7.00 0.0000

p(15):gamma(0.3) -0.0281 0.0033 -8.42 0.0000

n(20):gamma(0.3) -0.0488 0.0033 -14.63 0.0000
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Figure 4.5: Effect plot of the interaction between relpos and γ.

Another interesting interaction is that between relpos and n. The effect

plot shown in Figure 4.6 shows that the decreases in prediction error when

increasing n is dependent on were the first relevant component is. Especially

when relpos is 5, increasing n is very effective.

Figure 4.6: Effect plot of the interaction between relpos and n.

When estimating the 3-factor interaction effects(see table A.1 in Ap-

pendix), we saw that interaction was most significant between relpos, m

and γ. In Figure 4.7 we have the 3-factor effect plot between these simula-

tion parameters. We can see that it is the combination of high level of all 3
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simulation parameters that causes the prediction error to increase. This is a

point were we have many small eigenvalues with relevant components.

Figure 4.7: Effect plot of the 3-factor interaction between relpos, m and

gamma.

Other 3-factor interactions that were highly significant were between

relpos, n, γ, and n, m, γ. There are four simulation parameters that are

repeated here. We estimated the 4-factor interaction effects between these

parameters and made an effect plot shown in Figure 4.8. Investigating all the

4-factor interaction effects(see table A.1 in appendix) we see that the com-

bination of these four simulation parameters is the most significant. From

figure 4.8 we see that it is the combination of m = 4, γ = 0.95, relpos = 5

and n = 20 that causes the highest prediction error.In this situation it is

very effective to increase n. We have several possible explanations for the

large prediction error. Either the PLS1 predictor does not work well with

the combination of small eigenvalues with relevant components, or that the

number of components required to reach minimum prediction error is high.
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It is also possible that the simulated data varies a lot, meaning that the es-

timated values varies much from the true values(decided with the simulation

parameters). The last option we look at in section 4.2.4

Figure 4.8: Effect plot of the 4-factor interaction between relpos, γ, m and

n.

Another highly significant 4-factor interaction is that between relpos, γ,

m and p. The interactions are shown in Figure 4.9. Here we observe that

the effect of p is almost the same for all combinations of relpos, γ and m

except for when relpos = 5, γ = 0.95 and m = 4. Then the prediction error

is dependent on the level of p. It looks as if it pays to have more explanatory

variables that are uncorrelated to the response when we have many small

eigenvalues that corresponds to relevant components.
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Figure 4.9: Effect plot of the 4-factor interaction between relpos, γ, m and

p.

4.2.4 The estimated world vs the true world

With our simulation parameters we decide the true parameters and draw

observations from it’s distribution. We can estimate the parameters with the

observations. The estimations might be similar to the true distribution or it

might not be any similarities at all. From a dataset we can estimate the ei-

genvalues and find which principal components that seems to be relevant, but

this might not give the same result or even closely to the same result as the

true world. The practitioner does not know how many relevant components

there are or which components that are relevant. Therefore it is necessary to

estimate them. Some graphics might help. Figure 4.10 shows the eigenval-

ues and covariances between component and the response estimated from a
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dataset. This is compared to distribution of the true world. With true world

we mean the true parameter values and with estimated world we mean the

estimated parameter values. We see in Figure 4.10 that it is a large difference

Figure 4.10: The simulation parameter were set to n = 20, p = 15,m = 2, q =

2, relpos = (8, 10), γ = 0.7 and R2 = 0.9. All variables were centred and the

eigenvalues and covariance were scaled. The scaled eigenvalues are the black

lines and the red dots are the scaled covariances plotted for each principal

component. In a) we can see the estimated eigenvalues and covariances from

the simulated data. In b) we see the true eigenvalues and true covariances

based on the simulation parameters.

between the true world and the estimated world. In the true world (see 4.10

b)) the relevant components are 8 and 10. While from the estimated values in

4.10 it seems to be the 2-3 first components that are most relevant. Drawing

new observations from the same distribution and estimating the world gave

widely different result each time.

Letting the simulation parameter n be 1000 we could see the similarity

between the estimated world and the true world(see Figure 4.11). Still there
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is some noise, but we are able to see the correct relevant components.

Figure 4.11: The same situation as in Figure 4.10 except n = 1000. a) is

the estimated world. b) is the True world.

By looking at both Figure 4.10 and 4.11 we can see that the eigenvalues

are estimated for the most part the same. The estimation of relevant positions

are quite different for each time.

Small relevant eigenvalues is a situation were we earlier have discovered

that it is difficult to predict. Investigating an easier situation as seen in

Figure 4.12 we see that there are similarities between the true world and

estimated world and we are able to find the correct relevant components.

