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Abstract 
 
New technologies to record electrical activity from the brain on a massive scale offer tremendous opportunities 
for discovery. Electrical measurements of large-scale brain dynamics, termed field potentials, are especially 
important to understanding and treating the human brain. Here, our goal is to provide best practices on how 
field potential recordings (EEG, MEG, ECoG and LFP) can be analyzed to identify large-scale brain dynamics, 
and to highlight critical issues and limitations of interpretation in current work. We focus our discussion of 
analyses around the broad themes of activation, correlation, communication and coding. We provide 
recommendations for interpretating the data using forward and inverse models. The forward model describes 
how field potentials are generated by the activity of populations of neurons. The inverse model describes how 
to infer the activity of populations of neurons from field potential recordings. A recurring theme is the challenge 
of understanding how field potentials reflect neuronal population activity given the complexity of the underlying 
brain systems. 
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Part A – Introduction 
 
Brain dynamics are generated by the activity of diverse and massive populations of interconnected neurons 
distributed across the nervous system. Complete system-wide recordings of neuronal population activity at the 
cellular scale would provide the ideal basis for analyzing brain dynamics. Unfortunately, tools to directly study 
the mapping from activity to dynamics at the cellular scale remain out of reach, especially in humans. 
Fortunately, neuronal dynamics are redundant and correlated. As a result, we can investigate brain dynamics 
by analyzing the spatiotemporal signals generated by populations of neurons that take the form of field 
potentials1. Field potentials encompass a range of signals including local field potentials (LFP), 
electrocorticography (ECoG), intracranial stereotactic electroencephalography (stereo-EEG), scalp 
electroencephalography (EEG) and magnetoencephalography (MEG; Fig 1). All field potential recordings have 
good temporal precision in the millisecond range and are available in both humans and non-human animals. 
The techniques differ primarily in their spatial resolution, their coverage, and their degree of invasiveness.  
 

Understanding how field potentials measure particular patterns of neuronal activity depends on a forward 
model and an inverse model. Forward models describe how the recorded potentials are generated by neuronal 
activity. Inverse models are used to analyze the recorded potentials and infer the underlying neuronal sources. 
The ingredients to both the forward and inverse model are conservation of charge and Maxwell’s equations2,3, 
electrical properties of brain and head tissues as well as the physics and geometry of the neural source, 
anatomy, and recording sensor. Forward models can, in principle, be used to precisely compute the recorded 
potentials. Inverse models, however, cannot in general compute the cellular patterns of activity from recorded 
potentials. This is because the problem is ill-posed and different patterns of neuronal activity can generate the 
same field potential measurements. Even with an accurate inverse model, we cannot reconstruct the exact 
pattern of cellular sources that generates the measurement.  

 
Several aspects of field potential research have been previously reviewed4–9. The goal of the current paper 

is to guide advanced, but not expert, researchers in the analysis and interpretation of large-scale brain 
dynamics using field potential recordings. As we will demonstrate, there are many benefits to analyzing field 
potential recordings to study large-scale brain dynamics. The principal risks stem from the lack of a well-posed 
inverse problem. In Part B - Modeling, we outline field potential research and highlight some areas of recent 
controversy. This is supplemented by Box 1 - Biophysics of extracellular potentials. Part C – Analyses 
and Interpretations forms our main focus and centers on the appropriate use of the forward model. For this 
section, we adopt a didactic approach and present clear guidelines for best practices in analysis and 
interpretation of field potential recordings. We organize the material in four sections - Activation, Correlation, 
Communication and Coding. For some issues, we can point to solutions, such as how to detect correlations 
between different neuronal signals, and how to decode information present in neuronal activity. Other topics, 
such as how to disentangle local activity from activity in synaptic inputs from remote sources and how to infer 
causal influences are more complex and merit detailed study in Box 2 – Interpreting local and remote 
sources. An Extended Supplement provides the interested reader with more detailed supporting information 
and discussion. 
 
Part B – Modeling  
 
All extracellular potentials stem from summed contributions of transmembrane currents across the surfaces of 
neurons (and in principle also glia cells, see Box 1)4,5,10. In this sense, the biophysical forward model of field 
potential recordings is similar to that of spike recordings. However, field potentials differ from single neuron 
recordings in important ways. Single neuron spike recordings have a single source –a neuron that generates 
action potentials at discrete events in time. The single unit measurement is a classification – we want to 
determine whether the neuron has generated an action potential. Distant sources can only contribute to the 
noise floor above which single neuron activity must be discriminated. In contrast, field potentials are continuous 
signals that do not have a single source5. A field potential measurement has contributions from different 
sources weighted according to the measurement modality – LFP, ECoG, EEG or MEG. Of the various potential 
sources, the largest cellular contribution comes from neurons that generate the largest current dipoles, those 
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with extended, oriented dendritic arbors (see Fig 2a). Temporally correlated synaptic inputs at restricted 
dendritic sites also contribute strongly to field potentials. Distant sources can contribute directly to field 
potentials due to volume conduction or, for MEG, field spread. Volume conduction occurs because 
electromagnetic fields propagate through biological tissues6,11. Consequently, field potentials reflect the 
organization of large-scale brain dynamics.  
 While biophysical forward-modeling schemes for field potential signals are well-established6,10,12, several 
issues remain controversial. One controversial issue concerns the frequency-dependence of the electrical 
conductivity of the extracellular space, i.e., whether volume conduction biases LFP and EEG recordings 
towards certain frequencies13. Field potential power has been observed to decay in power-law like way (1/fa) 
for higher frequencies. Establishing a power law is challenging because the range of frequencies is limited, 
typically only spanning two or three orders of magnitude. While the reason for any power law remains unclear, 
potential explanations include scale-free dynamics, the capacitive effects of neuronal membranes, and noise 
from evenly distributed ion channels across dendrites14–16. Early experiments found very little frequency 
dependence in the frequency range of interest for neuronal recordings17,18, implying that the extracellular 
medium is essentially resistive, i.e., Ohmic with a negligible capacitive component. Subsequent observations 
showed a strongly reduced electrical conductivity for frequencies below 100 Hz19 suggesting a strong low-pass 
filtering of the LFP and EEG from the extracellular medium20. A series of further studies, using a variety of 
measurement setups, have however confirmed the early findings and found only weak frequency 
dependencies21–25. Thus, on balance the experimental observations seem to point to a largely resistive 
extracellular medium.  

The contribution of spiking events to field potentials is somewhat controversial. In cortex and hippocampus, 
the high-frequency part of the extracellular potential, i.e., above some hundred Hz, is thought to be dominated 
by spiking activity. Likewise, the low-frequency part, i.e., below some tens of Hz is thought to be dominated by 
the sub-threshold extracellular signatures of synaptic activation4,5 although spikes also contribute26. Spikes are 
far more likely to contribute to intracortical microelectrode LFPs than to the EEG recorded from a scalp 
electrode. The crossover frequency, i.e., the frequency above which the spike contributions start to dominate, 
depends on the competition between sub-threshold and spiking signal contributions. The result depends on 
brain area and brain state: In hippocampus, spikes contribute to the extracellular signal for frequencies down to 
100 Hz27,28. In monkey visual cortex, extracellular signal frequencies as low as ~50 Hz have been associated 
with spiking29. In general, the contribution of spiking events depends on the shape and amplitude of the action 
potential waveform and the firing rate30.  

Inverse modeling to infer neuronal sources also presents controversial issues. Inferring neuronal sources 
from M/EEG is called source reconstruction. Direct validation has been performed with electrical stimulation of 
an implanted electrode31,32 and expected results have been obtained in the case of, for example, activity in 
early sensory cortices33–35 and in the case of dipole sources for epilepsy36. However, in general, additional 
information is always required in addition to the recorded potentials or fields, sources may be distributed with 
many dipoles and/or higher-order multipoles and reconstruction depends on information that is often 
unavailable37,38. Inferring neuronal sources from LFPs has typically involved current source density (CSD) 
analysis. Direct empirical validation of CSD has also proven challenging37. Although the assumption of charge 
conservation is well established3, it can be difficult in practice to determine exactly where the currents flow.  

