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Abstract

Extended Multiplicative Signal Correction (EMSC) is a widely used framework for pre-
processing spectral data. In the EMSC framework spectra are scaled according to a given
reference spectrum. Spectra that are far from collinear with the selected reference spectrum
may not be scaled appropriately. An extension of the EMSC framework that allows for the
incorporation of multiple reference spectra in the EMSC model is proposed to remedy this
issue. Useful candidate reference spectra can be obtained from the dominant right singular
vectors associated with the matrix of spectra, but any desired reference spectra can be used.
As a part of this extension we propose to change the basis used in the EMSC pre-processing
to an orthonormal basis. Using an orthonormal basis will remove confounding issues between
the basis vectors and make the obtained EMSC model simpler to interpret. We discuss the
proposed modification theoretically and demonstrate its use with two data sets of Raman
spectra and modelling with Partial Least Squares regression and Tikhonov Regularization.
The data sets used are Raman spectra of oil samples from salmon with iodine value as the
response, and Raman spectra of an emulsion of water, whey protein, and different oils with
polyunsaturated fatty acids as response (both as percentage of total fat content and total
weight).

Keywords: Extended Multiplicative Signal Correction (EMSC); Raman spectroscopy; Pre-
processing; Modeling

1 Introduction

Since raw spectral data often contain unwanted artefacts and noise that make modelling and
interpretation difficult, some kind of pre-processing is often required. [1–4] The goal of pre-processing
spectral data is to transform the raw data into a form that is more suitable for modelling or
interpretation. A vast amount of pre-processing methods for spectral data are available. The most
widely used pre-processing methods include the standard normal variate (SNV), [5] the Savitzky-
Golay filter, [6] various baseline correction algorithms, [7] and other methods. [8]

In the present work we consider the Extended Multiplicative Signal Correction (EMSC), [3]

which is a model-based pre-processing framework that corrects for both unwanted additive and
multiplicative effects in data. [1] The EMSC is flexible in the sense that it is possible to include a
priori knowledge about chemical and non-chemical patterns in the pre-processing model to improve
the data quality. [9]

The additive corrections are obtained by orthogonalizing the spectra with respect to the direc-
tions representing irrelevant additive trends in the data. The multiplicative corrections are based
on a chosen reference spectrum, and each original spectrum is appropriately scaled so that it can
be expressed as a sum of the reference spectrum and a residual part representing the spectral
information of actual interest. [1] Such scaling usually works quite well for most of the spectra in
a data set, but particular spectra that are far from collinear with the reference spectrum may not
be scaled appropriately. [10]

In the present work we propose an extension of the EMSC framework that allows for the
inclusion of multiple reference spectra to estimate scaling coefficients for the spectra to be corrected.
The proposed extension is particularly useful when dealing with datasets containing one or several
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outlier spectra. By including additional reference spectra that better accounts for the chemical
profiles of the outlier spectra, the pre-processing step may obtain more useful estimates of the
EMSC scaling coefficients.

The structure of the present work is as follows: First we review the traditional EMSC framework
for pre-processing of spectral data. Then we motivate and discuss how multiple reference spectra
can be incorporated in a useful extension of the EMSC framework. Finally we demonstrate the
suggested extension for two applications with data sets of Raman spectra.

2 Review of EMSC pre-processing

When modelling by the traditional EMSC pre-processing framework the spectra are scaled accord-
ing to a pre-specified reference spectrum, and irrelevant polynomial trends are subtracted from
the data. [1] In the following we assume that X is an n × p data matrix with n samples and p
predictor variables, r is the chosen reference spectrum (typically the mean spectrum [1,2]) and d is
the degree of the polynomial trends to be corrected for. The vectors spanning the subspace of the
adverse polynomial trends are denoted by v0,v1,v2, . . . ,vd. In the traditional EMSC framework
a spectrum x is projected onto the subspace spanned by the vectors in the basis

BEMSC = {r,v0,v1,v2, . . . ,vd}. (1)

Note that the exact choice of basis vectors in (1) is unfortunately not specified when the EMSC
framework is described, and in practice it has been most common to use a basis that is not
orthogonal (the choice of basis will be discussed in more detail later). The associated representation
of a spectrum x in BEMSC is:

x = br +

d∑
i=0

(civi) + e, (2)

where the scalars are obtained by least squares regression and e is the residual spectrum orthogonal
to the subspace spanned by BEMSC . The notation e will be used regardless of which EMSC model
is applied later in this article. The EMSC corrected spectrum is defined as:

xcor =
x−

∑d
i=0(civi)

b
= r +

1

b
e. (3)

