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Abstract—Classification of neurons from extracellular record-
ings is mainly limited to putatively excitatory or inhibitory
units based on the spike shape and firing patterns. Narrow
waveforms are considered to be fast spiking inhibitory neurons
and broad waveforms excitatory neurons. The aim of this work
is twofold. First, we intend to use the rich spatial information
from high-density Multi-Electrode Arrays (MEAs) to make
classification more robust; second, we hope to be able to
classify sub-types of excitatory and inhibitory neurons. We
first built, in simulation, a large dataset of action potentials
from detailed neural models. Then, we extracted spike features
from the simulated recordings on a high-density Multi-Electrode
Array model. Finally, we used a Convolutional Neural Networks
(CNN), to classify the different cell types. Compared with the
ground truth data from the simulated dataset, the results show
that this forward modelling/machine learning approach is very
robust in recognizing excitatory and inhibitory spikes (accuracy
≥ 92.15%). Additionally, the approach can, to a certain extent,
correctly classify different cell sub-types. As the detail and
fidelity of neural models increase and high-density recordings
become available, this approach could become a viable and
robust alternative for classification of neural cell types from
in-vivo extracellular recordings.

I. INTRODUCTION

In neural tissue, excitatory and inhibitory neurons are
organized in networks to allow neural circuits to perform pro-
cessing of information [1]. Therefore, distinguishing between
these two classes of cell types is essential to investigate their
functions in neural circuits. With extracellular recordings,
we are able to measure the activity of neurons as electrical
potential deflections mainly due to ionic transmembrane
currents. The largest signals are recorded when neurons fire
action potentials (or spikes). Neurons are usually classified
as excitatory or inhibitory units by comparing spike shapes
[1], [2]: narrow waveforms are considered to be fast spiking
inhibitory neurons and broad waveforms excitatory neurons.

Although differences in somatic current amplitudes and
widths exist during spiking of excitatory and inhibitory
neurons [1] (Fig. 1A), the extracellular action potential (EAP)
is also affected by the dendritic transmembrane currents [3]
(in Fig. 1B we show EAP at 15µm away from the soma).
When looking at simulated spike widths and amplitudes of
a multitude of neurons located around a recording probe
(Fig. 1C), the differences between excitatory and inhibitory
neurons are not as clear as for the somatic currents. While the

difference in amplitude is lost because the neuron location
is unknown and the potential falls off depending on the
recording distance [3], the spike width tends to increase with
increasing distance from the recording site [4], yielding an
extensive overlap between excitatory and inhibitory units. In
this study, we propose a novel approach to classify neuron
cell types from extracellular recordings; our method precisely
categorize excitatory and inhibitory neurons and can further
classify sub-types of inhibitory neurons.

The latest development in fabrication of advanced neural
probes, such as high-density Multi-Electrode Arrays (MEAs)
[5], provides rich spatial information, since the same spike
is measured on multiple recording sites. We combine these
devices with detailed neural models [6], which allow us
to build large datasets of high-fidelity simulated recordings.
Then, we apply powerful machine learning techniques, such
as Convolutional Neural Networks (CNN), to classify exci-
tatory and inhibitory neurons (binary classification), and to
distinguish among 13 different morphological types (m-type
classification). We also evaluate the effect of varying neurons
alignment with respect to the recording MEA, rather than
only shifting neurons in space, as in Ruz et al. [7].

This work is an extension of Buccino et al. [8], in which we
used the same dataset and approach for neural localization.
The article is organized as follows: in section II we describe

Fig. 1. (A) Somatic spike currents of 9 inhibitory neurons (red) and 4 excita-
tory neurons(blue). (B) Extracellular Action Potentials (EAP) 15µmfrom the
soma. There are differences with respect to (A), e.g. one of the inhibitory
neuron’s amplitude is larger than the excitatory ones, probably due to a
dendrite close to the recording site. (C) Spike amplitude versus width of
13000 simulated neurons at different distances from the recording site. The
excitarory (blue) and inhibitory (red) points greatly overlap in the center.
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the methods used for simulations and deep learning; in
section III the results of the classification are presented; and
in section IV we discuss this work and highlight potentials,
limitations, and future directions.

