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Abstract

The Earth’s gravity field is constantly changing due to mass redistribution from
ice melting in the cryosphere and geophysical processes. With use of data from
dedicated gravity satellite missions variations in the Earth’s gravity field over a
time series can be determined.

This thesis tries to give an explanation on how the Earth’s gravity field changes on
a global scale and regionally with the use of data from the GRACE-mission over a
time period. With comparison between three different GRACE-solutions and the
use of SLR-observations, the mass changes over Greenland has been estimated. In
addition, a further look into the lower degree spherical harmonics has been studied,
to explain and give a conclusion of how the lower degree spherical harmonics from
GRACE are affecting the calculations of the gravity field.

GRACE-data has its uncertainties in the lower degree spherical harmonics. The
C20-coefficients from GRACE has large variances and therefore needs to be replaced
by SLR-values when looking at global variations. Trend calculations shows how
post glacial rebound(GIA) influence Canada and Fennoscandia, and ice melting
over Greenland, Alaska and Antarctica.

The investigation of lower degree spherical harmonic coefficients shows that it is not
significant how the C20-coefficients are processed when estimating mass changes
over the area of Greenland.

Due to restricted spatial resolution of the gravity field models and spatial averag-
ing, it is hard to get a real estimate of the mass changes over a specific area. This
is called the leakage effect and has been studied over the area of Greenland. The
leakage effect has been estimated and restored, and mass change over Greenland
has been estimated to be between -1832.76 km3 and -2087.72 km3, depending on
the model used.
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Sammendrag

Jordas tyngdefelt er i stadig endring p̊a grunn av masseforflytning fra isavsmelting
i kryosfæren og geofysiske prosesser. Ved bruk av data fra gravimetrisatelliter kan
disse variasjonene i jordas tyngdefelt bestemmes over en tidsserie.

Denne oppgaven prøver å gi en forklaring p̊a hvordan jordas tyngdefelt forandres
globalt og regionalt ved bruk av data fra GRACE over en tidsperiode. Ved å
sammenligne tre ulike GRACE-løsninger og ved bruk av SLR-observasjoner, har
masseendringer over Grønnland blitt estimert. I tillegg har det blitt sett nærmere
p̊a de laveregrads sfærisk harmoniske koeffisientene, for å gi en forklaring p̊a hvor-
dan disse koeffisientene fra GRACE p̊avirker beregninger av jordens tyngdefelt.

GRACE-data har sin usikkerhet i de laveregrads sfærisk harmoniske koeffisienter.
C20-koeffisientene fra GRACE har store varianser og må derfor bli byttet ut med
SLR-verdier n̊ar man ser p̊a globale variasjoner. Trendberegninger viser hvordan
postglasial landheving(GIA) p̊avirker omr̊adene Canada og Fennoskandia, og i
tillegg issmelting over Grønnland, Alaska og Antarktis.

Ved å se nærmere p̊a de laveregradskoeffisientene kan det bli observert at det ikke
er av stor betydning hvordan man behandler C20-koeffisienter n̊ar masseendringer
over Grønnland blir estimert.

P̊a grunn av begrenset romlig oppløsning og romlig glatting av tyngdefeltsmodeller,
er det vanskelig å gi et realistisk estimat av masseendringer over et omr̊ade. Dette
blir kalt ”leakage”-effekt. ”Leakage”-effekten har blitt estimert og gjennopprettet,
og masseendringer over Grønnland har blitt beregnet til å være mellom -1832.76
km3 og -2087.72 km3, avhengig av hvilken modell som har blitt brukt.
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Chapter 1

Introduction

The German geodesist Friedrich R. Helmert(1880) described geodesy as the science
of measurement and mapping of the Earth’s surface, this definition includes the
determination of the Earth’s gravity field, and is still valid today. The determina-
tion of Earth’s physical properties is referred to as physical geodesy, and describes
the shape, size and gravity field of the Earth. Because the Earth is rotating it
cannot be a sphere, but more flattened and gives the Earth a more ellipsoidal
shape. Gravity is mainly caused by the Earth’s gravitational attraction, but also
centripetal acceleration.

Gravity observations has been measured since the 18th century, and several differ-
ent methods have been used. After the launch of the first satellites in the middle
of the 20th century, global Earth observations has been carried out. With space
based methods like Satellite Laser Ranging and dedicated gravity satellite missions
like CHAMP, GRACE and GOCE the gravity field of the Earth can be determined.
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2 Introduction

1.1 Motivation

The Earth’s gravity field is in constant change, due to mass redistribution on the
Earth’s surface. Melting of the large ice caps are of big interest when looking at
climate change and how the rapid melting are affecting the Earth. Satellite mis-
sions for measuring changes in the Earth’s surface has become a good and reliable
method for looking at the changes in a global scale as well as for regions, i.e. Green-
land and Antarctica. The Gravity Recovery and Climate Experiment(GRACE)
mission has provided a time series of the global gravity field observations since
more than a decade and gives good solutions for the global gravity field. This
means that trends and variations can be estimated on a global and regional scale.

1.2 Objective

The aim of this thesis is to analyze published gravity field models from GRACE
satellite mission and use these models to investigate the mass variations in the
cryosphere when looking at a specific area or region. In the case of this thesis the
area that will be studied is Greenland. While keeping in mind the variations over
a specific area, the global mass changes will be investigated as well as looking in to
spatial averaging of the gravity field models. The lower degree coefficients needs
to be investigated even further: how they influence the global gravity field and
how they influence Greenland when looking at the trend. A comparison between
different solutions will be carried out when investigating the global gravity field
variations, the lower degree spherical harmonic coefficients and of course the mass
balance over Greenland.
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1.3 Summary

A short summery of the chapters in this thesis will be given below:

Chapter 1: Introduction: This chapter gives the motivation for this thesis,
thesis objective and a list of abbreviations used in the text.

Chapter 2: The gravity field of the Earth: This chapter gives the theory
related to physical geodesy; Earth’s gravity field and potential theory. The deter-
mination of gravity is described and how it is possible to use spherical harmonic
synthesis to give a global gravity field. At the end of this chapter, some geophysical
signals will be explained.

Chapter 3: Methods and technology: This chapter are describing different
satellite methods that measures Earth’s gravity field and gives an overview of
different GRACE-derived gravity solution.

Chapter 4: Estimation of trend in the global gravity field solutions:
This chapter explains the trend for the global gravity field. Estimation of trend
is described, as well as de-aliasing and a comparison of the global gravity field
solutions.

Chapter 5: Lower degree spherical harmonics: This chapter are investigat-
ing the lower degree spherical harmonics, and especially the C20-coefficients. First
the long term trend in the SLR-values are looked into. Then a comparison between
the SLR values used in this thesis and how the C20-coefficients influence the grav-
ity field. A comparison between the C20-SLR coefficients and the GRACE-derived
C20-coefficients is also given. At the end, an investigation of the trend in C20 and
a short look into correlations of GRACE and SLR is carried out.

Chapter 6: Leakage effects: This chapter looks into the leakage effects over
Greenland, and estimates mass changes over Greenland for the last decade.

Chapter 7: Concluding remarks and outlooks: This chapter gives the final
conclusions of this thesis and outlooks.



4 Introduction

1.4 Abbreviations

Abbreviation Meaning
AIUB Astronomisches Institut Universität Bern
AOD Atmosphere and Ocean De-aliasing
CSR Center for Space Research
DLR Deutsches Zentrum Luft- und Raumfahrt
EOP Earth Orientation Parameter
ESA European Space Agency
EWT Equivalent Water Thickness
GFZ GeoForschungsZentrum
GIA Glacial Isostatic Adjustment
GNSS Global Navigation Satellite Systems
GPS Global Positioning System
ICGEM International Centre for Global Earth Models
IGS International GNSS Service
ILRS International Laser Ranging Service
ITRF International Terrestrial Reference Frame
ITSG Institute of Theoretical Geodesy and Satellite Geodesy
JPL Jet Propulsion Laboratory
LEO Low Earth Orbit
LLR Lunar Laser Ranging
LOD Length Of Day
NASA National Aeronautics and Space Administration
RDC GRACE Raw Data Center
SGG Satellite Gravity Gradiometry
SLR Satellite Laser Ranging
SST Satellite-to-Satellite Tracking
TN7 Technical Note no. 7
VLBI Very Long Baseline Interferometry



Chapter 2

The Earth’s gravity field

Physical geodesy concerns the knowledge about the Earth’s shape, size and grav-
ity field. The Earth’s geometrical characteristics and it’s physical properties are
closely tied together. With different observations it is possible to describe the
Earth’s gravity field globally.

2.1 Basic definitions

It starts with Newton’s law of gravitation, with two masses attracted to each other
with the force F and can be described as vector function

~F = F · (−~r
r

) = −GMm

r3
~r (2.1)

F is the mutual force between the masses M and m separated by the distance r. G
is universal gravity constant (G = 6.67384 × 10−11 m3kg−1s−2) and ~r is the unit
vector.

The gravitational force is given by ~F = m~g, and this give the gravitational accel-
eration

~g =
GM

r3
~r (2.2)

In a conservative vector field, which means that there is no change in internal

5



6 The Earth’s gravity field

energy balance, ~g can be described as the gradient to the scalar potential function
V [Hofmann-Wellenhof and Moritz, 2006]

~g = ∇V =
δV

δx
~i+

δV

δy
~j +

δV

δz
~k (2.3)

Earth’s gravitational field can be proven to be conservative by showing that curl(~g =
0). The vector representation in equation 2.3 can be described as function of the
potential, V, and it is easier to work with the potential than three components of
the force. The potential function is the sum of all the individual contributions

V = G
n∑
i=1

mi

r
(2.4)

where mi is a series of several point masses m1,m2, ...,mi. With the this continuous
case the summation becomes an integral with a given density ρ = dm

dv
, then the

sum in (2.4) becomes an integral, Newton’s Integral

V = G

˚

Earth

dm

r
= G

˚

Earth

ρ

r
dv, (2.5)

where dm is infinitesimal small elements of mass and volume, r is the distance
between the mass element and attracted point [Hofmann-Wellenhof and Moritz,
2006].

Inside the Earth’s surface, the potential V fulfills Poisson’s equation

∆V =
δ2V

δx2
+
δ2V

δy2
+
δ2V

δz2
= −4πGρ (2.6)

For point masses outside the Earth’s surface, the density become zero and equation
2.6 can be written as Laplace’s equation

∆V =
δ2V

δx2
+
δ2V

δy2
+
δ2V

δz2
= 0 (2.7)
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The solutions of Laplace’s equation, ∆V = 0, is called harmonic functions and
the gravitational potential will then be harmonic outside the attracting masses.

2.2 Boundary value problems

The Earth has been approximated to the sphere, but when boundary-value condi-
tions are present the problem of solving Laplace’ equation gets more complex.

