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Abstract

The human brain contains billions of neurons connected through synapses, making it a
highly complex system that researchers have been trying to understand for centuries. One
way of increasing our understanding of the brain is through modeling. Different modeling
techniques and tools support modeling at different levels of scale, from biophysically
detailed models of specific properties in single neurons to large-scale population models
where the rate of action-potential firing is modeled.

Vision is by far the most important sense for humans and a large fraction of the brain’s
capacity is engaged in visual perception. The retina, the lateral geniculate nucleus (LGN)
and the primary visual cortex comprise the first few steps in visual processing and are
collectively known as the early visual pathway. The thalamus, of which the LGN is a
part, has been said to represent “the final bottleneck of information flow before it gets
into cortex”. It has mostly been thought of as a relay station for sensory signals on the
way to cortex, but with its central position in the brain right on top of the brainstem, it
seems to be a natural location to perform filtering and modulation of the sensory signals
based on attention and other behavioral requirements.

A central theme of this thesis is to extend our understanding of the signal processing in the
early visual pathway through modeling and to bridge the gap between biology and models
at different levels of scale. Three main topics are addressed: First, we investigate how
spiking point-neuron models relate to firing-rate models at the retinogeniculate synapse.
With two spiking neuron models as the starting point of our analysis, we study how well
firing-rate models capture the essential response properties of LGN relay cells. Second,
we apply the same approach to more complex neuron models that can be parameterized
to exhibit a wide range of different spiking patterns and thereby can be configured to
represent many different neuron types in the early visual system and elsewhere in the
brain. Finally, we explore the effects of different inhibitory actions from local interneurons
on the relay cells in a biophysically detailed network model of the LGN circuit. Large-
scale parameter scans are central to all three projects. They are managed efficiently by
support tools developed as part of this work.

Although the models and findings presented here may have taken our understanding a
small step forward, the early visual pathway and the brain in general is still far from
understood. Hence, we hope that these results will prove useful as starting points for
future investigations.
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Sammendrag

Menneskehjernen består av flere milliarder nevroner som er koblet sammen via synapser.
Resultatet er et komplekst system som forskere har forsøkt å forstå i en årrekke. En frem-
gangsmåte for å øke forståelsen av hjernen, er å benytte seg av modellering. Forskjellige
modelleringsteknikker og -verktøy støtter modellering på forskjellige nivåer, fra detaljerte
biofysiske modeller av enkeltnevroner i den ene enden av skalaen til fyringsratemodeller
for populasjoner av nevroner i den andre.

Synet er uten tvil den viktigste av menneskets sanser og en stor del av hjernen benyttes
til å behandle synsinntrykk. Netthinnen bakerst i øyet, LGN (“lateral geniculate nucleus”)
og det primære synssenteret i hjernebarken utgjør de første stegene i synsprosesseringen
og omtales gjerne som den tidlige synsbane. Thalamus, som LGN er en del av, har blitt
omtalt som “den siste flaskehalsen i informasjonsflyten inn til hjernebarken”. Den har
stort sett blitt ansett som kun en reléstasjon for signaler på vei til hjernebarken, men med
sin sentrale plassering på toppen av hjernestammen, fremstår dette som et naturlig sted
for filtrerering og modulering av signaler fra sansene.

Hovedmålet med denne avhandlingen er å øke vår forståelse av prosesseringen som foregår
i den tidlige synsbane gjennom modellering og å bygge bro mellom biologien og mod-
eller på forskjellige detaljeringsnivåer. Vi tar for oss tre temaer: Først undersøker vi
i hvilken grad punktnevnronmodeller av reléceller i LGN kan forenkles til fyringsrate-
modeller. Vi tar utgangspunkt i to eksisterende punktnevnronmodeller som vi tilpasser
forenklede fyringsratemodeller til og sammenligner simuleringsresultater fra de to modell-
typene. Videre benytter vi samme fremgangsmåte for å analysere mer komplekse nevron-
modeller som kan tilpasses mange forskjellige adferdsmønstre. Til slutt bygger vi en
biofysisk detaljert nettverksmodell av LGN-kretsen for å undersøke hvordan forskjellige
typer inhibisjon fra lokale internevroner påvirker relécellene. Nødvendige støtteverktøy
utvikles underveis for å understøtte storskala parametersøk som står sentralt i alle tre
prosjektene.

Modellene og funnene som presenteres her bidrar forhåpentligvis til å ta vår forståelse av
hjernen et lite steg videre. Samtidig gjenstår det fortsatt mye før den tidlige synsbane og
hjernen generelt er fullt ut forstått. Vi håper derfor at disse resultatene også kan danne
et godt utgangspunkt for fremtidige undersøkelser.
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1 Introduction

The human brain consists of billions of neurons connected in a complex network. While
the human brain essentially has been the same for thousands of years, insight into its inner
workings is fairly recent. The invention of the microscope and staining techniques in the
late 1800s sparked the foundation of neuroscience as a scientific field. Since then, new
tools and techniques have contributed to an enormous growth in our knowledge about
the brain and its components. More recently, optogenetics have enabled the study of
increasingly smaller neurons and parts of neurons. Experimenters can not only observe,
but also manipulate neurons and neural circuits by activating and disabling components
down to individual synapses in real time (Deisseroth et al, 2006; Packer et al, 2012).
Helping to clarify our understanding of retinal structure and function, adaptive optics
allows direct visualization of individual rod and cone photoreceptors in the human eye
(Godara et al, 2010; Miller et al, 1996). At the other end of the scale, the resolution of
non-invasive imaging techniques keeps increasing. The Human Connectome Project aims
to map the anatomical and functional connectivity between brain areas (Sporns et al,
2005; Van Essen et al, 2013). The Allen Institute for Brain Sciences builds multiple brain
atlases to better understand gene expression and connectivity in the brain (e.g. Lein et al,
2006; Hawrylycz et al, 2012; Oh et al, 2014) These advances in unraveling the structure
of the brain together with system level experiments yield unprecedented insight into the
emergence of function and behavior. Pivotal in building a mechanistic understanding of
brain functioning is complementary theoretical analysis and modeling, especially detailed
computer simulations made possible by the rapid increase in computational power.

Of the five senses, vision is by far the most important to humans (Palmer, 1999). Using
cortical area as measure of relative importance, the visual cortex (including visual asso-
ciation areas) occupies 55% of the neocortex in macaque monkeys, whose visual system
in many ways rivals that of humans (Felleman and Van Essen, 1991). Visual perception
starts when the lens in the eye focuses an image onto the retina where photoreceptors
detects the photons. From the retina, the main visual pathway to the cortex is via retinal
ganglion cells that project through the optic nerve to relay cells (or thalamocortical cells)
in the lateral geniculate nucleus (LGN), which in turn pass their axons to the primary
visual cortex (V1). In the cortex, visual processing is spread out across a complex net-
work of regions (Figure 1.1). The retina, LGN, and V1 are commonly collectively referred
to as the early visual pathway. While the retina transformes light into electrical signals
for processing in the brain, the functional role of the LGN is not as obvious. The name
used for its main neuron class indicates that the nucleus primarily has been seen as a
relay station for visual signals, but why does retinal input not project directly to cortex?
While effective, the retinal input accounts for only a few percent of the synaptic inputs
onto the relay cells. The remaining 90%-95% is approximately equally divided between

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Mapping of primate visual areas. The hierarchy shows the retinal gan-
glion cell (RGC) layer, the LGN, 32 visual cortical areas, and several nonvisual areas.
Reprinted from Felleman and Van Essen (1991), by permission of Oxford University Press.
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local inhibitory inputs, cortical feedback, and brainstem inputs (Van Horn et al, 2000).

The thalamus, of which the LGN is a part, is known to be involved in regulating sleep and
wakefulness (Steriade and Llinás, 1988). Changes between drowsy and alert states are
generally associated with changes in activity of brainstem afferents that cause relay cells
to switch between two response modes, tonic and burst. The response modes affect how
information is passed on to the cortex. In brief, cells in tonic mode reliably relay informa-
tion, while cells in burst mode might be more capable of detecting a stimulus. Initially,
response mode was thought to be linked with arousal state and that only tonic firing is
seen in the awake, alert animals. However, more recent research suggests that bursting
may also occur (Ramcharan et al, 2000; Sherman, 2001) and that cortical feedback may
be involved in controlling the response mode selectively in different regions of the visual
field (Sherman and Guillery, 2005).

The thalamus is made up of more than 30 separate nuclei that can be grouped into first
order and higher order relays (Sherman and Guillery, 2005). First order relays are those,
like LGN, that send information about the environment through sensory pathways and
messages about events in the subcortical parts of the brain to the cortex, while higher
order relays provide a transthalamic relay from one part of cortex to another. In primates,
the higher order nuclei make up more than half the thalamus. Although there is little
direct interaction between individual relay cells, modulation by interneurons occurs at
multiple levels. First, with some variation between species, the LGN comprises up to 30%
local interneurons that act on the relay cells (Sherman and Guillery, 2005). The circuitry
is complex and depends not only on the precise connections that are established, but also
on the transmitters, the receptors, and the membrane properties that are involved in the
synaptic interactions. Further, projection in both directions between thalamus and cortex
give off collaterals in the thalamic reticular nucleus (TRN) — a structure that forms a
capsule around the thalamus. The TRN receives excitatory branches from corticothalamic
and thalamocortical axons and sends inhibitory connections back to the thalamus to form
an additional source of inhibition (Jones, 1985). Interaction between TRN regions even
allows for modulation of LGN relay cells by higher order relays (Sherman and Guillery,
2005).

Although the full range of relay properties affected by the lateral geniculate nucleus cir-
cuitry is far from understood, it is generally accepted that the LGN “does not simply
perform a trivial, machine-like passing on of retinal inputs” (Guillery and Sherman, 2002).
The main objective of this thesis has been to extend our understanding of the early visual
system through modeling and to bridge the gap between biology and models at different
levels of scale.

The following sections will introduce modeling techniques at different levels and provide
additional background on the early visual system.





2 Multiscale modeling

Mathematical models in neuroscience can be categorized into three types: mechanistic, de-
scriptive, and interpretive (Einevoll and Halnes, 2014). Mechanistic (physics-type) models
aim to account for observed neural properties on the basis of known neural physiology
and anatomy. Descriptive (statistical) models summarize experimental data compactly in
a mathematical form. Interpretive (normative) models aim to model the functional roles
of neural systems.

Mechanistic modeling, the main focus in the present thesis, can be done at different levels.
Biophysically detailed models, spiking point-neuron models, and firing-rate models are
three common modeling techniques that operate at different levels of detail.

2.1 Level 1: Biophysically detailed models

Compartmental models are the most detailed model type. By including morphologies
that describe the branching structure of the dendrites and physiological properties such
as the distributions of ion channels, these models enable modeling of detailed dendritic
processing (Koch and Segev, 1998). The structure is divided into compartments that
are modeled as small electrical circuits. Within the volume of each compartment, the
membrane potential V is assumed to be equal. The membrane voltage Vn of compartment
n with two neighboring segments in a multi-compartment neuron model can be described
by

gn,n+1(Vn+1 − Vn)− gn−1,n(Vn − Vn−1) = Cn
dVn
dt

+
∑

s

Isn(t) +
∑

j

Ijn(t) . (2.1)

The left hand terms represent current contributions from neighboring compartments where
g is the conductance between the compartments. On the right hand side, the first term is
the capacitive current through the membrane (due to changes in the membrane potential)
for compartment n. The final terms represents other currents due to synaptic input
(s) and activity in other ion channels (j) in compartment n. As an example, in the
well known Hodgkin-Huxley (HH) model (Hodgkin and Huxley, 1952) of the mechanisms
underlying the initiation and propagation of action potentials in the squid giant axon,
three ion channels currents were included: a sodium channel, a potassium channel and
a leak channel accounting for other non-specified currents. Compartmental models can
be used to quantitatively fit dynamics of real neurons, but they are defined by a large
number of variables and are highly nonlinear, which makes mathematical analysis difficult
and makes large scale network simulations computationally intensive. Two compartmental

5



6 CHAPTER 2. MULTISCALE MODELING

Figure 2.1: Consecutive simplification of neuron structure. A: Cortical pyrami-
dal neuron. B: Multicompartment model of the pyramidal neuron. C: Reduced multi-
compartment model (“ball-and-stick”). D: Point neuron. Panel A c© CNX OpenStax /
https://cnx.org / CC-BY-4.0

models with different number of compartments are illustrated in Figure 2.1 panels B and
C. The latter is often referred to as a “ball-and-stick” model.

2.2 Level 2: Spiking point-neuron models

In point neuron models, the compartmental structure is collapsed into a single compart-
ment (Figure 2.1D). The validity of this simplification depends on the neuron properties
as the membrane potential and transmembrane currents are assumed to be the same
throughout the cell. Other models in this class include both reductions of the HH-model
and more phenomenological models. The leaky integrate-and-fire (LIF) neuron (Knight,
1972a; Brunel and van Rossum, 2007) is the simplest and most widely used model in this
class:

C
dV

dt
= −gL(V − EL)−

∑

s

Is(t) , (2.2)

gL is the ohmic leak current and the Is sum represents current due to synaptic input.
Because of its simplicity, the IAF model has a limited repertoire of spiking behaviors
compared to real neurons. On the other hand, its simplicity makes it suitable for mathe-
matical analysis and numerical simulations in large networks. Between these two extremes,
a broad range of models have been developed with different tradeoffs between keeping most
of the dynamic behavior and reducing complexity to become computationally cheaper and
more amenable to mathematical analysis.

Spiking models are deterministic in response to current stimuli or synaptic input and can
predict precise spike times, assuming that all parameters are known. As this is not always
the case, this apparent precision may not be realized in practice.

https://cnx.org/contents/GFy_h8cu@10.53:rZudN6XP@2/Introduction
https://creativecommons.org/licenses/by/4.0/


2.3. LEVEL 3: FIRING-RATE MODELS 7

2.3 Level 3: Firing-rate models

In firing-rate models, the probability of action-potential firing is modeled rather than
individual spikes. They can be used to model both individual neurons and dynamics
in populations of neurons. By avoiding the short timescale dynamics of action-potential
firing, the number of parameters needed may be reduced and they can be efficiently
implemented in terms of differential or integral equations (Dayan and Abbott, 2001).
Firing-rate models are comparatively easy to study analytically and simple enough to be
suitable for studying network dynamics at a large scale.

A common way to approach firing-rate modeling, is to study the dynamics in a limited
region of the state space. Under the assumption that a system remains linear for small
perturbations around a working point, it can be treated like a linear, time-invariant (LTI)
system that is completely characterized by its impulse response. That is, for any input, the
output can be calculated as a convolution of the input and the system’s impulse response.
Thus, one can describe the time-dependent output firing-rate r(t) of a population of
neurons, or an ensemble of trials for a single neuron, in response to an input signal a(t)
near the stationary working point (a0, r0) for small perturbations ∆a(t) = a(t)−a0. Once
the impulse response h0 is known, the output rate r(t) can be predicted for small stimulus
perturbations ∆a(t),

r(t) = (a ∗ h0)(t) = r0 + (∆a ∗ h0)(t). (2.3)

In the frequency domain, the transfer function (or frequency response) H0(f) is given by
the Fourier transform of the impulse response,

H0(f) = F [h0(t)](f) =

∫ ∞

−∞
dt h0(t)e

−2πift. (2.4)

Obtaining the transfer function is useful as convolution in the time domain corresponds
to multiplication in the frequency domain (Eq 2.3).





3 Early visual system

3.1 Biological background

As the eye focuses an image onto the retina at the back of the eye, light is converted to
an electrical signal as photoreceptors detects the photons (Figure 3.1, top right). Rods
and cones are the two main types of photoreceptors and are responsible for night and
day vision, respectively. Rods have a high sensitivity to light, but have low temporal
resolution and do not differentiate between colors. Cones perform better than rods on
all visual tasks except detection of dim stimuli (Kandel et al, 2000). They are more
numerous at the fovea and therefore provide better acuity, they provide better temporal
resolution, and they provide color vision as there are three types of cones that are sensitive
to different parts of the light spectrum. The three cone types are referred to as S (short),
M (medium), and L (long) due to the wavelength of the light they are most sensitive to.

From the photoreceptors, the main (vertical) pathway through the retina is via bipolar
cells to ganglion cells (Lee et al, 2010; Dowling, 1987). Along the way, the visual signal
is shaped by feedback and feedforward inhibition by two main types of interneurons:
horizontal cells and amacrine cells.

Bipolar cells come in two main varieties, ON and OFF. When photoreceptors directly
above them are active, ON bipolar cells depolarize, while OFF cells hyperpolarize. When
surrounding photoreceptors are active, the response of bipolar cells are the opposite of
that evoked by illumination of the center. Cones typically connect to both types of bipolar
cells and each type of bipolar cell makes excitatory connections with the corresponding
type of ganglion cell. This arrangement enables two parallel pathways from cones to
ganglion cells that help later processing stages detect weak contrasts and rapid changes
in light intensity. The rod circuitry is slightly different. Rod bipolar cells have only been
found to be of the ON type and these connect with ganglion cells via amacrine cells. OFF
responses are created as rods directly contact OFF cone bipolar cells or via amacrine cells.
In addition, rods and cones can form gap junctions that allow rod signals to flow through
cone bipolar cells.

Horizontal cells connect nearby photoreceptors, and in some species bipolar cells (Hubel,
1995). They contribute to adjust the eyes to see well in a wide range of lighting conditions
and, in particular, they establish the center-surround receptive-field properties through
inhibitory feedback to photoreceptors (Figure 3.2A).

Amacrine cells, like horizontal cells, primarily work laterally. They receive synaptic input
from bipolar cells and other amacrine cells, and in turn provide input to amacrine and
ganglion cells as well as feedback to bipolar cells. Amacrine cells are the most diverse

9



10 CHAPTER 3. EARLY VISUAL SYSTEM

Fig. 1. 
Early visual system pathways of the macaque monkey. The figure on the left shows the 
pathway of visual information imaged on the retina as it passes through the LGN and arrives 
at the primary visual cortex (V1). The anatomical schematic represents a ventral view of the 
right hemisphere. The visual scene is imaged by photoreceptors in the retina and information 
is passed through bipolar cells to retinal ganglion cells whose axons exit the back of the 
eyeball forming the optic nerve. Information from the contralateral part of the scene reaches 
the LGN with input from the two eyes arriving at separate layers of the LGN: layers 2, 3, 
and 5 receive input from the ipsilateral eye and layers 1, 4, and 6 receive input from the 
contralateral eye. The magnocellular layers (1 and 2) receive input that originated from rod 
photoreceptors and the Parvocellular layers (3–6) receive input that originated from cone 
photoreceptors. Koniocellular cells in the LGN are interspersed between the magnocellular 
and parvocellular layers and receive information arising from short-wavelength cones. Cells 
in the LGN project mainly to layer 4 of the primary visual cortex through a formation called 
the optic radiation. Adapted from Solomon and Lennie, 2007 with permission.

Jeffries et al. Page 16

J Physiol Paris. Author manuscript; available in PMC 2017 May 28.
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Figure 3.1: Overview of the mammalian early visual system (macaque monkey).
Left: The early visual pathway from retina via the lateral geniculate nucleus (LGN) to
the primary visual cortex (V1). Nerve fibers cross at the optic chiasm such that signals
originating from the right visual field of both eyes are processed in the left part of the visual
system, and vice versa. Right top: Light is absorbed by photoreceptors and the signals
are passed through bipolar cells and multiple types of interneurons to retinal ganglion
cells whose axons exit the eye and form the optic nerve. Right center: The LGN is
a layered structure with 6 main layers. The bottom two layers (1 and 2) are called the
magnocellular layers and receive input from rod photoreceptors. The upper four (3 to 6)
are the parvocellular layers and receive input from cone photoreceptors. Between each of
these six layers are the koniocellular layers (not shown). Right bottom: LGN relay cells
mainly project to layer 4, with koniocellular cells also targeting more superficial cortical
layers. Reprinted from Jeffries et al (2014), with permission from Elsevier. Adapted by
permission from Springer Customer Service Centre GmbH: Nature Reviews Neuroscience
8(4):276–286, The machinery of colour vision. Solomon and Lennie (2007)

https://dx.doi.org/10.1038/nrn2094
https://dx.doi.org/10.1038/nrn2094


3.1. BIOLOGICAL BACKGROUND 11
Drag image to reposition.

 

 

Figure 3.2: Center-surround receptive fields. A: Classical receptive field with a
central on region and a surrounding off region. On-center cells are excited by stimulation
of the central region (+) and inbibited by stimulation in the surrounding region (-). For
off-center cells the opposite is true. B: The center-surround receptive field can be modeled
as the difference of two Gaussians (DOG). An on-center receptive field is shown (black)
composed of a narrow excitatory region (red) and a wider inhibitory region (blue). C: A
two dimensional plot of the DOG model from panel B. D: The extra-classical receptive
field (ECRF), a region much larget than the classical receptive field (CRF). Stimuli in the
ECRF are thought to affect the response to stimuli in the CRF without directly generating
spikes. Reprinted from Jeffries et al (2014), with permission from Elsevier.

class of neurons in the retina.

Most ganglion cells in the primate retina can be grouped into one of two main categories,
P cells (parvi ; small) or M cells (magni ; large). Each class include both on-center and
off-center cells. M cells respond optimally to large objects and are able to follow rapid
changes in the stimulus. P cells are known as midget retinal ganglion cells, based on the
small sizes of their cell bodies and dendritic trees. They receive input from relatively
few rods and cones. As a result they have small receptive fields and are thought to be
responsible for the analysis of fine detail in the visual image, while M cells appear to
be concerned with the analysis of the gross features of the stimulus and its movement
(Kandel et al, 2000). Bistratified ganglion cells are a more recent discovery, possibly due
to their small size. These cells have large receptive fields that only have centers (i.e.,
no surrounds) and are always ON to blue cones and OFF to both red and green cones.
Finally, some retinal ganglion cells are themselves photosensitive, but contribute little
or nothing to vision. Instead, they contribute to circadian rhythms and pupillary light
reflex, the resizing of the pupil. For further details on retinal processing, see e.g. Lee et al
(2010).

Axons from retinal ganglion cells exit the eye through the optic nerve and pass the optic
chiasm where half of them cross to the opposite side. This causes signals originating from
the right visual field of both eyes to be processed in the left part of the visual system,
and vice versa.

There are two separate pathways into the brain on each side. A few percent of the fibers
go to the superior colliculus which is involved eye movement, but the main pathway leads
to the lateral geniculate nucleus (LGN). The LGN is part of the thalamus, a sub-cortical
structure which serves as a gateway for most sensory signals bound for the cortex – with
the notable exception of olfaction.

Whereas the ganglion cells form a two-dimensional sheet that receive input from nearby
cells in the same eye, the LGN is a three-dimensional structure that receives input from
both eyes (Palmer, 1999). Individual LGN cells, however, respond to stimulation from
just one eye. The LGN has a laminar (layered) architecture consisting of multiple sheets of
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neurons. Six distinct layers are folded as shown in Figure 3.1 (right center) and organized
such that the same point in visual space is stacked on top of each other in each layer.
The bottom two layers (1 and 2) are called the magnocellular layers, while the upper four
(3 to 6) are called parvocellular layers. Between each of these six layers are koniocellular
layers.

Different kinds of retinal ganglion cells project selectively to these layers. Magnocellular
and parvocellular layers in the LGN correspond with similarly named types of retinal
ganglion cells. That is, retinal M cells synapse onto magnocellular LGN cells and the
two layers receive input from one eye each. Likewise, cells in the parvocellular layers are
innervated by retinal P cells and the four layers alternate between left and right eye input.
Bistratified ganglion cells are thought to project to the koniocellular layers of the LGN
(Lee et al, 2010). Due to the selective connectivity from retina via LGN to primary visual
cortex, one commonly refers to the parvocellular (P), magnocellular (M), and koniocellular
(K) pathways. These pathways have been suggested to process different aspects of the
visual scene in parallel (Casagrande, 1994). Note that separate pathways are found in
other species as well, but that they have somewhat different properties and are labeled
differently. In cats, for example, three pathways called X, Y, and W have been found
that roughly correspond to the M, P, and K pathways in primates, respectively (Sherman
and Guillery, 2005).

The LGN cells that integrate inputs from one or a few ganglion cells and transmit the
processed information though the optic radiations to the middle layers of the primary
visual cortex (V1), are collectively known as relay cells (RCs). The synapses between
ganglion cells and relay cells are so strong that only a few spikes in close succession are
required to cause the relay cell to fire. While effective, the retinal inputs account for only
a few percent of the synaptic inputs onto the relay cells. Interneurons (INs) receive the
same retinal signal and modify the relay cell response in several ways. One construct that
seems to be unique for the thalamic interneurons is called “triads”. These are particular
synaptic terminals on the interneuron dendrites where the ganglion cell connects to both
a relay cell and the interneuron. Both the relay cell and the interneuron are excited by the
ganglion cell, but in addition the relay cell is inhibited by the interneuron. This inhibition
has been observed to consistently follow the excitation with a delay of about 1 ms and
effectively serves to tune the input to the relay cell (Blitz and Regehr, 2005). This type of
inhibition has been termed “locked” (or local) inhibition. In addition, most interneurons
have an axon that can inhibit nearby relay cells in a more conventional way when the
interneuron fires. As this type of inhibition typically requires integration of several input
spikes, it is not directly linked to any one input spike and has become known as “non-
locked” (or “global”) inhibition. The details of the interaction between relay cells and
interneurons has not been clear and is the topic of Paper III in this thesis.

3.2 Receptive-field modeling

Neurons in the visual system respond to light stimuli within a limited region of the visual
field called their receptive field. Within a neuron’s receptive field, there are regions where
brightness above the background illumination causes increased firing, and others where
lower illumination increases firing. The layout of these regions determine how the neuron
responds to different stimuli. The early visual system is organized such that adjacent
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neurons have receptive fields that include slightly different, but overlapping visual regions.
This arrangement forms a topographic map of the visual field known as a retinotopic map
that is preserved along the visual pathway, from the retina via LGN to the primary visual
cortex (V1) and further.

In “classic” receptive field illustrations, only the spatial dimension is considered. However,
neurons in the visual pathway generally exhibit dynamics in both space and time. Given
that the receptive field is a spatiotemporal entity, it is relevant to determine how space
and time interact to form a cell’s response — whether or not it is space-time separable. If
the receptive fieldD(x, y, τ) can be described as the product of two independent functions,
a spatial and a temporal receptive field, it is said to be space-time separable:

D(x, y, τ) = Ds(x, y)Dt(τ) (3.1)

Retinal ganglion cells and LGN relay cells have (spatial) receptive fields that are approx-
imately circular. This concentric receptive field structure is known as center-surround
organization. There are two main variants of this scheme. On-center cells (Figure 3.2A)
respond maximally to bright spots surrounded by a dark background and vice versa for
off-center cells. These spatial structures can be described with a difference-of-Gaussians
model

Ds(x, y) = ±
(
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(3.2)

where the first and last Gaussian function describe the center and the surround, respec-
tively (Rodieck, 1965). σcen determines the size of the central region, while σsur determines
the surround. B controls the balance between the center and surround contributions. The
± sign enables both on (+) and off (-) center cases to be represented. The on center case
is illustrated in Figure 3.2 panels B and C.

Hubel and Wiesel (1959) studied receptive fields of cells in the primary visual cortex
and categorized the cells as either simple or complex. Simple cells have spatially ori-
ented receptive fields with alternating elongated regions that are responsive to bright or
dark stimuli. It is thought that the responses are formed from an array of LGN center-
surround receptive fields. Complex cell responses are assumed to be formed by non-linear
combinations of subunits that resemble simple cells (DeAngelis et al, 1995).

Using white-noise techniques, the receptive fields in the early visual system can be mapped
experimentally (DeAngelis et al, 1995). Figure 3.3 illustrates schematic (left) and mea-
sured (right) spatial profiles of the center-surround type typically found in the retina and
LGN (A) along with cortical simple (B) and complex (C) cells.

A compact way to illustrate the dynamics of the receptive field structure is to construct
an x-t plot that summarizes how the one-dimensional spatial organization of the receptive
field (along the axis perpendicular to the cell’s preferred orientation) changes with time.

Representative examples are illustrated in Figure 3.4: For the two LGN cells (A and B),
the x-t profiles are approximately space-time separable, with center-surround organization
in space (horizontal) and a biphasic structure in time (vertical). However, the temporal
component may be different for the center and surround parts, making the whole receptive
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terms, this means that the spatial arrangement of RF 
subregions is fixed but their strengths and polarities 
are modulated over time. For the cell of Fig. 2B, the RF 
is space-time inseparable, because its spatial organiz- 
ation changes with time. Although there are many  
possible types of space-time inseparability, simple 
cells with inseparable RFs exhibit a highly characteris- 
tic pattern in which the spatial phase of the RF 
changes gradually as a function of t ime 3'8. When the 
temporal sequence of RF profiles in Fig. 2B is animated 
(that is, shown as a movie), subregions of the RF 
appear clearly to move rightward over t ime within a 
tapered spatial window. Note, however, that the two- 
dimensional  spatial envelope of the RF remains 
approximately fixed as time progresses 3,39. Not surpris- 
ingly, this characteristic form of space-time insepar- 
ability has implications for understanding motion 
selectivity. 

Spatiotemporal RF transformations along the 
geniculostriate pathway 

A convenient way to characterize the dynamics of 
RF structure is to construct an x - t  plot u. An x - t  plot 
summarizes how the one-dimensional spatial organiz- 
ation of the RF (along the axis perpendicular to the 
cell's preferred orientat ion) changes with time. 
Figure 3 shows x - t  plots for seven representative neurons 
from the cat's LGN and striate cortex. For LGN cells 
(Fig. 3A and B), the x - t  plot typically exhibits a 
center-surround organization in space, and a biphasic 
structure in time (see also Refs 5 and 6). To a first 
approximation, the x - t  profiles of LGN cells are 
space-time separable; however, many  LGN cells (for 
example, Fig. 3A) show two subtle, yet clear, devi- 
ations from separability. The temporal response of the 
surround is often delayed slightly with respect to that 
of the center. In addition, the first temporal phase 
of the surround often appears to converge with the 
second temporal phase of the center, although this 
second deviation might  simply be a consequence of 
the delayed surround response. 

Recent studies have revealed two classes of LGN 
neurons, lagged and nonlagged, that exhibit different 
temporal response properties 4°,41. The RFs of lagged 
cells are distinguished from those of nonlagged cells 
by a temporal phase shift 42. For nonlagged cells 
(Fig. 3A), the first temporal phase of the RF profile is 
largest, whereas for lagged cells (Fig. 3B), the second 
temporal phase typically dominates. This property 
accounts for the delayed response of lagged cells to 
presentation of a flashed spot stimulus 42. The tem- 
poral properties of lagged cells are thought  to arise 
from intra-geniculate circuitry because lagged respons- 
es are not seen in the retina43; however, the connec- 
tivity that  underlies lagged responses remains unclear. 

Figure 3C and D shows x - t  plots for simple cells that 
have approximately space-time separable RFs. These 
x - t  profiles exhibit multiple lobes in both  space and 
time, and are well approximated by the product of a 
spatial profile and a temporal profile. Thus, the tradi- 
tional notion that each cell has a unique spatial RF 
configuration still pertains to these cells. The spatial 
profile exhibits typically one to five distinct sub- 
regions of alternating polarity, and all possible types 
of spatial symmetry  (that is, spatial phases) are 
observed3.4% The temporal profile is typically biphasic, 
although some simple cells exhibit either monophasic  
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Fig. 1. Spatial receptive field (RF) structure of the major classes of neurons in the geniculo- 
striate pathway. (A) Schematic and experimental profiles of the RF of an ON-center neuron 
from the lateral geniculate nucleus (LGN) of a cat. In the traditional depiction (left), the RF has 
a central "ON" region (green, +) which is responsive to the onset of a bright stimulus, and a 
surrounding 'OFF' region (red, -) which is responsive to the onset of a dark stimulus (or the off- 
set of a bright stimulus). On the right is shown a two-dimensional spatial (x-y) RF profile for 
an ON-center X-cell, as measured using a reverse correlation technique 2,3. Regions of visual 
space that are responsive to bright spots are shaded green, and are delimited by solid contour 
lines; regions that are responsive to dark spots are shaded red, and are represented by broken 
contours. Color saturation is proportional to response strength. A center-surround structure is 
clearly seen in this profile, although the surround is fairly weak. Similar data have been pre- 
sented elsewhere for retinal ganglion 4 and LGN (Refs 5-7) cells. (B) Depicted schematically on 
the left, the RF of a simple cell exhibits an alternating arrangement of elongated subregions 
that are responsive to either bright (green, +) or dark (red, -) stimuli. A measured RF profile for 
a simple cell from cat striate cortex (area 17) is shown on the right as a contour map (con- 
ventions as in A). Similar data have been presented elsewhere 2'3"5"8. (C) Spatial RF structure of 
a complex cell. In the traditional schematic illustration, shown on the left, pluses and minuses 
are shown throughout the field, indicating that the cell responds to both bright and dark 
stimuli at each position. Panels on the right show the RF profile of an area 17 complex cell, as 
measured using reverse correlation (see also Refs 9 and 10). Because regions that are respon- 
sive to bright and dark stimuli overlap, separate profiles are shown for bright and dark stimuli. 

3 8  or triphasic responses , .  Simple cells with multiphasic 
temporal RF profiles have bandpass temporal fre- 
quency tuning, whereas cells with monophasic profiles 
exhibit low-pass tuning 3s. 

Hubel and Wiese118 suggested originally that simple 
cell RFs are created by combining inputs from a group 
of ON- and OFF-center geniculate neurons with RFs 
that are arranged in rows, a concept that has received 
some direct experimental support recently 19. In this 
regard, it is interesting to note that  the temporal- 
response pattern within a single subregion of a separ- 
able simple-cell RF (Fig. 3C and D) is similar to the 
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Figure 3.3: Spatial receptive fields in the early visual pathway. The left column
illustrates spatial classical receptive field sketches for three different neuron types, while
the right column shows experimentally recorded profiles for the same neuron types. A:
Center-surround receptive field from LGN relay neuron with a central on region (green,
+) and a surrounding off region (red, -). B: Receptive field of a cortical simple cell
with elongated subregions that are responsive to either bright (green, +) or dark (red, -)
stimuli. C:. Receptive field of a cortical complex cell that responds to both light and
dark stimuli across large (overlapping) regions. Recorded profiles were measured from cat
cells. Reprinted from DeAngelis et al (1995), with permission from Elsevier.



3.2. RECEPTIVE-FIELD MODELING 15

G. DeAngel is ,  I. Ohzawa and R. Freeman - Receptive-field dynamics R E V - - - V ~  

Fig. 3. Spatiotemporal receptive field (RF) profiles (x-t plots) for 
neurons recorded from the lateral geniculate nucleus (LGN) and 
striate cortex of the cat. In each panel, the horizontal axis represents 
space (x), and the vertical axis represents time (t). For panels A-F, solid 
contours (with green shading) delimit bright-excitatory regions, where- 
as broken contours (with red shading) indicate dark-excitatory regions. 
To construct these x-t plots, 1D RF proNes (see Fig. 2) are obtained, at 
finely spaced time intervals (5-10ms), over a range of values of t. 
These 1D profiles are then 'stacked up' to form a surface, which is 
smoothed and plotted as a contour map (for details, see Refs 3 and 8). 
(A) An x-t profile is shown here for a typical ON-center, non-lagged 
X-cell from the LGN. For t < 50ms, the RF has a bright-excitatory 
center and a dark-excitatory surround. However, for t > 50ms, the RF 
center becomes dark-excitatory, and the surround becomes 
bright-excitatory. Similar spatiotemporal profiles are presented else. 
where ~'~. (B) An x-t plot of an ON-center, lagged X.cell. Note that the 
second temporal phase of the prone is strongest. (C) An x-t profile for 
a simple cell with a space-time separable RF. For t < 100 ms, the RF has 
a dark-excitatory subregion to the left of a bright-excitatory subregion. 
For t > 100ms, each subregion reverses polarity, so that the 
bright-excitatory region is now on the left. Similar x-t data are pre- 
sented elsewhere ~'~'~. (D) Data for another simple cell with an approxi- 
mately separable x-t profile. (E) Data are shown for a simple cell with 
a clearly inseparable x-t profile. Note how the spatial arrangement of 
bright- and dark-excitatory subregions (that is, the spatial phase of the 
RF) changes gradually with time (see Refs 3, 5, 8, 13 and 35 for simi- 
lar data). (F) An inseparable x-t profile is shown here for the same 
simple cell for which 2D spatial profiles are shown in Fig. 2B. Note that 
the subregions are tilted to the right in the space-time domain. (G) 
x-t profiles are shown for the same complex cell as in Fig. 1C (see also 
Ref. 9). Responses to bright and dark stimuli are shown separately 
because these regions overlap extensively. 

between stimuli presented at different positions or 
times, have a spatiotemporal organization that is remi- 
niscent of the first-order profiles of simple cells 12'22'36. 
These second-order RF profiles are thought to repre- 
sent the structure of subunits that are combined to 
form a complex cell's RF. Gaska and colleagues 36 have 
shown recently that second-order RF profiles provide 
accurate predictions of the orientation, spatial fre- 
quency, and direction selectivity of complex cells in 
the monkey. 

