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Abstract

In order to understand the link between brain signal recordings, such as
electrocorticography (ECoG) and electroencephalography (EEG), and the under-
lying neural activity, neuroinformatics tools play an important role. A great
example of such a tool is the open-source Python package, LFPy, which can be used
for numerical calculations of extracellular potentials, based on a well-established
compartment-based forward-modeling scheme. In this project, detailed bio-
physical modeling was used to gain a better understanding of contributions from
single neurons to measurable extracellular potentials. In particular, we addressed
the following questions: How do single neurons contribute to ECoG and EEG sig-
nals? And can these signals be modeled with the current dipole approximation?
Python tools for calculating neural axial currents and the current dipole moment of
a neuron were developed, and further built on to calculate extracellular potentials
from the current dipole approximation. These methods, in addition to the above-
mentioned compartment-based forward model, were used for studying extracellular
potentials from single-cell simulations. The two different models give similar results
for computations of extracellular recordings from virtual electrodes placed several
millimeters away from the neuron source. Thus, the dipole approximation cannot be
used for predicting single-cell contributions to ECoG signals, since ECoG recordings
are measured only some hundred micrometers away from the neuron. For modeling
of single-cell EEG contributions, on the other hand, the current dipole approxima-
tion appears to be applicable.
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Sammendrag

For å forstå sammenhengen mellom elektrisk aktivitet i nervecellene i hjernen og
målinger som elektrokortikografi (ECoG) og elektroencefalogram (EEG), er
informatikkverktøy en viktig bidragsyter. LFPy er et godt eksempel på et slikt verk-
tøy, utviklet som en tilleggspakke i Python med åpen kildekode. Blant annet kan
LFPy brukes til å regne ut elektriske potensialer med utgangspunkt i en veletablert
metode for compartment-basert direkte modellering. I denne oppgaven blir detaljert
biofysisk modellering av enkeltnerveceller brukt til å undersøke hvordan disse bidrar
til målbare ekstracellulære potensialer. Særlig belyses følgende spørsmål: På hvilken
måte bidrar enkeltnerveceller til ECoG- og EEG-signaler? Og kan disse signalene
modelleres ved hjelp av strømdipolmoment-tilnærmingen? Python-verktøy for utreg-
ning av nevrale aksial-strømmer og strømdipolmoment fra nerveceller ble utviklet og
videre brukt til å implementere dipol-basert direkte modellering i Python. Dette kan,
sammen med den ovennevnte compartment-baserte modelleringsmetoden, brukes til
å undersøke bidraget til ECoG- og EEG-signaler fra enkelthjerneceller. Resultatene
fra de to forskjellige modellene viste seg å være like når målepunktene ble plassert
flere millimeter unna nervecellen. Følgelig kan ikke strømdipolmoment brukes til å
modellere enkeltcellebidrag til ECoG-signaler, siden nervecellen her ligger kun noen
hundre mikrometer unna målepunktet. Bidrag til EEG-signaler kan derimot i stor
grad forutsies ved hjelp av strømdipol-tilnærmingen.
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Chapter 1

Introduction

Humans have been trying to figure out the underlying secrets of their own intelligence
since ancient times [18]. Using the mind to understand how the brain forms thoughts,
must be the ultimate puzzle and goes as far back as to the ancient Greece: Hip-
pocrates, the father of western medicine, was one of the first to state that thoughts
take place in the brain [8], and not in the heart, as was common belief. Lately, hu-
mans have been able to actually measure brain activity, and Richard Caton recorded
electric signals from the top of animal brains already in 1875 [13]. Fifty years later,
Hans Berger did the first electroencephalography (EEG) recording, i.e., he measured
electric potentials on top of the scalp [9].

Figure 1.1: Schematic illustration of the human brain. The outer colored layer
in the vertical cross section is the neocortex, or gray matter, containing ∼ 1010 neurons
[32]. The folds in cortex are called sulci, and the regions between adjacent folds are called
gyri. The subcortical layer, known as white matter, mainly consists of axons, i.e., cables
connecting the neurons together. The figure is taken from Budday et al., 2014 [10].
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2 1. INTRODUCTION

The outer surface of the brain consists of a layer called neocortex, also known as
gray matter. This bulky, folded structure covers the mammalian brain and is home
to billions of brain cells [32], see Figure 1.1. The two main cell types are neuroglia
and neurons. While glial cells are considered the support staff of the brain [42, 19],
the neurons take care of information processing and storage [19, 22, 28].

Electric potentials in the brain arise from currents flowing in and out of neu-
rons in neocortex. These potentials can be measured by placing electrodes on the
top of cortex, ECoG (electrocorticography), on top of the skull, EEG (electroen-
cephalography) or with MEG (magnetoencephalography), see explanation in Figure
1.2. What we know about neural activity today, however, is mainly results of in-
tracranial recordings, i.e., from inserting electrodes into brain tissue [19, 32]. Such
recordings are, for ethical reasons, not performed on humans, except in special clin-
ical cases, as for example drug-resistant epilepsy or small brain tumors. Intracranial
recordings from animals is an important contribution to brain research. Even though
useful information can be extracted from animal studies, however, a model of the
human brain can never be based solely on animal data [19]. Extracranial record-
ing methods, like EEG and MEG, are hence of great importance because of their
non-invasive nature.

EEG is also one of the simplest ways of measuring brain activity and is therefore
widely used in psychology. The typical way of analyzing data from EEG record-
ings has been through looking for correlations between stimulus and measurements,
or by comparing results from EEG recordings to other measures of brain activity.
Lately, the importance of measurement physics has been emphasized, i.e., devel-
oping mathematical models for biological systems to get a better understanding of
the underlying physics of what we measure [16, 26]. An example of this is a bio-
physical forward-modeling scheme which can be used to model both the underlying
high-frequency part ( >∼ 500 Hz), known as multi-unit activity (MUA), and the low-
frequency part, local field potentials (LFP), ( <∼ 500 Hz) of electric potentials from
neurons in the brain [38, 21, 25, 35, 36].

Multi-unit activity arises from neural spiking, and partly as a consequence of
dendritic filtering, MUA signals decay rapidly with distance from the neural source.
Because of this, MUAs can hold information about the spiking activity of a single
neuron [35, 25]. LFPs, on the other hand, are presumably caused by synaptic
activity in the neural dendrites and can travel farther than the high-frequency parts.
Consequently, when recording LFP signals, the electrode will pick up contributions
from whole populations of neurons. An advantage of this is that LFP recordings can
be used for studying population activity [19, 32, 35, 26]. Compared to recording of
spiking activity, LFP recordings are more stable and have therefore been suggested
as a candidate for brain-computer interfaces, such as prosthetic devices [16].

Since EEG recordings register potentials relatively far from the neuron source,
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Figure 1.2: Extracellular potential recording methods. Illustration of the bio-
physics of ECoG, EEG and MEG recordings of electric and magnetic signals from neuron
populations in neocortex. The strength and correlation of neural activity affect the mea-
surable signals. Additionally, the recording position relative to the neuron is important
in several ways: The farther away from the neural source, the weaker the measured sig-
nal. The angular orientation does, however, also affect the signal. For ECoG and EEG
signals, properties of the brain components between the electrode and the source, such as
conductivity, have a big impact on the signal strength. Courtesy of Torbjørn V. Ness.

such recordings mainly contain low-frequency potentials from populations of neurons
(but see also [43]). Even if intracranial recordings can give more detailed information
about single neurons, EEG signals can reveal new insight about neural networks and
thereby the mechanisms controlling higher brain functions [19, 32].

In order to make comparisons between neuron models and measurements easier,
it is important to develop new informatics tools. A great example of this is the open
source Python package, LFPy [26, 3]. Among other things, this package can be used
for calculating extracellular potentials numerically, based on the above-mentioned
forward-modeling scheme.

In this project, detailed biophysical modeling was used to gain a better under-
standing of contributions from single neurons to measurable extracellular poten-
tials. Python [6, 23] tools for calculating neural axial currents, the current dipole
moment of a neuron and extracellular potentials based on the current dipole ap-
proximation, were developed. These methods, in addition to the well-established
forward-modeling scheme, were thereafter used for studying extracellular potential
contributions from single neurons. In particular, we wanted to look at single cell
contributions to ECoG and EEG signals, and investigate whether these could be
predicted by the current dipole approximation.



4 1. INTRODUCTION

The following chapter gives an introduction to the electrical activity in neurons,
before describing the theory behind models for computing extracellular potentials
from single neurons. Chapter 3 gives an overview over the neuroinformatics tools
used in the project, and a thorough explanation of how a Python tool based on the
current dipole approximation was developed. The results of neuron simulations and
virtual recordings are presented in Chapter 4 and discussed further in Chapter 5.



Chapter 2

Theory

This chapter explains the theoretical background of the electrical activity in neurons,
before describing two biophysical models for calculations of extracellular potentials:
the compartment-based and the dipole-based forward models.

2.1 Neural Electrical Activity

Neurons come in various shapes and sizes, and can be classified based on their
morphology, like the star-shaped stellate cells and the pyramidal cells [8]. The soma
is the neuron’s cell body, see Figure 2.1, and contains the same organelles as other
mammalian cells [30].

Soma

Axon
Contact
with other cells

Dendrites
(Contacted by
other neurons)

Figure 2.1: Simple illustration of neuron morphology. Synapses on the dendrites
and the soma, receive input currents from other cells. If the soma membrane potential
reaches a threshold value, an action potential will be fired, and a large fluctuation in
membrane potential will be transported down the axon and submit an electric pulse to
other neurons. Modified from Blausen.com staff. "Blausen gallery 2014". Wikiversity
Journal of Medicine. DOI:10.15347/wjm/2014.010. ISSN 20018762
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6 2. THEORY

What mainly distinguishes the neuron from other cell types, are the dendrites
and the axon, responsible for making the neurons capable of communicating with
each other [8]. Dendrites are numerous, branchlike structures, that can receive
inputs from other neurons, while the axon is a long cable passing the output on to
other cells [14]. Neurons are hence capable of sending and receiving information, a
characteristic arising from the electrical properties of the cell membrane.

The cell membrane is a five-nanometer thick lipid bilayer, effectively separating
the cerebrospinal fluid surrounding the neurons from the cytoplasm inside the cells,
see Figure 2.2 [40]. These fluids contain various types of ions, such as sodium (Na+),
potassium (K+) and chloride (Cl−), of which the carried charges are almost balanced
on each side of the membrane. Because of the differing ion concentrations in the
intracellular and extracellular media, ions want to diffuse down the concentration
gradients, but are stopped by the membrane. Embedded in the membrane, how-
ever, are ion channels ; pore-like protein structures letting certain ions through the
membrane. Ion channels are categorized as either passive or active, meaning their
conductance can be either static or dependent on membrane potential and other
environmental variables [40].

Figure 2.2: Illustration of the cell membrane. The cell membrane consists of a lipid
bilayer, impermeable to water and ions, parting the extracellular cerebrospinal fluid from
the intracellular cytoplasm. The green tunnels on the figure represent ion channels, letting
certain types of ions through. The ion pumps, purple structures on the figure, set up
ion concentration differences: there is typically much more sodium (Na+) on the outside
than on the inside of the cell membrane, and the opposite for potassium (K+). Ions will
diffuse through the ion channels in the direction of the concentration gradients, charging
the membrane that acts as a parallel plate capacitor. The resulting electric potential over
the cell membrane is called the membrane potential, and has a typical equilibrium value
of −65 mV. The figure is taken from: The Blausen.com staff. "Blausen gallery 2014".
Wikiversity Journal of Medicine. DOI:10.15347/wjm/2014.010. ISSN 20018762.



2.1. NEURAL ELECTRICAL ACTIVITY 7

Due to the existence of ion channels, some ions can diffuse through the membrane
and disturb the charge balance. There will typically be an excess of freely moving
positive charges on the outside of the cell membrane attracting intracellular negative
ions, and making the cell membrane act as a parallel plate capacitor. The ions will
typically set up an electric potential difference over the cell membrane, so that
the ionic currents due to diffusion and electrical drift will balance each other out.
The typical value of this equilibrium membrane potential is often referred to as the
resting potential and is about −65 mV [8, 40].

An axon splits into many branches to form thousands of connections, typically
with the soma or dendrites of other neurons [14]. Consequently, the neurons in the
brain are coupled together in highly complex networks, meaning neurons can be con-
nected to their neighbors as well as cells on the opposite side of the brain [8]. These
connections are called synapses, and the two neurons connected by a synapse are
referred to as presynaptic, before the synapse, and postsynaptic, after the synapse.
Synapses can be either electrical or chemical, their function, however, is to make
currents flow into or out of the postsynaptic neuron. Chemical synapses do by far
outnumber the electrical, and neurons can be classified based on which type of chem-
ical synapses they hold. Excitatory neurons have chemical synapses, all of which
contribute to opening of ion channels and an increase in membrane potential on the
postsynaptic neuron. The chemical synapses of the inhibitory neurons, on the other
hand, have the opposite effect, i.e., decreasing the postsynaptic neuron’s membrane
potential. If the membrane potential of a neuron exceeds a threshold, the neuron
will fire an action potential, often referred to as a spike. A regenerative fluctuation in
membrane potential will then propagate to the end of the neuron’s axon, activating
the synapses. After this flush of ions through the ion channels, membrane protein
structures, called ion pumps, will pump ions against their concentration gradients
to restore the membrane resting potential [14, 8, 40].

