
        

Philosophiae Doctor (PhD)
Thesis 2017:106

Sini Elina Wallén

Genetic improvement of feed 
efficiency in dairy cattle

Genetisk forbedring av fôreffektiviteten 
hos melkeku

Philosophiae D
octor (PhD

), Thesis 2017:106
Sini Elina W

allén

Norwegian University of Life Sciences
Faculty of Biosciences
Department of Animal and Aquacultural Sciences

ISBN: 978-82-575-1491-4  
ISSN: 1894-6402

Postboks 5003  
NO-1432 Ås, Norway
+47 67 23 00 00
www.nmbu.no





Genetic improvement of feed efficiency in dairy cattle 
 

 
 

Genetisk forbedring av fôreffektiviteten hos melkeku 
 
 

 
 

Philosophiae Doctor (PhD) Thesis 
 

Sini Elina Wallén 
 

Department of Animal and Aquacultural Sciences 
Faculty of Biosciences 

Norwegian University of Life Sciences 
 
 

Ås 2017 
 
 
 
 
 
 

 
 
 
 
 

Thesis number 2017: 106 
ISSN: 1894-6402 

ISBN: 978-82-575-1491-4 
 



 

 

  



PhD Supervisors 
 

Prof. Theo H. E. Meuwissen 

Department of Animal and Aquacultural Sciences 

Norwegian University of Life Sciences 

P.O. Box 5003 

1432 Ås, Norway 

 

Dr. Egil Prestløkken 

Department of Animal and Aquacultural Sciences 

Norwegian University of Life Sciences 

P.O. Box 5003 

1432 Ås, Norway 

 

Dr. Trygve R. Solberg 

Geno Breeding and AI Association 

P.O. Box 5003 

1432 Ås, Norway 

 

Prof. Harald Volden 

TINE SA 

P.O. Box 58 

1430 Ås, Norway 

 

 

 

 

 

 

 

 



PhD Evaluation committee 
 

Prof. Nicolas Gengler 

University of Liege 

Passage des Déportés 2 

Belgium  

 

Dr. Yvette de Haas 

Wageningen University and Research Centre 

Postbus 338, 6700AH Wageningen 

Netherlands 

 

Assoc. Prof. Tormod Ådnøy 

Department of Animal and Aquacultural Sciences 

Norwegian University of Life Sciences 

P.O. Box 5003, 1432 Ås 

Norway 
 

 

 

 

 

 

 

 

 

 

 
 



i 
 

Acknowledgement 

 
This PhD-project was carried out  at the Department of Animal and Aquacultural Sciences at the 

Norwegian University of Life Sciences and was funded by Geno SA (breeding and AI 

association), Norwegian dairy foods company TINE SA and the Research Council of Norway 

(project 225233). I would like to thank the NMBU research farm, the Norwegian Dairy Herd 

Recording System, TINE SA and Animal and Grassland Research and Innovation Centre, 

Teagasc, Moorepark (Co. Cork, Ireland) for providing the data for the project.  

 

First, I would like to express my gratitude to my supervisors. To my main supervisor, Prof. Theo 

H. E. Meuwissen, thank you for your guidance, support and advice all through the period of my 

PhD studies. To Dr. Egil Prestløkken, I am very grateful for all your input and all the interesting 

discussions about feed efficiency. To Dr. Trygve R. Solberg, thank you for your input and interest 

especially in the beginning of this PhD project. 

 

I would also like to express my gratitude to Prof. Donagh Berry and Dr. Sinead McParland. Thank 

you for all your encouragement, advice and support through this journey. To Dr. Marie 

Lillehammer, thank you for your patience and guidance when I was struggling with the 

simulations. To Dr. Morten Svendsen, thank you for all your help when I had SAS problems.  

 

To my colleagues and friends in the Animal Breeding and Genetics group, thanks for your 

friendship, encouragement and willingness to help whenever I needed you. To my family and 

friends, thank you for believing in me when I did not believe in myself and thank you for your 

encouragement and support during this journey. To my fiancé, Kenneth Mile Hansen, I could not 

have done this without your love, understanding, encouragement and support. 

 

 

 

Ås, November 2017 

Sini Elina Wallén 

 



ii 
 

 

  



iii 
 

Table of contents 
 

Acknowledgement............................................................................................................... i 

Summary.............................................................................................................................. 5 

Sammendrag........................................................................................................................ 7 

List of abbreviations............................................................................................................ 9 

List of papers..................................................................................................................... 11 

1. General introduction.................................................................................................... 13 

1.1 Dairy cattle breeding in Norway........................................................................... 13 

1.2 Breeding for improved feed efficiency................................................................. 14 

1.2.1 Background............................................................................................... 14 

1.2.2 Definition of feed efficiency..................................................................... 14 

1.2.3 Genomic selection..................................................................................... 16 

1.2.4 MIR........................................................................................................... 17 

2. Aim and outline of the thesis...................................................................................... 19 

3. PAPER I 

4. PAPER II 

5. PAPER III 

6. General discussion...................................................................................................... 85 

6.1 Inclusion of feed efficiency in the breeding scheme............................................ 85 

6.2 RFI as a measure of feed efficiency..................................................................... 88 

6.3 Data quality.......................................................................................................... 88 

6.4 Challenges in improving feed efficiency............................................................. 89 

6.5 Recommendations................................................................................................ 90 

7. Conclusions................................................................................................................ 91 

References........................................................................................................................ 92 

 

Papers I-III have individual page numbers 

 
  



iv 
 

 



5 
 

Summary 
The main objective of the thesis was to investigate the requirements and possibilities for 

including feed efficiency (FE) in the breeding goal in dairy cattle and hence enable the genetic 

improvement of feed efficiency. In addition, possible ways to obtain large scale phenotypic data 

for the genetic improvement of FE were investigated. The data was provided by Norwegian 

dairy foods company TINE SA (Ås, Norway), NMBU research farm (Ås, Norway), the 

Norwegian Dairy Herd Recording System (Ås, Norway) and Animal and Grassland Research 

and Innovation Centre, Teagasc, Moorepark (Co. Cork, Ireland). The data consisted of records 

from two research farms, the Norwegian dairy herd recording system and mid-infrared (MIR) 

spectroscopy of milk. In total, data from 160 lactating Norwegian Red dairy cows and 375 

lactating Irish Holstein-Friesian dairy cows were used in the thesis, recorded from 2007 to 2015. 

Individual feed intake (FI), milk yield (MY), concentration of milk, body weight (BW) and milk 

spectral recordings were included in the dataset.  

 

In Paper I, alternative genomic selection (GS) and traditional Best Linear Unbiased Prediction 

(BLUP) breeding schemes were compared for the genetic improvement of feed efficiency in 

simulated Norwegian Red dairy cattle populations. The change in genetic gain over time and 

achievable selection accuracy were studied for MY and residual feed intake (RFI). When 

contracted test herds, with genotyped and FE recorded cows as a reference population were 

used, a reference population size of 4,000 new heifers per year was needed to achieve 

considerable genetic improvement of feed efficiency. With such a reference population it was 

possible to reach similar selection accuracies of 0.75 for males than when using progeny testing. 

It was concluded that the use of contracted test herds with additional recordings (e.g. FE) is a 

viable option for the genetic improvement of such difficult to record traits.  

 

In Paper II, MIR spectra of milk was used to predict dry matter intake (DMI) and net energy 

intake (NEI) in Norwegian Red dairy cows. Leave-one-out cross-validation and external 

validation were used to develop and validate prediction equations using five different models. 

Predictions were performed using either partial least squares regression (PLS) or BLUP. When 

using the PLS method, the greatest accuracy (R) for predicting DMI (0.54) and NEI (0.65) in 

the external validation dataset was achieved when using both BW and MY as predictors in 
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combination with the MIR spectra. The Best Linear Unbiased Prediction method gave similar 

accuracies as PLS but the predictions were biased. This study shows that MIR spectral data can 

be used to predict NEI as a measure of FI in Norwegian Red dairy cattle, and the prediction 

accuracy can be increased if BW and/or MY is added to the model. 

 

In Paper III, milk MIR data from two countries was combined and used to predict NEI in 

Norwegian Red dairy cows and effective energy intake (EEI) in Holstein-Friesian dairy cows. 

Split-sample cross-validation and external validation methods were used to develop and validate 

prediction equations using four different models. Predictions were performed using either PLS 

regression, multiple linear regression (MLR) or BLUP methods. Best Linear Unbiased 

Predictions were implemented either as a single trait or a multi-trait method. Using across 

country spectra, the R of predicting EEI increased by 0.02 units in both the cross-validation and 

the external validation compared to the model with spectral information within country only. 

For NEI, the use of across country MIR decreased the prediction accuracy in the cross-validation 

by 0.02 units and had no effect on R in the external validation. When NEI was predicted using 

only the MIR spectral information, single trait BLUP method yielded greater accuracy than PLS. 

For both NEI and EEI, the greatest accuracy of prediction was achieved using across country 

MIR spectra. This study shows that MIR spectral data from two countries can be combined and 

used to increase accuracies of predictions of energy intake (EI) as a measure of feed intake in 

dairy cattle.  

 

If sufficient quantity of FE phenotypic data is available, genetic improvement of feed efficiency 

is possible. MIR spectral data can be used to predict NEI as a measure of feed intake in 

Norwegian Red dairy cattle. Also, across country MIR spectral data can be used to predict 

different energy intake traits. Before including any measure of FE in the breeding program, 

genetic correlations between predicted feed intake, actual feed intake and other performance 

traits, especially health and fertility traits must be estimated, and taken into consideration. 
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Sammendrag 
Hovedformålet med avhandlingen var å undersøke kravene og mulighetene for å inkludere 

fôreffektivitet (FE) i avlsmålet til melkekyr og dermed muliggjøre den genetiske forbedringen av 

fôreffektivitet. I tillegg ble mulige måter å oppnå storskala fenotypiske data for genetisk 

forbedring av FE undersøkt. Dataene ble levert av det norske meieriet TINE SA (Ås, Norge), 

NMBU-forsøksgård (Ås, Norge), Kukontrollen (Ås, Norge) og Animal and Grassland Research 

and Innovation Centre, Teagasc, Moorepark (Co. Cork, Ireland). Dataene besto av målinger fra 

to forskningsgårder, kukontrollen og mid-infrarød spekteranalyse (MIR) av melk. Totalt ble det 

brukt data fra 160 lakterende melkekyr av rasen Norsk Rødt Fe og 375 lakterende Irske Holstein-

Frieser melkekyr i avhandlingen, registrert fra 2007 til 2015. Datasettet inkluderer individuell 

opptak av fôr (FI), melkeytelse (MY), konsentrasjon av melk, kroppsvekt (BW) og melkespekter. 

 

I artikkel I ble alternativ genomisk seleksjon (GS) og tradisjonelle Best Linear Unbiased 

Prediction (BLUP) avlssystemer sammenlignet for den genetiske forbedringen av fôreffektivitet 

i simulerte Norske Røde melkekyrpopulasjoner. Forandringen i genetisk gevinst over tid og 

oppnåelig seleksjonsnøyaktighet ble studert for MY og restinntak av fôr (RFI). Når det ble brukt 

begrensede testbesetninger med kyr som har registrert genotype og FE som referansepopulasjon, 

var det nødvendig med en referansepopulasjonsstørrelse på 4000 nye kviger per år for å oppnå 

betydelig genetisk forbedring av fôreffektivitet. Med en slik referansepopulasjon var det mulig å 

oppnå seleksjonsnøyaktigheter på 0,75 for okser, tilsvarende bruk av avkomstgransking. Det ble 

konkludert med at bruk av testbesetninger med tilleggsregistreringer (for eksempel FE) er et 

overkommelig alternativ for den genetiske forbedring av egenskaper som er vanskelige å 

registrere. 

 

I artikkel II ble MIR av melk brukt til å forutsi inntak av tørrstoff (DMI) og netto energiinntak 

(NEI) i Norsk Rødt Fe. "Holde-en-utenfor" -kryss-validering og ekstern validering ble brukt til å 

utvikle og validere prediksjonsligninger ved bruk av fem forskjellige modeller. Prediksjoner ble 

utført ved bruk av enten Partial Least Squares Regression (PLS) eller BLUP metoder. Ved bruk 

av PLS-metoden ble den største nøyaktigheten (R) for å forutsi DMI (0,54) og NEI (0,65) i det 

eksterne valideringsdatasettet oppnådd ved bruk av både BW og MY som prediktorer i 

kombinasjon med MIR-spektrene. Best Linear Unbiased Prediction -metoden ga lignende 
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nøyaktigheter som PLS, men prognosene var partisk. Denne studien viser at MIR-spektraldata 

kan brukes til å forutsi NEI som et mål for FI i Norsk Rødt Fe, og prediksjonsnøyaktigheten kan 

økes dersom BW og/eller MY er lagt til modellen. 

 

I artikkel III ble MIR av melk fra to land kombinert og brukt til å forutsi NEI i Norsk Rødt Fe og 

effektivt energiinntak (EEI) i Holstein-Frieser melkekyr. "Split-sample" -kryss-validering og 

eksterne valideringsmetoder ble brukt til å utvikle og validere prediksjonsligninger ved bruk av 

fire forskjellige modeller. Forutsigelser ble utført ved bruk av enten PLS-regresjon, multiple 

lineære regresjon (MLR) eller BLUP-metoder. Best Linear Unbiased Predictions ble 

implementert enten som enkeltegenskap eller en fler-egenskapsmetode. Ved å bruke spekter på 

tvers av land, økte R for å forutsi EEI med 0,02 enheter både i kryssvalidering og ekstern 

validering sammenlignet med modellen med spekterinformasjon bare innen land. For NEI 

reduserte bruken av MIR på tvers av land prediksjonsnøyaktigheten i kryssvalideringen med 0,02 

enheter og hadde ingen effekt i R i den eksterne valideringen. Når NEI var forutsatt bare ved bruk 

av MIR-spekterinformasjonen, enkeltegenskap BLUP-metode ga større nøyaktighet enn PLS. 

For både NEI og EEI ble den største nøyaktigheten av prediksjon oppnådd ved bruk av MIR på 

tvers av land. Denne studien viser at MIR-spektraldata fra to land kan kombineres og brukes til 

å forutsi energiinntak (EI) som et mål for inntak av fôr i melkekyr. 

 

Hvis tilstrekkelig mengde fenotypiske data om FE er tilgjengelige, er genetisk forbedring av 

fôreffektivitet mulig. MIR-spektraldata kan brukes til å forutsi NEI som et mål for fôrinntaket i 

Norsk Rødt Fe. Også kan på tvers av land MIR spekterdata brukes til å forutsi forskjellige 

energiinntaks karakteristikker. Før det inngår noen måling av FE i avlsprogrammet, må genetiske 

korrelasjoner mellom predikert fôrinntak, faktisk inntak av fôr og andre ytelsesegenskaper, 

spesielt helse- og fruktbarhetsegenskaper, estimeres og tas i betraktning. 
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1. General introduction 
1.1. Dairy cattle breeding in Norway 

The main dairy cattle breed in Norway is Norwegian Red (NR) with a population size of 

~200,000 cows of which 98 % are included in the Norwegian Herd Recording System. The 

breeding organization for Norwegian Red is Geno SA which is a farmer-owned co-operative 

and has been active since 1935. Health and fertility traits were included in the breeding program 

of NR already during 1970’s. Before genomic selection was implemented in the breeding 

program of NR in 2016, the breeding was based on progeny testing including 40 different traits. 

A weight based on the economic importance of the trait was given for each trait and these 

weights were used to calculate a total merit index (TMI), which was then used in sire selection 

(Geno, 2017). 

 

  Figure 1. Earlier progeny testing scheme for Norwegian Red (Geno, 2017). 

 

In the earlier progeny testing scheme, 145 NR bull calves from elite sires and dams were selected 

for performance testing each year (Figure 1). A total of 115 bull calves were further selected to 
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be test sires and progeny tested based on 140-350 daughters per sire. Based on their TMI and 

average relationship within the population, 12-16 progeny tested bulls were selected to be elite 

sires. Overall, 60% of the cows were bred by elite sires and 40% of the cows were bred by test 

sires. In the current genomic selection scheme, based on their parent average 3,000 bull calves 

are chosen to be genotyped yearly out of 6,000 bull calves. Based on their genomic values and 

phenotypic information, 150 bull calves are selected for performance testing and of those 50-60 

bulls are selected to be elite sires (Geno, 2017).  