II. METHODS

A. Cell types and morphologies

The Neocortical Microcircuit Collaboration Portal [6], [9]
has been chosen as source for the neuronal models that
we used to generate simulated recordings. The models are
from juvenile rat somatosensory cortex and we focused on
neurons in layer 5 (L5). There are 13 types of morphologies
(m-type) in L5: 9 types are inhibitory neurons (Bipolar
Cells - BP, Bitufted Cells - BTC, Chandelier Cells - ChC,
Double Boquet Cells - DBC, Large Basket Cells - LBC,
Martinotti Cells - MC, Nest Basket Cells - NBC, Neuroglial
Cells - NGC, Small Basket Cells - SBC) and 4 types are
excitatory, i.e. the pyramidal cells (PC), (Small-Tufted PC -
STPC, Thick-Tufted PC (type 1) - TTPC1, Thick-Tufted PC
(type 2) - TTPC2, Untufted PC - UTPC). Inhibitory cells
of the same m-type can show different electrophysiology
firing properties (e-type - e.g. bAC stands for burst acco-
modating ). However, since we use single spike waveforms
to classify among neural types, we consider models of a
unique e-type for each m-type. Table I summarizes the 13
neuron models involved in the study, available online at
https://bbp.epfl.ch/nmc-portal/welcome.

B. Simulated Recordings

We used NEURON [10], within the LFPy Python package
[11], to simulate the cell models. The 13 neuronal models are
run separately: first, we apply a constant current to the soma
so that the neuron fires 10 times in 1.2 s simulation period;
second, spikes are clipped between t=-2 ms and t=5 ms,
where t=0 is when the intracellular membrane voltage peak
occurs; third, in LFPy, we used transmembrane currents
computed in the previous steps to build the extracellular po-
tential at the recording sites by summing the contribution of
each segment using a line-source model (tissue conductivity
σ=0.3 S/m - for further detail please refer to [7], [11]).

The probe recording sites are in a 2D configuration with
an inter-electrode-distance of 15µm, similarly to the MEA

model name type layer m-type e-type cell_id
L5_BP_bAC217_1 I L5 BP bAC217 1

L5_BTC_bAC217_1 I L5 BTC bAC217 1
L5_ChC_cACint209_1 I L5 ChC cACint209 1
L5_DBC_bAC217_1 I L5 DBC bAC217 1
L5_LBC_bAC217_1 I L5 LBC bAC217 1
L5_MC_bAC217_1 I L5 MC bAC217 1
L5_NBC_bAC217_1 I L5 NBC bAC217 1

L5_NGC_bNAC219_1 I L5 NGC bAC217 1
L5_SBC_bNAC219_1 I L5 SBC bAC217 1

L5_STPC_cADpyr232_1 E L5 STPC cADpyr232 1
L5_TTPC1_cADpyr232_1 E L5 TTPC1 cADpyr232 1
L5_TTPC2_cADpyr232_1 E L5 TTPC2 cADpyr232 1
L5_UTPC_cADpyr232_1 E L5 UTPC cADpyr232 1

TABLE I
CELL MODELS FROM NMC PORTAL: model name IS THE FULL MODEL

NAME, type SHOWS EXCITATORY (E) AND INHIBITORY (I) CLASS, layer IS
THE CORTICAL LAYER, m-type IS THE MORPHOLOGICAL TYPE, e-type IS
THE ELECTRICAL TYPE, cell_id REFERS TO THE SPECIFIC CELL MODEL.

prototype described in Schröder et al. [5]. Instead of a
16x16 configuration, we used a 10x10 arrangement. The
center of the MEA is located at the origin of the reference
system, while the recording sites lie on the yz-plane. Neurons
are located in the semispace having positive x-axis (the x-
coordinate is the distance from the MEA). We generated
1000 extracellular action potential (EAP) recordings for each
neuronal model, by randomly choosing 1 out of the 10
generated spikes and by placing the soma at random 3D loca-
tions within the following boundaries: x ∈ [10µm, 60µm],
y ∈ [-75µm, 75µm], and z ∈ [-75µm, 75µm] (the MEA
covers the yz plane from around -75µmto 75µmin the y and
z directions). In the calculation of the extracellular potential,
LFPy automatically adjusts the position of neurites that are
too close to a recording point and would, in turn, lead to
an infinite electric potential [11]. Only sizeable spikes with
a peak-to-peak amplitude greater than 30µV on at least one
recording site were included in the final dataset.

As anticipated in section I, we investigated different
neuron-MEA alignments (or rotations). Some of the neurons
that we used, such as pyramidal cells (PC) and bipolar cells
(BP), show a selected orientation of their dendritic arbor. As
all neurites, including dendrites, actively contribute to the
extracellular potential [3], different alignments might affect
the classification performance. For this reason, we generated
four rotational datasets:

Norot:neurons are only translated around the MEA and
the pyramidal cells’ apical dendrite is aligned to
the z-axis

Zrot: neurons are shifted around the MEA and randomly
rotated around the z-axis (PC apical dendrite is still
along the z-axis)

Xrot: neurons are shifted around the MEA and rotated
randomly around the x-axis

3drot: neurons are shifted around the MEA and rotated
randomly around all axes.