Ionic and capacitive currents are also known by the collective term transmem-
brane currents, i.e., currents crossing the cell membrane. In addition to affecting the
membrane potential, the transmembrane currents generate an electric field in the
extracellular medium. The extracellular potential can be measured relative to a ref-
erence electrode far away, by an electrode inserted into cortex, ECoG recordings or
EEG recordings [32]. In the following two sections, the theory behind two ways of es-
timating extracellular potentials is explained, the compartment-based (CB) forward
model and the dipole-based (DB) forward model. The term forward implies that the
model is based on underlying neural dynamics and predicts what we can measure,
as opposed to inverse modeling, predicting the neural dynamics from measurements.
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2.2 Compartment-Based (CB) Forward Model

The compartment based forward model (CB model) is a well-founded biophysical
two-step modeling scheme for precise calculations of extracellular potentials. The
first step involves multi-compartmental modeling and incorporates the details of
reconstructed neuron morphologies to calculate transmembrane currents. In the
second step, volume conductor theory is used for calculating the contributions to
extracellular potentials from the transmembrane currents found in step one.

2.2.1 Multi-Compartmental Modeling

When using multi-compartmental modeling to calculate transmembrane currents,
neurons are first of all split into multiple cylindrical compartments, as illustrated in
Figure 2.3.

in trace llu la r

ex trace llu la r

Vn−1 Vn Vn +1

gn−1,n gn,n +1

Rn

En

Cn

In

nn-1 n+1

Figure 2.3: Multi-compartmental modeling illustrated by part of dendritic
stick. A part of a neuron is split into cylindrical compartments, small enough to assume
the membrane potential to be the same throughout each compartment. Each compartment
is modeled as an electrical circuit, with membrane potential Vn, membrane resistance Rn,
membrane capacitance Cn and equilibrium potential En. gn,n+1 is the axial, intracellular
conductance between compartments.

Since the cell membrane acts like both a resistor and a capacitor, each neuron
compartment can be modeled as an electric RC-circuit driven by the voltage dif-
ference between the compartment’s equilibrium potential and the actual membrane
potential. The compartment size is chosen so small that the membrane potential
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can be assumed to be the same throughout each compartment. Because of its shape,
the soma is conventionally modeled a single, isopotential compartment. Applying
Kirchhoff’s current law with respect to axial and transmembrane currents flowing
into or out of one compartment, the following equation can be derived [14, 40]:

gn,n+1(Vn+1 − Vn)− gn−1,n(Vn − Vn−1) = Cn
dVn
dt

+
∑
j

Ijn. (2.1)

Here, gn,n+1 is the conductance between compartment n and compartment n + 1,
i.e., the inversely proportional of the axial resistance. The membrane potential is
denoted by Vn, and Cn is the membrane capacitance of compartment n. The left
hand side represents the current flowing into or out of the compartment from its
neighbor compartments, which by Kirchhoff’s current law equals the current entering
and escaping through the membrane. The first term on the right hand side is the
capacitive current, whereas

∑
j I

j
n is the sum of currents due to ions crossing the cell

membrane through j types of ion channels. The right hand side of Equation (2.1)
equals the total transmembrane current of compartment n, In [40, 26]:

In = Cn
dVn
dt

+
∑
j

Ijn. (2.2)

2.2.2 Extracellular Potentials from Volume Conduction

Thanks to volume conductor theory, it is possible to calculate the contribution from
each transmembrane current in the vicinity of a virtual electrode, to the extracellular
potential measured at the electrode location [19, 32, 15, 37]. To apply volume
conductor theory, brain tissue should be envisioned as a smooth, three-dimensional
volume conductor. Furthermore, transmembrane currents are to be understood as
volume current sinks and sources [32, 26]. A current source means a current entering
the extracellular medium. A current flowing into a cell, escaping the extracellular
fluid, is similarly seen as a current sink.

Moreover, the CB model is based on several assumptions, the first being the
quasistatic approximation of Maxwell’s equations. This implies that the magnetic
and electric fields effectively decouple, an assumption that seems to be well justi-
fied, [19, 37]. Secondly, the extracellular medium is assumed to be linear, ohmic,
isotropic, homogeneous and frequency independent [32, 19]. Consequently, the rela-
tionship between current density, j, and the electric field, E, is linear, i.e., j = σE,
where the extracellular conductivity, σ, is a real scalar. The assumption that the
conductivity is real reflects the negligibility of the capacitive properties of the extra-
cellular medium, which consequently can be thought of as ohmic. The homogeneous,
isotropic and frequency-independent properties of the extracellular medium are im-
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plied by the constant conductivity and hence extracellular-medium independence of
location, direction and frequency [32, 27, 17, 37].

Based on this framework, we get an equation for the extracellular potential
contribution from a single compartment [19, 32]

φn(r, t) =
1

4πσ

In(t)

|r− rn|
. (2.3)

Here φn(r, t) denotes the extracellular potential contribution from compartment n
to a virtual electrode located at position r at time t. The location of the center of
compartment n, where the transmembrane current source In can escape or enter, is
rn, see Figure 2.4.

φ(r, t) 

|r - rn|

r

rn

In(rn, t)

Figure 2.4: Compartment-based forward modeling. A neuron branch is divided
into multiple compartments indexed by n. Each compartment has a center location rn
where a transmembrane current In(rn, t) can escape or enter. The virtual electrode (blue
triangle) records extracellular potential contributions from the neural compartments. The
potential contribution depends on the electrode position, r, relative to the compartment
location, as well as the extracellular conductivity and the transmembrane currents. The
figure is modified from Figure 2a in Lindén et al., 2014 [26].

Due to ohmic properties of the extracellular fluids, electric potentials add linearly
and the total extracellular potential can be expressed as

φ(r, t) =
1

4πσ

N∑
n=1

In(t)

|r− rn|
. (2.4)

An important thing to note here is the underlying point-source approximation,
meaning that transmembrane currents can only escape or enter a compartment
through a source point located in the compartment center. An alternative approach
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is the line-source approximation where In is assumed to be equally distributed along
the compartment’s centerline axis. In the equation below, Equation (2.4) is inte-
grated along the center-line axis for each compartment, to get an expression for the
extracellular potential based on the line source approximation, φLS [21, 35, 26]:

φLS(r, t) =
1

4πσ

N∑
n=1

In(t)

∫
drn
|r− rn|

=
1

4πσ

N∑
n=1

In(t)
1

∆sn
log

∣∣∣∣
√
h2n + ρ2n − hn√
l2n + ρ2n − ln

∣∣∣∣.
(2.5)

Here, ∆sn is the length of compartment n, ρn is the radial distance, perpendicular
to the compartment length, hn is the longitudinal distance to the bottom of the
compartment, and ln = hn + ∆sn is the longitudinal distance to the top of the
compartment.

The line-source approximation is more accurate for electrodes measuring close
to the neuron; however, the two methods will converge toward the same result for
large distances [21, 22].

2.3 Dipole-Based (DB) Forward Model

In the same way as electric charges can create charge multipoles, a combination of
current sinks and sources can set up current multipoles [32]. Extracellular potentials,
φ, can be precisely described by a multipole expansion, i.e., the sum of contributions
to electrical potentials from the different orders of current multipoles [32]:

φ(r) =
Cmonopole

r
+
Cdipole
r2

+
Cquadrupole

r3
+
Coctupole
r4

+ ...,

where r is the distance from the current source to the virtual measuring point and
the Cmultipole-terms represent the contributions from the corresponding multipoles.
Since current conservation applies in neural tissue, there is no such thing as a current
monopole contribution to extracellular potentials. When r gets sufficiently large,
the quadrupole and octupole terms etc., are negligible compared to the current
dipole contribution, hence the extracellular potential can be modeled based on the
contribution from the current dipole moment only [32]. Here, a sufficiently large r
means approximately 3 − 4 times the dipole length, i.e., the distance between the
current source and the current sink. This section gives an introduction to current
dipole moments before explaining how to incorporate these in the DB model to
approximate extracellular potentials.
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2.3.1 Current Dipole Moments

The simplest model possible for creating a current dipole is the two-compartment
model of a neural stick. Figure 2.5 illustrates a two-compartment neuron model,
where the upper compartment represents the dendrites and the lower compartment
represents the soma. A current I enters the dendritic compartment through a single
point. From here, the current flows intracellularly, and out through the middle of
the bottom compartment. The current entering point, marked with a minus sign,
is a current sink, while the current escaping point, plus, is a current source. The
current flowing inside the neuron between the sink and the source travels along the
distance vector d. Note that, analogue to electric circuit currents, we do not picture
a single ion moving through the whole circuit.

Figure 2.5: Current dipole moment from a two-compartment stick. A two-
compartmental neuron model, where the upper compartment represents the dendrites,
and the lower represents the soma. Using the point-source approximation, current I flows
into the cell through a point at the center of the dendritic compartment. According to
volume conductor theory, this point is a current sink, represented by a purple dot at
position rd. The current moves intracellularly and out through the middle point on the
bottom compartment, representing a current source, see blue dot with position vector rs.
The current dipole moment p can be calculated from the axial current, I, and the distance
vector, d, pointing from the current sink to the current source: p = Id, analogue to a
charge dipole moment.

Two similar approaches can be used for calculating the current dipole moment
from a neuron. The first is completely analogue to charge dipole moments, where
charge is replaced by current. The relation below shows how to calculate the current
dipole moment, p, from the axial current and the distance between the sink and the
source in a two-compartment model,
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p = Id. (2.6)

From this, we get the equation for the total current dipole moment from an
N-compartment neuron, based on axial currents, by summing up dipole moment
contributions from all axial currents between neuron compartments

paxial =
N−1∑
n=1

Inaxial(t)dn. (2.7)

Here, paxial is the total current dipole moment calculated from axial currents, and
dn is the distance vector going from the start point to the end point of each axial
current Inaxial(t).

The current dipole moment can also be calculated from transmembrane currents,
see Figure 2.5:

p = Id = I(rs − rd) = Irs − Ird = Isrs + Idrd. (2.8)

Here, Is is the current flowing out of the soma compartment, and Id is the current
flowing out of the dendritic compartment, thus Is = I and Id = −I. Generalizing
this to an N-compartment neuron model, we get the following equation for current
dipole moments based on transmembrane currents, ptrans:

ptrans =
N∑
i=1

I itrans(t)ri. (2.9)

The transmembrane current of compartment i, I itrans(t), is a function of time, t, and
ri is the middle position of the compartment.

2.3.2 Point-Source vs. Line-Source Dipole Moment

Considering the CB model, the line-source approximation gives a more accurate
estimate than the point-source approximation. This section goes into the question
of whether the choice of point-source or line-source approximation has an effect on
the calculation of current dipole moments.

Transmembrane currents can be expressed as the spatial integral over the lin-
ear current density i. Following, the current dipole moment equation from trans-
membrane currents (2.9) is split into x-, y- and z- components, so that p(t) =
px(t)x̂+ py(t)ŷ + pz(t)ẑ, and each direction component is written as a function of i:
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px(t) =
N∑
n=1

∫
xnin(x, t)dx,

py(t) =
N∑
n=1

∫
ynin(y, t)dy, (2.10)

pz(t) =
N∑
n=1

∫
znin(z, t)dz,

where N is the total number of compartments.
Next, an example for applying the point-source approximation to calculate the

current dipole moment from a dendritic stick is outlined. We assume a straight multi-
compartmental dendrite model with N compartments, each of length ∆L, elongated
in the z-direction only. Its linear current density for the point-source approximation
can be expressed as follows

in(z, t) = In(t)δ(z − zn), (2.11)
where In(t) is the space-independent current component and zn is the middle position
of compartment n, i.e., where current can leave or enter. Plugging this into Equation
(2.10), and integrating over the length of each compartment, ∆L, the following
expression for pz appears:

pz =
N∑
n=1

∫ zn+
∆L
2

zn−∆L
2

znIn(t)δ(z − zn)dz =
N∑
n=1

znIn(t). (2.12)

When calculating the current dipole moment using the line-source approxima-
tion, the linear current density takes the following form:

in(z, t) =
In(t)

∆L
. (2.13)

Inserting this into Equation (2.10) gives

pz =
N∑
n=1

∫ zn+
∆L
2

zn−∆L
2

z
In(t)

∆L
dz

=
N∑
n=1

In(t)

∆L

[1
2
z2
]zn+∆L

2

zn−∆L
2

(2.14)

=
N∑
n=1

znIn(t).
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Hence, we have found that the point-source and the line-source approximations
will give the exact same results when calculating current dipole moments. The
simpler point-source approximation is therefore preferable.

2.3.3 Extracellular Potentials from Current Dipole
Moments

When modeling extracellular potentials with a virtual electrode placed far away
from the neuron source (r >> d, where r = |r| is the distance from the dipole to the
electrode and d is the dipole length), the potentials can be accurately approximated
with the following equation [35, 32]:

φ(r, t) =
1

4πσ

|p(t)| cos θ

|r|2
. (2.15)

Here |p(t)| denotes the magnitude of the total current dipole moment from a
neuron in the vicinity of a virtual electrode at position r relative to the dipole
position. The angle between p and r is denoted by θ, and σ is the conductivity of
the extracellular medium. The approximation is expected to be good when r > 3d
or 4d [32].