Because we are working on a surface S, Dirichlet’s problem, the first boundary-
value problem, needs to be solved in order to obtain the potential V outside the
surface. Dirichlet’s problem is stated as follows; the gravitational potential outside
a surface S is determined by knowing the geometric shape of S and the potential
on S [Hofmann-Wellenhof and Moritz, 2006]. Dirichlet’s problem can be solved
for the sphere, and a solution is Poisson’s integral

Ve(r, θ, φ) =
∞∑
n=0

(
R

r

)n+1
2n+ 1

4π

ˆ 2π

λ=0

ˆ π

θ=0

V (R, θ, λ)Pn(cosψ)sinθ dθ dλ (2.8)

Other boundary-value problems are similar to the first boundary-value problem.
Neumann’s problem or the second boundary-value problem the normal derivative is
given by ∂V/∂n on the surface S instead of the function V. For the third boundary
value problem a linear combination of V and its normal derivative, V + ∂V/∂n, is
given on the surface S.

Neumann’s problem can be expanded into a series of surface spherical harmonics.
The harmonic function which solves Neumann’s problem is

Ve(r, θ, λ) = −R
∞∑
n=0

(
R

r

)n+1
Yn(θ, λ)

n+ 1
(2.9)

The third boundary value problem is relevant because of the irregularities of the
geoid from gravity anomalies, and can be solved by

Ve(r, θ, λ) = R

∞∑
n=0

(
R

r

)n+1
Yn(θ, λ)

n− 1
(2.10)
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2.3 Spherical harmonic representation

One of the most commonly used methods for the calculation of gravity field quanti-
ties is the spherical harmonic synthesis. Changes in the gravity field are dependent
on the eigenvalues and the upward continuation factor used in the synthesis.

By summation of all solutions of Laplace’s equation(2.7), a spherical harmonic
representation can be obtained. For spherical coordinates the harmonic function
of gravitational potential can be written as

V (r, θ, λ) =
GM

r

∞∑
n=0

(
R

r

)n+1 n∑
m=0

(C̄nm cosmλ+ S̄nm sinmλ)P̄nm(cosθ) (2.11)

where C̄nm and S̄nm are the fully normalized and dimensionless potential coeffi-
cients, GM is the product between the gravitational constant and Earth’s mass,
and R is the mean Earth radius. P̄nm(cosθ) are the fully normalized associated
Legendre functions and the subscripts n and m denotes the degree and order of the
function. Figure 2.1 shows the Legendre functions for P2, P4 and P6. The factor
(R/r)(n+1) is called upward continuation and makes it possible to determine the
potential outside the Earth surface, r is the geocentric distance.

Figure 2.1: Legendre polynomials for P2, P4 and P6
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The Earth is rotating and therefore we need to operate with gravity potential:

W = V + Vc (2.12)

where V is the gravitational potential and Vc = 1/2 ω2(x2 + y2) is the rotational
potential [Hofmann-Wellenhof and Moritz, 2006]. Because the relations between
the gravity potential and geodetic observations is not linear, an approximation of
the gravity potential was introduced.

Gravity field modeling deals with the difference between the gravity potential and
ellipsoidal potential,U (also called the normal potential), this potential difference
can be expressed as disturbing potential, as shown in 2.13.

T = (W − Vc)− (U − Vc) = W − U (2.13)

The disturbing potential is harmonic outside the masses. From Poisson we know
that ∆V = −4πGρ, and from equation(2.12) it is possible to obtain

∆W = −4πGρ+ 2ω2 (2.14)

Outside the masses the density is zero, then ∆V = 0. And only the rotational
contribution(ω) remains. The disturbing potential is then

∆T = ∆W −∆U = 2ω2 − 2ω2 = 0 (2.15)

The calculation of potential from amplitudes of the gravity field coefficients of sig-
nal gives the spherical harmonic synthesis. When subtracting the normal potential
Ūnm from the potential coefficients, spherical harmonic synthesis can be used to
express the disturbing potential.

T (r, θ, λ) =
GM

r

∞∑
n=2

(
R

r

)n+1 n∑
m=0

(∆C̄nm cosmλ+ ∆S̄nm sinmλ)P̄nm(cos θ)

(2.16)
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where ∆C̄nm and ∆S̄nm are the residuals of the harmonic coefficients

∆C̄nm =

{
C̄nm − Ūnm m = 0 ∧ n ∈ {2, 4, 6, ..., Nmax}
C̄nm else

(2.17)

∆S̄nm = S̄nm

The normal potential U is symmetric with respect to the equator and not depen-
dent on the longitude λ. This gives that only the even zonal harmonics exist for
the normal potential. Because sine-coefficients do not exist for m = 0, the sine
coefficients are the same after subtracting the normal potential coefficients.

2.3.1 Legendre polynomials

It can be useful to look at the spatial representation of the spherical harmonics,
and they can be divided into three categories, zonal, tesseral and sectorial. For
the zonal harmonics, it holds m = 0 are only polynomials of degree n and have
n zeros. They also do not depend on λ. If the order m 6= 0 (m = 1, ..., n),
the Legendre polynomials are called associated Legendre functions. The tesseral
harmonics make a square pattern when represented spatially. In the case where
n = m the functions divide the sphere into sectors, sectorial harmonics, see figure
2.2 [Hofmann-Wellenhof and Moritz, 2006]. For spherical harmonic degree 2 – 5
Pn (cosθ) can be expressed as

P2(cosθ) =
3

4
cos 2θ +

1

4
,

P3(cosθ) =
5

8
cos 3θ +

3

8
cos θ,

P4(cosθ) =
35

64
cos 4θ +

5

16
cos 2θ +

9

64
, (2.18)

P5(cosθ) =
63

128
cos 5θ +

35

128
cos 3θ +

15

64
cos 3θ
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Figure 2.2: Geometry of spherical harmonics. a) zonal, b) tesseral and c) sectorial.
Figure from [Hofmann-Wellenhof and Moritz, 2006]
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2.4 Normal gravity field and disturbing quanti-

ties

There are different gravity quantities that can be calculated, disturbing potential
T, geoid height N, gravity anomaly ∆g and gravity disturbance δg. They are
represented in table 2.1, and they differ by the spectral eigenvalues and the up-
ward continuation factors. From this it is easy to convert between the different
quantities.

T = GM
R

∞∑
n=2

(
R
r

)n+1
n∑

m=0

(∆C̄nm cosmλ+ ∆S̄nm sinmλ)P̄nm

N = R
∞∑
n=2

(
R
r

)n+1
n∑

m=0

(∆C̄nm cosmλ+ ∆S̄nmsinmλ)P̄nm

∆g = GM
R2

∞∑
n=2

(
R
r

)n+2
(n - 1)

n∑
m=0

(∆C̄nm cosmλ+ ∆S̄nm sinmλ)P̄nm

δg = GM
R2

∞∑
n=2

(
R
r

)n+2
(n + 1)

n∑
m=0

(∆C̄nm cosmλ+ ∆S̄nm sinmλ)P̄nm

Trr = GM
R3

∞∑
n=2

(
R
r

)n+3
(n + 1)(n + 2)

n∑
m=0

(∆C̄nm cosmλ+ ∆S̄nm sinmλ)P̄nm

Table 2.1: Spherical harmonic synthesis of gravity field quantities.

The summations in table 2.1 starts at n = 2. If we assume that the mass M and
the radius R of the ellipsoid is equal to mass and the equatorial radius of the Earth,
the zero degree term disappear. And if the center of Earth’s masses coincides with
the center of the ellipsoid, the first degree term will vanish as well [Torge and
Müller, 2012].

The gravity field of the Earth is usually described in terms of the shape of the
geoid [Wahr and Molenaar, 1998], and it is the sum of spherical harmonics

N(θ, λ) = R
∞∑
n=0

n∑
m=0

P̄nm(cos θ)(C̄nm cos mλ+ S̄nm sin mλ) (2.19)
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where R is the Earth’s radius, P̄nm is the normalized associated Legendre functions
and {C̄nm, S̄nm} are the fully normalized dimensionless coefficients.

It can be assumed that there is a time dependent change in the geoid, ∆N . The
change in geoid height can be represented in terms of changes in the spherical
harmonic coefficients, ∆C̄nm and ∆S̄nm

∆N(θ, λ) = R
∞∑
n=0

n∑
m=0

P̄nm(cos θ)(∆C̄nm cos mλ+ ∆S̄nm sin mλ) (2.20)

The geoid change is caused by a redistribution in density, ∆ρ(r, θ, λ), and it can
be assumed that ∆ρ is concentrated as a thin layer at the surface of the Earth.
The change in surface density can be defined as

∆σ(θ, λ) =

ˆ

thin layer

∆ρ(r, θ, λ)dr (2.21)

From this it is possible to separate the contribution of the coefficients into two
components

{
∆Cnm
∆Snm

}
=

{
∆Cnm
∆Snm

}
Surf Mass

+

{
∆Cnm
∆Snm

}
Solid Earth

(2.22)

The sum over (n,m) in equation 2.20 can be truncated to degrees n < nmax,
and if the layer is thin enough that (nmax + 2)H/a << 1 (where H represent
the thin layer), then (r/a)l+2 ≈ 1. This gives the two components first stated in
equation 2.22
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{
∆Cnm
∆Snm

}
Surf Mass

=
3

4πaeρave(2n+ 1)

ˆ
∆σ(θ, λ)

×P̄nm(cosθ)

{
cos mλ
sin mλ

}
sinθ dθdλ (2.23)

and

{
∆Cnm
∆Snm

}
Solid Earth

=
3kn

4πaeρave(2n+ 1)

ˆ
∆σ(θ, λ)

×P̄nm(cos θ)

{
cos mλ
sin mλ

}
sin θ dθdλ (2.24)

To correct for the changes in potential caused by Earth tides, in the case of this
thesis there is no connection to tides, however, in both cases kn represents a scaling
factor that describes the deformation of the solid Earth as function of the variable
load and gravity field. The load Love numbers are dimensionless coefficients that
are dependent on the degree of the spherical harmonics [Torge and Müller, 2012].

Equation 2.24 can be applied when calculating the spherical harmonic coefficients
from coefficients in the spatial domain. This is a reverse spherical harmonic synthe-
sis, also called spherical harmonic analysis. From the equations above we obtain

{
∆Cnm
∆Snm

}
=

3ρw
4πρave

1 + kn
2n+ 1

ˆ
∆σ(θ, λ)

×P̄nm(cosθ)

{
cos mλ
sin mλ

}
sin θ dθdλ (2.25)

Mass changes can be approximated by surface mass densities, and is also a function
of the same coefficients in equation 2.11
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∆σ̄(θ, λ) =
2πaeρave

3

nmax∑
n=0

2n+ 1

1 + kn

n∑
m=0

P̄nm(cos θ)

·(∆C̄nm cos mλ+ ∆S̄nm sin mλ) (2.26)

to determine the Equivalent Water Thickness(EWT) from surface mass densities,
the simple relation is

∆ῡ(θ, λ) =
∆σ̄(λ, θ)

ρw
(2.27)

In equation 2.26 ae is Earth’s semi-major axis, ρave = 5517kg/m3 is the average
mass density of the Earth, ρw=1000 kg/m3 the density of water and kn is the load
love numbers [Wahr and Molenaar, 1998]. Wn is the spatial averaging function(i.e
Gaussian smoothing), and will be described and used in chapter 4 and 6.

