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Abstract

In this thesis different machine learning algorithms have been utilised to pre-
dict treatment outcome for patients with colorectal cancer. The predicted
treatment endpoint was overall survival. The patient cohort included 77 pa-
tients with histologically confirmed colorectal cancer who were recruited at
Akershus University Hospital between 2013 and 2017. Radiomics was used
to extract first-order statistics, shape and texture features from T2-weighed
images and DWIs taken of the patients before starting treatment. These fea-
tures, in addition to clinical data, were used to train machine learning models.
The models were later combined into majority vote classifiers. Models and
majority vote classifiers were built for three different patient subsets: all pa-
tients, patients who had received chemoradiotherapy, and patients who had
not received chemoradiotherapy. Performance was estimated using k-fold
cross validation with MCC as the the validation metric.

Repeated Elastic Net Technique (RENT) and PCA were used for feature
reduction before training models and building the majority vote classifiers.
RENT was also used to analyse feature importance for the radiomics data.

All the majority vote classifiers achieved mean MCC scores above 0, but had
quite large mean standard deviations. The differences in the performances of
the models between folds in the k-fold cross validation were severe, indicating
that the data was susceptible to poor train-test splits. A handful of features
with high selection frequency were singled out during the RENT analysis of
the radiomics data.
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Chapter 1

Introduction

Cancer is one of the leading causes of death in the developed world [1]. In
2020 alone, as many as 10.0 million deaths were attributed to cancer and
19.3 million new cases were reported worldwide [2]. Magnetic resonance
imaging (MRI) is used when diagnosing cancer. MRIs give valuable infor-
mation about a patients prognosis and play a factor in deciding the correct
course of treatment [3].

Radiomics is a growing field in medicine. It is based on the hypothesis that
MRI and images from other modalities, such as PET and CT scans, contain
valuable information that is not available through visual inspection alone.
Radiomics is the process of extracting quantitative data from these images
via mathematical algorithms [4].

The goal of radiomics is to give a better understanding of how different tu-
mours respond to treatments, as well as which patients are more at risk for
certain factors, such as increased risk of complications or cancer recurrence.
A deeper understanding of such subjects can greatly influence the cancer
treatment options that are given to individual patients. This can allow dos-
ing, treatment duration and intensity to be tailored for each patient.

This thesis has two aims. The first aim is to predict treatment outcome for
patients with colorectal cancer with overall survival as the endpoint. This
will be done by applying machine learning methods on information extracted
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from MRIs and available clinical data. The second aim is to analyse which,
if any, features extracted from MRIs might hold medical predictive power.

To achieve the first aim, a number of majority vote classifiers were con-
structed. The classifiers were made in the hope of increasing predictive power
by combining models based on different datasets. The classifiers were made
up of three different models trained on radiomics and clinical data. The rea-
soning behind using majority vote classifiers is that each dataset might have
strengths and weaknesses when it comes to detecting and predicting certain
elements in the data. Some elements might be more prominent in one set
than another, and a model from one set could pick up on different aspects of
the data compared to other models.

To achieve the second aim, a number of Repeated Elastic Net Technique
(RENT) analyses were performed. RENT is a feature selection technique
that focuses on feature selection stability.
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Chapter 2

Theory

2.1 Cancer

Cancer is a catch-all term for a group of about 200 diseases that involve
abnormal cell growth. The body is constantly producing new cells to replace
old ones. New cells are created when a cell doubles its DNA and splits
in two. Sometimes a mutation occurs in a new cell that causes it to split
itself uncontrollably and the mutated cells will begin to form a tumour. The
time between the mutation occurring and the tumour becoming detectable
varies based on cancer type, group and aggressiveness. Cancer can spread to
other organs by way of the bloodstream or lymphatic system. This is called
metastasis [5].

Cancer kills by affecting major organs and their ability to function [5] and is
one of the leading causes of death in the developed world [1]. In 2020 alone,
10.0 million deaths were attributed to cancer and 19.3 million new cases were
reported worldwide [2].
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2.1.1 Colorectal Cancer

Colorectal cancer refers to cancer originating in the large bowel (colon) and
the back passage (rectum) [6]. It is the most common type of cancer in
Norway and affects men and women equally. 4.499 new cases of colorectal
cancer were reported in Norway in 2019, 2.338 men and 2.161 women [7].
The cause is usually unknown, but according to [5] and [8] increased risk has
been linked to a number of factors. Some of these factors are common across
all cancer types and some factors are specific to colorectal cancer.

Common factors include diets with an excess of red and processed meat and
lacking in fibers, being overweight or obese, lack of physical activity, drink-
ing alcohol or smoking, old age, and exposure to radiation, among others.
Specific factors for colorectal cancer include some inherited conditions, such
as familial adenomatous polyposis and Lynch syndrome, other medical con-
ditions such as Ulcerative colitis and Crohn’s disease, as well as the number
of benign polyps present in the bowel.

2.1.2 Staging

Cancer staging is the process of finding out how far a cancer has progressed.
Staging is done before starting treatment and is important in deciding which
treatment a patients receives. Staging is based on where the tumour is lo-
cated, the size of the tumour and whether the cancer has spread to nearby
lymph nodes or other parts of the body. There are many different staging
systems, but the TNM system is the most widely used [9].

In the TNM system, T describes the primary tumour, N describes whether
the cancer has spread to nearby lymph nodes and how many, and M describes
whether the cancer has spread to other parts of the body. Each letter is
followed by a number or the letter X. The number describes the extent of
the cancer relating to the specific area covered by the letter. If a letter is
followed by X it means that the cancer could not be measured.

T followed by 0 means that abnormal cells have been found but have not yet
formed a tumour. T followed by 1 or higher describes the extent of the main
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tumour. The higher the number the larger the tumor is in size or the more
the tumour has grown into nearby tissues. The highest T staging is 4.

N followed by 0 means that the cancer has not spread to any lymph nodes.
N followed by 1 or higher means that the cancer has spread to nearby lymph
nodes. A high number means that more lymph nodes contain cancer com-
pared to a lower number. The highest N staging is 3.

M followed by 0 means that the cancer has not metastasised. If M is followed
by a 1 it means that the cancer has spread. This is the highest M staging
[9].

2.1.3 Treatment

Treatment of colorectal cancer depends on factors such as the stage of the
cancer, the placement of the tumour and the general condition of the pa-
tient [10]. The main treatment options for cancer are surgery, radiotherapy,
chemotherapy and combined chemotherapy and radiotherapy, also know as
chemoradiotherapy (CRT) [11].

Radiation therapy works by damaging the DNA of cells in order to kill or
stop cancer cells from dividing [12]. Chemotherapy refers to drugs used
for cancer treatment. Radiation and surgery are local treatments, meaning
that they are aimed at specific parts of the body where cancer has been
found. Chemotherapy on the other hand travels throughout the body and
can therefore kill cancer cells that have metastasised [13].

Patients might receive CRT before surgery if the cancer has spread to nearby
structures or tissue, or to shrink the tumour to create clear tissue borders
for surgery [11].

2.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is an imaging modality that uses non-
ionising radiation to create diagnostic images. An MRI scanner consists of a
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powerful magnet in which the patient lies and radio frequency (RF) transmit
and receive coils, which excite and detect the MR signal. The MR signals
are converted into images by a computer attached to the scanner. Imaging of
any part of the body can be obtained in any plane [14]. It is common to use
MRI when diagnosing or determining the correct treatment for cancer [5].
The following subsections on MRI are based on [15] unless stated otherwise.

2.2.1 Fundamental physics for MRI

Hydrogen protons are positively charged and have spin that produces a small
magnetic field. Hydrogen protons are present in water, which make up about
70% of the human body. The hydrogen protons in the body all have random
orientations, thus cancel each other out under normal circumstances. How-
ever, if a human body is placed inside a strong magnetic field, such as the
ones produced by an MRI scanner, the hydrogen protons will align in the
direction of the field. Some will align in the opposite direction and a small
majority will align in the same direction as the magnetic field. This creates
a small net magnetisation in the direction of the magnetic field. It is this
magnetisation that MRI scanners utilize to produce images of the body.

The protons do not align perfectly parallel to the magnetic field, but instead
precess around an axis with the same direction as the field. The precession
frequency of a proton is defined by a constant, called the gyromagnetic ratio,
times the strength of the magnetic field:

f = k ×B0

The gyromagnetic ratio for hydrogen protons is 42.6 MHz/T (megahertz per
tesla). The magnetic fields used in MRIs are between 1.5T and 3.0T, for
comparison the earth’s magnetic field is about 0.30 × 10−4T at the equator
and 0.60× 10−4T at the poles [16].

Protons in a magnetic field have the ability to absorb and re-emit energy of
the same frequency as the proton’s precession frequency. The net magnetisa-
tion of protons in a magnetic field points in a direction parallel to the main
magnetic field. However, by transmitting pulses of energy at the same RF as
the precession frequency the energy is absorbed and the net magnetisation
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rotates away from the field’s direction. The rotation angle depends on the
strength and duration of the RF pulse.

2.2.2 T1 and T2 weighed images

The direction parallel to the magnetic field is called the longitudinal direction
and corresponds to the head-to-toe direction for the patient when they are
placed into an MRI scanner. If the longitudinal direction corresponds to the
z direction in a coordinate system, one can imagine that the patient’s left-
right direction corresponds to the x direction, and the front-back direction
corresponds to the y direction. This x-y plane is usually called the transverse
plane.

By rotating the net magnetisation by 90◦, the magnetisation in the longitudi-
nal direction becomes zero and the magnetisation is moved into the transverse
plane. After removing the RF signal the magnetisation in the longitudinal
direction will begin to grow back. This is called longitudinal relaxation, also
known as T1 relaxation.

The hydrogen protons in different tissues have different T1 relaxation rates.
This is the source of contrast in T1-weighed images. There will be contrast
between different tissue in an image taken when the relaxation of differ-
ent tissue are at different stages. Tissue with short relaxation time will be
brighter than tissue with long relaxation time. T1-weighed images are good
at showing the boundaries between different tissue [14].

T2 relaxation also begins by rotating the net magnetisation into the trans-
verse plane. During the RF transmission the protons precess together, mean-
ing they are in phase. After the 90° RF pulse is ended the protons will begin
to dephase. Hydrogen protons in different tissue dephase at different rates.
This is the source of contrast in T2 weighed images. Tissue with short T2
relaxation time will be darker than tissue with long relaxation time. T2-
weighed images are good at showing collections of abnormal fluid [14].
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2.2.3 Diffused weighed images

Diffused weighed imaging (DWI) is an MRI technique where the source of
contrast comes from differences in the mobility of protons between tissues.
Tissues that are highly cellular, such as tumour tissues, restrict the apparent
diffusion of water protons.

The sensitivity of the imaging can be altered by changing what is known as
the b value:

b = k2 ×G2 × δ2(∆− δ

3
)

where k is the gyromagnetic ratio, G is the diffusion gradient amplitude,
δ is the gradient diffusion length and ∆ is the diffusion time. DWIs with
different b values can be used to detect and characterise tumours based on
the differences in water diffusivity between images, or the images can be
qualitatively assessed individually [17].

Figure 2.1 shows a T2-weighed image, Figure 2.1a, and a DWI, Figure 2.1b,
of the tumour of one of the patients from the data set used in this thesis.

(a) T2-weighed image of tumour. (b) DWI of tumour.

Figure 2.1: T2-weighed image (a) and DWI (b) showing the tumor of a pa-
tient included in the Hypoxia-mediated Rectal Cancer Aggressiveness (Oxy-
Target) study.

15



2.3 Machine learning

Machine learning is a branch of artificial intelligence that focuses on self-
learning algorithms that find information from and make connections within
data. There are three main categories within machine learning: supervised,
unsupervised, and reinforcement learning.

In supervised learning, algorithms have access to outcome labels for the data.
By comparing these outcome labels with their own output they can evaluate
their own performance and provide direct feedback. Supervised learning
algorithms use this feedback to maximise a reward function that works to
move the output labels closer to the real outcome labels. Supervised learning
is used for classification and regression problems [18].

Unsupervised learning algorithms do not have access to outcome labels and
must therefore work without direct feedback. Unsupervised learning explores
the structure of data without known target variables. It is used to find hidden
structures in data, such as clusters or groups.

Reinforcement learning uses a reward system to guide the algorithm through
a decision process in order to learn a series of actions. An example of this is
teaching a chess program the correct series of actions to win a game [18].

The following subsections on machine learning are based on [18] unless stated
otherwise.