Spatiotemporal mechanisms that underlie motion 
selectivity 

Recent studies of RF dynamics have provided a 
greater understanding of the mechanisms that under- 
lie motion selectivity. Unlike their geniculate ante- 
cedents, most cortical neurons are quite selective for 
stimulus velocity (that is, direction and speed). In the 
geniculostriate pathway of cats and monkeys, neurons 
that are strongly selective for direction of motion are 
encountered commonly  in the striate cortex 18'4~, 
whereas X- and Y-type relay cells in the LGN seldom 
exhibit more than a weak directional bias 49. The speed 
tuning of cortical neurons is also much narrower than 
that of LGN cells s°. 

What accounts for the striking directional selectivity 
of many cortical neurons? Despite an abundance of 
studies, a consensus regarding the mechanistic under- 
pinnings of direction selectivity has emerged only 
recently. Hubel and Wiesel ~s suggested initially that 
direction selectivity in simple cells could be explained 
on the basis of the arrangement of ON and OFF sub- 
regions within the RF. However, subsequent studies 
revealed that these predictions often fail sLs2. Thus, 
until about ten years ago, it was widely held that 
direction selectivity originates via non-linear interac- 
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tions, typically involving delayed excitation or inhibi- 
tion between different parts of the RF (Refs 53 and 54). 

More recently, theoreticaP 7'4s and psychophysical ss 
studies have suggested that direction selectivity origi- 
nates in the linear (that is, first order) spatiotemporal 
RF structure of simple cells. Specifically, simple cells 
with RF profiles that are tilted (that is, inseparable) in 
the space-time domain (Fig. 3E and F) are expected to 
exhibit a directional preference, whereas cells with 
space-time separable RFs are not. Recent studies have 
largely confirmed this prediction. A simple cell's pre- 
ferred direction of motion can be predicted reliably 
from the structure of its x - t  profile 8,3s Moreover, accu- 
rate estimates of the preferred speed of motion can be 
derived by measuring the slope of oriented subregions 
in the x-t  profile 8'I3. These findings support the idea 
that linear spatiotemporal mechanisms underlie 
velocity selectivity (similar conclusions have also been 
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Figure 3.4: Spatiotemporal receptive field profiles (x-t plots) for neurons
recorded from LGN and visual cortex. In each panel, the horizontal axis repre-
sents space (x) along the axis perpendicular to the cell’s preferred orientation, and the
vertical axis represents time (t). See Figure 3.3 for details. Reprinted from DeAngelis
et al (1995), with permission from Elsevier.
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field non-separable. Likewise, some simple cells (C and D) have spatial profiles that can be
modeled by Gabor functions (Daugman, 1985) and have a biphasic structure in time. All
four (A-D) can be well approximated by the product of a spatial and a temporal profile.
Note that simple cells with multiphasic temporal receptive field profiles have bandpass
temporal frequency tuning, whereas cells with monophasic profiles exhibit low-pass tuning
(DeAngelis et al, 1995). In general, though, simple cells are space-time inseparable, like
those shown in panels E and F. In x-t plots, this is evidenced by tilted light- and dark-
excitatory regions, which means they gradually change with time. For the complex cell
(G), note that there are no distinct subregions and that light- and dark-excitatory regions
overlap extensively in the space-time domain.

Finally, studies of receptive field dynamics have provided some insight into the underlying
mechanisms of motion sensitivity. Cells with space-time inseparable receptive field profiles
(i.e., tilted x-t profile; Figure 3.4 E and F) typically show a directional preference, while
cells with space-time separable receptive fields do not (DeAngelis et al, 1993).

3.3 Mechanistic modeling

Numerous mechanistic models of the early visual system have been developed. An
overview of existing models that focus on LGN neurons and circuitry is provided below.

Multiple relay cell models have been developed to explore specific aspects of neuron ac-
tivity. The impact of dendritic morphology on integration of synaptic inputs have been
investigated in models with passive (Bloomfield and Sherman, 1989; Briska et al, 2003)
and active (Perreault and Raastad, 2006) dendrites. McCormick and Huguenard (1992)
investigated the various effects of a large (∼10) number of active conductances on somatic
response properties in a single-compartment model. The ability to switch between two
different firing modes (tonic and bursting) has been studied both in single-compartment
(Destexhe et al, 1993; Huguenard and McCormick, 1992) and multicompartment mod-
els (Destexhe et al, 1998). The most comprehensive relay cell models are reconstructed
multicompartment models with multiple active conductances both in the soma and den-
drites (Antal et al, 1997; Emri et al, 2000, 2003; Rhodes and Llinás, 2005). Direct fitting
of neuron models to experimental data has been less common, but there are examples
from the connection between retinal ganglion cells and relay cells. A spike-response
model (Gerstner and Kistler, 2002) was fitted to data from the retinogeniculate synapse
in macaque(Carandini et al, 2007) and a leaky integrate-and-fire model was used to fit
corresponding data from cat (Casti et al, 2008).

Fewer models have been developed for LGN interneurons than for relay cells. Signal
propagation in the elaborate dendritic structure of the interneurons have been investigated
using models with passive (Bloomfield and Sherman, 1989; Briska et al, 2003) and active
(Casale and McCormick, 2011; Perreault and Raastad, 2006) dendrites. Two relatively
general, multicompartment models with realistic morphologies (Zhu et al, 1999; Halnes
et al, 2011) are able to capture a range of somatic response properties.

Mechanistic network models of the early visual system have mainly focused on the primary
visual cortex. In such models, the processing in the LGN has generally been ignored
or simplified. Models that focus on LGN cells include networks of spiking relay cells
(Kirkland and Gerstein, 1998; Köhn and Wörgötter, 1996; Wörgötter et al, 1998) receiving



3.3. MECHANISTIC MODELING 17

input from grids of retinal ganglion cells and feedback from cortical cells. Similar studies
have been performed with firing-rate models (Einevoll and Heggelund, 2000; Hayot and
Tranchina, 2001; Yousif and Denham, 2007). Finally, the processing of visual signals in
the LGN circuit has been modeled as neural mass (Norheim et al, 2012) and neural field
models (Einevoll and Plesser, 2002, 2012).
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4 Methods

Multiple tools for neural simulation have been created by and are available for use by the
computational neuroscience community. The following sections will introduce the main
tools used and provide an overview on how we managed the large-scale parameter scans,
an area where we found the range of existing tools to be limited.

4.1 Simulation

Simulations were performed in two different neural simulation tools. NEST (Gewaltig
and Diesmann, 2007) was used in all three projects to generate spike spike trains with
the desired properties and to simulate multiple (hundreds) trials of spiking point neu-
ron models in parallel (Paper I and II). Interaction with NEST was performed through
its Python programming interface, PyNest (Eppler et al, 2008). For the network model
(Paper III), the whole LGN circuit was implemented in the NEURON simulation en-
vironment (Carnevale and Hines, 2006; Carnevale, 2007; Hines et al, 2009) with retinal
ganglion cell input generated by a non-stationary Poisson spike generator (rather than
a neuron model) in NEST. A common denominator in the three projects was that each
simulation was relatively small and independent of the other simulations, which allowed
for efficient parallelization and use of compute clusters.

4.2 Large-scale parameter scans

Parameter scans of more than a few dimensions can quickly lead to combinatorial ex-
plosion. For each of the three projects the present thesis is based on, several 100.000
simulations were run (Table 4.1). Exploration of parameter spaces of this magnitude
necessitates some degree of automation and means of keeping track of progress. Read-
ily available tools covered parts of the problem (e.g., NeuroTools Parameters package
(Muller et al, 2009), Sumatra (Davison, 2012), and Mozaik (Antolik and Davison, 2013)),
but no single solution was found to sufficiently fit our needs. To fill the gaps, we developed
a Python package (PyScan). The main challenges experienced and how we overcame them
are summarized below.
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Table 4.1: Parameter scan magnitudes.
Project LGN rate models Multi-behavior models LGN circuit
Dimensions 6 6 9
Subspaces 2 2 3
Parameter combinations ∼ 350.000 ∼ 650.000 > 1.000.000

Problem description

For smaller problems, the brute force approach of running all simulations in a single batch
is simple and works well. If one decides to change a parameter, the complete scan can
always be rerun. Given 10.000 tasks each lasting one minute, the job would take nearly
one week to complete on a single computer. With problem sizes more than an order of
magnitude larger, the naive approach is no longer feasible.

Furthermore, parameter scans are often exploratory, as we try to uncover the relation
between stimulus and model parameters on the one, and model responses on the other
hand. One will frequently explore certain parts of a parameter space first, e.g., responses
to stationary stimuli, and later proceed to more complicated stimuli described by more
parameters. To obtain an overview, one may want to sample the parameter space on
a coarse grid first, before zooming in on interesting regions at higher resolution. All
parameter combinations are not necessarily considered meaningful. For instance, there is
no need to vary modulation frequency in an input signal if the modulation depth is zero.
Ignoring such “singular” dimensions saves time. During the course of a project one may
also want to modify parameters that were originally considered model constants.

To provide this flexibility in large-scale parameter scans, a way to identify and track
status and results for each parameter combination is needed to avoid re-running already
completed tasks.

At this scale, the use of compute clusters becomes a necessity. While by no means a
unique problem for parameter scans, keeping configuration and data synchronized and
having to switch back and forth between a local workstation and one or more remote
compute clusters certainly adds to the complexity. In addition to automating most steps
in the workflow and making it simple to invoke those commands, a second goal in terms
of automation was to be able to control them all from the local workstation.

Rather than reinventing the wheel, utilising existing tools is preferable where possible.
With that in mind, over the course of the projects we built a solution that allows us to

1. generate, aggregate and analyze data from hundreds of thousands of parameter sets
and randomized trials in parallel;

2. progress from coarse-scale to fine-scale scans, continuously monitoring progress and
adapting scan resolution;

3. avoid re-running any parameter set that has been tested before;

4. drop scans along “singular” dimensions;

5. run a very large number of very small jobs efficiently on large clusters;
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6. control parameter scans on remote clusters from the desktop with a small set of
simple commands.

Solution overview

To facilitate the parameter scan process, we developed PyScan — a lightweight Python
package. PyScan consists of three main parts. The first is a “parameter space” concept
with the necessary flexibility to support an iterative workflow. Second, it assists in data
management. Finally, it is a command line tool that simplifies common and repetitive
tasks, both locally and on remote clusters.

Parameter spaces

The NeuroTools Parameters module (Muller et al, 2009) supports iteration over parameter
spaces at a high level of abstraction. The module introduces useful constructs like Pa-
rameters, ParameterRanges and ParameterSets. Iteration over a parameter space returns
readable, possibly nested, name-value dictionaries for one parameter set at a time.

The major weakness of the Parameters module relative to our requirements is that it
provides no support for selectively iterating over a subset of dimensions, or a subset of
values along a given dimension, and that modifying any parameter range leads to an
entirely new parameter space. PyScan builds on the NeuroTools parameters module and
extends it with five concepts:

1. A Space is the top-level structure in any project using PyScan and represents all
possible parameter combinations. It is comparable to a NeuroTools ParameterSpace,
but offers additional capabilities.

2. Each parameter that is (potentially) to be varied in a parameter scan, is represented
by a Dimension. PyScan Dimensions are similar to NeuroTools ParameterRanges,
but support slicing.

3. A Subspace represents a part of a Space defined by constraining one or several
Dimensions to subsets of their values. One may view a Subspace as a slice of the
full Space.

4. The structure component of a Space contains all constant parameters of the model
under study, i.e., parameters that are to remain fixed during all parameter scans.

5. Each parameter set is hashed to a unique identifier.

The principal idea is that the Space comprises all parameter combinations (or parameter
sets) that might possibly be of interest under some aspect of the project, while a suitable
Subspace is defined for each specific investigation within the project. As one of the main
goals of PyScan is to manage combinatorial explosion, one will typically not iterate over
the full Space, but rather the union of parameter sets contained in all defined Subspaces.
That is, parameter combinations contained in both Subspace A and B in Figure 4.1 will
only be run once.

Results and other data related to each parameter set are tagged with a “fingerprint”
unique to the parameter set. This fingerprint, implemented as a hash, allows PyScan
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Figure 4.1: Parameter spaces. A parameter Space with two overlapping Subspaces.
PyScan makes sure parameter combinations found in multiple Subspaces (i.e., center re-
gion) are run once only.

to keep track of progress across changes in parameter range resolution, addition of new
Subspaces, etc. Iteration over parameter (sub)spaces can use this information to skip
already completed tasks.

Data management

Parameter scans may produce large amounts of results which we need to store persistently
for future analysis. In this section we will discuss some of our experiences with different
approaches to data management and persistence.

In parameter scans, we typically execute a large number of trials in parallel, each gener-
ating a small amount of data. We thus require a way of efficiently storing large amounts
of data generated in small portions by many processes in parallel.

A naive approach would be to write the data from each trial into a separate file and
collect results afterwards. While this is easily implemented, it puts a tremendous strain
on operating systems and file systems. At the other extreme are relational database
systems (RDBMS) such as MySQL/PostgreSQL and other document-oriented databases
(or NoSQL data stores in general) which write all data to a single or few files managed
by the database. Using databases to collect simulations results from parallel tasks is by
no means impossible, but running on a time-shared cluster environment raises a number
of technical and practical challenges.

We thus concluded that the best approach is to start one process per node that is provided
a set of tasks and to have each such process write to one file. This avoids any bottlenecks
during simulation and results in a manageable number of files, typically a few hundred.
After the simulations are complete, data is merged across files. This solution has the
added benefit of reduced startup time per task, as well as being simple to use locally as
well, e.g., for initial testing on a laptop.

Parameter scans in computational neuroscience may generate spike trains and/or voltage
traces, as raw output, while often only derived quantities such as firing rates and mea-
sures of variability or correlation will be of immediate interest. At the same time, the
raw data may be required for subsequent, detailed investigation, particularly in the case
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of surprising observations. Because moving large amounts of raw data between remote
compute clusters and local machines used for analysis and visualization is tedious, we
found it useful to perform initial data analysis as part of the parameter scan. As a result
of each trial simulation, PyScan expects the raw data (spike trains) and the compact
result of the initial analysis. It then stores analysis results and raw data in separate files,
maintaining references from analysis results to the corresponding raw data. In this way,
only the comparatively small files containing the analysis results need to be moved, while
raw data can be accessed if necessary.

A number of technologies were reviewed, including Pickle, SQLite, NumPy record arrays
(recarrays), Shelve, and HDF5. Support was added for the latter two, with HDF5 as the
primary option.

HDF5 is a data model, library, and file format for storing and managing data. There are
two main Python libraries for HDF5, h5py (Collette, 2013) and PyTables (Alted et al,
2002–). Their feature sets are overlapping, but the APIs are quite different. In the
following, we will describe PyTables. Two main data types can be represented; tabular
data and homogenous arrays. For tabular data, its format must be defined upon table
creation as a list of NumPy dtypes (Oliphant, 2006). Arrays must be homogenous, but
each element can be of a composite NumPy dtype. In our experience, PyTables is a good
solution for storing typical neuroscience data: Structured data, such as parameters, can
be stored in tables, while spike trains of varying length can be stored as variable length
arrays (VLArrays). Any number of tables or arrays can be stored in a hierarchy inside a
single file.

PyScan provides a merge operation that combines data from all processes into a single
file.

Automation and cluster management

In our experience, a few tasks are repeated a large number of times and they tend to
be more or less the same across projects. Some tasks, such as file synchronization, are
typically initiated from the workstation, while others require an established connection to
the compute cluster. Communication with remote clusters is often done over SSH through
a login node. Once connected, interaction typically involves running programs or shell
scripts at the command prompt.

By creating a small library of scripts, many of these tasks can be automated and with little
extra effort reused across similarly structured projects. For projects utilizing the Python
programming language, scripting these tasks using the same language would be useful
— particularly when command line tasks need to access project code. Also, it would be
advantageous if they could be initiated from the same location, i.e., that connecting to
remote hosts was handled implicitly.

We found Fabric to fit our needs (Hansen and Forcier, 2013). Fabric is a Python library
and command-line tool “for streamlining the use of SSH for application deployment or
systems administration tasks”. Typical use involves creating functions and executing them
via the fab command-line tool. During the course of the projects, we built a library of such
commands for synchronizing files between hosts, preparing and posting jobs to remote
clusters, checking job status, etc. This enabled us to initiate all common operations,
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whether local or remote, from within the project directory on the local workstation.
Commands are defined as functions in a file called “fabfile.py”. Fabric can be invoked
from the command line anywhere in the project file structure.

Basic usage would involve the commands init, upload, queue, and download as illus-
trated in Figure 4.2 and briefly described below.

• init: Create local directory structure and perform common initialization based on
project settings. Also, project specific initialization code could be called to e.g.
validate configuration files or create databases or other project files that should be
in place before parallel execution of the simulation.

• upload: Update files to a remote cluster. Uploading files can be done with rsync.
A remote project folder can also be updated from a version control system (VCS)
by executing the necessary shell commands remotely. An SSH connection is set up
by Fabric and terminated once the operation has finished.

• queue: Adding a job to a queue at a compute cluster typically requires parameters
such as the number of nodes and/or cores, run time, memory requirement, etc. to
be specified either at the command line or in a job script. Job script templates
are reused across projects. As part of the queueing task, they are parameterized at
the workstation, sent to the compute cluster and submitted to the job queue. The
queueing system starts the job on the compute nodes once the necessary resources
become available and informs the user when the job completes.

• download: Download results from a remote cluster. The process would be similar
to uploading files, except that other directories are involved to simplify synchroniza-
tion. That is, configuration files are kept separate from data files as they are mainly
moved in opposite directions.

Further analysis was typically performed locally on the aggregated data. Larger post
processing tasks or tasks that required access to raw data that was not initially dowloaded,
were performed on the compute clustering using IPython.parallel (Perez and Granger,
2007).

In summary, by creating a thin layer on top of selected existing tools (Figure 4.3), we
were able to support a flexible workflow with minimal effort.
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Figure 4.2: Basic workflow steps. Tasks are initiated on the workstation. Where
relevant, Fabric interacts with the cluster login node. To run jobs on compute nodes,
computation time is requested from the login node via the cluster queueing system.




 






 


Figure 4.3: PyScan components overview. PyScan is built on top of the Neuro-
Tools Parameters package, Fabric, PyTables and Shelve. Pandas and IPython Parallel
is typically used together with the other tools for data analysis tasks without any direct
dependencies.





5 Summary of papers

The present thesis is based on three papers. All three involve models at different levels
(see Chapter 2). Paper I investigates how spiking point-neuron models (level 2) are related
to firing-rate models (level 3) at the retinogeniculate synapse. With two spiking neuron
models as the starting point of our analysis, we study how well firing-rate models capture
the essential response properties of LGN relay cells. Paper II investigates how levels 2 and
3 are connected for more complex neuron models. We study spiking two spiking neuron
models that can be parameterized to exhibit a wide range of different spiking patterns, as
defined in terms of specific current input (Izhikevich, 2003), and thereby can be configured
to represent many different neuron types in the early visual system and elsewhere in the
brain. We investigate how the models behave in different noise regimes when driven by
spiking input and how well the different model parameterizations can be approximated
by firing-rate models. In Paper III, we explore the effects of different inhibitory actions
from local interneurons on the relay cells in a biophysically detailed network model (level
1) of the LGN circuit driven by firing-rate input from descriptive models converted into
spikes.

5.1 Summary of Paper I

The dynamics of neuron populations have been studied extensively both experimentally
(Knight, 1972b; Silberberg et al, 2004; Köndgen et al, 2008; Blomquist et al, 2009; Bouc-
sein et al, 2009) and theoretically (Knight, 1972a; Gerstner, 2000; Brunel et al, 2001;
Fourcaud and Brunel, 2002; Mattia and Giudice, 2002; Fourcaud-Trocmé et al, 2003;
Richardson, 2007). Previous studies have primarily investigated population rates result-
ing from time-varying noisy current injected into the soma of the cells. The current
amplitudes for the ensemble of neurons (or trials) are assumed to be uncorrelated and fol-
low a normal distribution at each instance in time, which corresponds to a scenario where
spikes arrive at the target cells independently with infinite rate, and where the impact
of each spike on the postsynaptic neuron is infinitesimal (Nordlie et al, 2010). In this
situation, the problem can be approximated by a diffusion process (Johannesma, 1968).
For many biological neural systems, however, these assumptions cannot be justified. In
the early visual system, synapses between retinal ganglion cells and LGN relay cells are
often much stronger and even single retinal spikes have been reported to reliably initiate
action potentials in the thalamic targets (Cleland et al, 1971; Sirovich, 2008).

Nordlie et al (2010) investigated the response properties of the leaky integrate-and-fire
(LIF) neuron in a regime beyond the diffusion limit. Unlike most previous studies, the in-
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Figure 5.1: Firing-rate modeling setup sketch. A model neuron is driven by a spike
train with sinusoidally modulated rate a(t) with mean a0, modulation depth a1, and
frequency fstim. As a first-order approximation, the output spike train of the neuron can
be characterized by the sinusoidally modulated response firing rate r(t) with mean r0,
amplitude r1, frequency fstim and phase φ. Reprinted from Heiberg et al (2013).

put signal was represented as spike trains with relatively low rates received through strong
excitatory synapses. Thus, no assumptions about the distributions of input currents were
made.

Here, we use spiking LGN relay cell models configured to account for experimental data
as a starting point to investigate how well firing-rate models can explain the processing
performed by these cells. We selected two existing, simplified spiking models of LGN
relay cells (Carandini et al, 2005; Casti et al, 2008). Both models had been parameterized
to respond like cells that have been measured experimentally. These parameterizations,
23 in total, were probed systematically and the measured responses were used to create
firing-rate models.

We base our analysis on the framework introduced by Nordlie et al (2010). In summary,
the procedure for rate model derivation introduced there is a two-step process. In the
stationary analysis, a model neuron is stimulated with random spike trains with constant
rate and mean response rates are measured (Figure 5.1). This is repeated for a range of
input rates to create a (typically nonlinear) response function describing how the output
rate varies with input rate (transfer ratio). In the non-stationary analysis, the neuron is
stimulated with random spike trains with sinusoidally modulated rate. This is repeated for
a range of modulation frequencies to measure the transfer function (frequency response),
a measure of output magnitude as a function of frequency (see Section 2.3). The transfer
function is in turn approximated with a known filter. In its simplest form, this can be a
first-order low-pass filter as described in Nordlie et al (2010).

The resulting linear-nonlinear firing-rate models of the relay cells were tested by comparing
results for the spiking models with the predictions of the firing-rate models when exposed
to novel stimuli. The responses could be well described by first-order low-pass filters with
delay; filters characterized by the three parameters gain, cut-off frequency and delay. The
properties of the low-pass filter depend only on the average input rate, but not on the
modulation depth of the input. Furthermore, we found that the cutoff frequencies, and
thus the filter time constants, of the rate-based model are unrelated to the membrane
time constants of the spiking models.



5.2. SUMMARY OF PAPER II 29

5.2 Summary of Paper II

Simulation of large networks of spiking neurons on the scale of cortical columns, or even
whole areas of the cortex, are increasingly becoming feasible due to advances in computer
technology and simulator software (Helias et al, 2012; Kunkel et al, 2014; Jordan et al,
2018). In order to relate simulation results to experimental findings, it is important to em-
ploy neuron models that accurately capture actual neuron dynamics in response to realistic
stimuli. However, there is generally a tradeoff to be made between biological plausibility
and computational cost. As a measure of biological plausibility, Izhikevich (2004) mapped
out 20 characteristic responses commonly used to classify neuron response types in ex-
periments (such as tonic, phasic and rebound spiking and bursting, or adaptation). The
Izhikevich model (Izhikevich, 2003) and the augmented multi-timescale adaptive threshold
(AMAT) model (Yamauchi et al, 2011) are two models that balance this tradeoff well by
being able to reproduce all 20 characteristic responses with relatively low computational
cost and thus are attractive for large-scale network simulations. The characteristic re-
sponses are defined in terms of current injection protocols. It is not entirely clear whether
the same classification would make sense when the neurons are driven by more realistic
stimuli. In Paper II, therefore, we studied how these neuron models behave in different
noise regimes when driven by spiking input.

Large-scale network dynamics are often analyzed mathematically in terms of rate and field
models. Examples include neural mass models, such as the Jansen-Rit model (Jansen and
Rit, 1995), and neural field models, such as the Wilson-Cowan model (Wilson and Cowan,
1972). In these models, specific spike times and heterogeneities in network structure are
ignored and the dynamics of large populations of neurons are substituted by rate variables
in a mean-field manner (Ermentrout, 1998; Coombes, 2005). Development of such models
include the substitution of the spiking activity of a neuron with an appropriate rate
function. Common choices are threshold-linear or sigmoidal functions, but the parameters
of the gain function are often chosen qualitatively, and it is uncertain how well they
match single-neuron properties or biophysics. To allow for better comparisons between
spiking neuron network simulations and reduced neural mass or field models, an adequate
quantitative expression for the neuronal gain function is needed. It is therefore of interest
to understand if and how the activity of individual spiking neurons in response to arbitrary
inputs can be described by a rate-model. Hence, we also investigated how well the different
parameterizations of the two neuron models could be approximated by firing-rate models.
As part of this work, the method for deriving firing-rate models was extended to allow
for filters with multiple time constants.

5.3 Summary of Paper III

In Paper III we seek to better understand how the geniculate circuitry modifies the retinal
input signal. Results from previous studies (e.g. Ruksenas et al (2000)) suggest that the
spatial receptive-field properties can be explained by a simplified circuit model where a
relay cell receives (i) direct excitation from a single retinal ganglion cell, and (ii) indirect
feedforward inhibition from several retinal ganglion cells via interneurons.
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Einevoll and Heggelund (2000) developed a firing-rate model that could account for ad-
ditional experimental observations and made predictions “regarding receptive-field sizes
of interneurons, the amount of center-surround antagonism for interneurons compared
to relay cells, and distance between neighboring retinal ganglion cells providing input to
interneurons” that were compatible with data available in the literature. The model con-
sisted of five ganglion cells providing input to one relay cell each and a single interneuron
receiving input from all five ganglion cells.

Here, we developed a circuit model of spiking neurons that were stimulated by the same
retinal model used in Einevoll and Heggelund (2000). The relay cells and the interneuron
have dendrites of comparative physical length, but the two neuron types differ in elec-
trotonic size. The relay cells are electrotonically compact, meaning that if modeled as
passive cables, steady-state voltage changes applied at distal synaptic sites attenuate by
less than 50% on the way to the soma (Sherman and Guillery, 2005). The main reason for
this is that relay cells have relatively thick dendrites that cause less current to leak out
through the membrane and all synapses regardless of location influence the soma. Hence,
the cell is doing large-scale summation of all active synapses and can be modeled as a
point neuron. For the present study, we adapted an existing relay cell model by Destexhe
et al (1996) obtained from ModelDB (McDougal et al, 2016), accession number 3343.

Interneurons on the other hand have much thinner dendrites and are said to be electroton-
ically extensive, implying that input from distal dendrites will be significantly attenuated
before the signal reaches the soma. In electrotonically compact neurons, dendritic inputs
are integrated and the soma eventually fires an action potential. This event is passed on to
postsynaptic neurons through the axon. If input from distal synapses does not reach the
soma, why would a neuron have extensive dendritic arbors? In the case of interneurons,
the dendrites serve as outputs too. The thalamic interneurons typically have axons, but
also dendro-dendritic terminals that form inhibitory synapses onto relay cells. Sherman
and Guillery (2005) argue that it seems likely that clusters of such terminals are isolated
from each other and the soma, enabling local dendritic circuits to perform independent
input/output operations. Hence, the neuron may not need the axon to function.

For this study, a multicompartment interneuron model (Halnes et al, 2011) previously
developed in our group was used as a starting point (ModelDB accession number 140249).
The morphology was simplified to a ball-and-sticks configuration with five equal dendrites
to make results less sensitive to synapse positioning, while neuron properties otherwise
were kept close to the original. Each of the dendrites was configured with a distal dendro-
dendritic terminal (triad) that provided the interneuron with excitatory input from one
retinal ganglion cell and an inhibitory synapse onto one relay cell. As expected from the
discussion above, inputs from these distal synapses had a negligible effect on the soma.
Therefore, another excitatory synapse was added close to the soma. The interneuron also
had an axon that provided inhibition to all five relay cells. Spatial responses were recorded
from this circuit and qualitatively reproduced the results from Einevoll and Heggelund
(2000). In addition, synaptic weights were systematically adjusted to study the effects of
relative changes in excitation and different types of inhibition (local vs. global).

Our results suggest a possible role of the dual inhibitory actions in providing separate
mechanisms for overall gain control (triadic inhibition) and regulation of spatial resolution
(axonal inhibition) of visual signals sent to cortex. In addition to providing new biological
insight into the roles of the distinct forms of inhibition in the LGN, the model in itself
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should be useful as a starting point for use in further network simulations of early visual
processing.





6 Perspectives

Nordlie et al (2010) studied leaky integrate-and-fire (LIF) models with strong current-
based synapses and showed that a first-order low-pass filter fit to the frequency response
together with a nonlinear activation function yielded linear-nonlinear rate models that pre-
dicted responses to arbitrary inputs with high accuracy. The framework for rate-model
derivation introduced there was adapted for use with LGN relay cell models (Paper I)
and extended to allow for other filter kernels (Paper II). In particular, the more complex
frequency responses of Izhikevich and AMAT model parameterizations were modeled as
bandpass filters. Firing-rate models have previously typically used first-order low-pass
(exponential) kernels. While attractive for their simplicity, such models have a limited
repertoire of behaviors. Here, by essentially combining two such kernels, we have demon-
strated firing-rate models with a broader range of behaviors while retaining most of the
simplicity associated with rate models. Application of the rate-model derivation frame-
work to other spiking neuron models would be a straight forward extension of this work.
Also, if necessary to get rate models with the desired properties, other or more complex
filter kernels can be fitted by following the same procedure.

Several neuron models can reproduce a wide range of experimentally observed spike re-
sponse patterns when stimulated with current injections. However, how these neurons
behave with more natural synaptic inputs has so far not been studied systematically. In
Paper II, we investigated the response properties of the Izhikevich model and the AMAT
model to noisy spiking input in three different background noise regimes. We observed
that neuron models can show very similar responses to spike input, even though they show
very different responses to current injections, and in particular that models of different
mathematical nature (i.e., Izhikevich and AMAT models), showing identical current re-
sponses can respond very differently to spiking input. Given that neurons are mainly
driven by spike input in vivo, it seems as if a systematic classification based on a neu-
ron’s response to spiking input may be required. We found that the response complexity
observed under current injection collapses to only a few response types when the neurons
are driven by stationary or sinusiodally modulated Poisson input. Classification based on
k-means clustering resulted in clearly different groupings for the Izhikevich and AMAT
model classes. However, our classification was far from perfect and further investigation
into this topic is necessary.

Until recently, LGN circuit models lacked a key ingredient, namely an interneuron model
incorporating the key dual-action inhibitory features of this cell type. Building upon
the first multi-compartment dual-action interneuron model (Halnes et al, 2011) and an
existing single-compartment relay cell model (Destexhe et al, 1996), we were able model
the LGN circuitry at a new level of biological realism (Paper III). We consider the present
investigation to be the first of several applications of the present modeling approach that
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will not only enable elucidation of the role of LGN circuitry in shaping spatial response
features like here, but also the key role played by the circuit in temporal processing of
the incoming spike trains from retina. Neurons in the LGN receive modulatory input
from other parts of the brain. Some of these inputs cause the LGN circuit to shift
between drowsy and attentive states, which in turn can switch the firing mode of the
LGN cells between tonic and bursty. One obvious step in future investigations would be
to explore how the conclusions we arrived at in the current work depend on the processing
state of the LGN. Both relay cells and interneurons receive excitatory feedback from
cortex and inhibitory feedback from the thalamic reticular nucleus. The effect of the
feedback on circuit behaviour will likely depend strongly on whether the feedback arrives
on distal dendrites or close to the soma. This question can be investigated with a network
model of the present type, possibly with a more more comprehensive, multicompartmental
model for the relay cells. Finally, the present model assumes static synapses, while in
vitro studies have demonstrated short-term synaptic plasticity throughout the circuit.
Investigation of synaptic plasticity and the resulting dynamics in the LGN circuit would
require a detailed model of our type.

The three projects in the present study all included large parameter scans. By combining
existing tools and libraries along with a small custom library developed as part of the
study, we were able to manage the simulation configurations and results efficiently. The
setup enabled us to define and work with meaningful subspaces of parameters. Rather
than making a detailed plan up front, we performed coarse scans of interesting regions
first and refined the search grid iteratively to fit our needs. Central to this flexibility
was the use of fingerprinting of parameter sets that allowed us to skip simulations that
already had been run. While essentially a brute force approach for large-scale parameter
scans, these additional features contribute to limit computing resource consumption by
avoiding reruns and enable an agile workflow.
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Abstract Firing-rate models provide a practical tool for
studying signal processing in the early visual system, per-
mitting more thorough mathematical analysis than spike-
based models. We show here that essential response prop-
erties of relay cells in the lateral geniculate nucleus (LGN)
can be captured by surprisingly simple firing-rate models
consisting of a low-pass filter and a nonlinear activation
function. The starting point for our analysis are two spiking
neuron models based on experimental data: a spike-response
model fitted to data from macaque (Carandini et al. J. Vis.,
20(14), 1–2011, 2007), and a model with conductance-
based synapses and afterhyperpolarizing currents fitted to
data from cat (Casti et al. J. Comput. Neurosci., 24(2),
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235–252, 2008). We obtained the nonlinear activation func-
tion by stimulating the model neurons with stationary
stochastic spike trains, while we characterized the linear fil-
ter by fitting a low-pass filter to responses to sinusoidally
modulated stochastic spike trains. To account for the non-
Poisson nature of retinal spike trains, we performed all anal-
yses with spike trains with higher-order gamma statistics in
addition to Poissonian spike trains. Interestingly, the proper-
ties of the low-pass filter depend only on the average input
rate, but not on the modulation depth of sinusoidally modu-
lated input. Thus, the response properties of our model are
fully specified by just three parameters (low-frequency gain,
cutoff frequency, and delay) for a given mean input rate and
input regularity. This simple firing-rate model reproduces
the response of spiking neurons to a step in input rate very
well for Poissonian as well as for non-Poissonian input. We
also found that the cutoff frequencies, and thus the filter
time constants, of the rate-based model are unrelated to the
membrane time constants of the underlying spiking models,
in agreement with similar observations for simpler models.