2.5 Statistics for the gravity field

Describing the Earth statistically is useful to get an idea of the quality of mea-
surements and the methods that has been applied. The variance is of good use to
look at the accuracy of the gravity anomalies of the Earth. A global variance for
gravity anomaly is given

σ2(∆g) = M{∆g} =
1

4π

¨

σ

∆gdσ (2.28)

where M is the average over the whole globe, the global mean function. The
dimensionless degree variance are given by

cn =
n∑

m=0

[
∆C̄2

nm + ∆S̄2
nm

]
(2.29)
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where ∆Cnm and ∆Snm are the spherical harmonic coefficients. From table 2.1 the
gravity anomaly is given, and from this it is possible to derive the signal variance
for gravity anomaly

σ2(∆g) =
∞∑
n=2

n∑
m=0

[(GM
R2

(n− 1)∆C̄nm

)2

+
(GM
R2

(n− 1)∆S̄nm

)2
]

=
∑
n=2

c∆g
n (2.30)

With the use of spectral eigenvalues and scaling factors, it is possible to obtain
the degree variances for i.e gravity anomaly(2.31) and geoid height(2.32)

c∆g
n =

n∑
m=0

(GM
R2

(n− 1)
)2

·
[
∆C̄2

nm + ∆S̄2
nm

]
(2.31)

The same computations can be done for the geoid height, and are given as

c∆N
n = R2

n∑
m=0

[
∆C̄2

nm + ∆S̄2
nm

]
(2.32)

Different models for degree variances has been carried out, when it was found
out that the different potential models had quite similar degree variances. This
is because most of the potential models describes the same gravity field. Kaula
and Tscherning/Rapp has carried out theoretical degree variance models, where
Kaula’s model(2.33) is based on the potential coefficients, while Tscherning/Rapp
is based on gravity anomalies(2.34).

cn = 0.5
1.6× 10−10

n3
n > 0 (2.33)

c∆g
n = sn+2 A(n− 1)

(n− 2)(n−B)
n ≥ 3 (2.34)
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where A = 425.28 mGal2, B = 24 and s = 0.999617. To avoid singularity n start
at degree 3, and degree 2 is equal to 7.5 mGal2.

The degree variances are useful for comparison of signal content in different sets
of coefficients. Because of the similarity between the different models, it can be
more useful to compute error degree variances. This means that the computation
of degree variances is done by standard deviations of the coefficients. From a plot
that contains both signal degree variances and error degree variances it is possible
to determine the resolution of the model. The resolution is found where the degree
variance and the error degree variance intersects, and the signal to noise ratio is
equal to 1. Above this point the noise is greater than the signal itself.

From the error in the coefficients it is also possible to calculate the commission-
and omission error. The commission error describes the error standard deviation
up to the maximum degree, and the omission error describes the signal content
above the maximum degree.
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2.6 Gravity variations and geophysical signals

There are several geophysical signals that vary over time and cause temporal vari-
ations of the global and regional gravity field. More regional effects are tidal
loading(atmospheric pressure loading, solid, earth tides, ocean tide, ocean tide
loading), post glacial rebound and hydrology- and cryospheric variations(Non-tidal
loading effects). This section looks further into some of these gravity variations.

2.6.1 Earth’s rotation

The gravity potential consists of gravitational potential and the rotational poten-
tial, described in equation 2.12. Earth’s rotation can be described by a vector
directed to the north pole and by the angular velocity ω. The magnitude and the
direction of the vector that represent the rotational axis are changing in time with
respect to the solid Earth. This is due to both external gravitational processes
and geodynamical processes.

Changes in Earth’s rotation will influence the gravity of the Earth, and the mag-
nitude of gravity can be expressed as

g = |∇W | (2.35)

The acceleration of gravity can be expressed in spherical coordinates

|∇W | =

√
(V + Φr)2 +

[
1

rcosφ
(Vλ + Φλ)

]2

+

[
1

r
(Vφ + Φφ)

]2

(2.36)

where V is the gravitational potential and Φ is the centrifugal potential. The
subscripts denote the partial derivatives with respect to each of the spherical co-
ordinates [Barthelmes, 2009]. Further, the rotational potential can be described
as

Φ =
1

2
ω2r2(cosφ)2 (2.37)
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Observations of the Earth rotation parameters gives information about the Earth’s
interior properties and mass transport in atmosphere, oceans, mantle and core.
The rotation and the orientation axis of the Earth is reason to irregular varia-
tions [Torge and Müller, 2012].

The Earth’s rotation can be described by the Earth Orientation Parameters no-
tably called EOP. EOP describes the irregularities of the rotation of the Earth,
and consist of determination of length of day(LOD) and the coordinates of the
pole(X,Y). These parameters lies within the determination of the lower degree co-
efficients ∆C21 and ∆S21, and Chen et al. finds an agreement between the degree
2 spherical harmonic coefficients and estimates from Earth rotation and climate
models.

2.6.2 Polar motion

The Earth’s rotational axis is not fixed, but small variations are observed. The
polar motion refers to the motion of the Earth’s spin axis with respect to the
Earth fixed reference system. This motion occurs because of the minute difference
between the axes of rotation and maximum inertia; the angle between them is
about 0.3”. The period of the polar motion is about 430 days, and is named
the Chandler period. This period is also irregular due to movement of masses
and atmospheric variations over the whole globe [Hofmann-Wellenhof and Moritz,
2006]. The polar motion is measured relative to the mean epoch of the ITRF. Since
the 1980’s space geodetic observations like VLBI1, SLR and LLR2 has been used
to measure the polar motion. When global navigation systems was introduced in
the 1990’s the precision of the daily position of the pole yields ≈ 0.03 mas3, that
is approximately 1 mm on Earth’s surface[Chen et al., 2013].

1Very Long Base Line Interferometry
2Lunar Laser Ranging
3milliseconds of arc
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The perturbation in the potential V are given by

Vc(r, θ, λ) = −ω
2r2

2
sin2φ(m1cosλ+m2sinλ) (2.38)

where ω is the angular velocity, r is the radial distance, θ and λ are the position,
and m1 and m2 are the discrepancy between the location of the axis an the mean
location of the axis

m1 = xp − x̄p (2.39)

m2 = −(yp − ȳp) (2.40)

Since the gravity potential is dependent on both the gravitational potential and
the rotational potential, the polar motion needs to be taken into account when
calculating gravity potential of the Earth.

Figure 2.3 displays the polar motion since 2001 and the mean pole displacement
since 1900. As seen in the figure the polar motion are perturbed and has a spiral
curve. The drift in mean pole is also irregular and shows westward motion.
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Figure 2.3: Polar motion. Illustration: NASA

The polar motion is affected by the Earth’s mass redistribution(e.g post glacial
rebound), and Chen et al.(2013) finds a close connection between the long term
polar motion and mass redistribution, due to climate changes, by using GRACE-
data. Because of the increased ice melting rates, that causes an eastward motion
of the mean pole, the IERS4 has started using higher order polynomial to define
the mean pole.

2.6.3 Post-glacial rebound

Post-glacial rebound is the adjustment of the Earth surface due to the last ice-age,
and is also named Glacial Isostatic adjustment(GIA). The deglaciation cycle, that
started about 21,000 years ago, is causing the Earth’s crust to adjust back to the
hydrostatic equilibrium. In Fennoscandia and Canada a land uplift is occurring

4International Earth Rotation and Reference system Service
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due to the effect of GIA. This post glacial effect also has an impact on Earth
rotation, sea level changes and gravity field variations [Torge and Müller, 2012].
In figure 2.4 the dynamics of the GIA-effect is visualized. Because of the Earth’s
viscoelasticity the ice pushed the crust and mantle down, when the ice melts the
mantle flows back and causing the land to lift back to equilibrium.

Figure 2.4: Illustration of the GIA-effect. Illustration: Canadian Geodetic Survey

Measurement and observations as leveling, sea level data, GPS and gravimetry has
been used to measure the uplift. From leveling an uplift of rates up to 9 mm/yr
has been observed and confirmed by GPS-measurements [Torge and Müller, 2012].

Different models have been derived from multiple observational methods, and these
models are taking the mantle viscosity and thickness into account. Some models
provides history data for sea level changes relative to the Earth that is deform-
ing(e.g. ICE-5G).

Due to GIA, the Earth’s gravity field will be affected by the mass redistribution,
and temporal changes occurs when the masses in the Earth’s mantle are retreating
to the areas where it has previously been an ice sheet.



Gravity variations and geophysical signals 23

2.6.4 Tidal and loading effects

The solid Earth is affected by Earth tides caused by the gravity of the moon and
the sun, and are causing gravity changes and deformation of Earth’s surface. The
Earth reacts to these effects like an elastic body. The effects on the Earth are
called tidal loading, and consists of oceanic and atmospheric tides. Locally mass
variations emerges from the solid Earth tides, and the geocentric distance from
Earth’s center of mass are increased.

Tides in the ocean are due to the attraction of the water masses and their loading
effects on the Earth’s surface, and contribute to approximately 70% of the sea
surface [Torge and Müller, 2012]. The mass variations over the oceans and near
the coastlines are caused by ocean tides. Since gravity is dependent on the mass,
the local tidal variations needs to be implemented. Ocean loading is due to the
mass variations in the ocean tides, and are a secondary tidal effect [Subirana et al.,
2011].

The atmospheric loading comes from atmospheric tides and currents in the atmo-
sphere. Changes in gravity due to direct an indirect loading effects, comes from the
effect of atmospheric pressure changes. The variation in pressure results in a defor-
mation of the Earth’s surface, and are called atmospheric pressure loading [Petrov
and Boy, 2004].



24 The Earth’s gravity field

2.6.5 Non-tidal loading effects

In addition to the geophysical effects mentioned, non-tidal loading effect also affects
the gravity variations of the Earth. These effects are due to mass redistribution in

• atmosphere

• ocean

• continental hydrology

• cryosphere

• earthquakes

• post glacial rebound

70% of Earth’s surface are covered by water, and contributes to mass displace-
ments. Ocean currents leads to temporal variations in the gravity field, but
also groundwater can affect the gravity variations and are mainly caused by local
weather(e.g rainfall). These effects causes a change in ocean bottom pressure and
is called non-tidal ocean loading, and also takes changes in atmospheric pressure
over the oceans into account.

Large areas of the Earth consist of water in solid state, the cryosphere. Melting
of ice causes mass redistribution, and affects the global gravity field. To isolate
i.e ice mass changes, one has to reduce atmospheric mass changes and solid earth
mass displacements due to GIA.



Chapter 3

Methods and technology

3.1 Satellite Gravimetry

The first satellites were launched in the middle of the 20th century and made it
possible to make global Earth observations. The geodetic observation techniques
opened up for making gravity field covering the Earth. Satellite Laser Ranging and
satellite altimetry gave a spatial resolution of half a wavelength, ≈ 500 km [Seeber,
2003]. With this resolution it was possible to obtain a spherical harmonic degree
of ≈ 36, and an accuracy of the geoid to 1 meter. Dedicated satellite missions,
such as GRACE, GOCE and CHAMP have improved the accuracy of the global
gravity field models. Because of the Earth’s irregularity in the gravitational field,
the satellite is susceptible to perturbing forces. These forces are observed as ”free
fall” and from this it is possible to derive the gravity field of the Earth.