2.3.1 Classification

In this thesis classification algorithms will be applied to patient data in the
hope of building a model that can correctly predict treatment outcome for
patients with colorectal cancer. Classification is an application of supervised
machine learning where the goal is to predict the class labels of new instances
based on past observations.
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2.3.2 Preprocessing

2.3.2.1 Standardisation

Standardisation is a type of feature scaling which gives the data the proper-
ties of a standard normal distribution. This means that each feature has a
mean centered at zero and a standard deviation of one. This is achieved by
subtracting the sample mean from every sample and dividing by the standard
deviation as shown in the following equation:

x′j =
xj − µj

σj

where xj is the observation vector, µj is the mean and σj is the standard
deviation. Data should generally be standardised if it contains features in
different ranges. This is so that the models do not become biased towards
features with big ranges.

2.3.2.2 Challenges with high-dimensional data

It is easier for an algorithm to find a separating hyperplane between training
samples in a sparse high dimensional feature space compared to in a dense
or low dimensional feature space. In this way using a simple classifier in
a high dimensional space corresponds to using a complex model in a lower
dimensional space.

Feature selection and feature extraction are two methods for reducing the
feature space. Feature selection methods select a subset of the total fea-
tures, while feature extraction methods derive information from the original
features to construct new features.

Reducing the feature space can improve computational efficiency and reduce
generalisation error by removing irrelevant features and noise. It is especially
helpful for algorithms that don’t support regularisation such as K-nearest
neighbors.
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2.3.2.3 Repeated Elastic Net Technique

Repeated Elastic Net Technique (RENT) is a feature selection technique that
focuses on feature selection stability [19]. It is based on an ensemble of elastic
net regularised models of the same type trained on different subsets of the
complete dataset. The importance of a feature can be acquired from the
frequency at which it is selected across the models. However, even though a
feature is selected by one or many models it does not mean that the feature
is stable. The feature weights might only be slightly different from zero or
have alternating signs across models. To ensure that the selected features
are stable, RENT lets the user define the cutoff value for three criteria to
optimally exploit the feature weight distribution,

1. τ1, the minimum required percentage of non-zero feature weights across
the models.

2. τ2, the minimum required proportion of the weights across models to
have the same sign.

3. τ3, the confidence level used in the Student’s t-test with rejection of the
null hypothesis, assuming that the mean of the feature weights across
all models is zero.

The weight distribution across models for a feature must meet all three cri-
teria in order for the feature to be chosen by RENT.

The algorithm used by RENT for binary classification problems is logistic
regression models penalised by elastic net. Elastic net consists of a L1 reg-
ularisation term λ1(w) = |w|, a L2 regularisation term λ2(w) = ||w||2, a
mixing parameter α ∈ [0, 1], where α = 1 would mean pure L1 regularisation
and α = 0 would mean pure L2 regularisation, and the parameter γ which
defines the regularisation strength. Altogether, the elastic net regularisation
term is defined as

λenet(w) = γ[αλ1(w) + (1− α)λ2(w)]

Logistic regression is explained in section 2.3.4.2, while L1 and L2 regulari-
sation are explained in section 2.3.3.5.
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The purpose behind choosing stable features is to strengthen model interpre-
tation and increase model robustness [19]. Figure 2.2 shows the τ1 values of
the features from a RENT analysis on a subset of the Wisconsin breast can-
cer dataset from the UCI database. For more information about this dataset
see [20].

Figure 2.2: Barplot of τ1 values from a RENT analysis performed on a subset
of the Wisconsin breast cancer dataset from the UCI database. The feature
indexes are on the x-axis, and the y-axis shows the τ1 values.

The figure shows that some features, such as the features with index 7 and
20, had nonzero feature weights across all models in the ensemble, while
others, such as the features with index 4 and 5, were never assigned a weight
unequal to zero. There were also some features that were only selected by
elastic net for a few of the models, such as the features with index 3 and
10. These features would be considered unstable, since whether they were
selected or not was dependent on the subset used used for training.

2.3.2.4 Principal component analysis

Principal component analysis (PCA) is an unsupervised feature extraction
method. PCA reduces a d dimensional feature space into k dimensions by

19



constructing a d×k-dimensional transformation matrix that make it possible
to map vectors from d to k dimensions.

The correlation matrix of a dataset X is Xcorr. The transformation matrix
for X is constructed out of the first k eigenvectors of Xcorr.

Geometrically, PCA works by first finding the vector in the feature space
that contains the most variation within the observations. This becomes the
first component. It then finds the second component by looking among the
vectors that are orthogonal to the first component and chooses the one with
the most variation, and so on. Each principal component is orthogonal to all
others, thus there is no correlation between them.

While PCA finds the vector with the most variation within the observations,
it does not take into account the observation classes because it is an unsuper-
vised method. This means that observations with different classes can end
up being mapped to similar locations in the new vector space.

2.3.3 Training process

2.3.3.1 Train and test set

In machine learning, it is common to assign the data matrix the name X and
the corresponding response vector the name Y. As the goal of a classification
model is to predict the class of unseen data, the dataset is divided into a
training dataset and a test dataset. The training dataset is used to train the
model, while the test dataset is used after training to evaluate how well the
model generalises to unseen data.

During model selection, e.g. hyperparameter tuning, each model needs to be
evaluated on unseen data. If the same test set was used to evaluate every
model it would cease to be unseen data and become part of the training
data. In other words, instead of finding a model that generalises well to
any potential test set, the process is finding a model that fits a specific test
set and are likely to overfit. To avoid this problem we need to change the
evaluation method of the models.
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2.3.3.2 Cross validation

Cross validation (CV) is a group of model validation methods where the
averages over multiple fitness estimates are used to evaluate a model. In
k-fold CV the dataset is randomly divided into k folds where k − 1 folds
are used to train the model and the remaining fold is used for performance
evaluation. The training and evaluation process is repeated k times and each
fold is used as the evaluation set once, see Figure 2.3. Thus k models and
performance evaluations are obtained. By taking the average across the folds,
a more accurate and robust performance evaluation is achieved compared to
using a single training and test set, which would only give a single evaluation.

Because multiple folds are used as training and validation at different points
during the process, the results are less likely to be affected by unlucky splits.
However, unlucky splits can still occur if there is little data available and few
splits. An unlucky split would be a split of the data where the subsets are
not representative of the whole dataset. For example, a model trained on
a training set only made up of easily classified samples and evaluated on a
test set that contains difficult to classify samples would have a much lower
performance evaluation compared to a model that was trained and evaluated
on sets that were the other way around.

It is also useful to ensure that each class is represented in each fold. Both for
reasons of class imbalance, as stated later in section 2.3.3.4, and also because
a model can not be trained or tested on a class if it is not represented at all
in a fold. Stratified k-fold CV is a variation of k-fold CV which strives to
preserves the class ratio of the dataset when making the folds.
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Figure 2.3: An example of 4-fold CV.

2.3.3.3 Over- and Underfitting

One of the reasons for testing the model on unseen data is to check for over-
or underfitting. Over- and underfitting are related to bias and variance.
Variance is the variability in the predictions that a model gives for a data
point. Bias is the systemic difference between the correct value and the
predictions given by a model for a data point. A model with low bias and low
variance will give accurate and concentrated predictions, while a model with
high bias and high variance will give inaccurate and spread out predictions.
In machine learning the optimal model is one with low bias and low variance,
but this is difficult to achieve in reality. This is because bias and variance
are a trade-off.

A model with low bias is often the result of overfitting. The model has
too many parameters, is overly complex and specialised on the particulars
of the training data. A model that has low variance is often the result of
underfitting. The model has too few parameters resulting in a model that
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is overly simple and unable to capture the underlying pattern in the data.
Both of these types of models are unable to generalise well to unseen data.
To find a good model one would need to find the balance between bias and
variance that minimises the total error.

One way to detect over- or underfitting is to compare the prediction results
from the training set and test set. A model that performs much better at
predicting class labels on the training samples compared to the test samples
is showing signs of overfitting, while an underfit model will predict training
samples and test samples about the same, but both will give poor predictions.

2.3.3.4 Class imbalance

When the number of samples from each class in a dataset differ substantially,
the dataset is considered imbalanced. An imbalanced dataset can influence
the training and validation process. The dataset used in this thesis has a class
imbalance where approximately 30% of samples belong to class 1, while the
remaining 70% belong to class 0. A classifier could thereby simply classify
all samples as class 0 and still obtain an accuracy of 70%, even if this would
mean misclassifying all samples from class 1.

A situation like this could cause the classifier to become biased towards the
majority class. There are several methods to mitigate this. One could use a
random subset of the majority class of equal size to the minority class, sample
the minority class with replacement until the classes become of equal size,
generate synthetic samples for the minority class, or introduce regularisation
or class weighing.

2.3.3.5 Regularisation

Regularisation is a way to put constraints on a model, usually in order to
regulate complexity. Two popular regularisation methods are L1 and L2
regularisation. The L1 norm of the feature weight vector w is given by

L1 :‖ w ‖1=
m∑
j=1

| wj |
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and the L2 norm of the feature weight vector is given by

L2 :‖ w ‖22=
m∑
j=1

w2
j

where wj is the weight corresponding to the jth feature in the data and m
is the total number of features. The purpose of L1 and L2 regularisation is
to punish large feature weight values, as large feature weights is a sign of
overfitting. L1 and L2 regularisation is implemented by adding the terms
above to the loss function of a machine learning algorithm, together with
a parameter that controls the regularisation strength. Depending on the
regularisation strength. L1 regularisation can yield sparse feature vectors by
pushing most weights to zero. In this sense, it can be considered a feature
selection technique.

2.3.3.6 Hyperparameter Tuning

Most machine learning algorithms have two types of parameters: those that
are learned through training, such as the feature weights in logistic regression,
and those that are defined together with the model, such as regularisation
strength in logistic regression. This last type is also called hyperparameters.
When selecting an algorithm it is often advantageous to try out different
hyperparameter combinations. This makes hyperparameter tuning a part of
model selection.

Parameter tuning means to find the best hyperparameter combination. To
tune a model, one defines multiples of the same type of model with different
values for the hyperparameters one wishes to tune, e.g. logistic regression
models with different regularisation. Tuning can be done by performing a grid
search. Grid search is a brute-force method that compares all the possible
combinations of the defined hyperparameters to find the optimal.
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2.3.4 Classification algorithms

2.3.4.1 Support Vector Machine

Support vector machines (SVMs) are a set of supervised learning methods
with applications within classification, regression and outliers detection [21].
The goal of SVMs is to maximize the distance between the decision boundary
and the closest training samples. This distance is called the margin, and
the closest training samples are called support vectors, see Figure 2.4. The
benefit of having large margins is that it lowers the generalization error, as
models with small margins are prone to overfitting.

Figure 2.4: A schematic showing the margin. The circles represents samples
from two different classes, the circles on the dotted lines are support vectors
and w is the margin.

Support vector machines are effective in high dimensional spaces, even in
cases where the number of dimensions is higher than the number of samples.
However, if the number of dimensions outnumber the samples it is important
to avoid overfitting by implementing different kernel functions and regulari-
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sation [21].

2.3.4.2 Logistic Regression

Despite its name, logistic regression is not a regression algorithm, it is instead
a classification algorithm. Logistic regression models are used for binary
classifications problems such as pass/fail or healthy/sick.

Logistic regression is based around the logistic function, also known as the
sigmoid function. The sigmoid function is a S-shaped curve that can map
any real number into a value between 0 and 1, but never exactly 0 or 1. It
is written as:

θ(z) =
1

1 + e−z

The input of the sigmoid function, z, is the linear combination of weights w
and sample features x, z = w0x0+w1x1+···+wmxm, where w0 is the bias unit
and x0 is equal to 1. The output from the sigmoid function is interpreted as
the probability that a sample belongs to class 1 given the sample’s features
x. The class probabilities are converted into a binary class prediction via a
threshold function. One of the reasons why logistic regression is so widely
used is because it gives class probabilities in addition to class predictions.

The cost function used for training the weights in logistic regression is the
log-likelihood function:

J(w) =
m∑
i=1

[−yilog(θ(zi))− (1− yi)log(1− θ(zi))]

where yi is the true class label for sample i. Logistic regression models are
less complex compared to SVMs, making them easier to train and update.
However, logistic regression models are more vulnerable to outliers since they
try to maximise the conditional likelihoods of the training data, while SVMs
care more for the support vectors by the decision boundary.
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2.3.4.3 Decision Trees

Decision tree classifiers are a group of models that break down data by ask-
ing a series of questions. During the training process a decision tree learns
which questions to ask in order to best classify the data. Decision trees are
effective on both categorical and numeric variables. Decision trees are es-
pecially useful if interpretability is important because the rationale behind
each classification is apparent in the structure of the tree.

Figure 2.5: A schematic of a decision tree. The rectangles represent nodes
and the circles represents leaves.