Although in previous studies simulated datesets were
generated by shifting neuron models around MEAs [7],
prediction models can be sensitive to different alignments
and, therefore, it is interesting to observe the difference clas-
sification performance depending on rotation. Fig. 2 shows
how a pyramidal cell’s (TTPC1) orientation could change in
each of the four datasets (A - Norot, B - Zrot, C - Xrot, D -
3drot).

From the simulated spikes we can extract significant fea-
tures from EAPs and classify the variety of neural morpholo-
gies depending on their spike signatures.

C. Deep Learning Approach

In order to exploit to the rich spatial information in
the high-density MEA recordings we used a Convolutional
Neural Network (CNN) as machine learning algorithm.

Spike widths and amplitudes served as input for the
network and they were computed on each recording site as
follows: the amplitude is the absolute value of the difference
between the negative peak and the positive peak that follows
it (initial positive peaks due to capacitive outward currents
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Fig. 2. 3D representation of the possible relative alignments of a pyramidal
cell (TTPC1) with soma at (50µm, 0, 0) with respect to the MEA in the
Norot (A), Zrot (B), Xrot (C), and 3drot (D) datasets. The pseudocolors of
the recording sites and the upper right axes are the negative peak images.
The images of Norot, Zrot, and Xrot datasets have quite similar shapes
and extensions, while the in the 3drot case the peak is more circumscribed
mainly due to the different inclination of the soma.

are discarded); the width is computed as the difference in
time between the identified peaks. When the amplitude of a
certain recording site is below a threshold of 5µV, it is set
to 0 and the width is set to 7 ms, which is the entire spike
window duration.

Tensorflow [12] was used to train the CNNs with the
following configuration. The 10x10 amplitude and width
images (see Fig. 2) are input to a 32-deep convolutional
ReLU layer which filters the input image with 3x3 kernels
with stride=1. Max pooling is then applied and the image is
shrunken to a 5x5 footprint. Another 64-deep convolutional
ReLU layer applies 3x3 kernels and max pooling reduces
the output image features to a 3x3 size. The 3x3 features are
input for a fully connected layer with 1024 artificial neurons
and 2 output nodes for the binary classification and 13 for
the m-type classification.

The dropout method is implemented to avoid overfitting
[12], with a dropout rate of 0.7. Softmax cross entropy is
minimized with the Adam optimizer during training, which
is run for 5000 epochs, each time sampling 1000 observations
from the dataset.

III. RESULTS

A. Binary Classification

The first question we investigated is whether we could
untangle the overlap in excitatory and inhibitory amplitudes
and widths by means of deep learning techniques (shown
in Fig. 1C). We also evaluated how the binary classification
performance is affected by different neuron-MEA alignments.
Table II shows the average classification accuracy for the
different datasets (last row) and for each cell morphology.
The same results are also visualized in color-code in Fig. 3.

The accuracy, as expected, degrades from Norot to 3drot
datasets because neurons are rotated with more degrees
of freedom; nevertheless on average the accuracy remains
relatively high (above 92%) in all cases. A closer examination
of this result reveal that the main reason for the drop in
classification accuracy was misclassification of the pyramidal
UTPC. Interestingly, from Fig. 1A the spike shape of UTPC

cell type Norot Zrot Xrot 3drot
BP 100% 100% 100% 100%

BTC 100% 98.25% 97.85% 97.85%
ChC 100% 98.99% 98.99% 81.82%
DBC 100% 99.04% 95.19% 85.58%
LBC 98.96% 96.875% 100% 94.79%
MC 100% 100% 100% 100%
NBC 100% 100% 100% 99.1%
NGC 100% 99.06% 100% 99.06%
SBC 100% 100% 100% 100%
STPC 100% 100% 100% 94.25%

TTPC1 100% 100% 100% 90.38%
TTPC2 100% 98.99% 98.99% 95.96%
UTPC 97.14% 89.52% 68.57% 60.95%

Average 99.69% 98.54% 95.92% 92.15%

TABLE II
BINARY CLASSIFICATION ACCURACY OF EACH CELL TYPE FOR THE

FOUR DATASETS. THE LAST ROW SHOWS AVERAGE VALUES. A CORRECT
CLASSIFICATION HERE MEANS THAT INHIBITORY/EXCITATORY CELLS

ARE CLASSIFIED AS INHIBITORY/EXCITATORY, RESPECTIVELY.

