Department of Ecology and Natural Resource Management

Master Thesis 2015
60 credits

Flower colour variation, pollination biology and population ecology in Dactylorhiza sambucina

Table of contents

Abstract 2
Keywords 2
Introduction 2
Materials and Methods 5
Study and sampling area 5
Telemark, Norway 5
Gotland, Sweden 6
Sila Grande, Calabria, Italy 6
Sampling and DNA test 7
Colour modelling 7
Pollinator studies 8
Field inventory, species frequencies and reproduction 8
Seed sampling and germination tests 8
Background Information 8
Protocol to make 1000mL of Orchimax agar (makes about 50 Orchimax agar plates): 9
Protocol to treat seeds of D. sambucina and how to sow them in Orchimax agar: 11
Protocol to germinate D. sambucina seeds in a germinating chamber: 11
Results 12
DNA test 12
Colour studies 17
Pollinator studies 21
Field inventory, species frequencies and reproduction 21
Discussion 27
DNA test 27
Colour studies 29
Interesting notation at Stora Karlsö 29
Interesting notation at Silvana Mansio 29
Pollinator of D. sambucina found at Blika 30
Field inventory, species frequencies and reproduction 30
Seed sampling and germination tests 31
Conclusion 32
Appendix 33
References 34

Abstract

The dimorph D. sambucina grow only yellow in Norway, and comes in a range of colour gradients from yellow to red elsewhere in Europe. DNA analysis of leaf tissue could not map population structures at Norwegian locations due to unreproducible AFLP's retrieved from external laboratory. Germination experiments were not successful due to incorrect protocol or laboratory procedures, but seeds survived and developed into seedlings. Colour density of conspecifics seem to be more important than the colour and colour proportions of co-flowering species in regenerating the monochrome Norwegian populations. In Norway Bombus lapidarius is the main pollinator and D. sambucina x D. fuchsii hybrids are found intermixed in these populations.

Keywords

D. sambucina, AFLP's, pollinator, colour, hybrids, co-flowering, inventory, germination.

Introduction

Plant flowers show a great variation in colours, shapes, sizes and fragrances. These characters have been interpreted as adaptations that attracts specific pollinators (Fægri \& van der Pijl, 1980). However, there are increasing evidence that pollinator behaviour might not be directly involved in the maintenance of colour polymorphism (Jones \& Reithel, 2001; Morgan \& Schoen, 1997; Schemske \& Bierzychudek, 2001).

In general orchids depend upon insects or rarely birds for pollination, and offer their visitors different kinds of rewards like oil, floral fragrances and, most frequently, floral nectar (Arditti, 1992; Dressler, 1993; van der Cingel, 1995; van der Pijl \& Dodson, 1966). Some taxa do not offer reward to their pollinators, but lure insects by mimicking a food model blooming at the same time (Dafni, 1984, 1986; Johnson, 2000) or by displaying attractive flowers. Generalized food mimics often bloom in dense populations, early in the season, and are polymorphic, for example in corolla colour (Nilsson, 1992).

It has been suggested that the high levels of intraspecific floral diversity observed in some species of orchids may be related to their deceptive system of pollination in which orchids offer no rewards to their pollinators, nor mimic any specific rewarding-producing species (Ackerman \& Galarzaperez, 1991; Dafni, 1984; Heinrich, 1975; Nilsson, 1980). The early blooming and the display of polymorphic deceptive flowers may increase their ability to attract naive pollinators. It has been hypothesised that the ability to deceive is increased by
this variability in colour, because it takes pollinators longer to discriminate the morphs, and thus they make more mistakes in avoiding the species (Heinrich, 1975; Petterson \& Nilsson, 1983).

Rewardless orchids seems to be pollinated by naive insects in Europe, mainly bumblebee queens (Kropf \& Renner, 2005; Nilsson, 1980). Because of its prominent floral morphology and excretion of highly fragrant terpenes bumblebees are tricked a couple of times before they learn (Nordal \& Wischmann, 1987). Bumblebees tend to switch between colour morphs when not rewarded with nectar. This behaviour results in overvisiting of rare colour morphs (Smithson \& Macnair, 1997).
D. sambucina is a common rewardless European terrestrial orchid with a boreal-alpine distribution (Tutin et al., 1980), and normally this species prefers rich soils ($\mathrm{pH}<5.0$), but may also grow on dry, acidic, and nutrient-poor siliceous soils as long as the meadows are open with a lot of light (Kropf \& Renner, 2005). D. sambucina is generally diploid with $2 \mathrm{n}=40$ (exceptionally $2 \mathrm{n}=42$) chromosomes (Pedersen, 2006). The Norwegian populations represent the outermost northwest area of distribution, and studies here conclude that D. sambucina demands moderately nutrient soils, and is definitely not a calcium demanding species (Nordal \& Wischmann, 1987). D. sambucina is blooming in the middle of May and early June in Norwegian populations (Nordal \& Wischmann, 1987). This early in the season the conditions for the plants are wet from snowmelt in the mountains, but still fairly hot and much light where D. sambucina grow (Norderhaug, Bakkevik, \& Skogen, 1997). D. sambucina has a symbiotic relationship with fungus. One of these fungus are Rhizotonia sp. (Marchisio, Berta, Fontana, \& Mannina, 1985).

Studies of D. sambucina reveals that the yellow colour morph attracts more pollinators (a higher male reproduction success - RS) than red and pink morphs, and that the pink colour morph makes less viable seeds (lower female RS) than yellow and red morphs, but fails to show a significant difference in both male and female RS for all colour morphs (Pellegrino, Bellusci, \& Musacchio, 2005). Pellegrino's studies shows a post-pollination barrier in D. sambucina, but the involvement of pollinators are not sufficient to explain the maintenance of colour polymorphism in this species and the loss of a morph could be entirely due to genetic drift in small populations (Kropf \& Renner, 2005; Smithson, Juillet, Macnair, \& Gigord, 2007).
(Gigord, Macnair, \& Smithson, 2001) found the highest pollinia export, receipt, and fruit set in mixed populations, and that negative frequency-dependent selection might be a mechanism that maintains colour polymorphism in D. sambucina. Pellegrino, Caimi, Noce, \& Musacchio (2005) found opposing results indicating that the contribution to the total reproductive success deriving from the two colour morphs does not conform with the predictions of negativedependent selection. Only individual plant height and population density had a positive effect on pollen export, and pollination experiments confirm that D. sambucina is nonagamospermous, incapable of automatic selfing, self-compatible, and pollinator-limited (Kropf \& Renner, 2005). The mean frequency of yellow-flowered D. sambucina across natural populations in Europe is $53 \% \pm 2.6(\mathrm{n}=174)$, and the two colour morphs are identical for floral scent (Nilsson, 1980).

Tamm (1972) found that D. sambucina individuals grow very old and have some vegetative reproducibility, and is reproducing and maintained just to a small degree by seeds. Drainage conditions may be vital for the species (Mattiasson, 1986), and it also seems that trampling and summer drought favours D. sambucina to re-establish and maintain viable populations (Pettersson, 1958).

Reproductive success of food-deceptive orchids may be affected by interactions with coflowering rewarding species (Pellegrino, Bellusci, \& Musacchio, 2008). An important coflowering nectar provider for D. sambucina in West German populations is the purple Lamium purpureum (Kropf \& Renner, 2005). We do not find many purple flowers this early in the summer in Norwegian populations, and L. purpureum is not common in the area where D. sambucina grow. Instead there are mostly yellow and blue coloured co-flowering species, and very few purple ones (Norderhaug et al., 1997). This early in the season when D. sambucina is blooming (May), they have few co-flowering species at all in their open and dry patches where they grow in Norway (pers. obsv.).

In western part of Germany (Kropf \& Renner, 2005) and in Norway there are populations of exclusively monochrome yellow coloured D. sambucina (Lid \& Lid, 2007). In Norway the red morph is totally lacking and its closest dimorphic populations are found on the east coast of Sweden (Lid \& Lid, 2007).

This study aims to find causes for lack of flower colour polymorphism in Norwegian D. sambucina populations by studying DNA for the expressed colour and how they interact with
the fitness of the Norwegian yellow colour-morph of this species (Gaskett, 2011). To assess these questions I have tested three hypothesis:

1. The allele coding for red colour is missing or silenced in the Norwegian D. sambucina populations.
2. D. sambucina seed production depends on co-flowering colourmorphs of other species.
3. Population density variations cause differences in seed production rates in Norwegian D. sambucina populations.

Revealing more knowledge of colour morphology through DNA and function of density, coflowering colourmorphs, fitness, and frequency-dependent reproduction success in this species might give new information in how to maintain and monitor this species for future survival in their natural habitat in Norway.

Materials and Methods

Study and sampling area

In May 2012, four populations of D. sambucina were sampled in Telemark, Norway. In May 2013, one population was sampled at Stora Karlsö on the island of Gotland in Sweden and one population was sampled in the Sila Mountains in Italy.

Telemark, Norway.