To be able to determine the global gravity field with high accuracy, low earth
orbiting satellites(LEO) with sensitive sensors are required. This can be achieved
with satellite-to-satellite tracking(SST) and satellite gravity gradiometry(SGG).
SST uses microwaves to measure the range and range rates between two satellites.
Satellites in high-low mode are tracked by GNSS satellites orbiting at a higher
altitude(e.g. CHAMP), and is connected to a network of ground stations. With
low-low mode two LEO satellites are placed in the same orbit separated with ap-
proximately 200 km(in case of GRACE) and the range between the two satellites
is measured with high accuracy. Satellite gradiometry measures the gravity dif-
ferences within the satellite(e.g. GOCE). The satellite is in free fall and therefore

25
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the accelerations have to measured a distance from the center of mass of the satel-
lite [Torge and Müller, 2012]. Figure 3.1 shows the concepts dedicated satellite
gravity field missions.

Figure 3.1: Concepts of satellite gravity field missions. a)SST-HL, b) SST-LL, c) SGG
Illustration: Seeber 2003, Satellite Geodesy, p. 471, figure 10.2

Through satellite missions like GRACE, GOCE and CHAMP the spatial resolution
and accuracy has improved. And with data from these satellite missions, including
SLR, the best global gravity field models are obtained. In the following section a
further description of SLR, CHAMP, GRACE and GOCE will be explained.

3.1.1 SLR – Satellite Laser Ranging

In 1964 the first satellite carrying reflectors was launched, the BEACON EXPLORER-
B, but the development of pulsed laser systems for tracking satellites started in
1961 in USA [Seeber, 2003]. Over the years the Satellite Laser Ranging systems
has developed from having an accuracy at over a meter down to an accuracy of
some millimeters. It should be noted that the range accuracy is correlated with
the length and the resolution of the laser pulse.
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SLR measures the time it takes for a laser pulse to travel between a ground station
and a satellite. A laser pulse is generated in the ground station and is transmitted
to the satellite that carries retro-reflectors. The reflected pulse is then received
at the ground station and the distance can be found by the simple observation
equation

d =
∆t

2
c,

where c is the speed of light, ∆t is the travel time of the laser pulse.

Dedicated satellites with retro reflector have been developed to give a higher ac-
curacy of the Earth’s gravity field and orbital parameters. Satellites dedicated for
this purpose are STARLETTE, STELLA, LAGEOS-1 and -2, ETALON-1 and -2,
GFZ-1 and WESTPAC [Seeber, 2003].

SLR has several fields of applications, and the main applications are:

• Gravity field and satellite orbits: SLR can determine low degree and
order coefficients with high accuracy and precise determination of orbits

• Positions and reference frames: SLR can give absolute geocentric coor-
dinates, heights and contributes to ITRF1

• Earth Orientation Parameter: SLR can determine polar motion and
variations in Earth rotation

Laser ranging is organized under the International Laser Ranging Service(ILRS)
and provides precise geocentric position, motion of ground stations, satellite orbits,
Earth’s gravity field and temporal variations and the Earth Orientation Parame-
ters(EOP). ILRS collect and analyze laser ranging data from the 43 ground station
distributed over the globe.

SLR has been providing data of the Earth’s gravity field with high accuracy ever
since the first satellites with retro reflectors was launched. SLR still plays an
important role in estimating the global gravity field of the Earth, with the long
time series of observations. SLR is especially valuable for the determination of
the lower degree spherical harmonics, and is often an asset to other gravity field
models derived from gravity satellites, and will continue to be a part of gravity
field modeling.

1International Terrestrial Reference Frame
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3.1.2 CHAMP – CHAllenging Minisatellite Payload

CHAMP was launched 15 July 2000 and Geoforschungszentrum Postdam has the
main responsibility for the mission and the mission ended September 19 2010.
The main goals of the CHAMP satellite mission was mapping of the global gravity
field and temporal variations, mapping the global magnetic field and profiling of
the ionosphere and the troposphere [Hofmann-Wellenhof and Moritz, 2006]. The
CHAMP satellite had an almost circular, near polar orbit with an inclination of
87°and an initial altitude of 454 km. The satellite had a lower orbit because of the
atmospheric drag, the lower altitude increased the sensitivity to Earth’s gravity
field and determination of the coefficients. The magnetometer measures the vector
components of the magnetic field of the Earth and was separated from the body of
the aircraft, due to ’magnetic cleanliness’ [GFZ, 2014]. The payload also consisted
of GPS receivers to determine the orbit, but also laser reflectors for tracking and
precise orbit determination. In addition the satellite had three-axis accelerometer
to determine the non-gravitational accelerations(i.e air drag and solar radiation).

Figure 3.2: CHAMP-mission Illustration:Airbus Defence and Space
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3.1.3 GRACE – The Gravity Recovery and Climate Ex-
periment

The Gravity Recovery and Climate Experiment, GRACE, is a project between
U.S National Aeronautics and Space Administration(NASA) and the German
Aerospace Center(DLR). The GRACE-mission has made high resolution gravime-
try measurements from space available and since 2002 GRACE has provided
monthly global gravity solutions.

The GRACE-mission consists of two twin satellites(GRACE-A and GRACE-B)
that have a range of approximately 220 kilometers, and are Low Earth Orbiting
(LEO) satellites with an altitude of 490 km and a near polar orbit with an in-
clination at 89°. GRACE obtain Earth’s gravity field by accurate measuring of
the distance between the two satellites by using microwave systems. The distance
change between the two satellites are measured with K-band ranging, and has an
accuracy within 10µm. The GPS receiver gives precise orbit determination of the
satellites, and also provides data of atmosphere and ionosphere. As stated earlier,
to achieve high resolution of the Earth’s gravity field, LEO-satellites are required.
The GRACE mission fulfills these requirements, operating in SST low-low mode,
and the twin satellites have the same orbit [Torge and Müller, 2012].

Figure 3.3: The Gravity Recovery and Climate Experiment - GRACE, twin satellites
[NASA, 2015]
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With constant measuring of the distance between GRACE-A and -B it is possible
to determine the Earth’s gravity field. The satellites are influenced by Earth’s
masses and when a mass anomaly occurs, an perturbation of the orbit will take
place, and the distance between the satellites changes. From this change is is
possible to derive models of Earth’s gravity field. The spacecraft is also influenced
by other non-gravitational accelerations, to determine this an accelerometer is
used.

The objective of the GRACE-mission is to determine global high-resolution grav-
ity fields and temporal variations. Because of atmospheric drag, the altitude of
GRACE is decreasing, and the satellite mission is expected to continue throughout
2015. A GRACE follow-on mission will be launched in 2017, and will continue to
give high resolution gravity field models.

3.1.4 GOCE – Gravity field and steady-state Ocean Cir-
culation Explorer

The GOCE-mission is a part of ESA’s The Living Planet Programme with goal to
measure Earth’s stationary gravity field with high accuracy. GOCE was launched
17 March 2009 and measured the Earth’s gravity field until 11 November 2013.
The mission objectives can be summarized to

• determine gravity anomalies with an accuracy of 1mGal(=10µm/s2)

• determine the geoid with an accuracy of 1-2 cm

• achieve these results at a spatial resolution better than 100 km

According to the mission requirements GOCE was intended to represent the grav-
ity potential by spherical harmonics up to at least degree 200 [Hofmann-Wellenhof
and Moritz, 2006].
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Figure 3.4: GOCE satellite mission, illustration: ESA

GOCE was a near-circular, low earth orbiting(LEO) satellite with an altitude of
approximately 250 km and an inclination of 96.7°. The reason for the low altitude
was to give as strong as possible gravity field signal. The main instrument on the
GOCE-satellite was Electrostatic Gravity Gradiometer(EGG), or Satellite Sravity
Gradiometer(SGG) that measured gravity gradients in all directions. The satellite
was designed for measuring the geoid and gravity anomalies. The gradiometer
consisted of six 3-axis accelerometers mounted in a diamond configuration. GOCE
had two GPS receivers on the wing that was faced towards the space to supplement
the gradiometer measurements. The orbit of the satellite was tracked by SLR that
measured to the laser reflectors mounted on the satellite.

The data from the mission has been giving a better understanding of the Earth’s
geodynamics, ocean currents and heat transport, sea-level changes, give a global
height reference system and give a better estimate of the thickness of the polar ice
sheets and their movement.
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3.1.5 Short summary of the gravity satellite missions

The three gravity satellite missions represented in this section has played a big
role in the gravity field modeling of the Earth. They have all contributed to a
better understanding of the global gravity field and its variations. Table 3.1 gives
a short summary of the dedicated satellite missions.

Properties GRACE GOCE CHAMP
Operator NASA & DLR ESA GFZ

Launch Date March 17 2002 March 17 2009 July 15 2000

Decay Date Still in orbit November 11 2013 September 19 2010

SST-mode Low-Low High-Low High-Low

Altitude 500 km 250 km 300-450 km

Method
Orbit

Perturbation
Gradiometry

Orbit
Perturbation

Spatial
Resolution

300 km 100 km 400 km

Table 3.1: Summary of the different satellite gravimetry methods

The GOCE mission gives gravity coefficients up to degree and order 250, but does
not estimate the lower degree coefficients accurate enough for the purpose of this
thesis where the focus is on the global time variations. This is why the use of
GRACE is the method used to analyze the changes of Earth’s gravity field over a
long period of time, where GRACE have a higher accuracy of the lower degrees.

Figure 3.5 is presenting the differences between the satellite gravimetry methods
in terms of degree variances. Satellite-to-satellite tracking Low-Low, denoted as
SST-ll in the figure, is representing the GRACE-mission, SST-hl is the high-low
method and representing the CHAMP-mission, while SGG is the satellite gravity
gradiometry representing the GOCE-mission. In addition the Kaula model has
been added to the figure, as well as GMs that is global models from before the
life of GRACE, GOCE and CHAMP. Satellite Gravity Gradiometry, or GOCE,
has a smaller variance in the coefficients for the higher degree spherical harmonics
compared to GRACE(SST-ll), represented as a yellow field in the figure. For the
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lower degree spherical harmonics, and the one that is the most applicable for the
purpose of this thesis, the GRACE-solution shows a smaller variance compared to
the GOCE-solution(represented as orange area in the figure).

Figure 3.5: Comparison of degree variances between different methods: SST-LL, SST-
HL, SGG and the Kaula-model

The next dedicated satellite mission to be launched is the GRACE follow-on(GRACE-
FO) mission that will be launched in 2017, and will continue the modeling of
Earth’s gravity field. GRACE-FO is a partnership between NASA and GFZ and
the goal is to obtain global and high resolution for the Earth’s gravity field [GFZ,
2015].
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3.2 GRACE Gravity Solutions

GRACE provide accurate estimates of the Earth’s gravity field, and are used in
several different analysis: mass redistribution, ocean and hydrological analysis,
temporal variations in the Earth’s gravity field etc. GRACE monthly solutions are
mainly obtained from the three processing centers GFZ, JPL2 and CSR3, but also
other groups/universities provides monthly GRACE solutions. The International
Center for Global Earth Models(ICGEM) provides the data from the different
models available.

This section will take further look in to the models from GFZ, ITSG and AIUB,
the models used in this thesis. For all global gravity field models, monthly solution
up to degree and order 90 has been used.