Keywords LGN · Retina · Visual system · Rate model ·
Linear-nonlinear model

1 Introduction

The thalamus is the central gateway for information passing
from our sensory organs to cortex (Sherman and Guillery
2001). In particular, relay cells in the lateral geniculate
nucleus (LGN) receive visual signals from retinal ganglion
cells and transmit processed information to the primary
visual cortex. These first stages of the visual system have
been studied extensively. Since Rodieck (1965) introduced
the difference-of-Gaussians (DOG) model for the spatial
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receptive field of retinal ganglion cells, most modeling of
the response properties of cells in the early visual system
has been descriptive in the sense that the main purpose
has been to summarize experimental data compactly in a
mathematical form.

Various stimuli including random white noise, flashing
spots, and drifting gratings have been applied to obtain
receptive field models, and numerous spatiotemporal
receptive-field filters have been suggested (see Ch.2 in
Dayan and Abbott 2001). Generalized linear models (GLM)
are a class of simplified descriptive models often used to
describe neurons in the early stages of sensory process-
ing (Pillow et al. 2005, 2008), or to characterize neural
responses with white-noise stimuli (Chichilnisky 2001).
Mechanistic models, on the other hand, aim to account
for observed neural properties on the basis of known neu-
ral physiology and anatomy. Mechanistic models of the
early visual system exist both in the form of spiking neu-
ron models (e.g. Casti et al. 2008; Carandini et al. 2007;
Kirkland and Gerstein 1998; Köhn and Wörgötter 1996)
and firing-rate models (Einevoll and Heggelund 2000;
Einevoll and Plesser 2002; Hayot and Tranchina 2001;
Yousif and Denham 2007).

The main motivation for using firing-rate models rather
than spiking neuron models is to reduce the dimensional-
ity and complexity of the microscopic dynamics in order
to allow for analytical tractability, efficient simulation, and
intuitive understanding. The majority of rate-based neu-
ral population models have been justified by the diffu-
sion approximation (see references in Nordlie et al. 2010),
assuming a large number of tiny incoming synaptic inputs.
This approach is valid for neurons that receive input spikes
at a high rate through weak synapses (Johannesma 1968),
but synapses between retinal ganglion cells and LGN relay
cells are often much stronger and even single retinal spikes
have been reported to initiate action potentials in the tha-
lamic targets (Cleland et al. 1971; Sirovich 2008). In the
present study, we investigate how firing-rate models per-
form in the context of LGN relay cells.

Nordlie et al. (2010) have recently investigated the firing-
rate response properties of leaky integrate-and-fire (LIF)
neurons receiving current input through strong synapses.
They demonstrated that neuronal responses to sinusoidally
modulated inhomogeneous Poisson processes could be
described well by a combination of a linear first-order low-
pass filter with a nonlinear activation function. This linear-
nonlinear firing-rate model accurately predicted the popula-
tion response for a variety of non-sinusoidal test stimuli.

In the present study, we use the same approach to
investigate whether linear-nonlinear firing-rate models can
describe the firing rate properties of LGN relay neuron mod-
els fitted to experimental data. In particular, we investigate
spiking models with conductance-based synaptic currents

and after-hyperpolarizing currents (Casti et al. 2008) as well
as more abstract spike-response models (Carandini et al.
2007; Gerstner and Kistler 2002).

Moreover, we study the effect of input spike train reg-
ularity on the rate model, parameterized by the shape
parameter of the gamma process. More regular input
than Poisson, as observed in actual recordings (Troy and
Robson 1992; Casti et al. 2008), increases the linearity of
the activation function for high input rates, while low rates
effectively become rectified.

In the Methods section, we introduce the spiking LGN
neuron models along with a description of stimulation and
response characteristics. We further summarize our sim-
ulation setup and detail how we extract linear-nonlinear
firing-rate models from the results of simulations with spik-
ing neuron models. In the Results section, we first show
the results from stationary (unmodulated) stimulation to
illustrate the shape of the activation function. Results from
sinusoidal stimulation are presented along with optimized
low-pass model filters that illustrate the high quality of the
fits. We finally test the performance of the extracted rate
models by comparing the actual responses to novel stimuli
with the responses predicted by the firing-rate models.

2 Methods

2.1 Spiking models for LGN cells

The rate models of LGN cells investigated in this study are
based on spiking neuron models of LGN cells proposed by
Casti et al. (2008) and Carandini et al. (2007). We refer to
these models as the Casti and Carandini models.

Casti et al. (2008) and Carandini et al. (2007) fitted
their models to experimental data obtained from LGN relay
neurons in cat and macaque, respectively. In both studies,
retinal input and LGN output spike trains of a number of
relay cells were recorded using a single electrode. This
is possible because signal transmission across the strong
retino-geniculate synapses can be recorded as S potentials
using extracellular electrodes (Kaplan and Shapley 1984).
The models of specific cat and macaque relay cells thus
obtained are the starting point of our study.

Both model neurons receive input only through a sin-
gle, excitatory synapse. Casti et al. (2008) initially included
“locked inhibition” (Blitz and Regehr 2005), i.e., inhibition
following excitation with a fixed delay, but observed that
their model could fit the experimental data equally well with
locked inhibition removed. They thus concluded that locked
inihibition was not relevant under the stimulus regime stud-
ied and fixed the inhibitory conductance to zero. Carandini
et al. (2007) designed their model with excitatory input only.
In both cases, the resulting model neurons transform a single
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input spike train {sj } arriving through a single synapse into
an output spike train {tk}. When interpreting results later,
one should keep in mind that the model by Casti et al. (2008)
matched experimental data best for LGN relay cells with
moderate-to-high transfer ratios (Carandini et al. (2007) do
not provide transfer ratios).

The models are summarized in Table 1 following the
template suggested by Nordlie et al. (2009).

2.1.1 Casti model

The Casti model is a modified leaky integrate-and-fire (LIF)
model with conductance-based excitatory and inhibitory
synapses; for the sake of brevity, we have removed the
(unused) inhibitory synapse in our sketch of the model.

The sub-threshold membrane potential V (t) of the model
neuron is governed by

C
dV

dt
= −GL(V − VL) − GE(t)(V − VE)

−GA(t)(V − VA) , (1)

GE(t) =
∑

{sj }
gE(t − sj )�(t − sj ) , (2)

GA(t) =
∑

{tk}
gA(t − tk)�(t − tk) , (3)

gX(t) = ḡX

(
t

τX

)
e
− t−τX

τX . (4)

Here, C is the membrane capacitance, GL the persistent
leakage conductance, GE(t) the total excitatory synaptic

Table 1 Overview of the
neuron models. See Table 2 for
parameters

A. Model summary

Neuron model Casti model and Carandini model

Input model Spike trains realised by inhomogeneous

Poisson and gamma point processes

B. Casti model

Type Leaky integrate-and-fire, conductance-based

synapses, afterhyperpolarization (AHP)

C dV
dt

= −GL(V − VL) − GE(t)(V − VE) − GA(t)(V − VA)

GE(t) = ∑
{sj }

gE(t − sj )�(t − sj )

GA(t) = ∑
{tk }

gA(t − tk)�(t − tk)

Subthreshold dynamics gX(t) = ḡX

(
t

τX

)
e
− t−τX

τX .

Integrated using Runge-Kutta-Fehlberg 4/5

integration with adaptive step size

Spiking Spike emission in time step of threshold crossing

(V (tk) ≥ Vth). Precise spike time found

using linear interpolation.

Parameters See Table 2A,B.

C. Carandini model

Type Spike-response model

V (t) = ∑
{sj }

Vsyn(t − sj ) + ∑
{tk}

Vspike(t − tk) + n(t)

Subthreshold dynamics Vsyn(t) = VEPSP
t

τEPSP
e
− t−τEPSP

τEPSP �(t)

Vspike(t) = δ(t) − Vreset e
−t/τreset �(t)

Exact integration (Rotter and Diesmann 1999)

with temporal resolution dt

Spiking Spike emission at times tk ∈ {n dt |n ∈ N}
with V (tk) ≥ Vth

Parameters See Table 2C

D. Input model

Type Spike train generated by an inhomogeneous

Poisson/gamma point process

Details Instantaneous rate: a(t) = a0 + a1 cos(2πfstim t)

Parameters See Table 2D.
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conductance evoked by the incoming spike train {sj }, and
GA(t) the total after-hyperpolarizing (AHP) conductance
triggered by the outgoing spike train {tk}. The associated
reversal potentials are VL, VE , and VA. The time course
gX(t) of an individual conductance activation is modeled as
an α-function with maximum ḡX at t = τX. �(t) is the
Heaviside step-function.

A spike is fired when the membrane potential reaches the
fixed threshold V (t) = Vth from below. Instead of a voltage
reset immediately after a spike, a transient activation of the
AHP conductance GA(t) models the reset mechanism and
subsequent refractory period. Modeling reset and refrac-
toriness in this way ensures that the membrane potential
V (t) remains continuous upon threshold crossing. Because
the membrane potential is not reset, it may remain above
threshold for some time after a spike.

Figure 1 illustrates the dynamics of the model. From
resting potential, this neuron comes close to threshold as
a result of one incoming retinal spike. Excitability varies
between the neurons, but a single incoming spike results in
an increase in membrane potential by more than 50 % of
the difference between resting potential and threshold for all
the neurons in the study. Hence, we are clearly outside the
diffusive regime.

Casti et al. (2008) recorded from two X-On and eight X-
Off cells from six anesthetized adult cats. By recording S
potentials along with spikes, input {sj } to and output {tk}
from the cells could be recorded simultaneously (Kaplan
and Shapley 1984). Although S potentials do not represent
the entire input to an LGN relay cell, it is known that the
LGN does not fire if retinal ganglion spikes are silenced. It
is therefore reasonable to assume that the S potentials are
the dominant monosynaptic excitatory input. The cells were
stimulated with temporally modulated, spatially homoge-
neous circular spots of various diameters.

Fig. 1 Membrane potential V (t) (solid line) for the Casti model with
input spikes at 50 ms, 200 ms, and 220 ms. The third input spike evokes
and output spike at 221.8 ms, marked by a cross. The dotted horizontal
line marks the threshold Vth

In Casti et al. (2008), the model specified by Eqs. (1)–
(4) was fitted as follows for each cell recorded: Most model
parameters were fixed to plausible values, cf. Table 2A.
The model neuron was then stimulated with the recorded S
potential trains, and the response of the model neuron was
compared to the experimentally recorded response using a
cost function sensitive to spike-timing mismatches. They
then used the Simplex algorithm (Nelder and Mead 1965)
to find the values of (τ, τA, ḡE, ḡA) that minimized the
cost function. Here, τ = C/GL is the passive membrane
time constant of the model neuron. For details of the fitting
procedure, see Casti et al. (2008).

Table 2B shows four sets of optimized parameter val-
ues, which were obtained in Casti et al. (2008) by fitting
the responses of three neurons, of which one was fit for
two different flashing spot sizes. These four cases span the
range of response types studied here of all data reported by
Casti et al. (2008), so we will use them for illustration in
the remainder of this study. Complete data for all 14 opti-
mized parameter sets from Casti et al. (2008) is given in the
supplementary material (Supplementary Table 1).

We implemented this model neuron in the NEST
Simulator (Gewaltig and Diesmann 2007) as model
iaf cxhk 2008 using a Runge-Kutta-Fehlberg 4/5 ODE
solver with adaptive step-size control from the GNU Sci-
ence Library (Galassi et al. 2001). Minor modifications to
the original model in Casti et al. (2008) are described in the
supplementary material.

2.1.2 Carandini model

The Carandini model is a spike-response model (Gerstner
and Kistler 2002), i.e., the membrane potential is given as a
sum of stereotyped events:

V (t) =
∑

{sj }
Vsyn(t − sj ) +

∑

{tk}
Vspike(t − tk) + n(t) (5)

Vsyn(t) = VEPSP
t

τEPSP
e
− t−τEPSP

τEPSP �(t) , (6)

Vspike(t) = δ(t) − Vreset e
−t/τreset�(t) . (7)

Vsyn(t) is the postsynaptic potential, Vspike(t) the wave-
form describing a spike and the subsequent after-hyper-
polarization with initial amplitude Vreset and decay time
constant τreset, and Vsyn(t) the response to incoming spikes,
with maximal response VEPSP at time τEPSP. As before, {sj }
and {tk} are the incoming and outgoing spike trains, respec-
tively. n(t) is Gaussian-distributed white noise. The model
produces a spike when the membrane potential exceeds the
spike threshold, V (t) > Vth.

The dynamics of the model is illustrated in Fig. 2. Given a
neuron at rest, a single incoming spike results in an increase
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Table 2 Parameters
A. Casti model, common parameters

τE Excitatory synaptic time constant 1 ms

C Membrane capacitance 1 nF

GL Persistent leak conductance 0.1 μS

VL Resting potential −60 mV

Vth Spike threshold −45 mV

VE Excitatory reversal potential 20 mV

VA AHP reversal potential −95 mV

B. Casti model, specific parameters

Neuron 1 Neuron 1* Neuron 6 Neuron 8

τ Membrane time constant 17.8 ms 11.7 ms 16.3 ms 7.2 ms

τA AHP time constant 0.47 ms 0.60 ms 1.00 ms 0.26 ms

ḡE Exc. conductance 0.16 μS 0.11 μS 0.08 μS 0.07 μS

ḡA AHP conductance 0.42 μS 0.56 μS 0.60 μS 0.44 μS

C. Carandini model

τEPSP Time constant for excitatory PSPs 6.0 ms

τreset Time constant of AHP potential 12.0 ms

VEPSP Amplitude of excitatory PSPs 0.56

Vreset Amplitude of AHP potential 0.82

Vth Spike threshold 1.00

Vnoise Noise amplitude 0.25

D. Input parameters

a0 Input rate {0, 5, . . . , 160} s−1

a1 Input amplitude {0, 20, . . . , 100} s−1

fstim Input frequency ∼ 10{0.0,0.1,...,3.0} Hz

� Input regularity (� order) {1, 3, 6}
E. Simulation parameters

dt Time resolution 0.1 ms

T Simulation time 100 s

A: Fixed parameters common
to all models from Casti et al.
(2008).

B: Optimal parameter sets for
neurons no. 1, 6, and 8 from
Casti et al. (2008). Parameters
were obtained under stimulation
with flashing small spots, ex-
cept for Neuron 1*, which
was obtained with a full-field
stimulus.

C: Optimal parameter set for
neuron 122R4-5 from Carandini
et al. (2007); potentials are in
arbitrary units.

D: Input parameters used to test
the model.

E: Simulation parameters. Data
in A–C are from Casti et al.
(2008, Table 1, 2) and Carandini
et al. (2007, Table 1), respec-
tively.

in membrane potential by more than 50 % of the distance
between resting potential and threshold for all neurons in
the Carandini study. As with the Casti neurons, we operate
outside the diffusive regime.

Carandini et al. (2007) fitted this model to nine cells
(seven On, two Off; three P, four M, two unclassified)
recorded from six adult macaques. Both input and out-
put spike trains ({sj }, {tk}) were recorded. The cells were
stimulated with spatially homogeneous light spots restricted
to the receptive field center and varying continuously
in time.

Optimal parameter sets for the four free parameters
of the model (τEPSP, VEPSP, τreset, Vreset) were obtained by
minimizing the difference between the low-pass filtered
output spike trains recorded from experiment and simula-
tion. Minimization was performed by a custom procedure
described in Carandini et al. (2007). The optimal noise level
(Vnoise) was obtained by simulating the model response at
a number of amplitudes for the noise term n(t) and by

finding the noise level that yielded the best fit. Table 2C
shows the optimal parameter set for one neuron from the
Carandini study. Complete data for all nine neurons from
Carandini et al. (2007) is given in the supplementary mate-
rial (Supplementary Table 2).

We implemented this model neuron in the NEST
Simulator (Gewaltig and Diesmann 2007) as model
iaf chs 2007 using exact integration (Rotter and
Diesmann 1999; Plesser and Diesmann 2009). Minor mod-
ifications to the original model are described in the supple-
mentary material.

2.2 Characterization of response properties

2.2.1 Stimulation

We stimulated model neurons with sinusoidally modulated
inhomogeneous Poisson or gamma process spike trains,
as illustrated in Fig. 3. Specifically, we considered spike
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Fig. 2 Membrane potential V (t) (solid line) for the Carandini model
with input spikes at 50 ms, 200 ms, and 220 ms. The third input spike
evokes and output spike at 223.4 ms, marked by a cross. The dotted
horizontal line marks the threshold Vth

trains that are realizations of point processes with rate (or
intensity)

a(t) = a0 + a1 sin 2πfstimt . (8)

Mean rates were in the range 0 < a0 ≤ 160 s−1, while we
limited the modulation depth to 0 ≤ a1 ≤ a0 to avoid rec-
tification issues. Modulation frequencies fstim varied from
0 Hz to 1 kHz.

Input spike times {s1, s2, . . . } were chosen such that the
time-rescaled spike trains {u1, u2, . . . } = {uj |uj = A(sj )}
form homogeneous Poisson or gamma processes of the
desired order (Brown et al. 2002). Here,

A(t) =
∫ t

0
a(s)ds = a0t − a1

2πfstim
cos 2πfstimt (9)

is the cumulated rate (cumulated intensity) of the process.
For brevity, we occasionally refer to Poisson processes as
gamma processes with order � = 1.

The sinusoidal gamma generator model in the
NEST Simulator (Gewaltig and Diesmann 2007) generates
spike trains using this algorithm.

2.2.2 Response characteristics

We characterized the response of the neurons by a sinusoidal
rate model

r(t) = r0 + r1 cos(2πfstimt + φ1)

+
∞∑

m=2

rm cos(2mπfstimt + φm) , (10)

as illustrated in Fig. 3. For a purely linear response, r0

represents the background firing rate of the neuron, r1 the
stimulus response amplitude (with phase shift φ1), and we
expect rm = 0 for all higher harmonics (m ≥ 2).

We will quantify the linearity of the response to peri-
odic stimuli using Fourier analysis. Spectra of spike trains

Fig. 3 A model neuron is driven by a spike train with sinusoidally
modulated rate a(t) with mean a0, modulation depth a1, and frequency
fstim, cf. Eq. (8). As a first-order approximation, the output spike
train of the neuron can be characterized by the sinusoidally modulated
response firing rate r(t) with mean r0, amplitude r1, frequency fstim
and phase φ, cf. Eq. (10). Adapted from Nordlie et al. (2010), Fig. 1

have a continuous component due to the jitter in spike times.
For Poisson spike trains this spectrum is perfectly flat. For
spike trains including refractory effects (such as trains with
gamma ISI-statistics for � > 1), the spectra have a dip
near the origin (Franklin and Bair 1995). To test whether
the neuronal response is indeed linear, we compare the
Fourier amplitudes at higher harmonics rm (m ≥ 2) with
the continuous background component B , as illustrated in
Fig. 4.

Estimates of the Fourier amplitudes rm, phases φm and
continuous background component B were obtained as
follows: We recorded output spike trains {t(n)

k } for n =
1, . . . , N trials of duration T , with temporal resolution dt =
0.1 ms. We then computed per-trial spectra

S(n)(f ) =
∑

t∈{t (n)
k }

e−i2πf t (11)

Fig. 4 Spectrum of response amplitudes r̄(f ) obtained from N = 50
trials of T = 100 s duration, recording from a Casti 1 model neuron
stimulated by a sinusoidally modulated gamma process (a0 = 40 s−1,
a1 = 10 s−1, fstim = 10 Hz, � = 3); for this figure, 	f = 0.1 Hz and
fmax = 45 Hz. The horizontal solid line is the estimated background
B, while the dashed line marks the 99 % confidence limit for signals
exceeding the background, cf Eq. (23). Thin dotted lines mark the har-
monics. This spectrum shows no significant power at the second, third
or fourth harmonic
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at frequencies f = j	f chosen such that the stimula-
tion frequency fstim is an integer multiple of 	f . We thus
obtained per-trial Fourier amplitudes

r(n)(f ) =
{ |S(n)(0)|/T f = 0

2|S(n)(f )|/T f > 0
(12)

and phases

φ(n)(f ) = arg S(n)(f ) . (13)

The factor 2 in the amplitudes for f > 0 accounts for the
power at negative frequencies. We averaged across trials to
obtain estimates of the true Fourier amplitudes and their
standard deviations

r̄ (f ) = 1

N

N∑

n=1

r(n)(f ) (14)

σr (f ) =
√√√√ 1

N − 1

N∑

n=1

(
r(n)(f ) − r̄(f )

)2
. (15)

Phases were averaged on the unit circle (Goldberg and
Brown 1969)

φ̄(f ) = arg
N∑

n=1

eiφ(n)(f ) . (16)

Estimates of the response amplitudes at the harmonics are
thus given by

r̄m = r̄(mfstim) (17)

and correspondingly for the standard deviations σm and
phases φ̄m.

In estimating the amplitude B of the continuous back-
ground of the spectrum, we exploited the fact that the
spectrum excluding the harmonics essentially is flat. Instead
of estimating the background at each harmonic by a lin-
ear fit to r̄(f ) in the vicinity of each harmonic, we thus
simply averaged across the entire spectrum, excluding the
harmonics, and obtained

B = 1

|FB |
∑

f∈FB

r̄(f ) , (18)

where

FB = {j	f |0 < j	f < fmax ∧ j	f �= mfstim∀m ∈ N} .

(19)

Here fmax is the upper limit of the spectrum we computed;
unless otherwise noted, we used 	f = 0.1fstim and fmax =
10.5fstim. The standard deviation of B is then given by

σB =
√√√√ 1

|FB |
∑

f ∈FB

σ 2
r (f ) . (20)

A higher harmonic (m ≥ 2) carries significant signal
power if the mean response amplitude r̄m at the harmonic
exceeds the mean background amplitude B in a statistically
significant way. A one-sided z-test with test statistic

z = r̄m − B

�
, (21)

where

� =
√

minm≥2 σ 2
m

N
+ σ 2

B

N |FB | (22)

suffices to test for significance, because we collect data
across N > 30 trials (Walpole and Myers 1993, Ch. 8.5).
This statistic combines the standard deviations of harmon-
ics (one data point from each of N trials) and background
(|FB | data points from each of N trials). To obtain a test that
can be applied to all higher harmonics and is sensitive for
non-linearities, we use the smallest σm across all higher
harmonics. This minimizes � and thus maximizes z. As a
consequence, the test may indicate significant power at a
higher harmonic even if there is none, but we consider such
false positives less problematic than false negatives that may
occur if we, e.g., choose the largest σm in our definition
of �.

Then, r̄m > B with 99 % confidence if z > 2.34 or,
equivalently, if

r̄m > B + 2.34� . (23)

We will use this criterion to identify significant nonlineari-
ties in model responses.

2.3 Simulation

Simulations for all 23 model configurations reported by
Casti et al. (2008) and Carandini et al. (2007) were per-
formed with the NEST Simulator (Gewaltig and Diesmann
2007).

In practice, we simulated N trials by creating N mutually
independent generator-neuron pairs in a single NEST sim-
ulation. Membrane potentials were randomized upon net-
work initialization and data collection started only after an
equilibration period of 1 s simulated time. All simulations
were performed with a spike-time resolution of 0.1 ms.

Simulations were performed on a system with Intel Xeon
2 CPUs running Linux 2.6.18 using NEST 2.1.r9693. Soft-
ware was compiled with the GNU Compiler v. 4.1.2 and
linked against the GNU Science Library v. 1.14. Trials
were configured using the NeuroTools.parameters package
(Muller et al. 2009). Data analysis was performed on the
same computers and Apple MacBook Pro computers using
NumPy 1.5.1 and 1.6.2 and Matplotlib 1.0.1 and 1.1.1 under
Python 2.7.1 and 2.7.3.
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2.4 Rate model description

A linear, time-invariant (LTI) system is completely charac-
terized by its impulse response. That is, for any input, the
output can be calculated as a convolution of the input and
the impulse response. A wide class of non-linear systems
can be described by a linear convolution with a kernel h(t)

followed by a non-linear activation function g(·), so that the
response is given by

r(t) = g(h(t) ∗ a(t)) . (24)

For each model neuron described by Carandini et al.
(2007) and Casti et al. (2008), we need to find the activa-
tion function g(·) and the kernel h(t). For constant input,
a(t) = a0, the convolution becomes the identity opera-
tion, provided the kernel is normalized (

∫
h(t)dt = 1).

We thus determine g(·) by measuring the response to input
with fixed rate, r0 = g(a0) for a range of a0 and obtain a
continuous representation of g(·) by spline interpolation. In
practice, we use a0 ∈ {0, 5, . . . , 160}s−1.

To obtain the kernel h(t), we linearize the activation
function around a given working point (a0, r0) using Taylor
expansion. The response to a(t) = a0 + a1s(t) can then be
expressed as

r(t) = g(h(t) ∗ (a0 + a1s(t)))

= g(a0) + g′(a0)h(t) ∗ (a1s(t)) + O(a2
1)

≈ r0 + h0(t) ∗ (a1s(t)) ,

(25)

where we have introduced the linear impulse response
function

h0(t) = g′(a0)h(t) (26)

which combines the normalized kernel with the linear gain.
For general g(·), h(t) and s(t), this approximation is only
valid for small-amplitude signals (|a1s(t)|  |a0|).

Based on this approximation, we can obtain h0(t) as fol-
lows: We record model responses to sinusoidally modulated
input (s(t) = sin 2πfstimt , cf. Eq. (8)) for fixed a0 and a1 ≤
a0 at a range of logarithmically spaced frequencies fstim (see
Table 2D). The Fourier amplitude r̄ (fstim) and phase φ̄(f )

of the response, computed according to Eqs. (14) and (16),
then yield the complex transfer function, i.e., the Fourier
transform of the linear impulse response h0(t)

H0(fstim) = r̄(fstim)

a1
eiφ̄(fstim) . (27)

We then fit a first-order low-pass filter

H̃0(f ) = γ

(1 + i
f
fc

)
e−2πif d (28)

to the empirical transfer function to capture it with as
few parameters as possible: the cutoff frequency fc, the

low-frequency gain γ and the delay d; see Nordlie et al.
(2010) for details of the fitting procedure. For each set of
stimulus parameters (a0, a1, fstim), we obtained five inde-
pendent fits, from which we computed mean values and
standard deviations of the fitted parameters fc, γ and d .
In the time domain, Eq. (28) corresponds to a delayed
exponential kernel

h0(t) = F[H̃0(f )](t) = γ τ−1e− t−d
τ �(t − d) (29)

where �(·) is the Heaviside function and τ = 1/(2πfc) the
filter time constant.

We now define our linear-nonlinear rate model as

rNL(t) = g(h0(t) ∗ a(t)) . (30)

Two approximations were made in deriving Eq. (30) from
the original model defined by Eq. (24): the linearization of
g(·) and the assumption that h0(t) is a first-order low-pass
filter. Therefore, even though a comparison of Eqs. (26)
and (29) suggests that γ = g′(a0) should depend only
on a0, while h0(t) should be independent of all stimulus
parameters, this may not hold true in practice, due to the
approximations involved. We will discuss this further in
Section 3.2.

We note that the linear-nonlinear model of Eq. (24) can
be mapped to the following delay differential equation using
the linear chain trick (Nordbø et al. 2007):

τ u̇(t) = −u(t) + a(t − d), r(t) = g(u(t)). (31)

Here, u(t) = (a ∗ h)(t) and h(t) is an exponential kernel.

3 Results

We initially present representative results from simula-
tions using the Casti model (Casti et al. 2008). Later, we
show that the results generalize to the Carandini model
(Carandini et al. 2007). Additional results from both models
can be found in the supplementary material.

3.1 Stationary response

With only stationary excitatory input, the output rate r0 is
expected to increase monotonically with increasing input
rate a0. This is indeed the case when the model operates
under normal conditions (Fig. 5). Refractoriness entails that
the firing rate curve will flatten out for high input rates.
Curiously, output rates start to decrease for high inputs rates
for certain configurations of the Casti model as shown in
Fig. 5 G–I). This is a consequence of the repolarizing mech-
anism of the Casti model and the absence of inhibitory
input: The model has no explicit reset or refractory time.
Instead, the neuron remains unable to fire as long as the
membrane potential remains above threshold. Thus, if the



J Comput Neurosci

Fig. 5 Stationary response for
selected Casti neurons. Symbols
illustrate mean output rates r0
across trials. Error bars denote
one standard deviation in either
direction. Each row contains
results from one neuron
configuration, from top to
bottom: neuron 6, neuron 8,
neuron 1, neuron 1*. The first
and second neurons have low
and high throughput ratio
respectively. The third and
fourth row contain responses
from the same neuron, but with
parameters obtained from
stimulation with different spot
sizes (see Section 2.1.1).
Columns represent different
input regularities, from left to
right: Poisson (� = 1), gamma
(� = 3) and gamma (� = 6)
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d e f

g h i

j k l

neuron receives a volley of input sufficiently strong to push
it so far across threshold that the afterhyperpolarizing cur-
rent activated after an output spike does not repolarize the
neuron to a subthreshold membrane potential, then the neu-
ron will remain refractory until a lapse in input occurs that
is long enough to allow the leak current to repolarize the
neuron. This effect also increases output rate variability, as
the time spent above threshold may vary considerably from
trial to trial. As this effect only occurs with persistent high
input rates, we will not discuss it further.

The output rates are observed to be lower than the input
rates, meaning that the neurons have to integrate several

incoming spikes to reach threshold. The neurons differ
considerably in transfer ratio r0/a0, as illustrated by the
difference between the top two rows in Fig. 5.

Stimulation within the receptive field center and stim-
ulation of the whole receptive field lead to quantitatively
different activation functions (Fig. 5G, J).

The more input spikes the neurons need to integrate to
produce a response, the more rectified-linear the stationary
response curves become. For example, the neurons in the
two top rows of Fig. 5 hardly produce any output for low
input rates, but above a certain level output rates start to
increase nearly linearly with the input rate.
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Input signals with high-order gamma statistics causes sta-
tionary responses to change in two ways because short inter-
spike intervals (ISIs) are rarer. First, as spikes arrive more
evenly, higher input rates are needed to evoke any response.
Second, neurons are less likely to stay above threshold for
extended periods of time as evidenced by the linearization of
the stationary response curve with increasing gamma order
in Fig. 5 G–I.

3.2 Response to sinusoidal stimuli

In principle, measuring the linear response H0(f ) of a
nonlinear system at a working point a0 requires infinitesi-
mally small perturbations. In practice, one needs to deter-
mine empirically the perturbation amplitudes up to which
response nonlinearities may be neglected. To this end, we
quantified the frequency contents of the response r(t). For

a linear system, a sinusoidal stimulus with frequency fstim

will give rise to a single peak in the response spectrum at
the same frequency fstim. Any nonlinearities in the system
will produce higher harmonics in the response rate.

To measure the degree of nonlinearity, we compared the
amplitudes of the principal and second harmonics, r1 and r2,
with the background-firing/“noise” level z = 2.34 (Fig. 6).
The first-order low-pass filter provides an overall good fit
to the base harmonic in the response, while the higher har-
monics (second harmonic included in figure) show little or
no significant power.

When a neuron with a rectified-linear stationary response
curve (e.g., Fig. 5C) operates near the kink in the response
curve, the second harmonic of the non-stationary response
becomes more pronounced with increasing regularity for
some neurons (see Fig. 6, third column). Overall, we
conclude that the low power found at higher harmonics

Fig. 6 Low-pass characteristic
of the response to sinusoidal
stimuli (a1 > 0) for
representative Casti neurons.
The figure illustrates how a first-
order low-pass filter with cutoff
frequency fc, low-frequency
gain γ , and delay d fits the
response of the Casti model to
time varying input. Symbols
represent measured responses
rn(fstim)/a1 for principal (blue)
and second (green) harmonics
(n ∈ {1, 2}). Gray curves show
fitted first-order low-pass filters.
Dotted vertical lines mark
fitted cutoff frequencies fc .
Dashed horizontal lines
represent noise level z = 2.34.
Stimulus parameters:
a0 = 40 s−1, a1 = 10 s−1. Same
panel arrangement as in Fig. 5

a b c

e f
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indicates that the dynamics of the Casti model are linear
beyond the rectification point and thus can be captured by a
linear-nonlinear model as proposed here.

As pointed out in Section 2.4, the gain of the low-pass
filter should fulfill γ = g′(a0), while the cutoff frequency
fc and delay d should be independent of both mean input
rate a0 and modulation amplitude a1 for a linear system.
Nordlie et al. (2010) found that these expectations are rea-
sonably fulfilled for integrate-and-fire neuron models of
retinogeniculate transmission.

To investigate whether this decomposition holds for the
models studied here, we obtained response parameters γ ,
fc, and d for a range of stimulus parameters (a0, a1) with
a1 ≤ a0. Results for two typical neurons as shown in Fig. 7
demonstrate that the response properties are largely inde-
pendent of modulation depth a1 for given mean input rate
a0. Data in Fig. 7 are for Poisson input, but we found sim-
ilar results for higher order gamma input (� = 3, � = 6;
data not shown).

We observed further that γ ≈ g′(a0) holds across neu-
ron models and stimulus parameters, with mild deviations
for cases with very high throughput (data not shown), pro-
viding further evidence that the linearization in Eq. (25) and
the low-pass filter approximation in Eq. (28) are reasonable

for the Casti and Carandini models. Given that the station-
ary response curves in Fig. 5 have approximately constant
slope g′(a0), we expect constant low-frequency gain γ .
Fig. 7 A, B indicates that this expectation is fulfilled to a
reasonable degree.

The cutoff frequency fc (Fig. 7 C, D) and, in some cases,
the delay d (Fig. 7 F), depend on the mean input rate a0.
The latter applies to the high-throughput neurons (Casti
neurons 1, 2, and 5) in particular. The neuronal responses
for the models considered here thus cannot be decomposed
into a gain dependent on the working point and a kernel
independent of it.

However, the parameters γ, fc, and d of our linear-
nonlinear model are independent of modulation depth a1.
This is a key property of the model: Parameters obtained
for one value of a1 will apply to any modulation depth
a1 ≤ a0, rendering the model applicable to a wide range of
stimuli provided the fixed mean input rate is approximately
constant. Furthermore, as the dependence of the cutoff fre-
quency fc on input rate a0 is rather weak, the rate models
are expected to generalize well when driven with other stim-
uli. Also, in those cases where delay d depends on a0, fc

increases along with d . The difference between rate models
for different working points may effectively be reduced: As

Fig. 7 Rate model parameters
(γ, fc and d) for Poisson
(� = 1) input for two Casti
neurons. The left column
illustrates typical parameter
variation (neuron 6). The right
column illustrates the results
from a high throughput neuron
(neuron 1). Solid, dashed,
dash dotted and dotted
black lines represent
a1 = {0.25, 0.5, 0.75, 1.0} × a0
respectively. Thick, grey lines
indicate mean values

a b

c d

e f
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input rate changes, an increased cutoff frequency fc entails
faster responses, which are compensated by an increased
delay d .

3.2.1 Cutoff frequencies

Low-frequency signals pass through low-pass filters essen-
tially unchanged, while signals with frequencies higher than
the cutoff frequency are attenuated. The cutoff frequency of
a fitted low-pass filter hence describes the tracking speed of
a neuron model.

Values for all neurons studied are listed in Table 3. In
summary, for Poisson input with a mean rate a0 = 40 s−1

(consistent with the S potential recordings and retinal gan-
glion cells in general) and modulation depth a1 = 10 s−1,
cutoff frequencies fc for the Casti neurons ranged from 48.7
to 93.9 Hz. This corresponds to rate-model time constants
τ = 1/(2πfc) from 3.3 to 1.7 ms.

Table 3 Cutoff frequencies in Hz

Model Poisson � = 3 � = 6

Casti

1 70.9 53.6 35.7

1* 91.0 61.0 32.1

2 93.9 93.2 91.2

2* 73.0 45.3 24.1

3 68.9 31.9 21.3

3* 48.7 25.0 18.8

4 49.9 23.2 14.5

5 71.4 61.7 40.7

6 68.0 26.1 16.6

6* 89.5 37.0 23.8

7 81.4 32.8 20.1

8 64.7 29.4 21.8

9 88.6 33.5 21.5

10 91.7 32.7 20.5

Carandini

120L15-1 30.4 24.0 19.8

121R11-1 18.4 16.7 16.7

121R13-4 32.5 26.1 24.9

121R14-4 15.7 15.0 14.7

121R15-5 34.6 32.8 36.2

121R7-1 32.8 56.6 46.6

122R4-2 53.5 46.0 42.3

122R4-3 45.4 33.1 29.3

122R4-5 35.6 24.9 20.4

The asterisk indicates that the neuron parameters were obtained from
stimulation extending beyond the neuron’s receptive field center.
Stimulus parameters: a0 = 40 s−1, a1 = 10 s−1.

