
DEMAND SYSTEMS AND FREQUENCY OF PURCHASE MODELS* 

Arnar Buason,1 Dadi Kristofersson1 and Kyrre Rickertsen2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

* The authors thank Pierre Combris and INRA, Paris for help with obtaining and 

preparing the data. The Research Council of Norway (Grant 199564) provided financial 

support for this research. 

 
1 Department of Economics, University of Iceland, Reykjavik, Iceland. Corresponding 

author is Arnar Buason arnarmar@hi.is 
2 School of Economics and Business, Norwegian University of Life Sciences, P.O. Box 

5003, 1432 Ås, Norway.  

 

mailto:arnarmar@hi.is


2 
 
 

ABSTRACT 

Understanding the frequencies of purchase and the average purchased quantities is 

important for marketing strategies such as the loss-leader pricing strategy. We develop a 

microeconomic model where the total purchases of goods are determined by demand 

systems for the frequencies of purchases and the average quantities purchased, 

conditional on positive purchase frequencies. An econometric model is developed to 

estimate the two systems by a Bayesian estimation method, which allows for an 

unrestricted covariance structure within each system. An empirical example 

demonstrates how the estimated model can be used to formulate a profitable loss-leader 

pricing strategy for fish in France. 

 

Keywords: Demand systems, fish, purchase frequencies, multivariate gamma and 

truncated Poisson log-normal distributions. 

JEL: C34, D12, M31. 

 

1. INTRODUCTION 

A widely-used marketing strategy is the loss-leader pricing strategy (e.g., Kemp, 1955; 

Hess and Gerstner, 1987; Lal and Matutes, 1994; Ellison, 2005; Chen and Rey, 2012; In 

and Wright, 2014). This strategy implies that a retailer reduces the price of a product 

below its marginal cost to attract customers to the store. In many situations, consumers 

buy multiple categories of goods and find it convenient to buy them from a single store. 

Therefore, a decrease in the price of one category may lead a customer to transfer many 

of their category purchases to this store (Thomassen et al., 2017). According to Chen 

and Rey (2012), the loss-leader strategy is mainly used by large retailers who are 
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competing with smaller retailers with a limited variety of products. In this situation, 

large retailers may find it profitable to sell some products for prices below the marginal 

costs, and other products for prices above the marginal costs.1 

Knowledge about purchase frequencies and purchased quantities can be used to 

formulate profitable loss-leader pricing strategies. For example, by reducing the price of 

a frequently-purchased product that is price elastic in the frequency of purchase, a 

retailer can attract more customers to the store. By simultaneously increasing the price 

of another product with high and positive cross-price elasticity in the frequency of 

purchase with respect to the first product, the retailer can increase profits. 

Meghir and Robin (1992) presented a model for a consumer who chooses the 

purchasing frequency as well as the purchased quantities on each purchasing occasion. 

They assumed that any zero purchases are generated from infrequency of purchases and 

would be recorded as positive purchases given a longer observation period. 

Consequently, observed purchases differ from desired purchases, so they developed a 

two-step estimator to estimate desired purchases. In the first step, frequencies of 

purchase were estimated by a generalized linear model to obtain weight parameters,2 

which were used to calculate the desired purchases. In the second step, the desired 

purchases were used to estimate the purchased quantities within a demand system. 

 
 

1 Consumer purchase frequencies have frequently been modeled by count data models such as the Poison 

and negative binomial models to estimate brand success, brand loyalty and store choice (e.g., Keng and 

Ehrenberg, 1984; Uncles et al., 1995; Bhattacharya, 1997; Uncles and Lee, 2006). Count data models 

such as the Poisson and negative binomial models have also been used to study demand issues in 
environmental economics health economics, and finance. Examples include Smith (1988), Creel and 

Loomis (1990) and Hellerstein (1991), who all used count data models in the estimation of the demand 

for recreation; Deb and Trivedi (2002), who estimated the number of doctor visits; Munkin and Trivedi 

(1999) and Wang (2003), who estimated the demand for health care; and Davutyan (1989), who estimated 

the elasticities of important factors such as bank failures. However, a demand system was not used in any 

of these applications. 
2 Generally, a Poisson or negative binomial model would be preferred for such an estimation. 
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We extend the work of Meghir and Robin (1992) in two ways. First, they did not 

derive their model from a constrained optimization problem, so we develop a theoretical 

model based on a constrained optimization problem. Our model results in a frequency 

of purchase model of the form that was used by Meghir and Robin (1992). We follow 

them and divide the consumer’s purchase decision into a decision of frequency of 

purchase and a decision of quantity to purchase conditional on the purchase frequency. 

Total purchased quantity of a good is then given as the product of the frequency of 

purchase and the average quantity purchased. The consumer’s choice variables are 

therefore how often to buy different products and how much to buy, on average, of the 

products on each occasion. In our model, homogeneity of degree zero holds for 

purchase frequencies, average quantities and total quantities. Furthermore, the 

associated matrices of substitution effects are symmetric. 

