
remote sensing  

Article

Sea Ice Classification of SAR Imagery Based on Convolution
Neural Networks

Salman Khaleghian 1,* , Habib Ullah 1, Thomas Kræmer 1 , Nick Hughes 2 Torbjørn Eltoft 1

and Andrea Marinoni 1

����������
�������

Citation: Khaleghian, S.; Ullah, H.;

Kræmer, T.; Hughes, N.; Eltoft, T.;

Marinoni, A. Sea Ice Classification of

SAR Imagery Based on Convolution

Neural Networks. Remote Sens. 2021,

13, 1734. https://doi.org/10.3390/

rs13091734

Academic Editor: John Paden

Received: 1 March 2021

Accepted: 22 April 2021

Published: 29 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Science and Technology, UiT the Arctic University of Norway, NO-9037 Tromsø, Norway;
habib.ullah@uit.no (H.U.); thomas.Kramer@uit.no (T.K.); torbjorn.eltoft@uit.no (T.E.);
andrea.marinoni@uit.no (A.M.)

2 Norwegian Ice Service, Norwegian Meteorological Institute, P.O. Box 6314 Langnes,
NO-9293 Tromsø, Norway; nick.hughes@met.no

* Correspondence: salman.khaleghian@uit.no

Abstract: We explore new and existing convolutional neural network (CNN) architectures for sea
ice classification using Sentinel-1 (S1) synthetic aperture radar (SAR) data by investigating two
key challenges: binary sea ice versus open-water classification, and a multi-class sea ice type
classification. The analysis of sea ice in SAR images is challenging because of the thermal noise effects
and ambiguities in the radar backscatter for certain conditions that include the reflection of complex
information from sea ice surfaces. We use manually annotated SAR images containing various
sea ice types to construct a dataset for our Deep Learning (DL) analysis. To avoid contamination
between classes we use a combination of near-simultaneous SAR images from S1 and fine resolution
cloud-free optical data from Sentinel-2 (S2). For the classification, we use data augmentation to
adjust for the imbalance of sea ice type classes in the training data. The SAR images are divided
into small patches which are processed one at a time. We demonstrate that the combination of
data augmentation and training of a proposed modified Visual Geometric Group 16-layer (VGG-16)
network, trained from scratch, significantly improves the classification performance, compared to the
original VGG-16 model and an ad hoc CNN model. The experimental results show both qualitatively
and quantitatively that our models produce accurate classification results.

Keywords: convolutional neural network; ice edge detection; polar region; Sentinel-1; sea ice
classification; synthetic aperture radar

1. Introduction

Sea ice is a key environmental factor [1] that significantly affects polar ecosystems.
Over the past decade, the Arctic has experienced dramatic climate change that affects its
environment, ecology, and meteorology. The trends are more pronounced than in other
regions, and this has been called the Arctic amplification [2] resulting in increasingly
variable Arctic weather and sea ice conditions. These are already more extreme than
at lower latitudes, and present challenges and threats to maritime operations related to
resource exploitation, fisheries, and tourism in the northern areas [3,4]. Therefore, reliable
and continuous monitoring of sea ice dynamics, coverage, and the distribution of ice types
is important for safe and efficient operations, in addition to supporting detection of how the
conditions are changing over longer timescales [5,6]. For example, Ren et al. [7] classified
sea ice and open water from synthetic aperture radar (SAR) images using the U-Net model,
and integrated a dual-attention mechanism into the original U-Net to improve the feature
representations. Han et al. [8] introduced a method for sea ice image classification based
on feature extraction and a feature-level fusion of heterogeneous data from SAR and
optical images. Song et al. [9] proposed a method based on the combination of spatial and
temporal features, derived from residual convolutional neural networks (ResNet) and long
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short-term memory (LSTM) networks that allowed the extraction of spatial feature vectors
for a time series of sea-ice samples using a trained ResNet network. Then, using the feature
vectors as inputs, the LSTM network further learnt the temporal variation of the set of
sea-ice samples. Subsequently, they fed the high-level features into a Softmax classifier to
output the most recent ice type.

For sea ice data analysis, SAR imaging plays a key role as the images acquired by air
and satellite-borne platforms provide information that is not restricted by environmental
factors and, importantly for Arctic monitoring, can continue to be collected during all
weather conditions and through the polar night [10].

Recently, Deep Learning (DL) based methods have shown promising results in
many application areas, including computer vision [11], information theory [12], and
natural language processing [13]. These have been shown to have excellent generalization
capabilities, particularly when properly trained on large datasets. These developments
have therefore led to a belief that deep neural networks (DNNs) could lead to a significant
improvement of automatic sea ice classification, considering the specific challenges related
to this task. However, no applications based on this approach have yet made it into
operational use.

In our paper, we explore the performance and efficiency of some DL-based methods
for sea ice classification from SAR imagery. DNNs are trainable multi-layer architectures
composed of multiple feature-extraction stages, succeeded by a fully connected classification
module. DNNs may consist of hundreds of layers, and their architecture can be feed-
forward or recurrent, having different types of layers and activation functions, and the
training can be achieved through many different optimization strategies. A DNN can
be built from different combinations of fully connected, convolutional, maxpooling (sub-
sampling), or recurrent layers. Due to their deep nature, they are often trained on large
datasets, and in general are able to achieve low generalization errors.