Conductivity of Extracellular Media

The conductivity of the extracellular medium in cortex is in this thesis set to a
constant, ∼ 0.3 S/m [19, 32, 27]. In the brain, conductivity can, however, depend
on various properties of the extracellular media. For example can white matter
be anisotropic, meaning currents experience a higher conductivity when traveling
along nerve fibers, than across [32]. When recording EEG signals, the conductivity
differs significantly for cortex, skull and scalp [32], and assuming the extracellu-
lar medium to be homogeneous is therefore a substantial simplification. It is also
debated whether conductivity is frequency dependent [37, 27]. The extracellular
conductivity is, however, for the most part only expected to affect the amplitude of
the measured signal.



16 2. THEORY



Chapter 3

Methods

In order to study single-cell contributions to extracellular potentials, neuroinformat-
ics tools such as NEURON and LFPy can be applied. NEURON is a widely used simula-
tion environment for building and using computational neuron models [11, 12]. The
Python package, LFPy, runs on top of NEURON [5, 11], and can use NEURON’s compart-
mental modeling tools to simulate extracellular potentials. Extracellular potential
simulations in LFPy are based on the CB (compartment-based) model described in
Section 2.2. There is, however, no available module for calculations of extracellular
potentials with the DB (dipole-based) model.

This chapter first describes how extracellular potentials can be computed with
the CB model and LFPy. Further, we give a detailed explanation of how a new
Python simulation tool, based on the DB model, was developed from transmembrane
currents (TC) and axial currents (AC). In the last section, cell models used for
method validation and simulations are presented.

Extracellular Potentials

CB Model DB Model

TC Method AC Method

Figure 3.1: How to calculate extracellular potentials. Two different models can
be used for calculating extracellular potentials from a neuron: the CB (compartment-
based) model or the DB (dipole-based) model. The DB model can be based on either
transmembrane currents, i.e., the TC method, or axial currents, i.e., the AC method.

17
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3.1 Compartment-Based (CB) Forward Model
with LFPy

In this section, we give a short introduction to a selection of essential LFPy-classes,
and how these can be used for calculating extracellular potentials.

First of all, a neuron object is established with the cell class LFPy.Cell. This
class can load a neuron morphology file and be used to set a number of properties
needed to specify the neuron’s inherent dynamics [26]. Since LFPy runs on top of
NEURON, the cell morphology is organized in the NEURON way: the neuron is split into
continuous unbranched cables called sections, and each section is split into a number
of smaller compartments, referred to as segments [11]. All segments are given an
index, starting with the root segment, index 0, and segments within a section are
indexed by consecutive numbers. The soma is normally defined as the root segment
and does always consist of a single segment within a single section [11].

The LFPy.Synapse class is used for creating a synaptic input current activated by
spike trains. The synapse is placed on a cell by assigning a cell compartment index
to the synapse class [26]. In order to record what is going on in the extracellular
medium, an electrode class is needed: LFPy.RecExtElectrode. Keyword arguments
are given to specify which cell to record from and where in space the electrode should
be located [26].

Simulation of the cell is done by calling LFPy.Cell.simulation(), and after
simulating a cell with synapses and electrodes, LFPy can calculate the extracellular
potentials with LFPy.RecExtElectrode.calc(). The calculations are based on the
CB model described in Section 2.2 [26]. Figure 3.2 is an example of how one can
import a neuron morphology into LFPy and calculate extracellular potentials using
the above-mentioned classes and methods.

3.2 New Python Module for the Dipole-Based
(DB) Forward Model

To calculate extracellular potential contributions from single cells based on the DB
model, one first has to compute the neuron’s current dipole moment. As explained in
Section 2.3, current dipole moments can be calculated using two different methods,
the transmembrane current (TC) method and the axial current (AC) method, cf.
Equation (2.9) and (2.7). The following two sections go into the implementation of
the TC method and the AC method in Python. The TC method is largely based on
LFPy, while the AC method was built up from scratch in Python, and is therefore
described in a highly detailed manner to make it easy for other students to build
on the work. The third section explains how Equation (2.15) was implemented in
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Figure 3.2: Extracellular potentials calculated with LFPy. Multiple virtual elec-
trodes record extracellular potentials around a neuron with one excitatory, conductance-
based synapse. The neuron model is a passive layer-5 pyramidal cell from cat visual cortex,
ref. Mainen and Sejnowski, 1996 [29]. The synapse is located at the red dot and the synap-
tic input current, Isyn, is plotted in the lower left plot. Membrane potential recorded in
the soma, Vsoma, is shown in the middle left panel. Maximum amplitudes of extracellular
potentials, φ(r), are shown as equipotential lines surrounding the neuron plot on the right.
Seven virtual electrodes are represented as colored dots and the potentials recorded are
plotted in the upper left panel. Each colored curve refers to the electrode of the same
color. The figure is inspired by Figure 3 in Lindén et al., 2014 [26].

Python to finally calculate the potentials from the current dipole moments.

3.2.1 Current Dipole Moments from Transmembrane
Currents (TC)

In LFPy, finding transmembrane currents is straightforward because of the following
LFPy.Cell class attribute:

# list of transmembrane currents for all segments in cell
i_trans = cell.imem

cell.imem is an array of transmembrane currents flowing into or out from all
compartments. If the point source approximation is specified, one segment only gets
one transmembrane current. Further, all the segment positions are calculated using
the following code:
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segment_positions = zip(cell.xmid , cell.ymid , cell.zmid)

Now, the current dipole moment can easily be calculated from transmembrane
currents applying Equation (2.9), i.e., by multiplying transmembrane currents with
their position vectors.

3.2.2 Current Dipole Moments from Axial Currents (AC)

There is no built-in method for calculating axial currents in LFPy. From the theory
chapter, we know that the axial current between two neighbor compartments is given
by the first term on the left hand side of Equation (2.1)

Iseg =
Vseg − Vpar
raxial

. (3.1)

Here, Iseg = Inaxial is the current flowing into a segment n, from its parent segment
n−1. Further, Vseg = Vn and Vpar = Vn−1 are the membrane potentials measured in
the middle of the segment and the parent segment, respectively. The axial resistance
between the two compartment midpoints is denoted by raxial = 1

gn−1,n
. The mem-

brane potential in the middle of each neuron compartment is stored in the LFPy Cell
attribute cell.vmem after the neuron simulation. The axial resistance, on the other
hand, proved to be more difficult to find. The following five examples illuminate
the difficulties related to calculating inner axial resistances and axial currents of a
neuron.

Dendritic Stick

We start with the simplest possible example, namely a single, unbranched dendrite
illustrated in Figure 3.3. In order to get properties like axial resistance from the
dendritic stick model, it turned out to be useful to dig into NEURON through Python,
in addition to using LFPy tools.

As mentioned above, NEURON organizes neural models into sections and segments.
Furthermore, a segment is modeled equivalent to an electrical compartment de-
scribed in Section 2.2.1: i.e., in NEURON a segment is treated as an electrical circuit.
The dendritic stick in this example is a one-section model with four segments. The
following code finds the axial resistance between two segments [3, 4]:

import neuron as nrn

for sec in nrn.h.allsec ():
for seg in sec:

x = seg.x # segment middle position
seg_ri = nrn.h.ri(x) # axial resistance from

# preceding seg to seg
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nrn.h.ri(seg.x)

x = seg.xseg

parent

0

1

2

3

x = 0

x = 1

Figure 3.3: Illustration of dendritic stick. Simple neuron model consisting of 1
dendrite with 4 compartments. The dendrite is a NEURON section and each compartment is
a segment. Within a section, segments are indexed by consecutive numbers. All segments
except segment 0 has a parent segment. i.e., segment 0 is the root segment, and is not
growing out of any other segment. The zigzag-line illustrates the axial resistance along
the path going from the node in the middle of a segment, to the node in the middle of its
parent. nrn.h.ri(seg.x) returns the axial resistance.

Here, nrn.h.allsec() is a list of all sections in the specified cell1. In NEURON
each section is given a continuous arc length, x, ranging from 0 to 1. By looping over
all segments in the section, the arc length of the center of each segment can be found
with the NEURON attribute x = seg.x. Next, the path length is inserted into the
NEURON function nrn.h.ri(x). The following is key: nrn.h.ri(x) returns the axial
resistance along the path between position x of the segment, seg, and the middle
of its parent segment [11]. A parent segment in NEURON is the segment that the
concerned segment "grows out of". In Figure 3.3 segment 0 is the parent segment
of segment 1. Segment 1 is the parent of segment 2 etc. Thus nrn.h.ri(seg.x)
returns the axial resistance between the center of the segment seg and the center of
its parent segment2.

NEURON calculates nrn.h.ri() from the following equation, which depends on

1The NEURON method nrn.h.allsec() is equivalent to cell.allseclist in LFPy. It turned
out, however, that looping over the LFPy list was problematic when using certain LFPy tools, such
as cell.get_idx(), that internally loop over the same list. nrn.h.allsec() is thus a safer choice.

2The NEURON function nrn.h.ri(seg.x) is equivalent to the LFPy method seg.ri().
nrn.h.ri() has advantages needed for more complicated cases. We therefore introduce the NEURON-
version only, to avoid confusion.
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the length, diameter and inner resistance of the concerned piece of neural cable [11]

raxial =
Ral

π(d
2
)2
. (3.2)

Here, raxial is the total axial resistance of a cable with length l, Ra is the inner
resistivity and d is the cable diameter. For neurons with varying segment diameters,
NEURON will integrate up this formula to get the total resistance. The axial currents
of a dendritic stick can easily be found by plugging raxial into Equation (3.1).

Ball-and-Stick Neuron

In this example we study the axial resistance of the two-section ball-and-stick neuron
illustrated in Figure 3.4.

nrn.h.ri(seg.x)

nrn.h.ri(soma.x)

seg

soma

Figure 3.4: Illustration of ball-and-stick neuron. The ball-and-stick neuron has two
sections: the green dendrite and the blue soma. Segment 0 and 1 are both bottom segments,
i.e., the first segment within their sections. nrn.h.ri(seg.x) returns the axial resistance
from the middle point to the starting point of the segment seg. To get the axial resistance
between the seg and soma, one can simply add nrn.h.ri(soma.x) to nrn.h.ri(seg.x).

When applying nrn.h.ri(seg.x) to the bottom dendrite segment, segment 1,
one would expect the axial resistance along the path from the middle of section
1 to the middle of section 0 to be computed. It appears, however, that NEURON
creates a "ghost segment" of zero length at the bottom of each section. Thus, the
ghost segment, and not segment 0, is functioning as the parent segment of segment
1. Therefore, nrn.h.ri(seg.x) returns the axial resistance from the middle to the
bottom of the given segment exclusively, whenever the segment is the first segment of
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a section. The first segment in each section is here referred to as a bottom segment,
and accordingly, the soma is always a bottom segment. nrn.h.ri(seg.x) and
nrn.h.ri(soma.x) are illustrated in Figure 3.4. For this relatively simple example,
the two resistances could be added to get the sought-after axial resistance between
the two nodes. Further, Equation (3.1) gives the axial currents of the ball-and-stick
neuron.

Neuron with Varying Segment Diameters

Our improvised solution to the previous example is no longer valid as soon as the
neuron model gets more complicated. Real neuron morphologies do not have con-
stant segment diameters, and we see from Figure 3.5 that the resistance of the lower
half can no longer replace the resistance of the upper half of a segment.

nrn.h.ri(seg2.x)

nrn.h.ri(seg1.x)

nrn.h.ri(0)
x=0

x=1

0

1

2

3

seg1.x

seg2.x

Figure 3.5: Illustration of ball-and-stick neuron with varying segment diam-
eters. This ball-and-stick neuron has three sections: the blue soma, one green dendrite
section and one purple dendrite section. The diameter of the green dendrite segment, com-
partment 1, is not constant and the axial resistance of the lower part is therefore not equal
to the upper-part resistance. The upper part resistance is illustrated by the dotted zigzag
line and can be found with nrn.h.ri(0). The 0 and the 1 on the right-hand side of the
neuron mark the start and end points of the purple section. By adding the resistance of the
upper part of seg1 to the lower part resistance of seg2, we get the total axial resistance
between the two segments [4].

In the code snippet below, we show how to find the axial resistance between the
compartments of a neuron with varying diameter.
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import neuron as nrn
for sec in nrn.h.allsec ():

new_sec = True
# no need to go through soma , since soma is an orphan
if ’soma’ not in sec.name ():

for seg in sec:
if new_sec:

# axial resistance from segment middle point
# to segment start:
segment_ri = nrn.h.ri(seg.x)
# NEURON way of finding axial resistance from
# segment at position 0 = start to parent mid:
parent_ri = nrn.h.ri(0)
total_ri = segment_ri + parent_ri
new_sec = False

else:
total_ri = nrn.h.ri(seg.x)

It appears that when x = 0 is inserted into nrn.h.ri(), NEURON is no longer
distracted by the ghost segment. This way, one can calculate the axial resistance
from the bottom of the section we are looping over, to the middle of its parent
segment. By adding nrn.h.ri(0) to nrn.h.ri(seg.x) we get the axial resistance
from the middle of a bottom segment to the middle of its parent segment.