As seen in Figure 2.5, a decision tree has one root and a number of nodes.
Each node is connected to its parent node. The nodes without children are
called leaves.

At each node one can calculate the information gain. The information gain is
the difference between the impurity of the parent and the sum of the impurity
of the child nodes. For binary trees, each parent node is split into two child
nodes. The information gain is expressed with the following equation:

IG(Dp, f) = I(Dp)−
Nleft

Np

I(Dleft)−
Nright

Np

I(Dright)

where I is the measure for impurity, Dp is the dataset of the parent, Dleft and
Dright are the datasets of the left and right child node, respectively, Np is the
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number of samples at the parent node, and Nleft and Nright are the number
of samples at the left and right child node. f is the feature to perform the
split.

The steps used to build a decision tree goes like this, start at the root and
split the data on the feature that leads to the biggest information gain. This
creates two child nodes. Move down to the child nodes and split again on
the feature that leads to the biggest information gain. Repeat this process
until all nodes are pure, i.e. only contain data from one class. This process
can lead to very deep trees that can easily overfit, so in practice it is normal
to prune the tree by specifying the maximal depth. Feature scaling is not
required for decision trees.

2.3.4.4 Random forest

A random forest is an ensemble of decision trees. The idea behind random
forest is that training a number of deep decision trees that individually suffer
from overfitting and taking the average will lead to a more robust model. The
random forest algorithm can be described in the following steps:

1. Draw a random bootstrap sample of size n

2. Grow a decision tree from the sample. At each node:

(a) Randomly select d features without replacement.

(b) Split the node using the features that provides the best split

3. Repeat steps 1 and 2 k times.

4. Aggregate the predictions by each tree to assign the class label by
majority vote.

The splitting process is slightly different in a random forest compared to
a single decision tree. Instead of seeking out the best split among all the
features, only a random subset is considered.
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The advantage of random forest over a single decision tree is robustness.
For hyperparameter tuning, overfitting of individual trees are no longer of
much concern. Therefore the trees no longer need to be pruned by defining
a maximum depth, but a new parameter k, which controls the number of
decision trees in the ensemble, has been introduced. Typically, the greater
the number of trees, the better the estimated performance of the model will
be, at the cost of increased computational expense.

2.3.4.5 K-nearest neighbours

K-nearest neighbor (KNN) is a non-parametric machine learning algorithm.
This means that instead of estimating parameters from the training data to
classify new data, it memorises the training data. The KNN algorithm can
be summarised in the following steps.

1. Choose the number of nearest neighbors to base prediction on, k, and
a distance metric.

2. Find the k nearest neighbors to the sample that is being classified.

3. Assign the class label by majority vote.

In other words, KNN finds the k nearest, meaning most similar, samples
to the sample that is being classified and determines the class by majority
voting. The main advantage of non-parametric algorithms is that they can
immediately adapt to new data. The downside is that computational com-
plexity grows linearly with the number of samples in the training data and
none of the training data can be discarded.

2.3.5 Ensemble learning

Ensemble learning methods combine multiple classifiers into one single meta-
classifier. The majority vote classifier is a popular ensemble learning method
where the class label prediction of the meta-classifier is decided via combining
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the predicted class label from each classifier and selecting the class label with
the most votes.

Ensemble methods have two main advantages: performance and robustness.
By combining models, better performance is archived because the amount
of error in the predictions that is due to variance is reduced, and the spread
of the prediction scores for the ensemble will be smaller than the spread for
each individual model in the ensemble, leading to a more robust classifier.

However, an ensemble will not always lead to better performance. If the
ensemble is made up of one well-performing model and a group of under-
performing models, the ensemble may only perform as well as the one top-
performing model. I could also perform worse than the top-performing model
if the performance of the ensemble is lowered by the under-performing mod-
els. In such instances, it is better to simply use the top-performing model
instead of the ensemble.

2.3.6 Evaluation

There are many different methods and metrics for measuring the performance
of a classification model. The metrics chosen for this thesis are presented in
this section.

2.3.6.1 Confusion matrix

A confusion matrix is a square matrix that reports the counts of True Positive
(TP), True Negative (TN), False Positive (FP) and False Negative (FN) in
the predictions of a classifier. It is one way to visualise and analyse the
performance of learning algorithms.

2.3.6.2 Simple evaluation statistics

From the confusion matrix one can calculate a number of statistics. Among
them are accuracy and recall. Put simply, accuracy is the percentage of
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Figure 2.6: Confusion matrix showing TP, FP, TN, and FN.

samples that were labeled correctly as seen below:

ACC =
TP + TN

TP + FP + TN + FN

Recall is the percentage of positive samples that were labeled correctly as
seen below:

REC =
TP

TP + FP

2.3.6.3 Matthews correlation coefficient

The Matthews correlation coefficient (MCC), also knows as phi coefficient,
is a measure of the quality of binary and multiclass classifications. MCC is
given by:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

The MCC is in essence a correlation coefficient value between -1 and +1.
A coefficient of +1 represents a perfect prediction, 0 an average random
prediction and -1 an inverse prediction [22]. As can be seen from the equation
above, MCC takes into account true positive (TP), true negative (FN), false
positive (FP), and false negative (FN) counts. This makes it a more balanced
measure compared to accuracy and recall when the classes are of different
sizes.
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Chapter 3

Materials and methods

The data used in this thesis was supplied by the Functional MRI of Hypoxia-
mediated Rectal Cancer Aggressiveness (OxyTarget) study [23]. The study’s
aim was to ”identify novel imaging biomarkers for hypoxia-induced rectal
cancer aggressiveness, with the goal of reliably predicting patients with poor
response to CRT and high risk of poor metastasis-free survival at time of
diagnosis” [24]. The study started in 2013 and enrolled 192 patients with
colorectal cancer at Akershus University Hospital between October 2013 and
December 2017. The study recruited all patients with colorectal cancer dur-
ing this period, thus the data contains both patients that received CRT
treatment and patients that did not. The study concluded in 2020.

MRIs of the patients were taken before any treatment had started by a
Philips Achieva 1.5T machine from Philips Healthcare, Best, The Nether-
lands. DWIs were acquired for seven different b-values: 0, 25, 50, 100,
500, 1000 and 1300 s/mm2. T2-weight images had voxel size 0.35 × 0.35 ×
2.50mm3, and the DWIs had voxel size 1.25× 1.25× 4.00mm3 [25].

Of the 192 patients enrolled in the study, as many as 111 were excluded from
this thesis due to various reasons such as rectal cancer not being histologically
confirmed, not meeting standards for image acquisition or quality, or other
problems during image acquisition and processing [26] [25]. This leaves a
total of 81 patients to be analysed.
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The data consists of three files. The first file contains clinical data, while the
other two contain information extracted from MRIs. The difference between
the MRI datasets is the voxel resolution of the images that the information
was extracted from. The set that from here on will be referred to as set 1
used images with the original resolution, while set 2 used images that had
been resampled to voxel resolution 1× 1× 1mm3 [25].

Information about the set 1 and set 2 data files and the information extraction
process known as radiomics is described in sections 3.1 and 3.2. Information
about, and the preprocessing of, the clinical data is described in section 3.3.

3.1 Radiomics

The process of converting medical images into high dimensional quantita-
tive data is known as radiomics [4]. Radiomics is based on the assumption
that medical images contain information that is not apparent through visual
inspection alone [27].

Before feature extraction can begin, a region of interest (ROI) for two-
dimensional approaches or a volume of interest (VOI) for three-dimensional
approaches must be defined. These regions define the area of the image
where features are extracted from. Another important step is to group the
original intensity values into specific range intervals. This process is called
binning. Binning normalises the images and is thought to make radiomic
features more reproducible across different samples, especially when used on
data with arbitrary intensity units such as MRI [27].

A number of different features can be extracted from medical images, below
is a short explanation of the types of features seen in set 1 and set 2.

3.1.1 First-order statistics features

First-order statistics features describe the distribution of individual voxel
intensities within the ROI. First-order statistics features describe the dis-
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tribution without concern for spatial relationships, such as mean, median,
maximum and minimum values [radi˙fact˙and˙challenges].

3.1.2 Shape features

Shape features describe the shape of the ROI and its geometric properties.
They are based on the binary mask used for segmentation of the ROI and
are thus independent of gray values [28]. Shape features may be three-
dimensional or two-dimensional. Examples of shape features are volume and
sphericity [radi˙fact˙and˙challenges].

3.1.3 Texture features

Texture features describe the relationships between voxels with similar or
dissimilar contrast values in the ROI and can measure aspects of a tumour
like heterogeneity, asymmetry and contrast [4].

3.2 MRI data files

The radiomics features were extracted by Aase Langan as part of her thesis
MRI-Based Radiomics Analysis for Predicting Treatment Outcome in Rectal
Cancer [25]. All the images were binned with the intensity range interval set
to 25 and used the same tumor delineation, ROI. The features were extracted
using the Biorad software. Biorad is a tool for extracting radiomic features
that also allows the user to perform machine learning experiments [29]. Bio-
rad is based on the python package pyradiomics, whose documentation can
be found here [28].

The two MRI datasets, named set 1 and set 2, contain first-order statistics,
shape features and texture features from both T2-weighted images and all the
DWIs (b0 - b6). Shape features from DWIs were only included once. Each
set contains in total 81 patients and 772 features. A detailed explanation of
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the extracted features can be found in the pyradiomics documentation and
Aase Langan’s thesis.

3.3 Data selection

As the goals of this thesis are related to predicting treatment outcome for
colorectal cancer with overall survival as the prediction endpoint, four pa-
tients with listed cause of death unrelated to colorectal cancer were removed
from all datasets. This reduced the total number of patients from 81 down
to 77.

No further preprocessing of set 1 or set 2 was deemed necessary. However,
the clinical dataset included features judged to be superfluous and missing
values.

In the first step of preprocessing the clinical data, data exploration, one
patient was removed because they were identified as an outlier. After this
step the data had dimensions (76, 97).

The second step was to remove features that were judged to be irrelevant
to the modeling process. These features totaled 42 and consisted mostly
of dates for medical procedures, hospital data such as patient identification
numbers and doctor’s comments. At this time the data had dimensions (76,
55).

The third step was to use one-hot encoding to change the binary categorical
variables into ones and zeros in order to make the data to be usable in
the machine learning algorithms. This did not result in any changes to the
dimensions of the data.

The fourth step was to tackle the missing values in the dataset. Only 11 of
55 features did not contain any missing values, and all patients had at least
one missing value.

The missing values were dealt with by tallying up the number of missing val-
ues in each column and defining a cutoff value. If the total number of missing
values in a column exceeded the cutoff value, the column was removed from
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the dataset. After removing all columns that contained a larger number of
missing values than the cutoff, all rows that still contained missing values
were removed. The different cutoff points listed in Table 3.1 were experi-
mented with. In the end the cutoff value was set to five because keeping
patients was deemed more important than keeping features.

Table 3.1: Values used as cutoff point for the acceptable number missing
values in a column and the resulting data dimensions.

Cutoff value Resulting dimensions
0 (76, 11)
5 (58, 20)
10 (41, 33)
15 (32, 37)
20 (27, 44)

The final clinical dataset included 58 patients and 20 features. Table 3.2
lists the remaining features in the dataset after preprocessing and Table 3.3
lists the mean value and distribution for some of the features in the clinical
dataset.
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Table 3.2: The features of the clinical dataset after preprocessing. The table
states the names of the features, and definitions or other additional informa-
tion about the features are provided in the explanation column.

Feature name Explanation
Gender Binary: male or female
BMI Body mass index (kg/m2)
Age Age at time of referral
Distance from anal opening Placement of the tumour, dis-

tance in centimeter from the
anal opening measured by a rigid
scope

MSI Microsatellite instability
Distance from anal opening
on MRI

Placement of tumour, distance
in centimeter from anal opening
measured on MRI

mrT (TNM ed.7) T-stage
mrN N-stage
Suspicion of metastasis at
time of diagnosis

Binary

Stage 0 = T0N0, 1 = T2N0, 2 = T3N0,
3 = TXN1-2, 4 = TXNXM1

Preoperative CRT Whether or not a patient received
CRT treatment

CEA baseline From blood test
CRP baseline From blood test
Hb baseline From blood test
Leukocytes From blood test
Sodium From blood test
Potassium From blood test
Creatinine From blood test
Bilirubin From blood test
Adjuvant treatment Binary
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Table 3.3: Summary over some of the features in the clinical dataset. The
listed values for BMI, age and CEA baseline is the mean across the patients.