Second, Meghir and Robin (1992) focused on how to adjust for the frequency of 

purchase to obtain consistent parameter estimates in a demand system under an 

infrequency of purchase assumption.3 Their frequency of purchase model was a basic 

Poisson system. In this system, homogeneity and symmetry were not imposed, the 

problem of zero inflation was not addressed4 and the covariance structure was assumed 

to be zero. We extend their count data estimation framework by: (i) accounting for 

homogeneity and symmetry in the frequency of the purchase demand system; (ii) 

 
 

3 In applied demand analysis for disaggregative products, zero purchases represent a major problem. 

Usually, it is assumed that zero purchases either represent traditional corner solutions, infrequency of 
purchase or non-preference for a product (e.g., Wales and Woodland, 1983; Tiffin and Arnoult, 2010). To 

account for zero purchases in demand system estimation, a two-step model is usually estimated. In the 

first step, it is estimated whether a product is purchased. The results of this step are used to correct the 

estimated demand system in the second step to obtain consistent parameter estimates. However, the actual 

frequencies of purchase are not estimated. 
4 When the share of zeros in a data set significantly exceeds the amount predicted by conventional 

distributions, such as the Poisson, it is called zero inflation. 
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accounting for zero inflation by assuming a truncated data-generating process for the 

counts; and (iii) allowing for an unrestricted covariance structure within the two demand 

systems. We assume a truncated multivariate Poisson log-normal (TMPLN) distribution 

for the counts and a multivariate gamma log-normal (MGLN) distribution for the 

average quantities. To estimate these distributions, we use Bayesian estimation 

methods, specifically a random walk Metropolitan simulation algorithm. 

We provide an empirical illustration on the potential usefulness of this type of 

model. Our example uses French scanner data for purchases of fresh fish, and the 

demand system includes fresh salmon, fresh white fish and other fresh fish. Our results 

indicate that fresh salmon is a good loss-leader candidate. Large retailers who sell a 

wide variety of products, including a large selection of fresh white fish, could price 

salmon below its marginal cost and advertise it to attract customers to the store, and 

then discreetly price other products above the market price to compensate for the loss on 

salmon. Furthermore, a smaller retailer who sells only fresh salmon and white fish may 

be unable to compete with these prices and subsequently driven out of the market. 

This paper is organized as follows. In Sections 2 and 3, our theoretical and 

statistical models are developed, respectively. In Section 4, our data set and empirical 

specifications are described. In Section 5, our empirical results are presented and an 

illustrative example on how the estimated values can be used to formulate a profitable 

loss-leader pricing strategy is provided. In Section 6, we conclude. 

 

2. THEORETICAL MODEL 

We follow the specification and notation in Meghir and Robin (1992) as far as possible. 

However, we divide the decision of how much to purchase of each good 𝑥 =
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(𝑥1, 𝑥2, … , 𝑥𝑀) into two parts: the frequencies of purchase 𝑛 = (𝑛1, 𝑛2, … , 𝑛𝑀) and the 

average quantities purchased on each occasion, 𝑞 = (𝑞1, 𝑞2, … , 𝑞𝑀). By definition, the 

identity 𝑥(𝑛𝑞) ≡ 𝑛𝑖𝑞𝑖 holds for 𝑖 = 1,2, … , 𝑀.5 The consumer is assumed to obtain 

utility from the purchased goods, leisure l and frequency of purchase, and the utility 

function is specified as 𝑣(𝑥, 𝑛, 𝑙) = 𝑣(𝑛𝑞, 𝑛, 𝑙) where 𝑛𝑞 = (𝑛1𝑞1, 𝑛2𝑞2, … , 𝑛𝑀𝑞𝑀). The 

utility function is assumed to be strictly quasiconcave in n, q and l.6 

The consumer has wage income 𝑦 = 𝑤𝑘, where w is the hourly wage rate and k 

is the number of hours spent at work. The consumer may also have other types of 

income R, which we assume is exogenously given. The consumer’s budget constraint is 

𝑦 + 𝑅 = 𝑝′𝑛𝑞, where 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑀) is the price vector. The consumer has a 

constant time endowment T, which can be allocated between leisure, work and 

purchasing goods. The time spent on purchasing goods is given by the function 𝑔(𝑛), 

which is assumed to be increasing in n.7 The consumer’s time constraint is 𝑇 = 𝑙 + 𝑘 +

𝑔(𝑛). The consumer’s utility maximization problem is specified as: 

 max
𝑛,𝑞,𝑙

{𝑣(𝑥(𝑛𝑞), 𝑛, 𝑙): 𝑤𝑇 + 𝑅 = 𝑝′𝑛𝑞 + 𝑤𝑙 + 𝑤𝑔(𝑛), 𝑛 > 0, 𝑞 > 0, 𝑙 > 0}. (1) 

It follows from the first-order conditions of Equation (1) that the solution satisfies:8 

 
 

5 We assume that n is a latent variable of actual observed purchase frequencies, which can take any 

positive value, and, consequently, we can take the derivatives with respect to n. 
6 Meghir and Robin (1992) provide two arguments for positive marginal utilities in frequencies of 

purchase. First, there is a benefit in the form of saved space by having to hold smaller stocks of various 

goods. Second, freshness is important for many types of food, including fish. The costs of frequent 

purchases will be reflected as lost leisure time. 
7 The consumer may purchase many goods at each occasion, and the function 𝑔(𝑛) is increasing at a 

decreasing rate with the number of products purchased. 
8 For simplicity, corner solutions are not considered in the theoretical model. The zeros in the data are 

assumed to be generated by infrequency of purchase and non-preference. The derivation and 

interpretation of the first-order conditions of Equation (1) are given in Appendix 1. Furthermore, the wage 

rate is assumed to be equal to the opportunity cost of time, which is spent on either leisure or shopping. 
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 𝜕𝑣 𝜕𝑥𝑖⁄

𝜕𝑣 𝜕𝑥𝑗⁄
=

𝑝𝑖

𝑝𝑗
 ∀𝑖, 𝑗 

(2) 

 𝜕𝑣/𝜕𝑙

𝜕𝑣/𝜕𝑞𝑖
=

𝑤

𝑝𝑖
 ∀𝑖, 𝑗 

(3) 

 𝜕𝑣 𝜕𝑛𝑖⁄

𝜕𝑣 𝜕𝑙⁄
=

𝜕𝑔

𝜕𝑛𝑖
 ∀𝑖 

(4) 

 𝜕𝑣 𝜕𝑛𝑖⁄

𝜕𝑣 𝜕𝑛𝑗⁄
=

𝜕𝑔 𝜕𝑛𝑖⁄

𝜕𝑔 𝜕𝑛𝑗⁄
 ∀𝑖, 𝑗. 