 

1.2. Breeding for improved feed efficiency 

1.2.1. Background 

The world human population is expanding (FAO, 2009) and there is an increased global demand 

for animal-derived energy and protein sources. This has led to international interest in 

sustainable resource use efficiency and increased feed efficiency (FE). Improved FE would 

reduce nutrient and greenhouse gas emissions per animal (Hurley et al., 2017) hence, many 

studies have been concentrating on selecting more efficient dairy cattle in order to reduce feed 

costs and the carbon footprint of dairy production (Connor et al., 2013; Green et al., 2013; 

Macdonald et al., 2014; Hardie et al., 2015). According to Hurley et al. (2017), maintaining the 

competitiveness of dairy production and meeting consumer demands for animal protein requires 

more food produced on less feed. Hence, a large-scale global effort has been directed to improve 

FE since its importance to the dairy industry is well recognized (Berry et al., 2014; de Haas et 

al., 2015).  

 

However, although FE is economically important, it has still been overlooked in national dairy 

cattle breeding goals (Hurley et al., 2016), mainly due to a lack of accurate individual feed 

intake (FI) data on commercial animals (Berry and Crowley, 2013).  

 

1.2.2. Definitions of feed efficiency 

Feed efficiency is commonly defined as the relative ability of an animal to turn feed nutrients 

into a product i.e. units of output per unit of input at the farm level or for an individual animal. 

For pigs and poultry, genetic selection for FE is common (Emmerson, 1997; Lonergan et al., 

2001). Omitting FE from the dairy cow breeding objectives is not only due to lack of available 
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FI data, but also because of lack of consensus how to define FE and FI in the most appropriate 

way in dairy cows (Hurley et al., 2017). Having access to individual animal FI recordings and 

finding appropriate definitions of efficiency are both required in achieving the necessary gains 

in efficiency (Hurley et al., 2016). Several measures of FE have been proposed and were 

extensively discussed (Hurley et al., 2017). More than 2 dozen definitions of feed efficiency 

have been presented in the scientific literature since the 1960s (Archer et al., 1999). Moreover, 

the definition of FE differs between the species and also within the species FE can be defined 

and measured differently. The traditional measures of feed efficiency in growing and lactating 

animals are feed conversion ratio (FCR) and feed conversion efficiency (FCE), respectively 

(Hurley et al., 2016). Generally, FCR is defined as dry matter intake divided by the average 

daily gain and more efficient animals have a lower FCR (Berry and Crowley, 2013).  

Unfortunately, FCR assumes no differences in maintenance efficiency among animals (Berry 

and Crowley, 2013), which is not necessarily the case (Archer et al., 1999). Feed conversion 

efficiency for dairy cows is generally defined as kg of energy corrected milk divided by kg of 

feed dry matter (DM) consumed (Beever and Doyle, 2007). In lactating cows, some currently 

used feed efficiency definitions (e.g., FCE) do not fully account for body tissue mobilization 

(Hurley et al., 2016). Several other definitions of feed efficiency exist in lactating animals as 

well as growing animals and they all have disadvantages and advantages (Berry and Crowley, 

2013). Among them, residual feed intake (RFI), traditionally used to measure feed efficiency in 

growing animals (Berry and Crowley, 2013), has gained popularity also in dairy cattle (Coleman 

et al., 2010; McParland et al., 2014; Pryce et al., 2014). Residual feed intake is defined as the 

difference between the observed FI and the predicted FI of an individual (Potts et al., 2015), 

where predicted intake is what an individual is expected to consume based on its production 

when a regression of milk energy, maintenance energy, metabolic body weight, and change in 

body weight (BW) has been accounted for (Hardie et al., 2015). Hence, an animal with a 

negative RFI is defined to be more efficient since it consumes less feed than predicted (Potts et 

al., 2015). Generally, RFI has been measured during a period of minimal BW and condition 

change (Tempelman et al., 2015). According to Rathbun et al. (2017), RFI has not been 

measured during the transition period which is 3 weeks before and 3 weeks after calving. During 

this period dairy cows mobilize rapidly adipose tissue as fatty acids, and often have elevated 

circulating ketone body concentrations hence, leading to negative energy balance (Grummer, 
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1993; Drackley, 1999; Duffield, 2000). Excessive production of ketone metabolites can lead to 

hyperketonemia and hence, have negative effects on animal production, profitability and health 

(Baird et al., 1980; Herdt, 2000; McArt et al., 2015). Understanding the effect of negative RFI 

on animal health and longevity is needed in order to successfully use RFI as a selection tool 

(Rathbun et al., 2017). International interest in using energy intake (EI) and residual energy 

intake (REI) as measures of feed efficiency has intensified (Hurley et al., 2016). However, EI 

is a phenotype which itself encompasses recording errors (McParland et al., 2011) and for 

example diurnal variation may exist in EI (McParland et al., 2014). Residual energy intake in 

turn, is defined differently in different dairy cattle studies (Coleman et al., 2010; McParland et 

al., 2014; Pryce et al., 2014). Consequently, benefits and applications of these FE definitions 

differ (Hurley et al., 2016), making comparisons between studies challenging. 

 

1.2.3.  Genomic Selection 

Despite the limited amount of phenotypes, the use of indicator traits (Fogh et al., 2013) and 

genomic selection (Pryce and Berry, 2014) are the two possible methods which could provide 

sufficient selection accuracy for feed efficiency. Genomic Selection (GS) uses dense markers 

covering the whole genome and it addresses most of the genetic differences between the animals 

(Meuwissen et al., 2001). Since GS can be based on fewer phenotypes than traditional selection, 

GS would be a useful tool to improve feed efficiency (Pryce et al., 2012; Yao et al., 2017). In 

GS, reference animals or “ a training” population is used to calibrate the genomic prediction 

equations (Veerkamp, 2013). As an example, cows from research herds with detailed recording 

of unique phenotypes can be used as such a training population (Banos et al., 2012). Hence, 

international co-operatives, the global Dry Matter Initiative (de Haas et al., 2015), the co-

operation between United States and Netherlands and the co-operation between Canada, United 

States, United Kingdom, Australia and Switzerland (Chesnais et al., 2016), for example, have 

been implemented in order to collect large amount of data from different countries to be used in 

genomic selection for improving feed efficiency. For expensive or difficult to record traits, such 

as FE, a new database usually needs to be constructed which can be expensive (Chesnais et al., 

2016). Especially, if the heritability of the trait is low and the cost of phenotyping is high, which 

is the case for many feed efficiency traits, the reference population requires a considerable 

number of animals in order to achieve adequate prediction accuracy hence, increasing the cost 



17 
 

of the reference scheme (Chesnais et al., 2016). Under the circumstances, genotyping all 

animals with phenotypes is more efficient than using, for example, already available genotypes 

of those animals’ sires (Chesnais et al., 2016). Therefore, the use of a cow reference populations 

is the most cost effective way to generate genomic evaluations for such traits (Van Grevenhof 

et al., 2012; Calus et al., 2013). Holstein Association USA has already added a FE component 

in its selection index. However, this component does not account for variation between 

individuals in their efficiency of converting feed into product (Chesnais et al., 2016). 

 

1.2.4. MIR 

Mid-infrared (MIR) spectroscopy is based on the study of the interaction between matter and 

electromagnetic waves (De Marchi et al., 2014) in the 900 to 5,000 cm-1 region and is routinely 

used globally to determine fat, protein, and lactose concentration in milk (Soyeurt et al., 2011; 

De Marchi et al., 2014). McParland et al. (2014) documented that FI could be predicted using 

MIR spectrometry of milk in lactating dairy cows. According to Chesnais et al. (2016), there is 

an ongoing project in Canada in order to collect MIR records from large amount of cows to 

develop predictions for FE, methane emissions and milk composition; and produce genetic and 

genomic evaluations for some of these MIR predictions. Since individual animal milk samples 

are routinely taken as part of day-to-day dairy herd management, using these samples to also 

predict feed intake would be a cost-effective strategy for generating data for management 

purposes as well as for inclusion in a breeding program.  
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2. Aim and outline of the thesis 
The main objective of the thesis was to investigate the requirements and possibilities for 

including feed efficiency in the breeding goal of dairy cattle. The study also investigates possible 

ways to obtain large scale phenotypic data for genetic improvement of feed efficiency. 

 

The thesis had three sub goals: 

 

1. To compare alternative breeding strategies for the genetic improvement of feed 

efficiency 
 

2. To investigate the use of mid-infrared spectral data to predict feed intake in Norwegian 

Red dairy cattle 
 

3. To investigate if combining mid-infrared spectral data from two different countries 

would increase the accuracy of predicting feed intake 
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Strategies for implementing genomic selection for feed efficiency in dairy 

cattle breeding schemes 
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ABSTRACT

Alternative genomic selection and traditional BLUP 
breeding schemes were compared for the genetic im-
provement of feed efficiency in simulated Norwegian 
Red dairy cattle populations. The change in genetic 
gain over time and achievable selection accuracy were 
studied for milk yield and residual feed intake, as a 
measure of feed efficiency. When including feed effi-
ciency in genomic BLUP schemes, it was possible to 
achieve high selection accuracies for genomic selection, 
and all genomic BLUP schemes gave better genetic gain 
for feed efficiency than BLUP using a pedigree relation-
ship matrix. However, introducing a second trait in the 
breeding goal caused a reduction in the genetic gain 
for milk yield. When using contracted test herds with 
genotyped and feed efficiency recorded cows as a refer-
ence population, adding an additional 4,000 new heifers 
per year to the reference population gave accuracies 
that were comparable to a male reference population 
that used progeny testing with 250 daughters per sire. 
When the test herd consisted of 500 or 1,000 cows, 
lower genetic gain was found than using progeny test 
records to update the reference population. It was con-
cluded that to improve difficult to record traits, the use 
of contracted test herds that had additional recording 
(e.g., measurements required to calculate feed efficien-
cy) is a viable option, possibly through international 
collaborations.
Key words: genomic selection, feed efficiency, breeding 
scheme

INTRODUCTION

Improving feed efficiency is economically important 
because feed costs constitute the majority of the variable 
cost in the dairy industry. Hence, some countries have 
already included feed efficiency (FE) in their breeding 

goals (Pryce et al., 2014). Having access to accurate 
and low-cost FE measurements is difficult; hence, a lot 
of research efforts are devoted to this problem (de Haas 
et al., 2012; Veerkamp et al., 2013). The main problem 
in including FE in the breeding objective is accessing 
phenotypic data from a large population of daughters of 
progeny tested bulls. Because genomic selection can be 
based on fewer phenotypes than traditional selection, 
genomic selection would be a useful tool to improve FE, 
as shown by Pryce et al. (2012) and Yao et al. (2017).

Genomic selection uses dense markers covering the 
whole genome and addresses most of the genetic dif-
ferences between the animals (Meuwissen et al., 2001). 
The total genetic value of selection candidates is pre-
dicted based on the estimation of SNP effects, which 
are estimated using reference individuals that have 
been genotyped and phenotyped. If the training set is 
large enough and relevant to the selected population, 
genomic selection can result in an increase in the ac-
curacy compared with traditional selection (VanRaden 
et al., 2009). The number of individuals in the training 
set and the marker density have the greatest effect on 
accuracy (Hayes and Goddard, 2008; Goddard, 2009). 
Other factors are heritability (Daetwyler et al., 2008; 
Goddard, 2009), effective population size (Ne), effec-
tive number of segments (Goddard, 2009), relationship 
between the evaluated animals and training data set 
(Habier et al., 2010; Wolc et al., 2011; Pszczola et al., 
2012), and variance of relationships within the reference 
population (Habier et al., 2010). For the traits that 
have low heritabilities, a very large number of records 
will be required in the training data set to achieve high 
accuracies of genomic EBV in unphenotyped animals 
(Hayes et al., 2009). One possibility to overcome the 
limited size of the training set is to combine data across 
countries as in the global Dry Matter Initiative (de 
Haas et al., 2012).

In this study, stochastic simulation was used to inves-
tigate how different breeding schemes affect genetic gain 
without treating accuracy as a fixed value, but rather 
as an outcome of the simulation. By using stochastic 
simulation, it is also possible to study complex and 
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overlapping generations and the changes in accuracy 
over time under different schemes (Lillehammer et al., 
2011). We used residual feed intake (RFI) as a measure 
of FE. Residual feed intake is defined as the difference 
between actual and predicted feed (or energy) intake 
based on the requirements of the animal (Koch et al., 
1963; Williams et al., 2011; Berry and Crowley, 2013). 
The benefits of GS are greatest when selection is for 
difficult to measure traits, whose recording is either 
too expensive or phenotypes are not easily accessible 
(Goddard, 2009). Both these arguments justify the use 
of GS for improving FE, because FE recording is too 
expensive to be carried out on large numbers of cows 
and the FE of milk production cannot be recorded on 
bulls. In this study, genomic selection strategies were 
developed for improving FE in Norwegian Red dairy 
cattle. The objectives of this research were to compare 
strategies for improving selection accuracy and genetic 
gain for FE by estimating SNP effects in experimental 
herds with FE recordings or in large-scale field record-
ings of FE. Thus, we investigate whether it is possible 
to use contracted test herds with additional recording 
for improving traits that are difficult to measure such 
as FE.

MATERIALS AND METHODS

Historical populations were simulated to create re-
alistic associations between markers and genes and to 
create founder populations for the breeding schemes. 
To create these associations and a mutation-drift bal-
ance, the simulations consisted of 2,000 generations of 
random mating following the Fisher-Wright population 
model (Fisher, 1930; Wright, 1931). The founder popu-
lation had an effective population size of 200 (100 males 
and 100 females; Hillestad et al., 2014). The simulated 
genome consisted of 30 pairs of chromosomes; each was 
100 cM in length. The expected number of mutations 
per meiosis per diploid chromosome was 2. Polymor-
phisms and recombinations were simulated following 
Sonesson and Meuwissen (2009). From the created 
SNP, 3,000 were randomly selected as QTL, and QTL 
effects were sampled from a normal distribution. Per 
chromosome, 500 SNP were randomly sampled to be 
used as genetic markers in the breeding scheme (i.e., a 
total of 15,000 markers).

Seven different breeding schemes were investigated: 
basic, milk yield and feed efficiency included in the 
breeding goal (MY+FE), population wide, and 5 test 
herd simulations. In the basic breeding scheme, only 
milk yield (MY) was included in the breeding goal, 
whereas in MY+FE and test herd simulations, MY and 
RFI as a FE trait were included in the breeding goal 

and they were assumed to be uncorrelated (because 
RFI as a measure of FE is not correlated with MY) 
and have equal economic weights (in all the other 
breeding schemes except test herd 4,000 eco25 and test 
herd 4,000 eco50 schemes). In the eco25 scheme, FE 
had 1/4 of the economic weight of MY, whereas in the 
eco50 scheme FE had 1/2 of the economic weight of 
MY. In test herd simulations, FE test herds were set up 
(contracted), where RFI and MY were recorded. These 
test herds varied in total size (500, 1,000, and 4,000) 
between the schemes. Basic and MY+FE schemes were 
investigated with both genomic selection (Meuwissen 
et al., 2001) and with traditional BLUP selection (AB-
LUP; Henderson, 1975). Test herd simulations were 
investigated only with genomic selection.

In the basic schemes, all cows got records only for 
MY at 3 yr of age (Table 1 and Figure 1). However, in 
the MY+FE schemes all cows had records for both MY 
and RFI at 3 yr of age. In test herd schemes, the test 
herd females had records for both RFI and MY at 3 yr 
of age, whereas other cows had records for MY only. 
No repeated records were assumed for any of the traits, 
which is conservative with respect to the amount of 
information that comes from recording a cow. Females 
were available for selection at 2, 3, 4, 5, and 6 yr of 
age. All ages refer to the average generation interval 
that results from their mating (i.e., the actual mating 
occurs 9 mo earlier). Males were selected to be parents 
at 3 yr of age in genomic BLUP (GBLUP) and at 6 yr 
of age in ABLUP schemes. Males were progeny tested 
for both MY and RFI in MY+FE schemes; progeny 
test results were available at 6 yr of age (Table 1 and 
Figure 1). However, in the basic and test herd schemes, 
males were progeny tested only for MY. The progeny 
test information was hence available when selecting 
sires in the ABLUP schemes, but not in the GBLUP 
schemes, due to the shorter generation interval. In GB-
LUP schemes, progeny information was used to update 
the reference population. One-third of the females were 
culled randomly every year starting when they were 3 
yr old. Females in the test herds and bull calves born 
from elite matings were assumed genotyped in GBLUP 
schemes.