Another thing to observe here is that it seems as if there is a tendency to

overestimate the large eigenvalues and underestimate the small eigenvalues.
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Figure 4.12: The simulation parameter were set to n = 20, p = 15,m = 2, q =

2, relpos = (1, 3), γ = 0.3 and R2 = 0.9. In a) we can see the estimated

eigenvalues(black bars) and covariances(red dots) from the simulated data. In

b) we see the true eigenvalues and true covariances based on the simulation

parameters.

4.3 Estimation of βββ by PLS2

We estimated the estimation error(eq 2.11) for one point in the paramet-

erspace Φ. This point is relatively similar to the estimated world in the LMP

dataset(see section 4.5). The diffrences are a larger p and R2’s are equal.

With 100 replication the estimation error was estimated, shown in Figure

4.13. For one component PLS2 gave a better estimator than PLS1 for the

first response, but the opposite happened for the second response. However

the most striking part is how similar the two methods are. (Notice that

the two PLS1 lines are not equal, even when the responses has the same

parameter values. This is later discussed in chapter 5)

To investigate how the two methods differ when estimating βββ, we did a

few simulations without replications. A plot of the estimated βββ’s for each
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Figure 4.13: The simulation parameter were; n = 40, p = 6, relpos =

(3, 1)and(3, 1), γ = 0.5, ρ = 0.95, % = 0.9, R2
1 = 0.7 and R2

2 = 0.7. The

estimation error estimated with 100 replications.

component are shown in Figure 4.14.

Again the estimators are extremely similar. For one component included,

the third element of β̂ββPLS1,Y1 , β̂PLS1,Y1,3 comes closer to the true βY1,3. For the

second response the opposite happened, β̂PLS2,Y2,3 came closer to βY2,3. We

can observe this at other elements of the estimated βββ’s as well. In Figure 4.15

we have the prediction error for the same simulated dataset. For description

of the prediction error for two responses see section 4.4. Comparing the

prediction errors it almost looks as if they are the same plot but the PLS1

and PLS2 line has switched places.

58



Figure 4.14: The βββ’s were estimated without replication. The simulation

parameter were set to n = 40, p = 6, relpos = (3, 1)and(3, 1), γ = 0.5, ρ =

0.95, % = 0.9, R2
1 = 0.7 and R2

2 = 0.7. The numbers 1,2,...,6 refers to the

number of components included.
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Figure 4.15: The same β̂ββ as used in Figure 4.14. The prediction error was

estimated with a testset of 1000 observations.

To find if β̂ββPLS2 is a linear combination or a weighted average of β̂ββPLS1,Y1

and β̂ββPLS1,Y2 we fit the model in eq. 2.25 for each β̂ββPLS2,Yi . We plot the

coefficients α̂1 and α̂2 against the number of components included in Figure

4.16. The sixth component is the LS solution and therefore α1 = 1 and

α2 = 0 for the first response and opposite for the second response. For

the first component β̂ββPLS2,Yi is exactly a linear combination of β̂ββPLS1,Y1 and

β̂ββPLS1,Y2 . Comparing the two lines there is a high symmetry along the line

α̂ = 0.5, indicating that it is a weighted average. The confidence intervals

are quite wide for many of the components meaning β̂ββPLS2,Yi is not an exact

linear combination of β̂ββPLS1,Y1 and β̂ββPLS1,Y2 .

We change the simulation parameters to a different situation, see Figure

4.17. And observe that with one component included β̂ββPLS2,Yi is a linear

combination of β̂ββPLS1,Y1 and β̂ββPLS1,Y2 . In this situation the symmetry along

the line α̂ = 0.5 is not as clear as in the first situation. In addition the

confidence intervals are relatively wide. They are narrower than for the first

situation, but that is due to larger p.

We plotted the loadings for both simulations for the first component in
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Figure 4.16: The estimated α1 and α2 for the number of component included.

With 95 % confidence intervals for all α’s. a) is when β̂ββPLS2,Y1 is used as

response and b) is when β̂ββPLS2,Y2 is used as response.

Figure 4.18. We see that in both cases the loading estimated with PLS2

is in the middle of the loadings estimated with PLS1. It strengthens the

indication that β̂ββPLS2,Yi is an exact linear combination or a weighted average

of β̂ββPLS1,Y1 and β̂ββPLS1,Y2 for the first component.
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Figure 4.17: The estimated α1 and α2 for the number of components in-

cluded. With 95 % confidence intervals for α’s. a) is when β̂ββPLS2,Y1 is used

as response and b) is when β̂ββPLS2,Y2 is used as response. Simulation para-

meters were set to n = 40, p = 20, relpos = (1, 2, 3) and (3, 7, 8), γ = 0.9, ρ =

0.5, % = 0.9, R2
1 = 0.5 and R2

2 = 0.9

Figure 4.18: First loading weights for both simulations.
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4.4 Prediction PLS2 compared to PLS1

The prediction error was estimated as discussed in section 2.4.2 with eq. 2.16.