Ball-and-Y Neuron

For the ball-and-Y neuron illustrated in Figure 3.6 we can use the same way of finding
the axial resistances as for the preceding example. Figuring out the paternity of a
neuron segment, however, is no longer straightforward. Because a segment is not
necessarily an only child, another issue is that the current flowing out of a parent
segment, Ipar can be divided. One part will flow into the segment we are concerning,
Iseg, and the rest, Isib, flows into its sibling segment. From now on, all axial currents
are therefore spilt into two parts. One is the current going from the parent middle
to the parent end. The other is going from the parent end, i.e., the segment start,
to the segment middle.

Assuming that a dendrite never splits into more than two branches, and given
that we know the membrane potentials at the middle position of all segments and
the axial resistance everywhere, axial currents can accordingly be found from the
following equations:

Ipar = Iseg + Isib, (3.3)
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Vpar

Vsib

rpar

Vseg

rseg rsib

Ipar

IsibIseg

Vbranch

Figure 3.6: Dendrite branching. Ball-and-y neuron with three sections, each consisting
of one segment. The upper left segment is here referred to as the segment, or seg, the upper
right is the sibling, sib, and the lower segment is the parent, par. The membrane potentials
measured at the midpoint of each compartment are denoted by Vseg, Vsib and Vpar. Further,
rseg is the axial resistance along the path from a segment’s midpoint to the branch node
and Vbranch is the membrane potential at the branching point. The current flowing out of
the parent segment, Ipar, splits into Iseg and Isib, the currents entering the segment and
the sibling, respectively.

and

Iseg =
Vseg − Vbranch

rseg
, Isib =

Vsib − Vbranch
rsib

, Ipar =
Vbranch − Vpar

rpar
, (3.4)

where Vseg, Vsib, Vpar and Vbranch are the membrane potentials at the segment mid-
point, the sibling midpoint, the parent midpoint and the branchpoint, respectively.
Combining Equations (3.3) and (3.4) we get the following expression for Vbranch:

Vbranch =

Vpar
rpar

+ Vseg
rseg

+ Vsib
rsib

1
rpar

+ 1
rseg

+ 1
rsib

. (3.5)

Setting Vbranch into Equation (3.4) gives us all axial currents related to a branch
point.

Next, we have to figure out the neuron’s family relations. Because of the branch-
ing, the parent segment of a bottom segment is no longer necessarily the preceding
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segment, index wise. In order to use the equations above, the index of each bot-
tom segment, its parent segment and potential sibling segment must be determined.
Within sections, i.e., for segments that are not bottom segments, these indices are
trivial to find (due to no branching within segments and consecutive indexing). The
following code can be used for finding the bottom segment indices:

for sec in nrn.h.allsec ():
seg_idx = cell.get_idx(section=sec.name ())[0]

cell.get_idx() returns an array containing indices for all segments in the section.
The first index segment in the array refers to the bottom segment index, selected
with [0]. Next, a section reference is created in order to check whether a bottom
segment has a parent and get the parent segment and its index:

for sec in nrn.h.allsec ():
if ’soma’ not in sec.name ():

secref = nrn.h.SectionRef(sec.name ())
not_orphan = secref.has_parent () # boolean
parentseg = secref.parent ()
parentsec = parentseg.sec
parent_idx = cell.get_idx(section=parentsec.name ())[ -1]

NEURON has a set of tools only accessible from section references, nrn.h.SectionRef(),
such as secref.has_parent(), that can be used to make sure we do not try to find
the axial current from the soma to its non-existent parent. A section reference can
also give us the parent segment of a section: secref.parent(). segment.sec is a
NEURON trick for getting the section holding a segment. Since the parent segment is
the top segment of its section, the last index of the cell.get_idx() list is chosen,
with [-1].

There are several ways of finding the sibling of a bottom segment, however, it
was found that the cleanest way to do this, was by once again taking advantage of
a section reference method, to find the children sections of each section.

for sec in nrn.h.allsec ():
secref = nrn.h.SectionRef(sec.name ())
for child in secref.child:

child_idx = cell.get_idx(section = child.name ())[0]

secref.child is a list of sections holding the children segments of a parent segment.
cell.get_idx() can then give us the index of the children segments. Storing these
segment indices in a dictionary, we can for each bottom segment pop the sibling seg-
ment index via its parent section. Now that the family ties of the bottom segments
are figured out, the axial currents can be calculated for branching dendrites.
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Dendrite Soma Connection

When the code was tested on more complicated morphologies, see Chapter 4, er-
rors occurred due to a misunderstanding related to how dendrites are connected to
the soma. Based on the recommendations in the NEURON documentation [11], the
assumption was that a section attachment is always created so that the top or the
bottom of a section is connected to the top or the bottom of another. In a file
specifying the morphology in NEURON’s native hoc language, this would for instance
look like:

connect dend(0), soma (1)

where 0 and 1 refer to the minimum and the maximum arc length of the sections. It
appeared, however, that when it comes to connecting a dendrite to the soma, it is
customary to connect the dendritic section to the center of the soma section [20, 29]:

connect dend(0), soma (0.5)

The axial current flowing between the soma and the connected segment, Isomatoseg,
can therefore be computed without taking the axial resistance of the soma into ac-
count:

v_seg = cell.vmem[segment_idx] # segment membrane potential
v_soma = cell.vmem[parent_idx] # soma membrane potential
r_seg = nrn.h.ri(seg.x) # axial resistance from segment

# start to segment mid
i_soma_to_seg = (v_seg - v_soma )/r_seg.

This means that the axial resistance of the soma does not contribute to the total
axial resistance felt by a current flowing from the middle of the soma into a dendrite.

In order to work out the current dipole moment contribution from each axial current,
the distance vectors traveled by each small current must be calculated.

dseg = [cell.xmid[seg_idx] - cell.xstart[seg_idx],
cell.ymid[seg_idx] - cell.ystart[seg_idx],
cell.zmid[seg_idx] - cell.zstart[seg_idx ]]

dpar = [cell.xstart[seg_idx] - cell.xmid[parent_idx],
cell.ystart[seg_idx] - cell.ymid[parent_idx],
cell.zstart[seg_idx] - cell.zmid[parent_idx ]]

Here dseg is the distance vector from the bottom to the middle of the segment.
dpar is the distance vector from the middle to the top of the parent segment.

Now, the current dipole moment contribution from half a neural segment, can
be found by multiplying its length, dseg, with the axial current flowing inside,
Iseg. Summing up all contributions, seeing Equation(2.7), we can compute the total
current dipole moment from a complex neuron morphology.
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Based on this, two python modules were written: One returning the axial cur-
rents and distance vectors between all adjacent compartments of a neuron, and
another taking currents and distances and returning current dipole moments. The
second takes both transmembrane and axial currents, according to Equations (2.9)
and (2.7). This was important so as to enable internal checks of the code. The full
code is included in Appendix B.

3.2.3 Extracellular Potentials from Current Dipole
Moments

In order to approximate extracellular potentials with Equation (2.15), the orien-
tation of the current dipole moment in space needs to be considered. The spatial
orientation of the current dipole moment vector can be specified by two angles: θ0
and φ0, where θ0 is the angle between p and the z-axis, and φ0 is the angle between
p and the x-axis. Note that the letter φ is used for both electric potential and radial
angle, however, it should be clear from the context which is which.

The current dipole approximation for electric potentials is given by Equation
(2.15):

φ(r, t) =
1

4πσ

|p(t)| cos θ

|r|2
.

Once the current dipole moment p(t) from a neuron is calculated, we can estimate
the extracellular potentials from the cell at any point in space. The extracellular
conductivity σ is constant, see Section 2.3.3, and the length of the distance vector
from the dipole vector to the electrode, r, is known, see Figure 3.7. Before plugging
|p(t)| and |r| = r into Equation (2.15), cos θ(t) must be calculated. Here, θ(t) is
the angle between p(t) and r. As illustrated in Figure 3.7, θ can be calculated by
transforming θ0 and θe, where θe is the angle between r and the z-axis. A simpler
way of doing this, however, is by calculating cos θ(t) directly from the definition of
the dot product

r · p(t) = |r||p(t)| cos θ(t)

⇓ (3.6)

cos θ(t) =
r · p(t)

|r||p(t)|
. (3.7)

Based on this, the current dipole approximation was implemented in Python.
First of all, the location of the current dipole moment, rdipole, was defined as the
middle position between the soma and the mean synapse location:
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Figure 3.7: Orientation of current dipole moment relative to electrode position.
Illustration of the angle θ between the current dipole moment p and the distance vector
from the electrode measure point to the middle of the current dipole, r. θ = θ0 + θe where
θ0 is the angle between p and the z-axis, and θe is the angle between r and the z-axis.

syninds = cell.synidx
r_soma_syns = [cell.get_intersegment_vector(idx0 = 0,

idx1 = i) for i in syninds]

r_mean = np.average(r_soma_syns , axis = 0)
r_dip = r_mean /2. + cell.somapos

Here, r_soma_syns is a list of all distance vectors from the soma to the neuron’s
synapses. The average distance vector, r_mean, is divided by two, to get the middle
position. The soma position vector, cell.somapos, is added, giving r_dip, the
position vector from the origin to the current dipole moment vector. The distance
vector from the current dipole moment to the electrode, r, can now easily be found:

r = r_dip - r_e

Next, cos θ(t), θ(t) and the extracellular potential φ(t) were calculated:

cos_theta = np.dot(P, r)/(np.linalg.norm(r)*np.linalg.norm(P
, axis = 1))

cos_theta = np.nan_to_num(cos_theta)
theta = np.arccos(cos_theta)
phi = 1./(4* np.pi*sigma)*np.linalg.norm(P,

axis = 1)* cos_theta/np.sum(r**2)*1 E6

When dividing by the current dipole moment, P, in the first line, we’re actually
doing division by zero, since the current dipole moment is zero before the first input
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current is initiated. This problem is fixed by np.nan_to_num. The extracellular
potential, phi, is converted from millivolts to nanovolts by multiplying with 1E6.

The two Python classes with tools for calculating current dipole moments and
extracellular potentials from the current dipole approximation can be found in Ap-
pendices B and C.

3.3 Cell Models

This section describes the neuron models studied in the results: two idealized models
and two anatomically reconstructed models.

Idealized Neuron Models

By idealized neuron models, we mean simple neuron morphologies well suited for
conceptual understanding and method validation, like the simple morphologies used
for method development in Section 3.2.2, see Figures 3.3-3.6. Here, two such models
are presented: a ball-and-stick neuron and a ball-and-Y neuron. Both neuron models
were manually implemented in NEURON’s native hoc language. The morphologies
were specified by setting the size of each section and determining how the sections
are to be connected. The ball-and-stick neuron model has two sections only; a soma
and a dendrite. Both sections have constant diameters. The ball-and-Y neuron, on
the contrary, has varying section diameters in all sections except for the soma. The
dendrite consists of five sections with two branch points. Both neuron models are
passive, and use LFPy’s default model parameters shown in Table 3.1.

Anatomically Reconstructed Neuron Models

More complex neuron models can be found in the literature, such as the neuron
model from the article by Mainen and Sejnowski [29], henceforth referred to as the
MS neuron. This is a digital reconstruction of a pyramidal cell from layer-5 in cat
visual cortex. This model possesses active conductances, however, for simplicity, the
default passive LFPy parameters in Table 3.1 are used instead.

The Hay neuron is a model of a pyramidal neuron from layer-5b in rat cortex
[20]. Like the MS neuron, this is a neuron with a complex morphology and even
though active conductances are available, these are here replaced by the passive
parameters in Table 3.1.
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Table 3.1: Model Parameters. Default LFPy model parameters [5].

Symbol Code Value Units
Membrane resistance rm cell.rm 30000 Ωcm2

Axial resistance raxial cell.Ra 150 Ωcm
Membrane capacitance cm cell.cm 1 µF/cm2

3.4 Synaptic Models

In this project, only exponential input currents are used, meaning that when a
synaptic current is initiated, the opening of ion channels at the spike time ts is sim-
ulated by a discontinuous jump followed by an exponential decay. This current can
be modeled in two different ways, the first with a conductance-based input current :

Iconductance(t, ts) = ḡse
− (t−ts)

τm (V (t)− Esyn). (3.8)

Here, ts is the time of the incoming spike, gs is the maximum conductance, τ is
the membrane time constant, V is the membrane potential and Esyn is the synapse
reversal potential. The second way of modeling this, is with a current-based input
current

Icurrent(t, ts) = Īse
− (t−ts)

τm , (3.9)

where Īs is the maximum input current. Here, the change in membrane potentials
with time is not taken into account.

The time of spiking can be chosen in several different ways. The spike times can
for example be set by hand or drawn from a stationary Poisson distribution, using
the stationary Poisson input generator in LFPy:
LFPy.inputgenerators.stationary_poisson(). In this project we use two differ-
ent types of synaptic input only:

− Conductance-based exponential synaptic input, with one spike set by hand

− Current-based exponential synaptic input, with spike times drawn from a sta-
tionary Poisson distribution with an average of five spikes per simulation
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Chapter 4

Results

The extracellular potentials from neurons in the brain can be studied using the
compartment-based (CB) model and the dipole-based (DB) model, described in
Chapter 3. Since the DB model is based on current dipole moments, the first section
of this chapter looks into how the methods for calculating current dipole moments
were validated. Further, virtual recordings of extracellular potentials from single
cells were performed with intracranial as well as ECoG and EEG electrodes. The
underlying neuron simulations were carried out for different synapse positions and
a varying number of synapses. By comparing the extracellular potentials calculated
with the two models, this chapter is meant to give an overview over the applicability
of the DB model.