A base generation (generation 0) was created using 
the animals from the last generation of the founder 
population and mating them randomly. All 4,000 ani-
mals in generation 0 were assumed to be genotyped and 
have their own records to contribute to progeny testing 
in all the schemes that involved genomic selection, and 
those animals were used to estimate SNP effects for 
MY and RFI. The younger bulls were added to the 
simulated reference population when their daughters 
had records for production traits. The simulated breed-
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ing schemes closely resembled those of Lillehammer 
et al. (2011) where earlier progeny-tested bulls were 
genotyped and used to estimate SNP effects.

True breeding values (TBV) were calculated for all 
individuals as the sum of the QTL effects:

 TBV  
Number of QTL

i
j

ij j ij jx g x g= +
=
∑

1
1 1 2 2, 

where xijk is the number of copies that individual i has 
at the jth QTL position and kth QTL allele, and gjk is 
the effect of the kth QTL at the jth position, which were 
sampled from the normal distribution. The simulated 
traits, MY and RFI, were assumed to have heritabilities 
of 0.3 and 0.15, respectively. Those heritabilities reflect 
the average heritability of milk production (Hoekstra et 

al., 1994; Berry et al., 2003) and the average heritabil-
ity of FE traits (Berry and Crowley, 2013; Varga and 
Dechow, 2013).

The accuracy of the genomic breeding values was cal-
culated, according to Sonesson and Meuwissen (2009), 
as the correlation between the estimated genomic 
breeding values and the true breeding values. Genomic 
breeding values were estimated by summing the marker 
effects:

 GEBVi
j

n

ij jx a=
=
∑

1

, 

where xij is the jth SNP effect of individual i, aj is the 
BLUP estimate of the jth SNP effect, and n is the 
number of SNP (15,000). To ensure that direct com-

Table 1. Ages (yr) at which recording and selection take place1

Item Age of dam Age of sire
Milk record  

dam
RFI record  

dam
Progeny test  

sire

Basic ABLUP 2–6 6 3 — 62

Basic GBLUP 2–6 3 3 — 62

MY+FE ABLUP 2–6 6 3 3 63

MY+FE GBLUP 2–6 3 3 3 63

Test herd GBLUP 2–6 3 3 32 63

1Ages refer to the generation interval resulting from the mating of the parents (selected for the indicated 
record). RFI = residual feed intake; ABLUP = best linear unbiased prediction using pedigree relationship 
matrix; GBLUP = genomic best linear unbiased predictor; MY+FE = milk yield and feed efficiency included 
in the breeding goal.
2Breeding goal includes only milk yield.
3Breeding goal includes both RFI and milk yield.

Figure 1. Overview of the breeding schemes. Solid lines with a cross represent matings, and dashed arrows represent progeny produced by the 
matings. Dotted arrows represent that animals move from one category to another due to aging. Solid arrows represent selection of animals. aIn 
BLUP using pedigree relationship matrix (ABLUP) schemes, 125 male calves were progeny tested and 12 elite sires were selected. bIn genomic 
BLUP schemes, 750 male calves were progeny tested and 40 elite sires were selected. FE = feed efficiency.
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parison between traditional and genomic EBV was pos-
sible, all EBV were scaled so that b = 1, where 
b i i i= ( )⎡

⎣⎢
⎤
⎦⎥ ( )⎡⎣⎢ ⎤

⎦⎥Cov TBV G EBV Var G EBV; / . This is impor-
tant for the selection of females, which is across ge-
nomic EBV and traditional EBV for some of the 
schemes.

Phenotypes were simulated by adding a normally dis-
tributed random error term to the true breeding value:

 Pi i i= +TBV ε , 

where εi is an error term for animal i, which was nor-
mally distributed 0 2,  .σe( )  To express the results in ge-
netic standard deviations and create phenotypic records 
with the desired heritability, the genetic variance σg

2( ) 
was scaled to 1 for both of the traits and the residual 
variance σe

2( ) was adjusted following Sonesson and Meu-
wissen (2009).

The value of 1 genetic standard deviation of MY 
was arbitrarily set to 100 monetary units. When the 
economic value of RFI equaled that of MY, a genetic 
standard deviation of RFI also represented 100 mon-
etary units. In schemes with reduced economic values 
for RFI, eco50 and eco25 schemes, 1 genetic standard 
deviation of RFI represented 50 and 25 monetary units, 
respectively.

The BLUP method (Meuwissen et al., 2001) was used 
for the estimation of marker effects. The statistical 
model used to estimate individual marker effects was

 y X a ei
j

n

ij j i= + +
=
∑μ

1

, 

where yi is the record of individual i; μ is the overall 
mean; Xij is the marker genotype; aj is the random ef-
fect of the jth marker, with variance equal to the total 
genetic variance divided by the number of markers; and 
ei is a random residual.

Simulated population sizes were smaller than those 
of the real Norwegian Red dairy cattle population 
to make stochastic simulation computationally pos-
sible. Population sizes were rescaled as described by 
Lillehammer et al. (2011), so that selection steps for 
conformation traits of bulls and bull dams were not 
considered in the simulation and selection intensities 
for the included traits were maintained at realistic 
levels when population size was reduced. The ABLUP 
schemes were designed to mimic the breeding structure 
of Norwegian Red before implementation of genomic 
selection, whereas the GBLUP schemes mimic the cur-

rent breeding structure of Norwegian Red after genomic 
selection was implemented (Figure 1; Lillehammer et 
al., 2011).

For each scheme, 50 replicates were run and simula-
tions were performed over a 20-yr period. Genetic gain 
and selection accuracy for males and females were re-
ported as an average over yr 10 to 20 of the simulations. 
In all the schemes, total genetic gain was calculated by 
summing up the genetic gain (in monetary units) for 
MY and RFI. When results of the simulation study 
are reported, omitting the first years of the simulation 
avoids the problem of the non-steady-state population 
structure at the start of the scheme, where all animals 
are of the same age and all base generation animals are 
assumed to be genotyped and progeny tested, which 
affects early simulation results.

RESULTS

Figure 2 shows the total genetic gain (in monetary 
units) for MY and RFI when RFI was included in the 
breeding scheme. The highest total genetic gain was 
found when using the MY+FE GBLUP scheme, where 
bulls were progeny tested for both traits. The ABLUP 
schemes gave lower total genetic gain when compared 
with a similar GBLUP scheme. Increasing the number 
of cows in the test herds caused an increase in genetic 
gain. Genotyping 500 or 1,000 cows in test herds result-
ed lower genetic gain than using progeny test records to 
update the reference population. However, a test herd 
size of 4,000 cows gave slightly lower genetic gain than 
the MY+FE GBLUP scheme. Using smaller economic 
values for FE in test herd 4,000 GBLUP eco schemes 
decreased the total genetic gain.

As expected, the basic scheme gave the highest ge-
netic gain for MY of the ABLUP schemes (Table 2 
and Figure 3), and GBLUP schemes gave higher ge-
netic gain for MY than similar ABLUP schemes. As 
expected, introducing a second trait in the breeding 
goal reduced genetic gain for MY. This is due to the 
fact that if selection pressure is devoted to more traits, 
the progress for each of the original traits decreases.

The highest genetic gain for RFI was reached using 
the MY+FE GBLUP scheme (Table 2 and Figure 4), 
where all cows had RFI records. Obtaining RFI records 
from test herds of limited size gave less gain for RFI, 
but increasing the number of genotyped cows in the 
test herd schemes increased the genetic gain for RFI. 
At a test herd size of 4,000 genotyped cows, the genetic 
gain for RFI was very similar to obtaining records from 
all cows in the population. As expected, test herd 4,000 
GBLUP eco schemes gave lower genetic gain for RFI 
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Figure 2. Total genetic gain measured as monetary units relative to yr 10 onward. In the basic schemes, genetic gain is only for milk yield, 
whereas in the schemes with milk yield and feed efficiency included in the breeding goal (MY+FE) and test herd schemes, genetic gain is the 
total genetic gain when summing up the genetic gain for both residual feed intake (RFI) and milk yield. In eco25 and eco50 schemes, 1 genetic 
SD of RFI represented 25 and 50 monetary units, respectively. ABLUP = BLUP using pedigree relationship matrix; GBLUP = genomic BLUP. 
Color version available online.

Table 2. Average genetic gain (ΔG) as monetary units with SE when h2 = 0.3 for milk yield and h2 = 0.15 
for residual feed intake1

Breeding scheme2

Milk yield

 

Residual feed intake

ABLUP, 
ΔG

GBLUP, 
ΔG

ABLUP, 
ΔG

GBLUP, 
ΔG

Basic 19.64 (0.2) 28.52 (0.2) —3 —3

MY+FE 14.76 (0.2) 21.74 (0.3) 12.45 (0.2) 17.28 (0.3)
Test herd 500 — 18.37 (0.3) — 12.49 (0.2)
Test herd 1,000 — 18.99 (0.3) — 13.88 (0.3)
Test herd 4,000 — 20.06 (0.3) — 17.18 (0.2)
Test herd 4,000 eco25 — 28.74 (0.06) — 1.23 (0.06)
Test herd 4,000 eco50 — 26.08 (0.15) — 5.21 (0.13)
1Average of genetic gain measured as genetic SD of yr 10 to 20. The value of 1 genetic SD of milk yield was 
arbitrarily set to 100 monetary units. In eco25 and eco50 schemes, 1 genetic SD of residual feed intake repre-
sented 25 and 50 monetary units, respectively.
2Milk yield and feed efficiency included in the breeding goal (MY+FE) and test herd schemes include both milk 
yield and residual feed intake in the breeding goal; the basic scheme includes only milk yield.
3Residual feed intake is not included in the basic scheme.
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than other GBLUP schemes where RFI was included, 
which is due to the smaller economic value for RFI in 
eco schemes.

Selection accuracies for males ranged from 0.65 to 
0.79 in GBLUP schemes and 0.94 to 0.96 in ABLUP 
schemes (Figure 5 and Table 3). Using lower economic 
values for RFI in the test herd, 4,000 GBLUP eco 
schemes slightly increased the selection accuracy for 
males (Figure 5). However, the selection accuracy for 
females was approximately 0.6 in all the other schemes 
except the test herd schemes (Table 3). The test herd 
scenarios caused a decrease in the selection accuracy for 
females because only a fraction of the females obtained 
RFI records. However, increasing the test herd size re-
sulted in an increase in the female selection accuracy. 
The highest selection accuracy for females was reached 

using basic schemes, where the breeding goal included 
only MY.

DISCUSSION

This study compared different designs of implement-
ing genomic selection and traditional BLUP selection 
for the genetic improvement of FE, and investigated 
how genetic gain accumulates over time and the selec-
tion accuracies that are achievable through the addi-
tion of genotyped females in the reference population. 
We used RFI as a FE trait because it is by definition 
the component of feed intake that is uncorrelated with 
MY. Practical breeding schemes may select directly 
for MY and against feed intake, but also here only 
the component that is uncorrelated with MY will be 

Figure 3. Genetic gain for milk yield (MY) measured as monetary units relative to yr 10 onward. In the basic schemes, genetic gain is only 
for MY, whereas in the schemes with MY and feed efficiency included in the breeding goal (MY+FE) and test herd schemes, genetic gain is the 
total genetic gain when summing up the genetic gain for both residual feed intake (RFI) and MY. In eco25 and eco50 schemes, 1 genetic SD of 
RFI represented 25 and 50 monetary units, respectively. ABLUP = BLUP using pedigree relationship matrix; GBLUP = genomic BLUP. Color 
version available online.
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reduced, whereas the component of feed intake that 
is associated with MY will increase together with the 
general increase in MY.

Table 3 showed that it is possible to achieve high 
selection accuracies for males when including FE in 
GBLUP schemes. This can be done either by obtaining 
phenotypes from all cows in the population and hence 
get progeny information for genotyped bulls that can be 
used to update a reference population, or by updating 
the reference population through genotyping of cows 
with records. The latter will be preferable if genotyp-
ing is cheap compared with phenotyping. These results 
are in line with Chesnais et al. (2016) who found, in 
real data, that the accuracies of genomic selection for 
FE varied between 0.45 and 0.58. When using genomic 
selection to improve low heritability traits, the number 
of records in the reference population has to be suffi-

ciently large to achieve high selection accuracies (Hayes 
et al., 2009). Our study showed that 4,000 cows had to 
be phenotyped and genotyped every year to achieve a 
similar selection accuracy of genomic selection as if all 
cows were phenotyped, but when only bulls are geno-
typed.

Females were always selected on ABLUP, except 
in test herd schemes, where the genotyped test-herd 
females obtained genomic breeding values. The female 
selection accuracy were first of all affected by whether 
the females had records for the trait under selection 
or not, giving higher female selection accuracy for 
schemes where phenotypes for all traits under selection 
were available for the entire cow population (Table 3). 
When test herds were used, the females belonging to 
these herds will have more accurate breeding values 
than the cows outside the test herds, due to their phe-

Figure 4. Genetic gain for residual feed intake (RFI) measured as monetary units relative to yr 10 onward. In the schemes with milk yield 
and feed efficiency included in the breeding goal (MY+FE) and test herd schemes, genetic gain is the total genetic gain when summing up the 
genetic gain for both RFI and milk yield. In eco25 and eco50 schemes, 1 genetic SD of RFI represented 25 and 50 monetary units, respectively. 
ABLUP = BLUP using pedigree relationship matrix; GBLUP = genomic BLUP. Color version available online.
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notypes and genotypes. The female selection accuracy 
will hence depend on the fraction of the cows that are 
included in the test herds.

Genetic gain will depend on both male and female se-
lection accuracy, although the male selection accuracy 

has the greatest effect because of the higher intensity of 
selection. Genetic gain was therefore similar in test herd 
4,000 GBLUP as in MY+FE GBLUP, reflecting the 
similar accuracy of the genomic breeding values in the 
2 schemes. The small advantage of MY+FE GBLUP, 

Figure 5. Selection accuracy for males relative to yr 10 onward. In the basic schemes, genetic gain is only for milk yield, whereas in the 
schemes with milk yield and feed efficiency included in the breeding goal (MY+FE) and test herd schemes, genetic gain is the total genetic 
gain when summing up the genetic gain for both residual feed intake (RFI) and milk yield. In eco25 and eco50 schemes, 1 genetic SD of RFI 
represented 25 and 50 monetary units, respectively. ABLUP = BLUP using pedigree relationship matrix; GBLUP = genomic BLUP. Color 
version available online.

Table 3. Average selection accuracy of yr 10 to 20 for males (M) and females (F) in the total breeding goal 
with SE when h2 = 0.3 for milk yield and h2 = 0.15 for residual feed intake (RFI)

Breeding scheme1
ABLUP, 

Accuracy M
GBLUP, 

Accuracy M
ABLUP, 

Accuracy F
GBLUP, 

Accuracy F

Basic 0.96 (0.0005) 0.75 (0.002) 0.61 (0.002) 0.62 (0.001)
MY+FE 0.94 (0.0007) 0.72 (0.002) 0.58 (0.001) 0.59 (0.001)
Test herd 500 — 0.65 (0.002) — 0.21 (0.003)
Test herd 1,000 — 0.67 (0.002) — 0.24 (0.003)
Test herd 4,000 — 0.75 (0.001) — 0.42 (0.003)
Test herd 4,000 eco25 — 0.79 (0.001) — 0.60 (0.002)
Test herd 4,000 eco50 — 0.78 (0.002) — 0.53 (0.004)
1Milk yield and feed efficiency included in the breeding goal (MY+FE) and test herd schemes include both 
milk yield and residual feed intake; the basic scheme includes only milk yield. In eco25 and eco50 schemes, 1 
genetic SD of RFI represented 25 and 50 monetary units, respectively.
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compared with test herd 4,000 GBLUP, may increase if 
a more intense selection of females is used. However, if 
selection of females were also based on genomic selec-
tion, this difference could disappear, as the fraction of 
the female population with RFI phenotypes becomes 
less important. The general level of the genetic gains 
agrees with those found by Lillehammer et al. (2011).