Number of Patients 58
Gender 34 male, 24 female

BMI 25
Age 63

Stage
1 8
2 17
3 19
4 14

Preoperative CRT 27 yes, 31 no
CEA baseline 34

OS-event 18 yes, 40 no

3.4 Splitting the datasets

During this thesis set 1, set 2 and the clinical data were each divided into
three subsets. One subset contained the entire patient cohort, in this case 77
patients, one subset only contained patients who received CRT treatments
and one subset only contained patients who did not receive CRT treatment.
These different subset groups will from here on be referred to as the CRT
subsets, the no-CRT subsets and the all-patients subsets.

The clinical all-patients subset contained 58 patients and 20 features. The
clinical CRT subset contained 27 patients, while the no-CRT subset contained
31 patients. A summary of the clinical CRT and no-CRT subsets are listed
in Tables 3.4 and 3.5.

The set 1 and set 2 all-patients subsets contained 77 patients and 772 features,
while the set 1 and set 2 CRT subsets contained 34 patients and the no-CRT
subsets contained 43 patients. Note that all the subsets of set 1 and set 2
contained more patients than the corresponding clinical data subset. This
is because some patients were removed from the clinical data due to missing
values.
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Table 3.4: Summary of the clinical CRT subset.

Number of Patients 27
Gender 17 male, 10 female

BMI 26
Age 59

Stage
1 0
2 6
3 15
4 6

CEA baseline 28
OS-event 9 yes, 18 no

Table 3.5: Summary of the clinical no-CRT subset.

Number of Patients 31
Gender 17 male, 14 female

BMI 25
Age 67

Stage
1 8
2 11
3 4
4 8

CEA baseline 40
OS-event 9 yes, 22 no

3.5 Workflow

The workflow seen in Figure 3.1 was used to make three majority vote classi-
fiers, one with the CRT subsets, one with the no-CRT subsets and one with
the all-patients subsets.

The workflow follows 5 steps. Step 1 is to divide the data into training and
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test samples. The process behind dividing the data is explained in section
3.6. The training sets are fed into a pipeline that creates the majority vote
classifier, and the test samples are used to evaluate the classifier as part of
step 4.

In step 2, PCA and RENT are performed on each of the training sets. PCA
and RENT transform and reduce the datasets, respectively. One version of
each of the training sets goes through step 2 unchanged.

In step 3, four different models are trained on the original training datasets
and the datasets created by PCA and RENT. The models are one KNN, one
logistic regression, one SVC and one random forest model. This results in 36
models: 12 from set 1, 12 from set 2 and 12 from the clinical data.

All models utilise hyperparameter tuning by performing a grid search over a
pre-specified parameter range. Grid search utilises k-fold CV to assess and
compare different parameter combinations. This means that each combina-
tion is trained and tested k times on different subsets. Grid search calculates
the mean train and test score across the folds, as well as mean standard de-
viation values for each combination. The hyperparameter combination with
the highest mean test value is deemed the best combination. The metric
used to assess the models during hyperparameter tuning is MCC.

In step 4, the model with the highest mean test score value from each set
are combined into a majority vote classifier. This means that the classifier
consists of three model that predicts samples based on information from
either set 1, set 2 or the clinical data. The majority vote classifier predicts
new samples by first having each of the three models make a class prediction
based on their respective dataset. Each prediction counts as one vote for the
predicted class. The class that has the most votes will be the classifier’s class
prediction. In step 5, the majority vote classifier is used to predict the class
of the test samples.
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Figure 3.1: The work flow for building the majority vote classifier, and the
class prediction process.

3.6 Validation

In this thesis an outer K-fold CV was used for the entire data during step
1 of the workflow. In addition, an inner K-fold CV was used whilst train-
ing RENT and when performing grid search on the hyperparameters of the
models in step 2 and 3.
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The outer K-fold CV used four folds. Recall that all the clinical subsets were
smaller than the set 1 and set 2 subsets because some patients had to be
removed during preprocessing. Since the test folds were going to be used to
evaluate the majority vote classifier at the end of the workflow, the samples
in each test fold must be present in all three datasets. This means that the
patients that were present in set 1 and set 2, but not in the clinical data
could not be used as test data. Therefore, when patients were sampled for
the test and training folds, only patients present in the clinical data were
part of the selection. In practice this means that some of the patients in set
1 and set 2 were only used as training samples and never as test samples.

Figures 3.2 and 3.3 depict how the datasets were divided into train and test
sets for the outer 4-fold CV. All of the patients in the clinical data were used
as training samples three times and as test samples one time.

Figure 3.2: Overview of how the clinical datasets were divided into folds.

As for set 1 and set 2, the patients that were also in the clinical dataset
were used as training samples three times and as test samples one time. The
patients that were not present in the clinical data, called leftover training
data in Figure 3.3, were used as training data in all four folds.
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Figure 3.3: Overview of how the set 1 and set 2 datasets are divided into
folds. Leftover training data referrers to the samples only present in set 1
and set 2.

3.7 Software

The code used in this thesis was written in Python version 3.8.5 on an Ana-
conda platform. Modules used were Pandas version 1.1.3, Sklearn version
0.23.2, Numpy version 1.19.2 and Re version 2.2.1.

The python programs used to preprocess the data and build the workflow
are included in appendix B.
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Chapter 4

Results

When the workflow is being used on a subset group, all-patients, CRT or
no-CRT, all the subsets, set 1, set 2 and clinical data, are split into four
outer folds that make four training-test set combinations. This means that
there are 12 such combinations per subset group.

During each of the outer folds, three training sets, one set 1, one set 2 and
one clinical data set from the same subset group, are fed into the pipeline
that makes the majority vote classifier while the three corresponding test
sets are used to evaluate the classifier.

The first step in the pipeline is to perform RENT and PCA on each of the
three training sets. The second step is to train four different models on the
untreated sets and the sets that have been treated by RENT and PCA. This
means that each training set that was fed into the pipeline results in 12
models. Since three sets were put into the pipeline this means a total of 36
models. Three of these models are selected for the majority classifier, one
from each set.

The outer folds are shuffled around so that each training-test set combination
is used to build and evaluate the majority vote classifier one time. This means
that the process mentioned above that resulted in 36 models is repeated 4
times. Which means that a total of 144 models are trained and considered
for the majority vote classifier, for each of the three subset groups. The fact
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that there are three subset groups means that all in all, a total of 432 models
have been created during this thesis.

All the figures in the following sections are based on tables in appendix A. All
datasets that were treated by PCA were reduced to 10 principal components.
The cutoff values used in RENT are listed in Table 4.1

Table 4.1: The cutoff values used in RENT for all datasets.

Parameter Cutoff value
τ1 0.20
τ2 0.20
τ3 0.80

4.1 Results from all-patients subsets

This section presents outer fold prediction scores from the majority vote
classifier, as well as the inner fold prediction scores of the models that made
up the classifier, from when the all-patients subsets were fed into the work
flow described in section 3.5.

Figure 4.1 shows the outer fold prediction scores obtained in each of the four
outer folds described in Section 3.6. In other words, it shows results from
step 5 in the workflow. The models based on information from set 1 had
generally low MCC-scores, except during fold 3. Two out of four scores were
zero, the same as random guessing. The model based on information from
set 2 also had generally low scores, except during fold 1 and was the only
model with a negative prediction score. A negative MCC score is worse than
random guessing. The model based on information from the clinical dataset
had generally high prediction scores over all four folds. Lastly, the majority
vote classifier had mid-level prediction scores compared to the other three
models.

The mean prediction score and standard deviation for the majority vote
classifier and the models that made up the classifier are listed in Table 4.2.
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Figure 4.1: Prediction scores from the set 1, set 2 and clinical models that
were chosen for the majority vote classifier and prediction scores from the
majority vote classifier itself. The graphs display the MCC scores of the
models across the four outer folds of the all-patients subsets.

Table 4.2: The mean values and standard deviations from the outer folds of
the all-patients subset.

Set 1 Set 2 Clinical Vote
Mean 0.135 0.122 0.513 0.30
Std 0.181 0.29 0.167 0.192

Figure 4.2 shows the mean test scores and the mean standard deviation
obtained from the inner cross validation performed at step 3 in the workflow
for the models selected to be in the majority vote classifier. The mean test
scores for all the set 1 models, Figure 4.2a, show little variation between
folds, but do show somewhat high standard deviations. All the mean test
prediction scores are higher than the scores obtained during the respective
outer fold shown in Figure 4.1.

The mean test scores for the set 2 models, Figure 4.2b, also show little
variation between folds, but varying degrees of standard deviation. Again,
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all the mean test prediction scores from the inner folds were higher than the
scores obtained during the respective outer folds shown in Figure 4.1
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(a)

(b)

(c)

Figure 4.2: Mean test scores with mean standard deviations calculated during
grid search for the models selected to be in the vote classifier from each all-
patients subset: (a) set 1, (b) set 2, (c) clinical data.
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The mean test scores for the clinical data models, Figure 4.2c, again show
little variation between folds and varying degrees of standard deviation. The
score obtained during fold 1 is similar to that shown in Figure 4.1, while the
scores for the other folds are lower.

4.2 Results from CRT subsets

This section presents the outer prediction scores of the majority vote clas-
sifier, as well as the inner prediction scores of the models that made up the
classifier when the CRT subsets were fed to the work flow described in Section
3.5.

Figure 4.3 shows the prediction scores from the majority vote classifier and
the prediction scores of the models that made up the classifier on the test
samples from each of the four outer folds described in Section 3.6. All the
models follow a similar pattern: fold 1 and 3 have high scores, while fold 2
and 4 have low scores. Only the models based on the clinical dataset stood
out. This was the only set that did not have a score higher than zero during
fold 1 and also the only set with a score lower than zero during fold 4.

The mean prediction score and standard deviation for the majority vote
classifier and the models that made up the classifier are listed in Table 4.3.

49



Figure 4.3: Prediction scores from the set 1, set 2 and clinical models that
were chosen for the majority vote classifier and prediction scores from the
majority vote classifier itself. The graphs display the MCC scores of the
models across the four outer folds of the CRT subsets.

Table 4.3: The mean values and standard deviations from the outer folds of
the CRT subset.

Set 1 Set 2 Clinical Vote
Mean 0.361 0.282 -0.04 0.279
Std 0.254 0.429 0.326 0.419

Figure 4.4 shows the mean test scores and the mean standard deviations
obtained from the inner cross validation performed during grid search for the
models selected to be in the majority vote classifier. The mean test scores
for all the set 1 models, Figure 4.2a, show some variation between folds and
a very big standard deviation for fold 2. The prediction scores for fold 2
and 3 were significantly higher during the inner fold compared to prediction
scores obtained on the outer fold, Figure 4.3. The prediction scores for the
inner fold during folds 1 and 4 were also higher than the outer scores, but
the points on the two graphs were more similar during these folds.

The mean test scores for the set 2 models, Figure 4.2b, show little variation
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between folds and very large standard deviations during all four folds. All
the inner mean test prediction scores are higher than the scores obtained
during the outer prediction on the test samples.

The mean test scores for the clinical data models, Figure 4.2c, show little
variation between folds and extremely varying degrees of standard deviation.
Fold 2 shows a perfect prediction with zero standard deviation. Again, all
the mean test scores are much higher than the corresponding outer prediction
scores on the test sample shown in Figure 4.4a.
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(a)

(b)

(c)

Figure 4.4: Mean test scores with mean standard deviation calculated during
grid search for the models selected to be in the vote classifier from each CRT
subset: (a) set 1, (b) set 2, (c) clinical data.
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4.3 Results from no-CRT subsets

This section presents the outer prediction scores from the majority vote clas-
sifier, as well as the inner prediction scores of the models that made up the
classifier when the no-CRT subsets were fed to the work flow, as described
in section 3.5.

Figure 4.5 shows the prediction scores on the test samples in each of the
four outer folds described in section 3.6. The scores for set 1, set 2 and the
vote classifier follow the same pattern. The score for fold 1 was high and
decreased with each new fold. The score for the clinical data started high
and stayed stable.

Figure 4.5: Prediction scores from the set 1, set 2 and clinical models that
were chosen for the majority vote classifier and prediction scores from the
majority vote classifier itself. The graphs display the MCC scores of the
models across the four outer folds of the no-CRT subsets.

The mean prediction score and standard deviation for the majority vote
classifier and the models that made up the classifier are listed in Table 4.4.
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Table 4.4: The mean values and standard deviations from the outer folds of
the no-CRT subset.

Set 1 Set 2 Clinical Vote
Mean 0.102 0.01 0.682 0.260
Std 0.533 0.387 0.053 0.510

Figure 4.6 shows the mean test scores and the mean standard deviation
obtained during the grid search for the models selected to be in the majority
vote classifier. Three of the mean test scores from the set 1 models, Figure
4.6a, were close to 0.6, while one was slightly higher. All the inner prediction
scores were significantly higher than the scores achieved during the outer
predictions shown in Figure 4.5, except during fold 1.

