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Abstract

In this thesis, we present our methods and results for mining the MedMentions data
[Mohan and Li, 2019]. We propose a pipeline for combining mention classification
and mention disambiguation. We will use the Long Short Term Memory (LSTM)
neural network architecture for mention detection and mention classification. Also
we use nearest neighbour search using embeddings in the Unified Medical Lan-
guage System (UMLS) concepts in order to disambiguate mentions.

Our optimal results are achieved by combining five different models predictions
using Cosine Similarity threshold. The Optimal model achieved micro F1 of 0.629
which is 1.1 micro F1 point behind State Of The Art (SOTA) study on this data by
Fraser et al. [2019] that achieved 0.64.

The SOTA model by Fraser et al. [2019] is based on using BiLSTM with a concate-
nation the last layer of both BioBERT [Lee et al., 2019] and BERT [Devlin et al.,
2019] models that generate a combination of general and domain specific represen-
tations of the mentions in the data. Our method is based on using different BiLSTM
networks with CODER pretrained model [Yuan et al., 2020], SciBERT [Beltagy
et al., 2019], UMLSBERT [Michalopoulos et al., 2021] and BioBERT [Lee et al.,
2019] as feature encoders. We hoped that this could present a better overall fea-
tures extraction given that the four pretrained models used different methodologies
in their training. We balanced the obtained predictions from mention disambigua-
tion against UMLS knowledge base with the different BiLSTM models into one
prediction using Cosine Similarity threshold and plurality voting.

The first step in our pipeline is Mention Detection where we aim to extract men-
tions of interests from the free text. We used BiLSTM with pre-trained BERT em-
beddings for this classification task. Second step is Mention Classification where
we use the same BiLSTM architecture to predict the Semantic Types (STY) of
the mentions in the text. The third step is Mention Disambiguation where we
take the extracted mentions from the first step and disambiguate them against the
UMLS knowledge base hoping to extract the nearest neighbour of the query men-
tion that share the correct STY. Forth step is combining the Mention Classifications
from second step and Mention Disambiguation from the third step to boost the re-
sults.
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The reason for not achieving higher results than the SOTA model is attributed to
the poor results that Mention Detection model achieved which made the nearest
neighbour search prone to error. We believe there is a room for development in our
implementation of nearest neighbour search method that could be able to further
boost the performance.
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Chapter 1

Introduction

1.1 Background

Data exists in different format and structures. In terms of structuring, data is cate-
gorized into structured and unstructured. Structured data is highly organized with
clearly defined data types and is easily understood by machines. On the other hand,
unstructured data (i.e. text data and images) is the type of data that does not follow
an organized format which makes the analysis of it more challenging.

Text mining is an Artificial Intelligence (AI) method and is used to extract struc-
tured meaning from this unstructured text data. Text Mining is mentioned for the
first time in Feldman et al. [1998]. According to Hotho et al. [2005], Text mining
involves three perspectives: information extraction, data mining, and Knowledge
Discovery in Databases. In this report, we focus on Information extraction perspec-
tive. Information extraction is viewed as the process where we know in advance
what kind of features we want to extract from text. According to Hotho et al.
[2005], ”The task of information extraction naturally decomposes into a series of
processing steps, typically including tokenization, sentence segmentation, part-of-
speech tagging, and the identification of named entities”.

Named Entity Recognition is a critical step in many applications such as chatbot
systems, where information extraction and question answering (QA) are central.
Extracting entities from text is helpful in identification of the key elements in a
text such as the names of persons, organisations and geographical entities. For a
large amount of data, extracting those entities aims to detect the most important
information in the text. In other words, extracting entities helps in reducing the
text into fewer features.
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1.2 Problem Statement

The data used in this thesis is the newly released and challenging MedMentions
[Mohan and Li, 2019]. The data is manually annotated resource for the recognition
of biomedical concepts and is mapped to the Unified Medical Language System
(UMLS). The task is to develop models that are able to extract and classify the
entities from the data to their semantic types. Taking the example sentence “In
fact, both the resistive and elastic components of the work of breathing increase
due to airway obstruction and chest wall and lung stiffening, respectively.”, we aim
in this thesis to build a model that can classify the span ”chest wall” as ”biologic
structure”. In this thesis, we use Recurrent Neural Networks along with attention
based models to extract and classify mentions from the MedMentions data.

1.3 Structure of thesis

In Section 2, we explain the theoretical details behind the methods we use in this
thesis. In Section 3, we explain details about the data and the materials we use in
this thesis. In Section 4, we explain our workflow in details and explain in details
several ideas to make Section 2 more concrete. In Section. 5, the numerical results
and observations are explained in details supported by figures. In Section 6, we
use our findings and combine our observed results with explanations. In Section
7, we conclude our work and compare our results with the SOTA model results and
provide possible directions for future improvements.

2



Chapter 2

Theory

Text Mining employs machine learning to automate the analysis of the text data.
Machine learning is the process where machines learn to identify patterns in data
in order to make predictions. There are three types of machine learning algo-
rithms; supervised, unsupervised and reinforcement learning algorithms. Super-
vised learning algorithms are used when the data has a ground truth labels and
these labels are used in calculation of cost function that is needed to be minimized
to achieve the best model characteristics. Classification and regression tasks are
typically a supervised learning. Unsupervised learning is the second major family
of machine leaning algorithms where the labels are not used in the analysis such as
clustering of similar data samples or detection of anomalies in the data. The third
family is Reinforcement Learning where the machine learns by taking actions that
maximize the rewards and minimize the penalties. In this thesis, we will focus on
supervised learning.

2.1 Artificial Neural networks (ANNs)

Artificial Neural networks (ANNs) are machine learning algorithms that are in-
spired by how the biological neural networks in the brain work. Multilayer per-
ceptron (MLP) is a specific kind of ANNs where the network layers are fully con-
nected. An example of MLP is shown in Figure 2.1.

The first step of training the MLP is forward propagation of input features through
the network to calculate the output. Second step is to calculate the errors between
the predictions and the ground truth labels using loss function that is described in
section 2.1.2 on page 8. Third step is to propagate this error to find it’s derivative
with respect to each weight in the network. This process is repeated until the loss
function is reduced to minimum.

3



Figure 2.1: One hidden layer perceptron with d hidden nodes, m inputs and t

outputs

The activation a(h)1 of the hidden layer can be calculated as follows:

a
(h)
1 = φ(z

(h)
1 ) (2.1)

where z(h)1 is known as net input and is calculated as follows:

z
(h)
1 = a

(in)
0 wh0,1 + a

(in)
1 wh1,1 + · · ·+ a(in)m whm,1 (2.2)

where wh0,1, wh1,1 and whm,1 are the weights that connect the input units a(in)0 , a(in)1

and a(in)m to the hidden unit a(h)1 .
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Activation functions are explained in further details in the section 2.1.1 on the next
page. The activations of the input features of the sample x(in) can be vectorized
as:

a(in) =


a
(in)
0

a
(in)
1
...

a
(in)
m

 =


1

x
(in)
1
...

x
(in)
m

 (2.3)

The dimension of a(in) is 1× (m+ 1) where m+ 1 is the number of features plus
the bias unit. The net inputs of the hidden layer is shown as:

z(h) = a(in)W (h) (2.4)

a(h) = φ(z(h)) (2.5)

The dimension ofW (h) is (m+1)×dwhere d is the number of units in the hidden
layer. Using matrix multiplication, the dimension of z(h) is 1× (d+ 1). For all n
data samples, the net input is:

Z(h) = A(in)W (h) (2.6)

and the activation function for all n data samples is:

A(h) = φ(Z(h)) (2.7)

The dimension ofA(in) is n× (m+ 1) and the dimension of Z(h) is n× (d+ 1).
The dimension of A(h) is n × (d + 1). Similarly, activations of output layer is
calculated using the following equations.

Z(out) = A(h)W (out) (2.8)

A(out) = φ(Z(out)) (2.9)

The dimension of W (out) is (d + 1) × t. We obtain the matrix Z(out) with
dimension n× t and t is the number of output units.

5



2.1.1 Activation functions

Activation functions are used in ANNs to introduce non-linearity into the network
that enables the network to learn the complex patterns in the data. Some activation
functions are used in the hidden layers like ReLU while other activation functions
are usually used in the output layer. The output layer can have activation functions
such as Sigmoid for binary classification, Softmax for multilclass classification or
no activation in case of regression.

Logistic function

Logistic function is a special case of a Sigmoid function. The equation of the
Logistic function is shown in Equation 2.10. Net input could theoretically have
values from negative to positive infinity. According to Goodfellow et al. [2016],
“One way to solve this problem is to use the logistic sigmoid function to squash
the output of the linear function into the interval (0, 1) and interpret that value as
a probability”. Here, logistic function maps the range of the net input into values
between 0 and 1 that represent probabilities.

φlogistic(z) =
1

1 + e−z
(2.10)

Hyperbolic Tangent (Tanh) function

Tanh function, as shown in equation 2.11, is similar to the above mentioned Lo-
gistic function but it returns a value between −1 and 1. According to Raschka
and Mirjalili [2019], “The Tanh function is just a rescaled version of the logistic
sigmoid function”. Figure 2.2 on the facing page shows the difference between
Logistic and Tanh function.

φtanh(z) =
sinh(z)

cosh(z)
=
ez − e−z

ez + e−z
(2.11)

According to Goodfellow et al. [2016], using Sigmoid output units is to ensure
that there is always a strong gradient. The mathematical reasoning behind usage of
Sigmoid activation is explained in further details in chapter 6 in Goodfellow et al.
[2016]. The point is to represent the probability distribution over a binary variable
(equation 2.12).

ŷ = P (y = 1|x) (2.12)

A sigmoid output unit is given as

ŷ = φSigmoid(z) (2.13)

6



Figure 2.2: Logistic and hyperbolic tangent activation functions.

Softmax activation function

While Logistic function is used for binary classifications, Softmax function is a
generalization of Logistic function that is used for multiclass classifications. Soft-
max is usually in the output layer to give probability distribution over C number
of classes. Consider an input vector with C classes, Softmax value is the exponent
of each input divided by the sum of the exponents of all the inputs in the vector
(Equation 2.14).

φSoftmax(zi) =
ezi

C∑
c=1

ezc
for i = 1 . . . C (2.14)

Equation 2.15 provides predictions ŷ using Softmax which is simply a generaliza-
tion of Equation 2.12.

ŷi = P (y = i|x) (2.15)

7



Rectified Linear Unit (ReLU) activation function

ReLU activation function is a ramp function that linearly outputs the input directly
if it is positive, otherwise, it outputs zero as shown in equation 2.16.

φReLU (z) = max(0, z) (2.16)

In practice, ReLU activation function have shown to train better than sigmoid ac-
tivation functions. That is because ReLU can handle vanishing gradient problem.
Vanishing gradient is an interesting and a challenging problem in training neural
networks. Taking the Logistic function, the derivative of activation with respect to
the net input vanishes as net input increases in magnitude (positive or negative) as
shown in Figure 2.3 on the facing page. This makes the weights updates to become
very slow. On the other hand, ReLU activation has a constant derivative of 1 when
the net input is greater than 1.

Leaky ReLU

Leaky ReLU is a variant of ReLU. While ReLU outputs zero for all net inputs that
are zero or negative, Leaky ReLU has a small negative slope (e.g. 0.01) as shown
in Equation 2.17. Figure 2.4 on page 10 shows the difference between ReLU and
Leaky ReLU.

φLeakyReLU (z) = max(0.01× z, z) (2.17)

2.1.2 Loss functions

For classification tasks, Softmax and Sigmoid activations, as explained in Section
2.1.1 on page 6, are used in the output layer to convert the net input z into a rep-
resentation of probability. Without having Sigmoid or Softmax activations in the
output layer, the model will only compute the logits. The main concept behind
loss function is to calculate the errors between the predictions and the ground truth
which is minimized using gradient optimization. There are various loss functions
to be used depending on the task at hand.