We also investigated how the reduced economic val-
ues for RFI affects the genetic gain and the accuracy 
of selection by comparing the test herd 4,000 GBLUP 
at a half and a quarter of its original economic value of 
RFI. As expected, test herd 4,000 GBLUP eco schemes 
gave higher genetic gain for MY and lower genetic gain 
for RFI compared with other schemes. Lower economic 
values for RFI increased the selection accuracy of males 
and especially females because many more phenotypes 
were available for MY than for RFI in the test herd 
scheme. Total genetic gain was reduced for the schemes 
with lower economic values for RFI. To build up test 
herds to facilitate genomic selection for traits with low 
economic value might hence not be economically de-
fendable, as the expected gain is sensitive to the weight 
put on these traits.

In these simulations, we assumed a large reference 
population at the start of the breeding scheme, which 
might be optimistic. However, Figure 5 shows that ge-
nomic selection accuracies during yr 10 to 20 remain 
stable, implying that the gain of accuracy due to the 
genotyping of new relevant reference animals is com-
pensated for old reference animals becoming less rel-
evant (i.e., the start reference population is becoming 
less and less relevant during yr 10 to 20). The results 
of Table 3 and Figure 5 show that if progeny testing 
for FE is not feasible, genotyping females in test herds 
that enter a reference population may compensate for 
the lack of progeny testing. However, this requires the 
genotyping and phenotyping of 4,000 test females an-
nually because smaller test herd sizes resulted in mark-
edly reduced genetic gains. Obtaining large amounts of 
animals with multiple recordings is possible using for 
example collaboration between countries (de Haas et 
al., 2012; Veerkamp et al., 2013) or milk mid-infrared 
predicted FE records. McParland et al. (2014) showed 
that mid-infrared spectrometry of milk could be used to 
predict RFI as a measure of FE in lactating dairy cows. 
Because individual animal milk samples are routinely 
taken as part of the dairy herd management, using 
these samples to also predict feed intake and efficiency 
would be cost effective and a relatively undemanding 
approach to obtain large numbers of FE phenotypes.

In this study, we used RFI as a measure of FE. 
However, earlier studies showed that weak unfavorable 
genetic correlations exist between RFI and fertility 
(Vallimont et al., 2013). This is probably due to the 

mathematical similarity in the calculations of RFI and 
energy balance and a failure to account correctly for 
body tissue mobilization, which might lead to selection 
for a trait that is similar to selecting for a negative 
energy balance (Pryce et al., 2014). Therefore, genetic 
correlations with other traits (especially fertility traits) 
must be accounted for when including RFI into the 
breeding scheme (Pryce et al., 2014). That is, a multi-
trait selection index where genetic correlations with 
other traits are properly accounted for is required if 
RFI is to be included in the selection objective.

Feed efficiency is a trait that is difficult to measure 
and as such is difficult to include in the routine progeny 
test evaluations. Our results show that for these kind 
of traits, the use of rather large contracted test herds 
with additional recording is a viable option. This strat-
egy would give close to similar accuracy of genomic 
selection as recording this trait in the whole female 
population. This implies that the male selection, which 
is the most intense selection, would be as effective with 
contracted test herds of genotyped females as when a 
routine progeny test would be performed for this trait, 
as long as a sufficient number of cows (4,000) is in-
cluded in the test herds.
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ABSTRACT 10 

Mid-infrared (MIR) spectroscopy of milk was used to predict dry matter intake (DMI) 11 

and net energy intake (NEI) in 160 lactating Norwegian Red dairy cows. A total of 857 12 

observations were used in leave-one-out cross-validation and external validation to develop 13 

and validate prediction equations using five different models. Predictions were performed 14 

using either partial least squares (PLS) regression or Best Linear Unbiased Prediction (BLUP) 15 

methods. Both methods were implemented either using just the MIR spectral information or 16 

using MIR together with milk yield (MY), body weight (BW) or NEI from concentrate 17 

(NEIconc). In the BLUP methods, the MIR spectra were always treated as random effects 18 

whereas, MY, BW and NEIconc were considered as fixed effects. Accuracy of prediction was 19 

defined as the correlation between the predicted and observed feed intake test-day records. 20 

When using the PLS method, the greatest accuracy for predicting DMI (0.54) and NEI (0.65) 21 

in the external validation dataset was achieved when using both BW and MY as predictors in 22 

combination with the MIR spectra. When using the BLUP method, the greatest accuracy of 23 

predicting DMI (0.54) in the external validation was when using MY together with the MIR 24 

spectra. The greatest accuracy of predicting NEI (0.65) in the external validation using BLUP 25 
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was achieved when the model included both BW and MY in combination with the MIR 26 

spectra or when the model included both NEIconc and MY in combination with MIR spectra. 27 

However, while the linear regression coefficients of actual on predicted values for DMI and 28 

NEI were not different from unity for the PLS method, they were less than unity when using 29 

the BLUP method. This study shows that MIR spectral data can be used to predict NEI as a 30 

measure of feed intake in Norwegian Red dairy cattle and the accuracy is augmented if 31 

additional, often available data, are also included in the prediction model.  32 

 33 

Key words: mid-infrared spectroscopy, dry matter intake, net energy intake, prediction. 34 

 35 

INTRODUCTION 36 

Dairy cattle breeding goals have advanced from being traditionally narrow-focused, 37 

to now being more holistic and including functional traits (Miglior et al., 2005). In the Nordic 38 

countries, health and fertility traits have been included in the breeding goal since the 1970’s 39 

(Philipsson and Lindhé, 2003). Traits not currently explicitly included in most dairy cow 40 

breeding goals include feed intake, product quality, and the environmental footprint (Berry, 41 

2015). Breeding goal traits must be economically important, must exhibit genetic variation, 42 

and should ideally be (easily) measured at a low cost in a large population of animals or, at 43 

least, should be genetically correlated with heritable traits that can be routinely measured. 44 

Improving feed efficiency is economically important because feed is a major single variable 45 

cost in dairy production (Shalloo et al., 2004). Genetic variability in feed intake (and 46 

efficiency) in dairy cows is known to exist (Svendsen et al., 1993; Berry and Crowley, 2013; 47 

Hurley et al., 2017). Thus, the main factor inhibiting the inclusion of feed intake directly in a 48 

breeding objective is routine access to phenotypic data of feed intake from a large population 49 

of animals, ideally at a low cost, to achieve a high accuracy of selection.  50 
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McParland et al. (2014) documented that feed intake in lactating dairy cows could be 51 

predicted using mid-infrared (MIR) spectrometry of milk. MIR spectroscopy is based on the 52 

study of the interaction between matter and electromagnetic waves (De Marchi et al., 2014) 53 

in the 900 to 5,000 cm-1 region and is routinely used globally to determine fat, protein, and 54 

lactose concentration in milk (Soyeurt et al., 2011; De Marchi et al., 2014). Since individual 55 

animal milk samples are routinely taken as part of day-to-day dairy herd management, using 56 

these samples to also predict feed intake would be a cost-effective strategy for generating data 57 

for management purposes as well as for inclusion in a breeding program. McParland et al. 58 

(2014), however, only evaluated the prediction of feed intake in lactating Holstein-Friesian 59 

dairy cows. Traditionally, the partial least squares (PLS) regression method has mainly been 60 

used for developing the prediction equations in MIR studies (McParland et al., 2011, 2012, 61 

2014; De Marchi et al., 2014) but recently Ferragina et al. (2015) suggested the use of genomic 62 

prediction approaches for MIR-based predictions. In the present study, we wanted to validate 63 

whether MIR spectral data are suitable for predicting feed intake in lactating Norwegian Red 64 

dairy cows. Our objective was therefore to assess whether (1) MIR spectra can be used as 65 

selection criteria to achieve genetic gain in feed efficiency in Norwegian Red cattle breeding 66 

programs, and (2) if the method is accurate enough to be adopted as a monitoring tool for day-67 

to-day herd management. We also wanted to investigate the use of the Best Linear Unbiased 68 

Prediction (BLUP) methodology, which is commonly used in genetic and genomic prediction, 69 

for the prediction of dry matter intake (DMI) and net energy intake (NEI) using MIR data.  70 

 71 

MATERIALS AND METHODS 72 

Data 73 

Data from six different feeding experiments were collected from the dairy research 74 

farm at the Norwegian University of Life Sciences (NMBU, Ås, Norway) between the years 75 
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2007 and 2015, with the exception of the years 2010 and 2012 from which DMI data could 76 

not be recovered. Traits periodically available included individual cow DMI, milk yield 77 

(MY), fat, protein and lactose concentration in milk, as well as individual cow body weight 78 

(BW) (Table 1). Data were available from 204 lactations from 160 cows and the total amount 79 

of observations for each trait was 857. Estimates for each performance trait were obtained 80 

from interpolation of the actual observations for DMI, NEI, MY, fat, protein and lactose 81 

concentration in milk and BW; cubic splines with 6 knot points at 20, 70, 120, 170, 220 and 82 

270 DIM were fitted through individual test-day records of the traits to facilitate the 83 

interpolation. After interpolation, several restrictions were implemented to improve the 84 

integrity of the data. Milk yield and milk composition records were discarded if MY was < 85 

10 kg. Records were also excluded if fat concentration in milk was > 6.5%, total DMI was > 86 

30 kg, or if BW was < 400 kg. Net energy intake values <55 MJ or >400 MJ were also 87 

excluded from the dataset. A total of 15 data points (i.e., 1.7% of the data) were discarded 88 

during this data editing step. 89 

In all experiments, cows were fed timothy-grass-based silage combined with grain-90 

based-concentrate (Appendix A). The concentrate contained mainly barley and oats 91 

supplemented with rapeseed cake and soybean meal as main protein feed. The protein 92 

concentration of the feed varied from 12 and 20% of dry matter (DM) (Appendix A). 93 

Concentrates were fed according to individual cow MY (4 of the 6 feed treatments) or in fixed 94 

amounts (2 of the 6 feeding treatments) using automatic feed stations. In all instances, silage 95 

was fed either ad libitum or restricted, using feed bins fitted with vertical feed gates and 96 

weighing cells underneath.  97 

The DM of the silage was calculated based on the feed analyses. For concentrate, DM 98 

was calculated based on feed analyses, or tabulated information in the feed tables from the 99 

Nordic feed evaluation system (NorFor) (Volden et al., 2011). Individual feed intake and DM 100 
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of feed were used to calculate DMI of silage and concentrate separately. Daily energy intake, 101 

expressed as NEI, was calculated based on the NorFor evaluation system and is described in 102 

detail in Appendix B. Net energy intake was calculated from the DMI of silage and 103 

concentrate separately. Net energy intake for silage (MJ/kg DM) was calculated based on the 104 

chemical composition of the feed using standard feed values in NorFor. Net energy intake for 105 

concentrate was calculated using a default DM of 86% and an energy content of 7.3 MJ/kg 106 

DM. Both DMI and NEI for silage and concentrate were summed up to get total DMI and 107 

NEI per cow.  108 

 109 

MIR Data. Cows were milked twice daily at 0615 to 0900 h and at 1500 to 1715 h.  Milk 110 

samples were collected with varying frequency for each of the different experiments (Table 111 

2). All milk samples were conserved with Bronopol (2-bromo-2-nitropropane-1,3-diol) and 112 

then stored at 4°C. All milk samples were analyzed using the same MIR spectrometer 113 

(MilkoScan FT6000; Foss Electric A/S, Hillerød, Denmark) and the resulting spectra were 114 

stored. The absorption of infrared light through the milk sample at wavelengths in the 900 to 115 

5,000 cm-1 region is represented by 1,060 data points in the Foss MIR spectrum. Mid-infrared 116 

wavelength regions known to be related to water absorbance were not considered in the 117 

analysis (Zimmermann and Kohler; 2013). Preliminary tests of alternative wavelength regions 118 

yielded the most suitable wavelength regions for each of the two traits. For NEI, the 119 

wavelength regions of 926-1601, 1701-1805, and 2693-3069 cm-1 were used which reflect the 120 

protein and fat regions. For DMI, the regions used were between 926-1593, between 1745-121 

3061, and between 3781-5149 cm-1.  122 

In the experiments carried out between the years 2007 and 2014, spectral data were 123 

only available from a composite morning and evening milk sample. In the experiment 124 

undertaken in the year 2015, spectral data were taken separately from the morning and 125 
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evening milkings. A weighted average of fat, protein and lactose concentration as well as each 126 

spectrum wavelength was therefore calculated for data collected in the year 2015 so the data 127 

from all years was comparable. Each wavelength value of the spectrum was scaled such that 128 

the mean and standard deviation of each of the wavelength were 0 and 1, respectively. As a 129 

separate treatment, Savitzky-Golay smoothing was applied to the untreated MIR spectral data 130 

in order to smooth a signal by fitting a polynomial to a sliding window of MIR data. Different 131 

degrees of polynomial and window sizes were tested using the Unscrambler X program 132 

(Version 10.3, Camo Software AS, Oslo, Norway). 133 

 134 

Development and Validation of Prediction Equations 135 

Prediction models were developed using leave-one-out cross-validation. In this 136 

approach, a single observation was held out, one-by-one, as a single-element test set while all 137 

the other observations were included in the calibration set. This was iterated until every 138 

sample had been predicted once. To obtain a more appropriate representation of the accuracy 139 

and robustness of the prediction equations, external validation was also performed. This was 140 

achieved by randomly stratifying animals into five external validation datasets ensuring that 141 

all the records of a given animal appeared only in one validation set, so that the data of an 142 

animal was never present in both the calibration and validation dataset at the same time; 143 

observations in each external validation dataset were then predicted using the model 144 

developed from only the observations in the respective calibration dataset.   145 

 Prediction equations were developed and cross-validated using five different model 146 

constructed: (1) using observations of MY, fat, protein and lactose concentration in milk (with 147 

no MIR data), (2) using only the MIR spectral information, (3) using the observation of both 148 

MY and the associated MIR spectral information, (4) using the observation of both MY and 149 

the associated MIR spectral information as well as the BW of the cow, and (5) using the 150 
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observation of both MY and the associated MIR spectral information as well as the energy 151 

intake from concentrate (NEIconc). Models 1 to 4 were used to predict both DMI and NEI 152 

while model 5 was used to predict only NEI. The same dataset was used for all model 153 

construction and validation. 154 

Model 1 was implemented as a multiple linear regression model. For models 2-5, two 155 

alternative statistical approaches were used to predict either NEI or DMI: partial least squares 156 

(PLS) regression (PROC PLS; SAS Institute Inc., Cary, NC) and BLUP. BLUP was 157 

implemented using the same approach as in genomic prediction except that marker loci were 158 

replaced by the wavelengths of the spectra (Meuwissen et al., 2001). In BLUP, the MIR 159 

spectra wavelengths were always treated as random effects; when fitting models 3 to 5, MY, 160 

BW and NEIconc were always considered as fixed effects. Matlab (Matlab (R), The 161 

MathWorks, Inc. R2016a) scripts were used to perform all BLUP analyses. The model for the 162 

BLUP analysis was: 163 

y = Xb + Zu + e 164 

where y is a vector of NEI or DMI records which were scaled such that the mean and standard 165 

deviation of each trait were 0 and 1, respectively; b is a vector of fixed effects containing an 166 

overall mean, and where the appropriate additional effects of MY, BW and NEIconc were 167 

scaled such that the mean and standard deviation of each trait were 0 and 1, respectively; X 168 

is the design matrix containing columns of covariates for the effects in b; Z is a matrix of 169 

scaled MIR spectra; and u are the random effects of the spectral wavelengths with 170 