(5) 

Equations (2) and (3) are the standard first-order conditions of the consumer 

utility maximization problem with leisure. Equation (4) implies that the ratio between 

the marginal utility of shopping frequency for good i and the marginal utility of leisure 

equals the marginal cost of time spent on purchasing good i. Equation (5) implies that 

the ratio of marginal utilities of shopping frequencies for goods i and j are equal to the 

ratio of marginal costs of time spent on purchasing goods i and j. 

The solution of the first-order conditions of Equation (1) results in three sets of 

uncompensated demand functions: 𝑛(𝑝, 𝑤, 𝑅), 𝑞(𝑝, 𝑤, 𝑅) and 𝑙(𝑝, 𝑤, 𝑅). The total 

purchased quantities, 𝑥(𝑝, 𝑤, 𝑅), are found by substituting 𝑛(𝑝, 𝑤, 𝑅) and 𝑞(𝑝, 𝑤, 𝑅) 

into the identity 𝑥(𝑛𝑞) ≡ 𝑛𝑖𝑞𝑖. 

The dual problem to the consumer’s utility maximization problem (1) is: 

min
𝑛,𝑞,𝑙

{𝑅 = 𝑝′𝑛𝑞 − 𝑤(𝑇 − 𝑙 − 𝑔(𝑛)): 𝑣(𝑥(𝑛𝑞), 𝑛, 𝑙) = 𝑣∗, 𝑛 > 0, 𝑞 > 0, 𝑙 > 0}. The 

solution to the first-order conditions of this problem results in three sets of compensated 

demand functions: 𝑛𝑐(𝑝, 𝑤, 𝑣∗), 𝑞𝑐(𝑝, 𝑤, 𝑣∗) and 𝑙𝑐(𝑝, 𝑤, 𝑣∗).9 The compensated 

 
 

9 The derivation of the first-order conditions of the minimization problem is given in Appendix 1. 
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demand functions for total purchased quantities, 𝑥𝑐(𝑝, 𝑤, 𝑣∗), are found by substituting 

𝑛𝑐(𝑝, 𝑤, 𝑣∗) and 𝑞𝑐(𝑝, 𝑤, 𝑣∗) into the identity 𝑥𝑖
𝑐 ≡ 𝑛𝑖

𝑐𝑞𝑖
𝑐. 

The conditions for homogeneity of degree zero in prices and income, symmetry 

and negativity for the compensated and uncompensated demand functions are 

summarized in:10 

Proposition 1.1 

The demand equations 𝑛(𝑝, 𝑤, 𝑅), 𝑞(𝑝, 𝑤, 𝑅), 𝑙(𝑝, 𝑤, 𝑅) and 𝑥(𝑝, 𝑤, 𝑅) are 

homogeneous of degree zero in (𝑝, 𝑤, 𝑅). 

Proposition 1.2 

The matrix of compensated substitution effects for 𝑥𝑐(𝑝, 𝑤, 𝑣∗) is symmetric and 

negative semidefinite. 

Proposition 1.3 

The matrix of compensated substitution effects for the product 𝑛𝑐(𝑝, 𝑤, 𝑣∗)𝑞𝑐(𝑝, 𝑤, 𝑣∗) 

is symmetric and negative semidefinite. 

 

3. STATISTICAL MODEL 

The frequency of shopping 𝑛𝑖 = (𝑛𝑖11, 𝑛𝑖12, … , 𝑛𝑖𝐾𝑇) is assumed to follow a discrete 

distribution, 𝑓𝑁𝑖 (𝑛𝑖|𝛽𝑖 , 𝐶), for 𝑛 = 0,1,2, … where 𝛽𝑖 is a vector of parameters and C is a 

matrix of explanatory variables. Other basic notations are as follows: N represents a 

random variable and 𝑛𝑖𝑘𝑡 is an observed value of N, where the subscript i denotes the 

product; 𝑘 = 1,2, … , 𝐾 denotes the household; and 𝑡 = 1,2, … , 𝑇 denotes the time 

period. The average purchases 𝑞𝑖 = (𝑞𝑖11, 𝑞𝑖12 , … , 𝑞𝑖𝐾𝑇) are only observed after a trip to 

 
 

10 These propositions are proven in Appendix 1. 
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the shop. Thus, the variable 𝑞𝑖|𝑛𝑖 > 0 is assumed to follow a continuous distribution, 

𝑓𝑄𝑖|𝑛𝑖>0(𝑞𝑖|𝛼𝑖, 𝐶, 𝑛𝑖 > 0), defined only over positive values, where 𝛼𝑖 is a vector of 

parameters. The interpretations of Q and 𝑞𝑖𝑘𝑡 are as for N and 𝑛𝑖𝑘𝑡. The data-generating 

process for the average quantity purchased is represented by the following two-part 

model: 

𝑓𝑄(𝑞𝑖|𝛼𝑖, 𝐶) = (
Pr(𝑁 = 0|𝛽𝑖 , 𝐶) if 𝑞𝑖 = 0

Pr(𝑁 > 0|𝛽𝑖 , 𝐶)𝑓𝑄𝑖|𝑛>0(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑛𝑖 > 0) if 𝑞𝑖 > 0
) 

(6) 

The decisions to purchase a good and how much to purchase in each trip are likely 

related, and it is desirable to model them as stochastically correlated. Furthermore, the 

demand for one good may be related to the demand for other goods, and it is important 

to allow for correlation between equations within each of the two systems. To allow for 

these correlations, random effects are introduced to both densities, 𝑓𝑁𝑖 (𝑛𝑖|𝛽𝑖 , 𝐶, 𝑏𝑁𝑖 ) and 