4.1 Validation of Current Dipole Moment Methods

There are two ways of calculating the current dipole moment from a single neuron:
the transmembrane current (TC) method and the axial current (AC) method. The
TC method, described in Section 3.2.1, is based on Equation 2.9, while the AC
method is based on Equation 2.7, see Section 3.2.2. The two methods were compared
by calculating current dipole moments from simple idealized neuron models and
anatomically reconstructed neurons. Here, the results for four different morphologies
are presented.

4.1.1 Idealized Neuron Models

The current dipole moments were calculate for two idealized neuron models: the
ball-and-stick and the ball-and-Y neuron. The differences between the two models
are described in Section 3.4, in short the ball-and-Y morphology is slightly more
complicated, making it comparable to anatomically reconstructed models.

33
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Simulations lasting 100 ms were carried out for both neurons, where each neuron
had an excitatory synapse placed on an apical dendrite, see Figures 4.1 and 4.2.
Furthermore, exponential, conductance-based input currents, see Section 3.4, were
initiated after 10 ms, generating fluctuations in the membrane potentials. The
resulting transmembrane currents and membrane potentials were calculated for all
segments in the cell. By studying these, it is apparent that excitatory synapses set
up currents flowing into the cell, resulting in negative transmembrane currents and
an increase in membrane potential around the synapse, see Isyn and Vsyn in panels B
and C. The amplitudes of Isoma and Vsoma are smaller, because only a fraction of the
current flowing into the cell around the synapse reaches the soma before re-entering
the extracellular medium. The somatic transmembrane current is positive, due to
Kirchhoff’s current law.

From transmembrane currents and membrane potentials, current dipole moments
were computed with the TC and the AC methods. Studying panels D and E on the
two figures, it is clear that the results from the two models are indistinguishable,
with a relative error ∼ 10−10. The relative error has sharp peak at time t = 10 ms,
before it seemingly flattens out. The relative error curves are, however, not smooth.
For t ≈ 40− 50 ms, we can see small oscillations due to round-off errors, explained
by the very small size of the signal, see scales in panels D and E.

In addition to investigating the magnitude of the current dipole moment, the
direction of p(t) was studied for the ball-and-Y neuron, see panels F and G on Figure
4.2. Since this neuron morphology is extended in the xz-plane only, the radial angle
of the current dipole moment, φ0, is zero throughout the whole simulation. The
angle between p(t) and the z-axis is given by θ0, and θ̄0 is the average θ0 summed
over the time when |p(t)| 6= 0. After the synapse is activated, θ0 increases to ∼ 2.57
radians, close to θ̄. Both θ0 and φ0 are set to 0 when |p| = 0.

The current dipole moment from a ball-and-stick neuron has already been calcu-
lated analytically, ref. Pettersen et al., 2014 [34]. This has, however, not been done
for more complicated morphologies, such as the ball-and-Y neuron.

The two simulations described here are only two examples of many simulations
carried out for similar morphologies, giving equally small errors. From this it is
safe to conclude that the TC and AC methods are applicable for calculating current
dipole moments from idealized neuron morphologies.
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Figure 4.1: Current dipole moment from ball-and-stick neuron. A: Ball-and-stick
neuron morphology with an excitatory synapse placed on an apical dendrite, illustrated
by a red dot. During the 100 ms simulation an exponential, conductance-based synaptic
input was initiated after 10 ms. Neuron parameters are listed in Section 3.3. B: Trans-
membrane currents recorded in the synapse compartment, Isyn(t), and the soma, Isoma(t).
C: Membrane potentials, Vsyn(t) and Vsoma(t), measured in the synapse and the soma
compartments, respectively. D: Current dipole moment amplitude computed with the TC
method, |ptrans(t)| and the AC method, |paxial(t)|. E: Relative error, RE, comparing
|paxial(t)| to |ptrans(t)|.
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Figure 4.2: Current dipole moment from ball-and-Y neuron. A: Ball-and-Y
neuron morphology, described in Section 3.3, with an excitatory synapse placed on an
apical dendrite, marked by a red dot on the figure. The synaptic input is exponential
and conductance-based, with a spike initiated at time ts = 10 ms. The orientation of
the resulting current dipole moment is illustrated by a green arrow. B: Transmembrane
currents in the synaptic and the somatic compartments, denoted by Isyn(t) and Isoma(t).
C: Membrane potentials recorded in the synapse compartment, Vsyn(t), and in the soma
compartment, Vsoma(t). D: The magnitude of the total current dipole moment, computed
with the TC method, |ptrans(t)| and the AC method, |paxial(t)|. E: The relative error,
RE, between the current dipole moments in panel D. F: The angle between the current
dipole moment vector and the z-axis, θ0(t), and the mean value, θ̄0, averaged over θ0(t)
for t > ts. G: The angle between the radial component of the current dipole moment and
the x-axis, φ0.
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4.1.2 Anatomically Reconstructed Neuron Models

In order to test whether the TC and the AC methods are applicable for more com-
plex neuron morphologies, current dipole moments from the Mainen and Sejnowski
(MS) neuron and the Hay neuron, described in Section 3.4, were calculated. The
simulations were carried out in the same way as in the previous section, with the
exact same synaptic excitatory input currents.

The results are shown in Figures 4.3 and 4.4, where panel A shows the neuron
morphology and the excitatory synapse placed on an apical dendrite. Examples of
transmembrane currents and membrane potentials are shown in panels B and C,
while D shows the magnitude of the current dipole moments calculated with the TC
and the AC methods. Panels D and E illustrate how |ptrans(t)| and |paxial(t)| are
almost identical, with a relative error ∼ 10−10.

The orientation of p in space was calculated for both morphologies and shown in
panels F and G. For both cells, the current sink is located above the current source
on the neuron and the dendrites are mainly elongated in the z-direction. Therefore,
the current dipole moments point downwards, see green arrow in panel A, and θ0
is close to θ̄0 ∼ π. The radial angle, φ0 varies with time, due to currents spreading
as a function of time in the neuron morphology, where dendrites are pointing in
various radial directions. For the MS neuron, φ0 approaches 3.26, while φ0 goes to
3.76 radians for the Hay neuron.

Simulations for the same morphologies with different synapse positions gave sim-
ilar results. Thus, current dipole moments from neuron simulations with anatomi-
cally reconstructed morphologies can be calculated with the TC and the AC meth-
ods. From this, it is also clear that axial currents from a neuron can be computed
by using the code for axial currents that the AC method is based on. Now that the
methods for calculating current dipole moments have been validated, extracellular
potentials can be estimated using the DB model as well as the CB model.



38 4. RESULTS

100µm

A

0 10 20 30 40 50
0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

I 
(n

A
)

B
Isyn

Isoma

0 10 20 30 40 50
66

64

62

60

58

56

54

V
 (

m
V

)

C
Vsyn

Vsoma

0 10 20 30 40 50
0

2

4

6

8

|p
| (

A
m

)

1e 15D
|ptrans|
|paxial|

0 10 20 30 40 50
0
1
2
3
4
5
6
7
8
9

R
E

1e 10E

0 10 20 30 40 50

t (ms)

0

π
4

2

3π
4

θ 0

F

θ0

θ̄0

0 10 20 30 40 50

t (ms)

0

2

3
2

2

φ
0

G

Figure 4.3: Current dipole moment from MS neuron. A: Neuron morphology with
a red dot representing an excitatory, exponential, conductance-based synapse activated at
time ts = 10 ms. For morphology details and passive membrane properties, see Section 3.3
and Table 3.1. The orientation of the current dipole moment resulting from the simulation
is shown as a green arrow. B: Transmembrane currents measured in the synaptic and the
somatic compartments. C:Membrane potential recordings from the synapse compartment,
Vsyn(t) and the soma compartment, Vsoma(t). D: Magnitude of current dipole moment,
|ptrans(t)| and |paxial(t)|, computed with the TC method and the AC method, respectively.
E: The relative error, RE, between the current dipole moment calculations in panel D.
F: Angle between the current dipole moment and the z-axis, θ0(t), and θ̄0 averaged over
t > ts. G: Angle between radial component of current dipole moment and the x-axis, φ0.
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Figure 4.4: Current dipole moment from Hay neuron. A: Hay neuron morphology
with an excitatory synapse placed on an apical dendrite, illustrated by the red dot. At time
ts = 10 ms, an exponential, conductance-based synaptic input current is initiated, and the
resulting current dipole moment is illustrated by the green arrow. B: Transmembrane
currents, Isyn(t) and Isoma(t), recorded in the synaptic and the somatic compartments,
respectively. C: Membrane potentials measured in the soma compartment, Vsoma(t), and
the synapse compartment, Vsyn(t). D: The magnitude of the current dipole moments,
|ptrans(t)| and |paxial(t)|, computed with the TC and the AC methods. E: The relative
error, RE, between the current dipole moment calculations in panel D. F: The angle, θ0(t)
between the z-axis and the current dipole moment vector. The average angle over time
t > ts, θ̄0 is also shown. G: The angle between the radial component of the current dipole
moment and the z-axis, φ0.
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4.2 Extracellular Potentials

In this section extracellular potentials are measured by virtual electrodes positioned
at different locations relative to single neurons. The virtual recordings are carried
out using the CB and the DB models. The CB model is here representing the
ground truth, and the recordings are meant to test whether the DB model can
predict extracellular potentials measured at ECoG and EEG planes.

4.2.1 Single Synapse with Static Location

The extracellular potentials from a simulation of the MS cell, see Section 3.3, were
calculated using both the CB and the DB models. The neuron simulation lasted 100
ms, and an excitatory synapse placed on an apical dendrite generated an exponential
synaptic input current, see Section 3.4, after 10 ms. The resulting extracellular
potentials were calculated for different placements of virtual electrodes relative to
the neuron.

Vertical Cross Section

A 31 × 31 grid of virtual point electrodes was positioned in a 2 by 2 cm vertical
cross section of cortex and skull. Further, an MS neuron was placed in cortex, so
that the soma was located in the origin, (0, 0, 0), corresponding to the center of the
virtual electrode grid. The cell morphology elongates in the z-direction, such that
the top of the cell was located 100 µm below the cortex-skull interface.

Extracellular potentials were calculated with both the CB and the DB models
and plotted together with absolute and relative errors in Figure 4.5. Both extracel-
lular potentials and error plots are shown for time point t = tpmax, when the current
dipole moment is at its strongest.

A few things are important to note from studying the extracellular potentials in
panels B and C, regarding the current dipole approximation. First of all, the figure-
8 shapes of the electric potentials are very similar to the characteristic shape of a
dipole-field, similar to the field around an antenna. The strength of the potentials is
higher close to the neurons in the middle of the plot, and decreases with the distance
to the measuring point, r. Moreover, the shapes of the plots in B and C are very
similar. From this it appears that current dipoles are well suited for approximating
electric potentials far away from a neuron. The green arrow in panel A illustrates
the current dipole moment vector pointing down from the apical dendrites towards
the soma. This is also reflected in the electric potential plots, where the upper half is
negative, because the apical dendrites with the excitatory synapse act like a current
sink. Further, currents are escaping through the lower half of the cell, turning this
part into a current source generating a positive potential, red on the plot.
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Figure 4.5: Contribution to extracellular potentials measured in vertical cross
section fromMS neuron. A:MS neuron morphology, see Section 3.3, shown with the red
dot illustrating an excitatory synapse. An exponential, conductance-based input current
was generated at ts = 10 ms, and the magnitude of resulting current dipole moment, p(t),
is shown in the plot on the left, and peaks at time t = tpmax. The orientation of the current
dipole vector at this time point is illustrated by the green arrow. All the remaining panels
show results for time point t = tpmax measured by a 2×2 cm grid of electrodes placed in an
xz-plane, where the MS neuron is located in the grid’s center. B: Extracellular potentials
calculated with the CB model. The scale is log10-based and normalized, such that 1.0
corresponds to 39 nV. C: Extracellular potentials calculated with the DB model. E: The
absolute error between the extracellular potential calculations from the two different models
in panels B and C. The relative error, plotted on a base-2 logarithmic scale. The green,
red and orange lines mark the 0.005, 0.01 and 0.08 contours.

Even though the extracellular potentials look equal from the 2 by 2 cm plots in
panels B and C, calculating the absolute and the relative error, reveals the differences
between the two models. The absolute error in panel D is less than 1/10000 of the
maximal potential measured, except within a radius, of ∼ 4− 5 mm, of the neuron.
In comparison, the size of the MS neuron is approximately 1 mm.

The relative error is plotted in Figure 4.5E. Except from within a very small
area with diameter ∼ 3 mm around the neuron, the relative error is less than 0.08,
corresponding to 8 %. The relative error plot is almost butterfly shaped, spreading
out more in the xy-direction than in the z-direction. Moving the virtual electrode
horizontally away from the neuron, the relative error stays between 0.02 and 0.04
even tens of mm away. This is the region where the extracellular potential is the
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lowest, and crosses zero. Moving in the z-direction away from the xy-plane, the
relative error decay seems to depend on θ0, the angle between the current dipole
moment, p, and the z-axis. The relative error appears to decrease rapidly directly
above and below the neuron, i.e., when the measuring point is close to the z-axis.
When increasing the angle θ0, however, the relative error experiences a slower de-
cay. This may partly be caused by the dipole-shaped extracellular potentials; the
extracellular potential is lower when the angle θ0 is big. The effect wares off when
θ0 → π, which is the radial direction where also the decrease in electric potential is
the lowest.