A convolutional neural network (CNN) [14,15] is a feed-forward network consisting
of only convolutional layers, pooling layers, and fully connected layers. A CNN [16] is
the type of DNN which is most commonly applied to analyzing visual imagery. In the
convolutional layers, a CNN extracts features from the image in a hierarchical way by using
multiple filters. Each filter consists of a set of weight parameters, which are iteratively
adjusted and optimised using an optimization algorithm. These filters are applied to an
input image to create a feature map that summarizes the presence of detected features
in the input. The CNN learns the filter coefficients during training in the context of the
specific problem, and uses pooling layers to sub-sample the output in such a way that the
most prominent pixels are propagated to the next layer, dropping the rest. Here it provides
a fixed sized output matrix, which is translation and rotation invariant.

Sea ice classification based on SAR imagery is a very challenging task because, in
addition to the sea ice characteristics, the radar signals are sensitive to imaging geometry,
speckle noise [17], and the blurring of edges and strong anisotropies that may be produced
by the SAR imaging process based on the backscattering of signals. In the literature,
different methods [18–21] for sea ice classification based on SAR imagery have been
presented and typically consider traditional machine learning and probabilistic approaches
based on shallow learning strategies. Generally, shallow learning relies on handcrafted
features like intensities, polarization ratios, and texture features, which may not encode
well the large variations that sea ice may display. Therefore, their generalization capabilities
are limited.

To address these challenges, we explore deep learning networks for sea ice classification.
Inspired by the success of DNNs in general, and CNNs in particular in many applications,
we consider two main approaches when exploring DL networks. The first consists of
modeling a custom or ad hoc architecture to analyze the problem. An ad hoc architecture is
interesting as it offers high flexibility, but it generally requires optimization of many hyper-
parameters. In the second approach, where a given existing DL architecture is used in a
new application domain, the existing architecture can either be fine-tuned based on already
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pre-trained parameters, or trained from scratch. This approach significantly reduces the
time to design the deep learning architecture. We explore the VGG-16 model [14], which
is a well-known network architecture developed for image recognition at University of
Oxford, and has achieved high performances in many applications. This architecture is
the core in other architectures like the Fully Convolutional Networks (FCN) [22]. Different
training approaches including transfer learning and re-training from scratch are discussed
in Section 3.1. We also studied effects of maxpooling layers in the VGG-16 architecture and
propose a modified VGG-16 model for sea ice classification. The main contributions of this
paper are:

1. We present a deep learning based models for sea ice classification based on SAR
imagery. One of the major attractions of these models is their capability to model sea
ice and water distinctively in SAR images representing different geographic locations
and timing.

2. We extensively evaluate the models on our collected dataset and compare it to both a
baseline method and a reference method. Our results show that our explored model
outperforms these methods.

3. We categorize state-of-the-art methods and present a comprehensive literature review
in this area in the next section.

The rest of the paper is organized as follows. In Section 2, related work is presented.
Section 3 reports our proposed deep models and training strategies. Section 4 presents the
experimental results on multiple SAR scenes. Finally, Section 5 outlines the conclusion and
final remarks.

2. Related Work

Sea ice type classification is a major research field in the exploitation of SAR images
and has been the subject of research for more than 30 years [23]. The literature on this topic
is quite extensive, and here we highlight only a few of the more recent studies.

In general, sea ice classification methods fall into three categories: probabilistic/
statistical methods, classical machine learning methods, and deep learning based methods.

In the first category, Moen et al. [24] investigated a Bayesian classification algorithm
based on statistical and polarimetric properties for automatic segmentation of SAR sea
ice scenes into a specified number of ice classes. Fors et al. [25] investigated the ability of
various statistical and polarimetric SAR features to discriminate between sea ice types and
their temporal consistency within a similar Bayesian framework, finding that the relative
kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation correlation
angle are temporally consistent, while the co-polarisation ratio and the co-polarisation
correlation magnitude are temporally inconsistent. Yu et al. [26] presented a sea ice
classification framework based on a projection matrix, which preserves spatial localities of
multi-source images features from SAR and multi-spectral images. By applying a Laplacian
eigen-decomposition to the feature similarity matrix, they obtained a set of fusion vectors
that preserved the local similarities. The classification was then obtained in a sliding
ensemble strategy, which enhances both the feature similarity and spatial locality. In a
recent paper, Cristea et al. [27] proposed to integrate the target-specific incidence-angle-
dependent intensity decay rates into a non-stationary statistical model. The decay of the
intensities of co-polarized SAR signals with incidence angle is dependent on the nature of
the targets, and this decay impacts the segmentation result when applied to wide-swath
images. By integrating the decay into the Bayesian segmentation process, this deteriorating
effect is alleviated and cleaner segmentation results are obtained.