𝑓𝑄𝑖|𝑛>0(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑛 > 0, 𝑏𝑄𝑖 ), where 𝑏𝑁𝑖  and 𝑏𝑄𝑖  are random effects assumed to follow a 

multivariate normal distribution: 

[
𝑏𝑁

𝑏𝑄
]| 𝐷 ∼ 𝑀𝑉𝑁 ([0𝑀

0𝑀
] , [

𝐷𝑁 𝐷𝑁𝑄

𝐷𝑁𝑄 𝐷𝑄
]) 

(7) 

where 𝑏𝑁 = (𝑏𝑁1, … , 𝑏𝑁𝑀), 𝑏𝑄 = (𝑏𝑄1, … , 𝑏𝑄𝑀) and D is an unrestricted block-

covariance matrix.11 The joint probability density function for ni and qi is given as: 

𝑝(𝑛𝑖 , 𝑞𝑖|𝛽, 𝛼, 𝐷, 𝐶) =  

 
 

11 The conditional means of 𝑛𝑖 and 𝑞𝑖 are given as follows: E(𝑛𝑖|𝛽𝑖 , 𝐶, 𝑏𝑁𝑖) and E(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑏𝑄𝑖) =

Pr(𝑁 > 0|𝛽𝑖 , 𝐶)E(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑛𝑖 > 0, 𝑏𝑄𝑖). The marginal effects of E(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑏𝑄𝑖) are given by: 

𝜕E(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑏𝑄𝑖)

𝜕𝐶𝑖
=

𝜕E(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑛𝑖 > 0, 𝑏𝑄𝑖)

𝜕𝐶𝑖
Pr(𝑁 > 0|𝛽𝑖 , 𝐶). The corresponding elasticities are given by: 

𝜕E(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑏𝑄𝑖)

𝜕𝐶𝑖

𝐶𝑖

𝑞𝑖
, and 

𝜕E(𝑛𝑖|𝛽𝑖 , 𝐶, 𝑏𝑁𝑖)

𝜕𝐶𝑖

𝐶𝑖

𝑛𝑖
. 
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∫ ∏ 𝑓𝑁𝑖 (𝑛𝑖𝑘𝑡|𝛽𝑖 , 𝐶, 𝑏𝑁𝑖𝑘𝑡)

𝑇

𝑡=1

𝑓𝑄𝑖|𝑛>0(𝑞𝑖|𝛼𝑖 , 𝐶, 𝑛𝑖 > 0)𝜙(𝑏𝑖𝑘|0, 𝐷)𝑑𝑏𝑖𝑘 . 
(8) 

The product operator is inside the integral because 𝑏𝑁 and 𝑏𝑄 each have one draw for 

the 2T random variables 𝑛𝑖𝑘1, 𝑛𝑖𝑘2, … , 𝑛𝑖𝑘𝑇 and 𝑞𝑖𝑘1, 𝑞𝑖𝑘2, … , 𝑞𝑖𝑘𝑇 , respectively. Thus, 

there is a new draw for each cluster, but not for each time period within a cluster. The 

likelihood is then given by: 

𝐿 = ∏ ∏ 𝑝(𝑛𝑖, 𝑞𝑖|𝛽𝑖 , 𝛼𝑖, 𝐷, 𝐶)

𝑀

𝑖=1

𝐾

𝑘=1

 

(9) 

Because the joint density 𝑝(𝑛𝑖, 𝑞𝑖|𝛽
𝑖
, 𝛼𝑖, 𝐷, 𝐶) does not have a closed form solution, the 

likelihood L cannot be optimized with conventional Newton methods, and we therefore 

use simulation methods. 

 

3.1. Distribution Assumptions 

To account for the large share of zeros in the data, we assume that the frequency of 

purchase, 𝑛𝑖, is generated from 𝑛𝑖|𝑛𝑖 > 0, 𝛽𝑖, 𝐶, ∼ truncated Poisson(𝜇𝑖), where 𝜇𝑖 =

exp(𝐶𝛽𝑖 + 𝑏𝑁𝑖). This results in a multivariate truncated Poisson log-normal 

distribution: 

𝑓𝑁𝑖 (𝑛𝑖|𝑛𝑖 > 0, 𝛽, 𝐷𝑁 , 𝐶) = ∫
exp(−𝜇𝑖(𝑏𝑁𝑖 ))(𝜇𝑖(𝑏𝑁𝑖 ))

𝑛𝑖

[1 − exp(−𝜇𝑖(𝑏𝑁𝑖))]𝑛𝑖!
𝜙(𝑏𝑁𝑖 |0, 𝐷𝑁)𝑑𝑏𝑁𝑖  

(10) 

where 𝜙(𝑏𝑁𝑖|0, 𝐷𝑁) is the multivariate normal distribution for 𝑏𝑁𝑖 , with covariance 

matrix 𝐷𝑁. We assume that the average quantity of purchase, 𝑞𝑖, is generated from 

𝑞𝑖|𝛼𝑖, 𝐶, 𝑛𝑖 > 0 ∼ Gamma(𝜅𝑖, 𝜂𝑖), where the mean of the gamma distribution is 

specified as 𝜅𝑖𝜂𝑖 = exp(𝐶𝑖𝛼𝑖 + 𝑏𝑄𝑖). This specification results in a multivariate gamma 

log-normal distribution: 
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𝑓𝑄𝑖(𝑞𝑖|𝛼𝑖, 𝐶, 𝑛𝑖 > 0) = ∫
𝑞𝑖

𝜅𝑖−1
exp(−𝑞𝑖 𝜂𝑖⁄ )

𝜂𝑖
𝜅Γ(𝜅𝑖)

𝜙(𝑏𝑄𝑖 |0, 𝐷𝑄)𝑑𝑏𝑄𝑖 
(11) 

where 𝜙(𝑏𝑄𝑖 |0, 𝐷𝑄) is the multivariate normal distribution for 𝑏𝑄𝑖 , with covariance 

matrix 𝐷𝑄. 