Where θ̂21 is the prediction error for the first response and θ̂22 is the prediction

error for the second response. For each replication we fit a PLS1 and PLS2

model with 1 to k components included. For each component included we

are estimating four different θ̂2’s; θ̂2PLS1,Y1 , θ̂
2
PLS1,Y2

, θ̂2PLS2,Y1 and θ̂2PLS2,Y2 .

For each parameter point, φ, we can estimate 4× k prediction errors.

The 4× k θ̂2’s was estimated with a 100 replications for a variety of dif-

ferent φ’s. In Figures 4.19 and 4.20 the most typical results out of several

different φ are shown. Figure 4.19 shows an example of a φ where PLS1 re-

quires less components to reach the minimum prediction error for the second

response. While for the first response 4 components is needed to reach the

minimum prediction error for both methods. It was often seen that PLS2

needed more components than PLS1 to reach minimum prediction error.

Figure 4.19: The simulation parameter were n = 20, p = 15, relpos =

(3, 4) and (1, 3), γ = 0.9, ρ = 0.8, % = 0.9, R2
1 = 0.8 and R2

2 = 0.9. The

prediction error for each response was estimated with 100 replications. PLS2

requires more component than PLS1 to reach minimum prediction error.
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For other φ’s the prediction error were approximately equal until min-

imum prediction error was reached for the two methods(see Figure 4.20).

After minimum prediction error is reached, PLS2 have lower prediction error

than PLS1.

Figure 4.20: The simulation parameter were n = 30, p = 10, relpos =

(1, 2) and (2, 3), γ = 0.9, ρ = 0.9, % = 0.1, R2
1 = 0.9 and R2

2 = 0.9. The

prediction error for each response was estimated with 100 replication. PLS1

and PLS2 has approximatly the same prediction error until minimum predic-

tion error is reached.

At one point in the simulation parameter space it was discovered that

PLS2 predicts better than PLS1 for one of the responses(see Figure 4.21).

Notice that both responses has only one relevant component(5) that usually

makes poor prediction. PLS2 predicts better for the first response only. One

of the differences between all φ’s is the choice of relpos.
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Figure 4.21: The simulation parameter were n = 20, p = 10, relpos =

(1, 2, 5) and (2, 5), γ = 0.9, ρ = 0.5, % = 0.9, R2
1 = 0.6 and R2

2 = 0.9. The

prediction error for each response was estimated with 100 replication. PLS2

predicts better than PLS1 for the first response.

4.4.1 Analysis of the difference in prediction error.

For the parameter settings chosen in Figure 4.21 we found that PLS2 pre-

dicts better than PLS1. We suspected that this might be due to the choice

of relpos, having only one common ”difficult” relevant component(a com-

ponent with small relevant eigenvalues). To investigate this further we did

an analysis of variance as in section 4.2.3 with two levels on each simulation

parameter. To simplify relpos was chosen to be, as in Figure 4.21, (1,2,5)

and (2,5). The other simulation parameter values are shown in Table 4.8

Table 4.8: The values of the simulation parameters.

Parameter n p ρ % γ R2
1 R2

2

Low value 15 15 0.5 0.6 0.3 0.5 0.6

High value 100 50 0.8 0.9 0.9 0.8 0.9
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The number of replications was 100. Within each replication we fitted

a PLS1 model and a PLS2 model for the same simulated dataset, hence we

can use the difference in the prediction error between PLS1 and PLS2 as a

response in the analysis of variance. We decided to do an analysis of variance

for each response. The main effect ANOVA model is

(θ̂2PLS1 − θ̂2PLS2)ijlstuvw = µ+ ni + pj + ρl + %s + γt +R2
1u +R2

2v + εijlstuvw

for each response. All factors had two levels. The parametrization is as

described in section 2.10 with the sum of effects equal to zero. If the effect

is positive the PLS2 predictor has lower prediction error than the PLS1

predictor.

We decided the number of components to be included to be the number

of components giving the average lowest prediction error for each φ, meaning

that θ̂2PLS1 and θ̂2PLS2 might have different number of components in the same

φ. In front of the analysis we checked if there were any
¯̂
θ2’s(average prediction

error), for the number of components with minimum prediction error, were

above 1. There were some
¯̂
θ2’s above 1, but they were not too large. The

advantages by keeping a 27 factorial design outweighed the fact that some

φ’s gave to large prediction error.