3.2.1 GFZ - German Research Center for Geosciences

The German Research Center for Geosciences is a national research center for
Earth Sciences in Germany. GFZ provides gravity field solutions from GRACE at
level-1B and level-2. Monthly solutions from January 2003 to July 2014 can be
obtained, and their latest release are RL05a. The difference between the former
release, RL05, and the latest release, is the difference in treatment of the orbit
parameters in the final processing step, when the gravity field parameters are
estimated. [Dahle et al., 2012]

GFZ provides a set of files that contains different information. The list below
describes the different models that can be obtained.

• GSM - Static field geopotential coefficients estimated from satellite data only.
These coefficients have had the modeled estimated of the atmospheric and
oceanic mass signals removed.

• GAA - Non-tidal atmosphere geopotential coefficients averaged over a certain
time period.

• GAB - Non-tidal ocean geopotential coefficients averaged over a certain time
period.

2Jet Propulsion Laboratory
3University of Texas at Austin, Center for Space and Research
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• GAC - Non-tidal atmosphere and ocean geopotential coefficients averaged
over a certain time period.

• GAD - Ocean bottom pressure geopotential coefficients averaged over a cer-
tain time period.

For the generation of gravity field products at level-2, GFZ uses a two-step method:

1. adjustment of the high flying GPS spacecraft orbit and clock parameters
from ground based tracking data.

2. determination of GRACE orbit and computation of the observation equtions
with fixed GPS spacecraft.

For the computation of the GRACE level-2(explained in section 4.1) data, GFZ
has used level-1B instrument data from release 02, and non-tidal atmosphere and
ocean corrections from AOD1B product release 05 has been used. Release 05 level-
2 products are generally generated up to degree and order 90, and are without any
statistical constraints. The solutions are stabilized for selected months where there
have been limitations in the ground track coverage due to repeat or nearby repeat
orbit pattern.

3.2.2 AIUB - Astronomic Institute, University in Bern

AIUB has since 1992 operated the Center for Orbit Determination in Europe(CODE),
and contributes to the International GNSS Service as an analysis center, as an
analysis center to the International Permanent Network(EPN) and as an analysis
center for the International Laser Ranging Service(ILRS). They provide data that
contribute to the International Terrestrial Reference Frame(ITRF)

• Earth Rotation Parameters

• Precise satellite orbits and station coordinates

• Satellite and receiver clock corrections

• Global ionosphere maps and station troposphere parameters
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AIUB provides monthly solutions from March 2003 to March 2013 , their newest
release is the AIUB-GRACE03s. The static coefficients has been estimated up
to degree and order 160, in the course of generalized orbit adjustment procedure.
From the static part, monthly gravity field solutions has been estimated up to
degree and order 60 and 90. The coefficients were computed from kinematic GPS
position and low-low K-band inter satellite range rate observations [U. Meyer,
2011].

AIUB also provides monthly SLR solutions up to degree and order 10. The lower
degree SLR-values will be investigated further in section 5.2.

3.2.3 ITSG-GRACE2014 - Institute for Theoretical geodesy
and Satellite geodesy, Graz

ITSG provides monthly solutions for different maximum degrees, 60, 90 and 120
For this thesis a maximum degree of 90 has been used. The timespan is from
February 2003 to June 2014. The observations for computing the coefficient are
K-band range rates with sampling rate of 5 seconds, and kinematic orbits with
sampling rate of 5 minutes. Each component in the solution contains complete
gravity signal, with atmosphere and ocean masses [Mayer-Gürr et al., 2014].

They also provide a daily solution, where Kalman smoothing has been applied

Figure 3.2 shows an overview of the different solutions

Model name Time Span
Spectral reso-
lution

GFZ RL05a April 2002 - September 2014 90
AIUB RL02 March 2003 - March 20013 60, 90
ITSG-
GRACE2014

February 2003 - June 2014 60, 90, 120

Table 3.2: Models from GFZ, AIUB and ITSG and their parameters



Chapter 4

Estimation of trend in the global
gravity field solutions

GRACE has delivered observations for monthly global gravity field solutions since
its launch in 2002. This chapter will describe the computation of global gravity
field changes with the use of GRACE-derived spherical harmonic coefficients in
the spherical harmonic synthesis.

4.1 Data reduction and de-aliasing

Insufficient sampling rate of the temporal gravity field changes, causes aliasing
in the GRACE gravity field models. This effect needs to be taken into account
in order to derive the gravity field of the Earth from GRACE. Short-term varia-
tions as tides, atmospheric variations and oceanic variations are modeled and in-
cluded in the back ground gravity field. This is called atmospheric and oceanic de-
aliasing(AOD) and are reduced before the data are analyzed, so that the monthly
solutions do not contain atmospheric- and oceanic variations.

This section will give a short description of the GRACE data products that are
categorized into Level 0, Level 1A, Level 1B and Level 2.

37



38 Estimation of trend in the global gravity field solutions

4.1.1 Level 0

The level-0 data product consist of the observational raw data, and are processed
by the GRACE Raw Data Center (RDC) at DLR. From each downlink pass of
the satellites two files are made available and stored in the archives at RDC [Case
et al., 2010].

4.1.2 Level 1A

Level-1A data product is a result of non-destructive processing of the level-0 data
product. The processing include sensor calibration, ambiguity resolving and ref-
ormation of data. Sensor calibration factors are applied to convert the binary
encoded measurements to engineering units. The level-1A data product are re-
versible to level-0 data products. This data product also include ancillary data
that is needed for the processing of the next step [Case et al., 2010].

4.1.3 Level 1B

The level-1B data products are correctly time tagged, and are possible irreversible
processing applied to level-0 and level-1A data. Level-1B data contains intersatel-
lite range, range rate, range acceleration and non-gravitational accelerations from
both GRACE-A and GRACE-B. This level also includes ancillary data that has
been generated during the processing, and also data needed for further process-
ing [Case et al., 2010]. GFZ provides an atmosphere and ocean de-aliasing product
for level 1B, called AOD1B.

4.1.4 Level 2

The level-2 data product is the final level, and contains the gravity field as spherical
harmonic coefficients. This level also include the GRACE orbits and ancillary
data [Case et al., 2010].
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4.2 Filtering of the models

The GRACE data is inflicted with correlated errors, that has to be taken into
account when doing analyzes. Because of the satellite orbit geometry, a longitudi-
nal striping pattern emerges. The near polar orbit and ranging between the twin
satellites, gives a high along track sensitivity [Kusche et al., 2009]. These errors
can be taken care of with the use of different filtering techniques, the two methods
that will be described in this section is isotropic filtering(Gaussian smoothing) and
non isotropic filtering.
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Figure 4.1: Non-filtered GRACE solution for Equivalent Water Thickness(EWT)
[m/yr].

In figure 4.1 the trend from GFZ’s GSM model is displayed. All spherical harmonic
degrees up to degree and order 90 have been used. The C20 has also been replaced
with SLR values. With not applying any filter to the model, a distinct longitudinal
striping pattern can be seen, and gives little or no information about the gravity
field. The striping pattern is most dominant between latitude 60°S and latitude
60°N. This is because of the near-parallel orbits of the satellites at those latitudes.
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4.2.1 Gaussian Smoothing

Gaussian smoothing is an isotropic filtering method, all axes are treated equally.
Wahr et al.(1998) propose a spatial averaging function for noise reduction of the
GRACE-data, a method with a Gaussian shaped kernel. The weighting function,
W, is not dependent on the direction, only the distance between the points of
computation, and this makes the Gaussian smoothing an isotropic method. W (α)
can be calculated with

W (α) =
b

2π

e−b(1−cos α)

1− e−2b
(4.1)

b =
ln(2)

(1− cos( r
a
)),

(4.2)

where r is the averaging radius and α is the angle between the computation
points(or distance). Equations 4.1 and 4.2 are normalized averaging functions, to
compensate for errors in short wavelength spherical harmonics [Wahr and Mole-
naar, 1998]. Equation 4.1 is nonzero for all values of α and this will make the
signals leak into surrounding areas. This leakage-effect will be described closer
and handled in chapter 6 which are explaining the leakage effect of the area of
Greenland.

A numerical method for approximating the weighting factors has been proposed
by Chambers(2006), and can be calculated by

Wn = exp

[
−

(nr
2a

)2

ln(2)

]
(4.3)

where n is the spherical harmonic degree. Equation 4.3 can be used in the spherical
harmonic synthesis, and here expressed for surface mass densities (explained in
section 2.4):

∆σ̄(θ, λ) =
2πaeρave

3

nmax∑
n=0

2n+ 1

1 + kn
Wn

n∑
m=0

P̄nm(cosθ)

·(∆C̄nmcos mλ+ ∆S̄nmsin mλ) (4.4)
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Figure 4.2: Gaussian smoothing with kernel radii of 0km, 200km, 500km and 750km.

Figure 4.2 shows the Gaussian smoothing with different smoothing radii. In order
to remove all the correlated errors in the GRACE-data, a large smoothing kernel
needs to be applied. This is because of the non-isotropic character of the correlated
errors.
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The effect of the different smoothing kernels is shown in figure 4.3, on the GSM-
model from GFZ. In the upper-left corner no smoothing is applied and the striping
is distinct. A 200 km Gaussian radius is shown in the upper-right corner, and there
is still some striping pattern to be observed. In the bottom two figures, a radius
of 500 km and 750 km has been applied to the model, and the striping pattern is
not visible in either of them. It would probably be most accurate to use the 500
km kernel to keep as much information as possible.
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Figure 4.3: Different filtering radii, represented as EWT for the GSM model [m/yr].

4.2.2 Non-isotropic smoothing

The standard filtering method has been the Gaussian smoothing, and has been
used in GRACE analysis. Kusche et al.(2009) proposes another method for dealing
with correlated GRACE errors, which is a non-isotropic smoothing. This method
has its purpose to decorrelate the GRACE solutions, but keeping the data infor-
mation provided from GRACE. The filtering method is based on using an a priori
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synthetic model of the observation geometry. This results in decorrelated kernels,
where the axis system is not symmetric, making it a non-isotropic filter[Kusche
et al., 2009].

There are several different non-isotropic filters available, DDK1-DDK8, provided
by different processing centers, and are distributed from ICGEM1. In this thesis
the model of DDK1 will be used, in case of the non-isotropic filtering method,
for further analysis. DDK1 corresponds to a Gaussian smoothing radius of 530
km [Kusche et al., 2009]. A Gaussian smoothing of 500 km will be used in the
analysis of global gravity fields and in the computations of leakage effects in sec-
tion 6, for that reason the DDK1-solutions has been chosen in the comparison of
models.

4.3 Time Series Analysis of the global gravity

field variations

The different processing centers provide monthly GRACE-derived gravity solu-
tions, over several years. This section will investigate the different time series and
look at the trend for the different models. The models represented are from GFZ
Release 05, AIUB Release 02 and ITSG-GRACE2014, described in section 3.2.

This section will describe the computation of trend, comparison between the
Kusche-filtered model and GSM-model with Gaussian filter, and a comparison
between the different gravity solutions. All have been done in terms of Equivalent
Water Thickness [m/yr].

1Data can be collected at http://icgem.gfz-potsdam.de/ICGEM/



44 Estimation of trend in the global gravity field solutions

4.3.1 Calculation of trend

The monthly GRACE-solutions makes it possible to calculate the trend for each co-
efficients over a time period. In equation 4.5 the linear(a)- quadratic(b)-, annual(A)-
and semiannual(S)-trend are given.