Var(u)=I�u
2; and e is a vector of residuals with Var(e)=I��e

2. The variance components �u
2 171 

and �e
2 are unknown, but solving the mixed model equations in order to obtain solutions for 172 

b and u only requires knowing the ratio of the variances �=�e
2/�u

2. Different values of � were 173 

tested on the dataset and the � value which resulted in the greatest accuracy of prediction in 174 
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the external validation were chosen separately for each trait and model. The impact of 175 

different values of ��on leave-one-out cross-validation was also considered. 176 

The square root of the coefficient of determination from the regression model of true 177 

on predicted values (i.e. the correlation between true and predicted values) was used as a 178 

measure of the accuracy (R) of prediction. In the PLS regression analysis, a variable number 179 

of explanatory factors is used to explain the maximum amount of variation of the correlated 180 

wavelength values (as well as their correlation with the dependent variable). Increasing the 181 

maximum number of explanatory factors permitted in the prediction models can improve the 182 

accuracy of cross-validation but may reduce the accuracy of prediction in external validation. 183 

Determining the maximum number of explanatory factors in the model was achieved by 184 

visually inspecting the changes in R for leave-one-out cross-validation and external 185 

validation. When undertaking the external validation of the PLS analysis, model performance 186 

was also assessed by the mean bias of prediction as well as both the root mean square error 187 

(RMSE) of prediction and the linear regression coefficient (b) of true values on their 188 

respective predicted values using simple least squares regression.  189 

 190 

RESULTS 191 

The mean phenotypic values for the different performance traits of the 160 cows, on 192 

days where MIR data were also available, are summarized in Table 1. Average daily DMI 193 

and NEI were 19.8 kg and 125.6 MJ, respectively. The average NEI lactation profile on days 194 

with MIR spectral data is in Figure 1. When including just MY, fat, protein and lactose 195 

concentration in milk in the model, the prediction accuracy was lower in the external 196 

validation were R was 0.57 for NEI and 0.49 for DMI compared to R of cross-validation (0.59 197 

and 0.52, respectively). For this model, the average linear regression coefficient of actual on 198 

predicted NEI and DMI in the external validation was not different from 1. Also, the mean 199 
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bias for NEI and DMI in the external validation for this model was not different from 0 200 

indicating unbiased prediction. Using smoothed MIR wavelengths did not improve the 201 

prediction accuracies; reported results therefore only relate to the analyses using the untreated 202 

spectra.  203 

 204 

Partial Least Squares Regression (PLS) 205 

The accuracy of predicting DMI and NEI from PLS is presented in Table 3. The 206 

accuracy of prediction for the traits was dependent on the maximum number of explanatory 207 

factors permitted in the prediction equations (Figure 2.) The greatest accuracy of predicting 208 

NEI when using only MIR spectral information in the leave-one-out cross-validation was 209 

achieved when the maximum number of permitted factors in the prediction equations was 210 

between 10 and 20 and in the external validation when the maximum number of permitted 211 

factors was between 12 and 20. The number of prediction factors in the PLS models resulting 212 

in the greatest accuracy of prediction were chosen. The number of prediction factors used in 213 

the PLS models ranged between 6 and 8 depending on the trait and model (Table 3). The R 214 

of predicting DMI and NEI was generally lower for external validation compared to cross-215 

validation. 216 

The R of prediction using the external validation ranged from 0.38 to 0.54 for DMI 217 

and from 0.49 to 0.65 for NEI. Compared to the model with spectral information only (i.e., 218 

Model 2), including MY in the prediction model increased the R of predicting DMI by 0.14 219 

units in both the cross-validation and external validation and the R of NEI by between 0.13 220 

(cross-validation) and 0.14 (external validation) units (Table 3). The greatest accuracy of 221 

predicting DMI (0.54) and NEI (0.65) in the external validation was achieved when both BW 222 

and MY were included in the model as predictors, together with the MIR spectra (i.e., Model 223 

4).  224 
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The average linear regression coefficients of actual on predicted NEI and DMI in the 225 

external validation were not different from 1, which indicates that predicted differences in 226 

NEI and DMI were close to the actual values (Table 3). The mean bias for NEI and DMI in 227 

the external validation was not different from 0 indicating unbiased prediction.  228 

 229 

Best Linear Unbiased Prediction (BLUP) 230 

The accuracy of the BLUP predictions of DMI and NEI is presented in Table 4. The 231 

R of predicting DMI and NEI was lower in the external validation dataset compared to the 232 

cross-validation dataset. The R of prediction using the external validation ranged from 0.30 233 

to 0.54 for DMI and from 0.50 to 0.65 for NEI. Compared to the model with spectral 234 

information only (i.e., Model 2), including MY in the model (i.e., Model 3) increased the R 235 

of predicting DMI by between 0.07 (cross-validation) and 0.14 (external validation) units and 236 

the R of predicting NEI by between 0.07 (cross-validation) and 0.13 (external validation) units 237 

(Table 4). The greatest accuracy for predicting DMI in the external validation (0.54) was 238 

achieved when predicted from the MIR spectra and MY combined (i.e., Model 3). Treating 239 

BW as a fixed effect (i.e., Model 4) when predicting DMI resulted in considerable less 240 

accuracy especially in the external validation than using models 2 and 3. The greatest accuracy 241 

for predicting NEI in the external validation (0.65) was achieved when using a model 242 

including BW, MY and MIR spectra (i.e., Model 4) or using a model that included NEIconc, 243 

MY and MIR spectra (i.e., Model 5).  244 

The linear regression coefficients of actual on predicted NEI and DMI in the external 245 

validation were all less (P<0.01) than 1, irrespective of the model and the mean bias of 246 

prediction were also sometimes different (P<0.05) from 0 indicating biased prediction in some 247 

models (Table 4). Based on the regression coefficient and the bias, the best model for 248 
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predicting NEI using BLUP included BW, MY and the MIR spectra and for DMI the best 249 

model included MY together with MIR spectra. 250 

 251 

DISCUSSION 252 

The objective of the present study was to predict NEI and DMI as measures of feed 253 

intake in lactating Norwegian Red cows using milk MIR spectral data, sometimes 254 

accompanied in the prediction model by other often available data. Accurate and easily 255 

assessable information about individual cow feed intake and efficiency could help manage 256 

feed costs and might also enable genetic improvement of feed efficiency by providing large 257 

scale data for breeding value evaluation. Wallén et al. (2017) showed that in order to 258 

genetically improve feed efficiency using genomic selection, 4,000 additional genotyped and 259 

phenotyped heifers are needed to be added to the reference population annually. Generating 260 

such large quantities of low-cost feed efficiency measurements is challenging. Hence 261 

considerable research has focused on solving this conundrum, one of which is to pool data 262 

from different populations (de Haas et al., 2012; Veerkamp et al., 2013). Furthermore, 263 

McParland et al. (2011) proposed that MIR spectral data may be useful to predict energy 264 

intake since fat-to-protein ratio and milk fatty acid composition, which are reported to be 265 

associated with energy balance (Reist et al., 2002; Friggens et al., 2007), are already predicted 266 

from MIR spectra. McParland et al. (2011) successfully related milk MIR spectral data to 267 

both body energy status and energy intake in lactating Holstein dairy cows. The hypothesis 268 

therefore for the present study was that MIR spectral data could be used as a predictor of NEI 269 

and DMI; of particular interest was the marginal improvement in predictive ability by 270 

considering data from potentially informative traits often available at the time of milk 271 

sampling but also the usefulness of BLUP approaches in improving the predictive ability over 272 

the commonly used PLS approaches. Moreover, studies to-date have been confined to 273 
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Holstein-Friesian cows but Norwegian Red cows predominate in Norway and the ability of 274 

milk MIR to predict intake in this breed is currently unknown. 275 

 276 

The Prediction Equations 277 

 The number of explanatory factors permitted in the prediction model affected the 278 

resulting prediction accuracy in the present study. This is in line with the results from both 279 

McParland et al. (2011) who predicted body energy status in Holstein cows using PLS on 280 

milk MIR and Martínez et al. (2017) who studied a model selection criterion for PLS 281 

regression using simulations. In the present study, the impact was greater in the external 282 

validation dataset than in the cross-validation datasets. Too few explanatory factors in the 283 

model contributed to a reduction in R most likely due to an over-simplified prediction model; 284 

on the contrary, too many permitted explanatory factors also resulted in a reduction in R in 285 

external validation, probably due to an over-parameterized model. The optimum number of 286 

permissible factors in the present study appears to be 10-12 when predicting NEI (Figure 2). 287 

Whereas, the optimum number of permissible factors in the study of McParland et al. (2011) 288 

was 20 for body energy status when predictions were across lactation. For this reason, the 289 

maximum number of explanatory factors in the prediction models was limited to 12 in the 290 

present study which was lower than the maximum number of explanatory factors permitted 291 

of 20 in the study of McParland et al. (2011), and is also greater than the 16 factors permitted 292 

by Soyeurt et al. (2011) who also used PLS but in the prediction of milk fatty acids from milk 293 

MIR in dairy cows.  294 

The results in the present study regarding smoothing agree with those of McParland 295 

et al. (2011) who used MIR of milk to predict animal-level phenotypes but contradict with 296 

those of Soyeurt et al. (2011) who predicted milk fatty acid composition. The apparent 297 

discrepancy between studies could simply be due to whether or not the MIR data originated 298 
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from one or multiple spectrometers; Soyeurt et al. (2011) exploited data from multiple 299 

spectrometers while only data from one spectrometer was used by both McParland et al. 300 

(2011) and in the present study.  301 

   302 

Comparison between PLS and BLUP methods 303 

Partial least squares methods have traditionally been used to develop the prediction 304 

equations in dairy cows from milk MIR (McParland et al., 2011, 2012, 2014; De Marchi et 305 

al., 2014). Best Linear Unbiased Predictions approaches, however, are the norm in genetic 306 

and genomic evaluations. Because one of the objectives of the present study was to develop 307 

prediction models for possible use in breeding programs, consideration was given to whether 308 

BLUP approaches could also be used to predict NEI and DMI thus simplifying the pipelines 309 

used. Furthermore, since BLUP provides the opportunity to treat some of the predictors as 310 

fixed effects (i.e., MY and BW), and there is strong prior knowledge to indicate these are 311 

informative in predicting feed intake (Berry and Crowley, 2013; McParland et al., 2014), we 312 

expected that BLUP could also result in improved prediction accuracy relative to PLS. 313 

Although R in cross-validation was best for BLUP, the R of both BLUP and PLS was similar 314 

in the external validation (Tables 3 and 4). Worryingly, however, was the evidence of mean 315 

bias and a linear regression coefficient of the actual values on BLUP-predicted values 316 

differing from unity; such biases were not evident for PLS. McParland et al. (2011) reported 317 

a linear regression coefficient of the actual values of energy balance on PLS-predicted values 318 

not differing from unity. However, the linear regression coefficient of actual on predicted 319 

energy content was different from unity (0.77-0.83 ± 0.06). McParland et al. (2011) also 320 

reported a biased prediction for energy content. Mean biases however are not necessarily a 321 

big issue for genetic evaluations since genetic evaluations are all undertaken within 322 

contemporary group and in doing so remove the mean contemporary group effect from the 323 
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individual records. One possible reason why BLUP resulted in biased predictions is that � 324 

was chosen based on external-validation R values and was not estimated using the variance 325 

components. Thus, based on our results PLS seems to be a better method for predicting feed 326 

intake using milk MIR than BLUP. 327 

 328 

Improving Feed Efficiency 329 

In the present study, the most accurate model for predicting both DMI and NEI 330 

included BW, MY and MIR spectra when using PLS. Even though, BW itself is not that easily 331 

available on commercial dairy farms, it could be estimated using for example chest width 332 

since a high genetic correlation between body weight and chest width has been reported (0.75-333 

0.86; Veerkamp and Brotherstone., 1997). It is clear that using only MIR spectra in the model 334 

does not result in high prediction accuracy for NEI or DMI; in fact the accuracy of prediction 335 

using just the MIR data was always inferior to a model that used just MY, fat, protein and 336 

lactose concentration. The use of MY and BW together with MIR spectra in the prediction 337 

model increased the prediction accuracy considerably and resulted R of 0.65 for NEI in the 338 

external validation which is however, lower compared to the study of McParland et al. (2014) 339 

where PLS was used to predict effective energy intake using just MY and milk MIR resulting 340 

R of 0.70 in the external validation. The differences in the results between McParland et al. 341 

(2014) and the present study could be due the fact that within each experiment, the cows did 342 

not receive exactly the same diet and the DM content of feed differed between different 343 

experiments, which could have an impact to the relationship between MIR and DMI/NEI in 344 

the present study. 345 

 The prediction accuracy of 0.65 (external validation) for NEI seems promising, 346 

especially if we consider that energy intake is a phenotype which itself encompasses recording 347 

errors (McParland et al., 2011). For instance, diurnal variation may also exist in energy intake 348 
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(McParland et al., 2011), which makes the maximum achievable prediction accuracy less than 349 

100% (possibly 75% for body energy status according to McParland et al., 2011 and 70% for 350 

energy intake according to McParland et., 2014). McParland and Berry (2016) reported 351 

heritable genetic variability for energy intake, energy balance and residual energy intake 352 

predicted using milk MIR and reported that phenotypic differences in energy intake existed 353 

among animals which were stratified based on their EBV for energy intake predicted from 354 

MIR. Hence, genetic improvement of feed efficiency could be possible. Feed intake itself is 355 

the actual gold standard trait and can be used when actual feed intake data are available. 356 

Hence, as more actual feed intake data accumulates for an animal or a sire, the importance of 357 

the MIR predicted feed intake diminishes. Nonetheless, the accuracy of prediction of feed 358 

intake from daughter phenotypes can never be greater than the genetic correlation between 359 

the predicted phenotypes and the actual feed intake. 360 

Results from the present study suggest that MIR spectral data can be used to predict 361 

NEI as a measure of feed intake in Norwegian Red dairy cattle. When using PLS with 8 362 

factors, the most accurate model of predicting NEI included in BW, MY and MIR spectra as 363 

predictors. The BLUP predictions yielded similar accuracies but were biased. Nonetheless, 364 

no matter which feed efficiency measure would be chosen, before including the trait in the 365 

breeding program, genetic correlations between predicted feed intake, actual feed intake and 366 

other performance traits, especially health and fertility traits need to be estimated to derive 367 

the selection index weights. The use of MIR spectra data to predict energy intake could also 368 

be adopted as a monitoring tool for day-to-day herd management since the milk samples are 369 

taken routinely in dairy production.  370 

 371 

 372 

 373 
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478 
 479 
Table 1. Phenotypic records1 at the days with milk mid-infrared spectral information for 160 480 
cows and 204 lactations. 481 
Trait Mean s.d. 