The main effects for the two responses are shown in Table 4.9 and Table

4.10. The intercept is the average difference in prediction error between

PLS1 and PLS2 over all parameter values chosen. For the first response it

is positive, meaning that on average PLS2 has lower prediction error than

PLS1. For the second response the opposite happens and PLS1 predicts

better than PLS2 on average.
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Table 4.9: The main effects of the first response, having relevant components

1,2 and 5.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0089 0.0016 5.60 0.0000

gamma(0.3) -0.0054 0.0016 -3.39 0.0007

n(100) -0.0052 0.0016 -3.24 0.0012

p(15) 0.0019 0.0016 1.21 0.2254

R2 y1(0.5) 0.0058 0.0016 3.63 0.0003

R2 y2(0.6) -0.0068 0.0016 -4.26 0.0000

rho b(0.6) 0.0017 0.0016 1.09 0.2763

rho u(0.5) -0.0032 0.0016 -1.98 0.0475

Table 4.10: The main effects of the second response having relevant compon-

ents 2 and 5.

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0140 0.0014 -9.68 0.0000

gamma(0.3) 0.0034 0.0014 2.37 0.0178

n(100) 0.0143 0.0014 9.89 0.0000

p(15) -0.0011 0.0014 -0.73 0.4633

R2 y1(0.5) -0.0099 0.0014 -6.84 0.0000

R2 y2(0.6) 0.0011 0.0014 0.76 0.4482

rho b(0.6) 0.0047 0.0014 3.26 0.0011

rho u(0.5) -0.0022 0.0014 -1.54 0.1245
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From the result in Table 4.9, we see that it is advantage for PLS2 when

we have low n, high γ, low R2
1 and high R2

2. The simulation parameters p, %

and ρ does not seem to effect the difference in prediction error(p-value above

0.01). There might however be some interactions where these parameters are

included.

We did an analysis of all possible interactions and plotted the effects plot

shown in Figure 4.22. It illustrates all interaction effects. In other words the

average in difference in prediction error for all φ’s chosen. We can determine

the φ where the difference is largest between PLS1 and PLS2. This is when

n = 15, p = 15, ρ = 0.8, % = 0.9, γ = 0.9, R2
2 = 0.6, R2

1 = 0.5. We can see

that when n = 100(the left half) there is almost no difference between PLS1

and PLS2. The same happens when γ = 0.3(bottom half). For observing

large difference between PLS1 and PLS2 we need high collinearity and few

observations simultaneously. From the upper right corner it is seen that there

are some interaction effects between the rest of the simulation parameters.

When we had ’difficult’ relevant components, it was discovered that the

prediction error had high variation(see sec. 4.2.2). Since we have included a

difficult relevant component, and the difference between PLS1 and PLS2 is

largest when γ is high and n is small, the difference in prediction error might

have high variation. Estimating the standard deviation(σ̂) for the residuals,

we find it to be 0.18. This is large compared to the estimated effects.
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Figure 4.22: Effect plot with all possible interactions.

69



We used the φ where the difference in prediction error was found to

be largest in Figure 4.22. And plotted the prediction error(estimated with

100 replications) against the number of components included for the first

response. This was done twice and shown in Figure 4.23. This shows us

that, even with an average of 100 replications, there is still high variation

for the difference in prediction error at the chosen φ. Notice that for one

of them there seem to be almost no difference between PLS1 and PLS2 and

the prediction error is above 1. For the second simulation PLS2 performs

better than PLS1 and the prediction error is below 1. This indicates that

the variation in prediction error is large and therefore if we repeat the analysis

above it might give a quite different result.

Figure 4.23: Prediction error from two simulations with same φ with a 100

replication each

To get a better understanding of when PLS2 performs better than PLS1

we did some simulation without replications and plotted the prediction error

and the relevant components of both the true world and estimated world

for both responses. We only have one replication, and therefore we decided
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to estimate the prediction error with a testset instead. We used a 100 new

observations for estimating the prediction error. Figure 4.24 gives an example

of when PLS2 wins and in Figure 4.25 is an example of where there is no

difference between PLS1 and PLS2.

Figure 4.24: The simulation parameters were set to n = 20, p = 15, ρ =

0.8, % = 0.9, γ = 0.9, R2
2 = 0.9, R2

1 = 0.5. An example of when PLS2 has

lower prediction error than PLS1

It is difficult to determine exactly why PLS2 predicts better than PLS1

in Figure 4.24 than in Figure 4.25. What we do not control in the true

distribution is the covariances. It is controlled indirectly by some of the

correlations, but they are within some limitations decided at random. From

Figure 4.24 and 4.25 we cannot see any pattern in the covariances when PLS2

predicts better than PLS1 compared to when there is no difference. Further

investigation is needed.
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Figure 4.25: The simulation parameters were set to n = 20, p = 15, ρ =

0.8, % = 0.9, γ = 0.9, R2
2 = 0.9, R2

1 = 0.5. An example when there is no

difference between PLS1 and PLS2.