The purpose of the polynomial trends in BEMSC is to model and subtract the expected effects
of additive noise, whereas the b-coefficient is used to obtain an appropriate scaling of the residual
e to obtain the corrected spectrum xcor. The EMSC model can be justified from the Beer-
Lambert law, exploiting that chemical spectra are basically non-negative linear combinations of
pure component spectra (including interferents) for vibrational spectroscopy techniques. [1] The
special case when the polynomial degree is 0, so that only constant trends are corrected, is referred
to as the Multiplicative Scatter Correction (MSC). [11] The EMSC is thus a direct extension of
theMSC.

Several extensions of the traditional EMSC model have been proposed in the literature. If any
known interferents also are present, these can be included to extend the basis BEMSC and handled
in the same way as the polynomial trends. [1,2] In applications including replicated measurements
of the spectra it is sometimes useful to include additional terms representing inter-replicate vari-
ance. [12] The EMSC model has also been extended to correct for the so-called Mie-scattering
effects. [9]

Suppose we have nintf interferents, and let wi denote the i-th interferent. To incorporate the
interferents in the model we extend the basis given in (1) to include the vectors representing the
interferents. This results in the following extended set of basis vectors:

BEMSC ∪ {w1,w2, . . . ,wnintf
}. (4)

The correction of a spectrum x is obtained by subtracting its projection onto the subspace spanned
by the interferents in (4) and the following scaling:
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xcor =
x−

∑d
i=0(civi)−

∑nintf

i=1 (diwi)

b
= r +

1

b
e. (5)

In the following we will use (4) and (5) as our starting point. Since the spectra corrected with
EMSC are written as deviations from the reference spectrum, the corrected spectra will typically
be quite similar to the reference spectrum. This means that any unwanted artefact in the reference
spectrum might also be present in the corrected spectra. Some examples of such effects could be
fluorescence in Raman spectroscopy, [1] and Mie Scattering in FTIR [9]. These types of artefacts
are usually not a problem for the predictive modelling because the corrected spectra will not vary
in the direction spanned by the reference spectrum.

3 EMSC pre-processing with multiple reference spectra

The purpose of the reference spectrum in the EMSC pre-processing is to facilitate the estimation
of multiplicative effects for transforming the measured spectra to a common scale. It is known
that the MSC can accentuate outliers when the outliers and the selected reference spectrum are
poorly correlated. [10] Because the EMSC employs the same scaling strategy as the MSC, it can be
expected that the EMSC can also accentuate outliers. The most extreme case would be a spectrum
that is orthogonal to the reference spectrum, in which case the reference spectrum would give no
indication of how to scale the spectrum. This scaling problem can be alleviated by introducing
multiple reference spectra for estimating the scaling coefficients.

The practical use of this idea requires (i) a strategy for deriving more than one reference
spectrum, and (ii) a generalization of the EMSC-correction given in (5) to allow for multiple
reference spectra. To obtain multiple reference spectra we propose considering the most dominant
right singular vectors from the (reduced) singular value decomposition (SVD) of the matrix of
the measured spectra. The right singular vectors can be viewed as an ordered list of orthogonal
directions in the sample space sorted by the magnitude of joint signal strength in each direction.
The ordering emphasizes the first few dominant right singular vectors as natural candidate reference
spectra because they represent the part of the information that is most common across the entire
collection of measured spectra. If these vectors describe signals in the data having a chemical
origin, it can be expected that the measured spectra will appear similar in the subspace spanned
by these vectors. As the right singular vectors are only uniquely defined up to sign, it may be
required to change the signs for visualization purposes. A practical method for checking this is
to calculate the correlation between the mean spectrum and the first right singular vector and
change signs if the correlation is negative. Note that the first right singular vector is often highly
correlated to the mean spectrum for spectral data. Therefore using the first right singular vector
as a reference spectrum will often give a pre-processing result that is quite similar to the result
obtained by using the mean spectrum as the reference.