Cnm(t)
Snm(t)

}
=

{
Cnm(t0)
Snm(t0)

}
+ a∆t+

1

2
b∆t2

+ Acos[ω∆t+ ΦA] + Scos[2ω∆t+ ΦS] (4.5)

where ∆T is the time difference(t− t0), ω is the period and the Φ terms represent
cosine and sine term for annual and semiannual trend.

In further computations only the linear and quadratic term has been estimated
by least square adjustment. This is because this thesis has its focus on the long
term trend over a time period and not the periodic effects. The quadratic term
needs to be calculated to give a correct estimate of the linear trend. This will be
investigated further in section 4.3.2.

For further calculations equation 4.6 have been applied, and annual and semiannual
term is not considered, since they did not affect the trend calculations.

Cnm(t)− Cnm(t0)
Snm(t)− Snm(t0)

}
= a(t− t0) +

1

2
b(t− t0)2 (4.6)

The coefficients are weighted with the standard deviations from GRACE-solutions
when calculating the trend, and the weighting is given by

PCnm =
1

σ2
Cnm

(t)
(4.7)

In equation 4.7 the standard deviation, σ2
Cnm

, is presented for the cosine term. The
same statement can be for the sine term as well.

The predictions do not give exact values, and the errors need to be estimated.
In addition the estimates of the effect on these errors on derived quantities have
to be considered. Formal error propagation can be calculated from the standard
deviations for the trend to the standard deviation of i.e. geoid height(N ) or equiv-
alent water thickness. The trend coefficients are used in the spherical harmonic
synthesis, and gives for example EWT [m/yr].
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4.3.2 Gravity field trend for the different GRACE-solutions

The different GRACE-solutions can give different results when estimating the grav-
ity field of the Earth. Due to differences in how they calculate the level-2 data
product, the changes in global gravity field can vary. In this section the global
trend of Equivalent Water Thickness has been studied and compared for the dif-
ferent models.

The quadratic term of the trend needs to be calculated in order to get a correct
estimate of the trend. In figure 4.4, the quadratic term has not been calculated
in the least square adjustment, and it is possible to observe that the trend is
actually positive for the areas of Greenland and Antarctica, where it is expected
a downward trend. Where it is expected to observe the GIA effect, Canada and
Fennoscandia, the trend is negative.
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Figure 4.4: Example of global gravity field(EWT in terms of [m/yr]), without taking
the quadratic term into account. DDK1 solution.

In figure 4.5 the time series for S21 is presented with linear and quadratic trend. As
it is possible to see the linear trend is increasing over the whole period, and a better
estimate is given by the quadratic trend. Until 2009 the trend is clearly increasing,
but after this period a decreasing trend can be observed, and the quadratic term
are interpreting this.
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Figure 4.5: Time series for S21, showing difference in quadratic and linear trend.

The trend of the global gravity field spanning from April 2002 to September 2014
from the Kusche-filtered model are shown in figure 4.6. In figure 4.7 the global
gravity field for the same period from GSM-solution are shown, with a 500 km
Gaussian filter. No Gaussian filter needed to be applied to the Kusche-filter model,
because the trend is not correlated with the striping pattern.

The trend in the gravity field are dominated by GIA and ice melting. Over
Fennoscandia and the Canadian shield the GIA-effect is visible by the increas-
ing trend, represented as red and orange areas. The cryospheric mass changes can
be observed over Greenland, Antarctica, glacier melting can also be observed in
Alaska. It shows a decrease in the gravity field, and it is due to the ice melting
over the ice caps, and are represented as blue areas in the figures.

It is possible to observe a difference between the Kusche-filtered model(figure 4.6)
and the GSM-model with 500 km Gaussian filter(figure 4.7). The Kusche-filtered
model is showing a larger variation in the trend, compared to the GSM-model.
This implies that maybe a 500 km Gaussian filter is filtering out some of the
signal.

Figures 4.8 and 4.9 shows the trend of the solutions from University in Bern(AIUB)
and the University in Graz(ITSG), with a 500 km Gaussian smoothing. There are
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no huge differences between the two solutions when it comes to calculating the
trend, but they both differ from the GFZ solutions. They show a larger trend in
EWT compared to GSM-solution, even though the time period are shorter. When
compared to the Kusche-filtered model they do not differ that much, but the mass
gain over Antarctica, observed in figure 4.6, are not that noticeable in figures 4.8
and 4.9. Again, it can be assumed that some of the signal has been filtered out.
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Figure 4.6: Kusche-filtered model in terms of [m/yr] EWT, DDK1 from GFZ, with
quadratic trend estimated.
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Figure 4.7: Global model in terms of [m/yr] EWT from GFZ(GSM), smoothing radius
500 km.
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Figure 4.8: Global model in terms of [m/yr] EWT from AIUB, smoothing radius 500
km.
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Figure 4.9: Global model in terms [m/yr] EWT from ITSG, smoothing radius 500 km.





Chapter 5

Lower degree spherical harmonics

5.1 The Earth’s dynamic oblateness

The flattening of the Earth cause a large discrepancy of the Earth’s gravitational
field from a homogeneous sphere, and the gravitational potential can be expanded
into this spherical harmonic series(based on the spherical harmonic series in sec-
tion 2.3)

V =
GM

r

{
1−

∞∑
n=2

(
a

r

)n
JnPn(cosθ)

+
∞∑
n=2

n∑
m=1

(
a

r

)n
[Cnmcos mλ+ Snmsin mλ]Pnm(cosθ)

}
(5.1)

where Jn represents the zonal harmonics and Cnm and Snm are the tesseral harmon-
ics. The notation used for zonal harmonics is Jn and it follows from equation 5.1
that Jn = −Cn0. The satellites are influenced by the J2-coefficients(and other
low degree harmonics) and is therefore used to determine low degree spherical
harmonics [Hofmann-Wellenhof and Moritz, 2006].

The C20 coefficients, or J2, describes the Earth’s dynamic oblateness and is a
function of the difference between equatorial and polar radii of the equipotential
surface of the gravity field that best fits the mean sea level [Cheng et al., 2013b].
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5.1.1 Different SLR-solutions for lower degree spherical
harmonics

There are different providers of SLR-solutions for lower degree spherical harmonics
to give a better estimates of these coefficients. In this section the longterm solution
from CSR and the solutions from GRACE technical note #7(TN7) and from the
University in Bern(AIUB) are compared, and their properties are presented in
table 5.1.

Model name Time Span Satellites

Long term 1976 – 2011
LAGEOS-1 and 2, Etalon-1 and
2, Starlette, Stella, Ajisai and
BEC

TN7 2001 – 2013
LAGEOS-1 and 2, Starlette,
Stella and Ajisai

AIUB 2003 – 2014
LAGEOS-1, LAGEOS-2, Star-
lette, Stella, AJISAI, Beacon-C,
LARES, Larets, Blits

Table 5.1: SLR-solutions from CSR, TN7 and AIUB

Long term SLR-estimates from CSR

A long term estimate of SLR-values are provided by CSR and is based on up
to 8 satellites, LAGEOS-1 and 2, Etalon-1 and 2, Starlette, Stella, Ajisai and
BEC [Cheng et al., 2013a].

Since 1979 a decrease in J2 has been observed, this decrease is mainly because of
glacial isostatic adjustment. Cheng et al.(2013) observes that the expected linear
trend for J2 appears more quadratic than linear, and also finds a deceleration in
the Earth’s oblateness. This observation can come from the changes in rate of the
mass redistribution, and is due to climate changes and the melting of ice over land
area.
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SLR-values from GRACE technical note # 7

Technical note # 7 refers to SLR-estimates from the Center of Space Research(CSR)
at the University of Texas in Austin, with monthly estimates for C20. These es-
timates are based on five geodetic satellites, LAGEOS-1 and 2, Starlette, Stella
and Ajisai. They use a background gravity model that is consistent with GRACE
Release-05, and includes the same Atmosphere-Ocean and De-aliasing product(AOD).
They recommend to replace the C20-values from the GRACE GSM-files of the
GRACE release RL05a [Cheng and Ries, 2013].

SLR-values from University in Bern

University in Bern provides monthly estimates of the C20-coefficients from SLR,
up to degree and order 10. The AOD-product for Release-05 has been used for
de-aliasing, and should be comparable to all GRACE products [Sosnica, 2014].
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Figure 5.1: 30 days estimates for −∆C̄20 from SLR. Long term, AIUB and TN7. The
quadratic trend for the long term estimate is represented with a green curve.

The ongoing isostatic adjustment(GIA) from the last ice age and mass exchanges
due to climate changes, cause variations in C20. The trend is expected to be linear
due to GIA, but Cheng et al.(2013) observes a deceleration in the decreasing rate
of J2 over the last decades. The deceleration in J2 can be due to the present-day
ice melting of the continental glaciers. Figure 5.1 shows 30 days estimates of J2

from 1976 to 2011(black line) and solutions from AIUB and TN7(red and blue
lines). The green curve shows the quadratic trend for the long term SLR-solution.
In the long term estimate it is possible to observe a downward trend from 1976 to
1995, and it decelerates from 1995 to 2011 [Cheng et al., 2013a]. The estimates
from AIUB and TN7 fits together with the long term estimate, but indicates an
increase the last years of observation.
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5.2 SLR values for Earth’s dynamic oblateness

SLR-data provides a good method for measuring the long term variations of C20.
Because GRACE-derived C20 variations are affected by tide-like aliases, the SLR-
data for these values are of good use [Cheng et al., 2013a]

This section will take a closer look at the SLR-estimates from TN7 and AIUB,
compare the SLR-estimates and look at the effect of lower degree spherical har-
monics in the spatial domain.
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Figure 5.2: C̄20 SLR-values, C20-mean

The mean deviation, describing the variations around the mean value, are pre-
sented for the SLR-values in figure 5.2. The values considered are from GRACE
technical note #7 and from the University in Bern. A displacement can be ob-
served between the two SLR-solutions, but they are quite close. The correlation
between the two solutions was calculated to 74% for the period January 2003 to
December 2012.



56 Lower degree spherical harmonics

There are two main issues concerning the coefficients

1. short term variations where it is possible to observe large correlations be-
tween the coefficients.

2. long term variations where the trend coefficients does not differ to a large
extent.

The last issue is the one that are most relevant for this thesis.

The trend of the SLR-solutions in figure 5.3 are showing a decrease in the coef-
ficients over 12 and 11 years period. The trend for the AIUB solution is steeper
than the trend from Technical note #7. In figures 5.4 and 5.5 the individual trend
lines for geoid height are shown in meters, and the decrease in the SLR-coefficients
are relatively small, -8.13× 10−5 m/yr and -1.53× 10−4 m/yr respectively. The
scale of the y-axes are also different, and are showing an offset of about 20 cm
between the two solutions. Even though they differ in scale, the relation between
the two solution are relatively high, with a correlation of 64%.
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Figure 5.3: SLR-values from Technical Note 7 and AIUB in terms of geoid height [m],
mean deviation.
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Figure 5.5: SLR-values from University in
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5.2.1 The effect of SLR-values for the C20 coefficients

As stated earlier in section 5.1, the C20 coefficients describes the flattening of the
Earth. Because of the uncertainty in the lower degree spherical harmonics, the
signal of the C20-coefficients from GRACE are dominant in the gravity solution.
If this is not taken into account, the spherical representation of the gravity field
will have this manifested into it, shown as a belt from approximately degree 30 to
90. With the use of SLR-values for these coefficients, this effect will disappear.