Drawing a 4 mm radius circle around the neuron, we see from panel E, that the
relative error is less than 0.02 outside of this region. Here, the extracellular potential
is less than 1/10000 of its maximum value. In short, the DB model has an error
below 2% when the distance between the neuron and the measuring point is more
than 4 mm. Similar conclusions can be drawn from measurements done at other
time points t in the simulation.

ECoG Plane

The objective of this section was first of all to test the accuracy of the DB model at
the top of cortex, i.e., to check whether the dipole approximation is appropriate for
estimating ECoG signals. Secondly, the shape and strength of the electric potentials
were studied. Following the same procedure as in the previous section, a grid of vir-
tual electrodes was placed in a 2 by 2 cm area, this time in an xy-plane 100 µm above
the top of the MS neuron, symbolizing an ECoG recording. The simulation was run,
and extracellular potentials calculated. The neuron morphology, the current dipole
moment from the simulation, and the electrodes are shown in Figure 4.6A.

The extracellular potentials calculated with the CB and the DB model are il-
lustrated in Figures 4.6B and C respectively. As expected, based on the previous
section, the extracellular potentials are negative and decrease radially with distance
from the center of the plot, i.e., the grid point located directly above the neuron.
Studying panels B and C, the potential plots appear to be very alike. Further, the
absolute errors were calculated and plotted in panel D, revealing that the difference
between the measurements from the CB and the DB model is less than 1

10000
of the

maximal potential measured, as long as the electrode is more than 5 mm away from
the point directly above the neuron. Since the signals decrease rapidly with distance
from the middle of the grid, the signal strength is very small at measuring points
where the absolute error is small. Hence, it makes more sense to study the relative
error to get an understanding of the accuracy of the dipole method.

The relative error was calculated for all electrodes in the grid, and is shown in
Figure 4.6E. Studying the plot, we see that the relative error varies significantly with
electrode position, and that for points near the grid center and for small values of y,
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Figure 4.6: ECoG contribution from MS neuron. A: The virtual experiment set-up
consists of the MS neuron plotted in the xz-plane with an conductance-based excitatory
synapse placed on an apical dendrite. See 3.3 for more details about the neuron model. A
100 ms simulation, with a single synaptic input after 10 ms, was run, and the magnitude
of the resulting current dipole moment, |p(t)|, is plotted in the small graph on the left.
Here, tpmax is the simulation time point where |p(t)| peaks. The orientation of p(tpmax)
in the xz-plane is illustrated by the green arrow. All values in panels B-E are shown for
time t = tpmax. The gray bar on the top illustrates the grid of ECoG-electrodes on top of
cortex, only a 100 µm away from the top of the neuron. There are 31×31 point electrodes
distributed in a 2 by 2 cm area in the xy-plane. The center of the electrode grid is the
grid point straight above the soma, marked by a black dot in panel B-E. B: Extracellular
potentials calculated with the CB model. The scale is base-10 logarithmic, and 1.0 on the
scale corresponds to 4.0 nV. C: Extracellular potentials calculated with the DB model. D:
Absolute errors, calculated to show the difference between the results from the CB and
the DB models. E: The relative error is plotted with a base-2 log scale. The green, red,
orange and yellow lines correspond to the 0.005, 0.01, 0.08 and 0.64 contours.

the relative error is big, i.e., > 0.08. From these measurements it seems as though
ECoG recordings are too close to the neuron to be predicted with the DB model.

EEG Plane

Next, it was tested whether the DB model is applicable for modeling of EEG sig-
nals. The same simulation and virtual experiment set-up as in the previous section
were used. However, since the thickness of the human skull and scalp combined, is
approximately 1.1 cm [33], the electrode grid was now placed in the xy-plane at z
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∼ 1.2 cm. This way, the virtual measurements symbolized EEG recordings. The
soma of the MS neuron was now located 1.2 cm below the center of the electrode
grid, and the top of the cell was still 100µm below the cortex-skull interface.

Extracellular potentials were calculated with the CB and the DB models for
all electrodes in the grid, on top of the scalp. The virtual recording set-up, the cell
morphology and |p(t)| are shown in Figure 4.7A. All plots, except panel F shows time
point t = tpmax, i.e., the time when the current dipole moment is at its strongest.
The extracellular potentials are plotted in panels B and C, and show that the electric
potentials calculated were, like the ECoG signals, still negative. The shape of the
electric potential plot is circular for both models. The potential is strong close to
the center of the grid and decreases radially for electrodes farther away from the
center. The decrease is, however, not as rapid as for the ECoG measurements: note
that the scale is now linear and not log10-based. Comparing extracellular potentials
from the two models, it seems as though the DB model gives a good approximation.

The absolute error is plotted in panel D and at first sight; it appears that the
error is large, having the error plots from the previous sections in mind. Studying the
scales, however, we see that this is only a trick, due to the fact that the extracellular
potentials vary a lot less with position in the grid electrode plane, than for the ECoG
recordings. To get an impression of whether the current dipole approximation is
accurate for EEG recordings, we need to study the relative error. The relative error
shown in panel E is less than 0.005 for all virtual electrodes, except for the ones
in a small region to the right of the middle point. The relative root mean square
error, (RRMSE) over all time points, was calculated and plotted in panel F. The
RRMSE does never exceed 0.01. With this, it seems like the DB model can predict
EEG signals from single cells very accurately.
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Figure 4.7: EEG contributions from MS neuron with one apical synaptic input.
A: The virtual recording set-up is illustrated in the xz-plane. The skull and scalp thickness
is here 1.1 cm and the top of the MS neuron is located ∼ 100 µm below the top of neocortex.
The soma is located in the origin, 1.2 cm below the electrode grid on top of the scalp,
where 31×31 electrodes are distributed in a 2×2 cm area in the xy-plane. A conductance-
based, excitatory synapse is placed on an apical dendrite, marked by the red dot, and a
synaptic input arrives after 10 ms. The resulting current dipole moment for the neuron
is calculated, and the magnitude, |p(t)| is plotted in the small panel on the right. |p(t)|
peaks at t = tpmax, and all panels, except panel F, show data calculated at tpmax. The
orientation of p(tpmax) in the xz-plane is illustrated by the green arrow. B: Extracellular
potentials calculated with the CB model, plotted on a normalized linear scale, where 1.0
corresponds to 0.011 nV. C: Extracellular potentials computed with the DB model. D:
Absolute errors, showing the difference between the results in panels B and C, plotted on
a base-10 logarithmic scale. E: Relative error plotted with a log2-scale. The green line
represents the 0.005 error contour, and the blue line corresponds to 0.00125. F: Relative
root mean square (RRMS) error over the entire time signal.
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4.2.2 Single Synapse with Varying Location

To assure that the results from Section 4.2 are applicable also for other morphologies
and synapse locations, the ECoG and EEG calculations from the preceding section
were carried out for the MS neuron and the Hay neuron for various locations of
synaptic input. For each cell, 24 random synaptic input positions were used, and
the same 100 ms simulation with one excitatory, exponential synaptic input after
10 ms, as in the previous sections, was applied for all trials. Instead of showing the
whole electrode grid, only the results for the electrode at the center of each grid
are plotted. The synapse locations are here represented by two coordinates relative
to the soma: ρsyn, the radial distance from the soma to the synapse, and zsyn, the
vertical distance from the soma to the synapse.

ECoG Point

The ECoG signals were calculated with the CB and the DB models for a point
electrode located 100 µm straight above the top of neuron. The results for the MS
neuron and the Hay neuron are shown in Figures 4.8 and 4.9, respectively. The
virtual experiment set-up is illustrated in the left panel on the figure. For both
cells, 24 simulations were run for 24 different synapse locations, giving 24 pairs
of measured potentials for the two different models. In order to check how the
extracellular potential measurements change with synapse location, the amplitude
of the measured potentials calculated with the CB model, was plotted as functions
of ρsyn and zsyn. Studying the ρsyn-dependence shown in panel A in Figures 4.8
and 4.9, no clear trend with ρ is visible. For the zsyn-dependence in panel B, on
the other hand, extracellular potentials appear to increase significantly with zsyn for
zsyn > 800 µm.

To compare the dipole approximation to the ground truth, absolute errors (E),
relative root mean square errors with respect to time (RRMSE), and relative errors
(RE) were calculated and plotted as functions of ρsyn and zsyn. Studying panels C-
F, it is clear that the RRMSE and the RE measurements are very high for both
the MS and the Hay morphologies, i.e., there are relative errors > 1 for both cells.
The absolute errors are also overall high, with no apparent trends with respect to
synapse location, see panels G and H.

When it comes to synapse location dependency for relative errors and RRMSE,
it does not seem like the errors are correlated with ρsyn, apart from the observation
that higher relative error values seem to occur when ρsyn is close to zero. This is more
likely explained by the neuron morphology, and the fact that with respect to zsyn,
the relative error seems to go up for values corresponding to the middle height of the
neuron. For these z-values, the synapse will be located at the thick apical dendrite,
where ρsyn is restricted to values close to 0. When an excitatory synapse is placed
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at the middle height of a neuron, current will spread relatively equally upwards to
the apical dendrites and down towards the soma and basal dendrites. Thus, the
electric potentials will be negative around the middle of the cell, and positive in the
areas near the top and the bottom of the cell. In this case, the neuron acts like a
quadrupole. The dipole contribution to the electric potential is hence very small,
and the dipole approximation is not a good approximation. From Section 2.3 we
know that the quadrupole contribution to the extracellular potential falls off as 1/r3,
i.e., much faster than the dipole contribution. Hence, the extracellular potentials
are low for these z-values.

From this it is clear that our conclusion about dipole approximation for ECoG-
signals in Section 4.2.1 still holds. Current dipoles are hence not useful for estimating
extracellular potentials measured on top of cortex.

EEG Point

The same experiments as described in the previous section were conducted for EEG
signals and illustrated in Figures 4.10 and 4.11. The recording set-up is shown in
the panel on the left. An extracranial point electrode was now placed a distance
1.1 cm above the top of the neuron, i.e., on top of the scalp. The exact potentials
recorded were calculated for both cells and studied in figure panels A and B. The
strength of the EEG signal does not seem to be correlated with the radial synapse
distance from the soma, ρsyn. On the contrary, the electric potentials seem to go
down for z-values in the range ∼ [0, 300] µm.

Extracellular potentials were also calculated using the DB model, and compared
to the CB model by looking at absolute errors, relative RMS errors with respect to
time and relative errors. The absolute errors seem to be higher for synapse locations
near the middle of the neuron, than top or bottom locations.

For both cells, the relative errors and relative RMS errors are much lower than
for the ECoG recordings. The majority of the synapse locations give relative RMS
and relative errors < 0.05. The two error types follow very similar patterns. The
errors do not seem to be correlated with ρsyn at all. Like in the previous example,
there are no very high relative errors for large values of ρ. We can not conclude
anything from this, because of the low number of measurements with big values
for ρsyn. Studying the zsyn dependency of the relative error reveals that the higher
relative errors > 0.05 occur when the extracellular potential is low. To conclude,
the DB model can be used to predict EEG contributions from single cells with one
synapse, however, the accuracy may exceed 5% for extracellular potentials with
small amplitudes.
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Figure 4.8: ECoG contributions from MS neuron with different synapse lo-
cations. Same virtual recording set-up as in 4.6, however, instead of a whole plane of
electrodes, there is only one electrode recording from 100 µm straight above the neuron.
The 24 synapse locations are shown on the left. One 100 ms simulation was run for each
synapse location, the synapses all being conductance based and excitatory, with an input
initiated after 10 ms. Synapse location is expressed with two coordinates: vertical distance
from the soma, i.e., the xy-plane, zsyn and radial distance from the soma, i.e., distance from
the z-axis, ρsyn. A: Extracellular potentials measured by the ECoG electrode is plotted
as a function of ρsyn. B: The potential dependence on zsyn. C,D: Relative errors, RE,
plotted as functions of ρsyn and zsyn. E,F: Relative root mean square errors, RRMSE.
G,H: Absolute errors, E, as functions of zsyn and ρsyn.
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Figure 4.9: ECoG contributions from Hay neuron with different synapse loca-
tions. A point electrode records extracellular potentials a distance 100 µm straight above
the neuron. One simulation is run for each of the 24 synapse locations shown on the left.
All synapses are conductance based and excitatory, initiating an input current after 10
ms. Synapse location is described by two coordinates: zsyn, the vertical distance from
the soma, i.e., the xy-plane, and ρsyn, the radial distance from the soma, i.e., distance
from the z-axis. A: Extracellular potentials measured by the ECoG electrode plotted as a
function of ρsyn. B: The potential dependence on zsyn. C,D: Relative errors, RE, plotted
as functions of ρsyn and zsyn. E,F: Relative root mean square errors, RRMSE. G,H:
Absolute errors, E, shown as functions of zsyn and ρsyn.
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Figure 4.10: EEG contributions from MS neuron with different synapse loca-
tions. Virtual recording set-up with one point electrode on top of the scalp, directly above
the MS neuron, 1.2 cm above the soma. The 24 red dots represent 24 randomly generated
synapse locations. One 100 ms simulation was run for each synapse. All synapses are
excitatory and conductance based, initiating an input current after 10 ms. Synapse loca-
tions are given by ρsyn, the radial distance from the soma and zsyn, the vertical distance
from soma. A: Extracellular potentials calculated with the CB model, measured by the
EEG electrode and plotted as a function of ρsyn. B: Extracellular potential dependence
on zsyn. C,D: Relative errors, RE, as functions of ρsyn and zsyn. E,F: Relative root mean
square errors, RRMSE, plotted against synapse location. G,H: Absolute errors plotted
as functions of synapse locations, E(ρsyn) and E(zsyn).
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Figure 4.11: EEG contributions from Hay neuron with different synapse loca-
tions. The left panel shows the virtual recording set-up with a point electrode on top of
the scalp, at z ≈ 1.2 cm, straight above the neuron. The small lower left panel shows the
Hay neuron morphology with 24 randomly generated synapse locations, red dots. Simula-
tions lasting 100 ms were carried out for all synapses, with a conductance-based, excitatory
input current initiated after 10 ms. Synapse locations are given by ρsyn and zsyn, the radial
and vertical distances from the soma, respectively. A: Extracellular potentials calculated
with the CB model, measured by the EEG electrode and plotted as a function of ρsyn. B:
The extracellular potential dependence on zsyn. C,D: Relative errors, RE, as functions of
ρsyn and zsyn. E,F: Relative root mean square errors, RRMSE, plotted against synapse
location. G,H: Absolute errors plotted as functions of synapse locations, E(ρsyn) and
E(zsyn).
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4.2.3 More Synapses per Neuron