The mean test scores from the set 2 models, Figure 4.6b, show some variation
between folds and very large standard deviation during fold 3 and 4. All the
inner mean test prediction scores were higher than the scores obtained from
the outer predictions on the test samples.

The mean test scores for the clinical data models, Figure 4.6c, were all high
and showed little variation between folds. The scores are comparable to the
scores achieved during the outer predictions shown in Figure 4.5.
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(a)

(b)

(c)

Figure 4.6: Mean test scores with mean standard deviation calculated during
grid search for the models selected to be in the vote classifier from each no-
CRT subset: (a) set 1, (b) set 2, (c) clinical data.
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4.4 Selected features

4.4.1 Clinical data features

Table 4.5 lists the number of features selected by RENT during each of the
outer folds for the clinical data. There is not a substantial difference between
the number of features selected across the folds for each subset. The CRT
subset had the highest number of selected features and the no-CRT subset
had the lowest.

Table 4.5: The number of features selected by RENT during the four outer
folds for each subset of the clinical data.

Fold All-patients CRT no-CRT
1 4 4 2
2 2 8 2
3 4 8 2
4 4 5 1
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Table 4.6: The features selected by RENT for each of the three subsets of
the clinical data. The columns show the number of folds where each specific
feature was chosen by RENT.

Feature name All CRT No-CRT
Gender 0 0 0
BMI 0 2 0
Age 0 1 0
Distance from anal opening 0 0 0
MSI 0 0 0
Distance from anal opening
on MRI

0 0 0

mrT (TNM ed.7) 1 3 0
mrN 0 0 0
Suspicion of metastasis at
time of diagnosis

4 3 4

Stage 4 4 4
Preoperative CRT 0 0 0
CEA baseline 3 4 1
CRP baseline 0 0 0
Hb baseline 0 0 0
Leukocytes 0 0 0
Sodium 0 0 0
Potassium 0 1 0
Creatinine 0 1 0
Bilirubin 0 1 0
Adjuvant treatment 2 4 1

Table 4.6 lists the features chosen by RENT for each of the three subsets of
the clinical data set. The numbers corresponds to how many times a specific
feature was chosen across the four outer folds. Only the feature ”Stage”
was selected in all four folds for every subset. Other features that were
often selected were ”Suspicion of metastasis at diagnosis”, ”CEA baseline”
and ”Adjuvant treatment”. The CRT-subset was the subset with the most
variation in selected features.

Figure 4.7 shows the τ1 values for the features in the RENT analysis of fold 1
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for the clinical all-patients subset. As listed in Table 4.1, the cutoff value for
τ1 was set to 0.2. This was a fitting setting in this case. The four prominent
features met the criteria and the features that only had nonzero weights in
a few models, such at the feature at index 6, were removed.

Figure 4.7: The τ1 values from the RENT analysis of fold 1 for the clinical
all-patients subset. The feature indexes are on the x-axis, and the y-axis
shows the τ1 values. The feature with the highest τ1 value is ”CEA baseline”
at index 11.

4.4.2 Radiomics features

Tables 4.7 and 4.8 list the number of features selected by RENT during each
of the outer folds for set 1 and set 2. The tables show substantial differences
between folds for the same subset.
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Table 4.7: The number of features selected by RENT during the four outer
folds for each subset of set 1.

Fold All-patients CRT no-CRT
1 75 14 186
2 77 2 51
3 20 31 19
4 2 2 41

Table 4.8: The number of features selected by RENT during the four outer
folds for each subset of set 2.

Fold All-patients CRT no-CRT
1 60 83 22
2 94 15 67
3 2 11 3
4 41 48 6

Set 1 and set 2 both contained 772 features, substantially more than the
clinical data. As it would be unreasonable to list the selection frequency for
all 772 features, only features that were selected by a minimum of three folds
for a subset were included in Tables 4.9 and 4.10.

No features were selected during all four folds for any subset of set 1 and only
four features were selected at least once by all the subsets. For set 2, 29 fea-
tures were selected at least once by all subsets and four features were selected
in all four folds by a single subset. The feature ”glszm GrayLevelVariance”
was the most selected feature, being selected 11 out of 12 times by set 2, in
additional to being selected five times by set 1.
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Table 4.9: Features selected by RENT for each of the three subsets of set
1. The columns show the number of folds where each specific feature was
chosen by RENT.

Feature name All CRT No-CRT
first order 10Percentile 3 0 3
first order Mean 3 0 2
first order Median b6 3 2 1
first order RootMeanSquared b5 3 1 0
first order Skewness 3 0 2
first order Skewness b3 2 0 3
glcm Autocorrelation d 1 b3 1 0 3
glcm DifferenceAverage d 1 3 1 2
glcm DifferenceEntropy d 1 3 1 2
gldm DependenceVariance d 1 1 0 3
gldm LargeDependenceHighGrayLevelEmphasis d 1 2 0 3
gldm LargeDependenceHighGrayLevelEmphasis d 1 b6 3 2 0
gldm LowGrayLevelEmphasis d 1 3 0 3
glrlm LongRunHighGrayLevelEmphasis 3 1 3
glrlm LongRunHighGrayLevelEmphasis b6 3 2 0
glrlm LowGrayLevelRunEmphasis 3 0 3
glrlm RunEntropy b6 3 0 2
glrlm ShortRunLowGrayLevelEmphasis 3 0 3
glszm GrayLevelVariance 3 0 2
glszm LargeAreaLowGrayLevelEmphasis b0 0 0 3
glszm SmallAreaHighGrayLevelEmphasis b1 0 0 3
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Table 4.10: The features selected by RENT for each of the three subsets of
set 2. The columns show the number of folds where each specific feature was
chosen by RENT.

Feature name All CRT No-CRT
first order Kurtosis 3 1 1
first order Mean 3 2 2
first order Median b4 3 1 1
first order Median b6 3 4 1
first order RootMeanSquared b5 3 3 1
first order Skewness 3 2 2
glcm Autocorrelation d 1 3 3 2
glcm Autocorrelation d 1 b3 1 0 3
glcm ClusterShade d 1 b4 3 1 2
glcm ClusterShade d 1 b6 2 3 1
glcm DifferenceVariance d 1 b0 2 4 1
glcm Imc2 d 1 3 1 3
glcm InverseVariance d 1 3 1 3
glcm InverseVariance d 1 b4 3 1 3
glcm JointAverage d 1 3 2 2
glcm JointAverage d 1 b4 3 1 1
glcm SumAverage d 1 3 2 2
glcm SumAverage d 1 b4 3 1 1
gldm LargeDependenceHighGrayLevelEmphasis d 1 3 2 4
gldm LargeDependenceHighGrayLevelEmphasis d 1 b6 3 3 0
glrlm LongRunHighGrayLevelEmphasis 3 2 3
glrlm LongRunHighGrayLevelEmphasis b5 3 1 1
glrlm LongRunHighGrayLevelEmphasis b6 3 3 1
glrlm RunEntropy b6 3 1 2
glszm GrayLevelNonUniformity b4 3 2 1
glszm GrayLevelVariance 4 4 3
glszm GrayLevelVariance b4 2 3 0
glszm GrayLevelVariance b5 1 3 0
glszm SizeZoneNonUniformityNormalized b6 3 2 2
glszm SmallAreaLowGrayLevelEmphasis b1 3 3 2
glszm ZoneEntropy b6 3 1 3
shape Flatness b0 2 3 2
shape Sphericity b0 3 2 2
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There was a large difference between the number of selected features between
Fold 1 and fold 4 for the set 1 all-patients subset, see Table 4.7. Figures
4.8 and 4.9 show the τ1 values for the features in the RENT analysis for
these folds. During fold 4 the τ1 value of 0.2 was suitable. Even though
all the features had quite low τ1 values, the two most prominent features
were selected while the rest were removed. During fold 1 on the other hand,
the low cutoff value resulted in an unnecessary amount of unstable features
meeting the criteria and a value closer to 0.6 would have been a more suitable
cutoff value.

Figure 4.8: The τ1 values from the RENT analysis of fold 1 for the clinical
all-patients subset. The feature indexes are on the x-axis, and the y-axis
shows the τ1 values.
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Figure 4.9: The τ1 values from the RENT analysis of fold 4 for the set 1
all-patients subset. The feature indexes are on the x-axis, and the y-axis
shows the τ1 values.
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Chapter 5

Discussion

The majority vote classifiers constructed from each subset group all had
a mean score above 0 across the four outer folds. However, the relatively
high mean standard deviation scores makes them an inappropriate choice for
making trustworthy predictions for new data.

The models included in each of the three majority vote classifiers showed
signs of overfitting, as the mean scores for the models obtained during the
inner cross validation was higher than the mean scores obtained during the
outer cross validation.

5.1 Interpreting results

The purpose behind ensemble learning is to improve performance and robust-
ness. The figures with predictions from the outer folds, Figures 4.1, 4.3 and
4.5, do not show any signs of the majority vote classifier performing better
than its top-performing model.

There were big differences in the predictive scores of the majority vote clas-
sifiers across the outer folds. This indicates that the classifiers are sensitive
to how the datasets were split for the outer cross validation. The sensitivity
is more prominent for the CRT and no-CRT subsets compared to the all-
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patients subsets, most likely because of the reduced number of patients in
these two subsets.

The models based on the clinical data had the highest mean prediction score
and the lowest standard deviation across the outer folds for the all-patients
and no-CRT subsets. This is likely because the feature selection process for
this dataset was more stable compared to the set 1 and set 2 datasets. The
clinical dataset only contained 20 features and the same features were often
chosen in multiple folds, even across its three subsets. The subset where the
clinical data showed the most variation across the outer folds was the CRT
subset. This was also the clinical data subset with the least stable feature
selections.

The models based on set 1 had the highest mean prediction scores and the
lowest standard deviation across the outer fold for the CRT subsets.

5.2 Evaluation process

The purpose behind using k-fold CV for evaluation is to acquire better es-
timates of the true predictive power of a model. The big differences in pre-
diction scores between folds indicate that the predictive performance of the
majority vote classifier is entirely dependent on the train-test split. Perform-
ing repeated k-fold CV for the outer cross validation could have mitigated
some of these differences.

Repeated k-fold CV repeats the cross validation process multiple times by
reshuffling the dataset into new train-test splits [18]. By performing repeated
k-fold CV, the influence on the mean prediction scores from unlucky splits
would be reduced. This would lead to more robust results and allow for a
more accurate interpretation of those results.
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5.3 Selected features

The features chosen by RENT for the clinical data were all features known
to hold medical predictive power. Take the feature ”Stage” which is directly
proportional to the progression of a cancer. A high cancer stage would mean
that the cancer has spread to nearby tissue or other parts of the body, which
would mean that more invasive surgery and other treatments mentioned in
section 2.1.3 might be needed. All of these treatment options come with side
effects that can greatly affect a patient’s overall health and introduce more
risks [30] [31].

Looking at which features were not chosen could also be of interest. High
age and BMI are both factors that increase the risk of cancer, but they do
not hold much predictive power for whether or not a patient survives, in this
particular data.

Since the features chosen by RENT for the clinical datasets were all features
with known medical predictive power, the analysis does not add much of value
to medical literature, apart from indicating which features play the most
important roles when predicting treatment outcome. It could be interesting
to see how well the models would perform if the most predictive features
were removed. In this situation the models would be forced to rely on other
information.

Set 1 and set 2 both contain a total of 772 features. Out of these, 21 and
33 features were frequently chosen by RENT and included in Tables 4.9 and
4.10. The tables only include features that were chosen during at least three
out of four folds for a subset of set 1 or set 2. This means that a feature
may have been chosen during two out of four folds for all the subsets and
still not have been included. The criteria for being included in either table
derby depend more on internal feature stability for one subset than feature
stability across all subsets. Some features, such as ”glszm LargeAreaLow
GrayLevelEmphasis b0” which was chosen during three out of four folds for
one subset, but was never chosen by any of the other subsets, might not have
been included if the criteria was more focused on stability across subsets.

It should also be noted that there was a big difference in the number of
features chosen by RENT between folds. For the set 2 all-patients subset, 94
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features were chosen during fold 2 while only two were chosen during fold 3.
This shows how much feature selection varies based on which samples end
up in which fold. By performing repeated k-fold CV this problem could be
somewhat mitigated.

Greater stability across the folds might be achieved by first selecting features
that are prominent and then using a new dataset that only includes those
features. This way a lot of noise is removed, which should lead to more stable
models [32].

5.4 Robustness of radiomic features

The biggest challenge in radiomics is ensuring reliable and reproducible out-
put. Research has shown that specific study conditions and authors’ choices
have great influence over the results [27].