In the traditional EMSC pre-processing a non-orthogonal basis is typically used, and the cor-
rection of additive trends in the scaling is done implicitly when projecting a spectrum onto the
subspace spanned by the basis in (4). This basis is not appropriate when employing multiple refer-
ence spectra because of the interactions between the reference spectra and the polynomial trends
(and possibly the other interferents). However, the problem is easily dealt with by employing an
orthonormal basis eliminating any ambiguities in the regression coefficients (and the associated
EMSC model interpretations) resulting from some particular choice of non-orthogonal basis.

A good and practical procedure for obtaining an orthonormal basis is to collect the EMSC basis
vectors as columns in a matrix and calculate its QR-factorisation. We recommend the columns in
this matrix to be ordered as follows: Start with the polynomial trends followed by the interferents
(if any), and finally include the reference spectra. The reason for suggesting this ordering is
that it makes more sense to first eliminate the irrelevant effects of the polynomial trends and the
interferents from the reference spectra, rather than the other way around which would result in
using reference spectra being contaminated by both additive (polynomial) effects and the other
interferents that one wants to avoid. To obtain the i-th polynomial vector representing a polynomial
trend of degree i−1 we sample the function xi−1 uniformly over p points (the number of features) in
the interval [−1, 1]. The QR-factorisation used to obtain an orthonormal basis will then produce
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the associated Legendre polynomials. [13] To distinguish between the traditional non-orthogonal
EMSC basis and the orthonormal basis introduced here, the superscript o is used to denote spectra
that are part of an orthonormal basis that has been obtained using a QR-factorisation as described
above. Let nref be the total number of reference spectra (identified by the SVD or some other
insights), and denote the i-th reference spectrum by ri. For the orthonormal basis of the suggested
modified EMSC-framework we use the notation:

BoEMSC = {vo0,vo1,vo2, . . . ,vod,wo
1,w

o
2, . . . ,w

o
nintf

, ro1, r
o
2, . . . , r

o
nref
}. (6)

Because the basis is constructed to be orthonormal, the coefficients (the αi’s, the δi’s and the γi’s)
for the projection of a particular spectrum onto the subspace spanned by BoEMSC can be calculated
directly by taking the inner products between each of the basis vectors and the spectrum, i.e.
αi = (voi )tx, δj = (wo

j )
tx and γk = (rok)tx. Expressing a spectrum x with respect to this basis

therefore yields:

x =

d∑
i=0

αiv
o
i +

nintF∑
j=1

δjw
o
j +

nref∑
k=1

γkr
o
k + e, (7)

where e is the resulting residual not accounted for by BoEMSC .
The corrected version of x is obtained by subtracting its projection onto the subspace spanned

by the polynomial trends (the voi ’s) and the interferents (the wo
j ’s), and scaling by the inverse of

the norm of its projection onto the subspace spanned by the reference spectra (the rok’s), i.e:

xcor =
1√∑nref

k=1 γ
2
i

·

x− d∑
i=0

αiv
o
i −

nintf∑
j=1

δiw
o
i



=
1√∑nref

k=1 γ
2
i

·

(nref∑
i=1

γir
o
i + e

)

= rx +
1√∑nref

k=1 γ
2
i

· e,

(8)

where the reference combination rx = 1√∑nref
k=1 γ2

i

·
∑nref

i=1 γir
o
i depends on the original spectrum

x. Note that in the special case with nref = 1 (one reference spectrum ro) the above correction
simplifies to

xcor = ro +
1

|γ1|
· e, (9)

where the reference ro is common for all the spectra subject to correction. The residual term in
(9) will be similar but not identical to the residual obtained from standard EMSC pre-processing,
as the reference spectrum in (9) is initially corrected for the polynomial trends and interferents.

Note that for the traditional EMSC pre-processing with a single reference spectrum there is no
variation across the samples in the subspace spanned by the reference spectrum. The regression
coefficients derived in the the subsequent regression modelling can therefore be chosen orthogonal
to ro. When including multiple reference spectra, equation (8) implies that this is no longer the
case, and one should expect the regression coefficients to be non-orthogonal to the rx’s. More
specifically, suppose we have some regression coefficients β (obtained by Partial least squares
regression [14] regression or otherwise). The prediction based on the corrected spectrum xcor is
then given by

xcorβ =

rx +
1√∑nref

k=1 γ
2
i

· e

β = rxβ +
1√∑nref

k=1 γ
2
i

· eβ. (10)

The vectors rx can therefore be viewed as correctives term for the spectra.
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It should be noted that if a spectrum has a very high correlation with one of the reference
spectra provided in BoEMSC , then it must necessarily be nearly orthogonal to the others. Thus,
the projection of the spectrum onto (nref − 1) of the reference spectra will be close to zero, and
just one reference spectrum will have a noticeable impact on the pre-processing. This property
makes the use of multiple reference spectra particularly attractive for data sets containing a low
number of spectra that are very different from the primary desired reference spectrum, as only
these spectra will be noticeably affected by the inclusion of additional reference spectra.