Finally, the ability to read-out, or decode, information processing from the brain underlies the development 
of brain-machine interfaces and neural prostheses and depends on the choice of neuronal signal 
(spiking/LFP/ECoG/EEG/MEG). Field potential decoding analyses depend on how field potentials measure 
selectivity of the underlying neuronal sources as well as the spatiotemporal organization of the source 
selectivity. We can summarize these factors in a functional variant of the biophysical forward model. The 
functional forward model describes how neuronal activity varies due to different task conditions and how this 
generates selective field potential responses (see Fig 2b). This model involves the biophysical model, along 
with how populations of neurons encode behavioral or task-relevant variables. The functional forward model 
predicts that field potentials are more selective for field potential modalities in which the measurement 
projection is spatially-confined, at sites where the weighted sources encode similar variables, and for task 
variables that change the spatial-temporal activity correlations to which field potentials are sensitive. 
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Relatively little work has investigated field potential selectivity in terms of the forward model and the nature 

of field potential selectivity remains controversial. An early view was that LFP selectivity differed from spiking 
recordings and was similar to EEG selectivity. However, empirical studies show LFPs contain more sensory 
and movement information than EEG, and are more comparable to the information available in the spiking 
activity of single neurons39–45. Information about reach, grasp and speech actions are also present in human 
ECoG recordings46,47. While more work is needed, in cortex, the presence of field potential selectivity 
comparable to single neuron selectivity may reflect the underlying columnar organization of cortex39,41,44,45. 
Since field potential recordings are easier to obtain than recordings of spiking activity, these and other studies 
suggest that ECoG and/or LFP signals, in addition to spiking, may serve as a basis for a high-performance 
brain-machine interface48. For M/EEG, multivariate classification approaches also reveal neuronal encoding of 
various forms of sensory and cognitive information49–52. M/EEG selectivity is also shaped by volume conduction 
in a process called spatial filtering6,53. If many sources with different dynamics occur in dipole layers of different 
sizes, the measured M/EEG signal is dominated by the temporal dynamics of those source components that 
are synchronized more broadly over the cortical surface5,37.  Consistent with these observations, M/EEG 
signals appear to be less selective than ECoG signals which appear to be less selective than LFP 
signals39,54,55.  

 
C – Analyses and Interpretations 
 
Field potential recordings are time series – a series of measurements ordered in time – that reflect neuronal 
dynamics. As a result, time series analysis tools that measure dynamics, such as spectral analysis56, are often 
used to characterize field potentials57,58. The first three sections present time series analysis and 
interpretations that depend on the biophysical forward model. In C1 – Activation, we discuss how to assess 
the signal characteristics at a given site and their changes with experimental conditions. In C2 - Correlations 
we discuss how to characterize correlations in activity between sites. In C3 – Communication, we detail tests 
for directed influences that may reflect neuronal communication. C4 – Coding, considers the functional 
aspects of the forward model. We discuss neuronal coding and how information in the underlying neuronal 
activity can be decoded from field potentials. In each section, we discuss the associated analyses and 
interpretations.  
 
C1 - Activation 
 
We first focus on estimating the magnitude of the activity and testing for differences, before turning to 
interpreting spectral features and oscillations.  
 
Statistical estimation: Two classic measures of time series are the autocorrelation or autocovariance and the 
power spectral density function, which we will refer to as the spectrum (Fig 3). The autocorrelation measures 
how much activity is correlated at two points separated in time, 𝜏 = 𝑡$ − 𝑡&, also called lag. The spectrum 
measures how much power the activity contains at each frequency, 𝑓. The spectrum and autocorrelation 
function provide complementary information but are not equivalent measures of activity. The spectrum reveals 
spectral peaks (that may correspond to physical sources) that can be difficult to distinguish in the 
autocorrelation function. Conversely, the autocorrelation function reveals how rapidly a signal tends to become 
uncorrelated over time, which is not directly evident from the spectrum itself. 

Spectrum and correlation function estimates assume that neuronal activity is stationary. Stationarity means 
the signal statistics, power, correlations, remain constant over time. Strictly-speaking, stationarity is never 
satisfied. Non-stationarities occur with transient events. The most extreme example is the non-stationarity of 
activity around the time of stimulus onset. However, even in the absence of changes in sensory input, brain 
activity displays transient events that can wax and wane, such as beta activity in the frontal cortices and ripples 
in the hippocampus. Non-stationarities can also occur across different time scales, such as fluctuations in high-
frequency synchronization following low-frequency excitability changes59, and can occur when activity appears 
stationary, e.g. sustained stimulus-induced gamma oscillations in visual cortex, sustained theta oscillations in 
rodent hippocampus during walking. Changes also occur spontaneously, for example as one spontaneously 
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drifts back and forth from an aroused to a non-aroused state60,61. In each case, the spectrum/auto-correlation 
averaged across these fluctuations will not be a good descriptor of the data.  

If the changes occur relatively slowly, or the changes can be detected, we can select/detect periods in 
which the signal is locally-stationary. We can then compute the spectrum for these periods. Appropriately 
selecting time periods depends on understanding a fundamental time-frequency uncertainty relationship: The 
product of the time resolution of the spectral estimate, T and the frequency resolution of the estimate, W, is 
always greater than 1 (Fig 3a).  With a time-window of duration T, the lowest resolvable frequency is 1/T. 
Deciding how to trade-off time and frequency resolution is complex, as there may be no single best answer. 
Resolving signals at low frequencies, such as below 10 Hz, requires frequency resolution on the order of 1 Hz. 
Time resolution is, at best, one second. Conversely, resolving signals that change during behavior, requires 
time resolution of say 200 ms. Frequency resolution is then 5 Hz or more. Many spectral estimators are 
available, each with different statistical properties of bias and variance that vary with the desired time-
frequency resolution (Fig 3b,c). S1A discusses spectral estimation with guidelines for best practices. 
 
Interpreting spectral power: In general, field potential power decays in a power-law like way (1/fa), especially 
for higher frequencies the forward model in a variety of different ways The 1/f shape of the spectrum can 
generally be sensitive to the overall firing rate of the underlying population or the number of active neurons, 
with linear offsets in power resulting from an overall change in the firing rate15. Neuronal spike waveforms can 
also appear in the LFP, and if the amplitude of spike waveforms in an LFP recording is large. The LFP 
spectrum at frequencies above 50 Hz can be especially sensitive to changes in firing rate30. LFP power is 
highly sensitive to the synchrony of the underlying local and afferent-remote populations so the overall shape 
of the spectrum may reflect a heterogeneous mixture of temporally-structured signals that spanning a range of 
frequencies. The steepness of the 1/fa curve can also change due to changes in the membrane time-constant. 
Membrane time constants can depend on the overall level of activation in the circuit62, as well as on the 
activation of NMDA receptors, because these have much slower EPSPs than AMPA receptors15,63. Another 
contributing factor is noise. Activity at high and very low frequencies often has poor signal to noise ratio, e.g. 
due to EMG noise (high frequencies) or electrode / cable movement (low frequencies) attenuating observed 
changes in the underlying signal.  
 
Interpreting oscillations: In addition to the 1/f trend, transient, phasic changes in spectral power can be 
observed to come and go. Detecting a candidate “oscillatory” event depends on setting a threshold. 
Interpreting these events as changes in a neuronal source is of great importance. In particular, observations of 
spectral peaks in activity at particular frequencies are often referred to as oscillations. Oscillations are often 
depicted in the theoretical literature as narrow-band, periodic, sometimes even sinusoidal phenomena. 
However, theoretical oscillators, like a pendulum generate features at particular frequencies and do not contain 
multi-component or broadband features. In comparison, physiological neuronal ‘oscillations’ often have a clear 
broadband or band-limited character64,65 and change quickly66,67.  