In the second category of classical machine learning, Orlando et al. [28] used a multi-
layer perceptron classifier to perform multi-class classification considering first-year ice,
multi-year ice, icebergs, and the shadows cast by icebergs. Alhumaidi et al. [29] trained a
neural network classifier using polarization features alone, and polarization features plus
multi-azimuth “look” Ku-band backscatter for sea ice edge classification. Their method
demonstrated a slight advantage in combining polarization and multi-azimuth ‘look’
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over using only co-polarized backscatter. Bogdanov et al. [30] also used a multi-layer
perceptron classifier for sea ice classification in the winter season, based on a multi-sensor
data fusion using coincident data from both the ERS-2 and RADARSAT-1 SAR satellites,
low-resolution television camera images, and image texture features. They assessed the
performance of their method with different combinations of input features and concluded
that a substantial improvement can be gained by fusing the three different types of data.
Leigh et al. [31] proposed a support vector machine (SVM) based ice-water discrimination
algorithm considering dual polarization images produced by RADARSAT-2, and extracting
texture features from the gray-level co-occurrence matrix (GLCM), in addition to backscatter
features. Lit et al. [32] introduced a sea ice classification method based on the extraction of
local binary patterns, and subsequently used a bagging principal component analysis (PCA)
to generate hashing codes of the extracted features. Finally, these hashing codes were fed
into an extreme learning machine for classification. Park et al. [33] extracted texture features
from SAR images and trained a random forest classifier for sea ice classification. Their
method classifies a SAR scene into three generalized cover types, including ice-free water,
integrated first-year ice, and old ice. Zhang et al. [34] introduced a conditional random
fields classifier for sea ice classification for Sentinel-1 (S1) data that has been applied to
SAR scenes from the melt season in the Fram Strait region in the Arctic, and is based on the
modeling of backscatter from ice and water to overcome the effects of speckle noise and
wind roughened open water.

In the third category, we present DL-based methods for sea ice classification. These
methods have been widely used in analyzing Earth observation (EO) data, but the literature
is very limited when it comes to the analysis of sea ice data. Previous work can be
categorized into two main approaches, namely ad hoc architectures and well-established,
existing architectures. For ad hoc architectures, one can, for example, freely determine
hyperparameters, including the number of layers, the number of nodes in a particular
layer, and the training technique. Many researchers have created ad hoc architectures for
handling specific problems [35–39]. Some of the popular existing architectures are the
AlexNet [40], the VGG net [14], and the GoogLeNet [41]. There are three sub-approaches on
how to train the network when considering the use of existing architectures: (1) re-training
the architecture from scratch, (2) using transfer learning and fine-tuning the architecture
based on problem specific training data, or (3) applying feature extractors. In the case of re-
training from scratch on a new training dataset, the weights of the architecture are randomly
initialized. In the case of transfer learning, pre-trained weights are copied and fine-tuned
with the new data. All weights may be adjusted, or only some of the network’s layers are
re-trained and fine-tuned with new training data [42]. For example, Castelluccio et al. [43]
fine-tuned two existing architectures to perform semantic classification of remote sensing
data, namely the CaffeNet and the GoogLeNet, and showed significant performance
improvements. Wang et al. [38,39] used deep ad hoc CNNs for ice concentration estimation.
Kruk et al. [44] used DenseNet [45] for finding ice concentration and ice types considering
dual-polarization RADARSAT-2 SAR imagery by fusing the HH and HV polarizations for
the input samples. Han et al. [46] introduced a hyperspectral sea ice image classification
method based on spectral-spatial-joint features with deep learning. Initially, they extracted
sea ice texture information from the GLCM and then a three-dimensional deep network to
extract deep spectral-spatial features of sea ice for classification. Gao et al. [47] proposed a
deep fusion network for sea ice change detection based on SAR images. They exploited
the complementary information among low, mid, and high-level feature representations,
and for optimizing the network’s parameters, they used a fine-tuning strategy. Petrou and
Tian [48] used a DL approach [49] to predict sea ice motion for several days in the future,
given only a series of past motion observations. Their method is based on an encoder-
decoder network and to calculate motion vectors, they used sea ice drift derived from daily
optical images covering the entire Arctic. Their model learnt long-time dependencies within
the motion time series and captured spatial correlations among neighboring motion vectors.
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3. Method

Our work falls in the third category, namely DL-based methods, and is inspired by the
success of the versatile CNNs in many different applications [14]. We perform both binary
and multi-class classifications. In binary classification, we categorize different types of sea
ice into one class and water into another class. In multi-class classification, we consider
four different ice types that correspond to the World Meteorological Organization (WMO)
ice types classification [50]. To model the effects of incidence angle, we create a patch-based
training dataset which includes incidence angle as a separate image channel. We explore
three different CNN models for sea ice classification, including an ad hoc CNN architecture
designed from scratch, a VGG-16 model [14], considering both transfer learning and re-
training from scratch, and a modified version of the VGG-16 model. The ad hoc architecture
is a new CNN, where we explore different numbers of convolutional and maxpooling
layers to examine the impact on their classification performance. We also studied effects of
maxpooling layers in the VGG-16 architecture and propose a modified VGG-16 model for
sea ice classification.

When it comes to the training of the CNN architectures, it is worth noticing that there
is no pre-prepared, publicly available sea ice classification datasets. Therefore, in our work,
we train and test all the architectures considering a sea ice dataset that we have carefully
generated ourselves from a combination of overlapping SAR and optical satellite images,
supported by expert evaluations from sea ice analysts. Our dataset consists of 31 SAR
images from north of the Svalbard archipelago collected between March and September
during 2015–2018. In order to reduce the effect of overfitting of the models during the
training process due to scarce training data, we use an augmentation technique to extend
the training set.

3.1. CNN Models for Classification

The ad hoc CNN model we investigate consists of three convolution layers along with
an equal number of maxpooling layers. For these layers, the number of kernels/filters are
32, 64, and 64, respectively. Our model also consists of three fully connected layers with
1024, 512, and 2 nodes, respectively. We also use dropout, a regularization technique to
avoid overfitting, where we set the dropout probability equal to 0.5. The specification of
the ad hoc model is depicted in Figure 1.