Any choice of multiple reference spectra requires certain knowledge about their representation
of particular chemical information in the data. If some unwanted artefact, not picked up by
the polynomial trends, is present in a candidate reference spectrum, it should either be included
as an interferent in BoEMSC or ignored completely. The practical estimation of interferents can
be handled in several ways. One possibility is to use a strategy based on difference spectra. [1,2]

Alternatively, if there are no difference spectra that appropriately model the unwanted trends, then
the interferent can be modelled from the data. This can for example be done using the approach
proposed by Beattie [15], which is mentioned below.

Pre-processing approaches based on the SVD are well known from the literature. Beattie
has used a particular SVD loading for collagen and heme was used for scaling spectra. [15] This
approach is similar to our scaling using a single reference spectrum obtained from the SVD. Beattie
also suggested using selected SVD loadings to estimate non-Raman background effects. [15,16] This
was done by utilizing the fact that Raman peaks typically are quite narrow so that high bandwidth
features in the right singular vectors indicate non-Raman phenomena. The non-Raman phenomena
can then be estimated from the right singular vectors. [15] To correct the spectra, these estimates
can be scaled and subtracted from the spectra, or the approximations can be added as interferents
to an EMSC model. This approach is general and can be very useful for obtaining estimates
of unwanted additive trends in candidate reference spectra not accounted for by the polynomial
trends.

Because of the choice of an orthonormal basis in (6) the spectra pre-processed according to (8)
are not directly suitable for visualization, peak quantification or peak ratio calculations without
some modifications. This is because an ideal reference spectrum will not be orthogonal to all poly-
nomial trends. But for the pre-processing it is computationally advantageous to use an orthogonal
basis. For plotting one should therefore consider adding back the projection of the first reference
spectrum onto the polynomial trends, which will have no effect on modelling.

From a mathematical point of view, the polynomial terms in the EMSC basis will eliminate any
baseline effect for modelling purposes, but if a baseline is present in the first reference spectrum
then it will in general also be present in the corrected spectra. Such a baseline can be removed
by for example finding a baseline correction for the first reference spectrum and subtracting this
baseline from all the spectra.

Prototype MATLAB code implementing the suggested modification of the EMSC pre-processing
is included in the Appendix.

4 Examples

In this section we will compare using the traditional EMSC pre-processing method using the mean
spectrum as reference to the proposed modification of the EMSC framework using the first 1 − 3
right singular vectors as reference spectra. Correction of polynomial trends up to the 6th degree is
included for all the pre-processing alternatives. No interferents will be added to the pre-processing
models. The traditional EMSC framework using the mean spectrum as the reference spectrum will
be referred to as simply (standard) EMSC pre-processing. For the modified EMSC framework we
will use parentheses to denote the number of right singular vectors used as reference spectra, so that,
for example, EMSC(3) refers to the modified EMSC framework using the first three right singular
vectors as reference spectra. We consider modelling with Partial Least Squares (PLS) regression [14]

and Tikhonov Regularization (TR) [17]. The following two data sets will be considered:

1. Fish oil data. [18] This is a data set consisting of Raman spectra measured on oil samples
from salmon. There are n = 45 measured samples, and the spectra are truncated to the
range 790cm−1 − 3052cm−1. This truncation has been used before when the data set has
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been analysed. [7] After truncation there are p = 2263 wavenumbers. The response is the
associated measured iodine values. The raw spectra are shown in Fig. 1.