(lighter blue) does not cluster with the other pyramidal cells
(blue shades), but the shape is more similar to inhibitory ones
(red colors). This peculiar shape might contribute to its high
misclassification.

B. M-type Classification

The performance of m-type classification, i.e. recognition
among the 13 different cell morphology, is shown in Fig. 4,
in which each plot is related to a different rotation dataset.
Table III summarizes the distribution of the accuracy obtained
for the different cell types (i.e. the 13 values on the diagonals
of the matrices of Fig. 4). While the Norot dataset is almost
perfectly classified (mean accuracy of 98.96%), the accuracy
decreases for the other datasets, as observed in the binary
classification. For Zrot and Xrot the average accuracy is
93.31% and 87.56%, respectively, but for 3drot it is 57.49%
(for 13 classes the chance level is 1/13 x 100 ' 7.7%).
Focusing on the 3drot dataset (Fig. 4D) and observing the
different cell types separately, it is clear that, depsite misclas-
sification, inhibitory neurons are mainly labeled as inhibitory
(red labels) and excitatory ones as excitatory (blue labels).
Among inhibitory cells, SBC accuracy is 38.78%, but 41%
of the times it is recognized as BP. Likewise, BP accuracy is
71.03%, and it is labeled as SBC 23% of the times. Similarly,
MC (accuracy=50.55%) is classified as BTC in 30.77% of
the cases and BTC (accuracy=56.99%) is labeled as MC

Fig. 3. Accuracy for binary classification divided by cell types. The drop
in average accuracy is mainly due to misclassification of UTPC (Note that
colorbar starts at around 60%)
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Fig. 4. Accuracy for m-type classification divided by cell types and dataset
(A - Norot, B - Zrot, C - Xrot, D - 3drot). Each row i shows the color-
coded percent of cell i classified as cell j. A perfect classification would
result in 100% values on the diagonal only. Inhibitory cells are labeled in
red, excitatory in blue.

in 20.43% of observations. NBC and LBC misclassification
is more uniform among other inhibitory units, while the
sole excitatory/inhibitory confusion appears to be between
ChC and UTPC cells (ChC as UTPC=22.22%, UTPC as
ChC=8.57%). Excluding ChC and UTPC, inhibitory cells
are classified as inhibitory in ≥91.34%, and excitatory as
excitatory in ≥93.27% of the cases.

IV. DISCUSSIONS AND CONCLUSION

The present approach combines detailed biophysical mod-
eling and powerful machine learning to classify neurons from
MEA simulated recordings. The results show that binary
classification between excitatory and inhibitory types is very
robust, despite the overlap between excitatory and inhibitory
cells regarding spike amplitudes and widths (Fig. 1C). With
the same method, we were also able to classify 13 different
cell types and we showed that the accuracy is dependent on
the alignment between neurons and the MEA.

Our findings are only based on simulations. Validation
with real data is a required and important step. In addition,
electrophysiology will need to be matched with imaging
techniques to reconstruct neuron morphology [6], needed
to validate the model predictions. In this work we did not
include any noise in the simulated recordings, with the
rationale that sorted spikes can be cleaned by applying spike-
triggered-averaging.

We are currently using a similar forward model-
ing/machine learning paradigm to localize neuronal somata

Dataset mean median max min sd

Norot 99.62% 100% 98.96% 100% 0.48%
Zrot 93.31% 93.75% 86.02% 99.05% 4.41%
Xrot 87.56% 84.85% 73.74% 98.85% 7.34%
3drot 57.49% 54.81% 38.78% 82.86% 12.88%

TABLE III
PERFORMANCE OF M-TYPE CLASSIFICATION. MEAN, MEDIAN, MAX,

MIN, AND SD ARE COMPUTED ON THE 13 CELL TYPES..

in 3D from EAP traces [8]. This simulation-based approach
can also give important insight to drive the design of new
probes, for example in terms of number, density, size, and
location of recording sites. Moreover, the performance of the
machine learning algorithm could be improved by building
case-specific datasets that better match the real recordings,
depending on animal type, target layer(s), insertion angle,
MEA characteristics and so on.

We believe that high-density next-generation MEAs will
allow us to perform a functional image of the neural tissue
surrounding the probe. Moreover, information about neural
types and location could be used to optimize stimulation
paradigms [13] in precisely controlled closed-loop experi-
ments, resulting in a device/tissue interaction down to the
single neuron resolution.
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