DMI (kg/d) 19.83 3.52 

MY (kg/d) 24.79 5.93 

Fat % 4.37 0.55 

Protein % 3.42 0.28 

Lactose % 4.65 0.18 

BW (kg) 557.38 54.91 

NEI (MJ/d) 125.58 22.00 
1DMI=dry matter intake, MY=milk yield, Fat=fat concentration in milk, Protein=protein 482 
concentration in milk, Lactose=lactose concentration in milk, BW=body weight, NEI=net 483 
energy intake, Mean=the mean value of each trait, s.d.=standard deviation for each trait. 484 
 485 
 486 
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487 
 488 
Table 2. Summary1 of feeding experiments. 489 

Feeding 
experiment 

Length of test 
period (d) No. of cows No. of collected 

rec. Frequency 

A 127 33 33 1.00 

B 109 43 119 2.77 

C 84 14 14 1.00 

D 109 22 61 2.77 

E 371 44 128 2.91 

F 54 48 502 10.46 
1Length of test period=length of the test period in each feed experiment, No. of cows=total 490 
number of cows within each feed experiment, No. of collected rec.=total number of collected 491 
records for dry matter intake, milk yield, fat, protein and lactose concentration in milk, body 492 
weight and net energy intake within each feeding experiment, Frequency=how frequently 493 
records were collected per cow and within each feeding experiment. 494 
 495 
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496 
 497 
Table 3. Average number of factors (Fac), root mean square error (RMSE), correlation 498 
coefficient (R), mean bias (SE in parentheses),a and slope (b; SE in parentheses)b obtained 499 
from predicting dry matter intake (DMI) and net energy intake (NEI) using centered and 500 
scaled mid-infrared (MIR) spectra, tested using leave-one-out cross-validation and external 501 
validation methods in partial least squares regression analysis 502 
 503 

  Leave-one-out cross-
validation  External validation 

Trait  Fac RMSE R  Fac Bias (SE)a b (SE)b RMSE  R 

D
M

I (
kg

/d
) Model 2 6 3.15 0.45  6 0.01 

(0.11) 
0.88 

(0.16) 3.27 0.38 

Model 3 8 2.84 0.59  8 -0.01 
(0.10) 

0.88 
(0.11) 3.01 0.52 

Model 4 7 2.84 0.59  7 -0.02 
(0.10) 

0.90 
(0.11) 2.98 0.54 

 504 

N
EI

 (M
J/

d)
 

Model 2 6 18.49 0.54  6 0.16 
(0.65) 

0.95 
(0.12) 19.17 0.49 

Model 3 8 16.35 0.67  8 -0.16 
(0.59) 

0.95 
(0.09) 17.15 0.63 

Model 4 8 16.02 0.69  8 -0.17 
(0.57) 

0.94 
(0.08) 16.83 0.65 

Model 5 8 16.13 0.68  8 0.04 
(0.58) 

0.94 
(0.09) 17.03 0.63 

Model 2: Using only MIR spectral information as predictors. 505 
Model 3: Using observations of milk yield together with MIR spectral information as 506 
predictors. 507 
Model 4: Using observations of body weight and milk yield together with MIR spectral 508 
information as predictors. 509 
Model 5: Using observations of energy intake from concentrate and milk yield together with 510 
MIR spectral information as predictors. 511 
aAverage difference between predicted values and true values in external validation dataset. 512 
bLinear regression coefficient of true value on predicted value. 513 
 514 

515 
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 516 
Table 4. Lambda (��� root mean square error (RMSE), correlation coefficient (R), mean bias 517 
(SE in parentheses),a and slope (b; SE in parentheses)b obtained from predicting dry matter 518 
intake (DMI) and net energy intake (NEI) using centered and scaled mid-infrared (MIR) 519 
spectra, tested using leave-one-out cross-validation and external validation methods in BLUP 520 
analysisc 521 
 522 
   Cross-validation  External validation 
Trait  �� RMSE   R       Bias (SE)a    b (SE)b RMSE R 

D
M

I (
kg

/d
) Model 2 4 2.93 0.56  0.18 

(0.11) 
0.61 

(0.02) 3.25 0.40 

Model 3 20 2.74 0.63  0.24 
(0.10) 

0.81 
(0.01) 2.96 0.54 

Model 4 20 2.96 0.54  0.49 
(0.12) 

0.49 
(0.02) 3.40 0.30 

 523 

N
EI

 (M
J/

d)
 

Model 2 4 17.10 0.63  0.95 
(0.65) 

0.66 
(0.02) 19.14 0.50 

Model 3 10 15.77 0.70  1.08 
(0.59) 

0.89 
(0.01) 17.18 0.63 

Model 4 10 15.49 0.71  0.99 
(0.57) 

0.93 
(0.01) 16.78 0.65 

Model 5 4 15.43 0.71  1.02 
(0.57) 

0.90 
(0.01) 16.78 0.65 

c�=Error variance/variance of the spectra, Cross-validation=Leave-one-out cross-validation, 524 
BLUP=Best Linear Unbiased Prediction, In models 3-5, milk yield, body weight and net 525 
energy intake from concentrate are treated as fixed effects. 526 
Model 2: Using only MIR spectral information as predictors. 527 
Model 3: Using observations of milk yield together with MIR spectral information as 528 
predictors. 529 
Model 4: Using observations of body weight and milk yield together with MIR spectral 530 
information as predictors. 531 
Model 5: Using observations of energy intake from concentrate and milk yield together with 532 
MIR spectral information as predictors. 533 
 534 
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 535 

Figure 1. Lactation profile of the net energy intake (NEI) at days with milk mid-infrared 536 
spectral recordings with an average trend line; DIM = days in milk. 537 
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 538 

Figure 2. Influence of maximum number of predictive factors permitted in the calibration 539 
equation on the accuracy (R) of the leave-one-out cross-validation and the external validation 540 
when predicting net energy intake using only milk mid-infrared spectral information. 541 

 542 
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APPENDIX B 548 

Formulas used to calculate energy intake based on NorFor (Volden et al., 2011). 549 

 550 

Gross energy intake (GEI):  551 

 552 
553 

 554 

 555 

where GEI is expressed as MJ/d, and for feedstuff i, DMIi is the dry matter intake (kg/d), 556 

CPcorri is the content of ammonia- or urea-corrected crude protein, CFati is the crude fat 557 

content (g/kg DM), OMi is the organic matter content (g/kg DM), CPi is the crude protein 558 

content (g/kg DM) and NH3Ni is the ammonia or urea N content (g/kg CP), (i=1,...,n). 559 

 560 

Metabolizable energy intake (MEI): 561 

 562 

563 

 564 

 565 

where MEI is expressed as MJ/d, DMIi is the dry matter intake of the i=1...n’th feedstuff 566 

(kg/d), SUi is the sugar content in the i=1...n’th feedstuff (g/kg DM), tdCPcorr is the total tract 567 

digestion of ammonia- or urea-corrected crude protein, tdCFat is the total tract digestion of 568 

crude fat, and tdCHO is the total tract digestion of carbohydrates.  569 

 570 

Net energy intake (NEI): 571 

In NorFor, NEI is based on the equations of Van Es (1975; 1978). NEI per individual was 572 

calculated based on metabolizable and gross energy of feed:  573 

 574 

 575 

 576 

where NEI is expressed as MJ/d, q is the ratio (%) between metabolizable energy and gross 577 

energy.  578 

 579 
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 10 

ABSTRACT 11 

Mid-infrared (MIR) spectroscopy of milk was used to predict net energy intake (NEI) in 12 

160 lactating Norwegian Red dairy cows and effective energy intake (EEI) in 375 lactating 13 

Holstein-Friesian dairy cows. A total of 857 observations were used in NEI predictions and 1341 14 

observations in EEI predictions when split-sample cross-validation and external validation 15 

methods were used to develop and validate prediction equations using four different models. 16 

Predictions were performed using either partial least squares (PLS) regression, multiple linear 17 

regression (MLR) or Best Linear Unbiased Prediction (BLUP) methods. The methods were 18 

implemented using the MIR spectral information within country or across two countries. Best 19 

Linear Unbiased Predictions were implemented either as a single trait or a multi-trait method. 20 

Accuracy of prediction was defined as the correlation between the predicted and observed energy 21 

intake test-day records. Combining the spectra from two countries, increased the R of predicting 22 

EEI by 0.02 units in both the cross-validation and the external validation compared to the model 23 
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with spectral information from one country only. Whereas for NEI, combining the spectra from 24 

two countries decreased the prediction accuracy in the cross-validation by 0.02 units and had no 25 

effect in R in the external validation. When predicting NEI using only the MIR spectral 26 

information, it was more beneficial to use single trait BLUP method compared to PLS. Both 27 

single trait and multi-trait BLUP methods resulted greater R for EEI compared to PLS models 28 

including MIR spectra from one country only. This study shows that MIR spectral data from two 29 

countries can be combined and used to predict energy intake as a measure of feed intake in dairy 30 

cattle.  31 

 32 

Key words: mid-infrared spectroscopy, pooled data, effective energy intake, net energy intake, 33 

prediction. 34 

 35 

INTRODUCTION 36 

Generating accurate genetic (and genomic) evaluations for any trait is predicated on 37 

routine access to phenotypic data on the trait itself or predictors of the trait. Estimated breeding 38 

values for feed intake in ruminants in particular suffer from lower than desired accuracy 39 

prompting interest in (low-cost) tools to phenotypically predict feed intake (McParland et al., 40 

2014; Wallén et al., submitted). Using a population of 160 lactating Norwegian Red dairy cows, 41 

Wallén et al. (submitted) reported an accuracy of predicting energy intake of 0.65 based on milk 42 

mid-infrared (MIR) spectroscopy data; similarly, McParland et al. (2014) reported an accuracy 43 

of prediction of energy intake in 378 lactating Holstein-Friesian of 0.70 from milk MIR. The 44 

main advantage of exploiting milk MIR data is that an infrared spectrum could theoretically be 45 

generated on an individual cow basis at each milking (usually twice daily) thus providing a rich 46 
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data source not only for use in genetic evaluations but also for day-to-day cow and herd 47 

management.  48 

The accuracy and robustness of prediction models, however, is a function of how the 49 

variation in the data used to generate the model parameters relates to the sample population in 50 

which it will be used (Habier et al., 2010; Pszczola et al., 2012). Therefore, combining data from 51 

different feed systems when generating prediction models could potentially improve the 52 

applicability of the prediction model to a greater range of end-users. Moreover, some populations 53 

may not actually have access to gold standard feed intake data to generate the equations and in 54 

such situations, the transferability of prediction equations developed elsewhere in a different 55 

population is of interest. The objective therefore of this study was to quantify the transferability 56 

of MIR-based prediction equations for feed intake between two populations differing in breed 57 

and feeding system but also the benefit, if any, of combining data from two populations in the 58 

pursuit of more accurate predictions of feed intake. We also wanted to investigate the use of the 59 

Best Linear Unbiased Prediction (BLUP) method, which is commonly used in genetic and 60 

genomic prediction, for the prediction of energy intake traits using MIR data.  61 

 62 

MATERIALS AND METHODS 63 

Norwegian Data 64 

Data from six different feeding experiments were collected from the dairy research farm 65 

at the Norwegian University of Life Sciences (NMBU, Ås, Norway) between the years 2007 and 66 

2015, with the exception of the years 2010 and 2012, inclusive from which dry matter intake 67 

(DMI) data could not be recovered. Traits periodically available included individual cow DMI 68 

(kg/d) and milk yield (MY, kg/d). Estimates for each performance trait were obtained from 69 
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interpolation (using cubic splines, detailed information in Wallén et al., submitted) of the actual 70 

observations for DMI, net energy intake (NEI), and MY. After interpolation, several restrictions 71 

were implemented to improve the integrity of the data. Milk yield records were discarded if MY 72 

was < 10 kg and DMI records were excluded if total DMI was > 30 kg. Net energy intake values 73 

< 55 MJ or >400 MJ were also excluded from the dataset. Detailed information about the data 74 

structure can be found in Wallén et al. (submitted). Data (n=857 records) were available from 75 

204 lactations from 160 cows.  76 

In all experiments, cows were fed timothy-grass-based silage combined with grain-based-77 

concentrate (Appendix A in Wallén et al., submitted). Concentrates were fed according to 78 

individual cow milk yield (4 of the 6 feed treatments) or in fixed amounts (2 of the 6 feeding 79 

treatments) using automatic feed stations. In all instances, silage was fed either ad libitum or 80 

restricted, using feed bins fitted with vertical feed gates and weighing cells underneath.  81 

Silage DM was calculated based on feed analyses. Concentrate DM was calculated based 82 

on feed analyses, or tabulated information from the Nordic feed evaluation system feed tables 83 

(NorFor; Volden et al., 2011). Dry matter intake of silage and concentrate were calculated 84 

separately and summed. Individual energy intake, expressed as NEI (MJ/kg DM), was calculated 85 

separately for concentrate and silage based on the NorFor evaluation system as described in detail 86 

in Appendix B in Wallén et al. (submitted); the NEI of concentrate and silage was then summed.  87 

 88 

Irish Data 89 

 Data from a range of grazing studies (Ganche et al., 2013a,b; McCarthy et al., 90 

2014) were collected from an Irish dairy research herd, located at the Teagasc Animal and 91 

Grassland Research and Innovation Center (Moorepark, Fermoy, Co. Cork, Ireland) between the 92 
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years 2008 and 2013, inclusive. Milk production was routinely recorded weekly on all animals. 93 

Detailed information about the data structure can be found in McParland et al. (2014). Data 94 

(n=1,341 records) were available from 532 lactations of 375 cows. 95 

The basal diet of the majority of cows was grazed grass. Individual cow DMI was 96 

periodically recorded at grass using the n-alkane technique and fecal crab samples (Dillon and 97 

Stakelum, 1989; Kennedy et al., 2008). In addition, a subset of cows (n = 25) were fed a TMR 98 

diet of maize silage, grass silage, soybean meal, and dairy concentrate (Moore et al., 2014). 99 

Individual DMI of these 25 cows was recorded daily. The ME content of the grass was assumed 100 

to be 0.0157 × digestible OM of grass (AFRC, 1993). Grass ME intake was summed with the 101 

ME content of the concentrate fed. This information was used to compute effective energy intake 102 

(EEI, MJ/d) according to the formulae of Coffey et al. (2001). 103 

 104 

MIR data in both countries 105 

In both countries, cows were milked twice daily between 0615 and 0900 h and between 106 

1500 and 1715 h. Once weekly (Irish samples) or 1-10 times per experiment (Norwegian samples, 107 

detailed information in Wallén et al., submitted), milk samples were collected and analyzed using 108 

a MIR spectrometer (MilkoScan FT6000; Foss Electric A/S, Hillerød, Denmark). The FOSS 109 

FTIR spectrum contains 1,060 data points representing the absorption of infrared light through 110 

the milk sample at wavelengths in the 900 to 5,000 cm-1 region. The Norwegian data set 111 

comprised spectral data from composite morning and evening milk between the years 2007 and 112 

2014. However, separate morning and evening milk spectral data were available in 2015. 113 

Therefore, the average of each spectral data point weighted by its corresponding milk yield was 114 



6 
 
 

calculated for those samples. The Irish data set comprised spectral data from separate morning 115 

and evening milkings hence, a plain average of each spectrum wavelength was calculated.  116 

The Savitzky-Golay 1st derivative method was applied to MIR spectra of both countries 117 

to bring all spectra to a common baseline and to sharpen absorbance bands. Different degrees of 118 

polynomial and window sizes were tested using the Unscrambler X program (Version 10.5, Camo 119 

Software AS, Oslo, Norway).  120 

 121 

Development and Validation of Prediction Equations 122 

MIR wavelength regions known to be related to water absorbance were not considered in 123 

the analysis (Zimmermann and Kohler; 2013). The wavelength regions of 926-1641, 1701-2201 124 

and 2637-3117 cm-1 were used to predict NEI and EEI. These regions represent a combination of 125 

the wavelengths used in the prediction equations of NEI (Wallén et al., submitted) and EEI 126 

(McParland et al., 2014).  127 

Prediction models were developed using split-sample cross-validation. In this approach, 128 

every 20th observation were held out as a test set and predicted using a model developed from the 129 

data remaining in the calibration dataset. This was iterated until all the observation in each test 130 

set had been predicted once. To obtain a more appropriate representation of the accuracy and 131 

robustness of the prediction equations, external validation was also performed. This was achieved 132 

by randomly stratifying animals into five external validation datasets ensuring that all repeated 133 

records of a given animal appeared only in one validation set. Remaining samples were used as 134 

calibration data and used to develop the equations to predict samples in each external validation 135 

data set.  136 
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Prediction equations for NEI and EEI were developed and validated either using MIR 137 

spectra within country (Models 1-2) or across countries (Models 3-6).  138 

Within Country Models. Unprocessed within country MIR spectral information was used 139 

as predictors in the Model 1 and the first derivative of the within country MIR spectra were used 140 

in the Model 2. For models 1-2, partial least squares (PLS) regression (PROC PLS; SAS Institute 141 

Inc., Cary, NC) method was used. 142 

Across Country Models. For the Model 3, PLS scores (i.e. latent factors that account for 143 

most of the variation in the spectra) were calculated based on the across country MIR spectra. 144 

Model 3 was implemented as a multiple linear regression (MLR) model. In the Model 4, PLS 145 

method was used for across country MIR spectral information.   146 

Across Country BLUP Models. Across country MIR spectra were used in the Models 5 147 

and 6. A single trait BLUP (sBLUP) method was used for Model 5 and a multi-trait BLUP 148 

(mBLUP) for Model 6. For BLUP predictions, the same approach as in genomic prediction, 149 

except that marker loci were replaced by the wavelengths of the spectra, was used (Meuwissen 150 

et al., 2001). In the multi-trait analysis, the correlation between NEI and EEI was estimated using 151 