2. Emulsion data. [19] This data set consists of Raman spectra measured on an emulsion of water,
whey protein, and different oils. The oil types used were refined olive oil, refined coconut
oil, soy oil, cod oil with omega 3 fatty acids, and salmon oil. A mixture design was used to
create the samples. [19] The responses are Polyunsaturated Fatty Acids (PUFA) quantified as
percentage of total weight, and PUFA as percentage of total fat content. The spectra are
truncated to the wavenumbers 675cm−1 − 1770cm−1. This truncation has been used before
when the data set has been analysed. [19,20] There are a total of n = 69 measured samples
in the data set, and after truncation there are p = 1096 wavenumbers. The raw truncated
spectra are shown in Fig. 2.
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Figure 1: Fish oil data: Raw Raman spectra.

For modelling, the following procedure was used: A nested cross-validation strategy was employed
to separate pre-processing and parameter optimization from model validation. The outer validation
loop was a repeated two-fold (50:50) shuffle-split, while the inner optimisation loop was a Leave-one-
out Cross-Validation (LooCV). For each outer split, the first half of the samples were used to create
pre-processing models and subsequently estimate model parameters (using LooCV) for TR and PLS
on the pre-processed data. The second half of the outer split was pre-processed correspondingly
and its response values predicted using optimal parameter values from the first half. For PLS up to
15 components were considered, and the number of components minimising the root mean squared
error of cross-validation (RMSECV) was selected. For TR L2 regularization as well as discrete first
and second derivative regularization were used. [21] 1000 values of the regularization parameter were
selected uniformly on a log scale, and the parameter value minimising the RMSECV was selected.
Note that there is some data leakage for the LooCV in the inner loop as the data was pre-processed
based on all the training samples. This may have caused a small bias in the model selection, but not
in the prediction as an independent test set was used for model evaluation. An outer shuffle-split
was repeated 500 times, and in every iteration a new random split of the data was created. The
average root mean squared errors of prediction (RMSEP) over these 500 iterations are reported in
Table 1 for the fish oil data, and Table 2 and Table 3 for the emulsion data.

From Fig. 1 we see that most samples of the the fish oil data appear to be very similar.
Although the intensity of the fluorescence background varies between samples, the relative sizes of
the different peaks appear similar for all samples. The fluorescence background will be removed
when the spectra are corrected for polynomial trends, so for this data set we can expect one

6



8001000120014001600

Wavenumber/cm-1

1000

2000

3000

4000

5000

6000

7000
R

am
an

 in
te

ns
ity

/A
rb

itr
. U

ni
ts

Figure 2: Emulsion data: Raw Raman spectra. The spectra have been truncated to the range
675cm−1 − 1770cm−1.

reference spectrum to be sufficient to obtain an appropriate scaling. Inspecting the first three
right singular vectors of the fish oil data plotted in Fig. 3 we see that the differences between
the right singular vectors can be attributed mostly to the baseline in the data. After removing
the projection onto the polynomial trends from the data and the first right singular vector, it can
be verified that the maximum angle between a sample and the first right singular vector is 1.6◦

(alternatively, the lowest correlation between a sample and the first right singular vector is 0.9996).
If the first right singular vector is used as a reference spectrum then the spectra will necessarily
be nearly orthogonal to any other reference spectrum. Thus for the fish oil data it is sufficient to
use a single reference spectrum. This is also supported by Table 1, from which it is clear that all
the different pre-processing alternatives give roughly the same prediction errors for the subsequent
regression modelling.

For the emulsion data the situation is different. In this dataset there is much more variation
between the spectra, and not all the spectra are that highly correlated with the first right singular
vector if we compare with the fish oil data. After correcting for polynomial trends, the angle
between the first right singular vector and more than 50% of the samples is larger than 10◦

(corresponding to a correlation lower than 0.9848). For 6 of the samples the angle between the
sample and the first right singular vector is between 20◦ − 35◦ (corresponding to correlations in
the range 0.8192 − 0.9393). In Fig. 4 the first three right singular vectors of the emulsion data
are plotted. Unlike the fish oil data, the differences between the right singular vectors cannot be
attributed to any baseline or unwanted additive effect. The reference spectra do not appear to
contain any unwanted effect that is not accounted for by the polynomial trends, making them
appropriate reference spectra candidates.