This caveat notwithstanding, we often want to know whether an increase in spectral power indicates an 
increase in the number of active neurons or an increase in temporally-structured/synchronized neuronal 
activity. The absence of a spectral peak does not necessarily mean that there is no synchronized activity in the 
underlying neuronal activity. If there is an underlying oscillatory pattern, a peak in the spike-field coherence 
(SFC) may be present even without any peak in the LFP spectrum68. Thus, if spiking is coherent with a field 
potential, temporally-structured spiking exists and a local source contributes to the field potential39,69 and this 
source may be said to reflect oscillatory activity. S1B presents measures that go beyond second-order 
correlations to capture correlations between different frequencies and phase-amplitude coupling. 
Interpreting cellular sources: Interpreting field potential recordings in terms of cellular sources is limited by 
the ill-posed nature of the inverse model. Clear interpretations are sometimes available when a local neuronal 
population generates the currents measured by field potential recordings, such as for the hippocampal theta 
rhythm70. Defining local current generators is called current-source density (CSD) analysis. According to 
Maxwell’s equations and Ohm’s Law for the extracellular medium, the local current generators are given by a 
second spatial derivative of the LFP signals in all three directions, called the Laplacian6. Therefore, CSD 
analysis requires invasive recordings with electrode arrays with high-contact density, e.g. 50-200 µm inter-
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contact spacing or less, (Fig 4a)2,5,71. CSD analysis yields the net volume current density that enters (source) 
or leaves (sink) the extracellular medium through cell membranes (Fig 4b). Consequently, CSD analysis is a 
more local measure than the LFP and is easier to interpret in terms of neuronal activity. 

Traditional CSD analysis assumes that there is no variation of the neuronal activity in the horizontal 
directions. Thus, CSD is given by the double spatial derivative in the depth direction. This approximation can 
be problematic as in primary sensory systems, inputs to cortex can be quite focal and significant tangential 
currents can exist due to tissue curvature (Fig 4c), but new CSD estimation methods can account for this. 
Traditional CSD analysis also assumes that the electrodes adequately sample the currents within the volume. 
Ideally, three-dimensional sampling of the volume would be preferred to reduce CSD estimation error using the 
second-spatial derivative method6. In general, interpreting current sources in terms of cellular sources, such as 
whether a sink/source is active (e.g. due to synaptic current) or passive (a return current), depends on 
additional information about the anatomical connectivity of presynaptic input-generating populations and 
geometry of postsynaptic populations. Box 2 and S1C present a more detailed discussion. 
 
C2 - Correlation 
 
Networks of neurons generate brain dynamics, and correlated patterns of activity are ubiquitous. There are 
many ways to capture dependencies between neuronal signals. Here, we will focus on linear measures of 
coupling, correlations that are well-understood in statistical terms and are in widespread use.  
 
Correlation and coherency: The cross-correlation function measures correlation in the time-domain. In the 
frequency-domain, we can use the spectral coherence function that is defined as the cross-spectrum between 
signals normalized by the spectrum of each signal. Coherency is the correlation coefficient that measures the 
strength of linear association as a complex-valued regression coefficient. The magnitude of the coherence is 
proportional to the strength of linear association. The phase of the coherence reflects the relative timing but not 
necessarily a time-delay (see S2A). 

Like the spectrum and the auto-correlation function, the coherency and the cross-correlation function offer 
complementary information. An important advantage of the coherency is that it is normalized by power at each 
frequency. The cross-correlation function is normalized by total variance of each signal which is the integrated 
power over all frequencies. As a result, the coherency can often detect frequency-localized effects better than 
the cross-correlation function. The latter is typically dominated by frequencies with more signal power, which 
are often at lower frequencies.  

Estimating coherency depends on similar factors as estimating the spectrum. In general, coherence 
estimates typically require more DOFs than spectrum estimates. In effect, coherence measures the correlation 
present in a scatterplot of points, where there is one point for each pair of DOFs. Unlike the spectrum, the 
distribution of spectral estimators for the coherence is, in general, complicated and depends on the strength of 
coherence. Several strategies exist to address these issues and statistical tests should be based on 
appropriate permutation tests72,73. 

Two processes that do not interact can appear to be coherent by virtue of being non-stationary74. 
Estimating coherency and cross-correlation in locally stationary time intervals to give time-varying coherence 
spectra, called coherograms is, therefore, critical. Since coherence estimates with small numbers of DOFs are 
positively-biased, particular care should be taken when interpreting coherence over short time periods using 
small numbers of DOF. 
Spike-field coherence: Whenever possible, interpreting field potentials in terms of cellular sources is best 
done directly, using simultaneous measurements of spiking activity. The spectral analysis of spike-field 
relations largely matches that of field potentials. This is because point processes admit a spectral 
representation like other time series. As a result, spike-field coherence (SFC) is an important tool for 
understanding the relationships between LFPs and underlying spiking activity58. SFC is the correlation 
coefficient of a regression, analogous to the coherence between two field potentials75, that quantifies how 
predictable LFP activity is as a linear function of the spike times. SFC specifically measures how neurons tend 
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to fire spikes at particular phases of LFP activity. The spike-triggered LFP measures spike-field relationships in 
the time domain and is useful for resolving time-delays between spiking and events in the LFP. Statistical 
considerations mean the SFC is preferred over the spike-triggered average (see S2B).  

SFC sensitively reveals the locking of neurons to synchronized synaptic inputs, which also lead to post-
synaptic currents and thereby the LFP signal. The broad-band properties of the LFP spectrum itself may mask 
spectral peaks. However, if there is an underlying oscillatory pattern, a peak in the spike-field coherence (SFC) 
may be present even without any peak in the LFP spectrum76–78. 

Contamination of the LFP by action potentials is a major concern when analyzing phase correlations and 
SFC. Attenuation of neuronal spike contamination in LFPs can be attempted by removing spikes from the LFP 
signal79. However, residual spike contamination effects may remain. In general, best practice is to use spike 
and LFP recordings from different electrodes separated by several hundred micrometers. 
 
SNR confound: A critical issue when interpreting correlation and coherence is that both measures are 
influenced by the relative weight of neuronal signals (signal components) versus other signals (noise 
components). This leads to an important confound: A change in the signal-to-noise ratio (SNR) will change the 
measured correlations without a change in the underlying neuronal interaction or functional connectivity. If 
signal components are more correlated than noise components, e.g. because of a specific interaction between 
neuronal populations of interest, an increase in signal amplitude or a decrease of noise amplitude can also 
increase observed correlations. If noise components are more correlated than signal components, e.g. 
because of field spread from remote neuronal sources to two signals, an increase in noise or a decrease in 
signal amplitude can increase observed correlations. Correspondingly, changes in noise can also lead to 
decreases in observed correlations without changes in the underlying neuronal interaction. S2A illustrates 
these effects mathematically. 

One strategy to limit concern is to check for changes in signal amplitude that may reflect a potential change 
in SNR and to only focus on changes in dependencies between signals that either are not paralleled by 
changes in signal amplitude80 or cannot otherwise be accounted for by changes of SNR. Another strategy is to 
stratify the activity by amplitude. Similarly, the power or SNR of the signal of interest can be binned and 
correlations can be computed within each bin.  