Protected species. Permit obtained from Direktoratet for Naturforvaltning.
Hjartdal - Bøllås, elevation 550-575 m (>1000 individuals distributed over an area of $400 \mathrm{~m}^{2}$):
N 6623677 / E 138796 (UTM 33 N).
Seljord - Blika, elevation 550-600 m (>1000 individuals distributed over of $400 \mathrm{~m}^{2}$):
N 6623566 / E 136923 (UTM 33 N).
Seljord - Brekkegrend, elevation 400-425 m (>1000 individuals distributed over $300 \mathrm{~m}^{2}$):
N 6606179 / E 153048 (UTM 33 N).
Tokke - Eidsborg, elevation 450-500 m (>1000 individuals distributed over $200 \mathrm{~m}^{2}$):
N 6611364 / E 104179 (UTM 33 N).

All Norwegian locations were former pasture fields and abandoned for the last two decades, but still the grass is cut and removed to manage and maintain the cultural diversity of plants in the field. All locations are mainly slopes facing south-southwest.

The bedrock at the study sites in Norway consisted of gneisses and quartzite, impermeable hard bedrocks, with strands of amphibolite, rhyolite and feldspar that give a slightly calcareous soil (pH 4.4 - 6.0). The four populations of D. sambucina were studied between April and June 2012, and between May and July 2013.

Gotland, Sweden.

Protected species. Permit obtained from Länsstyrelsen Gotlands Län.

Stora Karlsö - Gotland, elevation $30-40 \mathrm{~m}$ (>1000 individuals distributed over an area of $500 \mathrm{~m}^{2}$): $\mathbf{N} 6352776$ / E 679689 (UTM 33 N).

The location were mainly on sheep pasture and a gentle slope slightly facing south southeast, but otherwise relatively flat terrain.

The bedrock at the Swedish site was mainly calcareous consisting of fossil coral reef.

Sila Grande, Calabria, Italy.

Species categorized as least concern (LC) on the 2011-2014 IUCN Red List in Europe and thus not protected in Italy other than in certain protected areas.

Centro sci di fondo "Carlo Magno"- Silvana Mansio - Consenza, elevation 1450-1470 m (>1000 individuals distributed over an area of $500 \mathrm{~m}^{2}$): N $4349283 / \mathbf{E} 632511$ (UTM 33 N).

The location was on pastureland and on a gentle slope slightly facing north but in otherwise relatively flat terrain.

The bedrock in Sila Grande, Italy consisted mainly of limestone.

All samples were randomly chosen for each population at the sites described. Sites and populations were chosen to secure a large number of individuals in each population to retrieve random samples.

Sampling and DNA test

To measure the inter- and intra-genetic variation and phylogenetic relationships, a total of 210 samples consisting of about one cm^{2} tissue from young leaves were collected in Norway, 80 samples in Sweden, and 60 samples in Italy, and put into plastic bags with silica gel for drying (Hedren, Fay, \& Chase, 2001). First 10 preliminary samples were sent for AFLP analysis in September 2012 and later 200 samples including five repeats were sent in September 2013, all samples sent to Ecogenics in Zurich-Schlieren, Switzerland. This lab also did DNA extraction.

Genomic DNA was digested with the restriction enzymes EcoRI and MseI and ligated with restriction-site specific adaptors to allow subsequent PCR amplification of a subset of fragments with selective primers, binding partially to the adaptor and partially within the restriction fragment. In a second round of PCR amplification with more selective primer combinations, EcoRI site-specific primers labelled with a fluorophore were used. Generated PCR fragments were separated by capillary electrophoresis (CE) on an Applied Biosystems 3730 DNA Analyser.

Colour modelling

To find the proportions of the different colour morphs in each population at the sites in Sweden and Italy, a flower colour-scoring model was constructed, and 60 individual plants from Stora Karlsö and 51 individual plants from Silvana Mansio were scored for their colour gradients. The model were constructed to group the different colourmorphs into separate colour classes by combining code letters for each colour grouping part of the flower.

Flower model of D. sambucina.

Positions:

1. Tepals
2. Column and upper labellum
3. Lower labellum

Colour codes
$\mathrm{y}=$ yellow, $\mathrm{n}=$ pink, $\mathrm{r}=$ red, $\mathrm{l}=$ purple
Figure 1. Flower model of D. sambucina.

Pollinator studies

The observation of potential pollinators of D. sambucina was done throughout all fieldwork at all sites, and documented by using a Panasonic Lumix DMC-TZ30 pocket camera. Video recording by the use of two GoPro Hero 3 cameras, one of model white and one of model silver, on tripods were done in June 2013 for documenting all species in the field plots, and possibly detecting actions of potential pollinators in Norway only.

Field inventory, species frequencies and reproduction

To investigate if frequencies of D. sambucina or co-flowering species of certain colours influenced the reproduction of the orchids a field experiment was performed. Three Norwegian populations in Telemark were studied in June 2013 for this purpose, and revisited in July the same year to register and collect seed capsules. These studies were performed at Bøllås in the municipality of Hjartdal, at Blika in Svartdal and at Todalen in Brekkegrend, the latter two located in the municipality of Seljord. The experimental design included in total 90 one by one meter square plots randomly chosen in each population, 30 at each of the locations. Photos were taken of all plots for control of the inventories. The inventories of the three locations were listed in an excel sheet. Frequencies of D. sambucina and co-flowering species were also listed in excel sheets for each location.

Seed sampling and germination tests

Background Information

Orchid seeds germinate in nature under suitable conditions with the assistance of specific fungi (Rasmussen, Andersen, \& Johansen, 1990). The natural symbiotic fungi serve at least two functions. 1) Support necessary nutrients to the embryo at germination stage 2) Kills off any other fungi or organisms that will harm the seeds germinating.

Germinating orchid seeds in vitro in the lab can be done for certain orchid species by mimicking natural conditions by making an agar with all ideal nutrients in the correct amounts. The difficulty using the symbiotic fungi in the lab can be substituted by sterile
conditions. Under such conditions, most orchid seeds will germinate successfully without its natural symbiotic fungi.

The Orchimax agar is a nutrient rich media used for several orchid genera, and is suitable for most Dactylorhiza species. Orchimax contains all macro- and micro-nutrients in ideal amounts as well as activated charcoal to stabilize pH and the necessary nitrogen source needed. Without any additives the ready blended agar will have the ideal pH of 5.8-6.2. Seeds are applied on top of the agar and the semi-solid agar makes support for the roots of the germinating embryos.

Seed sampling were done in Telemark, Norway in July 2013 at the same plots and populations as investigated for colour studies in June to investigate reproduction of D. sambucina. Numbers of seed capsules for each individual for each plot at the three locations in Telemark were noted in excel sheets. Seed sampling were also done at Stora Karlsö, Sweden in July and seeds from Sila Grande, Italy was provided by Guiseppe Pellegrino at the Unical University of Rende, Calabria, in Italy and sent by mail the same week as sampled. Germination tests were done ex situ at the INA ecology lab at UMB ÅS, Norway following an in vitro protocol I made for making agar out of an Orchimax Orchid maintenance medium (Duchefa catalogue 2010 - 2012). The germination protocol for photoperiods follows (Rasmussen H., 1990).

Protocol to make 1000 mL of Orchimax agar (makes about 50 Orchimax agar plates):

1. Weigh out the following into a 1L Erlenmeyer flask: 5.5 g Plant agar, 27.8 g Orchimax from Duchefa, and (dH2O) to 1000 mL .

Note: If your laboratory has pre-mixed Orchimax agar powder, use the suggested amount instead of the other dry ingredients above.
2. Swirl to mix, the contents do not have to be completely in solution, but any powder left on the sides of the flask will caramelize on the glass during autoclaving.
3. Cover the top of the flask with aluminium foil and label with autoclave tape.
4. Autoclave the liquid for 20 minutes or according to your autoclave's specifications.
5. After removing the solution from the autoclave, allow the agar solution to cool to $55^{\circ} \mathrm{C}$.

Note: This can be done by placing the flask in a $55^{\circ} \mathrm{C}$ oven or water bath, as this will hold the temperature, and it can be left unattended for some time.
6. When pouring plates, keep your bench area sterile by working near a flame or Bunsen burner.
7. Pour $\sim 20 \mathrm{~mL}$ of Orchimax agar per 10 cm polystyrene Petri dish.

Note: Pour slowly from the flask into the centre of the petri dish. When the agar has spread to cover about $2 / 3$ of the dish stop pouring and the agar should spread to cover the entire plate. You may need to tilt the plate slightly to get the agar to spread out completely. If you pour in too much, the plate will be fine, but it will reduce the number of plates you can make per batch.

Note: If bubbles are introduced during the pouring, these can be removed by quickly passing the flame of an inverted Bunsen burner over the surface of the plate. Be careful, if you leave the flame too long, it will melt the petri dish.
9. Place the lids on the plates and allow them to cool for 30-60 minutes (until solidified) then invert the plates. Let sit for several more hours or overnight.
10. Label the bottom of plates with antibiotic and date and store in plastic bags or sealed with para-film at $4^{\circ} \mathrm{C}$.