Binary Cross Entropy is used for binary classifications. For one sample, Binary
Cross Entropy is given by Equation 2.18 as:

BCE = −(ys log(ps) + (1− ys) log(1− ps)) (2.18)

where ys is the ground truth label binary value (0 or 1) and ps is predicted proba-
bility of that class in sample s.

8



Figure 2.3: Logistic and ReLU activation functions and their derivations. Notice

that derivative of the Logistic function approaches zero as the activation increases

while the derivative of ReLU is constant as the net input is more than zero.
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Figure 2.4: ReLu and Leaky ReLU activation functions.

For multilcass classfications, Categorical Cross Entropy loss is used which is given
by Equation 2.19 for C classes. Categorical Cross Entropy loss is the negative log
of the Softmax output (Equation 2.14) for the true label ys and is given for number
of classes C as:

CCE = −
C∑
c=1

ys,c log(ps,c) (2.19)

Here, ps,c is the predicted probability of the class c Softmax output probability for
the sample s and class c. In other words, Categorical Cross Entropy is the sum of
the separate loss for each class.

In this thesis, we will only use Categorical Cross Entropy loss function for training
our models.

2.1.3 Optimizers

In order to obtain the weights that minimize the above mentioned loss function,
one needs an optimization algorithm called gradient descent1. Figure 2.5 shows a

1Pseudocodes of the explained algorithms are shown in details in chapter 8 in Goodfellow et al.

[2016]
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Figure 2.5: Weight updates through gradient descent steps until the minimum of

the loss function J(w) is reached.
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Figure 2.6: The local minimum shows significant low value but it is not be truly

global minimum. A right choice of learning rate (yellow arrows) lead to the

global minimum while red arrows learning rate lead to sub-optimal local mini-

mum. (Modified after CC by Zhang et al. [2020])

graphical overview of how the optimizer works in general. The weights are updated
in each step as:

wt+1 := wt −∆wt (2.20)

where wt+1 and wt are the old and updated weights respectively. The ∆wt is
given as:

∆wt = η∇J(wt) (2.21)

where ∇J(wt) is the gradient of the loss function and η is the learning rate. A
large learning rate would lead to divergence from the global minimum and a small
learning rate would lead to slow convergence and might get stuck in a non-optimal
local minimum as explaind in Figure 2.6. In practice, it requires a lot of experi-
mentation to find the learning rate that leads to the best solution.

There are three variants of gradient descent optimizer: batch gradient, Stochastic
Gradient Descent (SGD) and mini batch gradient. These variants differ in how
much data is included to compute the gradient. Batch gradient descent uses the
entire dataset to compute one update which is impractical in terms of memory and
speed specially when dealing with large datasets. On the other hand, SGD performs

12



Figure 2.7: Loss function curve using SGD algorithm with respect to number of

batches. Notice the oscillations in the curve. (CC by Wikipedia [2020b])

the updates for every training sample of the dataset. SGD is much faster than
batch gradient descent but it can highly fluctuate until it reaches global minimum.
Minibatch gradient descent performs the updates using a batch of several training
samples at a time which reduces the fluctuations that accompany with SGD and
enables for more stable solution.

Momentum

Information from previous updates can be used to accumulate momentum [Polyak,
1964] which is used to accelerate the gradient descent. For example, if the loss
has been decreased in a particular direction, an exponentially decaying moving
average of past gradients is accumulated using the momentum term that continues
to move in that direction even if the loss increases again. The momentum helps
to keep moving in the direction that decreases the loss. This allows to reduce the
fluctuations of the gradient descent, as shown in figure 2.8, by adding an additional
term to equation 2.21 as in the following:

∆wt+1 = α∆wt + η∇J(wt) (2.22)

where α is the momentum factor (typically 0.9).

However, using only the accumulated momentum is still unsatisfactory as the opti-

13



Figure 2.8: Contour lines depict a quadratic loss function. Yellow line shows the

trajectory of the optimizer to the minimum of the contour for SGD with out mo-

mentum at left figure and with momentum at right figure. The momentum reduces

the oscillations of SGD algorithm (CC by Zhang et al. [2020])

mizer moves blindly following the slope. A better version of momentum is needed
that can slow down the optimizer before the loss increases again.

Nesterov Momentum

Sutskever et al. [2013] introduced a variant of the previously mentioned momen-
tum in section 2.1.3 following Nesterov’s accelerated gradient by Nesterov [1983].
Equation 2.22 shows that a momentum term is added in order to accumulate past
gradients in the calculations. Here, the calculation of weight updates α∆wt gives
an approximation of the next position of the weights wt+1. We look ahead by
calculating the gradient with respect to the approximate future position of the pa-
rameters. Equation 2.22 is updated as:

∆wt+1 = α∆wt − η∇J(wt − α∆wt) (2.23)

Nesterov Momentum can be seen as a correction to the original momentum [Polyak,
1964]. Nesterov Momentum first makes a jump in the direction of the previous
accumulated gradient and measures the gradient. Then, it makes a correction to
prevent the optimizer from going too fast. Until now, the momentum performs an
update for all parameters at once using the same learning rate η.

Adagrad

Adagrad [Duchi et al., 2011] adapts the learning rate based on the variation rate of
the parameters. The parameters with the largest partial derivative of the loss have a
rapid decrease in their learning rate, while parameters with small partial derivatives
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have a relatively small decrease in their learning rate. In order to do this, Equation
can be rewritten as:

wt+1,p = wt,p −
η

Gt,pp + ε
∇̇J(wt,p) (2.24)

where ∆wt+1,p is the new update for the parameter p. Adagrad modifies the
learning rate η at each time for every parameter wp based on the past gradients that
have been computed for that parameter. Gt,pp is a diagonal matrix where each
diagonal element pp is the sum of the squares of the gradients with respect to the
parameter wp up to time step t and ε is a small smoothing term to avoid division
by zero.

RMSProp

The main weakness of Adagrad is its accumulation of the squared gradients in
the denominator which causes the learning rate to diminish monotonically. The
RMSProp is an unpublished algorithm proposed by Geoffrey Hinton and Swersky
[2012] as a modification to Adagrad to fix this weakness. Instead of storing pre-
vious squared gradients, RMSProp divides the learning rate by an exponentially
decaying average of past squared gradients. Exponentially decaying average are
used to discard history from the extreme past. The average E(∇J(wt)

2)) at time
step t is given as:

E(J(wt)
2) = γE(∇J(wt−1)2) + (1− γ)∇J(wt)

2 (2.25)

where γ is similar to the momentum term (typically 0.9). Equation .2.24 can be
rewritten as:

wt+1 = wt −
η

E(∇J(wt)2) + ε
∇̇J(wt) (2.26)

Adam

Adam [Kingma and Ba, 2017] is another adaptive learning rate optimization algo-
rithm. Adam can be seen as a combination of RMSProp and momentum. Adam
keeps exponentially decaying moving average of both past squared gradients (smt)
and past gradients (mt). The exponentially decaying average of past gradients is
given as:

mt = β1mt−1 + (1− β1)∇J(wt) (2.27)
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and the exponentially decaying average of past squared gradients is given as:

smt = β2smt−1 + (1− β2)∇J(wt)
2 (2.28)

smt andmt are initialized as vectors of zeros, the authors Kingma and Ba [2017]
observe that the vectors are biased towards zero, especially during the initial time
steps. This can be corrected by:

m̂t =
mt

1− βt1
(2.29)

ˆsmt =
smt

1− βt2
(2.30)

The authors Kingma and Ba [2017] propose default values of 0.9 for β1 and 0.999
for β2. Similar to RMSProp, the weights are updated as:

wt+1 = wt −
η√

ˆsmt + ε
m̂t (2.31)

2.1.4 Backpropgation of errors

Backpropagtion [Rumelhart et al., 1986] is a widely used algorithm to train neural
networks. From forward propagation, we can get the output layer activation by
rewriting Equation 2.4 and Equation 2.5 as:

z(out) = a(h)W (out) (2.32)

a(out) = φ(z(out)) (2.33)

where z(out), a(out) and W (out) are the net input, activation, weights of the
output layer while a(h) is the activation of the hidden layer. Similarly, forward
propagation of the hidden layer is given as:

z(h) = a(in)W (h) (2.34)

a(h) = φ(z(h)) (2.35)

Backpropagation of multi-layer perception with one hidden layer can be summa-
rized in the following steps:
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Calculation of error term for output layer: this is the straightforward difference
between the true label the activation of the output layer and this error is given
as:

δ(out) = a(out) − y (2.36)

where y is the true labels vector.

Calculation of error term for hidden layer: this can be given as:

δh = δout(W (out))T � ∂φ(z(h))

∂z(h)
(2.37)

where ∂φ(z(h))

∂z(h) is the derivative of the Sigmoid activation 2 and it can be
given as:

∂φ(z(h))

∂z(h)
= a(h) � (1− a(h)) (2.38)

where� represent element-wise multiplication. So, the error of hidden layer
is:

δh = δout(W (out))T � (a(h) � (1− a(h))) (2.39)

Derivation of the loss function: after we obtain the error terms for output and
hidden layers, the derivative of the loss function with respect to the parame-
ters are given for sample i and node j as:

∂J(W )

∂w
(out)
i,j

= a
(h)
j δ

(out)
i (2.40)

∂J(W )

∂w
(h)
i,j

= a
(in)
j δ

(h)
i (2.41)

and for all the data samples as:

∆(out) = (A(h))Tδ(out) (2.42)

∆(h) = (A(in))Tδ(h) (2.43)

2derivative of Sigmoid activation is explained in details in chapter 12 in Raschka and Mirjalili

[2019]
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Figure 2.9: Single hidden layer RNN. The units h represent the the hidden units

at different time steps while x and o represent the items in the input sequence and

the output at different time steps respectively. Notice that the weights associated

with the recurrent edge is Whh (Modified after CC by Wikipedia [2020a])

Finally after we compute the gradients, we can update the weights in the
general form as:

W (l) := W (l) − η∆(l) (2.44)

where l is the layer.

2.2 Deep Neural Networks

Deep Neural Networks (DNNs) are types of ANNs which have more than one
hidden layers. There are various architectures of neural networks. The main ar-
chitecture that is used to process text and sequence data is the Recurrent Neural
Network or RNNs (Rumelhart et al. [1986]).

RNNs are suitable to process text data because it can leverage the order of the items
in the sequence. In other words, RNNs can be seen as having memory to the items
in the sequence. In RNNs, the hidden layer, as shown in Figure 2.9, receives its
input from both the input layer of the current time step x(t) and the hidden layer
from the previous time step h(t−1). The flow of information in adjacent time steps
in the hidden layer allows the network to have a memory of past events. This flow
of information is usually displayed as a loop, also known as a recurrent edge which
can be unfolded as explained in Figure 2.9.

RNNs can be categorized based on the type of recurrence connection. The recur-
rence can be within the hidden units or within the outputs units or from the previous
output unit to the current hidden unit. Hidden-to-hidden recurrence is when the re-
currence connections is from the previous hidden unit to the current hidden unit
as shown in Figure 2.10. The weights associated with hidden-to-hidden is denoted
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Figure 2.10: Different types of recurrences (Modified after CC by Wikipedia

[2020a])

as Whh. Output-to-hidden recurrence is when the recurrence connections is from
the previous output unit to the current hidden unit. The weights associated with
such recurrence is Woh. Output-to-output recurrence is when the recurrence con-
nections is from the previous output unit to the current output unit. The weights
associated with such recurrence isWoo.

There are different types of RNNs. The choice of suitable architecture depends on
the task that the network is used for (figure 2.11).

• Many-to-many architecture: is used when the input and the output are se-
quences. This can be synchronised or asynchronised. An example of the
synchronised architecture is video frame by frame classification while the
asynchronised architecture is text translation where the input has to be en-
tirely input before translation.
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Figure 2.11: Different types of RNNs

• One-to-many architecture: is used when the input is a scalar and the output
is a sequence. An example of the applications that use this architecture is
image captioning.

• Many-to-one architecture: is used when the input is a sequence and the out-
put is scalar. An example of applications of this architecture is sentiment
analysis such as classification of a sequence whether it is a positive or nega-
tive sentiment.