SNR confounds also affect the interpretation of SFC. Enhanced spike-LFP coupling when LFP power 
increases could reflect greater contribution of spike-locked neuronal sources to the LFP instead of stronger 
spike-locking of these sources. Differences in mean spiking rates across conditions can also affect the 
corresponding SFC estimates without requiring true changes in functional connectivity80. To mitigate these 
effects on SFC, spike trains can be decimated to equalize the mean rates across conditions. This involves 
randomly deleting spike events to match the total number of spikes across conditions. Spike events that are 
deleted randomly will not alter the underlying spike-field coupling81. A complementary parametric approach to 
SFC based on point process Generalized Linear Models (GLMs)82 can also be used to separate the 
contribution of changes in firing rates and changes in phase coupling to LFP oscillations when assessing 
spike-field relationships across different tasks or conditions83,84. Finally, SFC quantification based on the 
pairwise phase consistency (PPC) metric avoids spike rate and spike count biases85. With this approach, the 
synchronization between spikes and LFP is determined by first estimating the LFP phase at the time of each 
individual spike, and then quantifying the similarity of pairs of spike phases.  
Volume conduction: Coherence is particularly sensitive to volume conduction and common modes due to 
distant sources. Volume conduction is of particular concern in the rodent brain. In the rodent, theta and beta 
frequency range potentials generated by the hippocampal formation can be measured across the neocortical 
and subcortical neuropil which makes it difficult to perform valid coherence analysis between brain areas86,87.  

One effective strategy assumes a forward model in which the impedance of brain tissue is resistive and not 
capacitive21. Field spread due to volume conduction is then effectively instantaneous and does not alter the 
imaginary component of the cross-spectral density. This yields several measures such as the imaginary part of 
coherency88, phase lag index (PLI)89 and weighted phase lag index (WPLI)90 (see S2C). Best practice is to 
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analyze activity at each site to assess the presence of volume conduction before interpreting the correlated 
activity patterns. 

Correlations due to volume conduction can survive source reconstruction91,92 and re-referencing 
procedures. The widely-used common-average reference averages all recorded signals and thereby 
introduces artifacts to which correlations are particularly sensitive. While careful selection of a reference 
electrode can help suppress shared signals (see S2D), care should be taken to assess whether the re-
referencing actually removes the common reference. We can also perform spatial filtering to suppress volume 
conduction by making use of a bipolar reference, computing the CSD or Laplacian and applying source 
reconstruction / beam-forming techniques described above. The CSD or Laplacian method removes very 
large-scale, regional or global coherence as well as volume conduction.  
 
C3 – Communication 
 
Given evidence of correlations between two sites in a network, X and Y, we can ask whether the correlations 
reflect putatively causal interactions with a particular directionality, e.g. X drives Y or X → Y. Many causal 
inference procedures exist. Here, we focus on the analysis of Granger Causality (GC) because it is relatively 
simple and well understood, derives from spectral analysis and is in widespread use.  

We should first make clear that, in general, no statistical procedure can accurately recover causal 
influences if unobserved nodes in the network, or hidden nodes, generate the main interaction effects. This is 
true for spiking and field potential recordings. Consider a three-node network with common input: If X → Y and 
X → Z with a longer delay, unless X is measured, statistical inferences will likely report Y → Z. Consider 
another network X → Y → Z. In this case, unless Y is measured, the influence may be incorrectly estimated as 
X → Z. Field potentials reflect sub-threshold currents, but the transfer of those currents to spike output can 
vary from case to case complicating causal inferences. Thus, an influence of field potentials recorded in X on 
field potentials recorded in Y suggests that spike output of neurons in X influences current flows in neurons in 
Y, because only spikes travel from X to Y; yet this does not necessarily mean that spike output in Y is 
influenced. Box 2 analyzes this topic.  
Statistical estimation: Since estimating time delays from correlation/coherence functions can be confounded, 
additional measures are needed to infer causality and directed influences. Measures based on Granger 
Causality (GC)93,94 assess the direction of influence or causality in terms of temporal prediction among 
stochastic processes (Fig 5). Informally stated, a stochastic process X is said to “Granger-cause” or drive a 
stochastic process Y if the history of X adds to the prediction of Y beyond what can be predicted based only on 
the history of Y itself95,96. GC can be statistically assessed in terms of likelihood ratio tests97,98 and can be 
computed both in the time and frequency domains. In addition, if multiple neuronal groups have been recorded 
simultaneously, the conditional GC can distinguish between: a) direct versus indirect interactions, i.e. X → Z vs 
X → Y → Z, corresponding, for example, to mono vs polysynaptic interactions; or b) between common inputs 
with different delays vs direct interaction, i.e. between X → Y and X → Z with a longer delay vs the direct 
interaction Y → Z. Software packages to compute GC measures are publicly-available98. 

Since GC measures typically depend on parametric models, model mismatch is a concern99. While GC 
measures using non-parametric spectral estimates have been proposed100, a parametric model derived from 
the non-parametric estimates is still needed. Non-parametric estimates are preferred because they have 
improved bias and variance properties compared with parametric estimates (see S1). The GC influence 
measure is also subject to a signal to noise ratio concern because the GC influence assumes there is no 
measurement noise (see S3A). GC estimates also tend to be strongly positively biased by sample size, and re-
estimating the GC after shuffling the time series may be needed to control for sample size bias.  

Like other spectral analyses, GC analyses can be extended to address slow non-stationarity by using a 
moving window. Causal inferences depend on model fitting, and non-stationarity can lead to model fitting and 
interpretation problems for causal inferences. For example, the evoked or event-related potential averaged 
across trials is subtracted from each trial to ensure stationarity or to separate, assuming a linear additive 
model, the signal from ongoing background activity. However, if slow across-trial non-stationarities are present 
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due to changes in neuronal excitability, attention, fatigue, the evoked response can show trial-to-trial changes 
in amplitude, latency and waveform (see S1A). This non-stationarity will affect the interpretation of GC as well 
as other spectral measures such as power and coherence101–105.  Amplitude changes can be effectively 
suppressed by fitting the evoked response per trial106,107. Latency and waveform changes are more 
complicated to model, and removal of trial-to-trial variability due to these changes should be performed with 
caution. 

Causal inferences ultimately require empirical validation using interventions. This said, inferences based on 
interventions also require caution. Interventions often shift the system out of the normal physiological range. 
Since the intended and achieved manipulations can differ, interventions can also lack validity. Electrical 
microstimulation preferentially stimulates axons not cell bodies108. Optogenetic stimulation affects illuminated 
neurons simultaneously, potentially changing phase delays across layers109. In general, experiments should 
use small perturbations to avoid driving the system out of range. Experimental designs should also 
parametrically vary manipulation conditions instead of simply comparing manipulation and no manipulation 
conditions to more directly infer the underlying causal mechanisms. 
 
C4 - Coding 
 
Understanding nervous system function depends on the functional forward model - how information is present 
in activity, what form it takes, and whether and how it can support behavior. Coding implies the presence of 
correlations between a neuronal signal and external events, such as stimulus onset, and internal events, like 
the spike of a neuron or the phase of another neuronal signal. Neural decoding quantifies the information 
present in those correlations. 

Information about the task-relevant variables can be decoded from field potential amplitude110, power39,42, 
coherency magnitude111 and phase77 and phase-amplitude coupling112. Information can also be decoded using 
the phase relations between spikes and the surrounding LFP, SFC, as well as by using GLMs that relate 
spiking probability to the amplitude and phase of LFP oscillations84. In the hippocampus, the SFC is strong in 
the theta range, and its phase carries information about the position of the animal113. Phase relations between 
LFPs carry similar information (Fig 6a)114. During short-term memory, SFC in the beta band (~ 30 Hz) 
underlies phase-dependent coding of short-term memory information in prefrontal cortex115. Different memory 
items are preferentially encoded at different 30 Hz phases (Fig 6b). Posterior parietal and frontal neurons that 
display coherent phase relations, termed coherent neurons, encode information about behaviorally-relevant 
processes such as decision making and coordination more accurately than neurons that do not fire spikes 
coherently69,116,117. Information about movement choice is also modulated by LFP phase118 (Fig 6c). In visual 
cortex during visual stimulation, SFC is strong in the gamma band, and its phase depends systematically on 
stimulus orientation119. Spikes occur earlier in the gamma cycle for stimuli close to the preferred orientation of 
the spiking neuron than for non-preferred stimuli (Fig 6d). In general, phase relations in the gamma frequency 
band are diverse and change with stimulation and also e.g. with selective attention77.  