For sowing, and germination of D. sambucina in germination chamber, I used a protocol based on germination of D. majalis by (Rasmussen H., 1990).

Before sowing, the seeds need a treatment to sterilize and disturb the surface enough to germinate.

1. Crack the seed capsule open using a tweezer into a small strainer (a tea strainer will do) over a small glass beaker (50 ml).
2. Sterilize the seeds by pouring $5 \mathrm{ml} \mathrm{NaOCl} 10 \%$ into the beaker, cover with a lid and shake the beaker to rinse the seeds.
3. Filter the seeds on a water resistant filter in a glass funnel into a sterilized beaker.
4. Filter once again using $\mathrm{ddH}_{2} \mathrm{O}$ to rinse the seeds for NaOCl .
5. Rub the filter gently on to the agar surface of the petri dish.
6. Cover the petri dish with a lid and wrap with plastic foil (para-film).
7. Keep the petri dishes in a germinating chamber at room temperature using the following protocol for germinating D. majalis seeds. The seeds should germinate within 2 months.

Perform prickling and sow into perlite/seramis.

Protocol to germinate D. sambucina seeds in a germinating chamber

1. Put all petri dishes on racks and place the racks into slots in the germinating chamber.
2. Start the incubation by programing the chambers software to 6 days of constant darkness at optimum temperature of $20^{\circ} \mathrm{C}$ with following interruption of two consecutive photoperiods before day 8 and not later.
3. Start 14 days of 16 h photoperiods on day 7 using intensity 4 (corresponds to ca. 11 Wm^{-2}) at $24^{\circ} \mathrm{C}$, ending on day 21 .

The seeds were considered to have germinated if the testa was ruptured and/or if rhizoids had developed (Rasmussen H., 1990).

Results

DNA test

The preliminary test results based on ten tissue samples (Table 2) collected at the three locations in Norway in June 2012 were done at the Ecogenics laboratory in Switzerland. Further analyses of these results revealed that some primer combinations (Table 1) produced too little information of interest and were discarded before the main lot of 200 samples were analysed in 2013 at the same laboratory in Switzerland.

Table 1. Primer combinations showing number of bands found for each combination.

	E32	E33	E35	E36	E37	E38
M47	5	10	6	8	65	11
M48	5	79	12	7	37	30
M49	4	62	10	15	67	33
M50	malur	48	6	32	62	23

Table 2. Names of preliminary genomic samples identifying origin. Red samples are D. fuchsii, the rest are yellow D. sambucina samples.

Name	3hort name
BPP-1A ELIKARED	Ds_01
BRP-29 ELIKARED	Ds_co
B-1 ELKA	Ds_ds
B-2BLKA	Ds_O4
D1 beroe	Ds_ 06
D2 BEROE	Ds_68
A-180UAS	Ds_ 07
A-280UAS	Ds_d8
C-1 TCOALEN	Ds_ 00
C-2TCOALEN	Ds_ 10

Eight D. sambucina (two from each location) and two D. fuchsii (mixed into a large D. sambucina population) were analysed with 24 AFLP primer combinations for finding the
most informative AFLP's (Tables $1-2$). These preliminary data were analysed with GenAlEx (Tutorial A. see appendix) generating a PCoA of 640 AFLP's (Figure 2), SplitsTree4 (Tutorial B. see appendix) constructing a Neighbour-Join out of 179 AFLP's (Figure 3), and Structure (not shown).

Figure 2. PCoA with 10 plants and 640 AFLP's.

Figure 3. Neighbour-Join with 10 plants and 179 AFLP's.

The preliminary results does not show a clear differentiation of D. fuchsii from D. sambucina as one of the yellow orchids from Blika interfere the expected results (Figure 2-3).

Table 3. Tissue samples and IDs from seven populations in Norway, Sweden and Italy.
25.06.13 LAB INA ÅS: Dactylorhiza sambucina. Labeling of samples forDNA-analyses at Ecogenics.

BøLLÅS	BLIKA	BREKKE	BERGE		KARLS \varnothing-Y		KARLS¢Y-R	KARLS \varnothing-I
A3 $=001$	B3 $=018$	C3 = 035	D3	- 052	M1	= 069	L1 = "086	N1 $=103$
A4 $=002$	B4 $=019$	C4 $=036$	D4	- 053	M2	= 070	L2 =087	N2 $=104$
A5 = 003	B5 $=020$	C5 = 037	D5	- 054	M3	= 071	L3 $=$ "088	N3 $=105$
A6 = 004	B6 = 021	C6 = 038	D6	- 055	M4	= 072	L4 = "089	N4 $=106$
A7 $=005$	B7 = 022	C7 = 039	D7	= 056	M5	= 073	L5 = 090	N5 =107
A8 $=006$	B8 $=023$	C8 = 040	D8	- 057	M6	= 074	L6 = "091	N6 $=108$
A9 = 007	B9 $=0024$	C9 = 041	D9	- 058	M7	= 075	L7 =092	N7 $=109$
A10 $=008$	$\mathrm{B} 10=025$	C10 $=042$	D10	- 059	M8	= 076	L8 = "093	N8 $=110$
A11 $=009$	B11 $=026$	C 11 = 043	D11	= 060	M9	= 077	L9 = "094	N9 $=111$
A12 $=010$	$\mathrm{B} 12=027$	C12 $=044$	D12	- 061	M10	= 078	L10 $=095$	$\mathrm{N} 10=112$
A13 $=011$	$\mathrm{B} 13=028$	C13 $=045$	D13	- 062	M11	= 079	L11 = 096	$\mathrm{N} 11=113$
A14 = 012	B14 $=029$	C14 = 046	D14	- 063	M12	= 080	L12 = "097	N12 = 114
A15 $=013$	$\mathrm{B} 15=030$	C15 = 047	D15	- 064	M13	= 081	L13 = "098	$\mathrm{N} 13=115$
A16 = 014	B16 $=031$	C16 = 048	D16	- 065	M14	=082	L14 = "099	N14 = 116
A17 $=015$	$\mathrm{B} 17=032$	C17 $=049$	D17	- 066	M15	= 083	$L 15=100$	$\mathrm{N} 15=117$
A18 $=0016$	B18 $=$ "033	C18 = "050	D18	- 067	M16	= 084	L16 = "101	N16 = 118
A19 = 017	B 19 = 034	C19 = 051	D19	- 068	M17	= 085	L17 = 102	N 17 = 119
			CONTROLS		CONTROLS		CONTROLS	CONTROL
SILA-Y	SILA-R	SILA-I	RED FUCHSII		RED FUCHSII		SILA MASCUL	
G1 = 120	$1-1=137$	H1 = 154	BRP1A $=171$		BER1 $=174$		K1 = "182	$069=196$
G2 = 121	$1-2=138$	H2 = 155	$\mathrm{BRP2B}=172$		BER2 $=$	= 175	K2 = "183	113 =197
$\mathrm{G} 3=122$	$1-3=139$	H3 = 156	$\mathrm{BRP3B}=173$		BER3 $=176$		K3 $=184$	$\begin{aligned} & 167=198 \\ & 075=199 \\ & 013=200 \end{aligned}$
G4 = 123	$1-4=140$	H4 = "157			UPP1	177	K4 = "185	
G5 = 124	$1-5=141$	H5 = 158			UPP2	178	K5 = 186	
G6 = 125	$1-6=142$	H6 = 159			UPP3	179	K6 = 187	
G7 = 126	$1-7=143$	H7 $=160$			UPP4	180	K7 = 188	
G8 = 127	$1-8=144$	H8 = 161			UPP5	181	K8 = 189	
G9 = 128	$1-9=145$	H9 = 162			-		K9 = 190	
$\mathrm{G10}=129$	$\mathrm{I}-10=146$	H10 $=163$	$B=B L I K A$		$B E=B E R U M$		$K 10=191$	
G11 $=130$	$1-11=147$	H11 = 164			UPP=UPPLAND		K11 = 192	
G12 = 131	$1-12=148$	H12 ${ }^{\prime} 165$					$K 12=193$	
G13 = 132	$1-13=149$	H13 = 166					K13 $=194$	
G14 = 133	$1-14=150$	H14 =167					K14 =195	
G 15 = 134	$1-15=151$	H15 = "168						
$\mathrm{G} 16=135$	$1-16=152$	H16 = 169						

These preliminary data was supposed to be extended by including seven populations each represented by 40 lines and typical unrelated D. fuchsii controls (Table 3). These laboratory results failed to be reproduced at the Ecogenics laboratory in Switzerland in 2013 (Table 7).

Table 4. Enzymes and primer names with sequences used for AFLP tests of the 200 tissue samples from all sites in Norway, Sweden and Italy in June 2013.