Forward Propagating RNN

In figure 2.9, there are three weight matrices. The matrix Wxh is the weights
between the input x(t) and the hidden layer h(t). Whh is the weights matrix
associated with the recurrent edge. The matrix W ho is the weights between the
hidden layer and output layer. Using those weights, the net input z(t)h is calculated
using Equation 2.45 as:

z
(t)
h = Wxhx

(t) +Whhh
(t−1) + bh (2.45)

where bh is the bias vector for the hidden units. Taking the net input, the activations
of the hidden units at time step t is given as:

h(t) = φh
(
z
(t)
h

)
= φh

(
Wxhx

(t) +Whhh
(t−1) + bh

)
(2.46)

h(t) = φh

(
[Wxh;Whh]

[
x(t)

h(t−1)

]
+ bh

)
(2.47)
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and the activation of the output units is given as:

o(t) = φo
(
Whoh

(t) + bo
)

(2.48)

Backward Propagating RNNs

Essentially in RNNs, the loss function doesn’t only depend on the neurons that par-
ticipated in the calculation of the output but also on contribution of these neurons
far back in time. So, errors are to be backpropagated all the way back through time
to these neurons. The full derivation of the backpropagation through time is ex-
plained in details in Werbos [1990]. The loss function is dependent on the hidden
units at all time steps (1 : t) and is given as in Equation 2.49 as:

L =
T∑
t=1

L(t) (2.49)

The derivative of the loss function will be:

∂L(t)

∂Whh
=
∂L(t)

∂ot
× ∂o(t)

∂ht
×

(
t∑

k=1

∂h(t)

∂h(k)
× ∂h(k)

∂Whh

)
(2.50)

where k refers to the different time steps.

∂h(t)

∂h(k)
=

t∏
i=k+1

∂h(i)

∂h(i−1)
(2.51)

In Equation 2.51, the term ∂h(i)

∂h(i−1) is multiplied t − k times (Figure 2.12). This
means multiplication of the weight Whh by itself t − k times which would result
in vanishing gradient if Whh is less than 1 and exploding if Whh is greater than
1 (Pascanu et al. [2013]). Several techniques are used to tackle the vanishing and
exploding gradient problem such as Long Short-Term Memory, gradient clipping
and truncated backpropagation through time (TBPTT). Using gradient clipping, a
threshold for the gradients is specified and values that exceed that threshold value
are cut off. TBPTT limits the number of time steps that the signal can backprop-
agate after each forward pass to the most recent time steps. In this thesis, we will
only use LSTM that will be discussed in the next section in details.

Long Short Term Memory

Long Short Term Memory or LSTM is a special architecture of RNN and was
introduced by Hochreiter and Schmidhuber [1997] and further developed by Gers
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Figure 2.12: Vanishing and exploding gradient

et al. [1999]. LSTM is used to capture long term dependencies using gates to delete
and add information from earlier states. These gates are shown in Figure 2.13 and
they are as follows:

Forget gate : is a sigmoid function, as expressed in Equation 2.52, that takes in the
output of the previous layer and the current layer input. It yields an output
value between 0 and 1 where 1 means to “keep” and 0 means “delete”.

ft = σ(Wxfx
(t) +Whfh

(t−1) + bf ) (2.52)

whereWxf and bf are the weights and bias between the input data at time t
and the forget gate. Whf is the weights matrix between the hidden unit and
the forget gate. h(t−1) is the hidden layer at time t − 1. x(t) is the input
data at time step t.

Input gate and candidate creation has two parts. The first part, as expressed in
Equation 2.53, defines the input gate and is a sigmoid that decides what will
be updated.

it = σ(Wxix
(t) +Whih

(t−1) + bi) (2.53)

where Wxi and bi are the weights and bias between the input data at time t
and the input gate. Whi is the weights matrix between the hidden unit and
the input gate.

The second part, as expressed in equation 2.54, is a tanh activation layer
that outputs the candidate values that will be added to the new state.

C̃t = tanh (Wxcx
(t) +Whch

(t−1) + bc) (2.54)
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where Wxc and bc are the weights and bias between the input data at time
t and the candidate value. Whc is the weights matrix between the hidden
unit and the candidate value. This is followed by combination of the three
equations 2.52, 2.53 and 2.54 from the input and forget gates to produce the
cell state C(t) at time t as expressed in equation 2.55

C(t) = C(t−1) � ft ⊕ (it � C̃t) (2.55)

Output gate contains two steps. The first step is a sigmoid activation as expressed
in equation 2.56.

ot = σ(Wxox
(t) +Whoh

(t−1) + bo) (2.56)

where Wxo and bo are the weights and bias between the input data at time
t and the output gate. Who are the weights between the hidden unit and the
output gate. The second step, as expressed in equation 2.57, is a tanh of
the output of the second gate multiplied by the output of the first step in the
output gate. The weights used in those equations are the cell memory.

h(t) = ot � tanh (C(t)) (2.57)

An extension of LSTM was developed by Schuster and Paliwal [1997] by having
bidirectional LSTMs or BiLSTM. In BiLSTM, one is responsible for the forward
states (from start to end) and the other is responsible for backward states (reverse
direction). This network can improve the model performance taking into account
the dependence of previous sequence units on the future sequence units. Generally,
LSTM can be seen as a way to encode the input sequence into hidden states. LSTM
does not give importance or attention to some of the input sequence that are more
relevant to the context compared to other words while modeling.

2.3 Embeddings

In order to extract features from words, words have to be encoded. One way to en-
code words is by one-hot-encoding [Harris and Harris, 1990], but this method will
produce a sparse matrix that that has implications in training: the feature learning
process will suffer from the curse of dimensionality [Raschka and Mirjalili, 2019].
A more compact way is to convert words into vectors through word embedding
by using floats vector instead of sparse matrix. Representing words as vectors is
usually what is used to capture the relative meaning of words though their vectors
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Figure 2.13: LSTM cell architecture. Forget gate (f) determines how much infor-

mation to delete from the memory. Input gate (i) determines how much informa-

tion (C̃) to store. Output gate (o) determines what to output. The yellow circles

represent element-wise operation (product, sum). Modified after CC by Zhang

et al. [2020]

representation. This means that words with similar meaning have similar represen-
tations. By clustering the words using the cosine similarity3, one can find a relative
meaning of the words. This embeddings matrix is used as input layer for the neu-
ral network. Several algorithms have been developed in this area like Word2Vec
[Mikolov et al., 2013] and GloVe [Pennington et al., 2014].

Word2Vec uses a neural network to learn these representations. The intuition be-
hind Word2Vec is based on the assumption that the word is related to its surround-
ing text. So, a certain word can be trained by a classifier with goal to predict the
context of the that word. Word2Vec has two approaches: Continuous Bag-Of-
Words (CBOW) and Skip-Gram (SG). CBOW approach predicts the word based
on the context while SG approach predicts the context based on the word. For SG,
Negative sampling method usually is used such as Skip-gram Negative Sampling
(SGNS) where pairs of negative and positive samples are built and the objective
is to maximize the predictions of the pairs that appear together and minimize the
predictions of pairs that do not appear together. For example, if we take one word
and use the above mentioned one-to-many network to predict the context from the

3Cosine similarity is a similarity measure between two vectors or the cosine of the angle between

the two vectors. For vectors A and B, cosine similarity is given as A·B
||A||·||B|| where ||A|| and ||B||

are normalization of the vectors A and B
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word. Once the training is complete, there will be an updated set of weights which
represent the embedding of that word. One important observation in Word2Vec is
that it does not take into account the frequency of co-occurrence of words.

On the other hand, GloVe takes these co-occurrence or frequencies into account
which can provide more information. The GloVe algorithm is trained to aggregate
word to word co-occurrence statistics in a corpus. It uses matrix factorization tech-
nique form linear algebra to measure term frequency to represent the co-occurrence
matrix. Given a corpus that have nwords, the co-occurrence matrix will be an n×n
matrix where the matrix is populated with how many times word have co-occurred
with other words where the vector of the word can be inferred from the context
information. The authors Pennington et al. [2014], proposed to learn the ratios of
these co-occurrence probabilities. Taking two words, the dot product of two vectors
equals the log of number of times the two words will occur near each other. The
authors Pennington et al. [2014] explained an example: if the P (solid|ice) is large
and P (solid|steam) is small, the ratio of P (solid|ice)/P (solid|steam) is large.
The objective of the model, given a certain word, is to maximize the probability
of a context to word occurrence. GloVe also makes use of CBOW and Skip-Gram
similar to Word2Vec.

In terms of context representation, a lot of research has been done in this area in
order to provide a better representation of the word within context. Better represen-
tation of the context allows for better feature extraction by the neural network and
better accuracy. One way is using Embeddings from Language Models (ELMo)
which was developed by Peters et al. [2018]. Another example of the recent ad-
vancement in this area is the Bidirectional Encoder Representations from Trans-
formers (BERT) by Devlin et al. [2019]. In this thesis, ELMo is beyond our scope.
Instead we will focus our attention on the BERT architecture which will be dis-
cussed in details in section 2.4.4. Before going deeper into the BERT architecture,
it is more beneficial to discuss the concept of attention which is the main building
block for the BERT architecture .

2.4 Attentions

The architecture was developed by Vaswani et al. [2017] which is known as “Trans-
former” and it has shown to outperform traditional gated RNNs. Current State Of
The Art NLP systems usually incorporate LSTMs with attentions. The original
attention idea was first developed by Bahdanau et al. [2016] and further improved
by Vaswani et al. [2017]. Vaswani et al. [2017] introduced the Transformer as an
encoder-decoder architecture. The encoder layers process the inputs to generate
encodings where each encoder layer passes it’s output to next layer. Those encod-
ings contain attention information about which parts of the inputs are relevant to
each other. The decoder layers take all those encodings and generate an output
sequence.
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Figure 2.14: Transformer Architecture. It consists of encoder and decoder. The

encoder starts with embedding of input token in addition to the position encoding

of the token in the sequence before feeding into self multi-head attention func-

tion. In the decoder, the output embedding along with the positional encoding go

through a self multi-head attention function and further cross multi-head attention

to quantify how relevant the input to itself and to the output. Source: CC by Zhang

et al. [2020]
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2.4.1 Scaled dot-product attention

Attention weights are calculated between every word simultaneously. The attention
unit produces embeddings for every token in the context that contain information
not only about the token itself, but also a combination of other relevant words
weighted by the attention weights.

For each attention unit, the transformer learns three weight matrices; Query weights
WQ, key weights WK and value weights WV . For each token i, the word em-
bedding xi is multiplied with each of the three weight matrices to produce a query
vector qi = xiWQ, a key vector ki = xiWK , and a value vector vi = xiWV .
The attention weight aij from token i to token j is the dot product between qi and
kj divided by the square root of the dimension dk of the key vector followed by
application of a softmax function to obtain the weights on the values. For large val-
ues of dk, the dot products grow large in magnitude, pushing the softmax function
to have small gradients. So, dot products are scaled by

√
dk to stabilize gradients

as shown in Equation 2.58. The attention function computations are done using
matrix multiplication as all the queries, keys and values are packed together in
matricesQ,K and V respectively.

Atten(Q,K, V ) = softmax(
QKT

√
dk

)V (2.58)

2.4.2 Multi-Head attention

For every word, there will be a number h of different attention matrices or atten-
tion heads (Atten(QWQ,KWK , V W V )). In order to reduce the total compu-
tational cost of performing the attention functions, Multi-Head attention is used to
combine several different attention mechanisms to be performed in parallel. These
attention heads are concatenated and multiplied with a single weight matrix to get a
single attention head that will capture the information from all the attention heads.
The multiple outputs for the multi-head attention layer are concatenated to pass
into the feed-forward neural network layers. For h number of attention heads, the
multi-head attention is:

MultiHead(Q,K, V ) = concat(head1, head2...headh)WO (2.59)

where the head or single head of the h heads is:

headi = Atten(QWQ
i ,KW

K
i ,VW V

i ) (2.60)
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2.4.3 Transformer architecture

In the transformer architecture, the input (sources) and output (targets) sequence
are added with positional encoding before being fed into the encoder and the de-
coder. The positional information is necessary for the transformer to make use of
the order of the sequence.