Neuronal decoding analyses explicitly test whether our certainty about the value of a random variable is 
altered by knowledge of another signal. Modern tools for statistical inference, also called machine learning, are 
increasingly able to detect subtle patterns in large volumes of data49,50,52,120,121. Over-fitting can inadvertently 
occur when parameters and other features in the model, often called hyper-parameters or meta-parameters, 
are selected across the dataset120. Cross-validation is the basic technique to address over-estimation of 
decoding performance due to over-fitting. Problems arise when the statistical model is very flexible and 
involves making many decisions during model fitting. Strictly speaking, no part of the data available during any 
stage of fitting should be used to estimate generalization performance. A good practice in decoding analyses is 
to divide the data into three subsets: a training set to fit a decoding model, a validation set to compare different 
choices of hyper-parameters or model type, and a test set to assess the decoding performance of the model 
that has been optimized on the training/validation sets. 

Another common issue when estimating neuronal decoding performance is to use features that have been 
estimated with insufficient statistical DOF. The resulting estimation noise degrades signal coding. In addition, 
since single-trial measures contain few DOFs, measures of power, correlation and other aspects of brain 
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dynamics are averaged, typically, across multiple trials. This makes it difficult to measure neuronal coding and 
how coherence changes trial-by-trial with, for example, reaction times, attention or choice116,122,123. One 
approach is to perform decoding on the relative phase between signals instead, or derive single-trial pseudo-
estimates of coherence through jack-knifing123. The jackknife is more sensitive and accurate than approaches 
based on sorting-and-binning of trials124. Another strategy is to use a classification approach and decode 
activity on groups of trials with similar single trial performance as-if they were simultaneously-recorded116. 

The analysis of neuronal coding in field potentials should not be conflated with the mechanisms by which 
neurons process information and compute. Field potentials can in some cases influence neuronal information 
processing due to ephaptic coupling125,126. However, analyses to decode field potentials neither imply nor 
depend on whether ephaptic coupling comprises the underlying mechanism. The ability to decode information 
from field potentials can have mechanistic implications.  

Phase relations in field potentials may reflect levels of neuronal excitability, may carry behaviorally-relevant 
information and may influence neuronal communication. Theoretical studies suggest that the phase-leading 
neuronal activity exerts a stronger influence over the lagging one than vice versa127. Experimentally, the phase-
leading recording site shows a transfer entropy to the phase-lagging site128. Naturally, care is needed when 
making causal inferences. Phase precession, where the position of the rodent and phase of firing of a place 
cell correlates with theta LFP activity, is an important link between population coding and oscillatory dynamics. 
However, information in spiking about spatial position according to theta phase does not necessarily mean the 
signal has a causal or mechanistic role in the underlying computation. Coding may simply reflect correlation 
with a latent cause. This concern is a general one and it also applies to inferring a mechanistic role for coding 
by single neurons where none may be present129,130. 
 
D - Conclusion 
 
We have discussed strategies for analysing and interpreting a range of field potential recording modalities 
spanning microns to centimeters. The forward model is the central construction. Biophysics, geometry and 
anatomical connectivity of neuronal populations are the principal ingredients. Several obstacles hinder future 
progress. One important direction is to simulate virtual experiments using computational models. In these 
experiments, the “ground truth” is known and the measurement projection from activity space can be defined. 
Data from virtual experiments can generate model-based benchmarking data. Such benchmarks can test the 
effects of electrode placement, signal processing, and guide inferences such as directed interactions. The 
virtual experimental paradigm has been pursued to test blind-source separation algorithms with promising 
results131,132. Tools to compute field potentials from structured point-neuron networks, such as hybrid LFPy 
package132, can help perform such experiments. Another important direction is to strengthen the forward model 
by more precisely measuring biological ground truth. For example, genetic tools and microscopy can 
increasingly reconstruct anatomical information either in vivo during an experiment133, or ex vivo following the 
experiment134,135. inverse models that are sufficiently constrained by ground-truth benchmarking data and 
empirical observations will permit increasingly rigorous inferences from field potential recordings.  

How to validate causal inferences is another recurring theme. Valid causal inferences are powerful 
because when experimentally controlling a variable, 𝑥(𝑡), we can exclude the possibility that correlations 
between 𝑥(𝑡) and an effect, 𝑦(𝑡), are explained by a third variable that drives fluctuations in both signals. 
Simply silencing or lesioning a population of neurons offers a relatively crude picture of causal influences 
between brain regions. Silencing 𝑥(𝑡) may reduce power in another area 𝑦(𝑡) but a deeper understanding is 
masked by the absence of x(t) . A more fruitful avenue is to apply relatively small perturbations that allow one 
to make comparisons with a model fit based on experimental observations. A detailed network-based forward 
model to design of network control experiments of this kind will be particularly useful for inferring causal 
mechanisms.  

More accurate forward models and analyses informed by inverse models will lead to greater understanding 
of large-scale brain functions, the design of better electrode arrays and other sensors, and more precise and 
effective clinical treatments. We hope to have provided a framework that will guide current and future work by 
researchers who will contribute to these important goals. 
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Figure Captions 
 
Figure 1 –Field potential recording modalities:  
 
a) EEG and MEG signals are measured non-invasively. EEG involves electrodes ~10 mm in size placed at the 
scalp across the head. MEG is measured using sensitive sensors (SQUIDS) placed just outside the head10. 
ECoG is measured invasively and involves placing electrodes either epidurally on the dura that protects the 
brain, or sub-durally, directly on the pia at the surface of the brain. ECoG can be recorded in humans in the 
relatively rare case of epilepsy surgery and is otherwise mainly used in animal models. ECoG electrodes are 
smaller than EEG electrodes and range in size from one to several millimeters in size136.  
 
b) Invasive recordings can also be made at finer spatial scales. Micro-ECoG involves 20-200 µm contacts 
placed on the pia137,138. Coverage can extend to many square centimeters at sites across the brain. LFP is the 
most invasive procedure and involves inserting electrodes into the brain. As a result, LFP recordings are made 
with even smaller size recording contacts than ECoG, extending to microelectrodes and thin-film electrodes 
that can also record the activity of individual neurons.  
 
Figure 2 – Forward models:  
 
a) Biophysical forward model 
 
The biophysical forward model predicts the amplitude of field potentials generated by populations of neurons 
depends on dendritic morphology, somato-dendritic location of the incoming synaptic inputs and not axonal 
morphology of local neurons. Box 1 discusses other contributions. 
 
i) L4 stellate neurons have restricted and symmetric dendritic arbors (blue) with extended axonal distributions 
that ramify locally (red). L5 pyramidal neurons have the most extended dendritic arbors and relatively sparse 
axonal distributions. Adapted from Shepherd et al (2005)139.  Synaptic input to a population of neurons 
generates a current dipole that gives rise to the extracellular field potential signal according to the biophysical 
forward model. ii) Populations of L5 pyramidal neurons can receive synaptic input to the apical or basal 
dendrites and generate large amplitude field potentials in each case. iii) Populations of L4 stellate neurons can 
receive synaptic input near the cell body and generate relatively small amplitude field potentials. Note that this 
is a simplification. The size of the generated potentials will depend on how displaced the return currents are 
from the synaptic input currents and spatial distribution of the return currents. The return currents depend on 
several other factors including the thickness and branching of the dendrites. For example, in some cases about 
half of the current injected into the apical dendrite of a L5 neuron will return through the soma, and even less in 
neurons with a thinner apical dendrite140.	Density and strength of synaptic inputs, membrane potential and 
membrane conductance of the postsynaptic population will also contribute to the magnitude of the generated 
potentials141. 
 
b) Functional variant of the biophysical forward model.  
 