Name	Primer sequence $5^{\prime}-3^{\prime}$ (selective bases)	Fluorescence label	Restriction site specificity	Purpose
EcoRI_A	gactacginccanitca	-	EcoRI	Used for 1st round of PCR
MseI_C	GATGAGICCTGAGTAAC	-	MseI	
E32	GACTGCGIACCAATTCAAC	FAM	EcoRI	Used for 2nd round of PCR together with various MseIspecific primers
E33	GACTGCGTAOCAATTCAMG	ATT0550	ECORI	
E35	gactgcgiaccanticaca	ATT0565	EcoRI	
E36	GACTGCGTAOCAATTCAOC	EAM	ECoRI	
E37	GACTGCGIACCAATTCACG	ATT0550	EcoRI	
E38	GACTGCGTACCAATTCACT	ATT0565	EcoRI	
M47	GATGAGTCCTGAGTAACAA	-	MseI	Used for 2 nd round of PCR together with various EcoRIspecific primers
M48	GAIGAGICCTGAGIAACAC	-	MseI	
M49	GATGAGICCTGAGTAACAG	-	MseI	
M50	GATGAGTCCTGRGTAACAT	-	MseI	

Table 5. The primer combinations used for the DNA analyses of the 200 tissue samples from all sites and locations in June 2013, showing potential interesting information.

E32_M48_blue	1 out of 5 bands
E33_M48_yellow	1 out of 79 bands
E33_M49_yellow	1 out of 62 bands
E33_M50_yellow	1 out of 46 bands
E36_M49_blue	2 out of 15 bands
E36_M50_blue	1 out of 32 bands
E37_M50_yellow	2 out of 62 bands
E38_M49_red	1 out of 33 bands

To find the primer combinations that worked for D. sambucina, the results of the analyses were scored for significant differences in band signals between the red D. fuchsii and the yellow D. sambucina morphs. Out of the 24 primer combinations (Table 1) in the preliminary analyses in 2012, eight primer combinations (Tables 4-5) were found useful with some distinguishable information, and these were used for analysing the main lot of 200 samples sent to the Ecogenics laboratory in 2013, the rest failed to elicit any information of interest.

Further analyses of the results from the main 200 DNA-samples from the external laboratory in 2013 showed that six out of the eight primer combinations produced some potential interesting information (Table 6).

Table 6. Bands per primer set expressing genetic information out of 200 samples.

BAND DISTANCE						
E33 M49		6	10	dops	64	Obps (All 350
E33 M50		1	5		37	502
E33 M48		1	7		58	492
E37 M49		3	15		56	419
E37 M50		0	4		48	421
E37 M47		3	4		21	562

Using the chosen primers (Table 6), all labelled tissue were extracted and analysed at the Eurogenics laboratory in Switzerland. The analysis this laboratory returned generated a lot of information, but produced inconsistent data when comparing control repeats with their identical originals (Table 7).

Table 7. Ten control repeats out of 200 samples sent for DNA analysis at Eurogenics.

Control repeats	G	N	AR	AX	BS	CL	CX	ES	HP
$196=69$									
Run1_Ds069.fsa	0\$0	1\$5354	1\$10346	0\$0	1\$1006	0\$0	0\$0	0\$0	1\$4935
Run1_Ds196.fsa	1\$1851	1\$1135	1\$4950	0\$0	1\$2439	0\$0	1\$6058	1\$2009	1\$1098
$197=113$									
Run1_Ds113.fsa	1\$14574	0\$0	1\$29674	0\$0	0\$0	0\$0	0\$0	0\$0	0\$0
Run1_Ds197.fsa	0\$0	0\$0	1\$6734	0\$0	1\$1318	0\$0	0\$0	1\$3774	0\$0
$198=167$									
Run1_Ds167.fsa	0\$0	0\$0	1\$2743	0\$0	0\$0	1\$4694	1\$6581	0\$0	0\$0
Run1_Ds198.fsa	1\$2237	0\$0	1\$6886	0\$0	0\$0	1\$1350	0\$0	0\$0	0\$0
$199=075$									
Run1_Ds075.fsa	1\$4236	0\$0	1\$11190	1\$5475	0\$0	0\$0	1\$16042	1\$10326	0\$0
Run1_Ds199.fsa	1\$2165	1\$4854	0\$0	1\$1692	1\$2660	1\$1337	1\$4981	0\$0	0\$0
$200=013$									
Run1_Ds013.fsa	0\$0	0\$0	1\$22432	0\$0	0\$0	0\$0	1\$5319	1\$1426	0\$0
Run1_Ds200.fsa	0\$0	0\$0	1\$4128	0\$0	0\$0	0\$0	1\$8907	1\$2173	0\$0

Colour studies

Table 8. Colour scoring of flower D. sambucina colour at Stora Karlsö in Sweden.

31	1080704				nyn					
32	1080714				nyn					
33	1080721							ryr		
34	1080730								rnr	
35	1080741						nyr			
36	1080749					$n n n$				
37	1080760				nyn					
38	1080774				nyn					
39	1080779				nyn					
40	1080788						nyr			
41	1080802						nyr			
42	1080808							ryr		
43	1080818								rnr	
44	1080825								rnr	
45	1080830							ryr		
46	1080838							ryr		
47	1080847							ryr		
48	1080855								rnr	
49	1080862								rnr	
50	1080865							ryr		
51	1080873									rrr
52	1080880	yyy								
53	1080889	yyy								
54	1080896	yyy								
55	1080904	yyy								
56	1080913	yyy								
57	1080921	yyy								
58	1080928	yyy								
59	1080940	yyy								
60	1080949	yyy								

Table 9. Summary colour sampling at Stora Karlsö, Sweden.

Yellow	Yellowish pink		Pink intermediates				Pinkish red		Red	Totals
yyy	nyy	ryy	nyn	nnn	nyr	nnr	ryr	rnr	rrr	All colours
20	1	0	11	1	4	2	10	9	2	60
33,30 \%	1,67\%	-	18,30 \%	1,67\%	6,67\%	3,30 \%	16,67\%	15 \%	3,30 \%	100 \%
33,30 \%	1,67\%		30 \%				31,67	\%	3,30\%	100 \%
35 \%			30 \%				35%			100%

Table 10. Colour scoring of flower D. sambucina colour at Sila Grande, Italy.
Color range: y =yellow \square $\mathrm{n}=$ pink $\square \mathrm{r}=$ red $\square \quad \mathrm{l}=$ purple \square ID: Photo no:

Colour code:

		Yellow	Yellowish pink		Pink intermediates				Pinkish red		$\begin{array}{\|l\|} \hline \text { Red } \\ \hline \text { rrr } \\ \hline \end{array}$	Purple		
		yyy	nyy	ryy	nyn	nnn	nyr	nnr	ryr	rnr		lyl	lyn	lyr
1	1060768											lyl		
2	1060781				nyn									
3	1060795	yyy												
4	1060796											lyl		
5	1060800													lyr
6	1060801				nyn									
7	1060811											lyl		
8	1060815											lyl		
9	1060818	yyy												
10	1060827											lyl		
11	1060834												lyn	
12	1040977					nnn								
13	1040981					nnn								
14	1040991						nyr							
15	1040993	yyy												
16	1050003							nnr						
17	1050060				nyn									
18	1050063				nyn									
19	1050064a	yyy												
20	1050064b					nnn								
21	1050067	yyy												
22	1050068						nyr							
23	1050069				nyn									
24	1050070					nnn								
25	1050071a				nyn									
26	1050071b				nyn									
27	1050072					nnn								
28	1050073				nyn									
29	1050075	yyy												
30	1050076									rnr				
31	1050077				nyn									
32	1050084				nyn									
33	1050088	yyy												
34	1050095						nyr							
35	1050103	yyy												
36	1050107	yyy												
37	1050113	yyy												
38	1050115						nyr							

39	1050120	nyn		
40	1050129	nyn		
41	1050132	nyn		
42	1050137		nnn	
43	1050140	nyn		rnr
44	1050149		nnn	rnr
45	1050152			
46	1050155	yyy	nyn	
47	1050157	nyn		
48	1050159			
49	1050176			
50	1050177	yyy		

Table 11. Summary colour sampling at Sila Grande, Italy.

Yellow	Yellowish pink		Pink intermediates				Pinkish red		rrr	Purple			Totals All colours
yyy	nyy	ryy	nyn	nnn	nyr	nnr	ryr	rnr		lyl	lyn	lyr	
13	$0 \quad 0$		16	7	4	1	0	3	0	5	1	1	51
25,49	-	-	31,37	13,73	7,84	1,96	-	5,88	-	9,80	1,96	1,96	100,00
25,49 \%			54,90 \%				5,88 \%			13,73 \%			100 \%
13			28				3						44
29,55 \%			63,64 \%				6,82 \%						100 \%

Scoring the flowers in Sweden and Italy by using the colour scoring model grouped the colours into five main colour classes (Tables 13-15, see appendix) where the three main colour classes yellow, pink and red showed more evenly distributed colour frequencies at Stora Karlsö in Sweden than did in Italy (Tables 8 - 11). At Sila Grande in Italy, colours were biased towards the pink colour morph, with few red colour morphs and showing a different purple colour morph that was not found in Sweden. Photos below the tables show the colour range.