Encoder

The encoder is a stack of multiple identical layers (denoted as n in Fig. 2.14). Ac-
cording to Vaswani et al. [2017], there are 6 identical layers in the network. Each
layer has two sublayers: the first is a multi-head self-attention and the second is a
position-wise feed-forward network. In the self-attention sublayer, queries, keys,
and values are all from the the outputs of the previous encoder layer. Each sub-
layer adopts a residual connection, similar to ResNet neural architecture design
by He et al. [2015], and a layer normalization [Ba et al., 2016]. As a result, the
transformer encoder outputs a vector representation for each position of the in-
put sequence. According to Vaswani et al. [2017], the dimension of the output is
512.

Layer normalization [Ba et al., 2016] normalizes the activations along the feature
direction instead of the mini-batch direction as in batch normalization [Ioffe and
Szegedy, 2015]. Layer normalization is more suitable in sequence data task whose
inputs are often with different length. Layer Normalization normalizes each feature
to zero mean and unit variance.

Decoder

The decoder is also a stack of multiple identical layers (6 identical layers) with
residual connections and layer normalizations sublayers. Besides the two sub-
layers described in the encoder, the decoder has an extra sublayer, known as the
encoder-decoder attention, between the encoder and the decoder. In the encoder-
decoder attention, queries are from the outputs of the previous decoder layer, and
the keys and values are from the encoder outputs. In the decoder self-attention,
queries, keys, and values are all from the the outputs of the previous decoder layer.
However, each position in the decoder is allowed to only attend to all positions in
the decoder up to that position. This masked attention preserves the auto-regressive
property, ensuring that the prediction only depends on those output tokens that have
been generated. The last decoder is followed by a final linear transformation and
Softmax layer to produce the output probabilities over the vocabulary.

2.4.4 Bidirectional Encoder Representations from Transformers

Bidirectional Encoder Representations from Transformers or BERT [Devlin et al.,
2019] makes use of the above mentioned transformer architecture. As explained
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Figure 2.15: Embeddings of the BERT input are sum of the token embeddings,

segment embeddings, and positional embeddings. Source: Zhang et al. [2020]

in 2.4, transformer model consists of encoder and decoder. BERT is a pre-trained
language model, so, only the encoder is needed here. BERT is designed as a bidi-
rectional model that is trained on the BookCorpus dataset [Zhu et al., 2015] and
Wikipedia. The network effectively captures information from both right and left
context of the token.

BERT has two main architecture; BERT-BASE and BERT-LARGE. BERT-BASE
consists of 12 encoder layers while BERT-LARGE consists of 24 encoder layers
compared to 6 layers in the original architecture by Vaswani et al. [2017] that was
discussed earlier in section 2.4.3. Both BERT-BASE and BERT-LARGE also have
larger feedforward-networks with 768 and 1024 hidden units, respectively, and 12
and 16 attention heads respectively. BERT-BASE contains 110M parameters while
BERT-LARGE has 340M parameters. This model takes [CLS] token as input first,
then it is followed by a sequence of words as input. Here [CLS] is a classification
token. Then, it passes the input to the above layers. Each encoder layer applies
self-attention, passes the result through a feedforward network after then it hands
off to the next encoder. The model outputs hidden states with size 768 for BERT-
BASE compared to 512 in the original architecture by Vaswani et al. [2017] that
was discussed earlier in section 2.4.3.

In order to represent an input sequence (see Fig .2.15), input embeddings is a com-
bination of three different embeddings. The first is position embedding which is
used to express the position of words in a sentence to capture the order of the
sequence. The second is segment embedding which is used by the model to distin-
guish between the sentences. The third embedding is the token embeddings for the
specific token from the word piece token vocabulary.

29



In terms of tokenization, all BERT models support a huge list of vocabulary de-
pending on the data that the model is pretrained on. The BERT tokenizer is used
to convert each word into a unique number. In practice, BERT uses wordpiece to-
kenizer [Wu et al., 2016] which breaks the word into word pieces and those word
pieces are tokenized accordingly. For example, ”I-Macroaggregated Albumin”
is broken to (“i”, “-”, “mac”, “##roa”, “##gg”, “##re”, “##gated”, “album” and
“##in”) using UMLSBERT pretrained tokenizer by [Michalopoulos et al., 2021].
In this context, BERT provides two ways of tokenization; BERT cased and BERT
uncased. In BERT cased, the text remains the same with no changes as it is tok-
enized while in BERT uncased, the text is lowercased before wordpiece tokeniza-
tion.

Input representations are used to compute the loss function for pretraining BERT.
The loss function is a linear combination of both the loss functions for the two
following training steps; masked language modeling and next sentence predic-
tion.

Masked Language Modeling (MLM)

Instead of trying to predict the next word in the sequence, we replace the word with
[MASK] and MLM predicts the missing word from within the sequence itself.
The model is trained in such a way that it should be able to predict the missing
word. 15% of tokens will be selected and masked randomly. However, the masked
words were not always replaced by the masked tokens [MASK]. So, the researchers
proposed the following technique; 80% of the time the words were replaced with
the masked token [MASK]. 10% of the time the words were replaced with another
random words and ask the model to predict the correct word. 10% of the time
the words were left unchanged. This technique help to add noise that encourages
BERT to be less biased towards the masked word.

Next Sentence Prediction

This training step aims to model the logical relationship between sentence pairs
based on the assumption that the random sentence will be disconnected from the
first sentence. BERT considers next sentence prediction as a binary classification
task in the pretraining. When generating sentence pairs for pretraining, 50% of the
time they are consecutive sentences while for the other 50% of the time the second
sentence is randomly sampled from the corpus.

BERT for feature extraction

BERT can be used for token classification or Named Entity Recognition (NER). In
NER, the system receives a text sequence and is required to extract and classify the
various types of entities in the text. Using BERT, a NER model can be trained by
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feeding the output encodings of each token into a classification layer that predicts
the NER label. In this setting, BERT is used to create contextualized word embed-
dings that are fed to your existing model such as LSTM model in order to be used
for NER tasks. According to Devlin et al. [2019], concatenation of the encodings
of the last four layers gives the best results.

Biological BERT

Variety of BERT models are trained on domain specific biomedical texts such
as BioBERT [Lee et al., 2019], SciBERT [Beltagy et al., 2019], UMLSBERT
[Michalopoulos et al., 2021] and CODER [Yuan et al., 2020].

BioBERT: was developed by [Lee et al., 2019] and it has the same architecture as
BERT-BASE and BERT-LARGE and is initialized using pre-trained weights
from BERT [Devlin et al., 2019]. Earlier version of BioBERT was based
on BERT-BASE and BERT vocabulary while Latest version of BioBERT is
based on BERT-LARGE with a new costumed 30K vocabulary. The authors
Lee et al. [2019] released several versions of this model based on how many
training steps are used in the pretraining. As explained earlier, the BERT
model is trained on BookCorpus dataset [Zhu et al., 2015] and Wikipedia.
BioBERT is trained further on the biomedical corpora; PubMed abstracts
4 and PMC full-text articles 5. The authors Lee et al. [2019] showed that
BioBERT outperformed BERT on several biomedical named entity recogni-
tion benchmark datasets such as NCBI disease corpus [Dogan et al., 2014]
and BC5CDR [Li et al., 2016].

SciBERT: is another interesting pretrained model that was developed by Belt-
agy et al. [2019]. SciBERT uses a randomly 1.14M papers from Semantic
Scholar corpus [Lo et al., 2020] and with vocabulary size of 30K subwords.
82% of the chosen papers are from the biomedical domain. Four versions of
SciBERT were released based on the BERT-BASE version with and without
casing and whether the model used the BERT weights of BERT as initial
weights or was trained from scratch with a customized scientific vocabulary.

UMLSBERT: was developed by [Michalopoulos et al., 2021]. UMLSBERT up-
dates the MLM procedure from the original BERT model [Wu et al., 2016] to
consider the associations between the words specified in the UMLS Metathe-
saurus. This is done by introducing a semantic type embeddings that add
further encodings to the input text. In other words, UMLSBERT adds a
new embedding besides the token, segment and positional embeddings that
are explained earlier in Section 2.4.4 and Fig .2.15. The aim behind this
method is to learn the semantic grouping of the input words. The authors

4https://pubmed.ncbi.nlm.nih.gov/
5https://www.ncbi.nlm.nih.gov/pmc/
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Michalopoulos et al. [2021] gave an example that if the word “lungs” is re-
placed with [MASK], BERT model will predict “lungs” while UMLSBERT
will predict “lungs” and “pulmonary” as the two words belong to the same
Concept Unique Identifer (CUI) in the UMLS Metathesaurus. UMLSBERT
uses 33792 additional parameters that represent the number of unique UMLS
semantic types; 44 multiplied by transformer’s hidden dimension 768. The
authors Michalopoulos et al. [2021] made changes to the loss function to
adopt this multi-label words from the same concept instead of single-label
word in the original BERT [Wu et al., 2016].

CODER: is short for contrastive learning on knowledge graphs for cross-lingual
medical term reprensentation [Yuan et al., 2020]. CODER is another BERT-
based model which uses UMLS in the pre-training with aims to increase
similarity between words from the same CUI.

CODER does this using multi-similarity loss [Wang et al., 2020]. Given an-
chor, positive and negative term from UMLS where positive belongs to the
same semantic group as the anchor while negative does not belong to that
semantic group. CODER learns term representations by maximizing simi-
larity between the anchor and the positive term and reducing the similarity
between the anchor and the negative term. The multi-similarity loss is given
as:

MS =
1

2k

2k∑
i=1

(log(1 +
∑

j∈Pi
exp(−α(Sij − λ)))

α

+
log(1 +

∑
j∈Ni

exp(−β(Sij − λ))

β
)

(2.61)

where α, β, λ are hyper-parameters. Pi and Ni are positive and negative
classes for the anchor term i. Sij is the cosine similarity between the terms
i and j. The first term in Equation 2.61 is to maximize the similarity be-
tween the anchor and the positive term while the second term is to ensure the
negative term to have as low as possible similarity with the anchor.

According to the authors of CODER [Yuan et al., 2020], the model achieved
superior results on the medical term normalization6 datasets such as Cadec
[Karimi et al., 2015] and PsyTar [Zolnoori et al., 2019].

6Normalization is mapping between medical terms to standardized medical vocabularies
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Chapter 3

Data and Materials

The data used in this thesis is the MedMentions data by Mohan and Li [2019]. The
data contains 4, 392 abstracts from medical articles with mentions or entities that
are linked to the Unified Medical Language System (UMLS). The main objective
of releasing this data is to encourage research in named entity recognition and
entity linking.

3.1 Raw Data

The MedMentions corpus was annotated manually using the data processing tool
text GATE1 (version 8.2). All mentions are mapped to the Unified Medical Lan-
guage Systems (UMLS) metathesaurus2 (2017AA release) that was developed by
Bodenreider [2004]. The 2017AA release of UMLS metathesaurus contains ap-
proximately 3.2 million concepts. Each mention from the dataset has a Concept
Unique Identifier (CUI). In the UMLS metathesaurus, each CUI maps to a cer-
tain concept and its aliases. Each concept is also linked to one or more Semantic
Types (STY). The metathesaurus contains 127 Semantic Types. Each Semantic
Type or STY also has a Type Unique Identifier or TUI in short. For example, in
the article with the id “25847295”, the mention “apoptosis” is mapped to the CUI
“C0162638” in UMLS which represents “Apoptotic Process” and also is mapped
to the TUI “T043” which represents the STY “Cell Function”.