In figure 5.6 the SLR values has not yet been replaced for the C20 coefficients, and
a distinct band is visible in the northern and southern parts of the map. It is still
possible to see geophysical signals, but the effect of C20 manifest the surrounding
areas.

When the C20 coefficients from the GRACE-model are replaced with SLR-values,
the effect described above is removed, as seen in figure 5.7. This gives a much
more accurate estimate for the geoid height(or any other value of interest) and it
is easier to interpret without the disturbing signal.
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Figure 5.6: Geoid height [m/yr], n=0:90 with not adding SLR-values for C20. Model:
GFZ-DDK1
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Figure 5.7: Geoid height [m/yr], n=0:90 when adding SLR-values for C20. Model:
GFZ-DDK1
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5.3 Comparison of C20 between GRACE and SLR

In this section C20-coefficients from the different models will be compared with
the SLR-values from Technical Note 7 and University in Bern. This will make
it possible to decide if the coefficient for Earth’s dynamic oblateness should be
replaced or if it does not affect the computations.

The C20-coefficients from both GFZ-solutions, GSM and Kusche-filtered, are al-
most identical, and therefore only the GSM-solution has been considered in this
section.

Figures 5.8, 5.9 and 5.10 compares the different GRACE-solutions to the SLR-
solutions. The C20 from GFZ are showing large variations in the coefficients,
compared to AIUB and ITSG.
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Figure 5.8: C20 values from GSM and SLR (Technical Note 7 and AIUB), C20-mean

In figure 5.8 there is a clear difference between the SLR-solution and the GRACE-
solution from GFZ(GSM), almost no correlation. Also, in the GFZ solution there
is one trend from 2002 to 2008, and another trend from 2008 to 2014. There are
huge peaks in the beginning and the end of the period. The GRACE-solutions
from AIUB and ITSG are better correlated to the SLR-solutions, but there are
still some spikes and offsets.
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Figure 5.10: C20 values from ITSG and SLR (Technical Note 7 and AIUB), C20-mean
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Figure 5.9: C20 values from AIUB and SLR (Technical Note 7 and AIUB),C20-mean
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It should be mentioned that the figures are explaining the variations around the
mean value, and that there are offsets between the SLR-solutions and the GRACE-
solutions. Table 5.3 shows the correlations and the offsets between the different
solution. All values are for the same time period, January 2003 to December 2012.
The GSM-solution have large variations in the C20-coefficients, and the correlations
in the table are small when comparing to the other solutions. The offsets are also
represented in the table, for example an offset between the SLR-solutions is present.

SLR-
TN7

SLR-
AIUB

GRACE-
AIUB

GRACE-
ITSG

GRACE-
GSM

SLR-
TN7

–
74 %

0.061 m
25%
0.064

57%
0.004 m

19%
0.066 m

SLR-
AIUB

74%
0.061 m

–
36%
0.003

56%
0.057 m

31%
0.005 m

GRACE-
AIUB

25%
0.064 m

36%
0.003 m

–
49%

0.06 m
11%

0.003 m
GRACE-

ITSG
57%

0.004 m
56%

0.057 m
49%

0.060 m
–

25%
0.062 m

GRACE-
GSM

19%
0.066 m

31%
0.005 m

11%
0.003 m

25%
0.062 m

–

Table 5.2: Correlation and offset between the different solutions, where correlation is
given in % and offset in geoid hight [m]
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5.4 The effect of the C20-trend

Legendre function, Pnm(cosθ), is a solution of Legendre’s differential equation,
and is used in the spherical harmonic synthesis. In this section the polynomial of
degree 2,

P2(cosθ) =
3

4
cos2θ − 1

4
,

has been studied and gives valuable information about the effect of the trend in
C20. Since the polynomial can be set as a function of latitude, it can be shown
that P2 changes from pole to pole, but symmetrically over the equator, as seen in
figure 5.11.
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Figure 5.11: P20

The trend of the C20-effect can give an indication on how the C20-coefficients
develop in the spatial domain. This gives only information about the spatial
structure of the C20-trend. The fully normalized Legendre polynomial is the basis
function and are shown in figure 5.11. When only looking at the C20-term the
geoid height from equation 2.19 can be simplified to

N20(θ) = R · C̄20 · P̄20(cos θ) (5.2)
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For the geoid height represented by the C20-coefficients the values of Legendre
polynomials for C20 will decrease towards the poles because of the flattening of the
Earth, and near the equator the values will increase. In figure 5.12 this effect is
visualized for the three different GRACE-solutions. They show the geoid height
represented as a the trend in [m/yr].

By comparing the trend of C̄20 between the models it is possible to give a conclusion
about the significance of the difference between C̄20 trend coefficients. In figure
5.13 these comparisons are displayed, with TN7 as basis of comparison. The SLR-
solutions gives the best estimates of C̄20, and is therefore used as a basis. The figure
shows the trend of the C̄20 represented as difference in geoid heights(∆N). For
the application of estimating mass changes over a specific region, it is interesting
to look at the trend for only this area. In case of this thesis, the Greenland area
has been studied, and the yellow fields in figure 5.13 are spanning from 60° to
80° latitude, representing Greenland.

The differences are relatively small, and spans from approximately -70 µm/yr to
150 µm/yr, and there is a close connection to figure 5.12. The comparison between
the TN7-solution and the solution from AIUB is the one that have the smallest
difference in trend of the area of Greenland, while the three other comparisons
differ in a larger scale. A sign change can be observed for the comparison of
ITSG and SLR from AIUB, this is because of the larger variations in trend from
figure 5.12.

The trends of the C20-coefficients are in fact different, but when computing the
trend over a longer time period, the magnitude of the differences are smaller than
what is going in to the computations of mass balance over Greenland. This inter-
prets to that it does not matter how the C20-term are processed for the application
of estimating mass changes over Greenland(chapter 6).
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Figure 5.12: Individual trends for the different solutions represented as [m/yr]
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Figure 5.13: Differences in geoid height for the different solutions, with TN7 as basis
of comparison. Represented as trend in [m/yr].



66 Lower degree spherical harmonics

5.5 Correlation

In this section the correlation of the coefficients from GRACE and the coefficients
from SLR will be investigated. It is interesting to look at the correlations be-
tween different coefficients to be able to determine if more than one coefficient
should be replaced. If the correlation between two coefficients are significant, both
coefficients should be replaced.

The correlation matrices are obtained from the covariance matrices, and the covari-
ances are scaled with the variance of the two coefficients involved. The correlations
are normalized to be in the interval ±1, and shows how strong the correlations are.
The values on the diagonal in a correlation matrix is always 1(100% correlation),
and is the correlation between the same coefficient, the matrix is also symmetric
above and below the diagonal.

The covariance matrices was given by Krzysztof Sosnica from AIUB. The GRACE
variance-covariance(VCM) matrix is from March 2008 and the SLR VCM is from
March 2014. In the SLR-solution the geometrical geocenter is set up, but this
parameter is pre-eliminated in the final solution. The SLR-solution is constrained
with the coefficients of the GRACE-solution, by setting higher degree coefficients
to the value of the GRACE-solution. According to K. Sosnica the GRACE VCM’s
are stable as long as they are based on complete monthly observations, and not
affected by orbit resonances.

The covariance in SLR depends on the observation geometry and on the satellites
that are used. For example there was only one SLR station in South Africa in
2004, and this station did not provide data for all the months. The only station
was established in 2000/2001, and before this period there were no data above
this region. The satellite LARES has contributed a lot to the SLR-solutions and
was launched in 2012. LARES has decorrelated many parameters because of the
different inclination angle, compared to other satellites. This results in different
covariance matrices for different months in the SLR solutions(K.Sosnica, private
communication).

Figure 5.14 and 5.15 shows the correlation between the coefficients up to degree
and order 10. The degree 1 and 0 are not been included in the solutions.
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Figure 5.14: Correlation between GRACE coefficients up to degree 10
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For the purpose of this thesis it is interesting to look at the correlation of C20 and
other coefficients. The correlations in the lower degree GRACE-data shows little
or no correlation between the coefficients, and the maximal correlation for C20 and
other coefficients up to degree and order 10 is 12.8%. On the other hand, the
SLR-values shows larger correlation between the coefficients, and the correlation
between C20 and C40 is 67.5% for march 2008. Because of this correlation one
should consider to replace C40-coefficient in addition to C20-coefficient. This has
not been done in this thesis, since we only was provided with covariances for one
month. Although the GRACE-covariance are stable over time, this is not the case
for SLR, and there is not enough basis to know if this correlation is true for all
month of the time series.

The correlation matrices in this section are structured by degree and figure 5.16
shows an excerpt of a variance matrix that states how the matrices are ordered
and figure that visualize the structure.

PARAM TYPE DEGREE N ORDER M SIN/COS

1 13 2 0 COS

2 13 2 1 COS

3 13 2 1 SIN

4 13 2 2 COS

5 13 2 2 SIN

6 13 3 0 COS

7 13 3 1 COS

8 13 3 1 SIN

9 13 3 2 COS

10 13 3 2 SIN

11 13 3 3 COS

12 13 3 3 SIN

3,0
2,2
2,1

3,1
3,2
3,3
4,0
4,1

2,1 3,02,2 3,1 3,3 4,0 4,13,22,0
2,0
n,m

Figure 5.16: An excerpt from the covariance file and the structure of the correlation
matrices.

Another way to look at the correlation is to structure the coefficients into blocks
dependent on the order m of the spherical harmonic coefficients, starting with
order m=0, then m=1, m=2, etc.



Chapter 6

Leakage Effects

Because of the restricted spectral resolution of the gravitational field models and
spatial averaging, leakage effects occurs. This means that high frequency signals
or errors are mapped into lower frequencies, spectral leakage emerges. In the
spatial domain, leakage are displayed as signals spreading. These signals are not
concentrated over the area of interest, but are also spreading to the surrounding
areas (theoretically over the whole globe).

The leakage effect can be split into two: the leakage-out effect and the leakage-in
effect. The leakage-out explains the signal that emerges to the surrounding areas.
As for example, the signal over Greenland is affecting the areas of Fennoscandia,
The Canadian Shield and Alaska. But there are also signals leaking out from the
surrounding areas that affect the signal on Greenland, these signals are leaking
into Greenland, the leakage-in effect.

If one wants to calculate the mass change over Greenland (or other areas of inter-
ests), this leakage effect has to be taken into account, or one would experience an
under- or over estimation of the actual mass change, and in case of Greenland one
would experience an underestimation.