Pollinator studies

The use of video by hero cameras on tripods did not produce any results. No potential pollinators were detected this way. I managed to take some photographs of one of the naïve bumblebees, B. lapidarius with three pollinia from D. sambucina attached to its clypeus, in action in the field at Blika, Telemark, Norway (Figures 16-17).

Field inventory, species frequencies and reproduction

During fieldwork in May, June, and July 2013 all locations in Telemark, Norway were examined for all plant species present at the time and registered. Photos of all plots taken during field examination were studied a second time during winter 2014 to verify that all present species were registered. The registered species were listed as a table of inventory (Table 12).

Table 12. Inventory Telemark 2013.

Latin		Bøllås	Blika		Brekke
Equisetum arvense	ssp. arvense				
Botrychium lunaria		1		1	
Pteridium aquilinum	ssp. Latiusculum				
Woodsia ilvensis		1			
Dryopteris filix-mas					
Phegopteris connectilis					
Polypodium vulgare					
Pinus sylvestris		1		1	
Picea abies		1		1	
Juniperus communis		1		1	
Salix caprea		1			
Populus tremula				1	
Betula pubescens		1		1	
Alnus incana					
Ulmus glabra		1		1	
Rumex acetosa		1		1	
Bistorta vivipra		1		1	
Viscaria vulgaris		1		1	
Silene dioica		1		1	
Anemone nemorosa		1		1	
Ranunculus acris		1		1	
Cardamine pratensis	ssp. pratensis	1			
Sorbus aucuparia		1		1	

Noccaea caerulescens	1	1	
Hylotelephium maximum		1	1
Filipendula ulmaria	1	1	1
Geum rivale	1		
Potentilla crantzii	1	1	
Potentilla erecta	1	1	1
Fragaria vesca	1		1
Rubus saxatilis	1	1	1
Rubus idaeus		1	1
Rosa mollis			1
Rosa dumalis	1	1	1
Alchemilla alpina	1	1	
Alchemilla monticola	1	1	1
Trifolium repens	1	1	1
Trifolium pratense	1	1	1
Triolium medium	1	1	1
Lotus corniculatus	1	1	1
Vicia cracca		1	1
Viccia sepium	1	1	1
Lathyrus linifolius	1	1	1
Geranium sylvaticum	1	1	1
Polygala vulgaris	1	1	1
Acer platanoides		1	1
Hyperikum maculatum	1	1	1
Viola riviniana	1	1	1
Viola palustris	1		
Viola tricolor	1	1	1
Anthriscus sylvestris	1	1	1
Pimpinella	1	1	1
Calluna vulgaris	1		1
Vaccinium myrtillus	1		1
Galium boreale		1	1
Fraxinus excelsior		1	1
Myosotis sylvatica	1		
Ajuga pyramidalis			1
Veronica chamaedrys	1	1	1
Veronica officinalis	1	1	1
Veronica arvensis	1		
Melampyrum sylvaticum		1	1
Rhinanthus angustifolius	1		
Rhinanthus minor	1	1	1
Plantago lanceolata	1	1	1
Valeriana sambucifolia			1
Knautia arvensis	1	1	
Antennaria dioica	1	1	1
Achillea millefolium	1	1	1
Leucanthemum vulgare		1	1
Cirsium heterophyllum		1	1

Centaurea jacea			1	1
Hypochaeris maculata		1	1	1
Leontodon autumnalis	var. taraxaci	1	1	1
Taraxacum ruderalia		1	1	1
Hieracium pilosella		1		1
Hieracium vulgatum			1	1
Dactylorhiza sambucina		1	1	1
Dactylorhiza fuchsii			1	1
Platanthera bifolia	ssp. bifolia			1
Luzula pilosa		1		
Luzula multiflora		1	1	1
Carex bigelowii	ssp. rigida	1		
Carex nigra	var. nigra			
Carex pallescens		1	1	1
Anthoxanthum odoratum		1	1	1
Phleum pratense		1		
Phleum alpinum		1		
Agrostis capillaris			1	1
Avenella flexuosa			1	1
Dactylis glomerata		1	1	1
Festuca rubra	ssp. rubra			1
Nardus stricta		1	1	1
Elytrigia repens			1	1
Draba sp.			1	
Polytrichum juniperinum		1		
Rhytidadelphus squarrosus			1	1
Climacium dendroides			1	
		67	69	74

Number of co-flowering species in each of the 30 plots was registered for the three locations in Telemark; Bøllås, Blika and Brekke (Tables 13-15, see appendix), and grouped into five colourclasses during one week in June 2013. Number of D. sambucina seed capsules were registered for the identical plots later in the season during one week in the middle of July 2013 (Tables 16-18, see appendix).

None of the specific colour-classes in this study had any significant impact on the seed-production of D. sambucina. Only when the numbers of yellow colour were merged together with the numbers of D. sambucina a positive coherency occurred, indicating that the density of D. sambucina rather than colour of co-flowering species have a positive impact on seed-production of these orchids (Table 19).

Germination experiments in vitro were a challenge to perform, and I did not succeed in germinating any of the D. sambucina seeds sown under sterile condition in our laboratory following the described protocol, at least not during the eight week timeframe I had available for a master thesis study. The minute seeds did not show any change even when I rechecked the petri dishes one month later.

Table 19. Frequencies of ripe D. sambucina seed capsules and co-flowering species per colour.

However, results had occurred as I rechecked the petri dishes in April 2015 before storing all my work and submitting my thesis to my supervisors. I managed to make a photo series through my stereo magnifier to show the process of germination of the D. sambucina seeds. The photos show seeds where the testa is rupturing (Figures 1-2) and rhizoids are developing at the suspensor end (Figures 34). The embryos then imbibes and increases in circumference as forming protocorms (Figure 5-6), growing apical meristem at the chalazal end, and later forms into seedlings (Figure 7-8).

During the preliminary fieldwork in May 2012, I found an intermixed D. fuchsii at Blika in Telemark, Norway (Figures $12-13$). The photos show a variant with wider floral lobes, wider leaves, and a thicker stem than the common variant that occur in the woods later in June.

Figures 4-11: D. sambucina seeds grown in vitro developing into protocorms and seedlings.

Figure 12. D. sambucina and one of the intermixed D. fuchsii at Blika.

Figure 14. Orchis mascula at Silvana Mansio, showing a bright purple colour.

Figure 16. B. lapidarius with three yellow pollinia in the field at Blika.

Figure 13. Details from one of the intermixed D. fuchsii at Blika.

Figure 15. Details from one of the intermixed D. Sambucina at Silvana Mansio.

Figure 17. Three pollinia attached to the clypeus of B. lapidarius.

Discussion

DNA test

The obtained PCoA and Neighbour-Join (Tab. 1 and 2) from the preliminary analyses are not as expected when assuming a significant interspecies distinction between D. sambucina and D. fuchsii. We excluded technical mistakes during the sampling and the DNA analyses and assumed that the used D. fuchsii lines represent D. fuchsii x D. sambucina hybrids (Fig 12 13).

Taking a second look at the sampled D. fuchsii might confirm the hybrid nature, because these lines have thicker stems and wider leaves (Fig. 13), but that might also be an environmental effect due to the atypical growing conditions for D. fuchsii. This hybrid was also found at Bøllås in May 2009, and this is four weeks earlier than expected for D. fuchsii in its normal habitat.

The DNA results of the second and main tissue analyses from the laboratory in Switzerland came back in November 2013, and results were further analysed with the software described above for the preliminary analyses. The results of this work was at first very confusing, as it did not make much sense. Analyses of the repeat controls revealed that the DNA analyses were not reproducible at the laboratory in Switzerland by comparing the repeats with their originals (Table 7). These comparisons showed that the expected identical pairs were far from identical and it was not much point in further work as we must assume the rest of the data we received would be just as inconsistent.

The cause for these errors could of course be that the samples were not labelled correctly when sampled in the field, or the repeats were mixed by packing at our laboratory before transport to the external analysis laboratory. However, this work were done following detailed procedures in the field, brought straight to our laboratory. They were further stored in labelled containers, in a locked cooler at our university at NMBU - Ås, until they were controlled and packed under supervision by my supervisor. Therefore, we do not find it likely to have made errors here, as the controls were randomly chosen, labelled and packed in cooperation, rather than solely by the student alone. If this is the case, then the error must have occurred at the Eurogenics laboratory by mixing samples there, or their AFLP protocol and procedures were not effective enough to be reproducible as our repeats does clearly show (Table 7).

One problem could have been that the data received from Eurogenics contained too much information due to not being selective enough of fragments, and not reducing the complexity of the banding pattern resulting in far too many bands in the PCR reactions, or in the CE separation of fragments. On the other hand, there would be a problem finding meaningful patterns if the further discarding of weak and blueprinting signalling bands were not done carefully enough by the student in analysing the received data. But then again such cleaning of data after PCR and CE will be extremely difficult if not impossible if the information generated are too complex. Anyway, it is not possible to make any conclusion in the study of mine, as the repeat controls point to the received data not being reproducible in the first place.