Figure 1. Ad hoc CNN. Our proposed CNN architecture consists of three convolution layers and
three fully connected layers. At the input, there are training images. We extract patches from these
images and feed them to the network during the training process.

We also explore the VGG-16 model [14] for sea ice classification. The architecture
of this model is depicted in Figure 2. The fully connected layers are the same for both
architectures, but the convolution layers are different, and hence the extracted output
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features from the convolution layers are not the same. In both architectures, the rectified
linear unit (ReLU) activation functions [51] have been used in all layers, except for the last
layer, where the SoftMax function [52] is used. We use the cross-entropy loss function and
Adam optimizer [53] in the training process. The batch size, which refers t o the number of
training examples utilized in one iteration, was set to 50 patches.

In case of the VGG-16 network, we adopt both training from scratch using our sea
ice training dataset and a transfer learning strategy. Training from scratch provides
insight on the impact of a deeper network in relation to the sea ice classification task.
In this case, we adjust all the weights during the training process, starting from a random
initialization. For transfer learning, we readjust the weights during training, following the
setup obtained for a specific application. We tested each network model with different
sizes of the input patches.

Furthermore, we use an augmentation technique to extend our labelled dataset.
Here it is supposed to consolidate the architectures both in the feature extraction and
the classification stages. In data augmentation, the training data is processed using
multiple patch-wise operators and transformations. We used the augmentation strategy
of Buslaev et al. [54]. According to the strategy, we perform horizontal flip, rotation with
90 degrees, blurring, and random changes to both brightness and contrast. The data
augmentation technique aims to improving the robustness of both architectures by focusing
on the structure of the classes, and should help both architectures to be independent of
changes in brightness and contrast.

Figure 2. VGG-16 CNN. The architecture of this network consists of several convolution layers and
three fully connected (FC) layers. The FC layers are represented by dense layers. At the input, there
are training images. We extract patches from these images and feed them to the network during the
training process.

3.2. Modified CNN Model for Classification

We also propose a modified VGG-16 model [14] for sea ice classification. In general,
convolutional neural networks introduce equivariance to translation. It means that if
an object moves along the height or width axis of an image, the activation translated
to the output will be the same. However, this is not true for rotations and changes in
the illumination. It can be described intuitively by thinking about a filter that picks up
horizontal edges. This filter can find all the horizontal edges in the image, but it cannot
detect vertical edges. To this end, a maxpooling layer adds translational invariance [55]. If
we consider a pooling layer with a window size of 2 × 2 and a stride equal to 2, it does not
matter in which of the four locations the big activation is, the output of the pooling layer
will be the same. However, this is not always desired. For example, translation invariance
is not desired for face-recognition where the exact distances between eyes and the nose are
crucial. In this case, you would not want to reduce the use of pooling.
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In sea ice classification, we are not looking for a specific object, and the texture of the
classes is important. The use of many maxpooling layers severely affects the networks
ability to encode texture characteristics. In a large network, a maxpooling layer shrinks the
image size and saves computation. On the other hand, this process limits the minimum
input patch size which can be used. For example, the smallest input image that can be used
in VGG-16 is 32 × 32. If smaller patches are fed to the network, there will be no output
image after the convolution and maxpooling layers to feed to the fully connected layers.
We investigate the effect on sea ice classification of removing the last maxpooling layer in the
VGG-16 architecture. By reducing the maxpooling layers, we suppress the the translational
invariance property of the VGG-16 network, and simultaneously reduce the minimum
input size that is allowed to be used.

4. Experimental Results
4.1. Dataset

To test the deep CNN models for sea ice classification, we created an annotated
dataset building on the work of Lohse et al. [56]. This is based on 31 Sentinel-1A Extended
Wide (EW) Level-1 Ground Range Detected (GRD) scenes, with a spatial resolution of
40 m × 40 m, that were acquired north of the Svalbard archipelago in winter months
between September and March during the period 2015–2018. Four sample images from
our dataset are shown in Figure 3. Our dataset can be accessed from the provided
link https://dataverse.no/dataset.xhtml?persistentId=doi:10.18710/QAYI4O (accessed
on 1 March 2021). The images were pre-processed by applying a thermal noise removal
algorithm in the European Space Agency (ESA) Sentinel Application Platform (SNAP)
software [57], calibrated using the σ0 look-up table, and multi-looked using a 3 × 3
boxcar filter. After conversion to dB scale, the images were clipped and scaled linearly
in the range [0, 1], considering the dual-polarization intensity channels individually, and
including a third input-channel representing the incident angle. The range for the co-
polarization (HH) is −30 to 0 dB, for the cross-polarization (HV) it is −35 to −5 dB, and
for the incidence angle 19 to 46 degrees. A set of polygons representing homogeneous
sea ice types was subsequently manually annotated with labels for those types, taking
into account additional information from co-located and nearly temporally coincident
optical image data from Sentinel-2. Patches were then extracted from these polygons for
5 different classes representing: Water (including ice-free water (windy), ice-free water
(calm), and open water in leads), Brash/Pancake Ice, Young Ice, Level First-Year Ice, and
Deformed Ice (including both first-year and multi-year ice). The stride between patches
was 10 pixels. In Table 1, we provide the code values for the ice types related to the stage
of development (ice age), as defined by the SIGRID-3 vector archive format for sea ice
georeferenced information and data ([58]), the class names, and the number of samples
for each class for a patch size of 32 × 32. It is worth noticing that we have an imbalanced
dataset, where the number of samples for each class has considerable variation. This is a
result of the effort we made to accurately annotate the polygons, and hence the number of
polygons was small and not representing all classes equally.