The pre-processed emulsion spectra are plotted in Fig. 5 and Fig. S2 (Supporting Information).
In Fig. 5 there is no apparent visual difference between the two pre-processing alternatives, except
for the scale difference between the standard EMSC pre-processed spectra and the modified EMSC
pre-processed spectra. The similarities between the standard EMSC and EMSC(1) is supported by
Fig. S1 (Supporting Information), from which it is clear that the mean spectrum and the first right
singular vector are very similar. Since the two spectra are that similar, we expect the standard
EMSC and EMSC(1) pre-processed spectra to be highly similar as well. The scale difference is
irrelevant for the subsequent regression modelling as it will be accounted for by the regression
coefficients. When including 2 and 3 reference spectra, we can see from Fig. S2 (Supporting
Information) that this does not result in a huge visual impact on the spectra, with the notable

7



80010001200140016001800200022002400260028003000

Wavenumber/cm-1

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
S

V
D

 W
ei

gh
tin

g 
C

oe
ffi

ci
en

t /
 A

rb
itr

. U
ni

ts
1
2
3

Figure 3: Fish oil data: The first three right singular vectors.
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Figure 4: Emulsion data: The first three right singular vectors.

exception of one spectrum (see in particular the peak at about 1445cm−1).
From Table 2 it follows that for the response of fatty acids measured as the % of total weight,

modelling based on the raw data gives the best prediction results, and the differences between
the other pre-processing alternatives are relatively small. In Table 3 the situation is changed, and
regression models based on the raw data are the poorest by a huge margin. From both Tables the
RMSEP obtained using standard EMSC pre-processing is approximately the same as the RMSEP
obtained from the EMSC(1) pre-processed data. In Table 3 the RMSEP decreases when the number
of reference spectra is increased. The best prediction results are obtained when using the first three
right singular vectors as reference spectra. In Fig. 6 and Fig. 7 we plot RMSECV and RMSEP
as a function of the model selection parameter for TR and PLS for the response considered in
Table 3 and one particular split of the data into a training set and a test set. The RMSECV and
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Figure 5: Emulsion data: Pre-processed Raman spectra using different pre-processing methods.
Top: standard EMSC. Bottom: EMSC(1).

RMSEP curves are very similar, and we see that increasing the number of reference spectra seems
to increase the prediction performance independent of the choice of the TR model parameter or
number of PLS components.

-6 -4 -2 0 2 4 6 8 10 12 14
log

10
( )

0

5

10

15

R
M

S
E

C
V Raw data

Standard EMSC
EMSC(1)
EMSC(2)
EMSC(3)

-6 -4 -2 0 2 4 6 8 10 12 14
log

10
( )

0

5

10

15

R
M

S
E

P Raw data
Standard EMSC
EMSC(1)
EMSC(2)
EMSC(3)

Figure 6: Emulsion data: TR modelling (L2 regularization) for the response PUFA as % of total
fat content for a particular split of the data. Top: RMSECV. Bottom: RMSEP. In the top plot
we see that the RMSECV curves for the modified EMSC pre-processing are overlapping. In the
bottom plot we see that the RMSEP curves for the modified EMSC using 1 and 2 reference spectra
are overlapping.

The prediction errors for the response PUFA as % of total fatty acids were inspected for every
sample to study the differences in prediction between the different pre-processing methods in more
detail. Most samples obtain a lower prediction error when using 3 reference spectra compared to
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Figure 7: Emulsion data: PLS modelling for the response PUFA as % of total fat content for
a particular split of the data. Top: RMSECV. Bottom: RMSEP. In the top plot the RMSECV
curves for all pre-processing alternatives are overlapping. In the bottom plot the RMSEP curves
are overlapping for all pre-processing alternatives except for EMSC(3) pre-processing.

using 1 reference spectrum, but just a few of the samples are responsible for the larger part of the
difference in prediction. The three samples most poorly predicted when using only one reference
spectrum are plotted in Fig. 8 together with the mean spectrum. We observe that there are
obvious differences between at least two of these spectra and the mean spectrum, confirming that
the mean spectrum does not work as a useful reference spectrum for all the samples. By including
additional reference spectra in the pre-processing, much better scaling estimates are obtained for
these spectra.
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Figure 8: Emulsion data: Mean spectrum together with the three spectra with worst cross-validated
prediction errors when using standard EMSC pre-processing.
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5 Conclusions