The functional variant predicts that information can be decoded from field potentials depending on the 
measurement projection given by the biophysical forward model and the spatiotemporal distribution of source 
selectivity in the brain. 
 
i) The measurement projection underlying a field potential recording pools information across a volume 
(shaded). Spatial aspects are illustrated here, but note that the measurement projection also depends on 
temporal correlations (see Box 1). The selectivity of the underlying neuronal sources can be expressed as a 
directional arrow. ii) Field potentials will exhibit strong selectivity if the spatial distribution of the underlying 
source selectivity is organized so that the measurement projection pools one or several sources with similar 
selectivity. iii) Field potentials will exhibit weak or no selectivity if the spatial distribution of the underlying 
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source selectivity is disordered and if the measurement projection pools several or many sources. Note that 
even if the spatial distribution of the underlying source selectivity is organized, weak selectivity can arise if the 
measurement projection pools over a much larger spatial extent. 
 
 
Figure 3 – Time series and spectral estimation 
 
a) Fundamentals: i) Terms. The sampling rate of a time series, Fs, is inversely related to the sampling 
interval, dt. The maximum frequency that can be resolved in a time series, called the Nyquist frequency, is 
determined by the sampling interval and equals Fs/2. The bandwidth W is the lowest frequency that can be 
resolved in a time series, also called the Rayleigh resolution, is inversely related to the duration of the 
observation window and equals 1/T. ii) Time-frequency plane. The Rayleigh resolution is an example of the 
time-frequency uncertainty principle which states that the product of the resolution in time T and resolution in 
frequency 2W, must be equal or greater than 1, i.e. 2WT ³1. We can increase the time-bandwidth product by 
increasing the analysis interval T, and hence smoothing more in time, or by increasing bandwidth, W, and 
smoothing more in frequency. In each case, we effectively assume the properties of neuronal activity are 
constant within the chosen time and frequency resolution that leads to a smoother, less variable estimate. 
From Pesaran (2008)57. 
 
b) Spectrum of LFP activity in macaque posterior parietal cortex: i) Single trial, 500 ms periodogram 
spectrum estimate. ii) Single trial, 500 ms, 10 Hz multitaper spectrum estimate. From Pesaran (2008)57. 
 
c) Spectrogram of LFP activity in macaque posterior parietal cortex averaged across 9 trials: Each trial 
is aligned to the presentation of a spatial cue, which occurs at 0 s. Saccade and reach are made at around 1.2 
s. i) Multitaper estimate with duration of 500 ms and bandwidth of 10 Hz. ii) Multitaper estimate with duration of 
200 ms and bandwidth 25 Hz. White rectangle shows the time-frequency resolution of each spectrogram. The 
color bar shows the spectral power on a log scale in arbitrary units. From Pesaran (2008)57. 
 
Figure 4 – Current source density analysis:  
 
a) A cylindrical model in infinite medium. The relationship between current source density (CSD), current 
flow, and field potential for the simple case of a columnar geometry receiving input at a particular layer.  The 
geometry is a cylinder having a diameter-to-length ratio of 0.5 embedded within an infinite medium of finite 
conductivity. Due to circular symmetry, only the points on the z-axis along the cylinder are shown. The CSD 
(Im; i) gives rise to a current flow (Jz; ii). Current flow establishes the field potentials (Vz; iii). Current density 
enters the cylinder and returns below. This generates a downward current flow above and below the 
source/sink and an upward current flow between the source/sink. The resulting field potentials extend beyond 
the generating current source. Thus, CSD has higher spatial resolution than field potentials. From Nicholson 
and Freeman (1975)2. 
 
b) Laminar patterns of auditory responses in the auditory cortex. i) Line plots showing the LFP responses 
recorded using a linear array multielectrode with 100 µm inter-contact spacing (schematic on left). ii) Color 
plots showing the laminar LFP profile shown in (i). Negative deflections - red. Positive deflections - blue. iii) 
CSD profile estimated using the second spatial-derivative of the field potential profile in (i) and (ii). Red depicts 
extracellular current sinks associated with net local inward transmembrane current flow. Blue depicts 
extracellular current sources associated with net local outward trans-membrane current flow. Selected multiunit 
activity responses are superimposed on the CSD plot. Vertical thin lines indicate stimulus onset. Here, the 
peak of multiunit activity corresponds to the peak negativity of the LFP and the current sink (CSD) at the 
response onset in Layer 4. Asterisk indicates a superficial sink that produced the N50 feature in the LFP 
measured in superficial sites. From Kajikawa and Schroeder (2011)142. 
 
c) Limitations of traditional CSD estimation method: Simulated one-dimensional recordings for simplified 
CSD profile in (a). Estimated CSDs for increasing diameter-to-height ratios, as indicated by the number and 
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inset in the lower left of each panel. Diameter refers to the diameter of the source. All estimates are based on 
the second spatial-derivative formula of the traditional CSD method. Arbitrary units, negative values to the left 
and positive to the right. Spurious sources and sinks are inferred for small diameter activity. Estimation error 
stems from the incorrect assumption of an infinite activity diameter perpendicular to the laminar electrode. To 
avoid spurious source/sink inferences, a full three-dimensional CSD analysis is needed. Such an analysis can 
be achieved by making measurements of field potentials in all three spatial directions143 and using the second-
spatial derivative methods. Alternatively, spurious source and sink inferences can also be avoided by using 
prior constraints/assumptions as is done in the iCSD144 and kCSD145 methods. From Pettersen et al (2012)146. 
 
Figure 5 – Granger-causal inferences: 
 
a) Schema of multivariate autoregressive models. Each time series is modeled as a linear combination of 
its own past, the past of the other time series, and an innovation term. These signals are corrupted by 
measurement noise that can be either correlated or uncorrelated.  
 
b) Cross-correlation function example. An example showing that cross-correlation methods are not 
appropriate for detecting causal relationships. In this case, the cross-correlation function tells us that future 
(lagging) but not past (leading) values of y(t) are strongly correlated with x(t). Despite this, the Granger-causal 
influence from y(t) to x(t) is stronger than the influence from x(t) to y(t).  
 
c) Application of reversed GC testing to LFP data from monkey V1 and V4. Interaction in the gamma band 
shows full reversal with time series reversal and is therefore robust. This behavior is shown across V1-V4 
pairs. In the beta range, GC causality does not reverse with time series reversal, indicating a potential 
influence of correlated noise. 
 
Figure 6 – Phase-dependent neuronal coding 
 
a) Place information encoded by the phase of hippocampal LFP activity. i) Feature-tuned field potentials 
(FFPs) recorded from the hippocampus during running on a linear track. FFPs uniformly tile the length of a 
linear track. The spatial extent and spacing of different FFPs is largely homogeneous across the track (middle). 
FFPs exhibit phase precession with respect to the first principal component of LFP activity (bottom). ii) 
Activation of FFPs during running in a T-maze. Waiting area is enclosed in a red box. Right panels show close-
up of activations in waiting area, separated by direction of entry. Asterisks mark activations that are entry-
direction selective. Each point represents a time bin where FFP activation exceeds a threshold, its size 
indicating the magnitude of activation. In (i), place-field hues are assigned based on location of maximal 
activation; in (ii), hues are assigned to distinguish neighbors. From Agarwal et al (2014)114. 
 
b) Object information in PFC spiking depends on LFP phase. Phase-dependent information during an 
object working memory task. PFC neuron spiking encodes the identity of two sequentially presented objects 
during a delay interval. Spikes carry most information about the memorized objects at specific phases of the 
local 32 Hz LFP. i) Optimal encoding of the first presented object is significantly earlier on the falling flank of 
the 32 Hz cycle. ii) Encoding of the second presented object occurs later (Permutation test, p=0.007). Error 
bars denote SEM. Phase dependence induced by stimulus-locked responses was discounted. Adapted from 
Siegel et al. (2009)115. 
 