For binary Water/Ice classification, we grouped the samples into two classes, namely
Water and Ice. Our motivation for performing binary classification is to investigate if deep
models can distinguish between sea ice and water, which would subsequently allow for
quantitative sea ice concentration mapping. The number of samples of water and ice for
different patch sizes are shown in Table 2, and there is not a class imbalance problem in
this case. For all the tests, 80 percent of the dataset was used for training and 20 percent
for validation.

https://dataverse.no/dataset.xhtml?persistentId=doi:10.18710/QAYI4O
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Figure 3. Sample images. Four different input SAR images are presented in both the rows from our
collected dataset. The light vertical lines in all the images represent SAR additive noise.

Table 1. Number of samples for different classes namely open water/leads with water, brash/pancake
ice, young ice (YI), level first year ice (FYI), and old/deformed ice.

Codes Classes 32 × 32

02 Open Water/Leads with Water 9318
01–02 Brash/Pancake Ice 159

83 Young Ice (YI) 202
86–89 Level First-Year Ice (FYI) 213

95 Old/Deformed Ice 9137

Table 2. Number of samples for sea/ice classification in different patch sizes. For example, the total
number of patches are 19,029 in case of patch size equal to 32 × 32.

Patch Size Total Ice Sea

10 × 10 22,999 12,723 10,276
20 × 20 21,020 11,301 9719
32 × 32 19,029 9711 9318
36 × 36 18,469 9255 9214
46 × 46 17,237 8255 8982

We would like to mention that in the inference experiment, we used completely
different images. These were another 4 scenes from north of Svalbard, and 8 scenes from
Danmarkshavn, East Greenland that were each collected during separate months in 2018.

4.2. Model Accuracies
4.2.1. Patch Channels and Sizes

In the first study case, we report the validation accuracy by considering three different
channel compositions. We calculate the validation accuracy for a patch by checking if the
predicted class is the same as the true class, and by comparing the index of the highest
scoring class in the predicted vector with the index of the actual class in the ground
truth vector. It is interesting to use the HH polarization alone since it generally has a
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stronger signal and is less affected by additive noise. However, the HV polarization is
more sensitive to ice types during freezing conditions and provides information about the
different classes [56]. Furthermore, it is well-known that the radar backscatter from sea ice
is dependent on the incidence angle, with lower incidence angles appearing brighter [56]. In
order to study the importance of this effect for different classes, we included the incidence
angle as a separate input channel. Hence, we consider three alternatives. First, we extracted
one-channel patches using only the HH polarization. Secondly, we extracted two-channel
patches, with both the HH and HV polarizations as inputs. Finally, we extracted three-
channel patches by considering the HH and HV channels, plus the incidence angle. The
results for these channel compositions are summarized in Table 3 for the ad hoc CNN,
using a patch size of 32 × 32. As can be seen, the composition of the input patches affects
performance of the model, with a large improvement due to adding the HV channel to the
HH, and another small improvement by adding the incidence angle. The improvement of
adding the incidence angle is surprisingly small. However, based on the validation results
for the ad hoc CNN, we will use all three channels in our next experiments.

Table 3. Validation accuracy of ad hoc CNN for different Patch compositions including HH, HH-HV,
and HH-HV-incidence angle. The patch size is equal to 32 × 32 with spatial resolution 1440 m2.

HH HH, HV HH, HV, Incidence Angle

Validation Accuracy 88.4% 98.2% 98.4%

Next, we studied the effect of using different patch sizes for the three-channel case.
We consider the ad hoc architecture and input patch sizes of 10 × 10, 20 × 20, 32 × 32,
36 × 36 and 46 × 46, respectively. The validation results in Table 4 show that the accuracy
improves with the increase in the patch size. However, this improvement comes at the
cost of a lower spatial resolution as larger patches cover wider areas of the surface. Note
that for S1 EW GRD images each pixel covers 40× 40 meters on the Earth surface and,
for example, a patch size equal to 46 × 46 covers a 1840 × 1840 square meters area. This
patch will be classified as water if the majority of the pixels represent water and would be
a problem at ice edges as classification based on larger patches would lead to coarser or
non-smooth edges. Hence, there is a trade-off between accuracy and resolution. We used
smaller patch sizes in our other experiments.

Table 4. Validation accuracy using ad hoc CNN with different patch sizes including 10 × 10, 20 × 20,
32 × 32, 36 × 36, and 46 × 46.