ASReml (ASReml 4.0, Gilmour et al., 2009). The MIR spectra wavelengths were always treated 152 

as random effects in BLUP analysis. 153 

Julia (Julia 0.4.5) scripts were used to construct the G matrix (i.e. variance-covariance 154 

matrix of animals based on the spectra data and ASReml to perform all BLUP analyses. The G 155 

matrix was calculated as G = XX’, where X is a (number of animals * number of wavelengths) 156 

matrix of MIR spectra data. The model for the sBLUP analysis was:  157 

y = μ + u + e 158 
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where y is a vector of NEI or EEI records which were scaled such that the mean and standard 159 

deviation of each trait were 0 and 1, respectively; μ is the mean of y, and u are the random effects 160 

of the spectral wavelengths with Var(u)=GI�u
2; and e is a vector of residuals with Var(e)=I��e

2. 161 

ASReml was used to estimate the variance components. The traits NEI and EEI were also 162 

analyzed as two separate traits in a bi-variate analysis using the model (subscripts 1 and 2 denote 163 

NEI and EEI, respectively): 164 

 165 

and , where C is a (2x2) matrix of (co)variances of the two traits that are 166 

explained by the spectra and denotes the Kronecker matrix product; , 167 

where R is a (2x2) diagonal matrix of residual variances of the two traits and In is a (nxn) identity 168 

matrix. The residual covariance between the traits is assumed 0, because this covariance cannot 169 

be estimated from the current data (none of the cows had recordings on both traits NEI and EEI).  170 

 171 

Accuracy of Predictions 172 

The square root of the coefficient of determination from the regression model of true on 173 

predicted values (i.e. the correlation between true and predicted values) was used as a measure 174 

of the accuracy (R) of prediction.  In the PLS regression analysis, a variable number of 175 

explanatory factors was used to explain the maximum amount of variation of the correlated 176 

wavelength values (as well as their correlation with the dependent variable). Increasing the 177 

maximum number of explanatory factors permitted in the prediction models can improve the 178 

accuracy of cross-validation but may reduce the accuracy of prediction in external validation. 179 

When undertaking external validation, model performance was also assessed by the mean bias of 180 



9 
 
 

prediction as well as both the root mean square error (RMSE) of prediction and the linear 181 

regression coefficient (b) of true values on their respective predicted values using least squares 182 

regression.  183 

 184 

RESULTS 185 

Partial Least Squares Regression (PLS) and Multiple Linear Regression (MLR) 186 

The accuracy of predicting NEI and EEI from PLS and MLR is presented in Table 1. The 187 

R of predicting NEI and EEI was generally lower for external validation compared to cross-188 

validation. Using unprocessed Irish spectra (i.e., Model 1) or taking the first derivative of the 189 

Irish spectra (i.e., Model 2) did not affect the accuracy of EEI in the split-sample cross-validation 190 

or in the external validation. Whereas, when the first derivative of the Norwegian spectra was 191 

used, the prediction accuracy of NEI improved, both in split-sample cross-validation and also in 192 

external validation (Table 1). The number of prediction factors in the PLS models and the number 193 

of PLS scores in the MLR models were chosen based on the prediction accuracy of the model. 194 

The number of prediction factors used in the PLS models ranged between 9 and 18 depending on 195 

the trait and model. A higher number of factors (17-18) were used to explain spectral variation 196 

related to EEI relative to NEI (9-13). 197 

The R of prediction in external validation ranged from 0.50 to 0.51 for NEI and from 0.66 198 

to 0.68 for EEI. Compared to the model with within country spectral information (i.e., Model 2), 199 

combining the spectra from two countries (i.e., Model 3, Figure 1) increased the R of predicting 200 

EEI by 0.02 units in both the cross-validation and the external validation. Whereas for NEI, 201 

combining the spectra from two countries decreased the prediction accuracy in the cross-202 

validation by 0.02 units and had no effect in R in the external validation.  203 
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The linear regression coefficients and mean bias for PLS and MLR models are presented 204 

in Table 2. On average, the linear regression coefficient of actual on predicted NEI in the external 205 

validation for model 1 was not different from 1, which indicates that predicted NEI were unbiased 206 

estimations of actual NEI. All the other models for NEI and EEI resulted in linear regression 207 

coefficients that were somewhat less than 1. However irrespective of the model, the mean bias 208 

for NEI and EEI in the external validation was not different from 0 indicating unbiased prediction.  209 

 210 

Best Linear Unbiased Prediction (BLUP) 211 

The accuracy of the BLUP predictions of NEI and EEI is presented in Table 1. The BLUP 212 

predictions were only implemented using the MIR spectral information from both countries (i.e., 213 

Models 5 and 6) in the external validation dataset. The R of prediction was 0.67 for EEI and 214 

ranged from 0.50 to 0.53 for NEI. Compared to multi-trait BLUP (i.e., Model 6), single trait 215 

BLUP (i.e., Model 5) increased the R of predicting NEI by 0.03 units. Whereas for EEI, single 216 

trait and multi-trait BLUP resulted in similar accuracy of prediction. 217 

The linear regression coefficients and mean bias for BLUP models are presented in Table 218 

2.The average linear regression coefficient of actual on predicted NEI for mBLUP model was 219 

not different from 1; for EEI, both sBLUP and mBLUP models gave similar linear regression 220 

coefficients. The single trait BLUP model for NEI resulted linear regression coefficient that was 221 

somewhat less than 1.  222 

 223 

DISCUSSION 224 

The objective of the present study was to predict NEI and EEI as measures of feed intake 225 

in dairy cows using within country or across country milk MIR spectral data.  The main objective 226 
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of this study was to quantify if combining MIR spectra data from two countries would result more 227 

accurate predictions of feed intake. Having access to easily assessable and accurate information 228 

about individual cow feed intake and efficiency could help in managing feed costs and might also 229 

enable genetic improvement of feed efficiency by providing large scale data for breeding value 230 

evaluation. Wallén et al. (2017) showed that genetic improvement of feed efficiency using 231 

genomic selection requires a large quantity (i.e. 4,000) of additional genotyped and phenotyped 232 

heifers to be added to the reference population annually. However, it is challenging to have access 233 

to feed efficiency measurements in such a large quantity. To solve this problem, de Haas et al. 234 

(2012) and Veerkamp et al. (2013) suggested to pool data from different populations. Milk MIR 235 

spectral data has recently successfully been related to predict intake and related traits in Irish, UK 236 

and Norwegian dairy cows (McParland et al., 2011; McParland et al., 2014; Wallén et al., 237 

submitted). A restriction to previous studies was the size and variability of the data sets used in 238 

those studies. McParland et al. (2012) showed that equations developed in one production system 239 

were not useful to predict intake in a different system. The hypothesis therefore for the present 240 

study was that MIR spectral data from two countries could be used as a predictor of NEI and EEI; 241 

of particular interest was the usefulness of BLUP approaches in improving the predictive ability 242 

over the commonly used PLS approaches, as the multi-trait BLUP model could account for the 243 

fact that NEI and EEI are correlated traits, and not exactly the same traits.  244 

  245 

Comparison between PLS and BLUP methods 246 

Many earlier studies (McParland et al., 2011, 2012, 2014; De Marchi et al., 2014) 247 

focussed on partial least squares methods to develop equations to predict milk and cow from milk 248 

MIR. However, in genetic and genomic evaluations, BLUP approaches are regularly used. 249 
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Because one of the objectives of the present study was to develop prediction models for possible 250 

use in breeding programs, consideration was given to whether BLUP approaches could also be 251 

used to predict NEI and EEI when combining the MIR spectra from two countries. When 252 

predicting NEI using only the MIR spectral information, it was more beneficial to use the single 253 

trait BLUP method compared to PLS (Tables 1 and 2). In a multi-trait BLUP, there are more 254 

parameters to be estimated than in a single trait BLUP method. Estimating those parameters did 255 

not yielded greater accuracies of prediction in the present study. However, both single trait and 256 

multi-trait BLUP methods yielded greater accuracy of prediction of EEI when compared to PLS 257 

models. All the PLS and BLUP predictions were unbiased. However, some of the models had a 258 

linear regression coefficient of the actual values on PLS- and BLUP-predicted values different 259 

from unity. Our results agree with those from McParland et al. (2011) who reported a linear 260 

regression coefficient of the actual values of energy balance on PLS-predicted values not 261 

differing from unity. However, the linear regression coefficient of actual on predicted energy 262 

content was different from unity (0.77-0.83 ± 0.06). Thus, based on our results single trait BLUP 263 

seems to be a better method for predicting NEI, when only milk MIR is available, than PLS. 264 

When predicting EEI using milk MIR, calculating PLS scores and using MLR was more 265 

beneficial than either one of the BLUP methods. 266 

 267 

Improving Feed Efficiency 268 

In the present study, the single trait BLUP method yielded greatest accuracy of prediction 269 

for NEI when across country MIR spectral information was used as predictors. For EEI, 270 

calculating PLS scores and using MLR method yielded greatest accuracy of prediction when 271 

across country MIR spectral information was used. When EEI was predicted using MIR spectra 272 
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within country, the accuracy of prediction in the external validation (0.66) in the present study 273 

was greater than in the study of McParland et al. (2014) where the R for EEI was 0.55-0.64. The 274 

differences in the results between McParland et al. (2014) and the present study could be due the 275 

fact that different MIR wavelengths were used in different studies and also the datasets used were 276 

somewhat different. The greatest accuracy of prediction for both NEI and EEI was achieved using 277 

across country MIR spectra. 278 

 Results from the present study suggest that MIR spectral data from two countries i.e. 279 

from two populations differing in breed and feeding system can be combined and used to predict 280 

energy intake as a measure of feed intake in dairy cattle. Our results also indicate that single trait 281 

BLUP could have a benefit over the PLS as a method to predict energy intake using the MIR 282 

spectra. Nonetheless, before any measure of feed intake can be included in the breeding program, 283 

genetic correlations between other performance traits, especially health and fertility traits, 284 

predicted feed intake and actual feed intake need to be estimated to derive the selection index 285 

weights. Since the milk samples are easily available in dairy production, the use of MIR spectra 286 

data to predict energy intake could be adopted as a monitoring tool for day-to-day herd 287 

management.  288 
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ACKNOWLEDGMENTS 290 

The authors acknowledge the Norwegian Research Council, project no. 225233/E40, breeding 291 

and AI organization GENO (Ås, Norway) and Norwegian dairy foods company TINE for 292 

funding. Thanks to Ingunn Schei for help with the NorFor calculations and TINE (Ås, Norway), 293 

NMBU research farm (Ås, Norway), the Norwegian Dairy Herd Recording System (Ås, Norway) 294 

and Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark (Co. Cork, 295 



14 
 
 

Ireland) for providing the data. Julia and ASReml computations were performed at the Abel 296 

cluster at the University of Oslo. 297 

 298 

REFERENCES 299 

AFRC (Agricultural and Food Research Council). 1993. Energy and protein requirements of 300 

ruminants. An advisory manual prepared by the AFRC Technical Committee on Responses to 301 

Nutrients. CAB International, Wallingford, UK. 302 

 303 

Coffey, M. P., G. C. Emmans, and S. Brotherstone. 2001. Genetic evaluation of dairy bulls for 304 

energy balance traits using random regression. Anim. Sci. 73:29–40. 305 

 306 

de Haas, Y., M. P. L. Calus, R. F. Veerkamp, E. Wall, M. P. Coffey, H. D. Daetwyler, B. J. 307 

Hayes, and J. E. Pryce. 2012. Improved accuracy of genomic prediction for dry matter intake of 308 

dairy cattle from combined European and Australian datasets. J. Dairy Sci. 95:6103-6112. 309 

 310 

De Marchi, M., V. Toffanin, M. Cassandro, and M. Penasa. 2014. Invited review: Mid-infrared 311 

spectroscopy as phenotyping tool for milk traits. J. Dairy Sci. 97:1171-1186. 312 

 313 

Dillon, P. G., and G. Stakelum. 1989. Herbage and dosed alkanes as a grass management 314 

technique for dairy cows. Ir. J. Agric. Res. 8:104. (Abstr.) 315 

 316 

Ganche, E., L. Delaby, M. O’Donovan, T. M. Boland, N. Galvin, and E. Kennedy. 2013a. Post-317 

grazing sward height imposed during the first 10 weeks of lactation: Influence on early and total 318 



15 
 
 

lactation dairy cow production, and spring and annual sward characteristics. Livest. Sci. 157:299–319 

311. 320 

 321 

Ganche, E., L. Delaby, M. O’Donovan, T. M. Boland, and E. Kennedy. 2013b. Direct and 322 

carryover effect of post-grazing sward height on total lactation dairy cow performance. Animal 323 

7:1390–1400. 324 

 325 

Gilmour, A.R., B. Gogel, B. Cullis, R. Thompson, and D. Butler. 2009. ASReml user guide 326 

release 3.0. VSN International Ltd., Hemel Hempstead, UK. 327 

 328 

Habier, D., J. Tetens, F-R. Seefried, P. Lichtner, and G. Thaller. 2010. The impact of genetic 329 

relationship information on genomic breeding values in German Holstein cattle. Genet. Sel. Evol. 330 

42:5. 331 

 332 

Kennedy, E., M. O’Donovan, L. Delaby, and F. P. O’Mara. 2008. Effect of herbage allowance 333 

and concentrate supplementation on dry matter intake, milk production and energy balance of 334 

early lactating dairy cows. Livest. Sci. 117:275–286. 335 

 336 

McCarthy, J., B. McCarthy, B. Horan, K. M. Pierce, N. Galvin, A. Brennan, and L. Delaby. 2014. 337 

Effect of stocking rate and calving date on fry matter intake, milk production, body weight, and 338 

body condition score in spring calving, grass-fed dairy cows. J. Dairy Sci. 97:1693–1706. 339 

 340 



16 
 
 

McParland, S., G. Banos, B. McCarthy, E. Lewis, M. P. Coffey, B. O’Neill, M. O’Donovan, E. 341 

Wall, and D. P. Berry. 2012. Validation of mid-infrared spectrometry in milk for predicting body 342 

energy status in Holstein-Friesian cows. J. Dairy Sci. 95:7225-7235. 343 

 344 

McParland, S., G. Banos, E. Wall, M. P. Coffey, H. Soyeurt, R. F. Veerkamp, and D. P. Berry. 345 

2011. The use of mid-infrared spectrometry to predict body energy status of Holstein cows. J. 346 

Dairy Sci. 94:3651-3661. 347 

 348 

McParland, S., E. Lewis, E. Kennedy, S. G. Moore, B. McCarthy, M. O’Donovan, S. T. Butler, 349 

J. E. Pryce, and D. P. Berry. 2014. Mid-infrared spectrometry of milk as a predictor of energy 350 

intake and efficiency in lactating dairy cows. J. Dairy Sci. 97:5863-5871. 351 

 352 

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard. 2001. Prediction of total genetic value 353 

using genome-wide dense marker maps. Genetics 157:1819-1829. 354 

 355 

Moore, S. G., T. Fair, P. Lonergan, and S. T. Butler. 2014. Genetic merit for fertility traits in 356 

Holstein cows: IV. Transition period, uterine health, and resumption of cyclicity. J. Dairy Sci. 357 

97:2740–2752. 358 

 359 

Pszczola, M., T. Strabel, J. A. M. van Arendonk, and M. P. L. Calus. 2012. The impact of 360 

genotyping different groups of animals on accuracy when moving from traditional to genomic 361 

selection. J. Dairy Sci. 95:5412-5421. 362 

 363 



17 
 
 

Veerkamp, R. F., J. E. Pryce, D. Spurlock, D. Berry, M. Coffey, P. Løvendahl, R. van der Linde, 364 

J. Bryant, F. Miglior, Z. Wang, M. Winters, N. Krattenmacher, N. Charfeddine, J. Pedersen, and 365 

Y. de Haas. 2013. Selection on feed intake or feed efficiency: A position paper from gDMI 366 

breeding goal discussions. Proc. Interbull Annual Mtg., Nantes, France. Interbull No. 47, 367 

Interbull, Uppsala, Sweden (2013), Pages 15–22. 368 

 369 

Volden, H. 2011. NorFor – the Nordic feed evaluation system. EAAP publication / European 370 

Federation of Animal Sciences No. 130. Wageningen Academic Publishers, Wageningen. 371 

 372 

Wallén, S. E., M. Lillehammer, and T. H. E. Meuwissen. 2017. Strategies for implementing 373 

genomic selection for feed efficiency in dairy cattle breeding schemes. J. Dairy Sci. 100:6327-374 