According to Mohan and Li [2019], the precision of the annotations is estimated
to be 97.3% by two biologists who didn’t participate in the annotation task. The
authors Mohan and Li [2019] provided a subset of the full data that is known as
“ST21pv” with only 21 Semantic Types. The difference between the full data and

1https://gate.ac.uk/
2https://www.nlm.nih.gov/research/umls
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“ST21pv” subset is shown in table 3.1 with basic statistics about the data. The
data is subdivided into train, validation and test sets according to the article ID.
The table 3.2 show the basic statistics about the train test split. A very important
observation in the split is that not all concepts in the test data are covered in the
train nor validation data which introduces the main challenge to work with this
data.

Table 3.1: Basic data statistics

Full ST21pv
Documents 4392 4392

Mentions (Entities) 352496 203282

Unique Concepts 34724 25419

Tokens 1176058 1176058

Proportion of Mentions 49.3% 31.2%

Unique Semantic Types 127 21

Table 3.2: Train, test and validation subset of the data (Source: Mohan and Li

[2019])

Train Val Test
documents 2635 878 879

Mentions 12224 40884 40157

Unique Concepts 18520 8643 8457

Number of concepts overlap with train − 4984 4867

Proportion of concepts overlap with train − 57.7% 57.5%

Number of concepts overlap with train and val − − 5217

Proportion of concepts overlap with train and val − − 61.7%

3.1.1 Formatting Raw Data

In order to avoid errors in formatting the raw data for this thesis, we used the
formatted data that has been already built by Nejadgholi et al. [2020]. The data
was annotated by Nejadgholi et al. [2020] according to IOB2 annotation scheme
which is short for Inside, Outside and Beginning of mentions. For the named entity
chunks, annotation ”O” represents for tokens outside chunk. The annotation ”B”
is the beginning of a chunk while the annotation ”I” is inside the chunk. Also,
the annotation ”B” is given for a single chunk entity. An example sentence of
formatted data is shown in table 3.3.
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Table 3.3: Example of the built data (Source: Nejadgholi et al. [2020])

Word Ground Truth Label
Novel O

insights O

into O

the O

molecular O

mechanism O

of O

sperm-egg B-biologic-function

fusion I-biologic-function

via O

IZUMO1 B-chemical

3.1.2 Baseline

The authors Mohan and Li [2019] provided a baseline for the subset ST21pv to
develop CUI linking systems. But our target is to do STY linking. So, the baseline
for our study is the current State Of The Art (SOTA) model and was developed by
Fraser et al. [2019] for STY linking. The baseline model metrics are 0.640, 0.630
and 0.650 for F1, Precision and Recall metrics respectively.
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Chapter 4

Methods

All the methods and results are described in details in a series of notebooks in the
GitHub repository https://github.com/mhmdrdwn/thesis.

4.1 Resources

We use the Kaggle kernel1 for our computations. The Kaggle kernel provides Tesla
P100 GPU with 16 GB of VRAM, two cores of Intel Xeon CPU and TPU v3-8. The
used software are shown in the table 4.1 with the version of each software.

Table 4.1: Used Software

Software Version
Python 3.7.9

Numpy 1.19.5

Scikit-Learn 0.24.1

Tensorflow 2.4.1

Transformers 4.2.2

Sentence Transformers 1.1.0

Seqeval 1.2.2

Faiss 1.5.3

1https://www.kaggle.com/

37

https://github.com/mhmdrdwn/thesis
https://www.kaggle.com/


4.2 Evaluation Metrics

We record F1, Precision, Recall scores [Powers, 2008] to evaluate and optimize
the models. Precision measures the number of positive class predictions (TP) that
actually belong to the positive class:

P =
TP

TP + FP
(4.1)

On the other hand, Recall is the number of positive class predictions of all positive
samples:

R =
TP

TP + FN
(4.2)

F1 combines both Precision and Recall in a balanced measure as:

F1 =
2× P ×R
P +R

(4.3)

We use both the strict and token-level measures of F1, Precision and Recall. The
strict measure is widely used for Named Entity Recognition tasks and that is what is
required to be measured following the MedMentions paper [Mohan and Li, 2019].
In terms of strict measures, We use Seqeval package [Nakayama, 2018] that only
quantifies True Positive (TP) if the whole entity is predicted correctly. This means
that partially predicted entities do not count as TP as explained by the example
in Table. 4.2. In Table 4.2, prediction 1 is counted as one TP with strict while
prediction 2 is two TP because the word “fusion” is mistakenly predicted as “O” in
prediction 1. On the other hand, prediction 1 is counted as two TP while prediction
2 is counted as three TP in in token-level measure. F1, Precision and Recall scores
can be measured as arithmetic mean of all the measured F1, Precision and Recall
scores for each class or macro measure where each class is given equal weight
(macro measure). Weighted average F1, Precision and Recall scores can also be
measured as arithmetic mean of all the measured F1, Precision and Recall scores
for each class weighted by the number of support of that class. Micro-averaged
F1, Precision and Recall are calculated using the total TP by looking at all the
samples together. For example, micro Precision counts the total number of TP
and FP in the entire data before calculating the measure. For macro Precision,
TP and FP are counted and the measure is calculated for each class before taking
arithmetic mean. If the data is balanced, macro and micro measures will show
identical results.

4.3 Proposed Workflow

The methodology of this thesis involves two stages: Mention classification and En-
tity Linking (EL). In mention classification, we use Four BiLSTMs with CODER
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Table 4.2: Strict measures versus token-level measure

Word Ground Truth Prediction 1 Prediction 2
Novel O O O

insights O O O

into O O O

the O O O

molecular O O O

mechanism O O O

of O O O

sperm-egg B-biologic-function B-biologic-function B-biologic-function

fusion I-biologic-function O I-biologic-function

via O O O

IZUMO1 B-chemical B-chemical B-chemical

[Yuan et al., 2020], SciBERT [Beltagy et al., 2019], UMLSBERT [Michalopoulos
et al., 2021] and BioBERT [Lee et al., 2019] as the feature encoder. Entity Linking
(EL) or Mention Linking2 involves two phases: Mention Detection and Mention
Disambiguation. Mention Detection is the process of recognition the mentions of
interest from the free text while Mention Disambiguation is the process of search-
ing for an exact or similar concept in the knowledge base. The knowledge base we
used in this thesis is the UMLS metathesaurus (see 3.1). A schematic workflow of
the methods is shown in Figure 4.1.

4.3.1 Mention Detection

In this step, we formulate the problem as classification task where we want to tell
whether that the token is an a part of entity or not. In order to do that, we use the
original labels of the data to build new labels as shown in Table 4.3 where all the
labels are transformed into three labels (“B-Entity”, “I-Entity”, “O”).

Features Encoding

We used the CODER [Yuan et al., 2020], SciBERT [Beltagy et al., 2019] models
for features encoding during the modeling process. In order to use the CODER
model, we add token [CLS] and [SEP] at the start and end of each sentence respec-
tively. This is the way that the model has been trained, and it expects the input
data to be in this way in order to know where is the start and end of each sentence.

2We use the word “Mention” to represent “Entity” as it is more appropriate for the task at hand.
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Figure 4.1: Used Workflow for the optimal model. STY represents Semantic Types

The special tokens [CLS] and [SEP] are labeled with the label “O”. In order to
encode the tokens, we use the CODER and SciBERT pretrained tokenizers. BERT
tokenizer encode words is by breaking the word into several sub-words or word
pieces (Wu et al. [2016]) and assign a unique number for each sub-word. The main
challenge in this task is to preserve the labels against the sub-words. Following the
article (Wu et al. [2016]), we use only the label of the first word piece. We assign
the label “O” for subsequent word pieces. In the same time, we make a mask for
those subsequent word pieces to avoid training on them.

Another argument to preserve the labels of the word pieces is to consider the word
pieces as parts of the IOB2 annotation. In other words, we consider the first word
piece as “B-Entity” and the rest subsequent word pieces as “I-Entity”. In practice,
we notice no difference in performance between assigning “O” or “I-Entity” to the
subsequent word pieces. Another less efficient way that can be used to preserve the
labels is to repeat the label for each word piece. However, this could be problematic
in measuring the performance of the models as one “B-Entity” of the original word
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Table 4.3: Entity detection labels

Word Original Label Detection Label
[CLS] O O

Novel O O

insights O O

into O O

the O O

molecular O O

mechanism O O

of O O

sperm-egg B-biologic-function B-Entity

fusion I-biologic-function I-Entity

via O O

IZUMO1 B-chemical B-Entity

[SEP] O O

is broken into several “B-Entity” that increases the number of TP. Taking only the
label of the first word piece is helpful in the calculation of evaluation metrics since
we do not increase the number of support labels for each class which means that
the evaluation metrics will be more realistic.

Padding

Taking into account that the different BERT models have different vocabularies,
they will breaks words in different manners. Hence, the maximum length of se-
quences will be different for each BERT model. The maximum length of all sen-
tences depends on how the used BERT tokenizes the words. In CODER, maximum
length is 302 while maximum length using SciBERT is 293. We add padding to
each of the sentences with zeros at the end in order to make all sentences of the
same length. We build attention masks in order for the model to avoid training on
the padded values. This is done by making an array of the same size of the sen-
tences array where the padded values correspond to zeros and the other non padded
values correspond to ones. The label we assign for the padded values are the “O”
label.

Labels Encoding

We build a Python dictionary for the labels and convert each of the labels to the
corresponding numbers. The dictionary has three labels. We convert those labels
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to a one-hot-encoded (Harris and Harris [1990]) matrix where the label index is
removed and a binary value, either 0 or 1, is inserted instead. This means that the
labels vector for each training sequence is converted to s× 3 matrix where s is the
length of the sequence and 3 is number of labels.

Building The Network

We use the Keras functional API to build the network. The network is shown in
table 4.4. The data inputs are the input IDs and the masks which are the sen-
tences and the padding masks after applying tokeniztion and padding which have
the length 302. The CODER model outputs the 13 hidden states and each hidden
state can be considered as an embeddings matrix of the batch sentences. Devlin
et al. [2019] recommended using concatenation of last four layer of the 13 layers.
In our implementations, we take the average of the last four hidden states. This is
done in the addition and scaling steps and the results of those step is an embed-
ding vector of the size 768. Those embeddings are then feed into 128 BiLSTM
units followed by another 128 LSTM unit before feeding into a Time Distributed
layer with 128 units. The output layer is a Dense layer which is a regular fully
connected neural network layer with the number of labels and softmax activation.
The number of labels is set to three. The loss function is categorical cross entropy.
We freeze the BERT model pretrained parameters. This leads to only 1, 132, 547
trainable parameters.

In Table 4.4, the LSTM layer where we set it to return sequence which means that
it is generating a sequence of outputs. This means that the output of LSTM contain
sequential information in it. This sequence is fed to a Time Distributed layer which
is a Dense layer3 used to process each of these sequential outputs one at a time by
applying the same Dense on the sequential outputs by slicing the sequence in the
time dimension and iterating through it.

Cross Validation

The validation split is set to 10000 samples and the model is evaluated with differ-
ent validation sets three times. This is done manually by slicing the dataset where
the first validation set is the first 10000 samples and the rest of samples are training
set. The training and validation token-level F1, precision and recall are measured
during the training and are shown in order to optimize the hyperparameters.

Hyperparameter Optimization

Because of the large size of model and the data, we use manual grid search of hy-
perparameters until we find the best combination. We pick the learning rates from
logarithmic scales before we expand the search into a finer scale. The learning rates

3Fully Connected Layer
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Table 4.4: Mention Detection Network

Output Shape Parameters Connected to
Input IDs 302 0 −
Input Mask 302 0 −
CODER 13 109,482,240 Input IDs

Input Mask

Addition 768 0 CODER[10]

CODER[11]

CODER[12]

CODER[13]

Scaling 768 0 Addition

BiLSTM 256 918,528 Scaling

LSTM 128 197,120 BiLSTM

Time Distributed 128 16,512 LSTM

Output Layer 3 387 Time Distributed

Total Parameters − 110,614,787 −
Trainable − 1,132,547 −
Non-trainable − 109,482,240 −

we use in the grid search are (0.0001, 0.0005, 0.0008, 0.001, 0.002, 0.005, 0.01).
We use different combination of number of LSTM units (64, 128, 256), batch sizes
(32, 64) and optimizers (Adam, RMSProp).