10 × 10 20 × 20 32 × 32 36 × 36 46 × 46

Validation Accuracy 95.54% 97.49 % 98.53 % 98.75 % 99.09%
Spatial Resolution (meter) 400 800 1280 1440 1840

4.2.2. Different Training Strategies

In this section, we study the performance of the VGG-16 architecture for sea ice
classification from SAR images under different training strategies. These strategies include:
(a) training the network by transfer learning, where the pre-trained network is trained
on the ImageNet dataset, (b) training the network from scratch, (c) training the network
from scratch, with an augmented dataset, (d) training the modified VGG-16 network from
scratch considering the augmented dataset with a patch sizes equal to 32 × 32, and (e)
similar to (d) with a patch size of 20 × 20. Transfer learning and data augmentation are
well-known learning strategies that have been successfully applied in computer vision
applications. The image formation process for SAR images is fundamentally different from
optical images, and our objective here is to understand if these techniques are also suitable
for the sea ice classification task using SAR data. For training our model, we consider the
learning rate equal to 0.001 and batch size equal to 20.
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The number of convolutional layers of the VGG-16 network is different from the ad
hoc network. Therefore, the extracted features are different in these architectures, and
presumably also their classification performances. We present the classification results
related to the VGG-16 network with different training approaches in Table 5. As can be seen,
when the network is trained by transfer learning, the validation accuracy is equal to 97.9%,
whereas when the same network is trained from scratch, the accuracy is 99.5%. Figure 4
shows the training and validation losses for these two cases, transfer learning in the left
panel and ’from scratch’ learning in right, respectively. We note that the validation losses
in both panels show increasing trends after the point where the training losses indicate
conversion, meaning these networks suffer from overfitting.

Figure 4. Validation and training losses. Considering the VGG-16 network trained with transfer learning (left), the
validation loss is increasing and the training loss is decreasing. Considering the VGG-16 network trained from scratch
(right), the Validation loss is increasing and the training loss is decreasing. Therefore, both the networks are facing the
problem of overfitting.

Table 5. The comparison of the validation accuracy of different models: VGG-16 transfer learning,
VGG-16 trained from scratch, VGG-16 trained from scratch with augmentation, VGG-16 modified
with augmentation considering two different pixel resolutions.

Training Strategies Validation Resolution Resolution
Accuracy in Pixels in Meters

VGG-16 transfer learning 97.9 32 × 32 1280
VGG-16 trained from scratch 99.5% 32 × 32 1280

VGG-16 trained from scratch with augmentation 99.79% 32 × 32 1280
VGG-16 Modified + augmentation 99.89% 32 × 32 1280
VGG-16 Modified + augmentation 99.30% 20 × 20 800

The issue of overfitting is often related to sparse training data, and can be remedied by
extending the training set using data augmentation. We demonstrate this for the strategy
of training the network from scratch, since as shown in Table 5 it has the best performance.
We train the VGG-16 network from scratch with the augmented data according to the
augmentation strategy described above. Figure 5 presents the corresponding training and
validation loss curves, and, as can be noted, both the validation and training losses are
decreasing, hence, showing better generalization capabilities. Table 5 shows that data
augmentation also improves the classification results. In fact, we achieve a validation
accuracy equal to 99.79%, which is remarkably good.

We also report the validation accuracies of the modified VGG-16 network trained from
scratch using the augmented dataset considering two different patch sizes, namely 32 × 32
and 20 × 20. We remind the reader that this architecture is designed to have a reduced
number of maxpooling layers, and hence would allow for better texture preservation
and smaller input patch sizes. Table 5 also displays the validation accuracies for these
models, and as can be noted, the modified VGG-16 networks achieves very high validation
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accuracies. We also perform a comparison with three other reference models to show
the stability and robustness of our modified VGG-16 model for sea ice classification.
These reference models are MobileNetV2 [59], RestNet50 [60], and DenseNet121 [45].
The performance of our model in comparison with these reference models is presented in
Figure 6 in the form of validation accuracy over time. As can be seen, our model presents
higher and consistent validation accuracy.

Based on these experimental analyses, we observe that the modified VGG-16 network
trained from scratch with the augmented data provides the highest accuracies. This leads
us to conclude that in the case of sea ice classification from SAR data, training the network
from scratch with an augmented dataset enables better adjustment and learning of the
sea ice characteristics. Transfer learning, with pre-training on ImageNet data, which is
fundamentally different from SAR data, does not allow the same adaptation to the data.
Moreover, by reducing the number of maxpooling layers, the network better preserves the
structure of the data and shows improved performance.

Figure 5. Validation and training losses. Considering the VGG-16 network trained from scratch
with the augmented data, both the validation and training losses are decreasing showing the better
generalization capability of the network.

Figure 6. Validation accuracy. We present the performance of our model in comparison with
MobileNetV2 [59], RestNet50 [60], DenseNet121 [45] in the form of validation accuracy. As can be
seen, our model shows higher and consistent validation accuracy over time.
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4.3. Inference Results

In order to assess the robustness of the proposed approaches, we investigated the
classification results for four new SAR scenes from north of Svalbard, i.e., scenes that are
not part of the training data, by presenting the results as qualitative ice versus water maps.
To this aim, we set up the inference experiment in a patch-wise manner, where the images
are partitioned into non-overlapping patches, and the classification is performed on the
entire patches.