Learning this, I would rather have done the DNA extraction and the PCR in our laboratory at the university at Ås, Norway to gain control of all processes in my study.

The frame of this study and the use of AFLP's, and not e.g. microsatellites, limits and prevents the possibility to find causative alleles for the expressed colours in D. sambucina. (Hyp.1). As the DNA analyses also failed, it is not possible to reveal much more about the intra- and inter-specific relationship of D. sambucina and its relatives in this study.

However, if this study had produced some sound results from the DNA analyses, it might have been possible to calculate and show the relationship between the different populations by using analysing tools like GenAlEx, SplitsTree and Structure, and to tell more about how the individuals of the different populations group together and how close or distant these populations are related. I would expect the PCoA and the Neighbour-Join to show the D. fuchsii individuals clearly separated from the yellow D. sambucina individuals, and that the populations of the D. sambucina individuals from the three Norwegian locations are separating from one another. Perhaps I could even see that the closest populations, Blika and Bøllås occur less separated then the third population at Brekke that is more distant to the south. Especially it would have been interesting to see how the intermixed D. fuchsii individual fits in a Neighbour-Join using SplitsTree, or compare how the different D. sambucina populations from Norway, Sweden and Italy, and their genetic structure would look like using Structure. I would expect the Swedish and Italian population would differ more from the Norwegian population than the Norwegian populations differ from one another in Norway. Studies of other species in the Dactylorhiza family has shown this possible by several different scientists (De Hert et al., 2011; Hedren et al., 2001; Paun et al., 2011; Sonstebo, Borgstrom, \& Heun, 2007).

Colour studies

The idea of D. sambucina being of dimorph character may be stringent interpreted. Looking closer at the colour morphs during sampling, I found intermediate coloured individuals filling most of the colour range between yellow and red at the locations of Stora Karlsö and Sila Grande (tables 8 - 11). In addition, I found individuals at Sila Grande with a purple colour character. This is not what was expected when looking for a dimorph orchid species described as yellow and red.

Interesting notation at Stora Karlsö.

The distribution of the three main colour classes yellow, pink and red at Stora Karlsö were divided fairly equally between the classes: yellow 35\%, pink 30\% and red 35\% (Tab.9). Collecting more data might show that the colour frequencies does not differ that much between the locations. My dataset of 50 samples from two locations only is probably to minute to satisfy a representative selection of the total population.

Interesting notation at Silvana Mansio.

The distribution of the three main colour classes yellow, pink and red at Sila Grande were biased towards the pink intermediates, with very few of the red colour: yellow 29,55\%, pink $63,64 \%$ and red $6,82 \%$ (Tab.11). The purple coloured flowers here is suspected to be O. mascula x D. sambucina hybrids as the purple colour resembles the colour of the co-flowering O. mascula (Fig.14) at the same location. One of the flowers on one of the purple D. sambucina was bicolored purple and yellow and could be a strange local mutation (Fig. 15). The selection of samples were done randomly and should produce a representative picture of the frequencies of colours, but the number of samples might be too small to generate a significant result. I think that more studies would have to be done with a larger number of samples and locations to make a more solid conclusion.

Pollinator of D. sambucina found at Blika

During the preliminary studies at Blika in 2012, one of the main pollinators, B. lapidarius, was registered in the field. This is an interesting notation, as it has been demonstrated in Sweden that B. lapidarius is frequently visiting D. sambucina, and acts as one of at least two vital contributors to pollinating the D. sambucina populations there (Nilsson, 1980). As far as I know, the pollinator has not been registered in Norway before for this orchid species. It has been assumed the same pollinator I Norway as well and now this fact is confirmed for Norway too (Fig. 16 and 17). The use of video by hero cameras on tripods was no success. During all fieldwork in Norway in June 2013, where this method was used, the weather was chilly with a slight movement of wind that probably did not attract much insect activity at all.

Field inventory, species frequencies and reproduction

The inventory is a picture of the different plant species found in the field at the actual time when the field experiments were done, and does not reflect the total inventory throughout the whole year. However, my species lists are similar to those obtained by Ann Norderhaug in 1987 - 1995 (Norderhaug et al., 1997) at the same location. Local farmers at Bøllås and Blika has maintained the fields by sheep grazing and cutting grass only when reproduction of D. sambucina is over from July $15^{\text {th }}$ each year. This has favoured D. sambucina in these fields and these population numbers seems to have risen in these fields and in the area below.

The results of the field experiments does not show any coherency between D. sambucina reproduction and co-flowering species colour for any colour but yellow, and even this relationship is weak (Hyp. 2). There are not many red coloured co-flowering species in the Norwegian D. sambucina populations and it would be interesting to look closer to see if the lack of red co-flowering species have any influence on reproduction of the red D. sambucina morph in dimorph populations by making an experiment adding red co-flowering species.

In addition, the results of the field experiments does not show any coherency between density of D. sambucina and the number of ripe seed capsules (Hyp. 3). The density of D. sambucina does not seem to have any effect on its reproduction and indicates that other ecological factors
may come into play. This means that to find more answers I will need more field studies trying out other factors influencing reproduction of D. sambucina.

Seed sampling and germination tests

All seeds were sown on agar in petri dishes and in sterile conditions at our laboratory at Ås, but none of the dishes showed any germination after 21 days in growing chambers. The Italian seeds were sent by mail in closed plastic tubes without preliminary drying. They arrived in a miserable condition; the capsules were warm, wet and contained damaging fungi. Unfortunately, they were probably damaged already at arrival to Norway. The petri dishes showed contamination of both bacteria and fungi in more than 50% of the petri dishes and most of the growing media was dried out when removed from the growing chamber.

The petri dishes was re checked six weeks later and there had not been any change since the petri dishes was removed from thee germination chamber. The lack of germination might have several causes; one might be using a protocol used for D. majalis, which did not fit D. sambucina without further adjustments. The temperature and the light cycles might have been set wrongly, or the seeds used were infertile due to incompetent storage and preparation. There is also a possibility that the seeds needed more time hibernating, or the seeds did not receive the correct preparation before sowing. Finally working in sterile conditions is always difficult and demands laboratory training. Perhaps in the end I just lacked enough such experience and patience to succeed.

Nevertheless, while clearing my office before delivering my thesis in April 2015 I found the box with all petri dishes that failed germinating in August and October 2013. Now, when I rechecked them a second time, I surprisingly found living protocorms and seedlings in several dishes (Fig. 8-12). I think this points to a lack of hibernating of the seeds, as they had been stored in total darkness and in a chilly room on the first floor at my home in Telemark.

Conclusion

It was not possible conclude on the DNA studies due to lacking results. To get results I would need working data. It would have been great to do the DNA extraction and DNA analysis in the local laboratory instead of sending the lot to an external laboratory to gain more control of this part of the process to avoid errors. To do so I will have to do a new experiment once again.

The colour studies indicates that colour of co-flowering species may not be significant to reproduction of D. sambucina, but the inflorescence size and colour densities of conspecifics may matter. I would like to study the relationship between Dactylorhiza orchids and their coflowering species closer to understand what kind of effect they might endure upon orchids in general.

As there were not registered any pollinia bearing insects other than B. lapidarius at any of the populations studied in Norway, this could indicate B. lapidarius to be the main pollinator of D. sambucina in Norway too. There was little insect activity in the fields during my fieldwork period in Telemark so more field studies would be needed to collect sufficient data on pollinator behaviour and possibly find other pollinators of D. sambucina too.

The germination experiment was not a success, but I learnt much about working under sterile conditions in the laboratory, and that using correct protocols is essential, especially when working with orchids that has proven difficult to germinate in vitro. What more learnt was that being patient is crucial to science and scientists finding several of the petri dishes in activity germinating one and a half year later.

Finding that seeds had survived and germinated was inspiring at the end of this study, unfortunately just a bit too late for me to be able to analyse germination percentages before submitting my thesis, but I might carry on these studies some time later. It would have been interesting to compare the seeds germination capacity in the different populations in Norway and Sweden.

I need to thank my supervisors Manfred Heun and Mikael Ohlson for patience and professional guidance along my master thesis work. Without their support and interest, my efforts would just be half the fun.

Appendix

Table 13-Co-flowering species Bøllås Telemark - Excel doc.
Table 14-Co-flowering species Blika Telemark - Excel doc.
Table 15 - Co-flowering species Brekke Telemark - Excel doc.

Table 16 - Bøllås seed capsules - Excel doc.
Table 17 - Blika seed capsules - Excel doc.
Table 18 - Brekke seed capsules - Excel doc.

Tutorial A. SplitsTree for dummies - Tutorial for new beginners by D. Mundal - Word doc.

Tutorial B. GenAlEx6.5 for dummies - Tutorial for new beginners by D. Mundal - Word doc.