Decoding Sequence IDs

In practice, it is not possible to recover the exact original sentences by decoding
the sequence IDs. Although, we can decode a version that are as close as possible
to the original sentences. we use the Transformers package to recover the word
pieces from the IDs by detokenizing them using the the used BERT tokenizer.
Then, we take those word pieces that contain ## in the beginning and merge them
with previous word pieces in the same sentence. The label of the merged word is
considered as the predicted and ground truth label of the first word piece.

4.3.2 Mention Classification

Similarly to section 4.3.1, we use the same model in the table 4.4 with changing the
labels and number of labels. The number of labels in this model is 43. This is 21
STY labels transformed to IOB2 annotation scheme plus the “O” label. Similarly,
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this model is trained under TPU environment and we record the token-level F1,
Precision and Recall and duration of the training.

In this task, we use the CODER [Yuan et al., 2020], SciBERT [Beltagy et al.,
2019], UMLSBERT [Michalopoulos et al., 2021] and BioBERT [Lee et al., 2019]
pretrained models for feature encoding.

4.3.3 Mention Disambiguation

In this step, we aim to boost the performance of the BiLSTM models in section
4.3.2 by using the UMLS knowledge base to search for nearest neighbours for the
detected mentions that are extracted using the methods in section 4.3.1. This step
has two substeps: Candidate Generation and Candidate Ranking. Candidate Gen-
eration aims to reduce the size of the search space for each mention and Candidate
Ranking aims to get the nearest neighbours from each set of candidates for each
mention. Candidate Generation can be done surface string similarity. However,
we notice that searching for similar medical terms in knowledge base is difficult
using surface string similarity. For example, using simstring (Okazaki and Tsujii
[2010]) similarity algorithm, following Loureiro and Jorge [2020] and Kaewphan
et al. [2018], to search the top 100 approximate nearest neighbours for the men-
tion “Lifting Fatigue Failure Tool” does not include candidates that belong to the
correct Semantic Type (STY) label. So, we skip the candidate generation step.
Another reason for us to skip the Candidate Generation step is that it aims to re-
duce the space of concepts aliases to save computation cost of generating embed-
dings and nearest neighbour search. Searching the top 100 approximate nearest
neighbours for each extracted mentions yields approximately two millions unique
aliases which are not big reduction from the original 2.5 millions aliases in the
knowledge base. Furthermore, we use the sentence transformers package [Reimers
and Gurevych, 2019] to generate the embeddings of all the aliases which takes ap-
proximately 30 minutes to save all embeddings of all the knowledge base aliases
under GPU environment.

Nearest Neighbour

In this step, we use the Sentence Transformers package [Reimers and Gurevych,
2019] to extract embeddings of all the aliases in the UMLS knowledge base. Also,
we extract embeddings of extracted mentions, or query mentions, that we predict
from section 4.3.1 and their sentences (or context). We sum the embeddings of the
context and the query mention using weighted embeddings sum (0.7 of mentions
embeddigs + 0.3 of the context embeddings). For the sentence transformers, we
use the CODER as encoder. We normalize the extracted embeddings for both the
query mentions and knowledge base aliases. We use the Faiss package [Johnson
et al., 2017] to search top nearest neighbours using the cosine similarity measure.
We aim from this step to extract the neighbours that share the correct STY class
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with the query mentions. We use the UMLS knowledge base STY of the nearest
neighbour as the predicted label of the query mention.

The embedding vectors of all the aliases in the UMLS knowledge base are stored
as Numpy arrays on disk and loaded in batches into the Faiss search index. Each
vector is identified by an integer using the Faiss package. The similarity search
is done usually using Euclidean distance (L2) or dot product. If the vectors are
normalized, the dot product equals cosine similarity. In our search, we set number
of expected labels to be 21 which represents number of the STY classes.

4.3.4 Ensemble of Predictions

Loureiro and Jorge [2020] and Mohan et al. [2021] used a Cosine Similarity thresh-
old to make a balance between the BiLSTM and the nearest neighbour search. This
is based on the idea that if nearest neighbour with high Cosine Similarity is more
accurate in prediction than BiLSTM. In our methods, we use Cosine Similarity
threshold and plurality voting.

We use Cosine Similarity threshold and plurality voting in order to merge the pre-
dictions of the models. Before applying Cosine Similarity threshold, we use the
two highest performed BiLSTM models and take the label which has the highest
Softmax probability. In Cosine Similarity threshold, we try several choices from
0.89 to 0.97 on the portion of the train data (first 3000 samples) and we take the
optimal choice and apply it on the test data.

In plurality voting, we use the five model predictions which are the retrieved near-
est neighbour STY for each detected mention as explained in Section 4.3.3 and
four BiLSTM models with different encoders in Section 4.3.2. We take the most
common STY predictions of the five models as the final prediction.

45



46



Chapter 5

Results

This chapter will review our observations and results but the analysis will be cov-
ered in chapter 6. The results of the Mention Detection will be shown in section
5.1. The results of the Mention Classification will be covered in Section 5.2 on the
following page. The results of the Mention Disambiguation task will be shown in
Section 5.3 on page 55. The results of combined model will be shown in Section
5.4 on page 55. A final summarized comparison between our models is shown in
Section 5.5 on page 57. Classification reports for all the models in this chapter are
shown in Appendix A.

5.1 Mention Detection

In this task, we predict 3 labels which are “B-Entity”, “I-Entity” and “O”. In
the training and validation curves, we exclude the “O” tags by using mask in the
metrics calculations. This means that we only measure the token-level evaluation
metrics of “B-Entity” and “I-Entity”.

Token-level F1, Precision, Recall metrics for the BiLSTM model using CODER
as feature encoder are shown in Figure 5.1. From these figures, we notice that all
the validation data usually shows relatively better F1, Precision and Recall scores
than training data at the first 12 epochs of training. For example, validation data
at the second epoch shows higher F1, precision and recall scores by approximate
margins of 0.03, 0.04 and 0.05 than the scores of the training data respectively. We
notice that validation data measured metrics stop increasing after epoch number
12 while training data measured metrics continue to increase slightly. The optimal
number of epochs to train the full model on the entire train data is 12. We notice
that training curves highly overlap even with the different training dataset and the
initial randomness of the weights while the validation curves change slightly for
each KFolds. Using 30 epochs, Each KFold takes approximately 20 minutes. This
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means that training time is approximately 60 minutes for the three KFolds under
TPU environments1.

In terms of strict measures, we predict only one label which is “Entity” and which
is “O”. Hence, the recorded strict micro, macro and weighted scores are identical.
Using strict measures on test data, the achieved F1, Precision and Recall scores
are 0.703, 0.711 and 0.695 respectively. We record these strict metrics on a small
portion of train data (first 3000 samples of the train data). We do not measure
the strict metrics for the model on the entire train data because merging train data
word pieces in an expensive that takes approximately four and half hours for each
model. Using the strict measures on the portion of the train data, the achieved F1,
Precision and Recall scores are 0.764, 0.757, 0.770 respectively.

The recorded time for training the model over the full data (training and validation
data) is approximately 50 seconds for each epoch under TPU environment. This
means that the entire training process on the full training data takes approximately
11 minutes for the 12 epochs. We noticed a considerable implication of using word
pieces in the training is the duration needed to decode the original words from
those word pieces. The duration required to merge all word pieces in the test data
is approximately 80 minutes while the time required to merge the word pieces in
the portion of the train data is approximately 27 minutes.

Similarly, We record the metrics of the BiLSTM with SciBERT as feature encoder.
We notice similar results to what is achieved using CODER as feature encoder.
The strict F1, Precision and Recall for using the BiLSTM with SciBERT as feature
encoder on the test data are 0.701, 0.694 and 0.708 respectively. By combining
both BiLSTM models using the label with highest Softmax probability, we record
0.713, 0.717 and 0.709 for F1, Precision and Recall respectively.

5.2 Mention Classification

In this task, we predict 43 labels. These labels contain the 21 Semantic Types
(STYs) that are annotated according to the IOB2 scheme (21 ∗ 2 plus the “O”
tag).

5.2.1 Mention Classification using BiLSTM with CODER as feature
encoder

The training and validation curves for F1, Precision, Recall metrics are as shown
in the Figure 5.2. From the figures, we notice that all the validation data usually
shows relatively better F1, Precision and Recall scores than training data across
the first 16, 10, 18 epochs of training respectively. For example, validation data

1The recorded duration might change according to the availability of the TPU resources.
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(a) F1

(b) Precision

(c) Recall

Figure 5.1: Mention detection training and validation metrics curves for the BiL-

STM model with CODER as feature encoder for three KFolds
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at the second epoch shows higher F1, Precision and Recall scores by approximate
margins of 0.15, 0.15 and 0.20 than the scores of the training data. We notice that
validation data measured metrics stop changing after epoch number 12 while train-
ing data measured metrics continue to increase. The maximum recorded token-
level F1, Precision and Recall measures are 0.63, 0.68, 0.61 respectively. We use
the optimal number of epochs as 28 where the model show highest F1 measure
to train the full model on the entire train data. We notice that training curves
highly overlap even with the different training set and the initial randomness of the
weights while the validation curves change very slightly for each KFolds. Using
30 epochs, the three KFolds training time is approximately 61 minutes under TPU
environments.

Using test data, the recorded strict micro, macro and weighted F1 are 0.610, 0.563
and 0.605 respectively. The recorded micro, macro and weighted precision scores
are 0.605, 0.567 and 0.599 respectively. The recorded micro, macro and weighted
recall scores are 0.615, 0.569 and 0.615 respectively. In general, weighted and
micro metrics show close values while macro metrics are lower by a margins of
approximately 0.047, 0.038 and 0.046 for F1, Precision and Recall scores re-
spectively. Additionally, we record the evaluation metrics of a portion the train
data. The overall recorded micro, macro, weighted F1 using the portion of the
train data are 0.739, 0.736 and 0.738 respectively. The overall recorded micro,
macro, weighted precision are 0.727, 0.730 and 0.727 respectively. Finally, the
overall recorded micro, macro, weighted recall are 0.751, 0.747 and 0.751 respec-
tively.

The recorded time for training the model over the full data (training and valida-
tion data) is 50 seconds for each epoch under TPU environment. This means that
the entire training process on the full data for 28 epochs takes approximately 23
minutes.

Similar to Mention Detection, the duration required to merge all word pieces in the
test data is approximately 80 minutes while the time required to merge the word
pieces in the portion of the train data is approximately 27 minutes.

5.2.2 Mention Classification using BiLSTM with SciBERT as feature
encoder

Figure 5.3 shows the training and validation curves for F1, Precision, Recall met-
rics. Similar to our observations in Section 5.2.1, we notice that all the validation
data usually shows relatively better F1, Precision and Recall scores than training
data across the first 17, 10, 20 epochs of training respectively before the training
metrics increase. We notice that validation data measured metrics are not changing
after epoch number 14 while training data measured metrics continue to increase.
The maximum recorded F1, Precision and Recall measures are approximately 0.61,
0.68, 0.58 respectively. We use optimal number of epochs as 28 to train the full
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(a) F1

(b) Precision

(c) Recall

Figure 5.2: Mention classification training and validation metrics curves for the

BiLSTM model with CODER as feature encoder for three KFolds
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model on the entire train data. The training curves highly overlap even with the dif-
ferent training set across the KFolds and the initial randomness of the weights and
the validation curves are showing similar results. In comparison to the measured
metrics for BiLSTM with CODER as feature encoder, using CODER has slightly
better performance than using SciBERT.

Using test data, the recorded strict micro, macro and weighted F1 are 0.599, 0.555
and 0.595 respectively. The recorded micro, macro and weighted precision scores
are 0.589, 0.556 and 0.584 respectively. The recorded micro, macro and weighted
recall scores are 0.609, 0.564 and 0.609 respectively. Additionally, the overall
recorded micro, macro, weighted F1 using the portion of the train data are 0.709,
0.697 and 0.707 respectively. The overall recorded micro, macro, weighted preci-
sion are 0.696, 0.694 and 0.696 respectively. Finally, the overall recorded micro,
macro, weighted recall are 0.722, 0.706 and 0.722 respectively.