In contrast to the preceding virtual neuron simulations, a pyramidal neuron can
receive input from thousands of synapses distributed all over the neuron morphology
[40, 8]. In order to study how a neuron responds to more than one synaptic input,
three simulations with different distributions of 100 excitatory synapses were tested
on the MS cell. The synapses were randomly distributed on apical dendrites, basal
dendrites, and finally all over the cell. All synapses were driven by a stationary
Poisson input, see Section 3.4, over a 400 ms interval with an average firing rate of
5 spikes. The virtual recording set-up was exactly the same as in Section 4.2.1, with
the top of the MS cell placed ∼ 1.1 cm below the center of an electrode grid on top
of the scalp, see schematic illustration in Figure 4.7A.

Apical Synapse Positions

The MS cell had 100 synapses randomly distributed on apical dendrites, i.e., on
segments located above the z = 850 µm -plane. The morphology and synapses are
shown in panel A on Figure 4.12, together with the amplitude of the current dipole
moment. The rapid variations in |p(t)| is due to the spiking of the many synapses
at different points in time. The time point t = tpmax marks when the current dipole
moment amplitude is at its strongest, and the plots on the right all show data for
this time point.

Extracellular potentials were calculated with the CB and the DB model, and can
be studied in panels B and C. All in all, the results appear to be very similar for the
two models. The absolute error is plotted on a log10-based scale in panel D, and E
shows the relative error. The relative error is overall very small, with a maximum
less than 0.02. Similar results were generated for different points in time. We can
conclude that the DB model can very well predict extracellular potentials from a
neuron simulation with many synapses placed on apical dendrites.

Basal Synapse Positions

To check what the extracellular potentials looked like for 100 basal dendrites, synapses
were randomly spread out on segments of the MS neuron, located below the z = 0
-plane. The results are shown in Figure 4.12. Extracellular potentials, absolute
errors and relative errors were plotted for time point t = tpmax. An important thing
to note here, is that the scale for plot B and C is linear, whereas the absolute error
is plotted with a base-10 logarithmic scale. The absolute error is thus not as big
as it looks. The maximum relative error is < 0.04, with the biggest error measured
straight above the neuron. The EEG contribution from pyramidal neurons with 100
excitatory synapses on basal dendrites can be modeled with 96% accuracy using the
DB model.
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Figure 4.12: EEG contribution from MS neuron with 100 apical synapses. A:
MS neuron with 100 excitatory synapses randomly spread out on the apical dendrites,
i.e., on segments positioned at z > 850 µm. Current-based stationary Poisson synaptic
inputs, see Section 3.4, were used for the 400 ms simulation. The resulting current dipole
moment, p, is a function of time, peaking at time t = tpmax. The magnitude, |p(t)| and
the spacial orientation of p(tpmax) are illustrated by the small graph on the left and the
green arrow on the morphology, respectively. The remaining plots all show data for time
point t = tpmax in a 2× 2 cm grid of virtual electrodes, a distance ∼ 1.2 cm above the top
of the neuron, representing an EEG recording. The black dot in the middle of each plot
marks the point straight above the neuron. B: Extracellular potentials calculated with
the CB model. C: Extracellular potentials calculated with the DB model. The scale used
for panels B and C is linear and normalized, such that 1.0 corresponds to 0.003nV. D:
The difference between the CB and the DB models illustrated by the absolute error on a
log10-based scale, where 1.0 represents 0.003nV. E: Relative error shown on a base-2 log
scale. The blue, green and red lines correspond to the contours marking a relative error of
0.00125, 0.005 and 0.01, showing that the highest relative error is less than 0.02 and can
be seen inside the red contour.
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Figure 4.13: EEG contribution from MS neuron with 100 basal synapses. A:
Neuron morphology of MS neuron with 100 excitatory synapses, represented by red dots,
randomly distributed on the basal dendrites, i.e., on segments below z = 0. A 400 ms
simulation with stationary Poisson synaptic input currents, as described in Section 3.4,
gave the current dipole moment p(t), and the magnitude is shown in the green graph
on the left. The current dipole moment reaches its maximum amplitude at time point
t = tpmax. The spatial orientation of p(tpmax) is illustrated by the green arrow near the
soma. The remaining plots all show values for time point t = tpmax at the EEG plane,
a 2 by 2 cm grid of virtual electrodes located a distance ∼ 12 mm above the top of the
neuron. The black dots mark the center of the virtual electrode grid, i.e., the position
directly above the neuron. B: Extracellular potentials calculated with the CB model as
a function of space, i.e., each point represents the potential measured at a point in the
EEG plane. The scale is linear and normalized, such that 1.0 corresponds to 0.003 nV.
C: Extracellular potentials calculated with the DB model. D: Absolute error illustrating
the difference between potentials calculated from the two models, shown on a base-10 log
scale, where 1.0 equals 0.003 nV. E: Relative error plot with a log2-based scale. The blue,
green, red and pink contours illustrate 0.00125, 0.005, 0.01 and 0.02 relative error borders.
The maximum relative error calculated is less than 0.04.
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Figure 4.14: EEG contributions from MS neuron with 100 synapses distributed
all over the morphology. A: An MS neuron with 100 excitatory synapses with Poisson
input currents, see Section 3.4, randomly distributed all over the morphology. The mag-
nitude of resulting current dipole moment, p(t), shown in the plot on the left, peaks at
time t = tpmax. The spatial orientation of p(tpmax) is illustrated by the tiny green arrow
above the soma. All the remaining plots show data for the time point t = tpmax. The
plots represent data recorded by 2× 2 cm areas of 31× 31 virtual electrodes located in the
xy-plane at the top of the scalp, i.e., 12 mm above the top of the neuron. The black dot
located in the origin, marks the point straight above the neuron. B: Extracellular poten-
tials calculated by the CB model with a linear, normalized scale, where 1.0 corresponds to
0.003 nV. C: Extracellular potentials approximated with the DB model. D: The absolute
error representing the difference between the calculations from the two different models,
plotted with a base-10 log scale, on which 1.0 = 0.003 nV. The relative error shown on
a log2-based scale, where the blue, green, red and pink lines correspond to the 0.00125,
0.005, 0.01 and 0.02 contours. The maximum relative error is ∼ 0.04.



56 4. RESULTS

Randomly Spread-Out Synapse Positions

In this final experiment 100 excitatory synapses were randomly spread out all over
the MS neuron. The synapse distribution on the neuron morphology in addition to
the current dipole moment are illustrated in Figure 4.14. Extracellular potentials
were calculated with the CB and the DB models and shown in panels B and C,
respectively. The signal strength is in this case far lower than for the two preceding
examples. This is most likely due to the current dipole moment being very small
when the excitatory synapses are distributed all over the neuron. The absolute error
is plotted with a log10-scale in panel D, and panel E shows the relative error plotted
with a base-2 logarithmic scale. Except for the region on the right, the relative
error does not exceed 2%. The maximum relative error measured is, however, less
than 0.04. Similar results were found for equivalent simulations with different spike
times.

Note that EEG electrodes are much bigger than point electrodes, with diameters
up to 1 cm [31, 32]. To make the virtual experiments more EEG-like, we averaged
the potentials from the DB and CB models over a disk with 1 cm radius at the scalp
surface. The relative errors for the apical input, basal input and homogeneous input
then changed from 0.010, 0.03 and 0.012 measured at the point straight above the
neuron to 0.009, 0.03 and 0.009 for "large EEG electrodes", respectively.



Chapter 5

Discussion

Findings

A tool for calculating axial currents in cortical neurons, based on membrane po-
tentials and axial resistances generated by NEURON and LFPy, was implemented in
Python. Further, axial currents and transmembrane currents from LFPy were used
to compute the current dipole moments from single neurons. Here, the axial cur-
rents were important for enabling an internal check, meaning that current dipole
moments could be calculated in two different ways and compared to each other.
Further, Python modules for computing current dipole moments and extracellular
potentials, based on the current dipole approximation, were developed.

When compared to the compartment-based forward model, in LFPy, it turned
out that the two methods give similar results for virtual electrodes placed several
millimeters away from the neuron source. Thus, the dipole approximation cannot
be used for predicting single cell contributions to ECoG signals. For modeling of
single cell EEG contributions, on the other hand, the current dipole approximation
appears to be applicable.

Challenges

The biggest challenge faced during the work with developing the Python methods,
was finding the axial resistances of a complex neuron morphology, e.g. getting a grip
on NEURON’s mysterious ghost segments and how to find the resistance of a sibling
segment.

Notes on Simplifications

A couple of major simplifications were done with respect to conductivity and the
volume conductor model. First of all, the extracellular medium consisting of cortex,
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skull and scalp is assumed to be homogeneous, i.e., all parts are assumed to have
the conductivity. In addition, we don’t take anisotropy into account, meaning con-
ductivity is assumed not to be dependent on the spatial direction. In reality, the
conductivity is significantly higher when moving along than across the axons in white
matter. The study by Vorweck et al., 2014 [43] takes the three-compartment head
model, with brain, skull and scalp, as a starting point for investigating which other
conductive compartments to include in head volume conductor modeling. They sug-
gest to additionally include the cerebrospinal fluid and to distinguish between gray
and white matter when modeling EEG signals [43].

When modeling EEG signals in this project, values for human skull and scalp
thickness have been used to illustrate the distance from the neuron to the measuring
point. The MS neuron and the Hay neuron studied in the project are, however, not
human cells, but rather a cat and a rat cell. Human cortex is thicker than rat and
cat cortex [7], and since pyramidal cells can extend through all layers of cortex [8],
human pyramidal cells are longer than rat and cat cells, and will therefore produce
current dipole moments with longer dipole lengths. The accuracy of the current
dipole approximation depends on the dipole length, and simulations equivalent to
the ones studied here, will give a larger error for human pyramidal cells.

In order to use the current dipole approximation, the location of the current
dipole needs to be estimated. In this project the dipole location was defined as the
mean position between the soma and the synapses. A better approximation could be
to calculate the center of cell membrane area, and find the middle position between
this point and the average synapse position.

Advantages of using Axial Currents and Current Dipoles

When comparing the current dipole approximation to the compartment-based for-
ward formula, there appears to be several great advantages of using the former. One
of them being that the new method for calculating extracellular potentials can be
based on axial and not transmembrane currents. As described in Section 3.2.2, the
axial currents are calculated from the neuron’s membrane potentials and inner axial
resistances. The axial resistances are constant properties of the neuron morphology,
and the neuron’s membrane potentials are key data likely to be calculated in any
simulation. This way, no large amount of extra data is needed for calculating axial
currents, and hence the current dipole moment, and the current dipole approxima-
tion is therefore suitable for implementing into already existing neuron simulations.
Axial currents, can further be used for calculating transmembrane currents, when-
ever these are needed but not calculated in the simulation. In Lindén et al. [26], a
problem in LFPy related to parallelization and calculations of signals from networks
of neurons was reported. This problem was caused by an extracellular mechanism
in NEURON needed to extract transmembrane currents. Using axial currents instead
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may be a way of avoiding the issue.
A plus of using current dipoles is storage: Let us assume a neuron has 1000

segments and we run a one-time-step simulation. Calculating extracellular potentials
from transmembrane currents, we would have to store one current value per segment,
giving a total of 1000 numbers to store. In contrast, the current dipole moment
for the same neuron simulation requires three numbers, one for each direction of
the 3D current dipole vector. Hence, the current dipole approximation requires
much less storage, not to forget, however, that the approximation is restricted to
extracortical recordings. Besides, if the current dipole moments are going to be
used for computing EEG signals, we’re only interested in low-frequency parts of the
signals, and a downsampling can be done to further decrease the amount of data
needed.