4.5 PLS2 and PLS1 on Real Data

4.5.1 Presentation of the datasets

Lean Meat Percentage(LMP)

The dataset for meat percentage in fattening pigs was made available by An-

imalia as part of the research project ’Determination of meat percent, and

automatic multivariate classification of tissue in live pigs and pork(PigComp)’.

In this dataset there are different measurement on pigs. The response are

two different measurement of Lean Meat Percentage(LMP). One is the LMP

measured by manual dissection(MD) and the other is based on CT-scan(CT).

There are 86 observations. The explanatory variables measured are thickness
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of the subcuntaneous fat, thickness of the sirloin, thickness of the interior fat

layer and the weight of the pig.

NIR on corn

This dataset consist of measurements on wheat by near infra red spectro-

scopy(NIR) with 700 different wavelengths [NIR, 2005]. In addition the re-

sponses; proteincontent, moisture, oilcontent and startch is measured for all

80 observations. This means we have 4 responses. We will choose some pairs

of the responses to investigate.

4.5.2 Distribution and relevant components

Estimating different correlations and finding what seems to be the relevant

components of the datasets will give us an indication of whether or not PLS2

will predict better than PLS1. Before any investigation we centred our data.

LMP data

In Figure 4.26 it seems that both responses has the same relevant compon-

ents, 1 and 3. The eigenvalues do not indicate high degree of collinearity. The

estimated correlation between the two responses is 0.967, which is a larger

than what we have simulated with. To estimate the conditional correlation

we fitted a LS to both responses and calculated the correlation between the

residuals. It was found to be 0.917. From the LS-models we estimate that

R2
CT = 0.632 and R2

MD = 0.733.

In some ways this is very similar to the situation in Figure 4.22 with

the highest difference in prediction ability between PLS1 and PLS2. It has

relatively low R2’s for both responses. The unconditional and conditional

correlation between the two responses are quite high. From Figure 4.26 we

73



Figure 4.26: Scaled eigenvalues(black lines) and covariances(red dots) plotted

for each principal component for both responses in the LMP data.

find that both responses have equal relevant components which is not only

the first ones. The level of collinearity is not very high, which may lead

to PLS1 performing better or the difference is negligible between the two

methods.

NIR on corn

We have four possible responses. In Figure 4.27 we see that the different

responses have different relevant components and there is high collinearity.

The first component has the highest covariance(not shown) for all responses.

The R2’s and %(conditional correlation) are not possible to estimate with

LS because n < p. The estimated unconditional correlation between the

responses are found in table 4.11. Protein and Starch seem to have the same

relevant components and at least one common ’difficult’ relevant component,

number 6. Therefore we choose to use Protein and Starch as responses. We

also want to test PLS2 where there seem to be no common relevant difficult
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Table 4.11: The estimated correlations between the responses.

Moisture Oil Protein

Oil -0.35

Protein -0.32 0.29

Starch -0.07 0.03 -0.80

component and hence use Moisture and Starch as responses. These responses

are weakly unconditionally correlated.

Figure 4.27: Scaled eigenvalues(black lines) and covariances(red dots) plotted

for each principal component for all responses in the NIR data.
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4.5.3 Prediction

LMP data

To estimate the prediction error we randomly draw a test-set of half the

observation from the original data. We center the training and test-set by

the means of the training data. Then we fitted the model with PLS1 method

and PLS2 method and estimated the prediction error by the test-set. The

prediction error was plotted against the number of components included in

the model. Doing this several times with different test-set gave of course

different result each time. But the difference was large and some pattern

was detected. In some cases PLS1 and PLS2 performed extremly similar, as

shown in Figure 4.28. But in most of the cases PLS2 predicted one of the

responses best and PLS1 predicted the other response best(Figure 4.29).

Figure 4.28: The prediction error for each response plotted against the number

of components included in the model for PLS1 and PLS2. In the third figure

all four prediction error is plotted against each other. Here there was little

visible difference between PLS1 and PLS2

Choosing different test set each time having the four prediction errors in

the same plot the two PLS2 prediction errors almost always ended up in the
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Figure 4.29: Prediction error for each response plotted against the number

of components included in the model for PLS1 and PLS2. In the third figure

all four prediction error is plotted against each other. PLS2 predicted better

than PLS1 for one of the responses.

middle or the two PLS1 prediction errors ended up in the middle. PLS2 did

not always predict the CT response best. For a different test set it predicted

MD best. Very rarely did one of the methods(PLS1 and PLS2) have lowest

prediction error for both responses. This indicates that there is some relation

between the two methods. We fitted the model in eq. 2.25 with β̂ββ’s from

Figure 4.29 and plotted the α̂’s in Figure 4.30 for each component. It is not

an exact linear combination, since the confidence intervals are wide. Only for

the first component and the last component(LS solution) is the two β̂ββPLS2

an exact linear combination of β̂ββPLS1,CT and β̂ββPLS1,MD.
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Figure 4.30: The coefficients α̂1 and α̂2 plotted with 95 % confidence intervals

for the α’s. a) is when β̂ββPLS2,CT is used as response and b) is when β̂ββPLS2,MD

is used as response.