 

3.2 Priors and Markov Chain Monte Carlo Sampling 

We assume uninformative priors, which is a common practice (see, e.g., Chib and 

Winkelmann, 2001). Let 𝛽 ∼ N(𝛽0, 𝐵0
−1), 𝛼 ∼ N(𝛼0, 𝐴0

−1), 𝜅 ∼ Gamma(𝑘0, 𝑠0), 𝐷𝑁
−1 ∼

Wishart (𝑣𝑁0, 𝑅𝑁0), and 𝐷𝑄
−1 ∼ Wishart (𝑣𝑄0, 𝑅𝑄0), where 

𝛽0, 𝐵0, 𝛼0, 𝐴0, 𝑘0, 𝑠0, 𝑣𝑁0, 𝑅𝑁0 , 𝑣𝑄0, and 𝑅𝑄0 are known hyperparameters, and 

Wishart(𝑣𝑜0, 𝑅𝑜0) is the Wishart distribution with 𝑣𝑜0 degrees of freedom and a scale 

matrix 𝑅𝑜0, where 𝑜 = 𝑁, 𝑄. By Bayes’ theorem, the posterior density of the two parts 

of the model are proportional to the following expressions: 

𝜙(𝛽|𝛽0, 𝐵0
−1)𝑓𝑊(𝐷𝑁

−1|𝑣𝑁0, 𝑅𝑁0) ∏ ∏ 𝑓𝑁(𝑛𝑖𝑘|𝛽, 𝑏𝑁𝑖𝑘 )

𝑀

𝑖=1

𝐾

𝑘=1

𝜙(𝑏𝑁𝑖𝑘|0, 𝐷𝑁) 

(12) 

𝜙(𝛼|𝛼0, 𝐴0
−1)𝑓𝑊(𝐷𝑄

−1|𝑣𝑄0, 𝑅𝑄0) ∏ ∏ 𝑓𝑄(𝑞𝑖𝑘|𝛼, 𝑏𝑄𝑖𝑘)

𝑀

𝑖=1

𝐾

𝑘=1

𝜙(𝑏𝑄𝑖𝑘 |0, 𝐷𝑄) 

(13) 

where 𝑓𝑊 is the Wishart density. We construct Markov chains using the blocks of 

parameters 𝑏𝑁, 𝑏𝑄, 𝛽, 𝛼, 𝐷𝑁 and 𝐷𝑄 and the full conditional distributions: 

[𝑏𝑁|𝑛, 𝛽, 𝐷];     [𝛽|𝑛, 𝑏𝑁];     [𝐷|𝑏𝑁] (14) 

[𝑏𝑄|𝑞, 𝛼, 𝐷];     [𝛼|𝑞, 𝑏𝑄];      [𝐷|𝑏𝑄] (15) 

The blocks of parameters [𝛽|𝑛, 𝑏𝑁] and [𝛼|𝑞, 𝑏𝑄] are separated into smaller blocks to 

facilitate convergence. The simulation output is generated by recursively simulating 
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these distributions using the most recent values of the conditioning variables at each 

step. The mathematical derivation of the Markov chain Monte Carlo sampling of 𝑏𝑁, 

𝑏𝑄, 𝛽, 𝛼, 𝐷𝑁 and 𝐷𝑄 can be found in Appendix 2. 

 

4. DATA AND SELECTED FUNCTIONAL FORM 

French scanner data for the purchases of fresh fish as recorded by Kantar Worldpanel 

for the period 2005–2008 are used. The data were from a rotating panel, i.e., when 

households drop out, new households are selected to take their place. The numbers of 

participants recording fresh fish purchases were 3,291 in 2005, 3,234 in 2006, 3,165 in 

2007 and 4,479 in 2008, which show significant rotation of households in 2008. 

Purchased quantities and total expenditures were recorded. To calculate the associated 

unit prices, we followed Allais et al. (2010) and Bertail and Caillavet (2008) and 

divided the total expenditures by quantities. The data are weekly and include many zero 

purchases. To reduce the number of zero purchases, weekly purchases were aggregated 

to yearly purchases, and the panel structure was accounted for by using random effects, 

as discussed in the previous section. Demand for salmon has been increasing during 

recent years and along with white fish, if canned tuna is excluded, has been the most 

frequently purchased type of fish in France, while fresh fish has been the most common 

product form (Xie and Myrland, 2011). Therefore, we included fresh salmon, fresh 

white fish and other fresh fish in our demand system. 

In Table I, the purchase frequencies for fresh salmon, fresh white fish and other 

fresh fish over the 4-year survey period are presented. Between 14% and 45% did not 

purchase each of the three types of fish. Many households with a positive purchase of 

one fish type only purchased this type once or twice over the 4 years. However, more 
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than 10% of the households purchased white fish more than 10 times and almost 24% 

purchased other fish more than 10 times. 

(Table I about here) 

Table II shows summary statistics of the variables used in our empirical model. 