5.2.3 Mention Classification using BiLSTM with UMLSBERT as fea-
ture encoder

In general, the model measured metrics show worse performance than using CODER
or SciBERT as feature encoder. We notice that the validation F1, Precision and
Recall stop increasing after the epoch 16 at approximately 0.54, 0.60, and 0.48
respectively. Figure 5.4 shows the training and validation curves for F1, Precision,
Recall metrics. Similar to our observations in Section 5.2.1, we notice that all the
validation data usually shows relatively better F1, Precision and Recall scores than
training data for the first 20, 18, 24 epochs. We use the optimal number of epochs
as 28 to train the full model on the entire train data. Similar to previous observa-
tions in Section 5.2.1, the training curves highly overlap while validation metrics
change slightly for the different KFolds.

Using test data, the recorded strict micro, macro and weighted F1 are 0.525, 0.473
and 0.519 respectively. The recorded micro, macro and weighted precision scores
are 0.534, 0.487 and 0.530 respectively. The recorded micro, macro and weighted
recall scores are 0.516, 0.473 and 0.516 respectively. Using the portion of the train
data, the overall recorded micro, macro, weighted F1 are 0.638, 0.600 and 0.635
respectively. The overall recorded micro, macro, weighted precision are 0.650,
0.617 and 0.651 respectively. The overall recorded micro, macro, weighted recall
are 0.626, 0.594 and 0.626 respectively.

5.2.4 Mention Classification using BiLSTM with BioBERT as feature
encoder

The measured metrics show sub-optimal performance than using CODER or SciB-
ERT as feature encoder. We notice that the validation F1, Precision and Recall
stop increasing after the epoch 16 at approximately 0.58, 0.63, and 0.54 respec-
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(a) F1

(b) Precision

(c) Recall

Figure 5.3: Mention classification training and validation metrics curves for the

BiLSTM model with SciBERT as feature encoder for three KFolds.
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(a) F1

(b) Precision

(c) Recall

Figure 5.4: Mention classification training and validation metrics curves for the

BiLSTM model with UMLSBERT as feature encoder for three KFolds.
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tively. Figure 5.5 shows the training and validation curves for F1, Precision, Recall
metrics. We notice that all the validation data usually shows relatively better F1,
Precision and Recall scores than training data for the first 16, 12, 18 epochs. The
training curves highly overlap while validation metrics change slightly for the dif-
ferent KFolds.

Using test data, the recorded strict micro, macro and weighted F1 are 0.563, 0.506
and 0.557 respectively. The recorded micro, macro and weighted precision scores
are 0.558, 0.511 and 0.551 respectively. The recorded micro, macro and weighted
recall scores are 0.568, 0.511 and 0.568 respectively. Using the portion of the train
data, the overall recorded micro, macro, weighted F1 are 0.700, 0.685 and 0.698
respectively. The overall recorded micro, macro, weighted precision are 0.691,
0.682 and 0.693 respectively. Finally, the overall recorded micro, macro, weighted
recall are 0.710, 0.699 and 0.710 respectively.

5.3 Mention Disambiguation

Searching for nearest neighbour for each recognized mention in UMLS knowledge
base provides poor results compared to the BiLSTM models results in Section 5.2.
Using test data, the recorded strict micro, macro and weighted F1 are 0.482, 0.463
and 0.485 respectively. The recorded micro, macro and weighted precision scores
are 0.475, 0.473 and 0.485 respectively. The recorded micro, macro and weighted
recall scores are 0.489, 0.467 and 0.489 respectively.

Similarly, we report the evaluation metrics on the same portion of train data (first
3000 samples). The achieved micro, macro, weighted F1 are 0.534, 0.508 and
0.538 respectively. The overall recorded micro, macro, weighted precision are
0.525, 0.507 and 0.537 respectively. Finally, The overall recorded micro, macro,
weighted recall are 0.543, 0.515 and 0.543 respectively.

5.4 Ensembles

Figure 5.6 shows the choices of Cosine Similarity thresholds vs the recorded eval-
uation metrics on the protion of the train data. In Figure 5.6, we notice that optimal
threshold is 0.948. By using cosine similarity threshold of 0.948, the achieved mi-
cro F1, Precision and Recall scores are 0.629, 0.628 and 0.631 respectively.

Using plurality voting of the five models, we record 0.626, 0.628 and 0.624 for
micro strict F1, Precision and Recall scores respectively.
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(a) F1

(b) Precision

(c) Recall

Figure 5.5: Mention classification training and validation metrics curves for the

BiLSTM model with BioBERT as feature encoder for three KFolds
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Figure 5.6: Evaluation metrics vs different Cosine Similarity thresholds on the

portion of the train data.

5.5 Summary

The following table 5.1 summarizes the achieved results from the all the models
we use in this study. Using Cosine Similarity threshold, we notice improvement
in the overall metrics of the ensemble model over the best performing BiLSTM
model models from 0.610, 0.605 and 0.615 to 0.629, 0.628 and 0.631 for micro
F1, Precision and Recall scores respectively.

Table 5.2 shows the running time for each step in the pipeline. The most time
consuming task is merging the word pieces which takes approxiamtely 103 minutes
for merging the entire test data and the portion of the train data.
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Table 5.1: Results achieved by the different BiLSTM models, nearest neighbour

search in UMLS knowledge base and the ensemble model on test data

Micro Macro Weighted

F1 0.610 0.563 0.605

BiLSTM + CODER Precision 0.605 0.567 0.599

recall 0.615 0.569 0.615

F1 0.599 0.555 0.595

BiLSTM + SciBERT Precision 0.589 0.556 0.584

recall 0.609 0.564 0.609

F1 0.525 0.473 0.519

BiLSTM + UMLSBERT Precision 0.534 0.487 0.530

recall 0.516 0.473 0.516

F1 0.563 0.506 0.557

BiLSTM + BioBERT Precision 0.558 0.511 0.551

recall 0.568 0.511 0.568

F1 0.481 0.462 0.484

Nearest Neighbour precision 0.474 0.472 0.485

recall 0.488 0.465 0.488

F1 0.626 0.586 0.620

Plurality Voting precision 0.628 0.606 0.622

recall 0.624 0.580 0.624

F1 0.629 0.593 0.624

Similarity Threshold precision 0.628 0.606 0.622

recall 0.631 0.592 0.631
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Table 5.2: Run times in minutes for of different steps of the pipeline

Accelerator Run Time

Mention Cross Validation TPU 60

Detection Optimal Model TPU 11

Merge Word Pieces CPU 103

Mention Cross Validation TPU 60

Classification Optimal Model TPU 23

Merge Word Pieces CPU 103

Build Embeddings GPU 30

Nearest Neighbour GPU 60
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Chapter 6

Discussion

For all the measured metrics, we noticed that validation metrics usually saturate at
a certain value. This has been noticed in the SOTA results by Fraser et al. [2019].
According to the authors of the MedMentions [Mohan and Li, 2019, Mohan et al.,
2021], “we attribute the low performance of SOTA models on MedMentions to its
low resource nature”. This means that the training data has low coverage of the
concepts as explained earlier in Section 3.1.

We noticed that the recorded strict metrics for the portion of the train data is rela-
tively higher than the recorded strict metrics for test data. The reason for that is the
small size of this portion which is not a real representation of the entire train data.
However, we still use it as we try different implementation of ensembles in order
to have methods that show a generalization on train and test data.

6.1 Mention Detection

We reported in Section 5.1 from the curves that validation data shows better evalu-
ation metrics than training data at the first epochs of training for the two BiLSTM
models. We have two possible explanation for that. First is the small size of the
validation data which is only 10000 samples of the train data which might has ef-
fect on the number of mis-classifications. Second reason is that the validation data
are less challenging to be predicted correctly compared to the train data. In other
words, in the first epochs the model already captured the patterns that made it pre-
dicted the validation data correctly. The validation data measured metrics stopped
improving after epoch 13 while train data measured metrics continued to improve
as the model is overfitting the train data.

We noticed that training curves for the three different KFold as almost identical
which gave an indication of the robustness of the model and the ability to repro-
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duce the results easily. Models from the different KFolds show difference between
validation curves in the first few epochs but they overlapped later as the model
continue in training.

The overall measured strict metrics for F1, Precision and Recall are 0.703, 0.711
and 0.695 respectively. This result is identical to the highest achieved results that
was done by Loureiro and Jorge [2020] for mention detection which used SciBERT
Beltagy et al. [2019] as a feature encoder. Our models achieved comparable re-
sults and the last combined model achieved higher results than Loureiro and Jorge
[2020] mention detection system by very small margins of 0.007 and 0.017 for F1
and Precision respectively. Since the labels are updated in the combined model,
the mentions need to re-merge according to the new labels which is time consum-
ing task given that the marginal increases in the metrics are not large. So, we still
use that BiLSTM + CODER mention for the Mention Disambiguation. However,
we believe this is still poor results and has implications on the nearest neighbour
search. This is because of the propagation of error through the pipeline as we de-
tect not accurate mentions that makes the nearest neighbour search more prone to
errors.

Table 6.1: Results comparison between the achieved metrics from Medlinker men-

tion detection by Loureiro and Jorge [2020]. Metrics in bold show the highest

achieved in each metric.

Micro F1 Micro Precision Micro Recall

Exact match [Loureiro and

Jorge, 2020]

0.401 0.513 0.330

BiLSTM + NCBIBERT

[Loureiro and Jorge, 2020]

0.694 0.694 0.694

BiLSTM + SciBERT [Loureiro

and Jorge, 2020]

0.706 0.694 0.718

BiLSTM + BioBERT [Loureiro

and Jorge, 2020]

0.702 0.700 0.704

Our model BiLSTM + SciBERT 0.701 0.694 0.708

Our model BiLSTM + CODER 0.703 0.711 0.695

Our Ensemble Model 0.713 0.717 0.709

We noticed that difference in performances between using SciBERT [Beltagy et al.,
2019] and CODER [Yuan et al., 2020] as feature encoder is very small. This obser-
vation is similar to what have been reported by Loureiro and Jorge [2020] where
the difference between the metrics of the various encoders is very small as shown
in Table 6.1. For example, the recorded strict F1 using BioBERT [Lee et al., 2019]
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and SciBERT [Beltagy et al., 2019] are 0.694 and 0.706 respectively.

6.2 Mention Classification

Similar to Mention Detection, we reported in Section 5.2 from the curves that
validation data shows better evaluation metrics than training data at the first 12
epochs of training for the different models that is attributed to the small size for the
validation data compared to the train data.

We noticed that BiLSTM with CODER as feature encoder achieved the optimal
results compared to the other models. This means that CODER provides rela-
tively better representation for the concepts in the data which support the claims
of Yuan et al. [2020] that CODER could provide better concept embeddings than
BioBERT [Lee et al., 2019] and SciBERT [Beltagy et al., 2019]. However, this is
subject to our implementation of the methods. This means that slight changes in
the implementation of the methods might show that other models such as BioBERT
[Lee et al., 2019] and SciBERT [Beltagy et al., 2019] provide better representa-
tion. Loureiro and Jorge [2020] showed that SciBERT [Beltagy et al., 2019] is the
optimal model for feature encoding while [Fraser et al., 2019] showed that a con-
catenation of the last layers of both BERT [Devlin et al., 2019] and BioBERT [Lee
et al., 2019] provide the optimal model for feature encoding.

6.3 Mention Disambiguation

We noticed relatively poor results for Mention Disambiguation using nearest neigh-
bour search. We compared our results with the MedLinker system [Loureiro and
Jorge, 2020] nearest neighbour results and we noticed a significant difference. Our
measured strict F1 on test data is 0.482 while the MedLinker achieved 0.588.
Our measured strict Precision on test data is 0.463 while the MedLinker achieved
0.531. Finally, our measured strict Recall on test data is 0.485 while the MedLinker
achieved 0.659. We found these observations interesting taking into account that
we recorded similar results to Loureiro and Jorge [2020] for mention detection
which means there are still a room for development for our implementation of
nearest neighbour search.