69
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6.1 The computation of leakage effect

Baur et al.(2009) are proposing a four-step method for handling the leakage effect.
The method is based on the computation of Equivalent Water Thickness(EWT).
After doing the spherical harmonic synthesis for EWT over the entire Earth, it is
possible to extract the values only containing information over Greenland. This is
the first step and gives the initial value(M1). Because of spatial averaging in the
spherical harmonic synthesis, the initial value is not good enough for estimating the
mass balance. The second step is to extract initial information over an arbitrary
extended area, called M2. O. Baur(2009) recommends to use isolines for extended
areas that does not include other major mass sources. With the initial values it is
possible to find the Intermediate Amplification Factor(IAF):

IAF =
M2

M1

and from this the mass change can be restored back on to land area in step 3:

M∗
1 = IAF ·M1

With forward gravity modeling, the exact leakage-out effect is provided. This is
done by analyzing the gravitational signal obtained from the mass change distri-
bution followed by a synthesis, and this signal is used to calculate the total mass
change

M∗
2,syn = M2

(
1 +

(
1− M2,syn

M2

))
M2,syn is the forward modeled mass change estimate inside the extended area.
1−M2,syn/M2 express the ratio between the forward modeled mass change estimate
and the estimate from step 2, M2, this gives the amount of signal loss. The Final
Amplification Factor(FAF) is then calculated by combining the signal loss and the
IAF

FAF =
M∗

2,syn

M1

from this the total mass change can be restored back to land area

M1,syn = FAF ·M1

This is the fourth and last step of the method, and gives the total mass change
inside Greenland [O.Baur, 2009].
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6.1.1 ”Simple Method”

In this section ∆σin denotes the initial value inside Greenland, ∆σext is the value
for the extended area and ∆σ∗in is the restored mass change inside Greenland.

Steps 2 and 3 described in previous section can be considered as intermediate steps,
and step 4 can be applied directly on to step 1. Baur et al.(2009) recommends to
to do all the steps described i section 6.1 because get more realistic mass-change
estimates for the forward modeling procedure in the last step. Although it is
recommended to do all the steps described, the further calculations in this thesis
is based on the ”Simple Method”, and the computations will be described in this
section.

Before starting on the procedure, a spherical harmonic synthesis(SHS) of the
GRACE-coefficients is calculated for Equivalent Water Thickness. The synthe-
sis is done for a global 0.5°grid, from n=0:90, and a 500 km Gaussian filter. In
the first step, a grid containing only mass change information over Greenland is
extracted, all other grid cells outside Greenland is zero. Figure 6.1 displays the
initial information over Greenland used in the further calculations. The total mass
change for the area of interest is denoted as ∆σin, the initial value.

The next step is the reverse process of the synthesis, the analysis(SHA), to retrieve
coefficients representing only local information for Greenland. The calculations for
the coefficients are described in section 2.4, but has been carried out as summation
of point masses over the whole surface over Greenland, with density computations
for each point mass. When doing a spherical harmonic synthesis on these coeffi-
cients the total mass change over Greenland, with signal leaking out, is retrieved,
and the next step is to rescale the mass change inside Greenland. This is done by
the Amplification Factor(AF)

AF =
∆σext
∆σin

,

where ∆σext is the information over the extended area, and ∆σin is the initial
information over land area. The total mass change can then be restored back on
to Greenland

∆σ∗in = AF ·∆σin
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Figure 6.1: Initial values containing only information over Greenland, in terms of
m/yr EWT. a) GFZ, b) AIUB and c) ITSG
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Figure 6.2: The simple method for estimating mass changes, example of Greenland

A simple flowchart for the computation of leakage is given in figure 6.2.

The methods described has been used to calculate the leakage-out effect, but can
also be done for the calculation of leakage-in effect. The difference is that the
individual disturbing sources have to be isolated, and the impact on the region of
interest has to be determined. This method is also applicable for any arbitrary
area of interest.
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6.2 Numerical investigation of the leakage effects

over Greenland

In this section the leakage effect for Greenland has been calculated for the different
models. In every model a 500 km Gaussian filter has been applied. The Gaussian
filter has also been applied to the already Kusche-filtered model, DDK1 from
GFZ. This has been done to get a consistent comparison when computing the
mass-changes.

In table 6.1 the values of the leakage-out is presented. ∆σin shows the initial mass
information in km3, and is the value only covering Greenland. The amplification
factor (AF) is obtained by dividing mass information over extended area with the
initial mass information

AF =
∆σext
∆σin

The extended area used in the calculations is the northern hemisphere from lat-
itude degree 40 to 90. When multiplying the amplification factor to the initial
information, the mass inside Greenland is restored(∆σ∗in).

Model ∆σin(km3) AF ∆σ∗in(km3)
∆σ∗in
(km3/yr)

Signal
loss(km3)

No. years

DDK11 -1847.77 1.0451 -1931.11 -167.92 -83.34
11 years and
6 months

GSM -2001.68 1.0430 -2087.72 -181.54 -86.04
11 years and
6 months

AIUB -1757.57 1.0428 -1832.76 -183.28 -75.20
10 years

ITSG -1883.59 1.0429 -1964.38 -182.73 -80.80
10 years and
9 months

Table 6.1: Values for leakage for the different models. With 500 km radius on Gaussian
filtering

From initial mass information and the final mass change ∆σ∗in, the signal loss
can be calculated, and are represented in table 6.1. The signal loss states how
much of the signal over Greenland has leaked out to other surrounding areas.
In figure 6.3 the effect of the leakage-out is shown. From this figure it can be

1Kusche filtered
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observed that signals from Greenland are leaking out and into Canada, Iceland
and Svalbard. And it is this signal that needs to be restored in order to get the
real mass information of Greenland.
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Figure 6.3: Leakage out from Greenland, expressed in m/yr EWT. GFZ-DDK1

Because of the different timespan for the models, the mass loss per year is also
computed and added to the table. The mass loss per year don’t differ much from
model to model, but the one that differs from the others, is the Kusche-filtered
model from GFZ(DDK1). As stated earlier, DDK1 has already been filtered with
a non-isotropic filter from Kusche et al.(2009), and the errors in the GRACE data
has already been minimized. A greater mass loss is found using the three other
models, this can be a result of errors that has not been filtered out by the Gaussian
filter.
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Landmass(km3) IAF
Signal
Loss(km3)

FAF
Total
Change(km3)

-573.9 1.87 -47.4 1.99 -1143.9

Table 6.2: Results from O. Baur et al. of volume variations on Greenland. With 500
km smoothing radius. From August 2002 to July 2008.

In table 6.2 results from O. Baur et al.(2009), for GFZ release-04 with 500 km
Gaussian smoothing, are presented, and these results are consistent with the results
in tabel 6.1. For the 500 km Gaussian filter on GFZ-model, he observe a signal
loss equal to -47.4 km3 from August 2002 to July 2006. The results in table 6.1 for
GFZ, gives a signal loss of -86.04 km3 for 11.5 years. For a 6 year period(equal to
the timespan from O.Baur), this equal to -44.89 km3. The difference between the
two results can come from the different releases, as O. Baur has used release-04
and the calculations done in this thesis is based on release-05. It should also be
mentioned that the amplification factor differs from the one in O. Baur’s paper, a
reason for this is the fact that the computation done in this thesis is based on the
”simple method”, where step 2 and 3 has been excluded. In addition the Final
Amplification Factor calculated by Baur, the leakage in signal is also taken into
account and gives an other estimate of the FAF.



Chapter 7

Concluding remarks and outlooks

The goal of this thesis was to compare three different Grace-solutions and esti-
mate a mass loss over a specific area. The solutions was provided by the German
Research Center for Geosciences(GFZ), University in Bern(AIUB) and University
in Graz(ITSG). Before calculating the mass changes, the global gravity field and
the lower degree spherical harmonic was investigated. The focus has been the long
term variations, and therefore the trend calculations has been carried out in this
thesis. This chapter will summarize and give the final conclusions.

Because of long term variations in the individual coefficients, the quadratic trend
needs to be taken into account in the least square adjustment of the spherical
harmonic coefficients, to get a reliable estimate of the linear trend. When this
trend is taken into the spatial domain through spherical harmonic synthesis, the
trend over a time series shows the effect of post glacial rebound in Canada and
Fennoscandia, and ice melting over Greenland and Alaska. In addition, mass
redistribution is observed in Antarctica. No huge differences between the three
GRACE-solutions was observed, but the GSM-model with 500 km Gaussian filter
shows a weaker signal all over the globe compared to the other models. The DDK1-
solution also shows stronger signals over Canada, Fennoscandia and Antarctica.
Because of Gaussian smoothing for the three other solutions, some of the signals
has been damped compared to the Kusche-filtered model, and are not giving all
the information.

In the comparison between the SLR-solutions, the long term estimate of J2 shows
deceleration in the Earth’s oblateness and a quadratic trend is a better fit than a
linear trend, while the two other SLR-solutions(AIUB and TN7) shows an increase
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from around 2009. Further, the two SLR-solutions from AIUB and TN7 has been
compared and they do not differ to a large extent. The correlation between the
two solutions are 74%, and the choice of solution in further calculations is not
significant. Because of the uncertainty in the lower degree spherical harmonic from
GRACE, the signal of the C20-coefficients are dominant in the gravity solution,
and needs to be replaced with coefficients from SLR.

When comparing the C20 GRACE-coefficients from the three solutions with SLR-
solutions, there is a clear variation in the coefficients from GRACE. The GSM-
solution is the one with least accuracy and has correlation of 19% to TN7 and 31%
to AIUB. The solutions from ITSG is the one with the highest correlation, 57%
and 56%. The GRACE-solution from AIUB has a correlation with SLR of 25%
and 36%.

The effect of the C20-trend coefficients has been investigated and differences be-
tween the solutions has been carried out with the SLR-values from Technical Note
7 as a basis of comparison. The differences are small and spanning from approxi-
mately -70µm/yr – 150µm/yr. The magnitude of the differences are smaller than
what is going into the computations of mass balance over Greenland, and it does
not matter how the C20-coefficients are processed for the application of this thesis.

Covariance matrices for the lower degree spherical harmonics up to degree and
order 10 was provided and correlations was carried out. No huge correlations
was found in the lower degree GRACE-coefficients, the largest correlation was of
12.8%. However, a much larger correlation was observed from SLR, with highest
correlation between C20 and C40 at 67.5%. From this it should be considered
to replace both the C20-coefficient and C40-coefficient from SLR in the GRACE-
solution. This has not been done in this thesis, since we only was provided with
covariances for one month. Although the GRACE-covariance are stable over time,
this is not the case for SLR, and there is not enough basis to know if this correlation
is true for all month of the time series. For further investigation, one should
consider to look at all the SLR correlations of a time series to get a more reliable
conclusion of how to employ the SLR-values.

The leakage effect and the mass balance over Greenland in chapter 6 finds a mass
change estimate for the solutions, DDK1, GSM, AIUB and ITSG. For the DDK1-
solution mass loss of -1931.11 km3 has been found, -2087.72 km3 for GSM, -1832.76
km3 for AIUB and -1964.38 km3 for ITSG. The signal loss was estimated to be
-83.34 km3 for DDK1, -86.04 km3 for GSM, -75.20 km3 for AIUB and
-80.80 km3 for ITSG. All the estimates has been compared to O. Baur et al.(2009)
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and they are consistent. The leakage-in effect has not been taken into account,
and further investigations should consider this effect as well, to get an even better
estimate. In addition, one should also consider to use all four steps described in
O. Baur et al.(2009).

GRACE has provided gravity field data since 2002, and a follow-on mission is due
to launch in 2017. GRACE-FO will continue to give global gravity field models,
and dedicated gravity satellite missions are of huge interest in the future.
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