Voxel intensities in MRIs do not have fixed tissue-specific values. This means
that grey-level intensity may change between MRI sessions for the same pa-
tient, even if the patient is scanned in the same position by the same scanner
using the same RF sequence. However, tissue contrast remains the same
[radi˙fact˙and˙challenges].

One possibility is to focus on the texture features. Texture features are de-
pendent on the relationship between voxels and not on the numeric values of
the grey-level intensities themselves. However, texture features have shown
sensitivity to variations in acquisition parameters, such as spatial resolu-
tion. Another possibility is to normalise the images before feature extraction
[radi˙fact˙and˙challenges].

5.5 Selected models and data sets

Across all the results shown in Sections 4.1, 4.2 and 4.3, a total of 36 models
were chosen to be part of the majority vote classifier. Out of these 36 models,
as many as 30 were based on RENT, while three were based on the full data
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set and three were based on PCA. Out of the different machine learning
algorithms, KNN models were selected five times, logistic regression models
eight times, random forest models seven times and SVC models 16 times. All
the KNN models were selected by clinical data models and half of the SVC
models were selected by set 2 models.

5.6 Choice of response variable

The data included several possible response variables and groupings. The
response variables were binary events such as progression free survival (PFS)
and overall survival (OS). PFS refers to whether a patient experienced any
form of cancer recurrence before the end of the study, while OS refers to
whether or not a patient is alive at the end of the study. OS is not con-
cerned with cancer recurrence. The data also included the length of time
between a patient joining the study and the PFS-event or OS-event occur-
ring. Other possible response variables could have been survival after three
years or metastasis after three years.

In this thesis, OS was chosen as the response variable. As mentioned in
section 3.3, four patients were removed because the listed cause of death was
different from colorectal cancer. Most patients that had passed away did
not have a listed cause of death. This opens up the possibility that more
patients died of other causes. However, if that is the case, cancer or cancer
treatment could still have played a role in these deaths. Both cancer and
cancer treatment can reduce a patient’s overall health and lead to increased
risk of death from other diseases.

For patients that received radiotherapy, it could be interesting to predict how
well they responded to the therapy. Response can be measured by the tumor
regression grade (TRG), where 1-2 is bad and 3-4 is good.
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5.7 Parameter choices

In order to be able to compare the different models, the same RENT and
PCA parameters had to be used for all datasets in the same block. For RENT
this meant that τ1, τ2 and τ3 could not be changed to account for differences
between folds. For simplicity’s sake, the parameter values were set to the
same value for all the datasets.

Depending on the dataset that was being treated, the number of features
selected by RENT varied greatly. During some outer folds the number of
selected features for set 1 and set 2 exceeded fifty, while during other folds
the number was as low as two. The number of selected features for set 1
no-CRT during fold 1 even reached 186.

During some folds, RENT would not select any feature unless the τ1, τ2 and
τ3 values were set quite low. During other folds, the same low parameter
values resulted in RENT selecting a number of unstable features. Using
higher parameter values during these folds would have been a way to avoid
selecting the more unstable features. This accounts for the huge difference
in the number of selected features across folds. Altogether, this shows that
many of the features selected by RENT were not stable.

While the features included in Tables 4.9 and 4.10 were chosen quite often
for a single subset, many were not selected universally across all the subsets
like the most selected features in Table 3.2. This also supports the claim
that most features selected by RENT were unstable.

In PCA all datasets from the same block had to be reduced to the same
number of principal components. The number of principal components was
set to 10 for all datasets without exploring differences in explained variance.
This could be the reason why datasets treated by PCA were infrequently
chosen for the majority vote classifier.
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5.8 Personalised medicine

Cancer treatment is by an large adjusted to suit individual patients [10], but
treatment is also based on experiences and knowledge built across years of
research and on what works on average.

When it comes to cancer treatment, patients need to be considered individu-
ally in relation to genetics, environment and other underlying medical condi-
tions or complications. All in all, medical trials contain very heterogeneous
data. For the purpose of this thesis, more attention to smaller groupings
within the data and larger selection of patients could have helped in bringing
forth better results. This was the reasoning behind dividing the datasets into
three subsets based CRT treatment. Patients who undergo CRT treatment
typically have locally advanced cancers: cancer at stage T4 or T3. This
subset of patients may be a more homogeneous group in comparison to the
whole patient cohort.

5.9 Future work

The main concern in this thesis’ results was the lack of stability in the ra-
diomics features. Further analysing which features were the most stable and
only including them in an analysis would make the models more similar and
might bring better results. Performing repeated k-fold CV on the outer folds
would mitigate some of the affects from unlucky train-test splits and enable
a more accurate estimate of the prediction score of the workflow.

Further exploring the impact of different parameter settings in RENT could
lead to more stable feature selections. Since the explained variance in the
principal components were not explored, it is possible that better perfor-
mance could be achieved by reducing the number of components based on
each data block. Limiting the number of principal components could remove
more noise.

Other ensemble methods could be explored, for example dynamic ensemble
selection. The majority vote classifier ensemble method is a static ensemble
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method where the same models are used to predict all test samples. Dy-
namic ensemble selection involves selecting models from the ensemble that
are expected to perform well on individual samples [33]. Dynamic ensem-
ble selection can be implemented with DESlib, whose documentation can be
found at [34].
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Chapter 6

Conclusion

The majority vote classifiers that were constructed to predict treatment out-
come were sub-optimal. In most instances, simply using the models based
on information from the clinical data, while disregarding the models based
on radiomics, would have resulted in better predictions. A likely reason for
this is that the radiomics features were unstable.

The RENT analysis on the radiomics features showed some promise. Out of
the original 772 features, 21 and 33 features were selected regularly, depend-
ing on the voxel resolution of the MRI images the information was extracted
from.

This could indicate that if features with predictive power are present in the
radiomics data, both RENT and PCA are unable to fully capture them or
the models are unable to fully utilise the features. With more time, the
impact of different parameter settings could have been explored, for instance
in relation to feature selection and model stability.

The instability of the current models makes them an inappropriate source
for trustworthy predictions on new data. However, in the future, machine
learning could give valuable information concerning cancer treatment and
prognosis, given more data and better data quality, in addition to further
exploration of different analysis methods.
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Appendix A

Models

A.1 Models from the all-patients subsets

Table A.1: Models selected from fold 1 with the all-patients subsets.

Set 1 Set 2 Clinical
Data Untreated RENT RENT

Model Type Random forest classi-
fier

SVC SVC

Parameters criterion: ’gini’ C: 4 C: 1
max depth: 3 class weight: ’None’ class weight: ’bal-

anced’
n estimators: 1 kernel: ’sigmoid’ svc kernel: ’sigmoid’

Mean Test Score 0.433 0.600 0.710
Mean Train Score 0.501 0.576 0.664

Std Test Score 0.210 0.180 0.300
Std Train Score 0.088 0.096 0.102
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Table A.2: Outer fold prediction from fold 1 with the all-patients subsets.

Set Score
Set 1 0.0
Set 2 0.533

Clinical 0.756
Voter 0.533

Table A.3: Models selected from fold 2 with the all-patients subsets.

Set 1 Set 2 Clinical
Data RENT RENT PCA

Model Type SVC SVC Random forest classi-
fier

Parameters C: 1 C: 4 criterion: ’gini’
class weight: ’bal-
anced’

class weight: ’None’ weights: ’uniform’

kernel: ’sigmoid’ kernel: ’sigmoid’ n estimators: 21
Mean Test Score 0.500 0.566 0.715
Mean Train Score 0.987 0.560 1.0

Std Test Score 0.231 0.078 0.116
Std Train Score 0.023 0.098 0.0

Table A.4: Outer fold prediction from fold 2 with the all-patients subsets.

Set Score
Set 1 0.1
Set 2 0.213

Clinical 0.554
Voter 0.354
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Table A.5: Models selected from fold 3 with the all-patients subsets.

Set 1 Set 2 Clinical
Data RENT RENT RENT

Model Type Logistic regression SVC k neighbors classifier
Parameters C: 1 C: 1 n neighbors: 3

penalty: ’l2’ class weight: ’bal-
anced’

weights: ’uniform’

kernel: ’linear’
Mean Test Score 0.520 0.530 0.801
Mean Train Score 0.657 0.520 0.810

Std Test Score 0.144 0.145 0.140
Std Train Score 0.093 0.062 0.040

Table A.6: Outer fold prediction from fold 3 with the all-patients subsets.

Set Score
Set 1 0.440
Set 2 0.0

Clinical 0.3
Voter 0.3

Table A.7: Models selected from fold 4 with the all-patients subsets.

Set 1 Set 2 Clinical
Data RENT RENT RENT

Model Type Random forest classi-
fier

SVC SVC

Parameters criterion: ’entropy’ C: 8 C: 2
max depth: 1 class weight: ’bal-

anced’
class weight: ’bal-
anced’

n estimators: 41 kernel: ’rbf’ kernel: ’poly’
Mean Test Score 0.510 0.634 0.611
Mean Train Score 0.540 1 0.641

Std Test Score 0.103 0.253 0.283
Std Train Score 0.075 0 0.100
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Table A.8: Outer fold prediction from fold 4 with the all-patients subsets.

Set Score
Set 1 0.0
Set 2 -0.258

Clinical 0.440
Voter 0.0

A.2 Models from the CRT subsets

Table A.9: Models selected from fold 1 with the CRT subsets.

Set 1 Set 2 Clinical
Data RENT RENT RENT

Model Type SVC SVC Kneighbors classifier
Parameters C: 8 C: 1 n neighbors: 6

class weight: ’bal-
anced’

class weight: ’bal-
anced’

weights: ’distance’

kernel: ’sigmoid’ kernel’: ’sigmoid’
Mean Test Score 0.820 0.758 0.917
Mean Train Score 0.752 0.853 1

Std Test Score 0.192 0.286 0.144
Std Train Score 0.111 0.102 0

Table A.10: Outer fold prediction from fold 1 with the CRT subsets.

Set Score
Set 1 0.645
Set 2 0.548

Clinical 0.0
Voter 0.645
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Table A.11: Models selected from fold 2 with the CRT subsets.

Set 1 Set 2 Clinical
Data RENT RENT PCA

Model Type SVC Random forest classi-
fier

Logistic regression

Parameters C: 8 criterion: ’entropy’ C: 1
class weight: None max depth: 4 penalty: ’none’
kernel: ’linear’ n estimators: 21

Mean Test Score 0.545 0.635 1
Mean Train Score 0.551 0.970 1

Std Test Score 0.358 0.265 0
Std Train Score 0.111 0.051 0

Table A.12: Outer fold prediction from fold 2 with the CRT subsets.

Set Score
Set 1 0.0
Set 2 -0.4

Clinical -0.09
Voter -0.258

Table A.13: Models selected from fold 3 with the CRT subsets.

Set 1 Set 2 Clinical
Data RENT RENT RENT

Model Type SVC Logistic regression Logistic regression
Parameters C: 6 C: 1 C: 1

class weight: ’bal-
anced’

penalty: ’none’ penalty: ’l2’

kernel: ’sigmoid’
Mean Test Score 0.593 0.573 0.75
Mean Train Score 0.617 1 1

Std Test Score 0.106 0.361 0.433
Std Train Score 0.120 0 0
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Table A.14: Outer fold prediction from fold 3 with the CRT subsets.

Set Score
Set 1 0.548
Set 2 0.730

Clinical 0.417
Voter 0.730

Table A.15: Models selected from fold 4 with the CRT subsets.

Set 1 Set 2 Clinical
Data PCA RENT RENT

Model Type Random forest classi-
fier

SVC SVC

Parameters criterion: ’gini’ C: 8 C: 2
max depth: 4 class weight: ’bal-

anced’
class weight: ’bal-
anced’

n estimators: 1 kernel: ’sigmoid’ kernel: ’sigmoid’
Mean Test Score 0.710 0.712 0.852
Mean Train Score 0.707 0.80 0.805

Std Test Score 0.172 0.301 0.256
Std Train Score 0.103 0.126 0.156

Table A.16: Outer fold prediction from fold 4 with the CRT subsets.

Set Score
Set 1 0.25
Set 2 0.25

Clinical -0.5
Voter 0.0
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A.3 Models from the no-CRT subsets

Table A.17: Models selected from fold 1 with the no-CRT subsets.

Set 1 Set 2 Clinical
Data RENT RENT RENT

Model Type Logistic regression Logistic regression K neighbors classifier
Parameters C: 1 C: 1 n neighbors: 1

penalty: ’l2’ penalty: ’l2’ weights: ’uniform’

Mean Test Score 0.582 0.940 0.816
Mean Train Score 1 1 0.780

Std Test Score 0.274 0.106 0.183
Std Train Score 0 0 0.058

Table A.18: Outer fold prediction from fold 1 with the no-CRT subsets.