With few exceptions, the cutoff frequency drops with
increased input regularity (Table 3). However, at higher
input rates, increased input regularity results in higher
cutoff frequencies for neurons with high transfer ratios
(Supplementary Figure 4). This behavior is typically seen in
neurons where AHP has relatively little effect. Across the
full set of Casti neurons and input rates, cutoff frequencies
varied from approximately 30 Hz to approximately 230 Hz
(data not shown).

3.3 Test of linear-nonlinear model

3.3.1 Step test

As a first test of the rate model of Eq. (24), we drove it with
a step in the input firing rate. Population-averaged responses
of 50,000 independent Casti neurons (black curves) are
shown in Fig. 8 along with the predictions of the firing-rate
models (gray curves). The step response is seen to be well
predicted by the firing-rate model.

An overshoot can be seen in the simulation results for
some of the neurons following the step in the input rate.
The magnitude of the overshoot increases with input regu-
larity (Fig. 8). The maximal overshoot observed exceeded
30 % of the sustained post-step output rate (Supplementary
Figure 5C), but for most input/neuron combinations it was
much lower.

The overshoot occurs when a significant number of neu-
rons prior to the input-rate step have a membrane potential
close to threshold. As the input rate suddenly increases,
many of these neurons will receive an input spike within
the time frame required to produce an output spike. In
cases with strong refractoriness (large AHP conductance ḡA

and/or time constant τA), this leaves few neurons to spike
until the refractory effects wane. Different neurons exhibit
this behavior at different input rates.

3.3.2 Recorded retinal spike trains

To further validate the performance of the LGN rate mod-
els, we tested them on recorded retinal spike trains with
low baseline firing rates and transients exceeding 150 s−1.
The spike trains were derived from S potentials captured
by an electrode whose tip was extremely close to the relay
cell soma (see Section 2.1). As in Casti et al. (2008), such
a recording was deemed suitable for this analysis if the
following conditions were met: (1) The recording was sta-
ble over a period of hours, indicating that the cell was not
damaged by the electrode, (2) the S potentials stood out
well above the extracellular membrane potential noise and
could easily be identified by simple thresholding and sub-
sequent principal components analysis, and (3) there was
an absence of short inter-event intervals (< 2 ms), giving
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Fig. 8 Population-averaged
step responses for selected Casti
neurons. Firing rate r(t) in
response to an instantaneous
increase in the input firing rate
a(t) at time t = 100 ms from 30
to 50 s−1. Comparison between
simulation results (black curves;
population-averaged response of
50000 neurons, bin size
dt = 2.0 ms) and prediction of
the linear-nonlinear model (24)
(gray curves) with measured
activation function g(a0) and
transfer kernel h(t). Same panel
arrangement as in Fig. 5
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strong evidence that the S potentials were elicited by a sin-
gle retinal ganglion cell. Each of the relay cells recorded
had a moderate-to-high transfer ratio (ratio of LGN output
spikes to S potential input events) between 0.15 and 0.7, a
range for which the Casti model was accurate.

The monitor stimulus used to drive the ganglion cells was
a noisy flashing spot modulated at 160 Hz by a naturalistic
distribution of light intensities (van Hateren 1997) relative
to a gray background in the photoptic range (∼ 25 cd/m2).
A stimulus run consisted of a single 8-second realization of
this stimulus repeated 128 times. The spot size was fixed for
a set of 128 repeat trials, but was varied between runs from
sub-receptive-field center sizes to full field. All cells were
located within 15 degrees of area centralis in the adult cat.

To compare the perfomance of the spiking and rate-based
models, we obtained comparable responses from both types
of models as follows. For the rate-based model, we pooled
experimental spike trains across trials and determined the
averaged response rate by means of kernel density esti-
mation (Shimazaki and Shinomoto 2010), using the fixed
kernel method to optimize the kernel bandwith. We thus
obtained a continuous rate function aRGC(t) describing
responses of real retinal ganglion cells. Applying Eq. (24)
to this rate yields the reponse of the rate model rrate(t). For
the spike-based models, we drove the models with spike
trains from individual experimental trials, pooled the result-
ing output spike trains and applied kernel density estimation
to obtain the response rate rspike(t), as shown in Fig. 9.
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Fig. 9 Firing-rate model
prediction quality Er .
Population-averaged response
(solid) from 128 neurons and
prediction of the
linear-nonlinear model (24)
(dashed). Panel A illustrates the
response to a complete 8 second
stimulus sequence (neuron 1,
dataset 1), while panel B shows
1 s (shaded area) of the same
data in more detail

a

b

We then quantified the difference between responses
obtained from rate-based and spiking models as the mean
square error normalized by the variance of the response of
the spiking model (Pillow et al. 2005)

Er = 1 −
1
T

∫ T

0 (rrate(t) − rspike(t))
2dt

1
T

∫ T

0

(
rspike(t) − r̄spike

)2 dt
(32)

where r̄spike is the average response rate of the spiking
model. Note that Er = 100 % indicates perfect agreement
between the models.

We tested the rate model on three separate datasets with
different mean rate a0 and regularity � and observed good
agreement between rate and spiking models. Scores for the
four example neurons are listed in Table 4. Across all 14
model neurons reported by Casti et al. (2008), median Er

scores for the three datasets were 96.5 %, 93.0 %, and
89.3 %, respectively, with Er ≥ 85.0 % for 39 of a total of
42 scores, and a minimum score of Er = 74.8 %.

3.4 Carandini results

We found the results for the Carandini model to be equiva-
lent to the results presented above. Both the stationary and
non-stationary responses have the same qualitative features,
but there are some quantitative differences worth pointing
out. In particular, the cutoff-frequencies are lower for the
Carandini neurons, implying longer time constants. This

Table 4 Rate-model prediction quality Er

Neuron Fits

Default Best

Set 2 (a0 = 17.9, � = 2.1, fit: 20/10)

6 91.9 92.0

8 98.7 98.8

1 94.0 94.2

1* 97.8 97.8

Set 2 (a0 = 27.8, � = 3.5, fit: 30/15)

6 82.9 85.0

8 97.0 98.1

1 86.3 89.4

1* 95.7 95.7

Set 2 (a0 = 12.5, � = 0.9, fit: 20/10)

6 85.0 85.0

8 88.7 88.7

1 90.9 90.9

1* 95.6 95.6

For each neuron, prediction scores are listed for default and best
fit. Default fit is selected based on nearest mean rate (rounded up)
and 50 % modulation depth. Mean rate, regularity, and default fit is
specified for each dataset
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Fig. 10 Stationary response
(top), non-stationary response
(middle) and
population-averaged step
responses (bottom) for one
Carandini neuron (122R4-5).
Same row arrangement as in
Fig. 5. See Figs. 5, 6 and 8 for
detailed legend

a b c

d e f

g h i

is especially pronounced for Poisson input (Table 3). The
stationary response, non-stationary response, and resulting
firing-rate model’s predicted response to a step increase in
the input rate for one of the neurons in the Carandini study
(122R4-5) are illustrated in Fig. 10. Results for more neu-
rons from the Carandini study are shown in Supplementary
Figures 1–3 and 6–7.

4 Discussion

In the present study, we have shown that linear-nonlinear
firing-rate models can capture the essential response
dynamics of data-fitted spiking LGN relay neuron models.

Our use of data-fitted models allowed us to calculate the
rate-model time constants for the cat and macaque LGN
relays cells studied as shown in Table 3. For Poisson input
with a mean rate a0 = 40 s−1 and modulation depth a1 =
10 s−1, time constants τ = 1/(2πfc) ranged from 1.7 to
3.3 ms for the cat neurons and from 3.0 to 10.1 ms for
the macaque neurons. These values were found to decrease

somewhat with increasing firing rates and, with some excep-
tions, increase with increased input regularity. In accordance
with earlier work (Gerstner 2000; Nordlie et al. 2010), we
found no connection between the rate-model time constants
and membrane time constants.

While the neurons operate outside of the diffusive regime
(numerous tiny synaptic inputs), responses to stationary
stimuli show that all the studied neurons require integration
of at least two input spikes to produce an output spike. This
result is in line with previous studies of LGN relay neurons
(Sirovich 2008; Casti et al. 2008; Carandini et al. 2007).

Since the work of Wilson and Cowan (1972), firing-
rate models with exponential kernels (i.e., first-order low-
pass filters) have become a standard tool in neuroscience.
Nordlie et al. (2010) demonstrated that for an ensemble
of unconnected LIF neurons with strong synapses, a sim-
ple first-order model yields accurate predictions of the
population-averaged response for a wide range of stimulus,
neuron, and synapse parameters. Because of its simplicity,
we used the same filter model and our results indicate that it
produces reasonable predictions for the two models studied.
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The exact shape of the transfer function has been less of
a concern to us than the low-frequency gain and the cut-
off frequency required for a simple and accurate firing-rate
model.

Previous studies have found that cutoff frequencies fc

increase with firing rate for small synaptic time constants τs

(Knight 1972; Brunel et al. 2001; Nordlie et al. 2010). We
see such an increase as well (Fig. 7), but input regularity
has a larger impact: For most neurons, the cutoff frequency
is reduced with increasing input regularity. At high input
rates, though, the cutoff frequencies of neurons with high
transfer ratios increase with input regularity and thus behave
more like the neurons with supercritical weights studied by
Nordlie et al. (2010).

To assess the overall validity of our rate-based mod-
els, we drove the rate models with novel stimuli. First,
rate model predictions were compared to simulated step
responses. The predictions were found to be good overall.
Sustained rates were predicted well for all input regulari-
ties, but some combinations of neuron parameters and input
parameters resulted in an overshoot immediately following
the step in input rate. Our firing-rate models are unable to
account for this effect. The overshoot occurs because many
of the neurons that are close to threshold spike shortly after
the sudden increase in the input rate. If this happens to a
large proportion of the neurons, few neurons will be able to
spike until the refractory effects wane. This effect can be
understood from the properties of Poisson processes with
refractoriness (see Deger et al. 2010). A variant of the model
in which we replaced the low-pass with a band-pass fil-
ter captured the overshoot well (data not shown), but given
the excellent agreement between spiking and model neurons
observed of realistic input as shown in Section 3.3.2, we
consider this an unnecessary complication.

Second, we used recorded retinal spikes as input to the
rate models and compared the results to the output from the
spiking relay cell models. Results varied between datasets
and neurons, but prediction quality was good overall with
median Er scores of 96.5 %, 93.0 %, and 89.3 % for the
three datasets tested. Neurons with low transfer ratios gen-
erally scored worse than neurons with high transfer ratios.
Shimazaki and Shinomoto (2010) proposed rate estimators
based on fixed and variable kernels. We found that estimates
based on variable kernels, which capture abrupt changes in
activity better, resulted in even better scores for our models
than fixed rate kernels (data not shown). Due to the compu-
tational burden and the experimental status of the variable
kernel methods, though, we used the fixed kernel method
for all data reported here.

Overall, our rate-based model fits the experimentally
constrained spiking models by Carandini et al. (2007)
and Casti et al. (2008) equally well, even though the
models differ in their mathematical form (spike response

vs. conductance-based) and the species modeled (mon-
key vs cat). This universality—which may seem surpris-
ing at first—reflects the fact that both studies investi-
gate responses to comparable stimuli, to which relay cells
in cat and monkey LGN respond in a similar fashion.
Thus, our model abstracts away details of the Casti and
Carandini models that are insignificant to the response prop-
erties investigated. One should keep in mind, though, that
the model by Casti et al. (2008), which our rate-based model
match well, captures responses of neurons with moderate-
to-high transfer ratios best.

Our results indicate that simple firing-rate models pro-
duce acceptable predictions for LGN relay neurons. The
approach used here could therefore be a useful tool for
further exploration of the firing-rate response properties of
neurons.
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Model implementation differences

The following sections summarize any differences between the original model implementations and our implementations
in NEST.

Casti model

According to Casti et al (2008), the afterhyperpolarization is modelled as alpha-function conductances that are added
for each spike (see Section 2.1.1). The source code obtained from the authors, however, only keeps track of the
conductance resulting from the most recent spike. The NEST implementation adds the conductances as described
in the model equations. This difference causes noticeable differences in the output only at high input rates. As an
option, the NEST implementation allows the user to behave like the original.

Also, Casti et al use a second-order Runge-Kutta integrator and linear interpolation to determine the spike times.
In the NEST model, a fourth-order integrator and linear interpolation is used. This difference seems to have negligible
effects.

Carandini model

The main difficulties in implementing the Carandini model in NEST, was related to the noise signal n(t). It had to be
generated and filtered in advance, resulting in a memory-intensive model. And the noise signal was not described in
the paper, but the source code detailing the signal parameters and the filtering process was obtained from the authors.
However, we were not able to run the original simulator and therefore unable to directly compare the results of the
two implementations.

Tables and figures

Optimal parameter sets for all neurons from Casti et al (2008) and Carandini et al (2007) are listed in 1 and 2
respectively.

In the main text, we presented a number of figures illustrating the results for four Casti neurons, while the
results from the Carandini model were summarized in a single figure. Here, stationary response (Figure 1), response
to sinusoidal stimuli (Figure 2), and rate-model prediction (Figure 3) figures are included for four representative
Carandini neurons.

Figures illustrating the response to sinusoidal stimuli and rate-model prediction at a different working point are
included for both neuron models (Figures 4–7).
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Table 1: Optimal parameter sets for all neurons modeled by Casti et al (2008). Neurons were stimulated with small
spots, except for those with an asterisk suffix, which were obtained with a larger than optimal stimulus. After Casti
et al (2008, Table 2).
Neuron τ (ms) τA (ms) ḡE ḡA

1 17.8 0.47 0.16 0.42
1* 11.7 0.60 0.11 0.56
2 17.1 0.40 0.16 0.48
2* 17.3 0.50 0.13 0.54
3 12.6 0.25 0.08 0.54
3* 13.6 0.14 0.07 0.49
4 19.5 0.37 0.09 0.55
5 22.0 0.41 0.19 0.60
6 16.3 1.00 0.08 0.60
6* 11.8 1.00 0.07 0.57
7 14.4 1.07 0.08 0.28
8 7.2 0.26 0.07 0.44
9 12.4 0.60 0.08 0.52
10 15.3 0.65 0.10 0.60

Table 2: Optimal parameter set for all neurons modeled by Carandini et al. After Carandini et al (2007, Table 1).
Neuron τEPSP (ms) VEPSP τreset (ms) Vreset Vnoise

120L15-1 7.4 0.77 6.3 4.39 0.15
121R11-1 14.2 0.86 20.9 2.37 0.35
121R13-4 8.4 0.62 9.5 6.64 0.30
121R14-4 17.2 0.57 33.4 0.78 0.00
121R15-5 5.8 0.93 7.5 1.34 0.10
121R7-1 5.8 0.97 6.3 2.54 0.05
122R4-2 6.3 0.91 29.9 0.85 0.20
122R4-3 5.6 0.73 12.3 1.04 0.20
122R4-5 6.0 0.56 12.0 0.82 0.25

2



Figure 1: Stationary response for selected Carandini neurons. Symbols illustrate mean output rates r0 across trials.
Error bars denote one standard deviation in either direction. Each row contain results from one neuron configuration,
from top to bottom: 122R4-5, 121R14-4, 121R11-1 and 121R15-5. Columns represent different input regularities, from
left to right: Poisson (Γ = 1), gamma (Γ = 3) and gamma (Γ = 6).

3



Figure 2: Low-pass characteristic of the response to sinusoidal stimuli (a1 > 0) for representative Carandini neurons.
The figure illustrates how a first-order low-pass filter with cutoff frequency fc, low-frequency gain γ, and delay d
fits the response of the Carandini model to time varying input. Symbols represent measured responses rn(fstim)/a1

for principal (blue) and second (green) harmonics (n ∈ {1, 2}). Gray curves show fitted first-order low-pass filters.
Dotted vertical lines mark fitted cutoff frequencies fc. Dashed horizontal lines represent noise level z = 2. Stimulus
parameters: a0 = 40 s−1, a1 = 10 s−1. Same panel arrangement as in Figure 1.
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Figure 3: Population-averaged step responses for selected Carandini neurons. Firing rate r(t) in response to an
instantaneous increase in the input firing rate a(t) at time t = 100 ms from 30 to 50 s−1. Same panel arrangement as
in Figure 1.
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Figure 4: Low-pass characteristic of the response to sinusoidal stimuli (a1 > 0) for representative Casti neurons (high
input rate). Stimulus parameters: a0 = 80 s−1, a1 = 20 s−1. Same panel arrangement as in Figure 1.
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Figure 5: Population-averaged step responses for selected Casti neurons (high input rate). Firing rate r(t) in response
to an instantaneous increase in the input firing rate a(t) at time t = 100 ms from 60 to 100 s−1. Same panel
arrangement as in Figure 1.
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Figure 6: Low-pass characteristic of the response to sinusoidal stimuli (a1 > 0) for representative Carandini neurons
(high input rate). Stimulus parameters: a0 = 80 s−1, a1 = 20 s−1. Same panel arrangement as in Figure 1.
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Figure 7: Population-averaged step responses for selected Carandini neurons (high input rate). Firing rate r(t) in
response to an instantaneous increase in the input firing rate a(t) at time t = 100 ms from 60 to 100 s−1. Same panel
arrangement as in Figure 1.
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Abstract Capturing the response behavior of spiking neu-
ron models with rate-based models facilitates the investiga-
tion of neuronal networks using powerful methods for rate-
based network dynamics. To this end, we investigate the re-
sponses of two widely used neuron model types, the Izhike-
vich and augmented multi-adapative threshold (AMAT) mod-
els, to a range of spiking inputs ranging from step responses
to natural spike data. We demonstrate that a combination of
a non-linear firing rate model with a linear filter, fitted to
test data, provides models that generalize well to responses
to realistic spike trains. We also find that the broad range
of spiking behaviors obtained from Izhikevich and AMAT
models driven by current injection protocols reduces to a
smaller set of response classes under more natural stimulus
conditions.
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1 Introduction

The simulation of large networks of spiking neurons on the
scale of cortical columns or even whole areas of the cor-
tex has become feasible due to advances in computer tech-
nology and simulator software (Helias et al, 2012; Kunkel
et al, 2014). In order to relate simulation results to exper-
imental findings, it is important to employ neuron models
that accurately capture actual neuron dynamics in response
to realistic stimuli. Dynamical models that reproduce the re-
sponses of individual neurons to injected currents go back
to the seminal work by Hodgkin and Huxley (1952). Their
conductance-based model quantitatively described the ac-
tion potential initiation and propagation in the squid giant
axon in response to depolarizing currents and spawned many
variants and simplifications that have been analyzed and used
in computational neuroscience ever since. Examples are the
Fitzhugh-Nagumo (FitzHugh, 1961) and the Morris-Lecar
model (Morris and Lecar, 1981). On the more abstract side
of neuron modeling, Lapicque’s neuron model (Lapicque,
1907), widely known as the leaky integrate-and-fire (IAF)
neuron, models the membrane potential V (t) as a passive
current integrator with leak, emitting a spike whenever V (t)
reaches a threshold value θ , followed by a membrane poten-
tial reset (Tuckwell, 1988; Burkitt, 2006a,b).

These simple integrate-and-fire neuron models have partic-
ular appeal to computational neuroscientists because they
capture the essential function of a neuron, while still being
amenable to mathematical analysis in many input and net-
work scenarios.
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Yet, the ideal model would be a neuron model that is both
simple in its dynamical equations and still captures most of
the actual response dynamics of a real neuron to a wide
range of stimuli. To this end, Izhikevich suggested a two-
dimensional neuron model that is able to reproduce at least
twenty different characteristic responses that are commonly
used to classify neuron response types in experiments, such
as tonic, phasic and rebound spiking and bursting, or adapta-
tion (Izhikevich, 2010). The response types are illustrated in
Figure 1. The stimuli used to induce these spiking behaviors
are direct current injections, ramp current injections or short
direct current steps or pulses as indicated at the bottom of
all panels.

In a network context, however, neurons usually receive noisy
input currents. Moreover, they are known to respond highly
reliably to repeated injections of the same frozen noise in-
jection, while responses vary widely across trials when neu-
rons receive identical direct current (Mainen and Sejnowski,
1996). Neurons thus respond stereotypically to certain tem-
poral input features rather than to mere current amplitude.

Motivated by such findings, Gerstner and colleagues showed
that nonlinear IAF models, including the spike-response model
and the adaptive exponential IAF model, can succesfully be
mapped to experimental spike data in a noisy input regime
and even have good spike-time prediction power (Brette and
Gerstner, 2005; Jolivet et al, 2006). Yet, the nonlinearity and
the number of parameters in general make fitting a difficult
task. The International Competition on Quantitative Neuron
Modeling has challenged modelers to fit their neuron mod-
els to a set of spike data recorded from neurons stimulated
with noisy input currents (Jolivet et al, 2008). The resulting
neuron models were tested with a noisy input current that
was not included in the training set, and the predicted spike
times were compared to those of the actually emitted spikes.
The multi-timescale adaptive threshold model (MAT model)
introduced by Kobayashi et al (2009), a surprisingly simple
model with linear subthreshold dynamics, solved this task
best. Despite its simplicity, the MAT model can generate
type-I and type-II excitability, as well as burst firing. More-
over, an extended version of the MAT model, the augmented
MAT (AMAT) model, which incorporates threshold dynam-
ics that depend on the membrane-potential history, is able to
reproduce all twenty spike response patterns described for
the Izhikevich model (Yamauchi et al, 2011). Because of its
few parameters and simple dynamics, the AMAT model has
low computational cost while providing a large dynamical
repertoire, and is thus highly attractive for large-scale net-
work simulations.

In an actual neuronal network, neurons typically integrate
spikes from thousands of presynaptic neurons, yet not all
spikes might necessarily have a strong impact on the mem-

brane potential. In many spiking network models, the effect
of individual spikes on the membrane potential is assumed
to be small, and spiking activity asynchronous and irregular.
In this limit it is indeed possible to substitute the input cur-
rent by, e.g., Gaussian white noise or an Ornstein-Uhlenbeck
process (Johannesma, 1968). However, experimental find-
ings have repeatedly demonstrated that, even though most
synapses are weak, synaptic weight distributions typically
have heavy tails, with some corresponding to post-synaptic
potentials of up to 10 mV (Song et al, 2005; Lefort et al,
2009; Avermann et al, 2012; Ikegaya et al, 2013). It is thus
important to extend the analysis of neuronal response dy-
namics to input spike trains that elicit large individual post-
synaptic potentials.

At an even higher level of abstraction are models that ignore
specific spike times and heterogeneities in network struc-
ture, i.e., rate and field models. In contrast to high-dimensio-
nal networks of spiking neurons, such models are often eas-
ier to analyze mathematically due to their low dimensional-
ity, and hence can offer insight into steady states of network
activity and bifurcations that give rise to complex spatio-
temporal phenomena, such as oscillatory dynamics, travel-
ing waves or activity bump formation. Prominent examples
are neural mass models, such as the Jansen-Rit model (Jansen
and Rit, 1995), and neural field models, such as the Wilson-
Cowan model (Wilson and Cowan, 1972), which include
spatial interactions between neurons. In these models, the
dynamics of large, possibly heterogeneous, populations of
neurons are substituted by rate variables in a mean-field man-
ner (Ermentrout, 1998; Coombes, 2005).

An important conceptual step in the derivation of these mod-
els is the substitution of the spiking activity of a neuron in
response to a certain input current I(t) by an appropriate
rate function1 mapping the input history {I(s)|s ≤ t} to the
response rate at time t. Common choices are abstract models
such as threshold-linear or sigmoidal functions F(I(t)) de-
pending only on the input current at time t. The threshold-
linear form is often chosen because of mathematical con-
venience, but also because it mimics to first order the gain
function of many individual neurons in experiments (Chance
et al, 2002; Blomquist et al, 2009), while the sigmoidal also
models the saturation at very high firing rates. Yet, param-
eters of the gain function such as time constants, activation
thresholds, or slope are often chosen rather qualitatively, and
it is uncertain how well they match single-neuron properties
or biophysics.

A first step towards a stringent comparison of spiking neu-
ron network simulations with reduced neural mass or field

1 Strictly speaking, this is a functional, not a function, but we ignore
such mathematical detail here as we focus on instantaneous transfor-
mations in what follows.
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Fig. 1 Response types for current input as defined by Izhikevich (2004). This illustration was created with our NEST implementation of the
augmented MAT model (Yamauchi et al, 2011). Some model and stimulus parameters differ from those given by Yamauchi et al (2011), see the
Appendix. Membrane potential Vm is shown in blue, the threshold Vth in red, and the input current in green, while emitted spikes are shown as
black bars; after Yamauchi et al (2011). Subfigures are labeled as in Izhikevich (2004, Fig. 1).
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models is to obtain an adequate quantitative expression for
the neuronal gain function F(I(t)). It is hence of interest to
understand if and how the activity of individual spiking neu-
rons in response to arbitrary input currents can be described
truthfully by a rate-model formulation. Several point neuron
models are simple enough to allow for an analytical deriva-
tion of the gain function, assuming that input currents are
Gaussian white noise, sinusoidally modulated input, or shot
noise of a given structure (see, e.g., Gerstein and Mandel-
brot, 1964; Stein, 1965; Brunel, 2000; Brunel et al, 2001;
Burkitt, 2006b; Richardson, 2007; Richardson and Swar-
brick, 2010; Roxin, 2011; Ostojic and Brunel, 2011). How-
ever, more complex nonlinear neuron models, such as the
Izhikevich model or even the AMAT model, often render
such analyses futile, especially in the presence of large-am-
plitude post-synaptic current events that are beyond the realm
of perturbation-based theories. This holds to an even larger
degree for the second step towards a stringent comparison of
spiking network and neural field models, namely capturing
the temporal response properties of the models. A thorough
understanding of complex nonlinear models thus requires
simulation studies.

We provide here an analysis of the response to spike train
input of the models proposed by Izhikevich (2003b) and by
Yamauchi et al (2011), following the approach by Nordlie
et al (2010) and Heiberg et al (2013). Both models actu-
ally represent an entire class of models that can be tuned
to a wide range of reponses by adjusting model parame-
ters. We will thus refer to the Izhikevich and AMAT model
classes, respectively, when we refer to the set of equations
and spike-generation rules, while we will call each of the
approximately 20 different parameterization a model. Each
of the two model classes comprises some 20 models.

In Section 3.1 we present how the different models respond
to spike train input.

In Section 3.2, we present fits of a linear-nonlinear firing-
rate model to the spike responses of Izhikevich and AMAT
models to stationary and temporally modulated stochastic
spike trains across a range of input rates, synaptic weights,
and modulation frequencies and amplitudes under different
background noise regimes.

We group the different models according to the filter param-
eters obtained in Section 3.3, before we in Section 3.4 ex-
plore how well the linear-nonlinear rate models capture the
response of their spiking counterparts to novel stimuli, such
as steps in the input firing rate and more complex temporally
modulated input.

Finally, in Section 3.5 we investigate whether we can gener-
alize models fitted to a specific input regime to a broader set
of stimuli, before we summarize our findings in Section 4.

2 Methods

2.1 Neuron models

We study response behavior for two neuron model classes,
the Izhikevich model (Izhikevich, 2003b) and the augmented
MAT model (Yamauchi et al, 2011). As both model classes
are well described in the original publications, we just sum-
marize them briefly in Tables 1 and 2. Both models are able
to reproduce 20 of the most prominent features of biolog-
ical spiking neurons in response to injected current input
as illustrated in Figure 1. These response types were first
summarized in tabular form by Izhikevich (2004); see also
Markram et al (2004). Tables 3 and 4 present the parame-
ter values required to obtain the model responses displayed
for each class; note that certain models only differ in the
stimulus injected, while neuron parameters are identical. All
models are implemented on a fixed time grid (dt = 0.1ms).

We integrate the Izhikevich model class using the forward
Euler algorithm as in the original publications on the model.
Izhikevich (2003b) used a 1 ms time step, but splitting the
update of the membrane potential (but not the recovery vari-
able) into two steps of 0.5 ms “for numerical stability”. Fig-
ure 1 of Izhikevich (2004), on the other hand, was generated
using different time steps for different cases, ranging from
0.1 ms to 0.5 ms without substepping, as evidenced by the
source code used to generate that figure (Izhikevich, 2003a).
We extracted model parameters as shown in Table 3 from
that source code, including an external current Iext injected
into the model for some variants in addition to the stimulus
current.

Izhikevich’s source code also revealed that model variants
G, L, and R use other equations than Eqs. 1–2 for V (t) or
U(t). We therefore excluded these variants from our study.
We also excluded variants I and O, since they have the same
parametes as variants A and M, respectively, and differ only
in the test stimulus injected to create Fig. 1 of Izhikevich
(2004).

Furthermore, we observed that response patterns depend on
the precise time step used. In particular, the response for
case T, Inhibition induced bursting, is unstable for time steps
shorter than 0.5 ms. We could obtain a response similar to
the original publication for our fixed 0.1 ms time step by
changing parameter d from d =−2 to d = 0.

The Izhikevich model class is not defined with consistent
units in the original publication (Izhikevich, 2003b). While
a time unit of milliseconds is implied and membrane po-
tential is specified in millivolts, no units are given for the
parameters or explicit constants. The model equations im-
ply that input currents have units of mV/ms, which is rather
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a0
a1

r0
r1

φ

Fig. 2 A model neuron is driven by a spike train with sinusoidally
modulated rate a(t) with mean a0, modulation depth a1, and frequency
fstim, cf. Eq. (7). As a first-order approximation, the output spike train
of the neuron is characterized by the sinusoidally modulated response
firing rate r(t) with mean r0, amplitude r1, frequency fstim and phase
φ , cf. Eq. (10). Adapted from Nordlie et al (2010), Figure 1.

exotic. In the spirit of Izhikevich (2003b) we therefore treat
all quantities except time and membrane potential as unitless
for the Izhikevich model class.

The AMAT class is implemented in NEST as model
amat2 psc exp using exact integration (Rotter and Dies-
mann, 1999). The implementation follows the NEST con-
vention of parameterizing the membrane potential equation
Eq. 4 in terms of membrane time constant τm and membrane
capacitance Cm and an explicit reversal potential EL, while
Yamauchi et al (2011) parameterize their Eq. 1 in terms of
τm and membrane resistance R and define EL = 0mV. The
parameterizations are related by Cm = τm/R and a shift of
the membrane potential V and the resting value of the thresh-
old ω by EL. Some parameter values were adjusted to be
able to reproduce Figs. 6 and 7 in Yamauchi et al (2011) as
discussed in the Appendix. Model variants L and R are ex-
cluded from the study as they have identical parameters to
variants A and O, respectively.

In all simulations reported here, a single neuron is stimu-
lated with spike train input. For the Izhikevich model class,
this spike input results in instantaneous jumps in the mem-
brane potential v. For the AMAT class, each incoming spike
evokes an exponentially decaying synaptic current. For de-
tails, see Tables 1 and 2 and Sec. 2.2.

Output spikes are recorded with NEST device spike detector.

2.2 Stimulation

We briefly summarize here the sinusoidal stimulation pro-
tocol and response characterization based on Nordlie et al
(2010) and presented in detail in Heiberg et al (2013). More
general stimulation protocols are described in Sec. 2.5.

Model neurons are stimulated with sinusoidally modulated
inhomogeneous Poisson process spike trains (Figure 2) with

rate (or intensity)

a(t) = a0 +a1 sin(2π fstimt) . (7)

Mean rates a0, modulation depth a1, and modulation fre-
quency fstim are varied systematically; modulation depth is
limited to 0≤ a1 ≤ a0 to avoid rectification. We used NEST
device sinusoidal poisson generator to generate the
input spike trains.

The weights w > 0 of the synapses transmitting the stimulus
spike train a(t) are varied from about 10% to about 75% of
the synaptic weight wθ required if a single incoming exci-
tatory spike shall evoke a threshold crossing from rest. For
the AMAT model class, wθ is the same for all model vari-
ants and we use weights between 100 pA and 900 pA in our
experiments.

For the Izhikevich model class, in contrast, model parame-
ters do influence the response to isolated spikes. We there-
fore define a weight factor ξ for each model variant as the
smallest weight for which a single excitatory input spike
triggers the spike initiation process. Synaptic weights w are
set to fractions of this value, ranging from 0.1 to 0.75, i.e.,
within the same range as for the AMAT model.

In addition to the resulting current stimulus, Istim(t), we con-
sider stationary noisy background input currents Ibg(t), rep-
resenting unspecific weak network input. This allows us to
study neuronal responses to Istim(t) in different total input
scenarios. The full input a neuron receives is thus given by
I(t) = Istim(t)+ Ibg(t). We characterize the background cur-
rent by its mean µbg and standard deviation σbg.

The NEST implementation of the Izhikevich neuron model
is equipped with instantaneous current-based synapses. As-
suming high rates and small synaptic strength, balanced spik-
ing input can be approximated well by Gaussian white noise.
We thus inject approximate Gaussian white noise realiza-
tions of defined mean µbg and standard deviation σbg using
NEST’s noise_generator2.

The AMAT model, as used here, has current-based expo-
nential synapses with characteristic time constants τsyn,E =

1ms and τsyn,I = 3ms. We inject background current as Pois-
son spike trains through synapses with small, fixed weight
wE,bg = 1pA and wI,bg =−4/3 pA, respectively, using NEST
model poisson generator. The resulting noise input cur-
rent has mean and standard deviation

µbg = wE,bgνEτsyn,E +wI,bgνIτsyn,I (8)

σbg =
√

w2
E,bgνEτsyn,E/2+w2

I,bgνIτsyn,I/2 . (9)

2 The current generated is stepwise constant during each dt = 0.1ms
time step, with Gaussian-distributed amplitude.
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Type Two-variable non-linear dynamic system: membrane poten-
tial V , recovery variable U

Subthreshold dynamics

V̇ (t) =
1

25
V 2(t)+5V (t)+140−U(t)+ Isyn(t)+ Ibg(t)+ Iext

(1)

U̇(t) = a(bV (t)−U(t)) (2)

Integrated using forward Euler algorithm on fixed time grid tk.
Spiking A spike is emitted at tk if V (tk) ≥ Vth and variables are reset

according to V (tk)← c, U(tk)←U(tk)+d
Refractoriness No explicit refractory time
Synapses δ -current pulses Isyn(t) = ξ ∑n, j wnδ (t − t̂n, j), where {t̂n, j}

are spike times of neuron n
Noise current Approximate Gaussian white noise Ibg(t), cf. Eqs. 8 and 9.
Parameters a, b, c, d, Iext, ξ (model-dependent weight factor)

Table 1 Summary of Izhikevich
model; for parameters, see Ta-
ble 3.

Type Leaky integrator with membrane potential V and adaptive
threshold Vth

Subthreshold
dynamics

τmV̇ (t) =− 1
τm

(V (t)−EL)+
1

Cm
Isyn(t) (3)

Vth(t) = ∑
k

H(t− tk)+β
∫ t

−∞
K(s)V̇ (t− s)ds+ω (4)

H(t) =
(

α1e−t/τ1 +α2e−t/τ2
)

Θ(t) (5)

K(s) = se−s/τV Θ(s) (6)

Integrated using exact integration on fixed time grid tk, see Ap-
pendix. Θ(t): Heaviside step function.

Spiking A spike is emitted at tk if

V (tk)≥Vth(tk)

and neuron is not refractory. No reset upon spike.
Refractoriness After a spike at tk, the neuron cannot fire a new spike until

tk + τref. V , Vth, H, and K evolve freely during the refractory
time.