The average frequencies of purchase and the average quantities were quite low because 

of the large share of zeros in the data set. However, the maximum frequency was 172 

times for the other fish. The average purchase of each type of fish was around 500 g and 

the maximum average purchase of each type of fish was around 9 kg. The unit prices 

and total expenditures on fresh fish were divided by the average French consumer price 

index (CPI) to impose homogeneity of degree zero for frequencies of purchases, 

average quantities and total quantities.12 

(Table II about here) 

Total quantities purchased are specified as: 

𝑥𝑖 = exp(𝑏(𝑝, 𝑤, 𝑅, 𝜃)) (16) 

where the function 𝑏(⋅) is linear in its parameters 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑛). We decomposed 

𝑏(⋅) into a frequency part 𝑓(𝑝, 𝑤, 𝑅, 𝛽) and an average quantity part 𝑧(𝑝, 𝑤, 𝑅, 𝛼), 

where 𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑛) and 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑛) are parameter vectors. Using this 

decomposition, Equation (16) becomes: 

𝑥𝑖 = 𝑛𝑖𝑞𝑖 = exp(𝑓(𝑝, 𝑤, 𝑅, 𝛽))exp(𝑧(𝑝, 𝑤, 𝑅, 𝛼)). (17) 

 
 

12 The average CPI for 2005–2008 was 90.28, and the relative price of 0.13 for salmon and 0.14 for white 

fish reported in Table 2 correspond to €11.74 and €12.64 per kg of salmon and white fish, respectively. 
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As is conventional when estimating count data models, the conditional 

expectation is defined as a semi-logarithmic function. The purchase frequency demand 

function for each fish type is thus given by: 

E(𝑛𝑖𝑘|𝐶𝑖) = exp (𝛽𝑖𝑘 + ∑ 𝛽𝑖𝑠(𝑝𝑠𝑘/𝐶𝑃𝐼)

𝑀

𝑠=1

+ 𝜉𝑖((𝑅𝑘 + 𝑦𝑘)/𝐶𝑃𝐼) + 𝑏𝑁𝑖𝑘) 
(18) 

for 𝑖 = 1,2, … , 𝑀 fish categories and 𝑘 = 1,2, … , 𝐾 households. The price of fish 

category s for household k is denoted by 𝑝𝑠𝑘 . The total fish expenditure of household k 

is given by 𝑅𝑘 + 𝑦𝑘 , where CPI is the French consumer price index, and 𝑏𝑁𝑖𝑘  is the 

random effect described in Section 3. For the demand system to be consistent with 

economic theory, homogeneity and symmetry were imposed on the parameters.13 

LaFrance and Hanemann (1989) and LaFrance (1990) derived these restrictions for the 

semi-logarithmic functional form. In our case, we must have 𝛽𝑖𝑠 = 0 ∀ 𝑖 ≠ 𝑠 and 𝜉𝑖 =

𝜉 ∀ 𝑖. To allow for additional explanatory variables 𝑐𝑧𝑘, we define 𝛽𝑖𝑘  as follows: 

𝛽𝑖𝑘 = 𝜂0𝑖 + ∑ 𝑐𝑧𝑘𝜂𝑖𝑧

𝑍

𝑧=1

 
(19) 

The average quantity demand function for each good is given by: 

E(𝑞𝑖𝑘|𝐶𝑖) = exp (𝛼𝑖𝑘 + ∑ 𝛼𝑖𝑠(𝑝𝑠𝑘/𝐶𝑃𝐼)

𝑀

𝑠=1

+ 𝛾𝑖 ((𝑅𝑘 + 𝑦𝑘)/𝐶𝑃𝐼) + 𝑏𝑄𝑖𝑘 ). 
(20) 

Corresponding to the restrictions on Equation (18), the restrictions 𝛼𝑖𝑠 = 0 ⩝ 𝑖 ≠ 𝑠 and 

𝛾𝑖 = 𝛾 ∀ 𝑖 were imposed on Equation (20), and 𝛼𝑖𝑘  is defined as 𝛽𝑖𝑘  in Equation (19). 

 
 

13 Negativity was not imposed due to computational difficulties in that it required non-negativity 

constraints. 
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The own-price 𝑒𝑛𝑖 and total expenditure elasticities 𝜀𝑛𝑖  for the frequency of 

purchase were calculated as: 

𝑒𝑛𝑖 =
𝜕E(𝑛𝑖|𝐶𝑖)

𝜕𝑝𝑖

𝑝𝑖

𝑛𝑖
= 𝛽𝑖𝑖𝑝𝑖  

(21) 

𝜀𝑛𝑖 =
𝜕E(𝑛𝑖|𝐶𝑖)

𝜕(𝑅 + 𝑦)

(𝑅 + 𝑦)

𝑛𝑖
= 𝜃(𝑅 + 𝑦). 

(22) 

The own-price 𝑒𝑞𝑖 and total expenditure 𝜀𝑞𝑖  elasticities for the average quantity 

purchased were calculated as: 

𝑒𝑞𝑖 =
𝜕E(𝑞𝑖|𝐶𝑖)

𝜕𝑝𝑖

𝑝𝑖

𝑛𝑖
= 𝛼𝑖𝑖𝑝𝑖  

(23) 

𝜀𝑞𝑖 =
𝜕E(𝑞𝑖|𝐶𝑖)

𝜕(𝑅 + 𝑦)

(𝑅 + 𝑦)

𝑛𝑖
= 𝛾(𝑅 + 𝑦). 

(24) 

Under the restrictions above, all the total substitution effects are zero, and the 

uncompensated cross-price elasticities are also zero.14 However, the compensated price 

elasticities are not zero. These elasticities can be useful for calculating welfare effects, 

and the elasticity formulas and the estimated values are provided in Appendix 1. In our 

case, all of the compensated cross-price elasticities were very small numerical values. 

 

5. EMPIRICAL RESULTS 

Table III shows the posterior summary for the fresh salmon equations based on the 

TMPLN and MGLN distributions. The purchase frequencies were estimated by the 

TMPLN model, and the average purchases were estimated by the MGLN model. Only 

 
 

14 No total substitution effects follow from the imposition of symmetry on a semi-logarithmic functional 

form. It might be of interest for future research to estimate a system without symmetry restrictions to 

compare the differences between the compensated and uncompensated cross-price elasticities. 
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the signs and statistical significances of the estimated parameters in the table have an 

interpretation. 