NIR on corn

We randomly split up the dataset into two groups, each with 40 observa-

tions. With training data we fit PLS1 and PLS2 models with Starch and

Protein as responses. The test set is used to estimate the prediction error

as described in sec 2.5. Result is shown in Figure 4.31. PLS1 and PLS2

produce extremly similar prediction errors. Choosing different test set did

of course give different results, but the difference was not as large as with

LMP dataset. We fitted the model in eq. 2.25 and plotted the coefficients

α̂1 and α̂2 in Figure 4.32. The confidence intervals are not as wide here and

it is partly due to large p, since p is equivalent to the number of observa-

tions in eq. 2.25. With one component included the two β̂ββPLS2 is an exact

linear combination of β̂ββPLS1,P rotein and β̂ββPLS1,Starch as seen earlier. As more

components are included, we approach the LS solution.
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Figure 4.31: prediction error for each response plotted against the number of

components included in the model for PLS1 and PLS2. In the third figure all

four prediction error is plotted against each other.

Figure 4.32: The coefficients α̂1 and α̂2 plotted with 95 % confidence intervals

for the α’s. a) is when β̂ββPLS2,P rotein is used as response and b) is when

β̂ββPLS2,Starch is used a response.
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Using Moisture and Oil as responses we plotted the prediction in Figure

4.33. The figure shows that the two methods are very similar. When looking

closer we see that PLS1 predicts slightly better than PLS2 as expected.

Figure 4.33: Prediction error for each response plotted against the number of

components included in the model for PLS1 and PLS2. In the third figure all

four prediction error is plotted against each other.

When fitting the model in eq. 2.25 and plotting the coefficients α̂1 and

α̂2 in Figure 4.34 we see again that there is little symmetry between the

two lines and that as more components are included it approaches the LS

solution. With one component the two β̂ββPLS2 is an exact linear combination

of β̂ββPLS1,P rotein and β̂ββPLS1,Starch.
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Figure 4.34: The coefficients α̂1 and α̂2 plotted with 95 % confidence intervals

for the α’s. a) is when β̂ββPLS2,Moisture is used as response and b) is when

β̂ββPLS2,Oil is used a response.

81



Chapter 5

Discussion

5.1 PLS1

When we have small relevant eigenvalues the prediction error is large and in

addition have large variation. It is clear that small relevant eigenvalues causes

a problem. One of the reasons might be the estimation of which components

that are relevant. As we saw from simulations without replication in sec 4.2.4

it is difficult to determine the correct relevant components, especially when

small relevant eigenvalues are present.

If we have small relevant eigenvalues, increasing n or p was a very effective

way to achieve a lower prediction error. The increase in n is obvious. The

odd thing is that our simulation study showed that we can lower the predic-

tion error by adding more explanatory variables. If it was true that adding

more explanatory variables would decrease the prediction error we could have

added variables with random numbers to any dataset and it would help. An-

other explanation could be that it has to do with the simulation. By adding

variables(or components) uncorrelated to the response will somehow stabilize

the the space orthogonal to the relevant space. And as a consequence it is
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easier to find the relevant components. This is just a hypothesis and further

investigation is needed.

5.2 Comparison of PLS1 and PLS2

5.2.1 Estimation

We did some estimation to get a better understanding of how the two methods

differ. From the results we found that when only including one component

the two β̂ββPLS2 is an exact linear combination of β̂ββPLS1,Y1 and β̂ββPLS1,Y2 . This

is consistent with both simulated data and real data. Using eq. 2.24 we find

that with one component also the loading weight(ŵww) from PLS2 is a linear

combination of the loading weights from PLS1. It should be possible to prove

that

ŵwwPLS2 = c1ŵwwPLS1,Y1 + c2ŵwwPLS1,Y2

holds for the first component. We have not been successful in doing so. We

have searched the literature, but with no results. When adding more com-

ponents, we saw that the two β̂ββPLS2’s were not an exact linear combination

of β̂ββPLS1,Y1 and β̂ββPLS1,Y2 .