Synapses Exponentially decaying currents Isyn(t) =

∑n, j wne−(t−t̂n, j)/τn
synΘ(t− t̂n, j) where τn

syn ∈ {τsyn,E,τsyn,I}
Parameters τm, R, β , α1,2, τ1,2, τV , τref, τsyn,E, τsyn,I

Table 2 Summary of AMAT
model; for parameters, see Ta-
ble 4.

For given µbg and σbg, we obtain noise input rates by solving
Eqs. 8–9 for νE and νI.

We consider three background current regimes: first the case
without additional background current Ibg(t) = 0pA, where
all spiking activity is purely stimulus induced. In the sec-
ond case, Ibg(t) is chosen such that µbg = 0pA, and σbg is
large enough to elicit spiking activity with background in-
put alone, i.e., if Istim(t) = 0pA. In the third case, we con-
sider a net inhibitory background current, with µbg < 0pA
and sufficient standard deviation σbg to again elicit baseline
spiking in absence of Istim(t). While the first scenario can

be considered a typical situation for neurons in slice prepa-
rations, the latter two mimic the situation in vivo, e.g., in
cortical layer II/III where ongoing spiking activity is sparse
(see e.g., Sakata and Harris (2012); Petersen and Crochet
(2013)) and input currents are balanced or even inhibition
dominated (Haider et al, 2013).
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Label Model a b c d ξ Iext

A Tonic spiking 0.02 0.2 −65 6 15.1 0
B Phasic spiking 0.02 0.25 −65 6 4.3 0
C Tonic bursting 0.02 0.2 −50 2 15.1 0
D Phasic bursting 0.02 0.25 −55 0.05 4.3 0
E Mixed mode 0.02 0.2 −55 4 15.1 0
F Spike frequency adaptation 0.01 0.2 −65 8 15.1 0
G* Class 1 excitable 0.02 −0.1 −55 6 49 0
H Class 2 excitable 0.2 0.26 −65 0 5.6 −0.5
I* Spike latency 0.02 0.2 −65 6 15.1 0
J Subthreshold oscillation 0.05 0.26 −60 0 1.8 0
K Resonator 0.1 0.26 −60 −1 2.4 0
L* Integrator 0.02 −0.1 −55 6 49 0
M Rebound spike 0.03 0.25 −60 4 4.5 0
N Rebound burst 0.03 0.25 −52 0 4.5 0
O* Threshold variability 0.03 0.25 −60 4 4.5 0
P Bistability 0.1 0.26 −60 0 0.87 0.24
Q Depolarizing after-potential 1 0.2 −60 −21 17.8 0
R* Accomodation 0.02 1 −55 4 1 0
S Inhibition-induced spiking −0.02 −1 −60 8 4.5 80
T Inhibition-induced bursting −0.026 −1 −45 0 4.8 80

Table 3 Parameters for Izhikevich
model class obtained from code pub-
lished by Izhikevich (2003a). Labels
refer to subfigure labels in Izhike-
vich (2004, Fig. 1). Models A and
I, G and L, and M and O, re-
spectively, share the same param-
eters and differ only in their in-
put parameters. For model T, we
changed parameter d to d = 0 com-
pared to d = −2. Instances marked
with an asterisk were not included
in the study due to repeated parame-
ters sets or non-standard model equa-
tions; see text for details. Common
parameters: Vth = 30mV, V (t = 0) ∼
U(−70mV,30mV).

Label Model α1 α2 β
A Tonic spiking 10 0 0
B Phasic spiking 10 0 −0.3
C Tonic bursting −0.5 0.35 0
D Phasic bursting −0.5 0.35 −0.3
E Mixed mode −0.8 0.7 0
F Spike frequency adaptation 10 1 0
G Class 1 excitable 15 3 0
H Class 2 excitable 15 −0.05 0
I Spike latency 10 0 −1
J Subthreshold oscillations 1 0 0.2
K Resonator 10 0 0.5
L* Integrator 10 0 0
M Rebound spiking 10 0 −2.5
N Rebound bursting −0.5 0.35 −2.5
O Threshold variability 10 0 −0.5
P Bistability 20 −0.4 0
Q Depolarizing after-potential 25 −1 0
R* Accomodation 10 0 −0.5
S Inhibition-induced spiking 20 0 2
T Inhibition-induced bursting −0.5 0.35 2

Table 4 Parameters for AMAT model class, based on Yamauchi
et al (2011, Table 1). Note that models A and L and O and R,
respectively, have identical parameters, whence L and R are not
included in the study (marked with asterisk). Common param-
eters: EL = −70mV, ω = −65mV, Cm = 200pF, τm = 10ms,
τ1 = 10ms, τ2 = 200ms, τV = 5ms, τref = 2ms, τsyn,E = 1ms,
τsyn,I = 3ms, V (t = 0)∼U(−70mV,−65mV). See text for dif-
ference between NEST parameterization and that in Yamauchi
et al (2011).
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2.3 Characterization of response properties

2.3.1 Sinusoidal rate model

We characterize the response of the neurons by a sinusoidal
rate model

r(t)= r0+r1 cos(2π fstimt+φ1)+
∞

∑
m=2

rm cos(2mπ fstimt+φm) ,

(10)

as illustrated in Figure 2. For a purely linear response, r0
represents the background firing rate of the neuron, r1 the
stimulus response amplitude (with phase shift φ1), and we
expect rm = 0 for all higher harmonics (m≥ 2). Any nonlin-
earities in the system will typically be associated with power
in the higher harmonics. We consider power at harmonics as
significant (z-test, 99% confidence level) if

rm > rcrit = B+2.34Σ , (11)

where B is the estimated background power of the spike train
between the harmonics and Σ the weighted standard devia-
tion of the spike train power spectrum across frequencies.
For details, see Sec. 2.2.2 of Heiberg et al (2013).

2.3.2 Linearity

We proceed as follows to characterize the linearity of the
firing-rate curve in response to stationary input: We obtain
the firing-rate curve r0 = f (a0) for a given neuron model,
noise regime and synaptic weight by measuring the output
rate r0 as a function of stationary input rate a0 in the absence
of modulation (a1 = 0). To characterize the linearity of f
over an interval [α,β ], we define the linearity measure

L̄1 =

∫ β
α [ f (x)− `(x)]2 dx

β −α

/
`2
(

α +β
2

)
, (12)

as the normalized mean square difference between f (x) and
`(x), the best linear fit to f (x) over [α,β ]. If f (x) is perfectly
linear, we have L̄1 = 0, while L̄1 = 1 means that the average
squared distance between firing-rate curve and linear fit is
equal to the mean value over the interval. Larger values of
L̄1 are difficult to interpret, though. We therefore define

L1 =
1

1+ L̄1
(13)

as linearity measure. L1 = 1 indicates perfect linearity, L1 =
1/2 a deviation from linearity equal to the mean value, while
L1 approaches 0 for large deviations. For a given mean rate
a0 and modulation depth a1, we evaluate linearity over [α,β ] =
[a0−a1,a0+a1], i.e., the range of rates spanned by the tem-
porally modulated input.

2.4 Rate model description

The response of a linear, time-invariant (LTI) system to any
input can be calculated as a convolution of the input and the
impulse response of the system. A wide class of non-linear
systems can be described by a linear convolution of the in-
put with a kernel h(t) followed by a non-linear activation
function g(·), so that the response is given by

r(t) = g(h(t)∗a(t)) . (14)

To test how well this applies to the neuron models stud-
ied here, we fit linear-nonlinear firing-rate models to the re-
sponses of the spiking neuron models and compare firing-
rate predictions from the linear-nonlinear models to those of
the fitted spiking models. We summarize the derivation of
the firing-rate model below, based on Heiberg et al (2013)
and Nordlie et al (2010).

For each neuron, we find the activation function g(·) and the
kernel h(t). For constant input, a(t) = a0, the convolution
becomes the identity operation, provided the kernel is nor-
malized (

∫
h(t)dt = 1). We determine g(·) by measuring the

response to stationary input, r0 = g(a0) for a range of a0 and
obtain a continuous representation of g(·) by interpolation
(linear B-spline).

To obtain the kernel h(t), we linearize the activation func-
tion around a given working point (a0,r0). The response to
a(t) = a0 +a1s(t) can then be expressed as

r(t) = g(h(t)∗ (a0 +a1s(t)))

≈ r0(a0)+h0(t;a0,a1)∗ (a1s(t)) ,
(15)

where the linear impulse response function

h0(t;a0,a1) = g′(a0)h(t;a0,a1) =: γh(t;a0,a1) (16)

combines the normalized kernel with the linear gain γ . In
general, this approximation is only valid for small deviations
from the working point. However, the limits are not known
a priori. For brevity of notation, we will usually drop the
explicit reference to stimulus parameters a0 and a1 below.

We obtain the transfer function, i.e., the Fourier transform
of the linear impulse response h0(t), from the model re-
sponses to sinusoidally modulated input (s(t) = sin2π fstimt,
cf. Eq. (7))

H0( fstim) =
r( fstim)

a1
eiφ( fstim) (17)

where r( fstim) and φ( fstim) are the Fourier amplitude and
phase of the response, respectively.
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In Nordlie et al (2010) and Heiberg et al (2013), first-order
low-pass filters with delay provided adequate fits to the em-
pirical frequency responses. Here, more complex filter mod-
els are needed to fit additional response features. In particu-
lar, we expect a second filter time constant τc = 1/(2π fc) to
be needed to model some of the response types illustrated in
Figure 1. We choose to combine low- and high-pass compo-
nents of the filter as a sum:

H̃0,SUM( f ) = γ1e−2πi f ∆


 1

1+ i f
fc,1

+
γ2

1+ i f
fc,2


 . (18)

This form allows for a representation of the filter through a
system of linear differential equations, see Sec. 2.4.1.3

The filter kernels were fitted to the empirical transfer func-
tion to capture it with as few parameters as possible. For
each set of stimulus parameters (a0, a1, w, µ , σ ), we ob-
tained fits for the parameters γ1, fc,1, γ2, fc,2 and ∆ . Fitting
was performed using basin-hopping hopping optimization
provided by the SciPy Optimize toolbox with L-BFGS-B
minimization (Jones et al, 2001). To avoid pathological so-
lutions, we imposed the following constraints

0.25ms≤ τc,1,2 ≤ 175ms (19)

⇔ 0.909Hz≤ fc,1,2 ≤ 636.6Hz (20)

0≤ ∆ ≤ 75ms . (21)

If a fit resulted in fc,1 > fc,2, we swapped frequencies and
gain coefficients

fc,1, fc,2← fc,2, fc,1 (22)

γ1,γ2← γ1γ2,1/γ2 (23)

so that fc,1 and fc,2, respectively, are always the lower and
upper characteristic frequencies of the filter. For each pa-
rameter combination, we performed 60 independent fits from
different starting points and retained the best fit. We also
performed 15 independent fits for a pure lowpass filter, but
these never yielded better results than fits to the bandpass
filter defined by Eq. (18).

We now define the linear-nonlinear rate model as

rNL(t) = max(0,g(h(t)∗a(t))) , (24)

3 We also explored combining the terms in product form

H̃0,Prod( f ) = γ1e−2πi f ∆ 1

1+ i f
fc,1


1− γ2

1+ i f
fc,2


 ,

but did not observe significantly different results.

with the normalized kernel

h(t) =
h0(t)

γ1(1+ γ2)
(25)

and correspondingly in Fourier space. We take the maximum
solely to avoid negative rates that may result in rare cases
from extrapolation of the activation function g(·).

2.4.1 Differential-equation representation

The filter H̃0,SUM( f ) corresponds to a sum of low-pass fil-
ters in the time domain. For this model, the linear-nonlinear
model of Eq. (14) can be mapped to a set of delay differ-
ential equations using the linear chain trick (Nordbø et al,
2007).

In particular, in the time domain the filter is given by

h0,SUM(t +d) = h0,1(t +d)+h0,2(t +d)

=Θ(t)
(

γ1

τ1
e−t/τ1 +

γ1γ2

τ2
e−t/τ2

)
(26)

with Heaviside step function Θ(t). We introduce

u(t) = (a∗h0,SUM)(t) = u1(t)+u2(t) (27)

with

u1(t) = (a∗h0,1)(t) and u2(t) = (a∗h0,2)(t) . (28)

Straightforward differentiation of the two temporal kernels
yields

u̇1(t) = −
u1(t)

τ1
+a(t)

γ1

τ1
(29)

and u̇2(t) = −
u2(t)

τ2
+a(t)

γ1γ2

τ2
. (30)

From this we can solve for u(t) = u1(t)+u2(t) and the full
rate dynamics then follows by application of the nonlinearity
g

r(t) = g(u(t)) . (31)

The advantage of the differential representation Eq. (29) lies
in the fact that it is local in time, whereas the representation
by convolution in general relies on knowledge of the com-
plete history of the dynamics.
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2.5 Tests against spike trains

We compare the response properties of our rate-based model
against spiking neuron models as follows. We use synthetic
(Sec. 2.5.1) or experimentally recorded (Sec. 2.5.2) spike
trains S(t) as test input. Spiking neuron models are driven
by these trains directly and their output spike trains R(t) are
recorded as described in Sec. 2.6. We then use the fixed-
kernel density estimation method by Shimazaki and Shi-
nomoto (2010) with 0.05 ms bin width to estimate a contin-
uous output firing rate rspike(t). This is the reference against
which we test the rate-based model.

To obtain the response of the rate-based model, we either use
the known rate of the synthetic input spike trains or obtain
a continuous input rate function a(t) from the input spike
trains S(t) using the fixed-kernel density estimation method.
Applying Eq. (14) to this rate yields the reponse of the rate
model rrate(t).

We repeat each simulation experiment with five different
random seeds and retain only results for which the optimal
kernel width obtained by the densitiy estimation methods
is 15 ms or less, as wider kernels would lead to an undue
smoothing over time.

The difference between responses obtained from rate-based
and spiking models is then defined as the mean squared error
normalized by the variance of the response of the spiking
model (Pillow et al, 2005)

Ēr =

∫ T
0
(
rrate(t)− rspike(t)

)2 dt
∫ T

0
(
rspike(t)− r̄spike

)2 dt
(32)

where r̄spike is the average response rate of the spiking model.
Corresponding to the linearity measure L1 (Sec. 2.3.2), we
define

Er =
1

1+ Ēr
(33)

as quality measure. Er = 1 indicates perfect agreement, Er =

1/2 an error equal to variation, while Er approaches 0 for
large deviations between spiking and rate model response.

2.5.1 Tests with synthetic spike trains

We first test models using a Poisson spike train input with
step changes in rates. Stimulus parameters are given in Ta-
ble 5. Spike responses are obtained by simulating a popu-
lation of 4,096 independent model neurons driven by one
Poisson process each. The resulting 4,096 output spike trains
are pooled to estimate the output rate rspike(t).

2.5.2 Tests with realistic spike trains

To test the performance of the rate models in response to re-
alistic spike trains, we drive model neurons by spike trains
recorded from retinal ganglion cells (RGCs) in cat (Casti
et al, 2008). Their data set contained 128 spike trains of 8 s
duration recorded during different trials, characterized by
low baseline firing and fast transients as illustrated in Fig-
ure 3. Because trains from the first trials in the dataset have
noticeably lower average firing rates than those from later
trials, we only use the last 96 spike trains with an average
firing rate of 18.3±1.3 spikes per second.

The Izhikevich models in particular responds weakly to these
spike trains in many cases. We therefore increase the rate of
the input spike trains by merging pairs of spike trains, result-
ing in a total of 48 input spike trains with average rates of
36.6 spikes per second. We then drive 48 model neurons in-
dependently with one spike train each for 8000 ms and pool
the resulting output spike trains for output rate estimation.

2.6 Simulation

Simulations for all model configurations are performed with
the NEST Simulator (Gewaltig and Diesmann, 2007; Plesser
et al, 2013).

In practice, we simulate N trials by creating N mutually in-
dependent Poisson-generator–neuron pairs in a single NEST
simulation. Membrane potentials are randomized upon net-
work initialization and data collection is started only after an
equilibration period of 1 s simulated time. All simulations
are performed with a spike-time resolution of 0.1 ms.

Simulations underlying model fitting are performed using
NEST 2.3.r10450, while some scoring of model responses
according to Eq. 33 was performed using NEST 2.8.0. Tri-
als are configured using the NeuroTools.parameters pack-
age (Muller et al, 2009). Data analysis is performed using
NumPy 1.7.1–1.11.1, SciPy 0.18.1, Pandas 0.11.0–0.18.1
and Matplotlib 1.2.1–1.5.3 under Python 2.7.

3 Results

3.1 Response to spike train input

To gain a first impression of the basic response properties of
the models, we show the spike responses to stationary and
sinusoidally modulated Poisson input in Figures 4 and 5 for
Izhikevich and AMAT models, respectively. Each raster plot
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Interval [ms] 0–600 600–1000 1000–1200 1200–1500
Rate [1/s] 100 200 40 150

Table 5 Poisson spike train rates applied during different inter-
vals. Rates change instantaneously at interval boundaries.
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Fig. 3 Spike raster and rate
profile for retinal ganglion cell
(RGC) data used to test model
performance. Rates were esti-
mated by means of kernel density
estimation (Shimazaki and Shi-
nomoto, 2010), using the fixed
kernel method.

shows the response of 30 unconnected neurons, half driven
by stationary and half by sinusoidally modulated Poisson
spike trains after an equilibration phase of 1000 ms. Each of
the 30 neurons receives different realizations of input spike
trains and noise, but the same trains and noise are used for
all models.

As spiking and bursting variations are included as separate
response types in the model classification (Fig. 1), we illus-
trate the burstiness of the responses by marking spikes fired
within dT = 5 ms of each other as belonging to a burst, cor-
responding to the upper limit of intra-burst intervals in LGN
(Funke and Wörgötter, 1997, p. 71).

The models that exhibit their characteristic behaviour (Fig. 1)
based on “simple” excitatory input current shapes (e.g., steps,
ramps, pulses) generally behave as expected when driven
by Poisson spike trains; spiking neurons primarily spike and
bursting neurons burst, but the nuances of individual models
are less visible in the spiking patterns (e.g. tonic vs pha-
sic) due to the input variability. Models that are based on
more specific input current pattens or consistent inhibitory
input (i.e., bottom rows) do to a lesser extent receive the
required input and respond in a less characteristic manner,
some even seem erratic (e.g., Fig. 4T and Fig. 5Q). Note,
however, that the figures illustrate responses at a single in-
put rate and noise regime combination and that the models
to varying degree are sensitive to these conditions.

In contrast to the 20 markedly different responses to current
injections (Fig. 1), responses to spiking input show more
similar patterns across models, differing in the overall re-
sponse rate and the proportion of spikes belonging to bursts.

While some Izhikevich and AMAT models that show iden-
tical responses to current injections also respond similarly

when driven by spiking input (e.g., top two rows), we ob-
serve some with very different response patterns (e.g., de-
polarizing after-potential (Q) and inhibition-induced spiking
and bursting (S and T respectively)) across the two model
classes.

3.2 Linear-nonlinear models

We now obtain the linear-nonlinear models as defined by
Eq. (24).

3.2.1 Activation functions

We first obtain the activation function g(·) by fitting a lin-
ear B-spline to the response to stationary input, r0 = g(a0),
varying a0 from 0s−1 to 1000s−1 in steps of 10s−1. This
yields one activation function fit for

– each model (15 models for the Izhikevich model class,
18 for the AMAT model class);

– each background noise regime

no noise µ = 0,σ = 0

balanced noise Izhikevich: µ = 0,σ = 0.1, AMAT: µ =
0pA,σ = 100pA

biased noise Izhikevich: µ =−0.1,σ = 0.2, AMAT: µ =
−100pA,σ = 200pA;

– each synaptic weight (Izhikevich: 0.1, 0.25, 0.5, 0.6, 0.75;
AMAT 100pA, 300pA, 500pA, 700pA, 900pA).



12 Heiberg et al

(A) Tonic spiking (B) Phasic spiking (C) Tonic bursting (D) Phasic bursting

(E) Mixed mode (F) Adaptation (H) Class 2 excitable

(I) Spike latency (J) Subthreshold oscillations (K) Resonator

(M) Rebound spiking

1000 1100 1200 1300 1400 1500

t[ms]

(N) Rebound bursting (P) Bistability

1000 1100 1200 1300 1400 1500

t[ms]

(Q) Depolarizing after-potential

1000 1100 1200 1300 1400 1500

t[ms]

(S) Inhibition-induced spiking

1000 1100 1200 1300 1400 1500

t[ms]

(T) Inhibition-induced bursting

Fig. 4 Spike responses of Izhikevich models driven by stationary (rate a0 = 400s−1) or sinusoidally modulated (rate a0 = 400s−1, modulation
amplitude a1 = 400s−1, modulation frequency 10Hz) Poisson spike trains impinging with synaptic weight w = 0.6pA weighted with ξ , and noise
(µ = 0pA, σ = 0.1pA). The upper part of each panel shows the response of 15 neurons driven by different sinusoidally modulated spike trains,
the lower part the response of 15 neurons driven by different stationary trains after 1 s of equilibration time. Isolated spikes are shown in blue,
clustered spikes within dT = 5ms from another spike in red.
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(A) Tonic spiking (B) Phasic spiking (C) Tonic bursting (D) Phasic bursting

(E) Mixed mode (F) Adaptation (G) Class 1 excitable (H) Class 2 excitable

(I) Spike latency (J) Subthreshold oscillations (K) Resonator

(M) Rebound spiking

1000 1100 1200 1300 1400 1500

t[ms]

(N) Rebound bursting (O) Threshold variability (P) Bistability

1000 1100 1200 1300 1400 1500

t[ms]

(Q) Depolarizing after-potential

1000 1100 1200 1300 1400 1500

t[ms]

(S) Inhibition-induced spiking

1000 1100 1200 1300 1400 1500

t[ms]

(T) Inhibition-induced bursting

Fig. 5 Spike responses as for AMAT models as in in Fig. 4, using weight w = 200pA, and noise with µ = 0pA, and σ = 100pA.
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We thus obtain a total of 225 activation functions for the
Izhikevich model class and 270 for the AMAT model class.

The top row of Fig. 6 shows the activation function for the
Tonic Spiking and the Phasic Bursting models for the Izhike-
vich and AMAT model classes, respectively, for all three
noise regimes. The spike rates obtained from the simula-
tions are fitted very well by the B-splines. This holds for
all models except models S and T in the Izhikevich class
(inhibition-induced spiking and bursting), which have rather
noisy activation curves with extremely high rates under cer-
tain conditions (above 1000s−1); data not shown.

Before we investigate the response of the models to tem-
porally modulated stimuli, we briefly explore the linearity
of the activation functions around different working points
a0 = {50s−1,100s−1,200s−1,400s−1,800s−1} and modu-
lation amplitude a1 = {0.25,0.5,0.75,1}×a0 about the work-
ing point. A working point at a0 = 200s−1 with modulation
amplitude a1 = 100s−1 is shaded in the top row of Fig. 6
for illustration. Figures 7 and 8 show the linearity score L1
for each of the 20 (a0, a1) combinations for each response
curve.

For the Izhikevich neurons, the stationary linearity metric L1
indicates that strong synaptic weights w, large mean input
rates a0, and small modulation amplitudes a1 give the most
linear responses. Larger weights and mean rates not only in-
crease the mean input of the Poisson input current, but also
its variance. This leads to a linearization of the activation
function and moves the activation threshold towards smaller
rates (see also Chance et al (2002)). Furthermore, firing-rate
modulation amplitudes are more likely to stay within a sin-
gle region of the sigmoidal firing rate curve for small a1, and
are thus more likely to adhere to a linear fit.

The stationary linearity metric L1 for the augmented MAT
model indicates overall more linear behavior, but the same
general pattern of parameter dependence can be seen (Fig-
ure 8). One notable difference is the saturation of the AMAT
model at output rates of 500 s−1—due to the absolute refrac-
tory time of 2 ms—that adds another source of non-linearity
in the firing rate curves for some neurons.

3.2.2 Transfer function and linear filters

We obtain empirical transfer functions according to Eq. 17
for 20 combinations of working point and modulation depth
(a0,a1) for each model, noise regime and synaptic weight
using the approach described in detail in Heiberg et al (2013,
Sec. 2.2.2), measuring the model response at 28 different
stimulation frequencies fstim, logarithmically spaced from
1Hz to 1000Hz. We then fit the linear filter H̃0,SUM( f ) ac-
cording to Eq. 18 as described in Sec. 2.4, obtaining fit pa-

rameters ( fc,1, fc,2,γ1,γ2,d) for each model and stimulation
parameter combination. Note that γ1 is fully captured by the
activation function, and therefore does not explicitly enter
the linear-nonlinear model we construct here, cf. Eq. 25.

The second row of Fig. 6 shows the resulting transfer func-
tions and fitted kernels for the same models and conditions
as the activation functions discussed above. The examples
reveal bandpass behaviour for three out of four cases, which
also show significant power in the second harmonic r2. The
exception is Tonic spiking for the AMAT class, which shows
lowpass behavior and no significant power in r2. Phasic burst-
ing shows a second peak in the spectrum around 200 Hz
(Izhikevich) and 500 Hz (AMAT), which our fitted bandpass
filter models (thick light lines) cannot capture by construc-
tion. These peaks occur as refractory effects regularize firing
patterns at high rates. The fitted bandpass filters capture the
frequency response of the model neurons well, except for
Izhikevich phasic bursting case, where the amplitude of the
fitted filter is significantly larger than the power in the first
harmonic.

We found that not all model variants responded sufficiently
to periodic stimulation under all stimulation conditions to
provide sufficient spike data to fit a kernel. Therefore, we
only obtained kernel fits for approximately three-quarters of
all conditions for the Izhikevich class (3508 out of 4800 pos-
sible) and about 90% of all conditions for the AMAT class
(4843 out of 5400).

3.3 Grouping of models

To systematize model responses, we cluster the kernel fit
parameter sets4 with k-means clustering using Scikit-Learn
(Pedregosa et al, 2011). We cluster Izhikevich and AMAT
filters independent of each other, clustering into seven clus-
ters from 100 initial conditions to avoid local minima. Since
we are clustering fit parameters obtained for a wide range
of simulation conditions, while we are interested in group-
ing the 16 and 18 model variants, respectively, we assign
each model variant to a model group as follows: We count
how often each model occurs in each k-means cluster and
assign each model to the cluster to which it is assigned most
often. Each cluster to which at least one model is thus as-
signed forms a model group. Fig. 9 shows the counts for
each model in each cluster, with a maximum possible count
of 300 if fit parameters are available for all combinations of
µ,σ ,w,a0,a1 and are assigned to the same cluster.

4 Each parameter set consists of fc,1, fc,2, γ1, γ2, and d. To compress
widely scattering data, we transformed fc,1, fc,2, and d using α(x) =
log10 x and γ1 and γ2 using β (x) = sgnx log10 100|x| before applying
k-means clustering.
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Fig. 6 Response properties for exemplary model neurons. Columns show from left to right response properties of Izhikevich and AMAT tonic
spiking and Izhikevich and AMAT phasic bursting models. Top row: stationary output firing rate response r0 as function of input rate a0 for three
noise regime levels (blue: no noise, green: balanced noise, red: biased noise). Light symbols show responses from simulations, solid lines the
fitted B-splines. Second row: Frequency response to sinusoidally modulated Poisson input with mean a0 = 200 s−1 and modulation amplitude
a1 = 100 s−1 as function of modulation frequency fstim; thick solid lines: first harmonic r1, thick shaded lines: fitted filter H0( f ), thin solid lines:
second harmonic r2, dotted lines: significance level rcrit. Mean input rate a0 and modulation range a0± a1 are marked gray in the top row. Fit
parameters are given in Table 6. Third row: Response of spiking model (thin solid lines) and rate-model prediction (light thick lines) to Poisson
spike trains with rate 100 s−1 for t < 700 ms and 300 s−1 for t ≥ 700 ms. Fit quality Er shown as inset. Bottom row: Response to realistic spike
trains, 400 ms section starting at 3000 ms (cf. Figure 3) with the same line types as for step responses. Connection weight w from left to right:
0.75, 700, 0.75, 500.
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Model Noise γ1 γ2 fc,1[Hz] fc,2[Hz] ∆ [ms]
Izh/Tonic spiking none −0.152 −1.328 9.988 61.577 0.987

balanced −0.150 −1.334 9.959 63.535 1.009
biased −0.110 −1.442 8.397 68.001 1.003

AMAT/Tonic spiking none 0.468 −0.225 224.270 636.620 0.183
balanced 0.386 −0.107 181.140 636.620 0.181
biased 0.088 1.748 28.946 149.427 0.222

Izh/Phasic bursting none −25.548 −1.002 8.745 9.043 1.709
balanced −23.825 −1.002 8.817 9.134 1.670
biased −21.662 −1.003 8.601 8.892 1.936

AMAT/Phasic bursting none −0.718 −1.486 3.067 22.380 0.913
balanced −0.672 −1.488 3.159 21.450 0.832
biased −0.304 −1.884 3.697 21.139 0.836

Table 6 Fit parameters for filters
H0( f ) shown in the second row of
Fig. 6.
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Fig. 7 Linearity measure L1 for
the Izhikevich model class for
different model parameterizations
(major columns), and five dif-
ferent synaptic weights for each
of three noise regimes (major
rows). Each major row/column
block shows data for five dif-
ferent average input rates (a0 =
{50,100,200,400,800}s−1),
minor rows) and four differ-
ent modulation amplitudes
(a1 = {0.25,0.5,0.75,1.0} × a0,
minor columns), as indicated
by the small coordinate axes
shown for one major square.
Thus, the bottom left minor
square of each major square
is the L1 value computed over
37.5s−1 ≤ a ≤ 62.5s−1, while
the upper right minor square
is the L1 value computed over
0s−1 ≤ a ≤ 1600s−1. L1 = 1
indicates perfect linearity of
the firing-rate curve F(a) over
the relevant input range, cf.
Sec. 2.3.2. Grey indicates missing
data, either because neurons
were unresponsive or because
the model variants are described
by non-standard differential
equations or have duplicate
parameters. Blue, green, and
red squares correspond to the
examples shown in the first and
third columns of Fig. 6.

The resulting grouping into six groups per model class is
shown in Table 7, with median kernel parameter values for
each group in Table 8. Grouping is clearly different for the
Izhikevich and AMAT classes, supporting our previous ob-
servation that these models respond differently to spike in-
put even though they show identical responses to the current
injection protocol of Fig. 1.

Comparing the grouping of models to the spike responses
shown in Figs. 4 and 5, we can roughly identify the groups
found by k-means clustering of filter parameters to firing
patterns, as indicated in the right column of Table 7. This
classification is far from perfect, as several models show fir-
ing patterns different from the groups into which they have
been placed, especially for the AMAT class. It should also be
noted that the firing patterns are for a single stimulus config-
uration only and that models may behave differently under
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Fig. 8 Linearity measure L1 for
the AMAT model; the figure is
constructed as Fig. 7.
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Fig. 9 Result of k-means clus-
tering of linear filter fit parame-
ters for the Izhikevich (top) and
AMAT (bottom) model classes.
Rows represent clusters, columns
model variants and the color of
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stimulation configurations were
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Group Firing pattern Izhikevich AMAT

1
Isolated spikes,
rare mini bursts

A/Tonic spiking B/Phasic spiking
E/Mixed mode I/Latency
F/Adaptation O/Threshold variability

2 Isolated spikes

B/Phasic spiking A/Tonic spiking
J/Subthreshold oscillations H/Class 2
K/Resonator
M/Rebound spiking
S/Inhibition-induced spiking
T/Inhibition-induced bursting*

3 Short bursts

C/Tonic bursting C/Tonic bursting
D/Phasic bursting
E/Mixed mode
F/Adaptation*
G/Class 1*

4 Long bursts

D/Phasic bursting M/Rebound spiking
N/Rebound bursting N/Rebound bursting

S/Inhibition-induced spiking*
T/Inhibition-induced bursting

5 Long bursts
Q/Depolarizing after-potential J/Subthreshold oscillations

K/Resonator*

6
Regular isolated
spikes

H/Class 2 P/Bistability
P/Bistability Q/Depolarizing after-potential*

Table 7 Models grouped
by k-means clustering of
linear filter parameters
as illustrated in Fig. 9.
Groups for Izhikevich
and AMAT models are
paired according to
the predominant firing
pattern for each group
for one test case as
shown Figs. 4 and 5.
Models with a different
firing pattern than their
group are marked with
an asterisk. Filter kernel
parameters for the groups
are shown in Table 8.

Izhikevich
Group γ1 γ2 fc,1[Hz] fc,2[Hz] ∆ [ms]

1 −11.98 −1.41 8.57 61.67 1.35
2 −1315.67 −1.01 17.09 18.77 4.29
3 −154.58 −1.21 10.51 23.28 0.91
4 −2273.17 −1.02 6.70 7.33 6.54
5 54.98 0.19 17.26 403.19 0.74
6 −1462.74 −1.02 36.15 38.72 4.24

AMAT
Group γ1 γ2 fc,1[Hz] fc,2[Hz] ∆ [ms]

1 −90.59 −1.52 16.03 36.65 0.21
2 2.46 0.50 34.47 161.85 0.22
3 −34.88 −1.65 1.53 21.41 0.35
4 −1436.78 −1.00 16.06 18.20 1.90
5 32.98 0.29 8.56 407.10 0.27
6 3.89 0.90 12.77 190.14 0.20

Table 8 Median values of parameters for filter kernels fitted to the six
groups described in Table 7 for Izhikevich and AMAT models.

other conditions; the k-means clustering, on the other hand,
is based on a wide range of stimulus conditions.

3.4 Performance of rate models

We evaluate the perfomance of the linear-nonlinear firing
rate models by testing them against the corresponding spik-
ing model as described in Sec. 2.5, using the fit quality Er as
criterium, with Er = 1 indicating a perfect fit.

The third row of Fig. 6 shows the response to a Poisson
spike train with a step in rate from 100s−1 to 300s−1. We
use the filters fitted for the same noise regime and synaptic
weight and a0 = 200s−1 and a1 = 100s−1, corresponding
to the step height. For the Tonic spiking case, the firing rate
models capture the spiking neuron response very well, with
Er > 0.9 in all cases (see legend). For the Phasic bursting
models, we find that the rate models overshoot massively for
the Izhikevich variant with no or balanced noise, while the
ratemodels “undershoot” somewhat for the AMAT variant.
The stationary rate attained after the step is captured well in
all cases. These examples also provide an illustration of how
to interpret the fit quality measure Er.

Figures 10 and 11 show the fit quality observed for responses
to Poisson input with piecewise constant rates as described
in Sec. 2.5.1. For each model, we simulate responses under
15 input conditions (three noise regimes (µ,σ) and five dif-
ferent synaptic weights w), yielding 15 firing-rate estimates
rspike(t). We then test each firing-rate estimate against the 20
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Fig. 10 Fit quality Er for Izhike-
vich model class responses to a
Poisson process with firing rate
changing in steps, cf. Tab. 5,
where Er = 1 indicates a per-
fect fit. Each major column cor-
responds to one model, each ma-
jor row to one of 15 input condi-
tions; thus, each major cell corre-
sponds to one firing-rate estimate
rspike(t). Each entry inside a ma-
jor cell represents the fit against
one of 20 filter models obtained
for the same µ,σ ,w and differ-
ent combinations of a0, a1 as
in Fig. 7. Missing results (grey)
are either due to models excluded
(grey labels) or insufficient re-
sponses.

linear-nonlinear rate models obtained for the same µ,σ ,w
and all a0,a1 combinations, yielding 20 fit quality values
Er.

For the Izhikevich class, the Inhibition-induced spiking and
bursting models, as well as most models with the lowest
weight, w = 0.1, produced too few spikes to confidently es-
timate firing rates from the spiking model. We also observe
very poor responses for the Bistability model. Class 2 ex-
citable stands out with poor scores, Er < 0.5, while the re-
maining models provide reasonable fits, Er > 0.7 at least for
most cases with sufficiently strong weights (w≥ 0.4).