Figure 7 shows the four input images from north of Svalbard in the first row. In the
same figure, the patch-wise results of the ad hoc CNN are presented in the second row, the
results of the VGG-16 model trained with transfer learning are presented in the third row,
the results of the VGG-16 model retrained from scratch without the augmented data are
presented in the fourth row, the results of the VGG-16 model retrained from scratch with
the augmented data are presented in the fifth row, and the results of the modified VGG-16
model trained from scratch with augmented data are presented in the sixth row. Areas
consisting of water are annotated in blue and areas consisting of sea ice are annotating
in white. For better visualization, we applied a land mask to detect land areas, and the
black regions in the images represent land areas. We zoom in on parts of some images to
highlight specific details. The classification results obtained with ad hoc CNN (second row)
are not satisfactory. The classified images are severely affected by the banding additive
noise pattern, as can be clearly seen in columns two and three. The VGG-16 trained with
transfer learning (third row) does not classify sea ice areas properly. In fact, open water
and newly formed sea ice often have lower radar backscatter values in HV than in HH
channels.These cross-polarization values are closer to the noise floor and therefore often
have a lower signal-to-noise ratio producing artifacts due to different noise patterns. It
can lead to problems during the interpretation of sea ice maps because the added intensity
corrupts the true back scattered signal of the sea ice region.

In Figure 7, The VGG-16 retrained from scratch without using the augmented data
(fourth row) is better than ad hoc CNN and VGG-16 trained with transfer learning.
However, there are still some misclassifications, as can be seen in the first column. The
second last row presents the results obtained with the VGG-16 model retrained from scratch
with the augmented data. The last row presents the results obtained with the modified
VGG-16 retrained from scratch with the augmented data. For the modified VGG-16 model,
we reduced the number of maxpooling layers. In this case, the noise seems to be quite
well handled, as can be seen in the second column of the last row. However, there is still
some noise effects in the third column. Hence, it is worth noticing how the results are
affected by the additive noise, which can be seen in the original images (row one) as distinct
bands marking the different sub-swaths, and in particular the case when the ad hoc CNN
and VGG-16 with transfer learning are considered. Nevertheless, the results obtained by
using VGG-16 trained from scratch appear to be more robust against the noise. From this
experimental analysis, we conclude that the patch-wise classification results seem to be
better when the training data obtained from data augmentation is used to train the VGG-16
model from scratch. The improvement is evident in the last row of Figure 7.

To further show the generalization performance of the CNN models for ice versus water
classification, we also tested the models on images acquired from a different Arctic region, the
area offshore of Danmarkshavn, East Greenland (76°46′ N, 18°40′ W). Here the Norwegian
Meteorological Institute provided vector polygon data representing manually interpreted
sea ice areas for the SAR data [61], which consisted of eight images, corresponding to eight
different months of the year. These including both the freezing and melting seasons, and
were then analyzed with the trained architectures. Figure 8 displays the classification results
corresponding to the modified VGG network, trained from scratch with data augmentation,
using patch sizes of 32 × 32 and 20 × 20.
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Figure 7. Patch-wise results considering patch size equal to 32 × 32. The first row presents the original images in two-bands.
The second row presents results using ad hoc CNN, the third row presents results using VGG-16 with transfer learning.
The fourth row presents results using VGG-16 trained from scratch without augmentation. The fifth row presents results
obtained using VGG-16 trained from scratch with augmentation. The sixth row presents the results of modified VGG-16
trained from scratch considering patch size equal to 20 × 20. Ice is annotated in white and water is annotated in blue. The
land mask is annotated in black.

As can be seen, the overall performance is good. It is also noticed that the results
obtained with patch size equal to 32 × 32 are better than the results obtained with patch
size equal to 20 × 20. The larger patch-size seems to be less affected by the noise and
therefore we conclude that a patch size equal to 32 × 32 is a better choice for Sentinel-1
SAR images corrupted by additive noise. Overall, our experimental analysis shows that the
VGG-16, when trained from scratch with augmented data, presents very good classification
results when trained in a supervised fashion.
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Figure 8. Patch-wise inference results of VGG-16 trained from scratch with 32 × 32 and 20 × 20 patches. The network is
trained on north of Svalbard images and tested on the new region, Danmarkshavn, East Greenland. Different images in
freezing and melting seasons are shown.

To better characterize the quality of the sea ice classification, it is important to
distinguish between ice edges and water. Therefore, we also present the performance of
our proposed method considering the ice edges of 16 January 2018 as depicted in Figure 9.
For this purpose, we overlay the ice polygons (Norwegian Meteorological Institute [61])
from the Danmarkshavn region over the geo-referenced classified image from our method.
Overestimation means predicting a larger sea ice area than the manually labelled cover
area. Underestimation means predicting a smaller sea ice area than the manually labelled
cover area. As can be seen, our proposed method performs effectively to separate ice
edges from the water, although there remains some minor overestimation of the sea ice
extent in some areas which is preferable to underestimating. However misclassification still
occurs in interior areas of the ice pack where there is low backscatter from both cross- and
co-polarization such as for areas of level, undeformed landfast ice close to the Greenland
coast. An assessment of the accuracy of the ice edge, based on the Integrated Ice Edge Error
(IIEE) metric [62], was performed on this example against a selection of other data sources.
In Table 6 it can be seen that the contribution to the error from classifying ice as water
(under-representing the ice) is consistent with all the products (4646 to 6632 km2) that are
compared, as these have fairly good agreement on the presence of landfast ice. There is also
a similar level of error against products with accurate ice edges (1522 to 3766 km2) such as
the manually analyzed polygons introduced earlier [61], the Norwegian Ice Chart from the
Norwegian Meteorological Institute (https://cryo.met.no/en/latest-ice-charts, accessed
on 1 March 2021) which is the routine operational analysis produced by an ice analyst,
and the sea ice concentration (SIC) produced by the University of Bremen from Advanced
Microwave Scanning Radiometer 2 (AMSR2) data [63]. Products based on low resolution
passive microwave radiometry, for example the EUMETSAT Satellite Application Facility
on Ocean and Sea Ice (OSI SAF) SIC that uses Special Sensor Microwave Imager/Sounder
(SSMIS) [64], are less capable of resolving the ice edge, and here there is a far greater
contribution to the IIEE (10,797 km2) because the SAR classification correctly identifies
sea ice.