References

Ackerman, J. D., \& Galarzaperez, M. (1991). PATTERNS AND MAINTENANCE OF EXTRAORDINARY VARIATION IN THE CARIBBEAN ORCHID, TOLUMNIA (ONCIDIUM) VARIEGATA. Systematic Botany, 16(1), 182-194. doi: 10.2307/2418982
Arditti, J. (1992). Fundamentals of orchid biology. New York, NY., US.: John Wiley \& Sons.
Dafni, A. (1984). MIMICRY AND DECEPTION IN POLLINATION. Annual Review of Ecology and Systematics, 15, 259-278. doi: 10.1146/annurev.es.15.110184.001355
Dafni, A. (1986). Floral mimicry: mutualism and undirectional exploitation of insects by plants. In B. Juniper \& R. Southwood (Eds.), Insects and the plant surface (pp. 81-90). London, UK.: E. Arnold.
De Hert, K., Jacquemyn, H., Van Glabeke, S., Roldan-Ruiz, I., Vandepitte, K., Leus, L., \& Honnay, O. (2011). PATTERNS OF HYBRIDIZATION BETWEEN DIPLOID AND DERIVED ALLOTETRAPLOID SPECIES OF DACTYLORHIZA (ORCHIDACEAE) CO-OCCURRING IN BELGIUM. [Article]. American Journal of Botany, 98(6), 946-955. doi: 10.3732/ajb. 1000367
Dressler, R., L. (1993). Phylogeny and classification of the orchid family. Portland, OR., US.: Dioscorides Press.
Fægri, K., \& van der Pijl, L. (1980). The principles og pollination ecology (3 ed.). Oxford: Pergamon.
Gaskett, A. C. (2011). Orchid pollination by sexual deception: pollinator perspectives. Biological Reviews, 86(1), 33-75. doi: 10.1111/j.1469-185X.2010.00134.x
Gigord, L. D. B., Macnair, M. R., \& Smithson, A. (2001). Negative frequency-dependent selection maintains a dramatic flower color polymorphism in the rewardless orchid Dactylorhiza sambucina (L.) Soo. Proceedings of the National Academy of Sciences of the United States of America, 98(11), 6253-6255. doi: 10.1073/pnas. 111162598
Hedren, M., Fay, M. F., \& Chase, M. W. (2001). Amplified fragment length polymorphisms (AFLP) reveal details of polyploid evolution in Dactylorhiza (Orchidaceae). American Journal of Botany, 88(10), 1868-1880. doi: 10.2307/3558363
Heinrich, B. (1975). BEE FLOWERS - HYPOTHESIS ON FLOWER VARIETY AND BLOOMING TIMES. Evolution, 29(2), 325-334. doi: 10.2307/2407220
Johnson, S. D. (2000). Batesian mimicry in the non-rewarding orchid Disa pulchra, and its consequences for pollinator behaviour. Biological Journal of the Linnean Society, 71(1), 119-132. doi: 10.1006/bijl. 1999.0430
Jones, K. N., \& Reithel, J. S. (2001). Pollinator-mediated selection on a flower color polymorphism in experimental populations of Antirrhinum (Scrophulariaceae). American Journal of Botany, 88(3), 447-454. doi: 10.2307/2657109
Kropf, M., \& Renner, S. S. (2005). Pollination success in monochromic yellow populations of the rewardless orchid Dactylorhiza sambucina. Plant Systematics and Evolution, 254(3-4), 185197. doi: 10.1007/s00606-005-0338-0

Lid, J., \& Lid, D. T. (2007). Norsk Flora (7 ed.). Oslo, Norway: Det Norske Samlaget.
Marchisio, V. F., Berta, G., Fontana, A., \& Mannina, F. M. (1985). ENDOPHYTES OF WILD ORCHIDS NATIVE TO ITALY - THEIR MORPHOLOGY, KARYOLOGY, ULTRASTRUCTURE AND CYTOCHEMICAL CHARACTERIZATION. New Phytologist, 100(4), 623-641. doi: 10.1111/j.1469-8137.1985.tb02808.x

Mattiasson, G. (1986). Adam och Eva dor ut inom naturreservatet Kungsmarken. Svensk Bot. Tidskr., 80, 17-25.
Morgan, M. T., \& Schoen, D. J. (1997). Selection on reproductive characters: floral morphology in Asclepias syriaca. Heredity, 79, 433-441. doi: 10.1038/hdy.1997.178
Nilsson, L. A. (1980). THE POLLINATION ECOLOGY OF DACTYLORHIZA-SAMBUCINA (ORCHIDACEAE). Botaniska Notiser, 133(3), 367-385.
Nilsson, L. A. (1992). ORCHID POLLINATION BIOLOGY. Trends in Ecology \& Evolution, 7(8), 255-259.

Nordal, I., \& Wischmann, F. (1987). Søstermarihand (Dactylorhiza sambucina) i Norge. Blyttia, 45(1), 30-38.
Norderhaug, A., Bakkevik, B., \& Skogen, A. (1997). Søstermarihand, Dactylorhiza sambucina, a threatened species in Norway? Blyttia, 55(2), 73-86.
Paun, O., Bateman, R. M., Fay, M. F., Luna, J. A., Moat, J., Hedren, M., \& Chase, M. W. (2011). Altered gene expression and ecological divergence in sibling allopolyploids of Dactylorhiza (Orchidaceae). Bmc Evolutionary Biology, 11. doi: 10.1186/1471-2148-11-113
Pedersen, H. A. E. (2006). Systematics and evolution of the Dactylorhiza romana/sambucina polyploid complex (Orchidaceae). Botanical Journal of the Linnean Society, 152(4), 405-434. doi: 10.1111/j.1095-8339.2006.00573.x
Pellegrino, G., Bellusci, F., \& Musacchio, A. (2005). Evidence of post-pollination barriers among three colour morphs of the deceptive orchid Dactylorhiza sambucina (L.) Soo. Sexual Plant Reproduction, 18(4), 179-185. doi: 10.1007/s00497-005-0011-3
Pellegrino, G., Bellusci, F., \& Musacchio, A. (2008). Double floral mimicry and the magnet species effect in dimorphic co-flowering species, the deceptive orchid Dactylorhiza sambucina and rewarding Viola aethnensis. Preslia, 80(4), 411-422.
Petterson, G., \& Nilsson, L. A. (1983). Pollinationsekologin hos Adam och Eva på Stora Karlsö. Svensk Bot. Tidskr., 77, 123-132.
Pettersson, B. (1958). Dynamik och konstans i Gotlands flora och vegetasjon. Acta Phytogeogr. Suecica, 40, 1-288.
Rasmussen, H., Andersen, T. F., \& Johansen, B. (1990). TEMPERATURE SENSITIVITY OF INVITRO GERMINATION AND SEEDLING DEVELOPMENT OF DACTYLORHIZA-MAJALIS (ORCHIDACEAE) WITH AND WITHOUT A MYCORRHIZAL FUNGUS. [Article]. Plant Cell and Environment, 13(2), 171-177. doi: 10.1111/j.1365-3040.1990.tb01289.x
Rasmussen H., A. T. F., Johansen B. (1990). Light stimulation and darkness requirement for the symbiotic germination of Dactylorhiza majalis (Orchidaceae) in vitro. PHYSIOLOGIA PLANTARUM(79), 226-230.
Schemske, D. W., \& Bierzychudek, P. (2001). Perspective: Evolution of flower color in the desert annual Linanthus parryae: Wright revisited. Evolution, 55(7), 1269-1282. doi: 10.1554/0014-3820(2001)055[1269:peofci]2.0.co;2

Smithson, A., Juillet, N., Macnair, M. R., \& Gigord, L. D. B. (2007). Do rewardless orchids show a positive relationship between phenotypic diversity and reproductive success? Ecology, 88(2), 434-442. doi: 10.1890/05-1445
Smithson, A., \& Macnair, M. R. (1997). Negative frequency-dependent selection by pollinators on artificial flowers without rewards. Evolution, 51(3), 715-723. doi: 10.2307/2411148
Sonstebo, J. H., Borgstrom, R., \& Heun, M. (2007). A comparison of AFLPs and microsatellites to identify the population structure of brown trout (Salmo trutta L.) populations from Hardangervidda, Norway. [Article]. Molecular Ecology, 16(7), 1427-1438. doi: 10.1111/j.1365-294X.2007.03256.x

Tutin, T. G., Heywood, V. H., A., B. N., Moore, D. M., Valentine, D. H., Walters, S. M., \& Webb, D. A. (Eds.). (1980). Flora Europea. Cambridge, U.K.: Cambridge Univ. Press.
van der Cingel, N., A. (1995). An atlas of orchid pollination. Rotterdam: A. A. Balkema.
van der Pijl, P., \& Dodson, C., H. (1966). Orchid flowers: their pollination and evolution. Coral Gables, FL., US.

禀

SplitsTree - Learning how to start and use the software program SplitsTree for dummies - tutorial for new beginners

(like myself)
Tips: To utilize this program you will need three other programs and an extension file:
Microsoft Excel 2010 (works with the 2007 version also but slower)
Notepad (text editor)
R (Statistical software program) http://www.r-project.org/
AFLP.dat (R-extension) http://www.nhm.uio.no/english/research/ncb/aflpdat/
Download and install SplitsTree for free from here: http://www.splitstree.org/
Now you have got the tools you need to get going.
To use Splitstree you need to load your DNA data as a nex file. That means converting your files to ".nex", before importing them into SplitsTree.