Set Score
Set 1 1.0
Set 2 0.467

Clinical 0.774
Voter 1.0
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Table A.19: Models selected from fold 2 with the no-CRT subsets.

Set 1 Set 2 Clinical
Data RENT RENT ALL

Model Type SVC SVC Random forest classi-
fier

Parameters C: 4 C: 3 criterion: ’entropy’
class weight: ’bal-
anced’

class weight: ’bal-
anced’

max depth: 3

kernel: ’sigmoid’ kernel: ’sigmoid’ n estimators: 61
Mean Test Score 0.590 0.861
Mean Train Score 0.550 0.920

Std Test Score 0.165 0.147
Std Train Score 0.030 0.0556

Table A.20: Outer fold prediction from fold 2 with the no-CRT subsets.

Set Score
Set 1 0.0
Set 2 0.333

Clinical 0.655
Voter 0.333

Table A.21: Models selected from fold 3 with the no-CRT subsets.

Set 1 Set 2 Clinical
Data RENT RENT RENT

Model Type Logistic regression Logistic regression K neighbors classifier
Parameters C: 1 C: 1 n neighbors: 3

penalty: ’l2’ penalty: ’l2’ weights: ’uniform’

Mean Test Score 0.853 0.625 0.835
Mean Train Score 0.953 0.708 0.800

Std Test Score 0.152 0.415 0.167
Std Train Score 0.047 0.106 0.068

83



Table A.22: Outer fold prediction from fold 3 with the no-CRT subsets.

Set Score
Set 1 -0.333
Set 2 -0.333

Clinical 0.655
Voter -0.218

Table A.23: Models selected from fold 4 with the no-CRT subsets.

Set 1 Set 2 Clinical
Data RENT RENT All

Model Type Random forest classi-
fier

SVC K neighbors classifier

Parameters criterion: ’gini’ C: 8 n neighbors: 1
max depth: 2 class weight: ’bal-

anced
weights: ’uniform’

n estimators: 21 kernel: ’linear’
Mean Test Score 0.592 0.645 0.923
Mean Train Score 0.721 0.917 1

Std Test Score 0.171 0.382 0.127
Std Train Score 0.069 0.055 0

Table A.24: Outer fold prediction from fold 4 with the no-CRT subsets.

Set Score
Set 1 -0.258
Set 2 -0.4

Clinical 0.645
Voter -0.258
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Appendix B

Python code

B.1 Machine learning algorithms
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# -*- coding: utf-8 -*-
"""
Created on Thu Apr 22 21:35:11 2021

@author: Marthe Søvdsnes
"""

from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn import svm
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.metrics import matthews_corrcoef
from sklearn.metrics import make_scorer
from sklearn.model_selection import GridSearchCV
import warnings
warnings.filterwarnings("ignore")

def KNN(x_train, y_train):
 """
 Trains a K nearest neighbour model including grid search.
 Prints the best mean test score and the best parameters

 Parameters
 ----------
 x_train: df

   the training data
 x_test: df

 The test data

 Returns
 ---------
 model

 object
 """

 param_grid = {'kneighborsclassifier__n_neighbors': [x for x in range(1, 10, 1)],
 'kneighborsclassifier__weights': ['uniform', 'distance']}

 pipe_k = make_pipeline(StandardScaler(), KNeighborsClassifier(n_jobs=-1))
 gs = GridSearchCV(estimator=pipe_k,

 scoring=make_scorer(matthews_corrcoef),
 param_grid=param_grid,
 cv=4,
 return_train_score=True)

 model = gs.fit(x_train, y_train)
 print('Test score KNN:', gs.best_score_)
 print(gs.best_params_)

 return model

def RF(x_train, y_train):
 """
 Trains a Random Forest model including grid search.
 Prints the best mean test score and the best parameters

 Parameters
 ----------
 x_train: df



   the training data
 x_test: df

 The test data

 Returns
 ---------
 model

 object
 """

 param_grid = {'randomforestclassifier__n_estimators': [x for x in range(1, 100, 20)],
 'randomforestclassifier__criterion': ['gini', 'entropy'],
 'randomforestclassifier__max_depth': [x for x in range(1, 10, 1)]}

 pipe_rf = make_pipeline(RandomForestClassifier())

 gs = GridSearchCV(estimator=pipe_rf,
 scoring=make_scorer(matthews_corrcoef),
 param_grid=param_grid, 
 cv=4,
 return_train_score=True)

 model = gs.fit(x_train, y_train)
 print('Test score Random Forest:', gs.best_score_)
 print(gs.best_params_)

 return model 

def sv(x_train, y_train):
 """
 Trains a support vector classifier model including grid search.
 Prints the best mean test score and the best parameters

 Parameters
 ----------
 x_train: df

   the training data
 x_test: df

 The test data

 Returns
 ---------
 model

 object
 """

 param_grid = {'svc__C': [x for x in range(1, 10, 1)],
 'svc__kernel': ['linear', 'poly', 'rbf', 'sigmoid', 'precomputed'],
 'svc__class_weight': ['balanced', None]}

 pipe_svc = make_pipeline(StandardScaler(), svm.SVC())

 gs = GridSearchCV(estimator=pipe_svc,
 scoring=make_scorer(matthews_corrcoef),
 param_grid=param_grid, 
 cv=4,
 return_train_score=True)

 model = gs.fit(x_train, y_train)
 print('Training score Support Vector:', gs.best_score_)
 print(gs.best_params_)



 return model

def LR(x_train, y_train):
 """
 Trains a Logistic regression model including grid search.
 Prints the best mean test score and the best parameters

 Parameters
 ----------
 x_train: df

   the training data
 x_test: df

 The test data

 Returns
 ---------
 model

 object
 """

 param_grid = {'logisticregression__C': [x for x in range(1, 10, 1)],
 'logisticregression__penalty': ['l1', 'l2', 'elasticnet', 'none']} 

 pipe_lr = make_pipeline(StandardScaler(), LogisticRegression())

 gs = GridSearchCV(estimator=pipe_lr,
 scoring=make_scorer(matthews_corrcoef),
 param_grid=param_grid, 
 cv=4,
 return_train_score=True)

 model = gs.fit(x_train, y_train)
 print('Training score Logistic Regression:', gs.best_score_)
 print(gs.best_params_)

 return model



B.2 Data preprocessing
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# -*- coding: utf-8 -*-
"""
Created on Wed Mar 24 12:54:28 2021

@author: Marthe Søvdsnes
"""

import numpy as np
import pandas as pd
import re

def targets(df, crt=False):
 """
 Attaches the targets from the clinical data to the MRI data sets
 and removes patients with other causes of death. 

 Parameters
 ----------
 df: DataFrame

   MRI data set without targets
 crt: bool, optional

 decides whether the data should be split based on the crt column. 
 Default is False, no split. 

 Returns
 ----------
 DataFrame

 input dataframe with targets attached. If crt=False returns
 one dataframe
 Returns two dataframes if crt=True where first has crt="Nei" 
 and second has crt="Ja". Nei=No, Ja=Yes. 

 """

 medical = pd.read_excel("clinical_data.xlsx")

 i = 0
 for r in df.iloc[:, 0]: # changes the string format of the 'Name' column

   # in the MRI data so that it matches with clinical data
 number = [int(s) for s in re.findall(r'\d+', r)][0]
 if number < 10:

   df.iloc[i, 0] = 'OxyTarget 00{}'.format(number)
 elif number < 100:

   df.iloc[i, 0] = 'OxyTarget 0{}'.format(number)
 else: 

   df.iloc[i, 0] = 'OxyTarget {}'.format(number)
 i = i + 1

 df = drop_other_death_causes(df) # this is here because the potential split
   # that occurs under

 if not crt: # Default, if you don't want to divide the set based on crt
 medical = medical[['ID', 'OS-event', 'Tid til OS-event', 'PFS-event',

   'Tid til PFS-event']]
 return pd.merge(df, medical, how='left', left_on='Name',

 right_on='ID').drop(['ID', 'Name'], axis=1)

 else: #divides the set based on the crt column. NB!! returns two dataframes
 medical = medical[['ID', 'Preoperativ CRT     (Ja/Nei)', 'OS-event',

   'Tid til OS-event', 'PFS-event', 'Tid til PFS-event']]
 df = pd.merge(df, medical, how='left', left_on='Name', right_on='ID')

 df1 = df[df['Preoperativ CRT  (Ja/Nei)'] == 'Nei']



 df1 = df1.drop(['ID','Name', 'Preoperativ CRT  (Ja/Nei)'], axis=1)

 df2 = df[df['Preoperativ CRT  (Ja/Nei)'] == 'Ja']
 df2 = df2.drop(['ID', 'Name', 'Preoperativ CRT  (Ja/Nei)'], axis=1)
 return df1, df2

def drop_other_death_causes(df):
 """
 Removes the patients with cause of death unrelated to colorectal cancer

 Parameters
 ----------
 df: DataFrame

 Returns
 ----------
 dataframe
 """

 df = df[~df['Name'].isin(['OxyTarget 138', 'OxyTarget 153',
 'OxyTarget 176', 'OxyTarget 029'])]

 return df 

def MRI_data(fileloc, crt=False):
 """
 Imports and changes the MRI data into desired format

 Parameters
 ----------
 fileloc: str

 location of MRI file

 Returns
 ---------
 DataFrame
 """

 df = pd.read_csv(fileloc)
 df = targets(df, crt)
 return df

def load_clinical_data():
 """
 Reads the clinical data, removes patients with casue of 
 death unrelated to colorectal cancer and unneccesary columns

 Parameters
 ----------
 None

 Returns
 ---------
 dataframe

 dataframe of clinical data with some rows and columns removed
 """

 clin = pd.read_excel("clinical_data.xlsx")
 filelocation = "Set2_Combined_v2.csv" # MRI file
 df = pd.read_csv(filelocation)

 i = 0



 for r in df.iloc[:, 0]:
 number = [int(s) for s in re.findall(r'\d+', r)][0]
 if number < 10:

   df.iloc[i, 0] = 'OxyTarget 00{}'.format(number)
 elif number < 100:

   df.iloc[i, 0] = 'OxyTarget 0{}'.format(number)
 else: 

   df.iloc[i, 0] = 'OxyTarget {}'.format(number)
 i = i + 1

 df = df[['Name']]
 clin = pd.merge(df, clin, how='left', left_on='Name', right_on='ID').drop(['ID'], axis=1)
 clin = drop_other_death_causes(clin).drop(['Name'], axis=1) 
 clin = clin.reset_index().drop(['index'], axis=1)
 columns = ['Inklusjonsdato', 'Blodprøver ved inklusjon', 'Høyde    (cm)',

 'Vekt  (kg)', 'Symptomer', 'Dato henvist til spesialist', 
 'Lokalisasjon primærtumor', 'Dato colono-/rektoskopier m/biopsi',
 'Histologi av biopsi preparatnr.', 'Cancer klassif./type ',
 'Dato MR m/diagnose', 'Lokalisasjon metastaser', 
 'Dato/type annen radiologi/intervensjon ved diagnosetidspunkt',
 'Dato oppstart preoperativ kjemoterapi', 
 'Dato preoperativ radioterapi', 'Type preoperativ radioterapi',
 'Dato avslutt preoperativ radioterapi',
 'Dato MR kontroll etter preoperativ CRT', 
 'Beskrivelse av MR etter preoperativ CRT', 
 'Dato kirurgi', 'Sted kirurgi',
 'Type kirurgi                    (opersjonsbeskrivelse)', 
 'Histologi (kirurgi) preparatnr.', 'Histologisk beskrivelse',
 'Kommentar patologi', 'Andre undersøkelser / radiologi etc',
 'Blodtype', 'Kommentar adjuvant behandling', 'Dato metastaser',
 'Type metastase', 'Dato lokalt recidiv', 'Type lokalt recidiv',
 'MORS', 'Annen kreftsykdom', 'Inkludert i andre studier',
 'Siste reg OS', 'Planlagt oppfølging', 'Kommentar', 
 'Antall lymfeknuter undersøkt', 'Differensiering',
 'Type preoperativ radioterapi',  'Type preoperativ kjemoterapi']

 return clin.drop(columns, axis=1)

def clean_data(df):
 """
 Cleans the data and makes it usable by machine learning algorithms

 Parameters
 ----------
 df: dataframe

 Returns
 ----------
 dataframe
 """

 df['Kjønn     (K/M)'] = np.where(df['Kjønn     (K/M)']=='M', 1, 0)
 for col in df.columns: 

 df[col] = df[col].apply(lambda x: 1 if x == 'Positiv'  else x) 
 df[col] = df[col].apply(lambda x: 0 if x == 'Negativ'  else x)
 df[col] = df[col].apply(lambda x: 1 if x == 'Ja'  else x)
 df[col] = df[col].apply(lambda x: 1 if x == 'ja'  else x)
 df[col] = df[col].apply(lambda x: 0 if x == 'Nei'  else x)
 df[col] = df[col].apply(lambda x: np.nan if x == '-'  else x)
 df[col] = df[col].apply(lambda x: np.nan if x == 'Missing'  else x)
 df[col] = df[col].apply(lambda x: np.nan if x == 'Pending'  else x)
 df[col] = df[col].apply(lambda x: np.nan if x == 'NF'  else x)



 df[col] = df[col].apply(lambda x: 13.9 if x == '13,9'  else x)
   df[col] = df[col].apply(lambda x: 4 if x == '4a'  else x)

 return df

def remove_nan_row(df, k, crt=False):
 """
 Remove columns with nan > k, then removes all rows that still contains nan. 
 Prints shape of returned dataframe. Prints procentage of data that is class 1. 