All parameter estimates in the frequency of purchase model were significant 

except for the time dummies for 2007 and 2008. The signs of the estimated parameters 

were as expected. The time dummy for 2006 shows that the frequency of purchase was 

smaller than that in 2005. The Geweke Z-test of Markov chain stationarity was not 

rejected at the 5% level except for the time dummy for 2006.15 

All of the parameter estimates in the equation for average purchases were 

significant and were generated from a stationary Markov process. The time dummies 

show that average quantities have increased for all years, relative to 2005. Kappa is the 

shape parameter of the gamma distribution and was highly significant.16 

Table IV shows the posterior summary for the fresh white fish equations. All 

parameters in the frequency of purchase model were significant except for the 2008 

dummy. Furthermore, we did not reject that they were generated from a stationary 

Markov process. The time dummies showed that the frequency of purchase decreased 

relative to 2005. All parameter estimates in the equation for average purchases were 

significant and their Markov chains were stationary, except for the constant. As for 

salmon, the time dummies showed an increase relative to 2005. 

Table V shows the posterior summary for the other fresh fish equations. All of 

the parameter estimates of both models were significant and were generated from a 

 
 

15 The Geweke Z-values are normally distributed. For an application of the Geweke convergence test, see, 

e.g., Nylander et al. (2008). 
16 Many probability distributions are not a single distribution, but a family of distributions with one or 

several shape parameters, which allow the distributions to take on different shapes. These distributions 

are very useful in modeling since they are flexible and can fit many different datasets. 
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stationary Markov process. The frequency of purchase decreased over time, whereas the 

average quantity demanded increased relative to 2005. 

Table VI shows the cross-equations covariance matrix for the models, i.e., the 

covariance matrix of the random effects. We define the demand equation for salmon as 

number 1, the demand for white fish as number 2 and the demand for other fish as 

number 3. Then, Sigma11 denotes the variance of the random effects for salmon, 

Sigma22 for white fish and Sigma33 for other fish. Correspondingly, Sigma12 denotes 

the covariance between the random effects of equations one and two and so on. 

All parameter estimates in both systems were significant and were generated 

from a stationary Markov process. The significant covariance estimates demonstrated 

the importance of allowing for an unrestricted covariance matrix. 

Table VII shows the own-price and total expenditure elasticities with respect to 

frequencies of purchase, average purchases and total purchases. The values of the own-

price elasticities for total quantities purchased are almost equal for the three types of 

fish, whereas the own-price elasticities for purchase frequencies and average quantities 

are more unequal. Such differences could be used to find a loss-leader product. 

(Tables III–VII about here) 

 

Example of a Loss-Leader Pricing Strategy 

We include a simple example showing how fresh salmon could be used as a loss-leader 

product. We assume a retailer has a large variety of goods and that they want to create a 

profitable pricing strategy that also benefits their competitive position relative to nearby 

fish retailers. Let the retailer lower the price of salmon by 20% and raise the price of 

fresh white fish by 20%. As described above, the uncompensated cross-price effects 
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would be zero in our estimated system, and we only have to take account of the own-

price effects. However, as discussed in the meta-study of Cornelsen et al. (2016), the 

cross-price effects are likely to be much smaller than the own-price effects for many 

food products, and they will only reinforce or work in the opposite direction of the own-

price effects. 

The key numbers and calculations used in the example are summarized in Table 

VIII. As reported in Table VII, the own-price elasticity with respect to frequency of 

purchase for salmon was –0.05, and a 20% price reduction would increase the frequency 

of purchase by 1% from 1.96 to 1.98. The own-price elasticity with respect to average 

quantity was –0.18, and a 20% price reduction would increase the average quantity 

purchased from 421.78 to 436.96 g. For white fish, the 20% price increase would reduce 

the frequency of purchase from 3.77 to 3.69 and reduce the average quantity from 

435.03 to 425.46 g. 

As shown in Table II, the sample averages of the relative prices of white fish and 

salmon were 0.14 and 0.13, respectively. Multiplying these relative prices by the 

average CPI of 90.28 resulted in nominal average prices of €12.64 for white fish and 

€11.74 for salmon. After the 20% price reduction for salmon, the new price became 

€9.39, and after the 20% price increase for white fish, the new price became €15.17. 

The per customer revenue of sales of salmon given the initial price was €9.71, 

while it was €8.12 after the 20% reduction in price. The per customer revenue of sales 

of white fish given the initial price was €20.73, while it was €23.82 after the 20% 

increase in price. The per customer total revenue from sales of salmon and white fish 

increased from €30.44 to €31.94, i.e., an increase of 4.9%. Given that no changes in 
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total costs were caused by these price changes, the profit increased by €1.50 per 

customer. 

The above effect on revenue only included the direct effects on revenue from 

sales of the two categories of fish. However, this loss-leader pricing strategy may also 

convince customers to transfer more of their other category purchases to this store 

(Thomassen et al., 2017). Most customers not only purchase fresh fish, but also may 

increase purchases of other products such as meat, bakery, fruits, or toothpaste. 

(Table VIII about here) 

 

6. CONCLUSIONS 

The microeconomic model presented by Meghir and Robin (1992) assumed that total 

purchased quantities could be expressed as the product of the average purchased 

quantities and the frequencies of purchase. We follow their specification and further 

develop the model so that homogeneity of degree zero and symmetry hold for purchase 

frequencies, average purchased quantities and total purchased quantities. Furthermore, 

we extend their count data estimation framework in three ways: (i) we account for 

homogeneity and symmetry in the count data demand system; (ii) we account for the 

problem of zero purchases by assuming a truncated data-generating process for the 

counts; and (iii) we allow the covariance structure to be unrestricted within the two 

demand systems. We assume a multivariate Poisson log-normal distribution for the 

counts and a multivariate gamma log-normal distribution for the average quantities. To 

estimate these distributions, we use a random-walk Metropolitan simulation algorithm. 