The AMAT model class performs significantly better: Re-
sults are available for almost all stimulus conditions except
for w = 100pA in the absence of noise and all models ex-
cept the Depolarizing after-potential model yield excellent
fits (Er > 0.9) for almost all conditions.

Figures 12 and 13 show the fit quality Er for responses to
real spike trains from cat retinal ganglion cells as described
in Sec. 2.5.2. We again stimulate under 15 different condi-
tions and obtain the fit quality for each of 20 different linear-
nonlinear model fits.

For Izhikevich-class models we find noticeably worse fit
quality, mostly Er < 0.7, with the worst results mostly for

the same conditions that also yielded low fit quality in re-
sponse to Poisson input with piecewise constant rate. The
main differences are that the Depolarizing after-potential model,
which fitted stepped Poissonian input very well does not per-
form better than other models for the real spike trains, and
that we obtain quality of fit values, albeit very poor ones, for
the Inihibition-induced bursting model.

AMAT class responses to real spike trains show all over
better fit quality than the Izhikevich class, but also for the
AMAT class fit quality is lower in response to real spike
trains than to stepped Poisson input. The distribution of good
and bad fits is similar to the one observed for stepped Pois-
son input, with the worst performance for the Depolariz-
ing after-potential model. Furthermore, more models require
w≥ 300pA to yield a fit quality result for real spike trains.

We summarize these observations in Fig. 14, which shows
the cumulative distribution P(Er) of all individual results
from Figs. 10–13 (thin lines). This clearly shows that our
linear-nonlinear rate models are much more faithful for the
AMAT class than for the Izhikevich class, and that within
each class, responses to stepped Poisson input are rendered
more faithfully than to real spike trains.

These observations pertain to all (up to 20) linear-nonlinear
models obtained for each input configuration µ,σ ,w. In prac-
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Fig. 11 Fit quality Er for AMAT
model class responses to a Pois-
son process with firing rate chang-
ing in steps; all else as in Fig. 10.

Izhikevich AMAT
Stepped Poisson trains 56% 84%
Real spike trains 26% 59%

Table 9 Proportion of linear-nonlinear rate models achieving Eopt
r ≥

0.8 across all model variants, noise regimes and synaptic weights.

tice, we would only be interested in the optimal linear-nonlinear
model for each input configuration, i.e., for given µ,σ ,w we
would choose the model with

Eopt
r = max

a0,a1
Er , (34)

the highest Er across all a0,a1 combinations. The cumula-
tive distribution of fit quality for these optimal models is
shown as thick lines in Fig. 14 and provides noticeably bet-
ter fit quality for stepped Poisson and real train responses for
both model classes. Table 9 shows the proportion of cases
for which we reach high fit quality (Eopt

r ≥ 0.8) for the op-
timal models. We find that the linear-nonlinear rate models
perform well for the majority of conditions for the AMAT
model class, but mostly poorly for the Izhikevich model class.

3.5 Model generalizations

As we have shown above, our linear-nonlinear rate models
can capture the responses of spiking neuron models to real
spike trains quite accurately, especially for the AMAT model
class. Unfortunately, to find the optimal linear-nonlinear model
for each input configuration µ,σ ,w, we had to test a set of
20 different linear-nonlinear models to then pick the best
one. This is impractical. We will now consider how to gener-
alize our linear-nonlinear rate models, so that we can select
an optimal model a priori.

We consider four different types of generalization:

per model (M) one linear-nonlinear model for each of the
15 Izhikevich class and 18 AMAT class models;

per model and noise (MN) one linear-nonlinear model for
each Izhikevich/AMAT model and each noise regime;

per model, noise, and weight (MNW) one linear-nonlinear model
for each Izhikevich/AMAT model, each noise regime,
and each synaptic weight selected a priori;

MNW selected by stepped response (MNWS) one linear-non-
linear model for each Izhikevich/AMAT model, each noise
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Fig. 12 Fit quality Er for Izhike-
vich model class responses to the
real spike trains from Fig. 3; all
else is as in Fig. 10.

regime, and each synaptic weight selected based on the
stepped Poisson test.

For the M and MN generalizations, we exploit that the acti-
vation functions g(a) for many models and conditions scale
roughly linear in the synaptic weight. We thus pool the scaled
activation function data g(a)/w for a given model across all
input conditions (M) or just all synaptic weights for given
noise (MN) and fit a single spline ḡ(a) to the pooled data. We
then use wḡ(a) as activation function in the linear-nonlinear
model. For MNW and MNWS we use the original splines
fitted directly against measurements.

To generalize the linear kernels, we take the median value
for each of the kernel fit parameters fc,1, fc,2,γ1,γ2,d and use
these median parameters as parameters of our generalized
kernel; using the median instead of the mean avoids prob-
lems with outliers. For M generalization, we take the me-
dian across all µ,σ ,w,a0,a1 combinations, for MN across
all w,a0,a1 for given µ,σ and for MNW across all a0,a1 for
given µ,σ ,w.

For MNWS generalization, we proceed differently: For each
combination of µ,σ ,w we select the filter parameters
fc,1, fc,2,γ1,γ2,d which yielded the highest fit quality Er =

Eopt
r in response to the stepped Poisson input, our test stim-

ulus.

While these generalizations, especially of the M and MN
type, may seem rather crude, they perform reasonably, as in-
dicated by the examples shown in Fig. 15. In one case shown
there, the Phasic Bursting variant of the Izhikevich model,
the model generalizations actually perform better than the
specific model fits: The model responses to a firing rate step
and to real spikes trains show significant overshoots in low
noise regimes (blue and green curves) for the input param-
eters chosen for illustration (w = 0.75, a0 = 200s−1, a1 =
100s−1). This is consistent with the overly large amplitudes
of the fitted filters. The corresponding generalized model fil-
ters fit the experimental data better, avoid the overshoot and
thus track the response of the spiking model better.

To systematically quantify the quality of our generalizations,
we compute the fit quality in response to stepped Poisson
and real spike train input for all input configurations µ,σ ,w
for each generalization variant. Then

ρX = EX
r
/

Eopt
r (35)

measures how close the model generalization X is to the op-
timal linear-nonlinear model, where ρX = 1 is best.

Results are shown in Figs. 16 and 17. The coarser the gener-
alization, the more frequently do we observe low generaliza-
tion quality ρX . Interestingly, differences between the vari-
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Fig. 13 Fit quality Er for AMAT
model class responses to the real
spike trains from Fig. 3; all else
as in Fig. 10.
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Fig. 14 Cumulative distribution P(Er) of the fit quality in response to
stepped Poisson (blue) and real spike train (red) input for the Izhikevich
(dashed) and AMAT classes (solid). Thin lines show the distribution
of all individual results from Figs. 10–13, while thick lines show the
distribution of optimal scores Eopt

r for each input configuration µ,σ ,w.
If all fits were perfect, P(Er) would hug the x axis until jumping to 1
for Er = 1.

ous generalizations are larger for the AMAT class than for
the Izhikevich class, and generalization seems to fail for the
AMAT class mostly for biased noise and Inhibition-induced

spiking. For the Izhikevich class, on the other hand, gener-
alization mostly fails for low synaptic weights.

The most important observation, though, is that MNWS gen-
eraliztion works well, with ρMNWS > 0.9 in almost all cases
for both model classes. This means that by selecting a filter
model based on a fixed stepped Poisson protocol, we will
obtain a linear-nonlinear rate model that is close to the opti-
mal model for given noise regime and synaptic weight when
applied to real neuronal dynamics.

Combined with the observation from Tab. 9 that the opti-
mal model will provide a good approximation to actual neu-
ronal firing rates in roughly two thirds of all conditions, we
can thus use our fitting approach together with the stepped
Poisson test to select a reasonably reliable linear-nonlinear
neuron model.

4 Discussion

In this paper we numerically investigated the response prop-
erties of two neuron model classes, the Izhikevich model and
the AMAT model, to noisy spiking input. Both neuron mod-
els can reproduce a wide range of experimentally observed



Firing-rate models for neurons with a broad repertoire of spiking behaviors 23

0 200 400 600 800
Input rate a0 [s−1]

0

50

100

150

200

250

O
ut

pu
tr

at
e
r
0
[s

−
1
]

Izhikevich/Tonic spiking

100 101 102 103

Stimulus frequencey fstim[Hz]

10−2

10−1

100

R
el

am
pl

itu
de

r
1
/
a
1

600 800 1000

Time [ms−1]

0

50

100

150

200

250

O
ut

pu
tr

at
e
r
0
[s

−
1
]

Er = 0.92

Er = 0.47

Er = 0.91

Er = 0.55

Er = 0.94

Er = 0.49

3000 3100 3200 3300

Time [ms−1]

0

50

100

150

200

O
ut

pu
tr

at
e
r
0
[s

−
1
]

Er = 0.72

Er = 0.72

Er = 0.71

Er = 0.72

Er = 0.82

Er = 0.74

0 200 400 600 800
Input rate a0 [s−1]

AMAT/Tonic spiking

100 101 102 103

Stimulus frequencey fstim[Hz]

600 800 1000

Time [ms−1]

Er = 1.00

Er = 0.91

Er = 0.99

Er = 0.96

Er = 0.99

Er = 0.86

3000 3100 3200 3300

Time [ms−1]

Er = 0.98

Er = 0.90

Er = 0.96

Er = 0.85

Er = 0.84

Er = 0.66

0 200 400 600 800
Input rate a0 [s−1]

Izhikevich/Phasic bursting

100 101 102 103

Stimulus frequencey fstim[Hz]

600 800 1000

Time [ms−1]

Er = 0.24

Er = 0.33

Er = 0.21

Er = 0.35

Er = 0.56

Er = 0.66

3000 3100 3200 3300

Time [ms−1]

Er = 0.50

Er = 0.78

Er = 0.47

Er = 0.75

Er = 0.61

Er = 0.68

0 200 400 600 800
Input rate a0 [s−1]

AMAT/Phasic bursting

100 101 102 103

Stimulus frequencey fstim[Hz]

600 800 1000 1200

Time [ms−1]

Er = 0.83

Er = 0.76

Er = 0.87

Er = 0.80

Er = 0.84

Er = 0.78

3000 3100 3200 3300 3400

Time [ms−1]

Er = 0.80

Er = 0.75

Er = 0.90

Er = 0.78

Er = 0.85

Er = 0.71

Fig. 15 Response properties for exemplary model neurons including responses of model generalizations. This figure is identical to Fig. 6, except
that it also shows the response of model generalizations. Top row: activation function for no noise (blue), balanced noise (green) and biased noise
(red). Solid lines show original spline fit (also used for MNW and MNWS generalizations), dashed lines responses from MN-generalization and
the black dash-dotted line the response for the M-generalization. Second row: Frequency response to sinusoidally modulated Poisson input. Thick
solid lines: first harmonic r1, thin solid lines: second harmonic r2, dotted lines: significance level rcrit, light thick lines: fitted filter function H̃,
dashed lines: filter function for MN-generalizations, dash-dotted lines: filter function for M-generalization. Third row: Response of spiking model
(thin solid lines) and rate-model prediction (light thick lines) to Poisson spike trains with rate step. Dashed lines show the response of the MN-
generalization, the black dash-dotted line of the M-generalization. Bottom row: Response to real spike trains, 400 ms section starting at 3000 ms
with the same line types as for step responses. Connection weight w from left to right: 0.75, 700, 0.75, 500.
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Fig. 16 Fit quality relative to optimum, ρX for Izhikevich class model generalizations: (A) M, (B) MN, (C) MNW, and (D) MNWS. For details,
see text.

spike response patterns when stimulated with current injec-
tions. However, how these neurons behave with more natural
synaptic inputs has so far not been studied systematically.
We considered three different background noise regimes,
one with no background noise at all, one balanced and one
biased with enough background noise to put neurons in a
spontaneously active state at low output rates. The first sce-
nario can be considered to represent the situation in slice
preparations, the other two correspond to neurons embedded
in a network with ongoing excitatory and inhibitory activ-
ity. The stimulus spikes were modeled as stationary and si-
nusoidally modulated excitatory Poisson input spike trains,
mimicking afferent inputs from sensory pathways with dif-
ferent synaptic connection strengths w.

We found that the response complexity observed under cur-
rent injection collapses to only a few response types when
the neurons are driven by stationary or sinusiodally mod-
ulated Poisson input. This is not entirely surprising, since
some of the models are parametrically quite similar, and

variations in response behavior to current stimulation de-
pend on very specific current injection patterns that are not
realizable in terms of Poisson spike inputs. Still, actual neu-
rons receive inputs that often are well-described by Poisso-
nian statistics and this can thus be considered the function-
ally more relevant input scenario. It is hence of interest to
see which, possibly quite different, neuron models behave
approximately equivalent.

The respective groupings for Izhikevich and AMAT are all-
in-all very different. In particular, direct comparison of the
individual corresponding neuron models reveals completely
different response properties for most neuron models. This
is in part explained by the differences in subthreshold dy-
namics which are linear for the AMAT model but nonlin-
ear for the Izhikevich model. Individual spikes thus have
quite different effects in the two models: Any input spike
to an AMAT neuron will always evoke the same postsynap-
tic membrane-potential response and these responses sim-
ply superimpose due to the subthreshold linearity. For the
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Fig. 17 Fit quality relative to optimum, ρX for AMAT class model generalizations: (A) M, (B) MN, (C) MNW, and (D) MNWS. For details, see
text.

Izhikevich models, on the other hand, the postsynaptic re-
sponse depends intricately on the value of the dynamic vari-
ables, such as the membrane potential, and the effect of sev-
eral incoming excitatory spikes of same weight at one mo-
ment might be smaller than that of just one such spike at
another moment. These differences hence make it hard, or
even impossible, to set up synaptic weights w for the two
neuron model classes that are directly comparable.

We therefore chose to gauge synaptic strengths in terms of
the minimal weight wθ needed to evoke a spike from rest,
cf. Sec. 2.2, and to use weights spanning roughly from 10%
to 75% of wθ . This allowed us to quantify and compare in-
put coupling strength within and between model classes. In
general we observed that output rates for Izhikevich neurons
were much lower than for AMAT neurons for the same input
frequency and relative synaptic strength. It is therefore pos-
sible that model classes might become more similar if the
Izhikevich neurons were driven at higher input rates or at

other background noise levels, although we did not observe
such a trend.

We observed here that neuron models can show very similar
responses to spike input, even though they show very dif-
ferent responses to current injections, and in particular that
models of different mathematical nature, showing identical
current responses can respond very differently to spiking in-
put. Given that neurons are mainly driven by spike input
in vivo, this raises the intriguing question of how valuable
a classification of neuronal response types based purely on
current injection experiments is. It appears that a systematic
classification based on a neuron’s response to spiking input
may be required.

In the second part of the paper, we made use of the measured
stationary and frequency responses to fit linear-nonlinear firing-
rate models to the data. It was previously shown that the
firing-rate dynamics in response to complex spiking input
can be well described by such models (Paninski et al, 2004;
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Ostojic and Brunel, 2011; Weber and Pillow, 2017; Øster-
gaard et al, 2018). In particular, Nordlie et al (2010) stud-
ied simple leaky integrate-and-fire (LIF) models with strong
current-based synapses. They showed that a lowpass fit to
the frequency response together with the nonlinear activa-
tion function yielded linear-nonlinear rate models that pre-
dicted responses to arbitrary inputs with high accuracy. Heiberg
et al (2013) adapted this approach and studied two LIF-like
models, one with current-based, the other with conductance-
based synapses, that were fit to actual data recorded from cat
and macaque LGN in response to retinal stimulation. They
found a good performance of linear-nonlinear rate models
as well.

Here, we presented results of the same basic approach for
the Izhikevich and AMAT neuron model classes. Frequency
responses were in most cases more complex than simple
lowpass behavior and we employed fits to bandpass filters
that better capture the non-monotonous passband structure
observed in simulations. We then used novel test stimuli, i.e.,
step responses and more structured, highly-variable spike
input sampled from actual recordings of retinal ganglion
cells (Casti et al, 2008) to study rate-model performance.
The main finding is that the AMAT neuron model class is
approximated much better than the Izhikevich class by our
linear-nonlinear rate models: for the former, good rate model
responses (Er ≥ 0.8) were obtained in 64% of all cases tested,
while the latter provided such good results in only 15% of
cases tested. This difference might again be explained by the
fact that the AMAT model class has subthreshold linear dy-
namics. However, the AMAT class is not completely linear
either, because its firing threshold depends on the history
of the membrane-potential dynamics. Therefore, neuronal
transfer is not expected to be linear in any model class.

Some of the model variants gave consistently poor results,
typically those that show very nonlinear behavior in response
to direct current stimulation, e.g., the Bistability, Inhibition-
induced spiking and Inhibition-induced bursting models for
the Izhikevich class, and the Depolarizing afterpotential and
Inhibition induced spiking models for the AMAT class.

To estimate the effects of linearity on rate-model perfor-
mance, we measured the linearity of the stationary response
function r0(a0) in terms of L1, cf. Eq. (12). If the station-
ary response function is linear, the activation function g(·)
is also linear and only its slope is relevant, independent of
the working point, cf. Section 2.4. We computed L1 for all
background noise regimes as a function of synaptic strength
w and working point a0, and find that the AMAT model
generally is more linear than the Izhikevich model with re-
spect to L1. We further find that the linearity measure L1
does not predict rate-model performance (data not shown).
Thus, a nonlinear activation function does not imply poor

rate-model performance, nor does linearity in terms of L1
necessarily predict a good rate-model performance.

Furthermore, despite exploration of many potential perfor-
mance predictors, we were unable to identify any single quan-
tity or group of quantities that reliably predicted whether the
response of a neuron model in a given input regime could be
captured well by a linear-nonlinear rate model. We found,
though, that a relative simple protocol, testing the rate model’s
performance in response to a Poisson spike train input with
piecewise constant rate (stepped Poisson), allowed us to re-
liably identify rate models that render spiking neuron model
responses to realistic spike input with reasonable accuracy.
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Appendix

The AMAT model as specified by Equations 1–3, 16, 17, and A1–A7
of Yamauchi et al (2011) models input as instantaneous jumps in the
membrane potential (δ -synapses) or as α-function post-synaptic cur-
rents (PSCs). We adapt the model to synapses injecting exponentially
decaying PSCs and add a piecewise-constant input current. We fur-
ther re-parameterize the model from membrane resistance R and time
constant τm to membrance capacitance C and time constant τm by set-
ting R = τm/C; this brings the model equations in line with conven-
tions for the NEST Simulator (Gewaltig and Diesmann, 2007; Mor-
rison et al, 2007). The resulting set of differential equations are then
integrated using the exact integration technique (Rotter and Diesmann,
1999; Plesser and Diesmann, 2009).

The AMAT model with two adaptive thresholds (AMAT2 model), two
exponential-current synapses and piecewise-constant input current is
defined by the following equations

V̇ =− V
τm

+
I
C

(36)

θ̇1 =−
θ1

τ1
+α1 ∑

k
δ (t− t̂k) (37)

θ̇2 =−
θ2

τ2
+α2 ∑

k
δ (t− t̂k) (38)

θ̈V +
2θ̇V

τV
+

θV

τ2
V

= βV̇ =−βV
τm

+
β I
C

. (39)

Here, t̂k are the times of the spikes fired by the neuron itself. A spike is
fired whenever

V (t)≥ θ(t) = ω +θ1 +θ2 +θV , (40)

provided the neuron is not refractory. To be precise, let t̂k be the time
of the most recent spike and τref the duration of the absolute refractory
period. Then the time of the next spike is given by

t̂k+1 = min{t > t̂k + τref|V (t)≥ θ(t)} . (41)
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Note that the membrane potential is not reset upon a spike.

To obtain first-order differential equations for θV (Rotter and Dies-
mann, 1999), we define

η = θ̇V +
θV

τv
(42)

and arrive at the equations

η̇ =−βV
τm

+
β I
C

(43)

θ̇V = η− θV

τV
(44)

as can be verified by inserting the first differential equation into the
time derivative of the second and comparing with Eq. (39).

We treat spike input as follows: We assume that the PSC evoked by
input through any synapse on the neuron will decay either with time
constant τE or τI . Let {(t̂X , j,wX , j)} be the set of all spike arrival times
and weights of spikes arriving through synapses with time constant τX
where X ∈ {E, I}. If we further assume that all PSCs are independent
of each other, we can express the total input as

I(t) = IE(t)+ II(t)+ Iext(t) (45)

where

IX (t) = ∑
j

wX , je
− t−t̂X , j

τX Θ(t− t̂X , j) (46)

and Iext(t) is a piecewise-constant external current and Θ(t) the Heav-
iside step function. We will commonly refer to IE as excitatory and
II as inhibitory input. For efficient integration of the synaptic currents
(Plesser and Diesmann, 2009), we describe them by differential equa-
tions

İX + τX IX = ∑
j

wX , jδ (t− t̂X , j) . (47)

We can summarize the resulting system of eight first-order linear dif-
ferential equations as

ẏ = Ay+x (48)

with state and input vectors

y =




Iext
IE
II
V
θ1
θ2

θ̇V + θV
τV

θV




x =




∆ Iext(t)
∑ j wE

j δ (t− t̂E
j )

∑ j wI
jδ (t− t̂I

j)

0
α1 ∑k δ (t− t̂k)
α2 ∑k δ (t− t̂k)

0
0




(49)

and system matrix

A =




0 0 0 0 0 0 0 0
0 − 1

τE
0 0 0 0 0 0

0 0 − 1
τI

0 0 0 0 0
0 1

C
1
C − 1

τm
0 0 0 0

0 0 0 0 − 1
τ1

0 0 0
0 0 0 0 0 − 1

τ2
0 0

0 β
C

β
C − β

τm
0 0 − 1

τV
0

0 0 0 0 0 0 1 − 1
τV




. (50)

∆ Iext(t) represents the jumps in the piecewise constant external input
current.

We can solve this system exactly (to the limits of machine precision)
on a fixed time grid t j = jh for h > 0 using exact integration (Rotter
and Diesmann, 1999), provided that Iext(t) only changes at grid points
t j , i.e., ∆ Iext(t) = ∑ j δ I jδ (t − t j). Starting from the initial state y0 =
y(t = 0), exact integration updates the state according to

yj+1 = Ayj +xj+1 (51)

where A is the propagator matrix

P = eAh =
∞

∑
j=0

(Ah) j

j!
. (52)

The δ (t j − t̂k)-functions in the input vector x(t) are replaced by Kro-
necker symbol δ j,k upon discretization, restricting spike times to the
time grid; see Morrison et al (2007) for an extension to off-grid spikes.

The propagator matrix P can be obtained numerically, e.g., using the
expm functions provided by SciPy or Matlab, using an algorithm due to
Higham (2005). These methods can, though, fail under certain circum-
stances (Moler, 2012; Al-Mohy and Higham, 2009) and we have not
performed any systematic tests regarding their reliability with respect
to model neuron dynamics. We used the Mathematica symbolic algebra
system (Wolfram, 1999) to obtain an explicit expression for the prop-
agator matrix P and generate C++-code for the matrix elements. Note
that the expression obtained in this way requires that all time constants
except τ1 and τ2 differ, i.e., τm 6= τV 6= τE 6= τI . Other expressions for
P pertain if any two time constants are equal. The resulting model is
implemented in NEST as amat2_psc_exp.

While our implementation of the AMAT2 model is based on the equa-
tions given by Yamauchi et al (2011), we found that we needed to mod-
ify some model parameters to reproduce the responses in Figs. 6 and 7
of that paper:

– all models: membrane time constant τm = 10 ms instead of τm =
5 ms

– subthreshold oscillations: α1 = 1, β = 0.2 instead of α1 = 10, β =
0.1

– resonator: β = 0.5 instead of β = 0.1
– threshold variability: β =−0.5 instead of β =−0.1

Parameters used in our model are given in Table 4.

We further needed to make some adjustments to stimulus parameters
to reproduce Figs. 6 and 7 in Yamauchi et al (2011):

– tonic spiking: Ic = 0.118 nA instead of Ic = 0.15 nA
– phasic spiking: Ic = 0.1 nA instead of Ic = 0.08 nA
– phasic bursting: Ic = 0.1 nA instead of Ic = 0.08 nA
– class 1 excitable: dI/dt = 150 pA/s instead of dI/dt = 2.5 pA/s
– class 2 excitable: dI/dt = 150 pA/s instead of dI/dt = 2.5 pA/s
– latency: Ip = 1 nA instead of Ic = 0.58 nA
– subthreshold oscillations: Ip = 0.8 nA instead of Ip = 0.2 nA
– resonator: Ip = 0.6 nA instead of Ip = 0.36 nA
– integrator: Ip = 0.45 nA instead of Ip = 0.28 nA
– rebound spiking: Ip =−1.5 nA instead of Ip =−0.6 nA
– rebound bursting: Ip =−1.5 nA instead of Ip =−0.6 nA
– threshold variability: Ip =±0.35 nA instead of Ip =±0.2 nA
– bistability: ISI = 222 ms instead of ISI = 22 ms
– depolarizing after-potential: Ip = 0.5 nA instead of Ip = 0.2 nA
– accomodation: dI/dt = 0.54 nA/s, 2.43 nA/s, ∆ramp = 180 ms,

40 ms instead of dI/dt = 1 nA/s, 4.5 nA/s, ∆ramp = 90 ms, 20 ms
– inhibition-induced spiking: Ip =−0.4 nA instead of Ip =−0.3 nA
– inhibition-induced bursting: Ip =−0.3 nA instead of Ip =−0.16 nA
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The changes in stimulation currents are only relevant for the illustrative
Fig. 1 and do not directly affect the remainder of the results presented
here.

We can only speculate about why these parameters changes were nec-
essary. We inferred the time axis of Figs. 6 and 7 of Yamauchi et al
(2011) from the scale bars given in panel A of each figure. This clearly
indicates that pulse/ramp durations given in Table 1 of that paper are
inconsistent with the figures for, e.g., bistability (Fig. 6F) and acco-
modation (Fig. 7I). Concerning the membrane time constant τm, the
authors tested various values of this parameter (Yamauchi et al, 2011,
p. 2, right column) and this may have led to a mix-up.
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Abstract
Despite its prominent placement between the retina and primary visual cortex in the early

visual pathway, the role of the dorsal lateral geniculate nucleus (dLGN) in molding and regu-

lating the visual signals entering the brain is still poorly understood. A striking feature of the

dLGN circuit is that relay cells (RCs) and interneurons (INs) form so-called triadic synapses,

where an IN dendritic terminal can be simultaneously postsynaptic to a retinal ganglion cell

(GC) input and presynaptic to an RC dendrite, allowing for so-called triadic inhibition. Taking

advantage of a recently developed biophysically detailed multicompartmental model for an

IN, we here investigate putative effects of these different inhibitory actions of INs, i.e., triadic

inhibition and standard axonal inhibition, on the response properties of RCs. We compute

and investigate so-called area-response curves, that is, trial-averaged visual spike

responses vs. spot size, for circular flashing spots in a network of RCs and INs. The model

parameters are grossly tuned to give results in qualitative accordance with previous in vivo

data of responses to such stimuli for cat GCs and RCs. We particularly investigate how the

model ingredients affect salient response properties such as the receptive-field center size

of RCs and INs, maximal responses and center-surround antagonisms. For example, while

triadic inhibition not involving firing of IN action potentials was found to provide only a non-

linear gain control of the conversion of input spikes to output spikes by RCs, axonal inhibi-

tion was in contrast found to substantially affect the receptive-field center size: the larger the

inhibition, the more the RC center size shrinks compared to the GC providing the feedfor-

ward excitation. Thus, a possible role of the different inhibitory actions from INs to RCs in

the dLGN circuit is to provide separate mechanisms for overall gain control (direct triadic

inhibition) and regulation of spatial resolution (axonal inhibition) of visual signals sent to

cortex.
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Author Summary

While the basic receptive-field structure of cells in the dorsal lateral geniculate nucleus
(dLGN), the station between retina and visual cortex in the early visual pathway, was
mapped out half a century ago, the function of this nucleus in molding the visual signals is
still poorly understood. One reason is that the dLGN contains enigmatic inhibitory inter-
neurons which can act with different inhibitory action on the excitatory relay cells. In
addition to standard axonal inhibition, relay cells and interneurons form so-called triadic
synapses, where an interneuron dendritic terminal can be simultaneously postsynaptic to
a retinal input and presynaptic to a relay-cell dendrite, opening up for so-called triadic
inhibition. Taking advantage of a recently developed biophysically detailed multicompart-
mental model for an interneuron, we here use a network model to investigate putative
effects of these inhibitory actions on the response properties of relay cells stimulated by
circular flashing spots. Our results suggest a possible role of the different inhibitory actions
in providing separate mechanisms for overall gain control (triadic inhibition) and regula-
tion of spatial resolution (axonal inhibition) of visual signals sent to cortex.

Introduction
The dorsal lateral geniculate nucleus (dLGN) acts as a gateway for visual signals that reach cor-
tex. The principal cells, the relay cells (RCs), constitute about 75–80% of the cells in the
nucleus, while the remaining 20–25% are intrageniculate interneurons (INs) [1]. The RCs
receive synaptic inputs from a variety of sources: direct feedforward excitation from retinal gan-
glion (GC) cells [2–8], indirect feedforward inhibition via the INs, which in turn are excited by
GC cells [7, 9], feedback inhibition from the thalamic reticular nucleus (TRN) [1] and feedback
excitation from primary visual cortex [10, 11]. Both the IN and TRN cells further receive excit-
atory feedback from cortex opening up for feedback inhibition of RCs involving the entire tha-
lamocortical loop [1]. Despite its prominent position in the early visual pathway, and the
relative abundance of anatomical and physiological data recorded from the nucleus, the func-
tional role of the dLGN circuit is still poorly understood. Mathematical modeling of the prop-
erties of the network will clearly have to be a key component in elucidating its function.

A striking feature of the dLGN circuit is that INs and RCs are known to form so-called triadic
synapses [12–16]. Such triadic synapses are typically formed at sites that are proximal on the RC
dendrites and distal on the IN dendrites. At these sites, a single retinal terminal contacts post-
synaptic terminals on both an IN dendrite and an RC dendrite. The IN terminal is, at the same
time, postsynaptic to the GC input and presynaptic to the RC [14]. In the triads, GABA-release
from the IN may be triggered directly by local GC input, providing a localized source of inhibi-
tion of RCs, which may be functionally decoupled from the IN soma [12, 13, 15, 16]. In addition
to the complex triadic action, the INs also provide standard, axonal inhibition of RCs [14].

Until now, there has to our knowledge been no dLGN network study investigating the func-
tional role of these triadic circuit elements. A key reason is that while several biophysically
detailed neuron models for RCs have been developed [17–23], models of INs have been more
scarce. However, recently our group developed the first comprehensive multicompartmental
IN models including active dendritic conductances placed on anatomically reconstructed den-
dritic morphologies [24], opening up for investigations of the functional role of the different
putative inhibitory action by INs on RCs in the dLGN network.

Various types of visual stimuli have been used to probe the response properties of the dLGN
circuit: light or dark bars, gratings, and spots of various sizes [25]. Based on experiments with
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flashing circular spots [26], Einevoll and Heggelund [27] developed a mechanistic firing-rate
model to account for the changes in the spatial response properties of RC cells in cat compared
to its GC input. In qualitative accordance with known anatomy and physiology for cat X cells,
the RC neurons in the model received excitatory input from single GC neurons and indirect
feedforward inhibition from INs, which in turn received input from of a handful of GC neu-
rons. While this model successfully accounted for the observed area-summation curves in RC
cells, i.e., the experimentally observed response vs. spot-diameter curves, it could not distin-
guish between the various possibilities of inhibitory action from INs to RCs, i.e., whether the
inhibition was predominantly triadic or axonal.

To investigate the putatively different roles of triadic and axonal inhibitory action from INs
in the dLGN circuit, we here develop and investigate a biophysically detailed, spiking neuron
network model designed to be analogous to the firing-rate network model in [27]. A key com-
ponent of the network is an adapted version of the recent multicompartment IN model [24]
allowing for explicit studies of how the various modes of inhibition affect the shape of mea-
sured spot-response curves for dLGN cells [26].

In the next section we introduce the circuit model and describe the models of the GC input,
the IN and the RC, as well as their synaptic connections. In Results we first investigate and
describe the behavior of the IN model, then probe the functional behavior of the triadic circuit.
Next, we illustrate how the various modes of inhibition affect the area-summation curves and
finally explore differences between the transient (onset) and sustained (steady-state) responses
to spot stimulation. Our findings are then discussed in the final Discussion.

Materials and Methods

dLGN circuit model
Input to the dLGN circuit was provided by a layer of five retinal ganglion neurons (GCs), spa-
tially organized with one center cell and four peripheral cells equidistant from the center cell
(Fig 1). Each GC axon was assumed to synapse at two different locations, i.e., (i) in a triadic
synapse where the interneuron (IN) and one of the relay cells (RCs) both receive excitatory
input, and (ii) in a ‘conventional’ synapse on the proximal IN dendrite. The IN formed two
inhibitory synapses on each of the five RCs, (i) a dendrodendritic synapse (part of the triad)
and (ii) an axodendritic synapse.

In the present application of the model we only computed the response of the central RC.
In addition to the local triadic inhibitory action due to synaptic inputs from the central GC
(called direct triadic inhibition below), this cell received extra ‘back-propagating’ triadic inhi-
bition (called soma-driven triadic inhibition below) and axonal inhibition following firing of
action potentials in the IN. Thus the RCs were decoupled in the sense that firing of action
potentials in one RC did not affect the firing of the other RCs. Therefore, the only effect of
the four peripheral (non-central) GCs came from their proximal inputs to the IN. For sim-
plicity we here assumed that these four synaptic weights are the same, an approximation
which is unlikely to bear out in real biological situations. However, the use of circular flashing
spot stimuli concentric with the receptive field of the central RC, implies that the response of
the central RC will largely be determined by the sum of these four weights, not their individ-
ual variation [27].

The spike trains of GCs were modeled descriptively as non-stationary Poisson processes.
The visual input driving the GCs were circular light spots centered on the middle GC. The out-
puts were spike trains with mean rate and temporal profile fitted to experimental data.

The components that make up our circuit were modeled at different levels of detail. To
allow for local processing in the dendrites and because the IN is known to be electrotonically
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Fig 1. Schematic of the dLGN circuit model. (Top) Five relay cells (RCs) receive input from one retinal ganglion (GC) cell each. All inputs to
RCs arrive in triadic synapses, involving the one and same IN. In addition, the IN receives proximal input from all five GCs. The boxes
highlight the synaptic connections in the networks and the associated connection weightsw. Note that in the present model application, only
responses for the central RC cell is considered so that the only effect of the four peripheral GCs comes from the proximal inputs to the IN.
(Bottom) The GCs are organized with four peripheral GCs all located at distance ra from the center GC.

doi:10.1371/journal.pcbi.1004929.g001
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extensive [28], a multicompartment model was needed. We selected an existing model [24]
and simplified its morphology. Some of the parameters were adjusted to otherwise preserve the
model’s properties.

The RC spikes constitute the main output from our network model. A single-compartment
RC model was decided to be sufficient as these neurons are thought to be electrotonically com-
pact [28]. With slight modifications discussed below, a previously published model was used
[29].

The IN and RC models were both based on standard cable theory (see e.g., [30]), and the
complete dLGN circuit model was implemented in the NEURON simulation environment
[31–33]. Both neuron models were based on previously published models and are available
fromModelDB [34]: IN model from [24] (ModelDB accession number 140249) and RC model
from [29] (ModelDB accession number 3343).

In the following section, the individual components of the circuit and their parameteriza-
tions are presented in detail.

Input from retinal ganglion (GC) cells
As in the firing-rate based circuit model of [27], a descriptive filter model was used to generate
the input from the GC cells to our model dLGN circuit. Specifically, the input spike trains from
the five GC cells were generated by non-stationary Poisson processes with rates determined by
a response function Rg(t, d) describing the firing rate for a circular spot of radius d as a function
of time. This response function was in turn modeled as a product over a spatial part Gg(d) and
a temporal part Fg(t) [35], i.e., Rg(t, d) = Gg(d)Fg(t).