The poor results of nearest neighbour search might be attributed to two reasons.
First reason is related to the complexity of data itself in which the used method
of combining the sentence and mention embeddings was not helpful in the search.
Second reason is related to the entity detection itself as it showed F1 score 0.703
which affected the nearest neighbour search as the errors propagated through the
pipeline. One possible solution is by using other pretrained models such as SciB-
ERT and BioBERT which could be able to achieve higher results.
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6.4 Comparison with other studies

We noticed that combining nearest neighbour search predictions with the differ-
ent BiLSTM models predictions has increased the overall measured metrics. This
increase has been recorded in train and test data which means that our implemen-
tation of the ensemble is robust. The table 6.2 summarizes the achieved metrics
for our model vs several other models from related studies. The State Of The Art
(SOTA) is achieved by Fraser et al. [2019]. Our model is still behind the SOTA
model by a F1 margin of 0.011. that is attributed of having lower Recall that the
other studies.

Table 6.2: Results comparison between the achieved metrics from different stud-

ies. Results in bold show the highest achieved for each metric. Note that exact

match, QuickUMLS and ScispaCy measured metrics are reported by Loureiro and

Jorge [2020].

Micro F1 Micro Precision Micro Recall

Exact match [Loureiro and

Jorge, 2020]

0.387 0.490 0.32

QuickUMLS [Soldaini, 2016] 0.156 0.145 0.169

ScispaCy [Neumann et al.,

2019]

0.154 0.101 0.317

Fraser et al. [2019] 0.640 0.630 0.650
MedLinker [Loureiro and Jorge,

2020]

0.634 0.631 0.637

Our Optimal Model 0.629 0.628 0.631
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Chapter 7

Conclusions and Future Work

Despite that Named Entity Recognition and Entity Linking are relatively easy tasks
in general domains and are considered by many researchers as a solved task, the
medical domain text data still provides a challenging and interesting task to solve.
The challenges come from the ambiguity of the medical terms which can not be
easily disambiguated using traditional methods such as string surface similarity.
Our method implementations and observations lead us to a conclusion about the
complexity of the task and give us hints about what could be possible directions
we can follow for future work to build more accurate models.

The optimal model in this thesis achieved micro F1 of 0.629 which is 1.1 micro
F1 point behind the SOTA model by Fraser et al. [2019] that achieved 0.64. The
current SOTA provides a challenging baseline to outperform. We tried several
methods to achieve higher results than the baseline. We leveraged different pre-
trained models for our methods. We hope by our work to provide a good starting
point for other researchers to further develop the methods.

We noticed that combination of different BiLSTM with various BERT models as
encoder with nearest neighbour search helped to boost the performance of the
highest performed BiLSTM model. Further work and development of the imple-
mented models are still needed. Several directions can be taken in order to im-
prove the achieved results such as including other BERT models in the combined
model.

There is still room for development in our Mention Detection system that could be
able to achieve higher results than our recorded micro F1 of 0.703. With higher
predictions results from the Mention Detection, the nearest neighbour could be
helpful to improve the results of Mention Disambiguation.

Further development of the Mention Disambiguation system could also be helpful
in boosting the overall performance. Since we noticed that combination of various
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BERT models as feature encoder for BiLSTM was helpful in boosting the perfor-
mance, a combination of various BERT models could also be helpful in the nearest
neighbour search.

Until now, we use our methods to predict the STY of the mentions in the data which
are only 21 Semantic Types (STY). It will be more challenging to predict Concept
Unique Identifiers (CUI) of the entities as we have many CUI labels covered in the
data as explained earlier in Section 3.1.
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Appendix A

Table A.1: Strict evaluation metrics of the BiLSTM with CODER as feature en-

coder.

STY Precision Recall F1 Support

anatomical-structure 0.575 0.572 0.574 3768

bacterium 0.664 0.670 0.667 449

biologic-function 0.635 0.667 0.651 8102

biomedical-discipline 0.418 0.337 0.373 196

body-substance 0.603 0.679 0.639 212

body-system 0.569 0.326 0.414 89

chemical 0.712 0.774 0.741 7396

clinical-attribute 0.543 0.588 0.565 323

eukaryote 0.699 0.728 0.713 1748

finding 0.474 0.330 0.389 3209

food 0.487 0.481 0.484 322

health-care-activity 0.572 0.609 0.590 4784

injury-or-poisoning 0.559 0.694 0.576 352

intellectual-product 0.493 0.429 0.459 2364

medical-device 0.472 0.310 0.374 355

organization 0.544 0.565 0.555 383

population-group 0.674 0.673 0.674 1263

professional-group 0.576 0.739 0.647 360

research-activity 0.573 0.666 0.616 1847

spatial-concept 0.466 0.505 0.485 2406

virus 0.589 0.709 0.644 172
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Table A.2: Strict evaluation metrics of the BiLSTM with SciBERT as feature en-

coder.

STY Precision Recall F1 Support

anatomical-structure 0.536 0.573 0.554 3768

bacterium 0.602 0.670 0.634 449

biologic-function 0.620 0.662 0.641 8102

biomedical-discipline 0.526 0.362 0.429 196

body-substance 0.667 0.642 0.654 212

body-system 0.517 0.337 0.408 89

chemical 0.712 0.756 0.733 7396

clinical-attribute 0.465 0.588 0.519 323

eukaryote 0.660 0.722 0.690 1748

finding 0.463 0.320 0.379 3209

food 0.465 0.416 0.439 322

health-care-activity 0.554 0.593 0.573 4784

injury-or-poisoning 0.565 0.520 0.541 352

intellectual-product 0.468 0.453 0.461 2364

medical-device 0.482 0.341 0.399 355

organization 0.526 0.529 0.527 383

population-group 0.670 0.715 0.692 1263

professional-group 0.580 0.672 0.623 360

research-activity 0.554 0.685 0.612 1847

spatial-concept 0.467 0.497 0.481 2406

virus 0.587 0.785 0.672 172
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Table A.3: Strict evaluation metrics of the BiLSTM with UMLSBERT as feature

encoder.

STY Precision Recall F1 Support

anatomical-structure 0.500 0.447 0.472 3768

bacterium 0.496 0.470 0.483 449

biologic-function 0.560 0.583 0.571 8102

biomedical-discipline 0.370 0.224 0.279 196

body-substance 0.548 0.566 0.557 212

body-system 0.386 0.247 0.301 89

chemical 0.611 0.657 0.633 7396

clinical-attribute 0.592 0.489 0.536 323

eukaryote 0.565 0.564 0.564 1748

finding 0.478 0.256 0.334 3209

food 0.445 0.329 0.379 322

health-care-activity 0.514 0.518 0.516 4784

injury-or-poisoning 0.520 0.483 0.501 352

intellectual-product 0.404 0.353 0.377 2364

medical-device 0.229 0.273 0.249 355

organization 0.393 0.495 0.438 383

population-group 0.694 0.597 0.642 1263

professional-group 0.436 0.661 0.525 360

research-activity 0.521 0.619 0.566 1847

spatial-concept 0.454 0.386 0.417 2406

virus 0.512 0.715 0.597 172
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Table A.4: Strict evaluation metrics of the BiLSTM with BioBERT as feature en-

coder.

STY Precision Recall F1 Support

anatomical-structure 0.528 0.483 0.505 3768

bacterium 0.538 0.530 0.534 449

biologic-function 0.596 0.618 0.607 8102

biomedical-discipline 0.339 0.286 0.310 196

body-substance 0.577 0.618 0.597 212

body-system 0.431 0.281 0.340 89

chemical 0.642 0.740 0.687 7396

clinical-attribute 0.517 0.511 0.514 323

eukaryote 0.616 0.680 0.647 1748

finding 0.455 0.308 0.367 3209

food 0.513 0.360 0.423 322

health-care-activity 0.526 0.544 0.535 4784

injury-or-poisoning 0.531 0.514 0.522 352

intellectual-product 0.443 0.420 0.431 2364

medical-device 0.385 0.217 0.277 355

organization 0.437 0.518 0.474 383

population-group 0.614 0.683 0.646 1263

professional-group 0.523 0.683 0.593 360

research-activity 0.551 0.661 0.601 1847

spatial-concept 0.446 0.455 0.450 2406

virus 0.589 0.622 0.565 172
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Table A.5: Strict evaluation of nearest neighbour search.

STY Precision Recall F1 Support

anatomical-structure 0.464 0.437 0.450 3768

bacterium 0.741 0.548 0.630 449

biologic-function 0.597 0.546 0.570 8102

biomedical-discipline 0.271 0.383 0.317 196

body-substance 0.483 0.604 0.537 212

body-system 0.568 0.236 0.333 89

chemical 0.547 0.576 0.561 7396

clinical-attribute 0.239 0.285 0.260 323

eukaryote 0.456 0.593 0.515 1748

finding 0.287 0.390 0.330 3209

food 0.526 0.410 0.461 322

health-care-activity 0.418 0.428 0.461 4784

injury-or-poisoning 0.519 0.428 0.424 352

intellectual-product 0.311 0.324 0.317 2364

medical-device 0.299 0.338 0.317 355

organization 0.490 0.466 0.478 383

population-group 0.703 0.590 0.642 1263

professional-group 0.523 0.672 0.588 360

research-activity 0.493 0.534 0.513 1847

spatial-concept 0.428 0.399 0.413 2406

virus 0.572 0.576 0.574 172
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Table A.6: Strict evaluation of the plurality voting ensemble model (BiLSTM mod-

els + Nearest Neighbour).

STY Precision Recall F1 Support

anatomical-structure 0.597 0.572 0.585 3768

bacterium 0.696 0.677 0.686 449

biologic-function 0.650 0.679 0.665 8102

biomedical-discipline 0.514 0.383 0.439 196

body-substance 0.650 0.693 0.671 212

body-system 0.689 0.348 0.463 89

chemical 0.715 0.796 0.753 7396

clinical-attribute 0.625 0.594 0.610 323

eukaryote 0.697 0.743 0.719 1748

finding 0.531 0.332 0.409 3209

food 0.542 0.438 0.485 322

health-care-activity 0.589 0.606 0.597 4784

injury-or-poisoning 0.591 0.554 0.572 352

intellectual-product 0.509 0.437 0.470 2364

medical-device 0.494 0.335 0.399 456

organization 0.560 0.573 0.567 383

population-group 0.732 0.705 0.718 1263

professional-group 0.578 0.728 0.645 360

research-activity 0.590 0.679 0.631 1847

spatial-concept 0.528 0.506 0.517 2406

virus 0.641 0.808 0.715 172
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Table A.7: Strict evaluation of the Cosine Similarity threshold ensemble model

(BiLSTM models + Nearest Neighbour).

STY Precision Recall F1 Support

anatomical-structure 0.603 0.578 0.590 3768

bacterium 0.709 0.679 0.694 449

biologic-function 0.657 0.685 0.671 8102

biomedical-discipline 0.477 0.423 0.449 196

body-substance 0.642 0.703 0.671 212

body-system 0.689 0.348 0.463 89

chemical 0.714 0.796 0.753 7396

clinical-attribute 0.645 0.613 0.629 323

eukaryote 0.696 0.749 0.721 1748

finding 0.531 0.332 0.409 3209

food 0.563 0.472 0.514 322

health-care-activity 0.585 0.606 0.597 4784

injury-or-poisoning 0.602 0.568 0.585 352

intellectual-product 0.501 0.445 0.471 2364

medical-device 0.485 0.369 0.419 456

organization 0.561 0.581 0.571 383

population-group 0.736 0.713 0.724 1263

professional-group 0.583 0.742 0.653 360

research-activity 0.589 0.682 0.632 1847

spatial-concept 0.527 0.517 0.522 2406

virus 0.641 0.820 0.719 172
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