c) Choice information in PPC spiking depends on beta and gamma LFP phases. i) Average phase-
dependent histogram of spike count for the beta frequency range. Coloring of the phase bins in all histograms 
corresponds to the schematic phase binning shown in the center. The spike-preferred phase (dark green) is 
depicted as trough in the schematic to capture the tendency of spiking to occur at or near the troughs of LFP 
activity. The green bin at 0 corresponds to the average spike-preferred phase in the 200 – 1000 ms epoch after 
target onset when the choice can be made. The radial distance for each phase bin indicates the difference in 
spike count to random phases. Error bars depict 95% confidence intervals. The radial black line depicts the 
trigonometric moment of the histogram with its 95% confidence interval indicated at the end of the line. ii) 
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Same graphical depiction as in (i) but for mutual information about choice (choice-MI). Same data as in (i) at 
each phase bin. Fully colored circles indicate choice-MI significantly different than the average choice-MI 
across all phase bins (Permutation test, p<0.05). iii) Same as (i) for the gamma frequency range. iv) Same as 
(ii) for the gamma frequency range. From Hawellek et al (2016)118. 
 
d) Orientation information in V1 spiking depends on gamma LFP phases. Match between stimulus 
orientation and neuronal orientation preference determines spike phase in the gamma cycle. Data from one 
example V1 neuron. i) Firing rate as a function of stimulus orientation. ii) The black sine wave at the top and 
the sinusoidal gray shading in the background illustrate the LFP gamma phase. The colored lines show spike 
densities as a function of phase in the gamma cycle. The colors correspond to the colors used in the firing rate 
panel on the left. All spike density curves are probability densities, normalized such that the mean value of 
each curve is 1/2 (bottom left calibration bar applies to all curves, and curves are offset along the y-axis to 
correspond to i). From Vinck et al (2010)119. 
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Box 1 - Biophysics of extracellular potentials 
 
Transmembrane currents generate the electrical and magnetic signals recorded from the brain71. These 
currents pass through the membranes of neurons and glial cells due to active mechanisms, as well as passive 
mechanisms involving capacitive coupling between conductive elements. Volume-conductor theory explains 
how signals propagate from their sources in cells through brain tissue to the electrode6,10. Volume-conductor 
theory provides the biophysical basis for recorded extracellular signals. For example, it allows us to generate 
extracellular signals from transmembrane currents by simulating the dynamics of biophysically-detailed neuron 
or neuronal network models using biophysically-detailed multi-compartment neuron models based on cable 
theory (Fig Box 1a)5,147–149. The cable theory of neurons further implies that the sum of the transmembrane 
ionic and capacitive currents across the entire cellular surface must be zero150. As a result, currents enter the 
cell and are balanced by currents that leave at other locations. Note though that even in the absence of 
transmembrane current there may be extracellular potentials set up by diffusion of ions151. 

Volume-conductor theory and cable theory allow us, in general terms, to calculate single-neuron currents 
from morphologically and biophysically-detailed neuron models (Fig Box 1a)140. We can then determine how 
much each neuron contributes to the relevant field potential signal, i.e., LFP12 EEG and MEG6,10. According to 
the theory, field potentials summate activity from all electrically-active membranes and transmembrane current 
generators in space and time, from axon terminals to soma, from action potentials to very slow conductances. 
The precise contribution of a given cell depends on geometric factors such as cell morphology and the 
anatomical distribution of active conductances and synaptic inputs to the cell26. For recordings far from the 
neuronal source, like M/EEG, we can represent the current sources using the dipole approximation. The dipole 
approximation summarizes the summed contribution of all micro-current sources within a tissue volume by an 
effective dipole moment per unit volume6. Consequently, the forward model depends on the relative orientation 
and separation of the underlying neuronal sources.  

While the strength of the effective dipole moment generally increases with the strength of synaptic micro-
sources, geometric factors often dominate. If the micro-sources are symmetrically distributed in space, the 
strength of the resulting meso-source will tend to be small because the dipoles will cancel each other. This is 
true even when there are relatively large micro-sources and is known as a “closed field”152. In contrast, if the 
positive and negative sources are spatially separated, relatively large meso-sources can form even if the 
underlying micro-source magnitudes are relatively small. This is known as an “open field”. Pyramidal neurons, 
the most numerous neurons in the hippocampus and cortex, have extended dendritic arbors and open fields.  

While many sources are known to contribute to the field potential, in general, the measurement projection 
made by a given field potential recording preferentially weights post-synaptic potentials in neurons and brain 
systems with an open-field geometry and spatially organized synaptic inputs. Synaptic inputs onto either the 
basal or apical dendrites that are correlated in time will set up the largest extracellular potentials (Fig Box 
1b,c). If synaptic inputs are evenly distributed, the resulting transmembrane currents will tend to cancel, and 
the generated extracellular potential will be small153,154. When receiving spatially uniform synaptic input, 
stellate, basket cells and other neurons with symmetric dendritic arbors form closed fields and contribute 
relatively little. Myelinated axonal fibers, non-myelinated axon compartments, and presynaptic terminals are 
also expected to contribute relatively little to LFPs as they have small membrane areas148. If synaptic inputs 
are spatially separated, significant current dipoles will form153. For example, stellate cells can function as open-
field generators when they receive asymmetric synaptic input140,155.  

Summation effects extend beyond the individual neuron. Small amplitude current sources that are arranged 
into particular spatial configurations across neurons, a sheet, for example, can give rise to large-amplitude 
signals. Interference by return currents in other neurons can also cancel input-related active synaptic currents 
and reduce signal amplitude. Conversely, constructive alignment of opposite polarities of coherently active 
dipoles amplifies the juxtaposed pole. In rodent, this can be seen in dentate gyrus with its opposing granular 
layer blades156, and likely in other cases, such as bilateral dipoles of the medial cortical areas. 
 
Figure Box 1 – Extracellular potential biophysics:  
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a) Application of cable theory in a multi-compartmental model. In cable theory, we simplify the three-
dimensional complexity of the long, thin dendrites and axons to a one-dimensional core conductor along the 
long axis. This is the axis along which the membrane potential will vary the most. In this example, an apical 
dendritic branch, assumed purely passive with only capacitive and leak membrane currents, is divided into a 
set of compartments indexed by n. The circuit diagram shows the equivalent electric circuit of the 
compartment. The net transmembrane current 𝐼.(𝑡), is, in this case, the sum over the capacitive and leak 
membrane currents in compartment n. 𝐼.(𝑡) is then used in forward-modeling schemes, such as is 
implemented in LFPy12, to calculate extracellular potentials. Two elements in the equivalent electric circuit 
represent intracellular resistive currents between compartment n and the neighboring compartments n+1and 
n−1.  Other elements represent currents due to capacitive properties of the cell membrane, and various other 
membrane processes such as passive and active intrinsic ion channels and synaptic inputs. If we assume 
point current sources, the	extracellular potential 𝜑(𝒓, 𝑡) recorded at position 𝒓 due to each of the 
transmembrane currents 𝐼1(𝑡) at position 𝒓𝟎 is given by 𝜑(𝒓, 𝑡) = 𝐼1(𝑡) 4𝜋𝜎|𝒓 − 𝒓𝟎|⁄ . 𝜎 is the extracellular 
conductivity, assumed to be real, scalar and homogeneous. Note that the simplest model producing an 
extracellular potential is a two-compartment model where a transmembrane current entering the neuron at one 
compartment leaves at the other compartment and forming a current dipole.	From Linden et al (2014)12. 
 