Another advantage is that when working with neuron populations, it is a lot
easier to analyze the magnitude and orientation of the current dipole moments than
to work with thousands of transmembrane currents. With only two vectors per
neuron, containing |p(t)| and θ(t) we can get a good understanding of the activity
of a whole neuron population. It is also conceivable that these two vectors will
behave similarly across subpopulations of neurons, in such a way that we can use
averages for these populations, further simplifying the link between neural activity
and EEG.

Dipole localization is already used in EEG analysis [39, 24] and up until now,
to the best of our knowledge, the precise link between the localized dipoles and the
neural activity has not been thoroughly explored. Our hope is that the approach
described in this project can contribute to clarifying this relation.

Outlook

To improve the simulations done in this project, we suggest the following changes:
A more realistic head volume conductor model, e.g., a cortex-skull-scalp model, or
the five-compartment model suggested by Vorweck et al. [43]. In addition, a more
accurate method for positioning of the current dipole could be implemented in the
method.

Further, the methods described in this thesis could be tested against experiments
such as Teleńcuk et al., 2014 [41]. In this study, the correlation between single-cell
cortical action potentials and epidural EEG was investigated, by recording epidural
EEG and single-unit activity from macaque cortex. In an analogue virtual ex-
periment, extracellular potentials could be estimated with the compartment-based
forward-modeling scheme, and compared to the results of the experimental record-
ings.

Implementing the Python modules developed in this project in the Human Brain
Project and BrainScales [2, 1], would open for comparisons between simulated EEG
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signals from large neural networks and experimental data from real EEG recordings.
This could potentially lead to even better neuron models and a better understanding
of neural network dynamics, which can bring us closer to figuring out the underlying
biophysics of higher brain functions.
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Appendix A

Orientation of Current Dipole
Moment in Space

The spatial orientation of a current dipole moment can be defined by the two angles
shown in Figure A.1: the angle between p and the z-axis: θ0, and the angle between
the radial component of the current dipole moment: pρ and the x-axis: φ0.

ϴ0

x

y

z

Py
Px

Pz

φ0 

Figure A.1: Orientation of Current Dipole Moment in Space. Illustration of the
current dipole moment vector in space. Here, θ0 is the angle between p and the z-axis and
φ0 is the angle between the radial component of p and the x-axis.
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The angles can easily be found by decomposing p:
p(t) = px(t) +py(t) +pz(t) = px(t)x̂+ py(t)ŷ+ pz(t)ẑ, and the definition of the dot
product

ẑ · p(t) = |ẑ| |p(t)| cos θ0(t)

⇓ (A.1)

θ0(t) = cos−1
( ẑ · p(t)

|ẑ||p(t)|

)
(A.2)

= cos−1
(pz(t)

|p(t)|

)
, (A.3)

x̂ · (px(t) + py(t)) = |x̂| |(px(t) + py(t))| cosφ0(t)

⇓ (A.4)

φ0(t) = cos−1
( x̂ · (px(t) + py(t))

|x̂||(px(t) + py(t))|

)
(A.5)

= cos−1
( px(t)

|(px(t) + py(t))|

)
, (A.6)

where θ0 ∈ [0, π] and φ0 ∈ [0, 2π]. Now the current dipole moment can be completely
described by |p|, θ0 and φ0.



Appendix B

Dipole Class

# -*- coding: utf -8 -*-
"""
Created on Mon May 11 09:28:16 2015

@author: solveig
"""

# -*- coding: utf -8 -*-
"""
Created on Wed Dec 17 14:53:06 2014

@author: solveig
"""
import numpy as np
import neuron as nrn

class Dipolefixed:
""" Calculate currents and current dipole moment from cell."""

def __init__(self , cell , first_sp = None):
""" Initialize cell , # timesteps , # sections in cell."""
self.cell = cell
self.time = len(cell.tvec)
self.numsecs = len(cell.allsecnames)
self.vlist = cell.vmem
self.children_dict = self.children_dictionary ()
self.ri_list = self.axial_resistance ()
if not first_sp:

first_sp = cell.sptimeslist [0][0]
self.startstep = int((self.time - 1)/( self.cell.tstopms -

self.cell.tstartms )*np.floor(first_sp) + 1)
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def transmembrane_currents(self):
""" Return midpoint locations and transmembrane currents.

Returns
_______
r_seg : ndarray [microm]

Array containing location vectors for midpoints of
all segments in cell.

i_trans : ndarray [nA]
Array of transmembrane currents through midpoints of
all compartments in cell.

"""

r_seg = np.array ([self.cell.get_intersegment_vector(idx0 =
0, idx1 = i) for i in range(
self.cell.totnsegs )])

r_seg += self.cell.somapos

i_trans = self.cell.imem

return r_seg , i_trans

def axial_currents(self):
""" Return magnitude and distance traveled by axial currents.

Returns
-------
i_axial : ndarray [nA]

Array of axial currents , I(t) going from compartment
end to mid/ compartment mid to start for all
comparment halves in cell.

d_list : ndarray [microm]
Array of distance vectors traveled by each axial
current in i_axial.

"""

iaxial = []
d_list = []

dseg = zip((self.cell.xmid - self.cell.xstart),
(self.cell.ymid - self.cell.ystart),
(self.cell.zmid - self.cell.zstart ))

dpar = zip((self.cell.xend - self.cell.xmid),
(self.cell.yend - self.cell.ymid),
(self.cell.zend - self.cell.zmid))

for secnum , sec in enumerate(nrn.h.allsec ()):
if not nrn.h.SectionRef(sec.name ()). has_parent ():
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# skip soma , since soma is an orphan
continue

bottom_seg = True

parentseg = nrn.h.SectionRef(sec.name ()). parent ()
parentsec = parentseg.sec

branch = len(self.children_dict[
parentsec.name ()])> 1

parent_idx = self.cell.get_idx(section =
parentsec.name ())[ -1]

seg_idx = self.cell.get_idx(section=sec.name ())[0]

# we only need parent_ri calculated for bottom -segments
# that aren’t children of soma.
parent_ri = (nrn.h.ri(0) if bottom_seg and

not ’soma’ in parentsec.name() else 0)

for seg in sec:
iseg , ipar = self.parent_and_segment_i(seg_idx ,

parent_idx , parent_ri ,bottom_seg ,
branch , sec , parentsec)

if bottom_seg and ’soma’ in parentsec.name ():
# if a seg is connencted to soma , it is
# connected to the middle of soma ,
# and dpar needs to be altered.
dpar[parent_idx] = [(self.cell.xstart[seg_idx] -

self.cell.xmid[parent_idx ]),
(self.cell.ystart[seg_idx] -
self.cell.ymid[parent_idx ]),
(self.cell.zstart[seg_idx] -
self.cell.zmid[parent_idx ])]

d_list.append(dpar[parent_idx ])
d_list.append(dseg[seg_idx ])
iaxial.append(ipar)
iaxial.append(iseg)

parent_idx = seg_idx
seg_idx += 1

# counter += 2
branch = False
bottom_seg = False
parent_ri = 0

return np.array(d_list), np.array(iaxial)
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def axial_resistance(self):
""" Return NEURON axial resistance for all cell compartments.

Returns
-------
ri_list : ndarray [MOhm]

Array containing nrn.h.ri(seg.x) for all segments in
cell. nrn.h.ri(seg.x) is the axial resistance from
the middle of the segment to the middle of its parent
segment. If seg is the first/ bottom segment in a
section , nrn.h.ri(seg.x) is the axial resistance from
the middle to the start of the segment , seg , only.

"""

ri_list = np.zeros(self.cell.totnsegs)
comp = 0
for sec in nrn.h.allsec ():

for seg in sec:
ri_list[comp] = nrn.h.ri(seg.x)
comp += 1

return ri_list

def children_dictionary(self):
""" Return dictionary with children seg indices for all secs.

Returns
-------
children_dict : dictionary

Dictionary containing a list for each section ,
with the segment index of all the section ’s children.
The dictionary is needed to find the
sibling of a segment.

"""

children_dict = {}
for sec in nrn.h.allsec ():

children_dict[sec.name ()] = []
for child in nrn.h.SectionRef(sec.name ()). child:

# add index of first segment of each child
children_dict[sec.name ()]. append(self.cell.get_idx(

section = child.name ())[0])

return children_dict

def parent_and_segment_i(self , seg_idx , parent_idx ,
parent_ri , bottom_seg , branch ,
sec , parentsec ):

""" Return current from segmid to start and parentend to mid.
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Parameters
----------
seg_idx : int
parent_idx : int
parent_ri : float [MOhm]
bottom_seg : boolean
branch : boolean
sec : nrn.Section object
parentsec : nrn.Section object

Returns
-------
iseg : ndarray [nA]

ndarray containing axial currents from segment middle
to segment start for all segments in sec.

ipar : ndarray [nA]
ndarray containing axial currents from
parent segment end to parent segment middle
forall parent segments in cell.

"""
seg_ri = self.ri_list[seg_idx]
vpar = self.vlist[parent_idx]
vseg = self.vlist[seg_idx]
if bottom_seg and branch and not ’soma’ in parentsec.name ():

# segment is a bottom_seg with siblings and a parent
# hat is not soma. need to calculate ipar and iseg
# separately.

[[ sib_idx ]] = np.take(self.children_dict[
parentsec.name()],
np.where(self.children_dict[
parentsec.name ()]

!= seg_idx ))
sib_ri = self.ri_list[sib_idx]
vsib = self.vlist[sib_idx]

if np.abs(parent_ri) < 1e-8:
raise RuntimeError("Zero parent ri")

v_branch = (vpar/parent_ri + vseg/seg_ri +
vsib/sib_ri )*(1./(1./ parent_ri +
1./ seg_ri + 1./ sib_ri ))

# only a fraction of ipar is added for each parent ,
# since children can have the same parent
# and ipar should only be counted once.
ipar = (vpar -

v_branch )/ parent_ri/len(self.children_dict[
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parentsec.name ()])
iseg = (v_branch - vseg)/ seg_ri

else:
ri = (parent_ri + seg_ri)
iseg = (vpar - vseg)/ri
ipar = iseg

return iseg , ipar

def current_dipole_moment(self , dist , current ):
""" Return current dipole moment vector P and P_tot.

Parameters
----------
current : ndarray [nA]

Either an array containing all transmembrane currents
from all compartments of the cell. Or an array of all
axial currents between compartments in cell.

dist : ndarray [microm]
When input current is an array of axial currents ,
the dist is the length of each axial current.
When current is the an array of transmembrane
currents , dist is the position vector of each
compartment middle.

Returns
-------
P : ndarray [10^ -15 mA]

Array containing the current dipole moment for all
timesteps in the x-, y- and z-direction.

P_tot : ndarray [10^ -15 mA]
Array containing the magnitude of the
current dipole moment vector for all timesteps.

"""

P = np.dot(current.T, dist)
P[:self.startstep] = 0.
P_tot = np.sqrt(np.sum(P**2, axis =1))
return P, P_tot
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CalcLFP Class

# -*- coding: utf -8 -*-
"""
Created on Mon Feb 23 12:20:17 2015

@author: solveig
"""

import numpy as np

class CalcLFP:
’’’Calculate extracellular potentials from cell.’’’

def __init__(self , cell , X, Y, Z, ppidx = [], first_sp = None):
’’’Initialize cell , X, Y, Z and dipole midpoint r_mid.’’’
# conversion factors:
self.k1 = 1E6 # from mV to nV

self.cell = cell
self.time = len(cell.tvec)
self.totnsegs = cell.totnsegs
self.X = X
self.Y = Y
self.Z = Z
syninds = cell.synidx + ppidx
r_soma_syns = [self.cell.get_intersegment_vector(idx0 = 0,

idx1 = i) for i in syninds]
self.r_mid = np.average(r_soma_syns , axis = 0)
self.r_mid = self.r_mid /2. + self.cell.somapos
if not first_sp:

first_sp = cell.sptimeslist [0][0]
self.startstep = int((self.time - 1)/(

self.cell.tstopms -
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self.cell.tstartms )*np.floor(
first_sp) + 1)

def grid_lfp_theta(self , P, sigma):
’’’Return array phi(t) for points in XYZ -grid ,timedep theta.

Parameters
----------
P : ndarray [1E-15 mA]

Array containing the current dipole moment for
all timesteps in the x-, y- and z-direction.

sigma : float [ohm/m]
Extracellular Conductivity.

Returns
-------
theta : ndarray [radians]

Angle between phi(t) and distance vector from
electrode to current dipole location ,
calculated for all timesteps.

grid_LFP : ndarray [nV]
Array containing the current dipole moment at all
points in X-, Y-, Z-grid for all timesteps.

’’’
gridpoints = zip(self.X.flatten(), self.Y.flatten(),

self.Z.flatten ())
grid_LFP = np.zeros ((len(gridpoints), self.time))
for j in range(len(gridpoints )):

dist = gridpoints[j] - self.r_mid
cos_theta = np.dot(P, dist )/(np.linalg.norm(

dist)*np.linalg.norm(P, axis = 1))
cos_theta = np.nan_to_num(cos_theta)
theta = np.arccos(cos_theta)
grid_LFP[j, :] = 1./(4* np.pi*sigma )*np.linalg.norm(P,

axis = 1)* cos_theta/np.sum(
dist **2)* self.k1

return grid_LFP , theta
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