Spatial part of GC input response function. Following [27] we modeled the shape of the
spatial receptive-field (point-spread) functions gg(r) by means of the difference-of-Gaussians
(DOG) model [36],

ggðrÞ ¼
1

pa21
e�r2=a2

1 � o
pa22

e�r2=a2
2 ; ð1Þ

where the first and second terms term correspond to the center and surround terms, respec-
tively. Further, ω represents the relative strengths of these terms, and a1 and a2 are the corre-
sponding width parameters.

We further assume that the total neuronal response is given as a sum of the inputs caused
by the spot with luminance Lspot and the infinite background surrounding the spot with lumi-
nance Lbkg. For the single GC cells with receptive-field center concentric with the spot stimulus
(see Fig 1), the response function is then found to be [27]:

Ggðd; 0Þ ¼ S lbkgð1� oÞ
h

þ lspot � lbkg
� �

1� e�d2=4a2
1 � oð1� e�d2=4a2

2Þ� � i ð2Þ

where the halfwave rectification function S[x] = xΘ(x) has been introduced to enforce non-
negative firing rates. HereΘ(x) is the Heaviside step function, and an activity function l(L) con-
verting luminance to firing rates has been introduced, i.e., lbkg� l(Lbkg), lspot � l(Lspot). The ‘0’
in the notation Gg(d;0) signifies that the spot and receptive fields are concentric, i.e., a distance
zero between their centers.

Four of the GC neurons driving the dLGN circuit have receptive fields that are not concen-
tric with the spot, however. Rather, their receptive field centers are displaced a distance ra from
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the spot center (Fig 1). In this situation the spot-response function is instead given by [27]

Ggðd; rgÞ ¼ S lbkgð1� oÞ þ ðlspot � lbkgÞ�
h

e�r2a =a
2
1

X1
m¼0

1

m!

ra
a1

� �2m

gðmþ 1; d2=4a21Þ
 

�o e�r2a =a
2
2

X1
m¼0

1

m!

ra
a2

� �2m

gðmþ 1; d2=4a22Þ
!# ð3Þ

where γ(n, x) is the so-called incomplete gamma function given by

gðn; xÞ ¼ 1

ðn� 1Þ!
Z x

0

um�1e�u du ð4Þ

when n is an integer larger than zero. Note that for ra = 0, Eq (3) simplifies to Eq (2). Note also
that since we only consider visual stimuli with circular symmetry, i.e., circular spots, the model
response does not depend on the perfect square arrangement of the non-concentric GC inputs
as depicted in Fig 1B. The magnitude of a particular peripheral GC input only depends on the
distance ra from the central GC cell.

The spatial characteristics of the GC inputs to the circuit can thus be parameterized by the
GC parameters ω, lbkg, lspot, a1, and a2, as well as the distance between central and peripheral
GC centers ra. Here we assumed the five GC neurons providing the inputs to the dLGN circuit
to have the same response properties, i.e., the same values of ω, lbkg, lspot, a1, and a2. The param-
eters used here were found in [27] from fitting the GC response function in Eq (2) to experi-
mental data in [27] (see cell no. 2 depicted in Fig 5 therein). This parameterization was selected
because it is close to the mean of the results reported there and also the parameterization used
in examples throughout that paper. The parameters are listed in Table 1.

Temporal part of GC input response function. The temporal profile of the GC spike
trains was modeled as a difference of two exponential functions,

FgðtÞ ¼ Yðt � tsÞ a 1� e�ðt�tsÞ=t1 � b 1� e�ðt�tsÞ=t2ð Þð Þ ð5Þ

to incorporate the overshoot seen in experiments (e.g. [26], see Fig 3 and 4 therein) following
stimulus onset (or more precisely onset of stimulus-evoked response in the GCs in our model)
at time ts. The parameters (see Table 1) were chosen to approximate the magnitude and width
of the peak in the experiments of [26] (see Fig 4B therein), with a maximum of about 2.5 times

Table 1. Model parameters for input from retinal ganglion cells (GCs).

Parameter Description unit value

ω relative strength between surround and center 0.85

lbkg(1 − ω) activity function (background) s−1 36.8

lspot(1 − ω) activity function (spot) s−1 56.5

a1 center width deg 0.62

a2 surround width deg 1.26

ra peripheral GC receptive-field center displacement deg 0.99

τ1 time constant of first exponential ms 10.0

τ2 time constant of second exponential ms 22.0

α global scaling 12.0

β relative scaling of second exponential 11.26

doi:10.1371/journal.pcbi.1004929.t001
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the sustained rate, i.e., the firing rate long after stimulus onset, while retaining the mean rate
for the stimulus period given by the spatial response function.

Interneuron model
Model and calibration. An adapted and simplified version of the multicompartmental IN

model by [24] was used. In particular, we employed a simplified dendritic morphology consist-
ing of a cylindrical soma (with radius 8.72 μm and length 15.3 μm) with five identical linear
‘stick’-like dendrites protruding out from it. These dendrites had linearly tapered diameters
going from 4 μm adjacent to the soma to 0.3 μm at a distance of 100 μm, and from there on a
constant diameter up to a total length of 500 μm.

We employed a set of passive membrane properties and active channel conductances with
corresponding kinetics from [24] (Parameter set 1). The seven active ion-channels included
the traditional Hodgkin-Huxley sodium and delayed-rectifier potassium channels (with con-
ductances gNa and gKdr, respectively), a hyperpolarization-activated cation channel (gh), a low-
threshold, T-type calcium channel (gCaT), a high-threshold, L-type calcium channel (gCaL), a
medium-duration, calcium-dependent afterhyperpolarization channel (gAHP), and a long-last-
ing calcium-activated non-specific cation channel (gCAN). The intracellular Ca

2+-concentration
was modeled as a leaky integrator [24].

To adjust for the simpler morphology compared to the morphologies used in [24], and
account for recent experimental findings, some parameter values were modified: (i) The reversal
potential of the passive leak current (Epas) was modified to adjust the resting membrane poten-
tial, which was kept at -63 mV. (ii) The dendritic conductances gNa and gKdr were set so that a
somatically generated action potential (AP) reliably invaded distal dendrites (backpropagating
APs), while synaptically evoked AP propagation from distal dendrites to the soma reliably failed.
This was done to accommodate recent experimental findings [37]. (iii) In [24], gCaT was set to
increase linearly with distance from soma. However, with high values for gCaT in distal den-
drites, synaptic activation was likely to induce Ca2+ spikes and bursts of APs that originated
locally in distal dendrites [38]. Such effects were not observed in experimental studies of den-
dritic signalling [37]. We here therefore assumed that gCaT and gCAN were uniformly distributed
over the dendritic membrane, as this significantly reduced locally induced AP-firing in the den-
drites. A uniform distribution of gCaT also agreed better with another experimental study, which
showed that somatically elicited Ca2+-spikes evoked Ca2+ transients that were of the same mag-
nitude across the entire dendritic tree [37]. (iv) In [24], gCAN was assumed to have the same dis-
tribution as gCaT. Here, we kept this assumption, and used a uniform distribution also for gCAN.

Model parameters for passive and active membrane properties for the somatic compartment
and dendritic sections are summarized in Table 2. With these parameters, the simplified IN
model preserved the qualitative response properties of the original model to somatic current
injection [24]. Further, the resting membrane potential of this IN model is –63 mV, and for
this membrane-potential value the model responded to depolarizing current injections into the
soma with tonic AP-firing, with a slightly higher firing rate immediately after current onset, see
Fig 2. This resembles the tonic firing mode described for dLGN cells [39].

Input. Each GC was assumed to synapse onto the IN in two spatially separated locations,
contacting the IN dendrites (i) at the proximal IN synapse (50 μm from the soma; weight denoted
wGIp), and (ii) in the triadic synapse located at the distal IN dendrite (450 μm from the soma;
weight denoted wGIt). Each GC projected to one of the five dendritic sections on the IN unit.

Conductance-based synapses were assumed, i.e.,

IsynðtÞ ¼ wfsynðtÞðV � EsynÞ ; ð6Þ
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where the weight w corresponds to the maximal conductance, and the temporal envelope
fsyn(t) of the synaptic conductance is given as the difference between two exponentially decay-
ing functions specified by rise (τrise) and decay (τdecay) times and normalized so that the maxi-
mum value of fsyn(t) is unity, cf. Eqs. 6.4–6.6 in [40].

The properties of the proximal synapse were adapted to give responses in accordance with
experimental data where EPSPs have been found to be dependent on AMPA and NMDA acti-
vation, but not on mGluR activation [41]. The joint AMPA and NMDA response was modeled
as a sum of two exponentials [40, ch.6]. We used an AMPA reversal potential of 10 mV [15],
and adapted the time constants of synaptic rise and decay, as well as maximum conductance to
in vitro EPSC-traces in [41]. With these values, the time course of the somatic EPSCs in INs
resembled those observed experimentally. We adjusted the synaptic weights so that the IN
model required simultaneous activation of both the proximal and distal synapses on four den-
drites in order to produce an action potential. This agrees with experiments, where typically
3–4 simultaneous synapse activations were required to evoke action potentials in INs [41]. The
synaptic parameters are summarized in Table 3.

The response properties of the distal synapse (IN-side of triadic synapse) was initially mod-
eled after [41] like the proximal synapses. However, in the triad the parameters were adjusted
so that the triad supported so-called ‘locked’ (i.e., ‘time-locked’) inhibition of RC cells follow-
ing the excitatory GC input input spike by*1 ms [15], see below. As triadic synapses are
located in the distal part of IN dendrites, triadic synaptic activation were found not have any
strong impact on the membrane potential in the soma of the IN (postsynaptic potential ampli-
tudes*1 mV)

Output. Axonal GABA release from INs was assumed to occur whenever the soma elicited
an AP, detected by somatic voltage crossings at –10 mV, with a 1 ms conduction delay. All five
relay cells were contacted by the axon, and received the same axonal inhibition (although only
the inhibition of the central RC was of relevance in the present model application focusing
solely on the response of the central RC).

Table 2. Interneuron (IN) parameters.

Parameter Description unit soma dendrites

rax axial resistivity Ω�cm 113 113

cm membrane capacitance μF/cm2 1.1 1.1

rm membrane resistivity Ω�cm2 22000 22000

Epas passive leak reversal potential mV -67.5 -67.5

gNa max Na+ conductance S/cm2 0.1 0.0074

ENa Na+ reversal potential mV 50 50

SHNa Na activation threshold mV -52.6 -52.6

gK, dr max Kdr conductance S/cm2 0.37 0.037

SHK, dr Kdr activation threshold mV -51.2 -51.2

EK K+ reversal potential mV -90 -90

gCaT max CaT conductance (permeability) cm/s 1.8�10−4 1.8�10−4
gCaL max CaL conductance (permeability) cm/s 9.0�10−4 2.25�10−4
[Ca] basal Ca2+ concentration nM 50 50

τCa Ca2+ decay time constant ms 50 50

gAHP max IAHP conductance S/cm2 6.4�10−5 6.4�10−6
gCAN max ICAN conductance S/cm2 6.8�10−7 6.8�10−7
gh max Ih conductance S/cm2 1.1�10−4 1.1�10−4

doi:10.1371/journal.pcbi.1004929.t002
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Fig 2. Spiking patterns of model neurons following somatic current injection. (A) Somatic membrane potentials of the IN model following
injection of depolarizing and hyperpolarizing (positive and negative values, respectively, of first of two numbers in parenthesis) step currents lasting
900 ms. Results illustrate the overall tonic-firing response to depolarizing input currents. For the case with a strong hyperpolarizing current (−150
pA), a rebound spike is observed at offset (top trace). In the case where the offset of the strong hyperpolarizing step current (−150 pA) is combined
with a constant but weak depolarizing current (+20 pA), a rebound burst is observed instead (bottom trace). (B) Similar to the IN cell, the RC cell
generates spikes in a tonic pattern when the soma receives depolarizing currents. However, compared to the IN, the RC cells respond with more
spikes for similar-amplitude depolarizing soma currents (and also more rebound spikes after offset of hyperpolarizing currents).

doi:10.1371/journal.pcbi.1004929.g002

Table 3. Synaptic parameters, cf. Eq 6. The listed parameters for the weightswGR,wGIp,wIRt, andwIRa are only the default values, other values are also
considered, cf. Table 5. The other parameters are kept fixed in the study.

Presyn. Postsyn. Weight label w (nS) Esyn (mV) τrise (ms) τdecay (ms)

GC IN triad wGIt 2 10 0.3 2.0

GC RC wGR 11.6 10 0.2 1.2

GC IN proximal wGIp 0.6 10 1.6 3.6

IN triad RC wIRt 4 -80 0.7 4.2

IN axon RC wIRa 4 -80 0.7 4.2

doi:10.1371/journal.pcbi.1004929.t003
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It has been suggested that GABA release from IN dendrites in the triad is mediated by a
depolarization of the presynaptic terminal [42]. We assumed that GABA release from dendritic
sites was triggered whenever the local voltage exceeded a threshold of –10 mV. With this
threshold, the model reproduced two independent experimental observations. Firstly, synaptic
GC input to triadic terminals in most cases (yet dependent on the history the IN activity)
resulted in local GABA release from IN terminals. RCs typically responded to triadic GC input
by an EPSP (synaptic excitation) followed by an IPSP about 1 ms after, as has been observed
experimentally and coined ‘locked’ inhibition [15]. We refer to this input-induced inhibition as
direct triadic inhibition. Secondly, local GABA release could also in some instances be evoked
by back-propagating action potentials or Ca2+ spikes with somatic origin [41]. We refer to this
as soma-driven triadic inhibition.

Relay-cell model
Model and parameter calibration. In contrast to INs, relay cells (RCs) appear to be elec-

trotonically compact [28], and we thus use a single-compartment model. The membrane
mechanisms were taken from an existing model [29], and included the standard (Hodgkin-
Huxley type) sodium and potassium channels for generating action-potentials, as well as T-
type Ca2+-channels. The conductances gNa, gK and gCaT were tuned so as to obtain qualitatively
typical responses to somatic current injections for cells resting at a relatively depolarized mem-
brane potential (–60 mV) [39] set by adjusting the reversal potential of the passive (leak) cur-
rent (Epas). In this relatively depolarized state, the RC model responded to somatic current
injections by tonic firing of spikes as shown in Fig 2. The final parameter set is summarized in
Table 4.

Input and output. As illustrated in Fig 1, the RC received (i) excitatory input from GCs in
triadic synapses, (ii) inhibitory input from INs via dendritic GABA release in triadic synapses,
and (iii) inhibitory input from INs via axonal GABA release.

The postsynaptic model response of RCs to glutamatergic input from the GCs was adapted
to experimental data, i.e., monosynaptic excitation was assumed mediated by AMPA receptors
with a reversal potential of 10 mV [15]. We constrained synaptic parameters (time constants,
maximum conductance) to reproduce experimentally obtained EPSCs (Fig 4 in [15]).

Table 4. Model parameters for relay cell (RC).

Parameter Description unit value

L soma length μm 35

d soma diameter μm 47

cm membrane capacitance μF/cm2 1.0

rm membrane resistivity Ω�cm2 26000

Epas passive leak reversal potential mV -63

gNa max. Na conductance S/cm2 0.015

ENa Na reversal potential mV 50

SHNa Na activation threshold mV -50

gK max. K conductance S/cm2 0.0025

EK K reversal potential mV -100

[Ca] t1 Ca2+-concentration nM 240

gCaT max. CaT conductance S/cm2 0.001

SHCaT Shift for ext. [Ca] = 2mM mV 2

ECa Ca2+ reversal potential mV 120

doi:10.1371/journal.pcbi.1004929.t004
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The postsynaptic model response of RCs to dendritic GABA release from INs in the triadic
synapses was adapted to experimental data on direct triadic (‘locked’) inhibition [15]. The syn-
aptic response was assumed mediated by GABAA receptors with a reversal potential of –80
mV. We constrained synaptic parameters (time constants, maximum conductance) to repro-
duce experimentally obtained IPSCs (Fig 4 in [15]).

In the experimental study of [15] the shapes of IPSCs produced by dendritic and axonal
GABA-release were observed to be similar. We therefore modeled the synaptic response of RCs
to axonal inhibition from INs to have the same functional shapes as for the triadic inhibition.
Parameter values for all synapse models are summarized in Table 3.

Stimulus protocol
Neuron and synapse parameters were initially set up according to the calibrated (default)
parameters listed in Tables 1–4. As in [27] we modeled the response to circular spots concen-
tric with the receptive field of the central GC input (cf. Fig 1). The only stimulus parameter var-
ied was thus the spot diameter d, with the spot sizes ranging from much smaller than, to much
larger than the receptive-field center. In the simulations each trial consisted of a 500 ms period
of full-field background luminance followed by a 500 ms stimulus period with the circular spot
added on top.

In accordance with [27], mean firing rates from GC, IN, and RC cells over the entire or
selected parts of the stimulus period were computed. (These firing-rates were found from time-
averaging post-stimulus time histograms (PSTHs) and correspond to what is more precisely
referred to as ‘spike-count’ firing rates [43], but in the present paper we will for simplicity gen-
erally refer to them as firing rates.) However, all spike trains were also stored for further analy-
sis. In addition, membrane potentials from relevant neural compartments (i.e., RC and IN
soma compartments as well as IN triad compartments) were recorded for a subset of the trials.

For each spot diameter several simulations (‘trials’) were run, and the spike-count firing rate
for each trial computed. So called area-summation response curves of the type considered in
[26] and [27], i.e., spike-count firing rates averaged over numerous trials as functions of spot
diameter, were produced (cf. Fig 3). Unless otherwise noted, ten trials were used in the compu-
tation of the trial-average firing rate for each parameter set and spot size, and the response vs.
spot-diameter curves were filtered with a seven-point rectangular window to produce smoother
area-summation curves. Such area-summation curves were calculated for a large set of parame-
ter values (cf. Table 5) to investigate the link between model parameters and response curves.

Analysis of simulation results
In the present application of the model we only considered the response of the IN and the cen-
tral RC.

The receptive-field center diameter dc was determined numerically by identifying the spot
diameter that produced the maximum response rc, see Fig 3. Here we were interested both in
maximal responses for the RC (rRc ) and IN (rIc). Similarly, the surround diameter ds was given
by the spot size diameter producing the minimum response rcs, and at the same time fulfilling
ds > dc.

From these four quantities we calculated several response measures: The ratio dR
c =d

G
c was

calculated to measure the effect of inhibition on RC receptive-field tuning [26, 27]. In the
absence of inhibition, one would expect the relay cell to inherit the receptive-field size from the
GC cell, and this ratio would be close to 1.0.

As a measure of how much the center response is reduced by the surround (center-surround
antagonism), we also calculated the normalized difference between the maximum response to
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center stimulation (rc) and the minimum response when the surround is stimulated as well
(rcs) [26, 27]:

a ¼ ðrc � rcsÞ=rc � 100%: ð7Þ

Finally, we also investigated temporal aspects of the response and computed area-response
curves both for the transient (onset) response, i.e., trial-averaged spike-count firing rate for the
first 100 ms after stimulus onset, and the sustained (steady-state) response corresponding to
the averaged rate in the time interval from 400 to 500 ms after stimulus onset.

Fig 3. Illustration of area-response curves andmetrics used to quantify key properties. Center
diameter dc, surround diameter ds, peak response rate rc, center-surround minimum rate rcs. Illustration
adapted from Fig 1 in [26].

doi:10.1371/journal.pcbi.1004929.g003

Table 5. Parameter space explored for spot size and synaptic weights (maximal synaptic conduc-
tances, cf. Eq 6) in simulations. † denotes default values.

Parameter Description Unit Values

d Stimulus (spot) diameter deg 0.05, 0.1, . . ., 10.0

wGR GC ! RC nS †11.6/13.6/15.6/17.6

wGIp GC ! IN proximal nS 0.3/†0.6/1.2/1.8

wIRt IN triad ! RC nS 0/†4

wIRa IN axon ! RC nS 0/2/†4/6/8

doi:10.1371/journal.pcbi.1004929.t005
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Implementation
Simulation and data acquisition of the dLGN circuit model was fully implemented as class
objects in Python [44], using the Python package LFPy [45] for object-representations of indi-
vidual cells post-synaptic to GC units. LFPy relies on the NEURON simulation environment
[33] to solve the membrane potentials for the multicompartment IN unit and single-compart-
ment RC units. NEURON also intrinsically allows specification of neuron-to-neuron connec-
tivity, i.e., building network models.

With a relatively low total segment count (177) for the multi-compartment IN model, each
network instance was simulated serially in a matter of seconds at a temporal sampling rate of fs
= 16 kHz, resulting in realtime factors as high as*10% for our computer hardware described
below. Parallel execution was therefore only incorporated on the parameter scan level, as dis-
cussed below. Typically, only spike times and resulting rates were returned from each network
element, but readouts such as membrane voltages were readily available if needed. All simula-
tions for each parameter set (and spot size) were repeated 10 times or more (see above) with
different seeds resulting in a total of more than one million simulations.

The GC model was implemented in NEST [46] as a spike generator (rather than a neuron
model) named exp_onset_generator.

Simulations were performed on a compute cluster with Intel Xeon 2 CPUs running Linux
2.6.32 using NEURON 7.3 and NEST 2.3.r10450. Software was compiled with the GNU Com-
piler v. 4.7.2 and linked against the GNU Science Library v. 1.14. Trials were configured using
the NeuroTools.parameters package [47]. Data analysis was performed on the same computers
and Apple MacBook Pro computers using NumPy 1.7.1, Pandas 0.11/0.12, and Matplotlib
1.2.1/1.3.0 under Python 2.7.3.

Results were stored in HDF5 files using the PyTables package. Further analysis was per-
formed using Pandas/NumPy and Matplotlib for visualization.

Results

Synaptic integration in interneurons (INs)
Before embarking on the dLGN circuit behavior, we demonstrate in Fig 4 the salient integrative
properties of the interneuron (IN) model. The simplified ball-and-sticks morphology of the IN
is illustrated in Fig 4 with the soma (black square) in the center, and the five dendrites protrud-
ing out from it with locations of both the distal, i.e., triadic, and proximal synapses marked
(panel A). In the remaining panels (B–E), the membrane potential in only two selected den-
drites are considered for figure clarity reasons.

When a single GC spike arrives at a distal IN synapse (panel B), the response is partly medi-
ated by local, active ion channels. The distal dendrites undergoes a rapid, local depolarization
(up to*0 mV) due to activation of local Na+ channels, after which the potential decays from
subsequent activation of K+ (and deactivation of Na+) channels. The distal-dendrite membrane
potential is observed to remain at a relatively depolarized level, i.e., above –50 mV, for an
extended period of time (about 20 ms, see inset panel B). The endured response is partly due to
the activation of local T-type Ca2+ channels, as we have shown previously [38]. Due to the wid-
ening of the dendritic stick, i.e., increase of stick diameter in the central direction, the EPSP is
strongly attenuated upon its propagation towards the soma, and is not sufficient for driving the
soma above the action potential threshold (panel B).

A single spike arriving at a proximal synapse results in only a small depolarization of the
membrane potential (panel C), i.e., too little to evoke either triadic inhibition or generate a
somatic action potential which in turn would provide axonal inhibition. Further, when a single
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Fig 4. Synaptic integration properties of interneuron (IN) model. (A) Ball-and-sticks IN model consisting of a point-like soma (black square) with
five dendritic sticks protruding out from it. Distal (triadic; blue dots) and proximal (red dots) synapse locations are illustrated. Panels B–E shows
spatiotemporal spread of IN membrane potential along two (of five) dendritic sticks following activation by single RC spiking on inputs distal (triadic)
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distal and a single proximal synapse positioned on the same branch are activated at the same
time (panel D), the resulting soma potential is still too small to generate an action potential.
However, when all five proximal synapses are activated by simultaneous spikes (panel E), a
somatic axon potential is generated which next provides axonal inhibition on postsynaptic RC
cells. Moreover, this axonal action potential back-propagates into the dendrites where it also
activates triadic inhibition. This latter type of triadic inhibition is here denoted soma-driven
triadic inhibition.

Triadic circuit dynamics
The mechanism behind the two types of triadic inhibition, i.e., ‘direct’ and ‘soma-driven’, is
illustrated in Fig 5. In panel B, a single incoming GC spike input to a distal (triadic) synapse
(illustrated in panel A) triggers a large postsynaptic response in the distal IN dendrite. If the
response is sufficiently large, as in the current example, it will lead to direct triadic inhibition
from the IN to the RC partner in the triadic circuit. While the excitatory GC input to the RC
cell alone would give an immediate RC action potential (red curve in panel C), this action-
potential firing is prevented when this excitatory input is accompanied by direct triadic inhibi-
tion (black curve in panel C). (For the present model example we find that the triadic inihibi-
tion must arrive within 1.3 millisecond after the excitatory GC input to prevent the generation
of an RC spike.)

In soma-driven triadic inhibition a somatic action potential in the IN, induced by suffi-
ciently synchronous excitatory GC inputs onto the proximal dendrites (cf. Fig 4), results in a
back-propagating action potential which in turn induces triadic inhibition (panel D in Fig 5).
However, this type of triadic inhibition takes a few milliseconds to occur, i.e., too late to prevent
the firing of an RC action potential (panel E). This inhibition can thus only affect GC spikes
reaching the dLGN circuit at a later time.

Fig 5 illustrates the importance of timing of the triadic inhibition in the regulation of RC fir-
ing: when a GC spike impinges on the dLGN circuit (RC and IN cells), only the direct triadic
inhibition acts fast enough to affect the immediate spike generation in RC cells. Such direct tri-
adic inhibition probably underlies what is known as time-locked, or simply locked inhibition in
the experimental literature [15].

Some key features of the dynamics of the triadic circuit when stimulated by a flashing circu-
lar post, are illustrated in Fig 6. While our numerical experiments each last for 1000 millisec-
onds, the figure focuses on the spiking activity in the half-second window around the stimulus
onset at 500 milliseconds. Panel A shows the membrane-potential dynamics of the IN for an
example trial, both in the soma (blue line) and in the distal part of the dendritic segment
(green) receiving synaptic input from the central GC cell. This panel also shows the time
stamps of the GC input spikes driving the circuit, both from the center GC cell (top row of tiny
triangles) and from the four peripheral GC cells combined (bottom row of triangles). A first
observation is that in the typical case, an input spike from the central GC cell causes direct tri-
adic inhibition (see, for example, arrow 1 in panel A) while a fairly synchronous barrage of
four spikes from the set of GC cells is needed to evoke a somatic action potential (see, for exam-
ple, arrow 2 in panel A). Given the much higher firing-rate of the central GC cell compared to

and/or proximal synapses. Each colored line represents a snapshot of the membrane potential taken each half millisecond from 0 to 20 milliseconds
with the GC spike(s) arriving at tsyn = 1 ms. The synapse position(s) are denoted by vertical, red or blue dashed lines, while the black dashed line
marks the location of the soma compartment. The small inset axes show the membrane potential in the soma (Vi(0, t)) and in the distal dendrite
(Vi(−450 μm, t)), respectively, as a function of time. (B) GC spike onto distal synapse on lower left dendritic stick. (C) GC spike onto proximal synapse
on lower left dendritic stick. (D) GC spike arriving simultaneously on distal and proximal synapses on lower left dendritic stick. (E) GC spikes arriving
simultaneously at all five proximal synapses, including those on the two depicted dendritic sticks.

doi:10.1371/journal.pcbi.1004929.g004

Inhibitory Effects on Visual Response Properties of dLGN Relay Cells

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004929 May 20, 2016 15 / 38



the peripheral GC cells in the present example, the direct triadic inhibition will occur more
often than firing of somatic action potentials. As a consequence, the soma-driven inhibition
(soma-driven triadic and axonal) will occur less frequently than direct triadic inhibition. Note,
however, that the involvement of dendritic Na+ and K+ channels in mediating the local

Fig 5. Illustration of two pathways for triadic inhibition of relay cells (RCs). Curves showmembrane potentials of the IN dendrite
(panels B,D) at the distal synapse position (blue dot in panel A) and in RC soma (panels C,E), respectively. (A) Illustration of interneuron (IN)
with triadic connection with RC shown as open circle. (B) Single incoming GC spike input to distal (triadic) synapse (time stamp tsyn = 1 ms
denoted as red bar in small display on top) triggers a large postsynaptic response in distal IN dendrite, effectively resulting in a dendritic
action potential. (C) Same GC input spike as in (B) now also projecting to the RC partner of the triadic circuit with a short time delay resulting
in direct triadic inhibition of the RC (starting at time shown as blue time-stamp bar above): without inhibition the GC input to the RC cell gives
an immediate RC action potential (red curve), while no action potential occurs if the excitatory input is accompanied by direct triadic
inhibition (black curve). (D) Back-propagating action potential in IN dendrite(s) triggered by a strong synapse input to the IN soma (activation
time tsyn = –8 ms, gmax = 300 nS, Esyn = 10 mV, τ = 1 ms, Isyn(t) = gmax � exp(−(t − tsyn)/τ) � (Vm − Esyn) for t� tsyn). For illustration purposes,
the distal activation of the IN dendrite by the GC input is here absent, i.e.,wGIt = 0. (E) Same GC input spike as in panels B and C now also
projecting to an RC cell, gives an RC action potential both without (red curve) and with soma-driven triadic inhibition (black curve) as the
inhibition occurs too late (blue time-stamp bar above) to prevent action-potential firing in the RC.

doi:10.1371/journal.pcbi.1004929.g005
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response induces an effective refractory period (the channels do not have time to reset between
two input spikes). This is evident during the first 50 milliseconds or so after stimulus onset,
when the firing-rate of the central GC cell is so high that not all incoming spikes result in the
distal-dendrite membrane potential passing firing threshold (see, for example, arrow 3 in panel
A). Direct triadic inhibition will therefore not occur at every input spike. Such a depression of
triadic inhibition for high input rates was also seen experimentally [15].

Panel B in Fig 6 illustrates the corresponding RC response. When there has been a long time
since the previous excitatory GC input spike (see, for example, arrow 4 in panel B), direct triadic
inhibition prevents the firing of an RC spike. However, if a new GC input spike arrives before
the RCmembrane potential has returned to its resting value, the direct triadic inhibition may
not be sufficient to prevent the firing of an RC action potential (see, for example, arrow 5 in
panel B). The chance for an incoming GC spike to generate an RC spike can be further reduced
by soma-driven inhibition leading to a transiently hyperpolarized RCmembrane potential (see,
for example, arrow 6 in panel B). We also note that the inhibition is more efficient at preventing

Fig 6. Illustration of temporal response in dLGNmodel circuit. A stimulus spot of diameter d = 1 deg is turned on at 500 ms. (A) Example of (single-
trial) IN membrane-potential dynamics (soma: blue line; distal part of dendritic segment receiving synaptic input from central GC cell: green line). Also
shown are GC input spikes driving the circuit, both from the center GC cell (top row of tiny triangles) and from the four peripheral GC cells (bottom row of
triangles). (B) Corresponding RCmembrane-potential dynamics. Also shown are input spikes from the central GC input (top row of tiny black triangles),
IN dendritic (triadic) action potentials (middle row of green triangles), and IN somatic action potentials (bottom row of blue triangles). See text for
explanation of arrows. Default model parameters are used, cf. Tables 2–4.

doi:10.1371/journal.pcbi.1004929.g006
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the firing of RC action potentials in the background state, i.e., prior to stimulus onset at 500 mil-
liseconds, than immediately after stimulus onset: For example, during the depicted background
state (250–500 ms) only two of the seven incoming GC spikes result in the firing of an RC spike,
corresponding to a transfer ratio [48] of 2/7� 0.29. In contrast, in the first 75 milliseconds after
stimulus onset (500–575 ms), six of thirteen incoming GC spikes result in an RC spike, corre-
sponding to a transfer ratio of 6/13� 0.46. This transfer ratio smaller than unity value reflects
that two or more incoming GC spikes are normally needed to elicit an RC spike [48–50].

As the spiking response to individual stimulus presentations typically varies between trials, the
post-stimulus time histogram (PSTH) [43] is commonly used to characterize neural spiking
responses. Examples of such PSTHs for the set of experiments underlying the experimental area-
response curve measurements for the GC and RC on which the present model is tuned (cf. Fig 5
in [27]), can be found in [26] (Fig 3 and 4 therein). Fig 7 shows PSTHs for the GC, IN and RC
cells in Fig 6 found by binning spikes found frommany repetitions, i.e., many trials of our numer-
ical ‘experiment’. Panel A shows the PSTH from the central GC cell in a 500 ms window around
the spot onset, while panel B similarly shows the corresponding PSTH for the IN cells. The two
lower panels show corresponding PSTHs for the RC cell for two extreme situations: only axonal
inhibition (i.e., triadic inhibition turned off, wIRt = 0) in panel C, and only triadic inhibition (i.e.,
axonal inhibition turned off,wIRa = 0) in panel D. For these particular model parameters we see
that the peak response in the PSTH following stimulus onset is largest for the GC (*200 s−1) and
smallest for the IN (*50 s−1). For the RC we see that both the background (i.e., response before
stimulus onset) and peak responses are larger for the case with axonal inhibition (panel C) than
for triadic inhibition (panel D), implying that for the present choice of model parameters the tri-
adic inhibition is more efficient than axonal inhibition in reducing RC firing.

Area-summation curves
We now move on to compute and investigate area-summation curves, that is, the time-average
of PSTHs of the type shown in Fig 7, as a function of spot diameter. These time-averaged
PSTHs correspond to what is more precisely referred to as ‘spike-count’ firing rates [43], but in
the following we will for simplicity refer to them as firing rates.

In the present modeling study we in particular investigate the effects of various types of
inhibition on the area-summation curves of the RC and IN neurons. Examples of such calcu-
lated area-response curves are given in Fig 8. Here the black line gives the area-response curve
of the central GC cell providing the input, the blue line the corresponding curve for somatic
spikes for an IN, while the solid, dashed and dotted red lines show RC response curves for dif-
ferent choices of model parameters specifying inhibitory effects from the IN. The response
curves shown here correspond to the ‘raw’ data, i.e., prior to filtering by a seven-point rectan-
gular window (see Methods), and the jagged response curves serve to illustrate the inherent
variability of the trial-averaged response. The bottom panel in Fig 8 shows the data normalised
to the maximal response for each cell, thus highlighting the shapes of the area-response curves
rather than their response magnitudes.

Fig 8 shows example area-summation curves for the three different types of inhibition con-
sidered here:

(RC-i)Direct triadic inhibition: Triadic inhibition driven by GC input on same distal IN den-
drite only, i.e., wIRt > 0, wGIp = 0, wIRa = 0

(RC-ii)Direct & soma-driven triadic inhibition: Triadic inhibition driven both by GC input
on same distal IN dendrite and back-propagated soma activation in turn stemming
from proximal inputs on the IN, i.e., wIRt > 0, wGIp > 0, wIRa = 0
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Fig 7. Example post-stimulus time histograms (PSTS) for cells in dLGNmodel circuit. Stimulus spot of diameter d = 1 deg is turned on at 500 ms.
(A) PSTH for central GC cell. (B) PSTH for IN cell. (C) PSTH for RC cell with axonal inhibition only (wIRa = 4 nS,wIRt = 0). (D) PSTH for RC cell with triadic
inhibition only (wIRa = 0,wIRt = 4 nS). Results correspond to 1000 trials, bin size: 5 ms. Default model parameters are used, cf. Tables 2–4.

doi:10.1371/journal.pcbi.1004929.g007
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Fig 8. Example area-summation curves illustrating effects of various types of inhibition on relay-cell (RC) response. (A) Trial-averaged spike-
count firing rate vs. spot diameter, for central retinal ganglion cell (GC, solid black), interneuron (IN, solid blue), and relay cell (RC, red lines). Red solid
line: RC response for direct triadic inhibition (RC-i) withwIRt = 4 nS,wGIp = 0,wIRa = 0. Red dashed line: RC response for direct & soma-driven triadic
inhibition (RC-ii) withwIRt = 4 nS,wGIp = 0.6 nS,wIRa = 0. Red dotted line: RC response for axonal inhibition (RC-iii) withwIRt = 0,wGIp = 0.6 nS,wIRa = 4
nS. Dark red line (RC-all) corresponds to results from all three types of inhibition combined, i.e.,wIRt = 4 nS,wGIp = 0.6 nS,wIRa = 4 nS.wGR = 15.6 nS is
used in all cases. Other parameters correspond to default values. Note that the depicted IN response does not apply to case (RC-i) as the IN is only
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(RC-iii) Axonal inhibition: Axonal inhibition of RC following firing of action potential in the
IN, i.e., wIRt = 0, wGIp > 0, wIRa > 0.