https://cryo.met.no/en/latest-ice-charts
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Table 6. Area differences and IIEE scores for the 16 January 2018 VGG-16 results, (Figure 9) against
4 different sea ice data products: manual analysis [61], Norwegian Ice Chart, OSI SAF SIC [64], and
University of Bremen AMSR2 SIC [63].

Products Overestimation km2 Underestimation km2 IIEE km2

Manual Analysis [61] 3766 4646 8412
Norwegian Ice Chart 1522 6632 8155

OSI SAF SIC [64] 10,797 5482 16,279
Bremen AMSR2 SIC [63] 2637 5966 8604

Figure 9. Ice edges. We overlay the manually analyzed polygons from the Danmarkshavn region over the classified images
from our method to show the effectiveness of our proposed method considering ice edges. The polygons highlighted in the
light red color represent the manual analysis, the light grey color represents ice, the dark grey color represent water, and the
white color represents overestimated ice from our method.

We have also extended our experimental analysis to multi-class sea ice type classifica-
tion considering five images from the Danmarkshavn region. The results are depicted in
Figure 10. In this classification experiment, we used the modified VGG-16 model trained
from scratch with the dataset from north of Svalbard as shown Table 1.

We would like to emphasize that our dataset is scarce and unbalanced, with an unequal
number samples from the ice types. This is affecting the classification performance, and
the results presented in Figure 10 are slightly biased toward ice types where we have
more samples than others. The effect of the imbalance data can be seen in Figure 10,
where brash/pancake ice is detected in the right-hand side of the right-most image, which
apparently is a dense ice area. In general, brash/pancake ice is located at the edges towards
open water. Despite this problem, the results indicate that the VGG-16 trained from scratch
shows promising performance in distinguishing different ice types as well as binary ice
versus water classification.
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Figure 10. Multi-class ice types classification using 32 × 32 patches using the network trained from
scratch by considering multi-class ice types in Table 1 from north of Svalbard and tested on the
Danmarkshavn region.

We also present the inference result obtained considering only the HH channel. In
Figure 11, the left column shows the input SAR image and the right column shows the
inference results. As can be seen, the inference result lacks coherency to distinguish sea ice
from water. Therefore, both the HV channel and incident angle contribute to the process of
properly training the model.

Figure 11. The input HH SAR image is shown on the left side and the inference result considering only the HH channel is
shown on the right side. The color of the input image is different from the ones reported earlier because in this case we have
only HH channel. As can be seen, the result lacks coherency to distinguish sea ice from water.

5. Conclusions

In this work, we explored the potential of different CNN models for sea ice classification.
We tested and assessed the results both qualitatively and quantitatively. The results showed
that these complex architectures (such as those based on the VGG network) typically obtain
promising classification results. Moreover, we evaluated the value of data augmentation,
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and found that even if the quantitative performance improvement was only minor, the data
extension technique seemingly can prevent over-fitting caused by a scarce training dataset.
We also assessed the robustness of the trained CNN models when applied to SAR scenes
collected at different spatial locations and times. Even though our analysis is limited to
only a few scenes, our findings are positive and show that the models have good potential.
The computational processing to obtain the inference result for a single high resolution
SAR image requires a few minutes on a typical desktop computer. We also found that the
additive system noise in the SAR imagery is a challenging problem to obtaining refined
sea ice maps. Both the computational requirements and the additive system noise are
important issues for the operational use of SAR data for sea ice classification.

We also trained our models to perform multi-class classification. In this preliminary
study, we had a scarce and unbalanced dataset, which obviously affected the output, but
the analysis still showed promise. This motivates us to carry out our research in this
direction. In our investigation we performed patch-wise classification which degrades the
spatial resolution. Future work will address a pixel-wise setup. However, the pixel-wise
set-up will be driven by more computational overhead. Therefore, our future work will
also focus on transforming the current architecture to process the input data quickly. For
this purpose, we will replace the fully connected layers by convolution layers based on
the work of Sermanet et al. [65]. To reduce the impact of noise on sea ice classification, we
would include the nominal noise profiles as a feature directly into the model. Finally, we
emphasize that the scarcity of reliable and balanced sea ice training and validation datasets
is a severe problem for these complex CNN architectures and needs full attention from the
sea ice community. In future work, we will develop semi-supervised learning methods to
partly remedy this issue.
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SAR Synthetic aperture radar
LSTM Long short term memory
DNNs Deep neural networks
FCN Fully convolutional networks
PCA Principal component analysis
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S1 Sentinel-1
HH Horizontal-horizontal polarization
RLU Rectified linear unit
ResNet Residual convolutional neural network
DL Deep learning
CNN Convolutional neural network
SVM Support vector machine
GLCM Gray-level co-occurrence matrix
EO Earth observation
HV Horizontal-vertical polarization
ESA European Space Agency
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