6336. 375 

 376 

Zimmermann, B., and A. Kohler. 2013. Optimizing Savitzky–Golay parameters for improving 377 

spectral resolution and quantification in infrared spectroscopy. Appl Spectrosc 67:892-902. 378 



18 
 
 

 379 
Table 1. Average number of factors/scores (Fac/Score), root mean square error (RMSE), and 380 
correlation coefficient (R) obtained from predicting net energy intake (NEI, incl. 857 381 
observations) and effective energy intake (EEI, incl. 1341 observations) of mid-infrared 382 
(MIR) spectra, tested using split-sample cross-validation and external validation methods in 383 
partial least squares (PLS), multiple linear regression (MLR) and Best Linear Unbiased 384 
Prediction (BLUP) analysis. 385 
 386 

  Split-sample cross-
validation  External validation 

Trait  Fac/ 
Score RMSE R  Fac/ 

Score RMSE R 

N
EI

 (M
J/

d)
 

Model 1: MIR 9 17.91 0.58  9 19.16 0.50 
Model 2: dMIR 13 17.07 0.63  13 19.05 0.51 
Model 3: MLR 33 17.84 0.61  33 19.10 0.51 
Model 4: PLS     13 19.06 0.51 
Model 5: sBLUP      18.73 0.53 
Model 6: mBLUP      18.56 0.50 

         

EE
I (

M
J/

d)
 

Model 1: MIR 18 25.89 0.71  18 27.47 0.66 
Model 2: dMIR 18 25.76 0.71  17 27.60 0.66 
Model 3: MLR 75 25.80 0.73  75 26.95 0.68 
Model 4: PLS     17 27.60 0.66 
Model 5: sBLUP      27.32 0.67 
Model 6: mBLUP      26.96 0.67 

Model 1: Using unprocessed MIR spectra within country as predictors. 387 
Model 2: Using the first derivative of the MIR spectra within country as predictors. 388 
Model 3: Using the PLS scores calculated based on across country MIR spectra as predictors. 389 
Model 4: Using across country MIR spectra as predictors in PLS analysis. 390 
Model 5: Using across country MIR spectra as predictors in a single trait BLUP analysis 391 
Model 6: Using across country MIR spectra as predictors in a multi-trait BLUP analysis. 392 
 393 

394 
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 395 
Table 2. Mean bias (SE in parentheses),a and slope (b; SE in parentheses)b obtained from 396 
predicting net energy intake (NEI, incl. 857 observations) and effective energy intake (EEI, 397 
incl. 1341 observations) of mid-infrared (MIR) spectra, tested using external validation 398 
methods in partial least squares (PLS), multiple linear regression (MLR), and Best Linear 399 
Unbiased Prediction (BLUP) analysis. 400 
 401 
   External validation 

Trait   Bias (SE)a b (SE)b 

N
EI

 (M
J/

d)
 

Model 1: MIR  -0.22 (0.65) 0.89 (0.11) 
Model 2: dMIR  0.14 (0.65) 0.86 (0.10) 
Model 3: MLR  -0.07 (0.65) 0.87 (0.11) 
Model 4: PLS  0.15 (0.65) 0.86 (0.10) 
Model 5: sBLUP  -2.50E-05 (0.64) 0.91 (0.05 
Model 6: mBLUP  0.29 (0.63) 0.89 (0.12) 

     

EE
I (

M
J/

d)
 

Model 1: MIR  0.27 (0.75) 0.92 (0.06) 
Model 2: dMIR  -0.03 (0.75) 0.93 (0.07) 
Model 3: MLR  0.09 (0.74) 0.92 (0.06) 
Model 4: PLS  -0.03 (0.75) 0.93 (0.07) 
Model 5: sBLUP  1.22E-05 (0.75) 1.14 (0.03) 
Model 6: mBLUP  0.03 (0.74) 0.98 (0.07) 

Model 1: Using unprocessed MIR spectra within country as predictors. 402 
Model 2: Using the first derivative of the MIR spectra within country as predictors. 403 
Model 3: Using the PLS scores calculated based on across country MIR spectra as predictors. 404 
Model 4: Using across country MIR spectra as predictors in PLS analysis. 405 
Model 5: Using across country MIR spectra as predictors in a single trait BLUP analysis 406 
Model 6: Using across country MIR spectra as predictors in a multi-trait BLUP analysis. 407 
aAverage difference between predicted values and true values in external validation dataset. 408 
bLinear regression coefficient of true value on predicted value. 409 
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 410 

Figure 1. Mean absorbance of Irish and Norwegian mid-infrared spectra of milk. 411 

 412 
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6. General discussion 
The overall aim of this thesis was to investigate the best way to include feed efficiency in 

dairy cattle breeding objective and what are the requirements for the inclusion. Possible ways 

to obtain phenotypic data for genetic improvement of FE were also investigated. Accurate 

and easily assessable information about individual cow feed intake and efficiency is needed 

to obtain large scale data for breeding value evaluation, enabling genetic improvement of 

feed efficiency. Having access to such a large quantity of low-cost feed efficiency 

measurements is however challenging.  

 
6.1. Inclusion of feed efficiency in the breeding scheme 

Including a trait in a breeding goal requires that (1) the trait is important, (2) it exhibits 

genetic variation, and (3) large numbers of accurate phenotypic recordings are available in 

order to achieve sufficient accuracy of selection. The importance of improving feed 

efficiency is well established and according to Hurley et al. (2017), exploitable genetic 

variation exists among several FE traits, and this variation is sufficiently large to justify 

consideration of including FE in dairy cattle breeding goals. In Paper I, different strategies 

of including feed efficiency in the breeding scheme of dairy cattle were tested using 

simulations. The change in genetic gain over time and achievable selection accuracy were 

studied for milk yield and residual feed intake, as a measure of feed efficiency. The general 

level of the genetic gains in Paper I agree with those found by Lillehammer et al. (2011). 

Genetic gain of the trait will depend on both male and female selection accuracy, although 

since selection intensity is higher for males, their accuracy has the highest impact on genetic 

gain. When progeny testing is not very feasible regarding the properties of the trait of interest 

(i.e. phenotypes are expensive or difficult to measure), genotyping females in test herds that 

enter the reference population may compensate the lack of progeny testing. Due to their 

phenotypes and genotypes, females belonging to these test herds will have more accurate 

breeding values than the cows outside of the test herds. The selection accuracy for females 

will hence depend on the fraction of the cows included in the test herds. Based on the results 

of Paper I, it is possible to achieve high selection accuracies (0.75) for males when FE is 

included in the genomic selection breeding schemes and that there are two possible ways of 

updating a reference population to achieve this: obtaining phenotypes from all cows in the 

population and hence get progeny information for genotyped bulls, or by genotyping cows 

with records i.e. creating a female test herd. If genotyping is cheap compared to phenotyping, 
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the latter method will be preferable. However when GS is used to improve low heritability 

traits, such as FE, the number of records in the reference population has to be sufficiently 

large in order to achieve high selection accuracies (Hayes et al., 2009). Results from Paper 

I showed that if GS is used, 4,000 additional genotyped and phenotyped heifers are needed 

to be added to the reference population annually to genetically improve feed efficiency. The 

use of smaller test herds reduced genetic gain markedly.  

 

In order to have access to such a large quantity of feed efficiency phenotypes, different 

strategies have been proposed. McParland et al. (2014) showed that MIR spectrometry of 

milk could be used to predict residual feed intake as a measure of feed efficiency in lactating 

dairy cows. Since, individual animal milk samples are routinely taken in dairy production, 

using these samples in the prediction FE and feed intake would be cost-effective and a 

relatively undemanding means for obtaining large numbers of feed efficiency phenotypes. 

Hence in Paper II, the use of MIR spectral data to predict feed intake in Norwegian Red 

dairy cattle was investigated using partial least squares regression and Best Linear Unbiased 

Predictions methods. MIR data of milk was used to predict dry matter intake and net energy 

intake in lactating Norwegian Red dairy cows. When the PLS method was used, the most 

accurate model for predicting both DMI and NEI included body weight, milk yield and MIR 

spectra. The models which included only MIR spectral information resulted lower prediction 

accuracy for NEI or DMI compared to the models using additional predictors with MIR 

spectra. However, the accuracy of prediction (R) using just the MIR data was always inferior 

to a model that used just MY, fat, protein and lactose concentration. The most accurate model 

for DMI resulted in an R-value of 0.54. The use of MY and BW together with MIR spectra 

in the prediction model increased the prediction accuracy considerably and resulted in R = 

0.65 for NEI in the external validation. However, using only MY and MIR spectra in the 

model resulted in R = 0.63 for NEI in the Paper II. The latter model could be more practical 

since BW is not readily available on commercial dairy farms. However, body weight could 

be estimated using for example chest width since a high genetic correlation between body 

weight and chest width has been reported (0.75-0.86; Veerkamp and Brotherstone., 1997). 

Compared to the study of McParland et al. (2014) where PLS was used to predict effective 

energy intake using MY together with milk MIR resulting in R = 0.70 in the external 

validation, the R for NEI in the most accurate model in the Paper II was somewhat lower. 

The differences in the results between Paper II and McParland et al. (2014) could be due the 

fact that within each experiment, the cows did not receive exactly the same diet and the dry 
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matter content of feed differed between different experiments. This could have an impact on 

the relationship between MIR and DMI/NEI in the Paper II. Also using different 

wavelengths of the MIR spectra in the studies could have an impact on the prediction 

accuracies, and the fact that the dataset of McParland et al. (2014) was larger may have 

improved accuracies. 

 

In Paper II, the BLUP method was also used to predict NEI and DMI. The BLUP predictions 

yielded similar accuracies as PLS but were biased. Also linear regression coefficients of the 

actual values on BLUP-predicted values differed from unity, which indicates biases. As a 

comparison, McParland et al. (2011) reported a linear regression coefficient of the actual 

values of energy balance on PLS-predicted values of about unity. However, their linear 

regression coefficient of actual on predicted energy content was different from unity. 

McParland et al. (2011) also reported a biased prediction for energy content. Fortunately, 

mean biases are not necessarily a big issue for genetic evaluations since genetic evaluations 

are undertaken within contemporary groups and in doing so remove the mean contemporary 

group effect from the individual records. A possible reason for biased prediction in Paper II 

is that � was not estimated using REML (Residual Maximum Likelihood) but instead chosen 

based on external-validation R values. Thus, based on the results in Paper II, PLS seems to 

be a better method for predicting feed intake using milk MIR than BLUP.  

 

Another solution to have access to a large quantity of feed efficiency phenotypes, is to pool 

data from different populations as suggested by de Haas et al. (2012) and Veerkamp et al. 

(2013). The impact of combining mid-infrared spectral data from two different countries on 

the accuracy of predicting feed intake was investigated in Paper III. The use of MIR spectra 

was tested when predicting NEI and effective energy intake using PLS, multiple linear 

regression and BLUP methods. Best Linear Unbiased Prediction was implemented either as 

a single trait analysis or as a multi-trait analysis, where the correlation between NEI and EEI 

was estimated. When EEI was predicted using MIR spectra within country, the accuracy of 

prediction in the external validation (0.66) in Paper III was greater than in the study of 

McParland et al. (2014), where the R for EEI was 0.55-0.64. The differences in the results 

between McParland et al. (2014) and Paper III could be due the fact that not exactly the same 

data was used in the studies and that different MIR wavelengths were used. For NEI, when 

using the across country MIR spectral information, the single trait BLUP method yielded 

greater prediction accuracy than PLS. For EEI, both single trait and multi-trait BLUP 
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methods yielded greater accuracy of prediction than the PLS models. All PLS and BLUP 

predictions in Paper III were unbiased. However, in some of the models, the linear regression 

coefficient of the actual values on both PLS- and BLUP-predicted values were differing from 

unity. Based on the results from Paper III, compared to PLS, single trait BLUP seems to be 

a better method for predicting NEI when only milk MIR is available. When across milk MIR 

was included in the model for predicting EEI, calculating PLS scores and using MLR yielded 

greater R than either one of the BLUP methods. 

 

One might argue that using MIR spectra for the prediction of feed efficiency would only 

detect cows which are in negative energy balance. However, the genetic correlation between 

MIR predicted energy intake and measured energy balance is quite low (McParland et al., 

2015) hence, indicating that use of MIR predicted energy intake would not lead to selection 

of negative energy balance. 

 

6.2. RFI as a measure of feed efficiency 

In Paper I, we used RFI as a measure of feed efficiency. However, earlier studies have shown 

that weak unfavorable genetic correlations exist between RFI and fertility (Vallimont et al., 

2013). According to Pryce et al. (2014), this is probably due to the mathematical similarity 

in the calculations of energy balance and RFI and a failure to correctly account for body 

tissue mobilization. This could lead to selection for a trait that is similar to selecting for a 

negative energy balance (Pryce et al., 2014). Therefore, genetic correlations, especially with 

fertility trait but also with other traits, must be accounted for before including RFI in the 

breeding scheme (Pryce et al., 2014). I.e. in order to include RFI in the breeding scheme, a 

multi-trait selection index where genetic correlations with other traits are properly accounted 

for, is required.  

 

6.3. Data quality 

Obtaining reliable NEI data for use in Paper II and III was challenging. The data were 

selected from several experiments conducted between 2007 and 2015. The main challenge 

was that frequency of phenotypic recording in several of the experiments was limited and 

there were several missing records in the dataset. In order to expand the dataset for analysis, 

missing records were estimated using cubic splines. If those spline estimates were inaccurate 

that would have had an impact to the NEI results in Paper II and III. 
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6.4. Challenges in improving feed efficiency 

Most of the studies of the FI complex have been derived from dairy cattle in confined 

production systems, and assumed feed efficiency was genetically the same trait throughout 

lactation (Pech et al., 2014; Manafiazar et al., 2016). However, based on the results of Hurley 

et al. (2017), it seems possible to genetically improve dairy cow efficiency differently at 

different stages of lactation. According to Hurley et al. (2017), it is also possible to alter the 

trajectories of the FE traits in order to suit them in a particular breeding objective. However, 

this demands very precise across-parity estimates of genetic parameters, including genetic 

correlations with health and fertility traits (as well as other traits) (Hurley et al., 2017). One 

challenge in improving feed efficiency is the different energy systems used in different 

countries and comparing those energy values with each other. Different functions involved 

in energy usage and supply over the entire lactation, for example, body mass changes in 

lipids and protein, should be accounted for when estimating FE in dairy cattle (Berry et al., 

2006). According to Hardie et al. (2015) and Rathbun et al. (2017), even though selection 

towards more feed efficient animals could result in positive progress in reducing 

environmental impact and feed cost, it is largely unknown how this selection would affect 

to other phenotypic traits, such as metabolic health. Hence, further research is needed to 

calculate the correlation and impact of co-selection of these traits (Hardie et al., 2015).  
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6.5. Recommendations 

Feed efficiency is a difficult trait to measure and as such FE is difficult to include in routine 

progeny test evaluations. A viable option to genetically improve these kind of traits, is to use 

rather large contracted test herds with additional recording.  Using this strategy would give 

close to similar accuracy of genomic selection as recording this trait in the whole female 

population. As long as a sufficient number of cows (4,000) is included in the test herds, the 

male selection would be as effective with contracted test herds of genotyped females as when 

a routine progeny test would be performed for this trait. Obtaining large amounts of animals 

with multiple FE recordings is possible by using milk MIR predicted feed efficiency records 

or using pooled data as a result of collaboration between countries. Based on this thesis, MIR 

spectral data from two countries i.e. from two populations differing in breed and feeding 

system can be combined and used to predict energy intake as a measure of feed intake in 

dairy cattle. The results also indicate that especially single trait BLUP method could have a 

benefit over the PLS method when EI is predicted using across country MIR spectra. 

However, before including any kind of feed efficiency trait in the breeding program, genetic 

correlations between predicted feed intake, actual feed intake and other performance traits, 

especially health and fertility traits need to be estimated in order to derive the selection index 

weights for a balanced breeding goal. 
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7. Conclusions 
� Genetic improvement of feed efficiency is possible if sufficient numbers of FE 

phenotypic data are available (4,000 or more).  

� MIR spectral data can be used to predict NEI as a measure of feed intake in Norwegian 

Red dairy cattle with accuracy of 0.63 to 0.65.  

� Across country MIR spectral data can be used to further improve the accuracy of 

prediction of energy intake traits.  
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