 Parameters
 ----------
 df: dataframe
 k: int

 the higest number of nan a coumns can have and not be removed

 Returns
 ----------
 dataframe
 """

 f = df.isna().sum()
 too_many_nan = []
 index = 0
 for i in f: 

 if i > k: 
   too_many_nan.append(f.index[index])

 index = index + 1

 df = df.drop(too_many_nan, axis=1)
 df = df.dropna(axis=0)

 if crt: # Default, if you don't want to divide the set based on crt
 df1 = df[df['Preoperativ CRT     (Ja/Nei)'] == 0]
 df2 = df[df['Preoperativ CRT     (Ja/Nei)'] == 1]
 print('dim no crt', df1.shape)
 print('dim crt:', df2.shape)
 return df1, df2

 else:
 return df

def clinical_data(crt=False):
 """
 Imports and changes the clinical data into desired format

 Parameters
 ----------
 None

 Returns
 ---------
 dataframe

 clinical data in desired format
 """
 df = load_clinical_data()
 df = clean_data(df)
 df = df.drop(index=[43],)
 return remove_nan_row(df, 5, crt)

if __name__ == "__main__":
 fileloc_1 = "Set1_Combined_v2.csv" #set 1 dataset



 fileloc_2 = "Set2_Combined_v2.csv" #set 2 dataset
 clinical = clinical_data()
 mri_1 = MRI_data(fileloc_1)
 mri_2 = MRI_data(fileloc_2)

 crt_n_1, crt_y_1 = MRI_data(fileloc_1, crt=True)
 crt_n_2, crt_y_2 = MRI_data(fileloc_2, crt=True)
 clin, clin_crt = clinical_data(crt=True)
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# -*- coding: utf-8 -*-
"""
Created on Thu Apr 22 23:39:30 2021

@author: Marthe Søvdsnes
"""

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from RENT import RENT
import warnings
warnings.filterwarnings("ignore")

def rent(x_train, x_test, y_train):
 """
 Feature selection using RENT

 Parameters
 ----------
 x_train: df

   the training data
 x_test: df

   The test data
 y_train: series

 respons variables to x_train

 Returns
 ---------
 dataframe

   train data with the only the selecte features 
 dataframe 

 test data with the only the selected features

 """
 C_param = [0.1, 0.5, 1]
 l1_ratio = [0, 0.1, 0.25, 0.5, 0.75, 0.9, 1]

 y_train = y_train.to_numpy()
 model = RENT.RENT_Classification(data=x_train, 

 target=y_train, 
 feat_names=x_train.columns,
 C=C_param,
 l1_ratios=l1_ratio,
 poly='OFF',
 testsize_range=(0.25,0.25), 
 scoring='mcc',
 K=100,
 random_state=0,
 verbose=0)

 model.train()
 selected_features = model.selectFeatures(tau_1_cutoff=0.20, 

 tau_2_cutoff=0.20, 
 tau_3_cutoff=0.8)

 x_train = x_train[x_train.columns[selected_features]]
 x_test = x_test[x_test.columns[selected_features]]
 return x_train, x_test



def pca(x_train, x_test, n):
 """
 Feature extraction using PCA

 Parameters
 ----------
 x_train: df

   the training data
 x_test: df

   The test data
 n: int

 the number of principal conponents

 Returns
 ---------
 dataframe

   train data with the new pca components as columns 
 dataframe 

 test data with the new pca components as columns

 """

 scaler = StandardScaler()
 x_train = scaler.fit_transform(x_train)
 x_test = scaler.transform(x_test)

 pca = PCA(n_components=n)
 x_train = pca.fit_transform(x_train)
 x_test = pca.transform(x_test)
 return x_train, x_test
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# -*- coding: utf-8 -*-
"""
Created on Mon Apr 26 20:29:01 2021

@author: Marthe Søvdsnes
"""

import pandas as pd
from mr_data import MRI_data, clinical_data
from algorithms import KNN, RF, sv, LR
from feature_extraction import pca, rent
from sklearn.model_selection import StratifiedKFold
import numpy as np

def run_models(x_train, x_train_pca, x_train_rent, y_train):
 """
 Runs the models

 Parameters
 ----------
 x_train: df

   the training data
 x_train_pca: df

   the training data treated by PCA
 x_train_rent:

   the training data treated by RENT
 y_train: series

 respons variables

 Returns
 ---------

 results from each model as df and best model as estimator
 """

 knn = KNN(x_train, y_train)
 knn_pca = KNN(x_train_pca, y_train)
 knn_rent = KNN(x_train_rent, y_train)
 knn_results = results(knn, knn_pca, knn_rent)

 lr = LR(x_train, y_train)
 lr_pca = LR(x_train_pca, y_train)
 lr_rent = LR(x_train_rent, y_train)
 lr_results = results(lr, lr_pca, lr_rent)

 rf = RF(x_train, y_train)
 rf_pca = RF(x_train_pca, y_train)
 rf_rent = RF(x_train_rent, y_train)
 rf_results = results(rf, rf_pca, rf_rent)

 svc = sv(x_train, y_train)
 svc_pca = sv(x_train_pca, y_train)
 svc_rent = sv(x_train_rent, y_train)
 svc_results = results(svc, svc_pca, svc_rent)

 best = best_model(knn_results, lr_results, rf_results, svc_results)
 return knn_results, lr_results, rf_results, svc_results, best

def pca_rent(x_train, x_test, y_train):
 """
 Creates the RENT and PCA training and test sets



 Parameters
 ----------
 x_train: df

   the training data
 x_test: df

   the test data
 y_train: series

 respons variables

 Returns
 ---------

 training and test sets treated by RENT and PCA as four seperate dataframes 
 """

 x_train_pca, x_test_pca = pca(x_train, x_test, 10)
 x_train_rent, x_test_rent = rent(x_train, x_test, y_train)
 return x_train_pca, x_test_pca, x_train_rent, x_test_rent

def best_model(knn, lr, rf, svc):
 """
 Finds the best model

 Parameters
 ----------

 knn: df
   results from all the knn models

 lr: df
   results from all the logistic regression models

 rf: df
   results from all the random forest models

 svc: df
 results from all the SVC models

 Returns
 ---------

 DataFrane
 the model with the higest mean test score

 """

 results = knn.transpose().append([lr.transpose(),
 rf.transpose(), svc.transpose()]) 

 best_score = max(results['Mean Test Score'])
 best = results.loc[results['Mean Test Score']==best_score]
 return best

def results(model, model_pca, model_rent):
 """
 makes the result dataframe for the models

 Parameters
 ----------

 model: estimator
   model trained on training data

 model_pca: estimator
   model trained on training data treated by PCA

 model_rent: estimator 
 model trained on training data treated by RENT

 Returns
 ---------



 dataframe
 """

 results = pd.DataFrame()

 model_all = [model.cv_results_['params'][model.best_index_],
 model.cv_results_['mean_test_score'][model.best_index_],
 model.cv_results_['mean_train_score'][model.best_index_],
 model.cv_results_['std_test_score'][model.best_index_], 
 model.cv_results_['std_train_score'][model.best_index_],
 model]

 pca = [model_pca.cv_results_['params'][model_pca.best_index_],
 model_pca.cv_results_['mean_test_score'][model_pca.best_index_],
 model_pca.cv_results_['mean_train_score'][model_pca.best_index_],
 model_pca.cv_results_['std_test_score'][model_pca.best_index_], 
 model_pca.cv_results_['std_train_score'][model_pca.best_index_],
 model_pca]

 rent = [model_rent.cv_results_['params'][model_rent.best_index_],
 model_rent.cv_results_['mean_test_score'][model_rent.best_index_],
 model_rent.cv_results_['mean_train_score'][model_rent.best_index_],
 model_rent.cv_results_['std_test_score'][model_rent.best_index_], 
 model_rent.cv_results_['std_train_score'][model_rent.best_index_],
 model_rent]

 results['All'] = model_all
 results['PCA'] = pca
 results['RENT'] = rent
 results['index'] = ['Params', 'Mean Test Score', 'Mean Train Score',

   'Std Test Score', 'Std Train, Score', 'Model']
 results = results.set_index('index')
 return results

def k_fold(X, y):
 """
 splits the data up in 4 test folds

 Parameters
 ----------

 X: df
   data from the clinical data set

 y: series
 corresponding respons variables

 Returns
 ---------

 test: list
 list containing the indexes for the test data for each fold

 """

 test = []
 X_index = X.reset_index()
 skf = StratifiedKFold(n_splits=4, random_state=0)
 skf.get_n_splits(X_index, y)
 for train_index, test_index in skf.split(X_index, y):

 temp_test = X_index.iloc[test_index]['index']
   test.append(temp_test) 

 return test 

def workflow(test_index, X, y):



 """
 splits the full dataset into train and test data, performs RENT and PCA, 
 trains the models and find the model with the higest mean test score

 Parameters
 ----------

 test_index: list
   indexes for test data

 X: df
   full dataset

 y: series
 corresponding response variables

 Returns
 ---------

 best: df
   the best model

 x_test: df
   test data

 x_test_pca: df
   test data treated by PCA

 x_test_rent: df
   test data treated by RENT

 y_test: series
 test response variables

 """

 x_train, x_test = X.drop(index=test_index), X.loc[test_index]
 y_train, y_test = y.drop(index=test_index), y.loc[test_index]
 x_train_pca, x_test_pca, x_train_rent, x_test_rent = pca_rent(x_train,

 x_test,
   y_train)

 knn_results, lr_results, rf_results, svc_results, best = run_models(x_train,
 x_train_pca,
 x_train_rent,
 y_train)

 return best, x_test, x_test_pca, x_test_rent, y_test

def voter(pred_1, pred_2, pred_clin):
 """
 makes the majority vote predictions

 Parameters
 ----------

 pred_1: list
   predictions from the best model form set 1

 pred_2: list
   predictions from the best model from set 2

 pred_clin: list
 predictions from the best model from the clinical data

 Returns
 ---------

 vote_pred: list
 predictions from the majority vote classifer

 """

 voter_pred = []
 for i in range(len(pred_1)):

 pred_sum = pred_1[i] + pred_2[i] + pred_clin[i]
 if pred_sum < 2:



 voter_pred.append(0)
 else:

   voter_pred.append(1)
 return voter_pred

if __name__ == "__main__":
 fileloc_1 = "Set1_Combined_v2.csv" #set 1 data
 fileloc_2 = "Set2_Combined_v2.csv" #set 2 data
 clinical = clinical_data()
 mri_1 = MRI_data(fileloc_1, crt=False)
 mri_2 = MRI_data(fileloc_2, crt=False)

 clin = clinical_data(crt=False)
 X = clin.iloc[:, :-2] #all columns exept PFS-event and OS-event
 y = clin['OS-event']
 x_mri_1 = mri_1.iloc[:, :-4]
 y_mri_1 = mri_1['OS-event']
 x_mri_2 = mri_2.iloc[:, :-4]
 y_mri_2 = mri_2['OS-event']

 test_index = k_fold(X, y)

 #change the index in test_index to change fold
 best_1, x_test_1, x_test_pca_1, x_test_rent_1, y_test_1 = workflow(test_index[1], x_mri_1, y_mri_1)
 best_2, x_test_2, x_test_pca_2, x_test_rent_2, y_test_2 = workflow(test_index[1], x_mri_2, y_mri_2)
 best_clin, x_test_clin, x_test_pca_clin, x_test_rent_clin, y_test_clin = workflow(test_index[

 #change the input test dataset based on which dataset the best model uses
 pred_1 = best_1['Model'][0].predict(x_test_rent_1)
 pred_2 = best_2['Model'][0].predict(x_test_rent_2)
 pred_clin = best_clin['Model'][0].predict(x_test_pca_clin)

 vote_pred = voter(pred_1, pred_2, pred_clin)





 

 

 