The traditional EMSC framework is very flexible, and it is simple to extend the basic correction
model to account for additional unwanted additive effects in the data. In the present work we have
proposed how the framework can be extended further when it is appropriate to utilise multiple
reference spectra to obtain proper scaling coefficients. When using multiple reference spectra it is
necessary to use an orthogonal basis (consisting of polynomials, interferent spectra, and reference
spectra) in the pre-processing because of the interactions between the different basis vectors. The
use of an orthogonal basis is also advantageous because it eliminates any possible confounding
between the different basis vectors. For the fish oil data only one reference spectrum was required
to obtain a satisfactory pre-processing, but we observed that the inclusion of additional reference
spectra did not cause the subsequent regression models to be poorer. For the emulsion data there
were some spectra that were very different from the first (traditional) reference spectrum, and
pre-processing the data with multiple reference spectra caused the subsequent regression model to
predict considerably better for one of the responses. Considering the first right singular vectors of
the uncorrected spectra as candidate reference spectra is often a sensible alternative as these vectors
describe the most dominant directions in the data. The candidate reference spectra should be
inspected visually to make sure they describe relevant chemical variation, rather than interferents
or physical phenomena. Candidates with contaminations should be discarded, while more or less
pure interferent spectra should be exploited as such in the EMSC.

A Prototype MATLAB code

1 function [XCor,basis,coefs] = EMSCmod(X,polDeg,nRef,intF)
2 %% Modified EMSC using multiple reference spectra
3 %% Input
4 % X − Data set
5 % polDeg − Degree of polynomial trends to correct for
6 % nRef − Number of reference spectra to use
7 % intF − Interferent spectra
8 %% Output
9 % XCor − Corrected spectra with polynomial trends "added back"

10 % basis − Basis used for correction (polynomial trends, interferents,
11 % reference spectra)
12 % coefs − Projections onto basis
13 %% Code
14
15 if nargin < 2; polDeg = 2; end
16 if nargin < 3; nRef = 1; end
17 if nargin < 4; intF = []; end
18
19 % Finding reference spectrum/a from SVD:
20 [∼,∼,V] = svd(X,'econ');
21 refSpec = V(:,1:nRef)';
22
23 [n,p] = size(X);
24 nintF = size(intF,1);
25 tot = polDeg + 1 + nintF;
26
27 P = zeros(polDeg+1,p);
28 for i=0:polDeg; P(i+1,:) = linspace(−1,1,p).ˆi; end
29
30 [basis, R] = qr([P' intF' refSpec'],0); % Finding orthonormal basis
31
32 coefs = X * basis; % Projections onto basis
33 mult = sqrt(sum(coefs(:,tot+1:end).ˆ2,2));
34 XCor = X − coefs(:,1:tot) * basis(:,1:tot)';
35 XCor = bsxfun(@rdivide,XCor,mult);
36
37 % Adding back polynomial trends for better visualisation when plotting:
38 refPol = R(tot+1,1:tot) * basis(:,1:tot)' / R(tot+1,tot+1);
39 XCor = bsxfun(@plus,XCor,refPol);
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````````````Model
Pre-processing

Raw spectra EMSC EMSC(1) EMSC(2) EMSC(3)

TR (L2) 3.63 2.88 2.87 2.87 2.87
TR (D1) 4.34 3.20 3.20 3.21 3.21
TR (D2) 4.55 3.41 3.41 3.40 3.40

PLS 3.91 2.95 2.95 2.95 2.95

Table 1: Fish oil data: Average RMSEP over 500 random data splits.

````````````Model
Pre-processing

Raw spectra EMSC EMSC(1) EMSC(2) EMSC(3)

TR (L2) 0.84 1.07 1.07 1.06 1.09
TR (D1) 1.03 1.09 1.09 1.10 1.13
TR (D2) 1.30 1.26 1.15 1.20 1.22

PLS 0.86 1.12 1.12 1.10 1.13

Table 2: Emulasion data: Average RMSEP over 500 random data splits for the response fatty acids
as % of total weight.

````````````Model
Pre-processing

Raw spectra EMSC EMSC(1) EMSC(2) EMSC(3)

TR (L2) 8.33 3.42 3.38 3.10 2.56
TR (D1) 8.83 3.08 3.04 2.95 2.59
TR (D2) 11.3 3.39 3.20 3.14 2.82

PLS 8.59 3.45 3.42 3.14 2.59

Table 3: Emulsion data: Average RMSEP over 500 random data splits for the response PUFA as
% of total fat content.
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