5.2.2 Prediction

By having only one common ’difficult’ relevant component(A component with

small relevant eigenvalues) it seemed as if PLS2 predicted better than PLS1

for one of the responses. It might be possible that one response works as a

support response for the other when using PLS2. If one of the responses had

one extra ’difficult’ component that the other response did not have, PLS2

did not perform better.
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Under the circumstance with only one common ’difficult’ relevant com-

ponent, it was also discovered that it only pays to use PLS2 when we have

few observations and when high degree of collinearity is present. Earlier it

was discovered that with PLS1 the combination of small relevant eigenvalues

and components caused a high variation in prediction error. The upper right

quadrant of Figure 4.22, all have parameter settings which results in small

relevant eigenvalues. The variation between replications was large. Hence

many or all of the effects seen in the upper quadrant is due to noise. There-

fore it is difficult to estimate the effects of the other simulation parameters.

Among the simulation parameter setting that was investigated, non in-

dicated that high correlation, both conditional or unconditional, gave better

prediction for PLS2.

A possible critique to the analysis of variance in sec. 4.4.1, could be that

the levels of R2 for each response are not equal. If the first response has low

level R2 at 0.5 while the second response has low level at 0.6, it is not only

the choice of relpos that differs between the two responses and hence the two

tables 4.9 and table 4.10. The choice of levels of R2 might then affect the

intercept.

The true parameter values(or the true world as we have called it) is of

course not possible to find, when working on real data. In some situations the

estimated world was very different from true world. Especially when small

relevant eigenvalues are present. The estimated world being quit different

from the true world makes it difficult to detect if there is one common ’dif-

ficult’ relevant component. And therefore it is difficult to recommend PLS2

over PLS1.

When we compared the two methods on real data, we found that for

the LMP dataset PLS2 predicts better for one of the responses for some

84



testsets. Since different test set gave different results, it was impossible to

determine if PLS2 predicted better than PLS1. The difference between the

two methods was small. For the other datasets we tested, PLS1 performed

better or equally good as PLS2.

At the end of the study it was discovered that the simulation package

does not pick the covariances at random when having two responses. This

is seen in Figure 4.13, where both responses has the same R2 and relpos,

but the estimation errors are not equal. Because of this we can not be sure

if it is an effect of relpos that causes PLS2 to predict better, or of it is an

effect of covariances as well. Further investigation is needed to investigate if

a response with high or low covariance on the ’difficult’ relevant component

works as a support response.

5.3 Further studies

Due to lack of time some issues have not been studied. Some of them are

presented here.

What we have not studied is how the number of components included

would effect the models ability to predict, but only chosen the number of

components that gave lowest prediction error on average within each para-

meter setting.

We have found some few situations were PLS2 predicts better than PLS1

on average. There are however some other different PLS-methods which have

shown to predict well. One is Canonical PLS(CPLS) [Indahl et al., 2009]

which uses canonical correlations. When modeling two responses, the method

has many similarities to PLS2. Further studies is needed to find if CPLS with

multiple responses predicts better than PLS1.

85



The PLS algorithm presented in sec. 2.8.3 can be applied in situations

with more than two responses. The dataset NIR on corn had four responses.

As we have found situations when it pays to use two responses, are there

possibilities that there are situations were it pays to use more than two

responses?

The original LMP dataset had many missing observations for one of the

responses. We have not dealt with missing observations in this study. It

could be possible that PLS2, or other multiresponse method, can be used

in some situations when there is missing data and even perform better than

uniresponse models [Gangsei et al., 2015].

Even if PLS2 do not predict better than PLS1 in many cases it can be a

helpful tool in explorative data analysis.

5.4 Conclusion

We have found some few cases where PLS2 on average predicts better than

PLS1. This happens if we have only one common ’difficult’ relevant com-

ponent, few observations and high degree of collinearity. However the gain

is small and the variation in the prediction error is large for the replications.

In addition it is in practice difficult to estimate which components are rel-

evant, if there are small relevant eigenvalues. As far as we have seen we can

conclude with that PLS1 is a better option for prediction than PLS2.
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Appendix A

Tables

Table A.1: The estimated effects included all interactions

up to 4-factor interactions between simulation parameters

for prediction error.