The figure also shows the resulting area-summation curve when all these three types of inhi-
bition is included at the same time.

A first observation in Fig 8 is that the GC response in all cases is larger than the RC
response, essentially reflecting that the transfer ratio at the retinogeniculate relay always is less
than one [26, 27, 48, 49]. The spot diameter with the largest responses corresponds to the size
of receptive-field center, and we observe that while the central GC cell has a center diameter dG

c

of about 2 degrees, the IN center diameter dI
c is about 3 degrees, cf. panel B. This larger center

size reflects that the IN is driven by multiple, spatially separated GCs.
For the case with direct triadic inhibition only (RC-i) we observe that while this inhibition

reduces the RC firing rate by about a factor two compared to the GC input (solid curves in Fig
8A), the shape of the response curves, i.e., normalized response, is essentially identical (panel
B). Thus the direct triadic inhibition essentially acts as a gain control, only. With soma-driven
inhibition included as well (RC-ii), some changes in the shape is observed (dashed red curve in
panel B). In particular, a close inspection of panel B reveals that the receptive-field center size
dR
c of the RC cell now is seen to be somewhat smaller than the GC center size. An even larger
reduction of the center size is observed in the case of axonal inhibition only (RC-iii). This
reduction in receptive-field center size seen for cases (RC-ii) and (RC-iii) (as well as the exam-
ple in Fig 8 with all three types of inhibition included, RC-all) reflects the larger resulting recep-
tive-field size of the IN providing the inhibitory action on the RC cell [26, 27].

Another key qualitative feature observed in Fig 8 is the larger center-surround antagonism,
i.e., large relative dampening of the full-field response (e.g., d = 10 degrees) compared to the
peak response, seen for the cases where the inhibitory effects are the strongest (RC-ii and RC-
all for the example model in Fig 8). For IN this center-surround antagonism is instead reduced
compared to the GC input.

In the following we show area-summation curves results both when only triadic or axonal
inhibition are active like in Fig 8, and in the likely more realistic case when both types of inhibi-
tions simultaneously affect the relay-cell response.

For reference we show in the top row of Fig 9 the RC response for the case with neither tri-
adic nor axonal IN inhibition. Here we observe that the overall RC response changes only mod-
erately when increasing the excitatory connection strength wGR between the central GC cell
and the RC cell with almost 50% from the lowest value considered (wGR = 11.6 nS). The reason
is that the transfer ratio, i.e., the fraction of incoming GC spikes resulting in an outgoing RC
spike, is already quite high even for this lowest weight. This leaves limited room for further
increase in the response. Another observation is that without inhibition the RC and GC
response curves always have their maxima at the same spot diameter, i.e. dR

c � dG
c .

With direct triadic inhibition included (second row in Fig 9) we see that the RC response
curves drop substantially, e.g., about 50% for the peak response and even more for the full-field
(large-spot) response for the lowest value of wGR (11.6 nS). Unlike in the case with no inhibition,
increased excitation strength wGR is seen to increase the RC response as extra excitation will
compensate for the added direct triadic inhibition. We further see that the shapes of the RC
response curves are similar to the ‘no-inhibition’ curves, the main difference is a vertical shift of
the response curves. Such a vertical shift implies a larger relative reduction of the full-field

synaptically activated at the triads in this case aswGIp = 0. (B) Area-response curves in A normalised to have maximal values of unity. The receptive-field
center diameters dc corresponds to the spot diameter giving the largest response. The spike-count firing rates are found by averaging PSTHs of the type
in Fig 7 over the entire 500-ms time window the stimulus is on.

doi:10.1371/journal.pcbi.1004929.g008
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Fig 9. Area-response curves with triadic inhibition.Row 1: no inhibition. Row 2: direct triadic inhibition only (case (RC-i)). Rows 3–5: triadic or triadic
+axonal inhibition for different values of weight proximal ganglion-cell input to the interneuronwGIp. Black curves correspond to central retinal ganglion cell
(GC), blue curves to interneuron (IN), and red/orange curves to relay cell (RC). The four RC curves in the panels in rows 3–5 correspond towIRa = 0/2/4/8 nS
withwIRa = 0 (no axonal inhibition) andwIRa = 8 nS (maximal axonal inhibition) corresponding to the top and bottom of the four curves, respectively.

doi:10.1371/journal.pcbi.1004929.g009
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response compared to the center response, i.e., an increased center-surround antagonism. Thus
direct triadic inhibition increases the RC center-surround antagonism αR, particularly for the
lower excitatory weights. The RC receptive-field center size dR

c is essentially unaffected by the
direct triadic inhibition. This follows from the fact that in our IN model, excitation of the distal
IN dendrite results in small EPSP amplitudes at the soma (Fig 4B). Thus direct triadic inhibition
on the RC cell can only occur due to spiking inputs from the central GC cell, and such inhibition
can only affect the gain control within the triadic synapse structure (as was clearly illustrated in
the normalized response plot for the direct triadic case in Fig 8B). Since distal IN excitation
barely affects the somatic membrane potential and does not generate IN somatic action poten-
tials, an IN area-summation curve is likewise absent from the second row of Fig 9.

The three lower rows of Fig 9 depict area-response curves for various combinations of direct
and soma-driven triadic inhibition and axonal inhibition. The different rows correspond to dif-
ferent values of the proximal excitation of INs (wGIp), while different columns still correspond
to different values of the retinogeniculate excitation (wGR). The area-response curve of the IN
is, of course, independent of the value of wGR, so the same IN response curve is seen in the
same-row panels. By comparing area-response curves for increasing values of proximal IN
excitation wGIp we see, as expected, a large increase in the IN response. The increased response
is also accompanied by a reduction in center-surround antagonism of the IN neuron. However,
the IN receptive-field center size dI

c is much less affected.
In each of the nine panels in the lower three rows in Fig 9 there are four (red/orange) RC

area-summation curves corresponding to different values of the axonal inhibition weight
wIRa. The topmost curves correspond to the situation without axonal inhibition (wIRa = 0),
while the three other curves corresponds to different non-zero values of wIRa (2/4/8 nS) with
the lowest curve corresponding to the largest weight considered (wIRa = 8 nS). It is seen that
not only does increased axonal inhibition reduce the RC response, it also reduces the RC
receptive-field center size dR

c . Both effects are seen to be strongest when the proximal excita-
tion wGIp of the IN is largest.

The effects of the various model components and parameters on key response measures for
the results in Fig 9 are summarized in Fig 10. This figure shows how the RC and IN receptive-
field center sizes (dR

c , d
I
c), center-surround antagonisms (αR, αI), and maximum firing rates

vary with the axonal inhibition weight (wIRa) for a set of different values of the weight of gan-
glion-cell activation of the RC (wGR) and of the proximal dendrites of the IN (wGIp, color
coded according to legend box below figure).

A first observation is that the receptive-field center size of the RC (dR
c ) is substantially

reduced both when the proximal excitation of the proximal IN dendrites (wGIp) and when the
axonal inhibition weight from the IN to the RC (wIRa) are increased (panel A). This is as
expected as both these weights determine the overall axonal inhibition of the RC providing the
shrinkage of the RC receptive-field center [27]. In contrast, the receptive-field center size of the
IN (dR

c ) can naturally only depend on the weight of the proximal synapse from the GC (wGIp).
This increase is quite modest, however, and most of the observed variation in the ratio between
the IN and RC center sizes (dI

c=d
R
c ) (panel B) comes from the variation of the RC center size.

The center-surround antagonism for the RC (αR) is seen to be almost independent of the
axonal inhibition weight wIRa (panel C). This implies that the RC center-surround antagonism
is little affected by axonal inhibition.

For the smallest values of the weight of the ganglion-cell input to the RC (wGR = 11.6 nS),
αR does not depend much on somatic IN activity (panel C): αR is large, about 0.7, for all consid-
ered values for wGIp. However, for the two largest values of the ganglion-cell input weight to
the RC (wGR = 13.6 nS, wGR = 15.6 nS) some variation with wGIp is observed: For example, for
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Fig 10. Summary of responsemeasures from area-response curves with triadic inhibition present. (A) Ratio of receptive-field center
diameter of relay cell (RC) and (central) retinal ganglion cell (GC), dR

c =d
G
c ; receptive-field center diameter measured as the spot diameter

corresponding to the largest firing rate in the area-summation curves in Fig 9. (B) Ratio of receptive-field center diameter of interneuron (IN) and
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wGR = 15.6 nS, αR is seen to vary between*0.4 for wGIp = 0 to*0.6 for wGIp = 1.8 nS. As wGIp

= 0 corresponds to the case with direct triadic inhibition only (and it is also seen that αR is
essentially independent of wIRa) this substantial increase in αR must be due to soma-driven tri-
adic inhibition. Thus while direct triadic inhibition alone is seen to be sufficient to assure a
large centre-surround inhibition when the retinogeniculate excitation wGR is weak, soma-
driven triadic inhibition can provide the same when the retinogeniculate excitation is strong.

The center-surround antagonism for the IN (αI) is generally much lower than for the RC
[27] and is seen to vary between*0.25 and*0.4 depending on the value of wGIp (panel C,
dashed lines).

The maximum firing rate rRc of the RC, i.e., the firing rate at the peak of the area-summation
curve, is as expected seen to decrease both with increasing axonal inhibition weight (wIRa) and
increasing synaptic input onto the proximal dendrites of IN (wGIp) (solid lines in Fig 10D). For
the IN, the maximum firing rate rIc is correspondingly seen to increase when the weight of prox-
imal synaptic input from GCs (wGIp) increases (panel D, dashed lines).

In Fig 11 we show, in analogy to Fig 9, the same set of area-summation curves in the absence
of triadic inhibition, i.e., wIRt = 0. In this case where only axonal inhibition acts on the RCs, we
observe as expected less reductions of RC responses, particularly for the smallest considered
values of wGIp and wGR. However, as confirmed by the corresponding parameter dependence
of the key response measures shown in Fig 12, most qualitative effects of increasing the inhibi-
tory synaptic weights are similar to what was seen for the case with triadic inhibition included,
cf. Fig 10: The receptive-field center size of the RC (dR

c ) (panel A) decreases with increasing
axonal inhibition (wIRa) and increasing ganglion-cell drive onto proximal IN dendrites (wGIp).
This is also the case for the maximal RC firing rate rRc (panel D), but here the firing rates are as
expected overall higher compared to the case with triadic inhibition.

A final observation in Fig 12 is that the center-surround antagonism for the RC (αR, panel
C) is seen to generally be lower when triadic inhibition is absent, cf. Fig 10C. This is in accor-
dance with the previous observation for the results with triadic inhibition (Fig 10C) where αR
was seen to be largely independent of the axonal inhibition weight wIRa. This was interpreted to
reflect dominance of triadic inhibition over axonal inhibition in determining the RC center-
surround antagonism.Without triadic inhibition we observe in Fig 12C that αR instead
increases with the value for the axonal inhibition weight wIRa.

Transient vs. sustained response
So far we have only considered the spike-count rate pooling all spikes within the whole 500 ms
time interval following stimulus onset in our simulations. As seen in Fig 7 there is a strong
transient component of the response with a peak in the PSTHs around 25 ms after stimulus
onset while the generally much lower sustained (steady-state) response is reached around 100
ms after onset. This is in qualitative accordance with observations in flashing-spot experiments
on cat RCs [26, 35, 51]. We thus next asked the question of whether triadic and axonal inhibi-
tion have differential effects on the transient and sustained responses of the RC.

In Fig 13 we compare area-response curves computed for the transient phase (0–100 ms
after stimulus onset) to the sustained phase (400–500 ms after stimulus onset) for the same
model examples as in Fig 8. Comparison of the (unnormalized) responses in the top row

relay cell (RC), dI
c=d

R
c . (C) Relay-cell αR (solid) and interneuron αI (dashed) center-surround antagonisms, cf. Eq 7. (D) Maximal firing rate rc, i.e.,

firing rate for spot exactly covering receptive-field center, for relay cell (rRc , solid) and interneuron (r Ic, dashed). The colored lines correspond to
different values ofwGIp, see legend below panels. Note also that interneuron (IN) results are absent for the case withwGIp = 0 (blue lines) since in
this case the IN only receives triadic input and does not fire any action potentials.

doi:10.1371/journal.pcbi.1004929.g010
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Fig 11. Area-response curves without triadic inhibition.Row 1: no inhibition. Rows 2–4: axonal inhibition for different synaptic weight values of
proximal ganglion-cell input to the interneuronwGIp. Black curves correspond to central retinal ganglion cell (GC), blue curves to interneuron (IN), and
red/orange curves to relay cell (RC). The four RC curves in the panels in rows 2–4 correspond towIRa = 0/2/4/8 nS withwIRa = 0 (no axonal inhibition) and
wIRa = 8 nS (maximal axonal inhibition) corresponding to the top and bottom of the four curves, respectively.

doi:10.1371/journal.pcbi.1004929.g011

Inhibitory Effects on Visual Response Properties of dLGN Relay Cells

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004929 May 20, 2016 26 / 38



Fig 12. Summary of responsemeasures from area-response curves without triadic inhibition. For explanation of panels, see caption of Fig
10.

doi:10.1371/journal.pcbi.1004929.g012
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Fig 13. Area-summation curves for transient response and sustained response for relay-cells (RCs). (A–B) Trial-averaged spike-count firing rate
vs. spot diameter, for central retinal ganglion cell (GC, solid black), interneuron (IN, solid blue), and relay cell (RC, red lines) for transient (A) and sustained
responses (B). (C–D) Area-summation curves in A and B normalized to the maximum firing rate for each cell. The transient response corresponds to the
trial-averaged spike-count firing rate for the first 100 ms after stimulus onset, while the sustained response corresponds to the averaged rate in the time
interval from 400 to 500 ms after stimulus onset, cf. Fig 7. The depicted models examples are the same as in Fig 8: Red solid line: RC response for direct
triadic inhibition (case (RC-i)) withwIRt = 4 nS,wGIp = 0,wIRa = 0. Red dashed line: RC response for direct & soma-driven triadic inhibition (case (RC-ii))
withwIRt = 4 nS,wGIp = 0.6 nS,wIRa = 0. Red dotted line: RC response for axonal inhibition (case (RC-iii)) withwIRt = 0,wGIp = 0.6 nS,wIRa = 4 nS. Dark red
line (RC-all) corresponds to results from all three types of inhibition combined, i.e.,wIRt = 4 nS,wGIp = 0.6 nS,wIRa = 4 nS.wGR = 15.6 nS is used in all
cases. Other parameters correspond to default values. Note that the depicted IN response does not apply to case (RC-i) as the IN is only synaptically
activated at the triads in this case aswGIp = 0. Note also that 500 trials, not the default value of 10 trials, were used to compute each depicted trial-averaged
spike-count rate, and that no seven-point filtering was employed to smooth the area-summation curves.

doi:10.1371/journal.pcbi.1004929.g013
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demonstrates the large differences in firing rates, the transient response (panel A) being up to
a factor two larger than the sustained response (panel B). For the present model examples, the
triadic and axonal inhibition are seen to be roughly equally effective in dampening the RC
response for the transient response for spots filling the receptive-field center (panel A). Inter-
estingly, however, the triadic inhibition is seen to be more effective than axonal inhibition in
dampening this response to center-filling spots for the sustained response. This feature is seen
also for other values of retinogenculate excitation wGR than the one used in this example, cf.
Fig 14B.

Comparison of the normalized area-response curves (panels C and D in Fig 13) reveals only
subtle differences in the area-response shapes. One observation is that soma-driven triadic ini-
hibition seems slightly more effective in suppressing the sustained than the transient RC
responses for the largest spot diameters.

For the sustained response we also observe in panel D a weak ‘noisy’minimum in the
response for spot diameters d around 5–6 degrees for the case with both triadic and axonal
inhibition (RC-all), a feature not present for the transient response (panel C). This minimum
stems from the strong activation of the INs for these spot sizes (cf. blue curve in panel D) com-
pared to for the larger spot sizes, i.e., d*8–10 degrees. While this feature of the IN response
curve is also present for the transient response, it is slightly less so. The more prominent role of
the combined triadic and axonal inhibition in modifying the receptive-field of the RC (com-
pared to the GC) in the sustained response than in the transient response is also manifested by
the slightly smaller receptive-field center size (dR

c ) and widths of the peak of the area-summa-
tion curves, cf. panels C and D in Fig 13.

Fig 14. Summary of key results on different effects of triadic and axonal inhibition on relay-cell (RC) response. (A) Dependence of diameter of
RC receptive-field center dR

c on two key model parameters (wGIp, weight of proximal excitation of the interneuron (IN);wIRa, weight of axonal inhibition)
for the case of axonal inhibition only (i.e.,wIRt = 0). For this example the diameter of the ganglion-cell receptive-field center dG

c is fixed to 1.8 deg, and the
retinogeniculate excitation is set towGR = 11.6 nS. (B) Transient and sustained RC responses for center-filling spots, corresponding to maximal
responses in the area-response curves, for the cases of only triadic or only axonal inhibition. Dependence of maximal response on retinogeniculate
excitation weightwGR is depicted. Other parameters:wIRa = 4 nS,wGIp = 0.6 nS. (C) Dependence of center-surround antagonism, quantified by the
coefficient αRC (Eq 7), onwGIp, the weight of the GC excitation of INs on the proximal dendrites. Dark-blue line: No inhibition,wIRa =wIRt = 0. Red line:
Axonal inhibition only,wIRt = 0,wIRa = 8 nS. Green line: Triadic inhibition only,wIRa = 0. Light-blue line: Both triadic and axonal inhibition,wIRa = 8 nS.
Retinogeniculate excitation is set towGR = 15.6 nS. In B and C simulation data points are marked with dots, and lines are added as a guide for the eye.
Note that 500 trials, not the default value of 10 trials, were used to compute the depicted trial-averaged spike-count rate in panel B.

doi:10.1371/journal.pcbi.1004929.g014
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Discussion
In the present modeling work we have investigated putative roles of triadic and axonal inhibi-
tion from dLGN interneurons (INs) on the visual response properties of dLGN relay cells
(RCs) relaying visual information to cortex. Taking advantage of a recently developed biophy-
sically detailed multicompartmental model for an IN, the study is the first investigating the
effects of different inhibitory actions of INs, i.e., triadic inhibition due to dendrodendritic con-
tacts between INs and RCs and standard axonal inhibition. The interplay of these two inhibi-
tory pathways is expectedly essential for understanding the functional role of inhibition in the
dLGN circuit [52, 53]. To compare with (i) in vivo data of responses to flashing spot stimuli for
cat RC cells of the X-type [26] and (ii) previous firing-rate models of the dLGN circuits [27],
we have focused on a minimal network motif consisting of five RCs, modeled as single-com-
partment neurons, receiving inhibition from a single multicompartmental IN. These dLGN
neurons are in turn driven by spiking inputs from five neighbouring retinal ganglion cells
(GCs).

As in [27] we have computed and investigated area-response curves for circular flashing
spots and studied how the model ingredients and parameters affect their detailed shapes and
features, in particular (i) the receptive-field center size dc of RCs and INs, identified as the flash-
ing spot diameter giving the largest spike-count firing-rate reponse, (ii) themaximal firing rate
(occuring for spots exactly filling the receptive-field centers), and (iii) the center-surround
antagonism αmeasuring the suppression of large-field responses compared to the maximal
responses. A particular focus of our study has been the investigation of differential effects of tri-
adic and axonal inhibition on the response properties of RCs, and key findings are summarized
in Fig 14 and discussed below.

Triadic vs. axonal inhibition
Our model contains three distinct types of inhibition, (i) direct triadic inhibition, (ii) soma-
driven triadic inhibition and (iii) axonal inhibition, each with putatively different inhibitory
effects on the RCs.

Gain control vs. shaping of RC spatial receptive fields. One of the findings is the differ-
ent roles played by direct triadic and axonal inhibition in shaping the spatial receptive fields of
RCs. Direct triadic inhibition was found to essentially only provide a simple non-linear gain
control of the conversion of input spikes to output spikes by RCs (cf. two top rows of Fig 9),
with no qualitative changes on the shape of the area-response curve (cf. RC-i in Fig 8B). The
receptive-field center size was unchanged compared to the no-inhibition situation, reflecting
the assumed spatially local inhibitory action on a single dendritic branch.

Axonal inhibition, on the other hand, was found to have a substantial effect on the size of
the receptive-field center: the larger the inhibition, the more the RC center size shrinks com-
pared to the center size of the retinal ganglion cell (GC) providing the feedforward excitation,
see, e.g., panel A of Fig 12. This shrinking follows from the larger receptive-field center size of
the IN compared to the central GC [26, 27]. Thus the exact magnitude of the receptive-field
shrinking will in our model depend on the parameter values for the proximal GC excitation of
INs (wGIp) and the weight of the axonal inhibition of the central RCs by the IN (wIRa) as shown
in Fig 14A. These results for the ratio dR

c =d
G
c show that the product of these two model parame-

ters is a good predictor of the receptive-field shrinkage resulting from axonal inhibition.
As soma-driven triadic inhibition is activated by the same IN action potentials that drive

axonal inhibition, this type of triadic inhibition will also contribute to the shrinking of the RC
receptive-field center. This is for example observed for the example with both direct and soma-
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driven triadic in Fig 8B (RC-ii) where the receptive-field center is smaller than for direct triadic
inhibition only (RC-i) (but larger than for axonal inhibition only, RC-iii).

Thus, a possible role of the different inhibitory actions from INs to RCs in the dLGN circuit
is to provide separate mechanisms for affecting gain control only (direct triadic inhibition) and
regulation of receptive-field center size (axonal inhibition, soma-driven inhibition) of visual
signals sent to cortex. A smaller receptive-field center size suggests higher spatial resolution,
but see [54].

Center-surround antagonism. The center-surround inhibition has been observed to be
larger for LGN RCs compared to the retinal GCs driving them, see [26] and references therein.
Both triadic and axonal inhibition contribute to increasing the RC center-surround antagonism
compared to GC input, but triadic inhibition was found to be the most efficient mechanism in
doing so. This is further illustrated in Fig 14C where we compare the center-surround antago-
nism coefficient αR measuring the dampening effect of the inhibitory surround on the RC
response compared to the maximal RC response (Eq 7). With axonal inhibition only, αR
increases from the no-inhibition value of 0.37 to 0.49 found for the maximal values considered
for wGIp (1.8 nS) and wIRa (8 nS) in this study. With direct triadic inhibition only (i.e., triadic-
inhibition curve for wGIp = 0), αR is at a modest value of 0.44. With soma-driven triadic inhibi-
tion included as well (i.e., triadic-inhibition curve for wGIp>0), αR gradually increases with
increasing excitation of the IN (i.e., increasing value for wGIp) up to a maximum value of αR =
0.56. Interestingly, addition of axonal inhibition on top of this triadic inhibition is seen in Fig
14C to have little effect on the total value of αR, even with our maximum weight for the inhibi-
tion of the RC (wIRa = 8 nS). Thus while direct triadic inhibition alone is seen to be sufficient to
assure some extra centre-surround inhibition, the addition of soma-driven triadic inhibition
increases αR, substantially. Note, however, that the model example in Fig 14C has a fairly
strong retinogeniculate excitation, i.e., wGR = 15.6 nS. For weaker retinogeniculate excitation,
e.g., wGR = 11.6 nS, we observed in Fig 10C that direct triadic inhibition alone was sufficient to
provide a large value of center-surround antagonism.

Transient vs. sustained response. Another difference between the effects of axonal and
triadic inhibitions were observed when comparing area-response curves computed for the tran-
sient phase (0–100 ms after stimulus onset) with corresponding responses in the sustained
phase (400–500 ms after stimulus onset) (Fig 8). As found for the example in Fig 13, triadic
inhibition seems, compared to axonal inhibition, to be particularly efficient in inhibiting the
sustained RC response. As demonstrated in Fig 14B this is also observed for other values of
retinogeniculate excitation, parameterized in our model by wGR, and is particularly prominent
for weaker excitation. Here the maximum RC response, i.e., occurring for spots filling the
receptive-field center, is shown both for the transient and sustained responses for different val-
ues of the retinogeniculate excitation wGR. Only the cases with direct triadic inhibition or axo-
nal inhibition (cases (RC-i) and (RC-iii)) are considered. For all values of wGR less than 15.6
nS, the value used in the example in Fig 13, we see that the reduction of the sustained response
compared to the transient response is particularly prominent for the case with triadic inhibi-
tion only.

Timing of inhibitory action. Direct triadic inhibition where time-locked dendrodendritic
inhibition occurs due to the same GC spike that provides the excitatory input, was the fastest-
acting of the three types of inhibition presently considered. Both soma-driven triadic and axo-
nal inhibition follow only after the generation of IN action potentials which, in our model,
required multiple simultaneously arriving GC spikes at the proximal dendrites of the IN. Fol-
lowing this simultaneous input volley it took in our model on the order of ten milliseconds for
the action potential occur, a time lag mainly set by the time needed to activate the calcium cur-
rents involved in driving the neuron above the action-potential initiation threshold. Thus
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effects both from soma-driven triadic and axonal inhibition are substantially delayed compared
to putative excitatory effects of the same GC input spikes. In our model the time constant of
activation of the axonal inhibition was on the order of 1 ms (cf. Table 3), much shorter than
the time it takes for the IN action potential to backpropagate from the IN soma to the triad and
activate soma-driven triadic inhibition (*5 ms, cf. Fig 5). Thus axonal inhibition was a faster
mode of inhibition than soma-driven triadic inhibition in our model.

Role of soma-driven inhibition. Finally, it should be noted that of the three types of inhi-
bition, soma-driven triadic inhibition is both conceptually and biophysically less understood
than the two others: Although somatically elicited APs in INs are known to successfully invade
distal dendrites [37], it has still not been proven that they actually do trigger dendritic GABA
release directly, although this seems likely [41]. It might nevertheless be that the key role of
soma-controlled dendritic signals is to regulate the release probability, e.g., via the activation of
local dendritic NMDA receptors [41] or metabotropic glutamate receptors [42]. These mecha-
nisms were not included in the current model, and more experimental studies are clearly
needed to constrain this aspect of the model.

Future model applications and extensions
We consider the present investigation to be only the first of several applications of the present
modeling approach. Until recently, dLGN circuit models lacked a key ingredient, namely an IN
model incorporating the key dual-action inhibitory features of this cell type. With the arrival of
the first multicompartmental dual-action IN model [24], we can now, with the combined use
of existing (single-compartment) Hodgkin-Huxley type models for relay cells (see [55] for an
overview), investigate dLGN circuitry in models at a new level of biological realism. This will
not only enable elucidation of the role of dLGN circuitry in shaping spatial response features
like here, but also the key role played by the circuit in temporal processing of the incoming
spike trains from retina [39, 52]. Below we discuss various directions where the present model-
ing approach should be considered.

Brain state—tonic vs. bursty spiking. The neurons in the dLGN receive modulatory
input from other parts of the brain which, among other things, may cause the dLGN circuit to
shift between drowsy and attentive cognitive states [56, 57]. Such state-regulating modulation
can shift the resting membrane potential of both RCs and INs, which in turn can switch the fir-
ing mode of these neurons between tonic and bursty [13, 39, 56–60]. In the current study, our
RC and IN models were based on data from RC and IN neurons that both rested on relatively
depolarized membrane potentials (–60 mV and –63 mV, respectively) and were characterized
by tonic response modes, cf. Fig 2. One obvious step in future investigations would be to
explore how the conclusions we arrived at in the current work depend on the processing state
of the dLGN.

Firing regime and receptor activation. The signal processing in the dLGN depends in
non-trivial manners on external conditions. In [14], the author distinguishes between two
input regimes in the dLGN: (i) a low-input regime (low GC firing frequency), where the gluta-
matergic input to relay cells and INs is thought to be primarily mediated by AMPA receptors,
and (ii) a high-input regime that also triggers the slower NMDA and metabotropic glutamate
receptors (mGluRs). Although recent experiments have indicated that a sharp distinction
between low and high-input regimes may be questionable [61], it is still likely that the input
intensity determines which receptor subtype that dominates in generating the dLGN response.
Our model was adapted to experimental data where the observed IN and RC responses were
found not to depend on mGluR-activation [15, 41]. The model predictions are therefore
expectedly most valid for signal processing in the low-input regime. However, mGluR
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activation could have numerous additional effects on the signal processing in the dLGN [12,
42, 61–63], and a natural step in future investigations would be to investigate effects of mGluR
activation in the current model.

A subclass of RC cells, the so-called lagged cells, has been found to have delayed visual-
response onset and an initial suppression of response until it reaches a maintained firing level
[5], contrasting the fast and strong transient response found for the presently studied non-
lagged cells, cf. the PSTHs in panels C and D in Fig 7. This property has been linked to domi-
nance of NMDA receptors over AMPA receptors at the excitatory part of the retinogeniculate
synapse [64]. Again, the effect of various combinations of these ionotropic glutamate receptors
at this synapse could directly be studied in a modified version of our model.

Retinal input. In the present model application we have focused on the situation with a
single dominant retinal GC input to each RC as in the analogous firing-rate based model in
[27]. RCs receiving input from multiple GCs have also been observed [7, 8]. However, our pres-
ent model assumption of a single GC input naturally accounts for the experimental observation
that the receptive-field centers for the RCs typically have similar or smaller sizes than those of
the GCs (as measured by S-potentials) [26]. With strong inputs from several spatially displaced
GCs, the receptive-field centers of the RCs would instead be larger than those of the GCs and
thus at odds with the experimental data set on which the present version of the model is tuned.
The study of the effect of having multiple GC inputs would be a natural future application [65],
as would the study of the effect of having a set of discrete units describing the receptive field of
the GC rather than the circularly symmetric DOGmodel [66].

Further, the present retinal input was described by a spatiotemporally separable filter
model, i.e., the spatiotemporal GC receptive field was assumed to be described by a spatial
function (in this case a DOG-model [36]) multiplied by a temporal function. However, several
studies have demonstrated receptive fields in the GCs driving the LGN which are non-separa-
ble in space and time [51, 67, 68]. In [35] a new non-separable spatiotemporal receptive-field
model, consisting of a sum of a transient and sustained component, was derived based on
high-resolution, time-resolved area-summation curves for LGN RCs from [51]. As qualitatively
similar area-summation curves was observed for the GC input, a future project would be to
explore the LGN circuit response to GC input described by such non-separable filter models.

In our model application we have also assumed a (time-modulated) Poissonian distribution
of the incoming GC spikes. Experimental recordings have revealed a more regular spike-train
input than Poissionian [48, 69, 70]. The effect of this regularity could be investigated by consid-
ering input GC spike trains instead obeying a gamma-process statistics, as in the model study
of [50].

Feedback from cortex and thalamic reticular nucleus (TRN). Both RCs and INs receive
excitatory feedback from cortex, both via ionotropic and metabotropic receptors, and inhibi-
tory feedback from the GABAergic neurons in the thalamic reticular nucleus [11, 39, 71–74].
The effect of the feedback on circuit behaviour will likely depend strongly on whether the feed-
back arrives on distal dendrites or close to the soma. This is again a question that can be
directly investigated with a network model of the present type including a spatially extended
multicompartment IN model incorporating both triadic and axonal actions.

Local dendritic processing is particularly important in the electrotonically extensive INs
[28], but recent experiments have indicated it also plays an important role in processing corti-
cal input to distal RC dendrites [75]. In the current study, we explored the LGN response to ret-
inal input, and kept a particular focus on the processing by the triadic synapse which tends to
be located distally at IN dendrites and proximally at RC dendrites. We therefore used an exten-
sive, multicompartmental IN model, while we assumed that a single-compartment model was
sufficient for the (generally more compact [28]) RC. However, to properly explore modulatory
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input to LGN arriving at distal dendritic sites, it is likely that our model should be expanded to
include a more comprehensive, multicompartmental model also for the RCs (see, e.g., [23]).

Synaptic plasticity. The present model assumes static synapses while in vitro studies have
demonstrated short-term synaptic plasticity throughout the circuit. The feedforward excitatory
synapse from GCs to RCs has been found to be short-term depressing [76] as has the feedback
excitatory synapse from cortical cells to INs [73]. In contrast, the feedback excitatory synapse
from cortical cells to RCs is short-term facilitating [77]. This suggests the possibility for inter-
esting and varied dynamics in the dLGN circuit, a dynamics that likely will require detailed cir-
cuit modeling to unravel.

‘Same-sign’ vs. ‘push-pull’ inhibition. In the present model the IN has been assumed to
receive GC input with symmetry of the ‘same sign’, i.e., ON or OFF, as the RC it inhibits. For
the direct triadic input this ‘same-sign’ follows directly, but it is also possible that the proximal
synaptic input to the IN which drive the generation of IN action potentials, has the opposite
‘push-pull’ symmetry [6, 78]. If so, the axonal inhibition (as well as the soma-driven triadic
inhibition) from the IN onto the RC will have the opposite symmetry compared to the excit-
atory input to the RC from the GC, an arrangement suggested in [53, 65, 79]. While this
arrangement seems difficult to reconcile with the observed shrinking of the RC receptive-field
center compared to the GC input [26, 27], the consequences of driving IN action-potential fir-
ing with proximal GC inputs with opposite or mixed symmetries (cf. [65]), should also be
explored in a model of our type.

Outlook
The present model is based on data from several animal species: the target RC and GC area-
response curves are from cat dLGN [26, 27], the RC single-compartment neuron model was
developed to investigate network dynamics in ferret slices [29], while the multicompartment
IN model is based on data from mice [24]. Main features of thalamic physiology seem to be
well conserved across species [52]. However, the applicability of the present ‘chimeric’model
to account for data from different species is presently unknown, in particular since different
arrangements of the LGN circuit elements may give very different signal-transformation prop-
erties [65, 78]. This will have to be explored by comparison of model predictions with experi-
mental data from the various species.

With the advent of ever more sophisticated techniques for controlling gene expression in
mice (accompanied by the possibility for optogenetic activation [80]), the mouse dLGN has
emerged as a particularly interesting model system [52]. The full mouse dLGN has only about
18.000 neurons, so network simulations of a sizable fraction of the visual field is feasible with
present-day computers. However, ‘no nucleus is an island’ [52], and a comprehensive under-
standing of the function of the dLGN circuit likely also will require simultaneous modeling of
the primary visual cortex (with 360.000 neurons [81]) and maybe also other brain areas. Such
modeling of the visual thalamocortical system in mice can be facilitated by joint application of
models at different levels of resolution. In the present model, for example, the GC input was
modeled by means of stochastically generated spike trains obeying spatiotemporal probability
distributions found from descriptive firing-rate models. The RC cells were modeled as single-
compartment Hodgkin-Huxley type neuron models producing spikes, but the connection to
the previous firing-rate model of the same system [27] was apparent as very similar trial-aver-
aged area-response curves were produced. In the same vein one could envision modeling the
effects of cortical feedback to the dLGN circuit by means of firing-rate models for populations
of cortical cells feeding back to spiking network models in the dLGN (rather than firing-rate
models [74]). With a comprehensive mapping of the physiological and anatomical properties

Inhibitory Effects on Visual Response Properties of dLGN Relay Cells

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004929 May 20, 2016 34 / 38



of the cells (and their connections) in mouse dLGN and visual cortex on the way [81, 82], the
time seems ripe for comprehensive efforts to finally build mechanistic models mimicking signal
processing in the dLGN.
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