You will usually get your DNA data from analyses as an Excel file. That's ok. We can use Excel for several operations to prepare our data for use in Splitstree.

A DNA excel-file may look like this when you receive it from an analyzing lab:

Figure 1: Excel sheet with a data matrix showing DNA bands in columns and samples in rows.

Figure 2: Explaining the excel sheet and the different categories.
Join in and work with me: We start with an easy exercise. (EX. 1 - Identification)
The first we have to do is to score the bands. In this DNA set the two first rows are a different species than the other eight rows beneath. These two groups make two species in total. We want to find the bands which have info that separate these two first individuals from the other eight. We do that by finding columns where the two first bands are identical, but different from the other eight. (0,0 vs $1,1,1,1,1,1,1,1$ or 1,1 vs $0,0,0,0,0,0,0,0$)

Tips: Mark the two first rows green, and the columns that separate the species red:

Figure 3: In the figure the columns that separate the two species (row 1 and 2) vs (row 3-10) are marked in red. The other columns do not separate the two species groups. You might find more than one column per primer-set that separate the two species groups.

The primer combinations of interest are then the ones where we are able to find species differentiation. Now you try with your samples! Make a nice file with these colors like in figure 3. Change the sheet tab name at the bottom of your sheet to "ID" and save your work.

(EX. 2 - Saving the primer combinations of interest)

We now choose to work with the primer combinations of interest only (only those that give info that separate the two species in the matrix - the ones with red colored bands).

Make a new excel sheet (sheet 3) and copy over (mark the sheet in the grey cell between column A and row 1 and copy (Ctrl C)) all data from the first sheet (ID) into sheet 2 (mark cell A1 and paste (Ctrl V)). Then delete the rows you do not longer need (Those primer combinations with a matrix without a red color).

Now score all numbers starting with 0 in the matrix as 0 and all numbers starting with a 1 as 1 like in figure 4.

Figure 4: Scoring all numbers starting with 0 as 0 , and all numbers starting with 1 as 1 .
Tips: use the "Find \& substitute" -tab in the upper right corner of the excel window:

Step 1: Find " 0 *" and substitute with " 0 ", that will change all numbers starting with 0 , and Step 2: Find " 1^{*} " and substitute with 1 , that will change the rest of the numbers.

Delete all H2O rows also, these are water only and should all score 0 anyway as they are controls, when checked, we do not need them anymore, and they are not wanted in SplitsTree.

Change the sheet tab name at the bottom of the sheet to "Scores", and save your work.

(EX. 3 - Make a matrix of all loci)

This exercise will teach you how to prepare the excel file for converting into a text file.
Make a new sheet and copy all data from sheet 3 (Scores) to the next sheet (sheet 4) and work from here. Note that excel 2007 is constricted to 256 columns, that is column IV to the far right, if you are using this version and exceed 255 loci you need to continue on a next sheet. In the 2010 version of excel there is no such limitation and you may work with several hundred loci in the same sheet.

Now use the first primer combination set and add the other matrix data from the subsequent sets to the first column to the right. Do so for all subsequent data sets in the sheet. Only matrix data is to be copied and pasted, delete the rest when you are finished.

Figure 5: Here is the final arranged matrix where data from all primer combinations of interest are added into one dataset in the right direction (three of these show up in this window). Our dataset has 255 columns as the 2007 version of excel is used here (see fig.6).

Note that the matrix need to fill out cell A-1 with an x , and the subsequent cells in the first row make up the loci numbers with the same amount of integers in each cell in this row. To accommodate this put in a character before 001 like e.g. "M001", and continue out that row.

Tips: write M001 in cell B-1 and M002 in cell C-1. Mark both these cells and use the nob at the bottom right of these cells to drag the series all the way to the far right by using your mouse.

Note also that you only need to keep the sample-ID once in the first column (fig.5). They also need the same number of integers/characters in all cells in the column, or else Splitstree will not accept the imported data.

Now we are ready to convert files. We will do that in the next exercise.

Figure 6: The final arranged matrix has 256 columns and use 1 label column at the far left (see fig.5) with the sample ID's +255 columns of data.

(EX. 4 - Converting an excel-file into a text-file)

This is an easy match for you to do. Go to file $\rightarrow \underline{\text { Save as. In the dropdown menu to the right }}$ of the file type box at the bottom of your window choose "text (tab-separated)" + folder.

Just follow the 5 steps here:
1.

3.

Now you should have a text-file with any name you have given it (eg. "matrixname.txt"), in the folder you chose to put it into (if no change in directory, it ends in the same folder as the original excel file).

To be able to import it into Splitstree, you will need to convert it once more, this time into a nex-file. We will do so in the next exercise.

(EX. 5 - Converting a text-file into a next-file)

This step requires use of R and the R-extension-file called AFLP.dat.

1. Open R and go to File \rightarrow Source R code... (Select file to source) to tell R the directory where to save your files. Download your ALFP.dat - file to the same folder and work from there (Select the ALFP.dat - file: File -> Source R code -> ...-> ALEP.dat). You can find the AFLP.dat-file (script and documentation) in a zip-file here (unzip files and copy file to target-folder): http://www.nhm.uio.no/english/research/ncb/aflpdat/

2. Go to File \rightarrow Change dir... (Change working directory to:) and browse the folder where your ALFP.dat-file is stored (here we choose the same folder to keep it tidy).

3. Write this command in the R Console window: Nexus("matrixname.txt") \rightarrow Enter, to convert your text-file into a nex-file.

If you now look in the folder where you stored your text-file, you will find a new file also having the same name as your text-file, but with the file extension "nex" (.nex).

Note that if you do this operation twice you do not get two separate nex-files. The second operation just overwrites the first nex-file. To avoid that you may change the name of your generated nex-file before a subsequent operation.

Now you should have succeeded in making a file that is possible to import into SplitsTree. We will look at the import operation in the next exercise.
(EX. 6 - Importing a nexus-file (.nex) into SplitsTree)

1. Open the SplitsTree software program and go to to File \rightarrow Open

2. Browse the folder where you have stored your nex-file and select it \rightarrow Open.

(Here in this case I just use an arbitrary file of my earlier exercises to show you how).

Using the older version you may need to modify the file to make it work. If that is needed SplitsTree will tell you by showing this message:

Alert - SplitsTree4 (version 4.11.3, built 26 Feb 2010) - u... X
X Error parsing file: line 19: data block: This file looks like OLD nexus, please import

OK

Just press the ok-button and I will show you two simple steps that modify this file so it becomes applicable.

You are brought to the source-tab window to do the modifications:

In line 19 put your marker in front of "data", delete it and substitute with "characters" so it reads "begin characters;".

In line 20 you just delete the space +"ntax" so it reads, as in my case, "dimensions nchar=2.37" (you may have another number of loci in your dataset).

Now click on the Data-tab and SplitsTree automaticly modifies and update your command, the operation itself and generate the right data:

The data is now updated so you may go to the network tab and find your NeighbourNet that SplitsTree has generated for you. Volá!

We did it! Congratulations! Now we are up and running in Splitstree. Let us see what we can do with the SplitsTree program, join me in the next exercise to learn more. ©

(EX. 7 - Learning how SplitsTree works)

From here you may use the User Manual for SplitsTree4 V4.12.8 which you can download from here: http://ab.inf.uni-tuebingen.de/data/software/splitstree4/download/manual.pdf

This program will let you analyze your dataset, make bootstraps, show genetic distances (eg. DICE or Jaccard) and even make phylogenetic trees.

Shall we do some more exercises, or do you want to proceed on your own from here?

NOTE:

If you, when preparing your excel-file, need to change row-data with column-data (swap places) simply copy all data in your sheet (CTRL-A), open a new sheet (bottom pane +), rightclick and paste in selection and remember to tick the option for changing rows and columns.

David Mundal, UMB, Ås 19.02.2013.

GenAlEx6.5 for dummies - tutorial for new beginners

GenAlEx6.5 is an add-in for Excel and works best together with excel 2010. Excel 2007 works also but may run slower. Note that excel 2007 only takes 256 columns of entries while as excel 2010 has no such restrictions.

GenAlEx4.6 can be downloaded from here:

http://biology.anu.edu.au/GenAlEx/Welcome.html

Start excel 2010, and then open GenAlEx4.6. Give your firewall permission to open the file by clicking on the button: (Activate macros).

Wait some seconds for GenAIEx to occur in the excel 2010 window, -it shows up as a tab called "AddIns".

Wait some seconds for GenAlEx to occur in the tab menu of excel2010, -it shows up as a tab called "Add-ins".

Click on the Add-in dropdown menu at the far left where it says GenAIEx:

Then you access all the analyzing tools.

David Mundal, UMB, Ås 24.02.2013.

Postboks 5003