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4305 0.0031 138.18 0.0000

relpos(1) -0.0975 0.0031 -31.28 0.0000

R2(0.5) 0.2767 0.0031 88.80 0.0000

p(15) 0.0442 0.0031 14.20 0.0000

n(20) 0.0988 0.0031 31.69 0.0000

m(2) -0.0744 0.0031 -23.87 0.0000

gamma(0.3) -0.0818 0.0031 -26.25 0.0000

relpos(1):R2(0.5) -0.0096 0.0031 -3.08 0.0020

relpos(1):p(15) -0.0406 0.0031 -13.04 0.0000

R2(0.5):p(15) -0.0028 0.0031 -0.89 0.3734

relpos(1):n(20) -0.0587 0.0031 -18.84 0.0000

R2(0.5):n(20) 0.0233 0.0031 7.46 0.0000
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p(15):n(20) 0.0234 0.0031 7.51 0.0000

relpos(1):m(2) 0.0460 0.0031 14.76 0.0000

R2(0.5):m(2) -0.0151 0.0031 -4.84 0.0000

p(15):m(2) -0.0186 0.0031 -5.96 0.0000

relpos(1):gamma(0.3) 0.0722 0.0031 23.17 0.0000

R2(0.5):gamma(0.3) -0.0141 0.0031 -4.51 0.0000

p(15):gamma(0.3) -0.0281 0.0031 -9.02 0.0000

n(20):m(2) -0.0426 0.0031 -13.66 0.0000

n(20):gamma(0.3) -0.0488 0.0031 -15.67 0.0000

m(2):gamma(0.3) 0.0590 0.0031 18.94 0.0000

relpos(1):R2(0.5):p(15) 0.0041 0.0031 1.30 0.1933

relpos(1):R2(0.5):n(20) 0.0044 0.0031 1.41 0.1595

relpos(1):p(15):n(20) -0.0210 0.0031 -6.75 0.0000

R2(0.5):p(15):n(20) -0.0068 0.0031 -2.17 0.0298

relpos(1):R2(0.5):m(2) -0.0069 0.0031 -2.22 0.0268

relpos(1):p(15):m(2) 0.0183 0.0031 5.87 0.0000

R2(0.5):p(15):m(2) 0.0093 0.0031 2.98 0.0029

relpos(1):R2(0.5):gamma(0.3) 0.0038 0.0031 1.22 0.2212

relpos(1):p(15):gamma(0.3) 0.0296 0.0031 9.49 0.0000

R2(0.5):p(15):gamma(0.3) 0.0068 0.0031 2.18 0.0294

relpos(1):n(20):m(2) 0.0227 0.0031 7.27 0.0000

R2(0.5):n(20):m(2) -0.0012 0.0031 -0.40 0.6921

relpos(1):n(20):gamma(0.3) 0.0421 0.0031 13.52 0.0000

R2(0.5):n(20):gamma(0.3) -0.0020 0.0031 -0.63 0.5275

relpos(1):m(2):gamma(0.3) -0.0433 0.0031 -13.88 0.0000

R2(0.5):m(2):gamma(0.3) 0.0073 0.0031 2.33 0.0197

p(15):n(20):m(2) -0.0059 0.0031 -1.89 0.0583
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p(15):n(20):gamma(0.3) -0.0134 0.0031 -4.30 0.0000

p(15):m(2):gamma(0.3) 0.0196 0.0031 6.28 0.0000

n(20):m(2):gamma(0.3) 0.0327 0.0031 10.50 0.0000

relpos(1):R2(0.5):p(15):n(20) 0.0073 0.0031 2.35 0.0187

relpos(1):R2(0.5):p(15):m(2) -0.0090 0.0031 -2.88 0.0040

relpos(1):R2(0.5):p(15):gamma(0.3) -0.0067 0.0031 -2.14 0.0320

relpos(1):R2(0.5):n(20):m(2) -0.0136 0.0031 -4.35 0.0000

relpos(1):R2(0.5):n(20):gamma(0.3) -0.0053 0.0031 -1.70 0.0901

relpos(1):R2(0.5):m(2):gamma(0.3) 0.0053 0.0031 1.71 0.0877

relpos(1):p(15):n(20):m(2) 0.0058 0.0031 1.87 0.0609

relpos(1):p(15):n(20):gamma(0.3) 0.0143 0.0031 4.61 0.0000

relpos(1):p(15):m(2):gamma(0.3) -0.0183 0.0031 -5.87 0.0000

relpos(1):n(20):m(2):gamma(0.3) -0.0215 0.0031 -6.90 0.0000

R2(0.5):p(15):n(20):m(2) 0.0091 0.0031 2.92 0.0035

R2(0.5):p(15):n(20):gamma(0.3) 0.0076 0.0031 2.45 0.0145

R2(0.5):p(15):m(2):gamma(0.3) -0.0063 0.0031 -2.04 0.0418

R2(0.5):n(20):m(2):gamma(0.3) -0.0025 0.0031 -0.82 0.4143

p(15):n(20):m(2):gamma(0.3) 0.0067 0.0031 2.16 0.0305
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Appendix B

Software

The thesis is written with Latex.

All calculations and dataplotting is done with R version 3.1.2 (2014-10-31).

The scripts can be found at

https://bitbucket.org/mtalseth/master-thesis.
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