b) Field potential amplitude depends on neuronal morphology. i) Simulations illustrating the dependence 
of population LFP on the “pyramidalness” of the neurons, i.e., on the distance between cylinders containing the 
basal and apical dendrites (apical cylinder marked with transparent blue). When the two cylinders are 
completely superimposed (left panel), the structure corresponds to a stellate cell. When the two cylinders are 
positioned immediately on top of each other (center panel), the morphology roughly corresponds to a layer 2/3 
pyramidal cell. When the boundaries of the two cylinders are separated by 250 μm (right panel), the cell 
morphology resembles a layer 5 pyramidal cell. In all cases GABA synapses were distributed only on dendrites 
in the lower cylinder, while AMPA synapses were distributed over the entire dendritic tree (cf. “Reference” 
distribution in panel c). ii) Average absolute amplitude (standard deviation) of LFP fluctuations as a function of 
distance between cylinders. The LFP value corresponds to the LFP amplitude averaged across depths along 
the axis of the cylinders. From Mazzoni et al (2015)149. 
 
c) Field potential amplitude depends on the distribution of synaptic inputs. i) Simulations for different 
synaptic distributions. Left: Homogeneous - both AMPA and GABA synapse distributed over the entire surface 
of the cell. Center: Reference - GABA synapses distributed only in the lower cylinder, with AMPA synapses 
distributed over the entire cell. Right: Separate - GABA synapses distributed only in the lower cylinder and 
AMPA synapses only in the upper cylinder. ii) Average LFP absolute amplitude versus dipole moment 
(standard deviation over time) for the different synaptic distributions (Homogeneous-black; Reference-red; 
Separated-green). From Mazzoni et al (2015)149. 
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Box 2 – Local and remote sources 
 
A basic question is, “How much do field potentials reflect local population activity as opposed to the activity of 
remote sources?”. Setting aside for a moment the issue of volume conduction, (see above and S2C), the 
currents that contribute substantially to the LFP are post-synaptic potentials in nearby neurons (see Box 1). 
Consistent with this, the LFP correlates closely with nearby intracellular membrane potential recordings157,158. 

What remains unstated, however, is whether the synaptic currents generating the LFP originate from local 
or remote neuronal firing. Post-synaptic potentials that generate local current dipoles will result from the firing 
of nearby neurons forming local, recurrent connections as well as the firing of remote neurons with afferent 
inputs into a region. Distinguishing afferent inputs and local activity in general may not be possible. In most 
cases a mixture of the two should be assumed to contribute to the LFP signal. In addition to recording neurons 
locally and analyzing SFC, we also need to analyze the post-synaptic consequences of the inputs and the 
location and properties of our recording contacts. Importantly, both IPSCs and EPSCs can contribute to LFP 
signals4,159. Perisomatic inhibition can set up a dipole in pyramidal cells and the contribution of GABAergic 
interneurons to the LFP may be boosted by their high synchrony and divergent projections onto pyramidal cells 
causing correlated IPSCs in many pyramidal cells154. Distinct classes of GABAergic populations project 
specifically to soma or dendritic regions and so generate different current dipoles.   

Source-sink locations contain important information about whether activity is mostly locally generated. For 
example, cortical L2/3 source-sink pairs argue against a contribution of afferents to granular (e.g. thalamic) and 
infragranular layers. In contrast, L4 source-sink pairs tend to indicate input through a feed-forward projection 
from the thalamus160–162, though contribution from the local recurrent afferents cannot be excluded. Another 
strategy to resolve local from distal contributions is to record the major afferent systems together with the local 
activity161 or to perturb local spiking activity using pharmacological and optogenetic manipulations. 

The extent to which afferents and local recurrent activity contribute to field potentials may depend on the 
brain area, the species, the state of the animal (e.g. wakefulness vs. anesthesia) and the behavioral task. In 
the cat and the primate, there is abundant evidence showing that visually induced gamma-band 
synchronization arises from recurrent activity within layer 2/3 and layer 4B161,163,164 (Fig Box 2a). However, 
activity in frequency bands below ~30 Hz, including alpha and beta, displays long-range SFC and may not be 
locally-generated.  

Interpreting local/remote attributions is difficult when area X sends strong feed-forward synaptic 
connections to area Y and when area Y has local recurrent connectivity. Under both conditions, LFPs in area Y 
can reflect the impact of synaptic input from area X. Area X input may or may not drive spiking in Y due to the 
effect of frequency-dependent dendritic filtering4.  The presence of signals from area X on LFPs in area Y only 
depends on area X having strong anatomical projections to area Y and synchronized neuronal firing in X 
projecting to Y. The effect of such afferent inputs can be seen clearly in how thalamic spiking causes a 
response in layer-4/6 in rabbit165(Fig Box 2b) and cat166, and how the field response in a single whisker column 
layer-4 reflects synchronization in the matching thalamic barelloid160,167 (Fig Box 2c).  

Anatomical projections with highly correlated signals preferentially contribute to field potential recordings154. 
For example, hippocampal CA3 neuron gamma frequency output causes postsynaptic currents in the CA1 
radiatum, a projection region of CA3168,169. Thus, the field potential in area Y is influenced by both, the local 
activity in Y as well as the delayed copy of activity in area X. The presence of field coherence between X and Y 
is not a sufficient evidence for neural population coupling. Further evidence that neurons in area Y change their 
firing in response to input from X is needed. This caveat also applies to Granger Causal influences. 
Conversely, absence of field coherence between X and Y is not a sufficient evidence for the lack of neuronal 
population coupling. The forward model given connections between X and Y may predict a small contribution 
of X inputs to the LFP in Y, and so generate little coherence. 

In general, therefore, simple rules cannot be provided. The contribution of local/remote depends on the 
area, species and the spectral band. CSD analysis cannot resolve the issue, as it merely distinguishes 
between volume conducted activity and local dipoles. SFC offers important constraints. The absence of local 
SFC in a particular frequency band can be used as evidence against local origin. The presence of SFC within 
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area Y is evidence in support of but not proof of X → Y communication. Recordings from the anatomically-
projecting afferent systems along with manipulations of local cell activity are needed to provide direct 
confirmation. 
 
Figure Box 2 – Local and remote sources: 
 
a) Local activity in cat visual cortex. i) Moving stimuli generate coherent gamma oscillations in cat visual 
area 17. ii) The same stimuli generate higher-frequency oscillations in LGN. iii) Visual cortex and LGN 
oscillations are not coherent with each other. From Castelo-Branco et al (1998)170. 
 
b) Gamma oscillations in developing rodent cortex due to thalamic input. i) Experimental setup for 
simultaneous recordings of single-whisker evoked responses in the corresponding VPM barelloid and cortical 
barrel column in the P6 rat. ii) Responses averaged across 100 whisker deflections in the matching barreloid 
of VPM thalamus (VPM MUA PSTH (black) and granular layer of the barreloid of the cortex (evoked LFP 
(red))). Cortical LFP gamma activity is present at a stage of development during which cortical circuits do not 
generate gamma activity. Thalamic multiunit activity preceding cortical gamma implies that cortical LFP is due 
to incoming thalamic spiking and not local cortical spiking. From Minlebaev et al (2011)160. 
 
c) LFP activity in rabbit cortex due to thalamic input. i) Experimental setup in which two thalamic 
electrodes recorded from neurons in neighboring VB barreloids (labeled a and b), and cortical electrodes 
recorded spike-triggered averages in the topographically aligned (and neighboring) S1 barrels (labeled A and 
B). Spike-triggered averages were generated by two neurons in barreloid a (a1 and a2) and by 1 neuron in 
barreloid b. ii) Spike-triggered averages elicited in barrel A by barreloid neurons a1, a2, and b are shown at 
bottom left. Spike-triggered averages elicited in barrel B by the same 3 VB neurons is shown at bottom right. 
From Swadlow and Gusev (2000)167. 
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