 The proposed estimation method is illustrated by using scanner data for French 

fish purchases to estimate the demand for fresh salmon, fresh white fish and other fresh 
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fish. The results indicate that salmon can be a loss-leader category for large retailers 

who want to increase store traffic and, thereby, sales of products that can be sold with a 

markup above the market price. Future research will focus on providing a more 

elaborate empirical example of the loss-leader pricing strategy with different product 

groups. 
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Table I. Purchase frequencies 

No. of 

Purchases 

         Salmon        White Fish      Other Fish 

Frequency Percent Frequency Percent Frequency Percent 

0 6326 44.64 4126 29.11 1982 13.99 

1 2784 19.64 2738 19.32 2357 16.63 

2 1514 10.68 1654 11.67 1603 11.31 

3 1001 7.06 1135 8.01 1223 8.63 

4 685 4.83 871 6.15 953 6.72 

5 473 3.34 635 4.48 741 5.23 

6 337 2.38 489 3.45 580 4.09 

7 254 1.79 402 2.84 549 3.87 

8 151 1.07 342 2.41 446 3.15 

9 131 0.92 248 1.75 345 2.43 

≥10 516 3.65 1532 10.84 3393 23.96 
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Table II. Summary statistics for fish purchases 

Variable Mean Std. Dev. Min Max 

Salmon (frequency) 1.96 3.39 0.00 52.00 

White fish (frequency) 3.77 6.03 0.00 87.00 

Other fish (frequency) 7.43 11.25 0.00 172.00 

Salmon (average quantity in g) 421.78 608.24 0.00 9600.00 

White fish (average quantity in g) 435.03 480.61 0.00 8537.70 

Other fresh fish (average quantity in g) 552.08 467.96 0.00 8100.00 

Real price of salmon 0.13 0.04 0.01 0.75 

Real price of white fish 0.14 0.05 0.02 0.71 

Real price of other fish 0.12 0.05 0.01 0.68 

Real total expenditures on fresh fish 0.98 1.33 0.00 15.57 
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Table III. Posterior summary for salmon based on the TMPLN and MGLN 

distributions 

 Frequency Average Quantity 

Variable Mean t-value Geweke Z Mean t-value Geweke Z 

Constant –0.53 –16.00 1.07 6.66 369.87 –0.71 

Price –0.37 –1.97 –1.17 –3.02 –28.73 0.61 

Expenditure 0.09 62.41 1.75 0.07 19.59 –0.25 

Time06 –0.05 –3.80 2.10 0.11 9.30 –0.50 

Time07∙10 –0.07 –0.62 0.91 1.26 10.99 –0.03 

Time08∙100 –0.06 –0.05 0.15 14.27 12.63 –0.32 

Kappa - - - 2.36 136.60 –0.84 
Notes: TMPLN = truncated multivariate Poisson log-normal and MGLN = multivariate gamma log-

normal. Time06, Time07 and Time08 are annual dummy variables, which take the value of 1 in the 
indicated years. For the ease of reading, some of these dummy variables are scaled in this table. The 

Geweke Z provides the Z-value for a test of stationarity of the Markov chains. Kappa is the shape 

parameter of the gamma distribution. 
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Table IV. Posterior summary for white fish based on the TMPLN and MGLN 

distributions 

 Frequency Average Quantity 

Variable Mean t-value Geweke Z Mean t-value Geweke Z 

Constant –0.12 –5.94 0.35 6.35 402.04 –2.57 

Price –0.69 –6.84 –0.60 –1.38 –14.40 1.70 

Expenditure 0.09 62.41 1.75 0.07 19.59 –0.25 

Time06 –0.04 –5.66 –0.38 0.06 5.15 0.35 

Time07 –0.04 –6.18 0.57 0.05 4.56 0.75 

Time08 –0.01 –1.80 –0.16 0.06 5.55 1.35 

Kappa - - - 2.06 105.80 1.14 
Notes: TMPLN = truncated multivariate Poisson log-normal and MGLN = multivariate gamma log-

normal. Time06, Time07 and Time08 are annual dummy variables, which take the value of 1 in the 
indicated years. The Geweke Z provides the Z-value for a test of stationarity of the Markov chains. 
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Table V. Posterior summary for other fish based on the TMPLN and MGLN 

distributions 

 Frequency Average Quantity 

Variable Mean t-value Geweke Z Mean t-value Geweke Z 

Constant 0.32 24.00 –0.04 6.43 351.16 1.08 

Price –0.81 –10.55 0.24 –1.22 –10.50 –1.32 

Expenditure 0.09 62.41 1.75 0.07 19.59 –0.25 

Time06 –0.05 –15.47 –0.41 0.06 5.06 –1.72 

Time07 –0.05 –15.42 –0.80 0.11 8.99 –1.80 

Time08 –0.07 –18.67 1.18 0.13 10.48 –1.69 

Kappa - - - 2.22 123.39 –0.15 
Notes: TMPLN = truncated multivariate Poisson log-normal and MGLN = multivariate gamma log-

normal. Time06, Time07 and Time08 are annual dummy variables, which take the value of 1 in the 
indicated years. The Geweke Z provides the Z-value for a test of stationarity of the Markov chains. 
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Table VI. Posterior summary cross-equations covariance matrix based on TMPLN 

and MGLN distributions 

 
Frequency Average Quantity 

Variable Mean t-value Geweke Z Mean t-value Geweke Z 

Sigma11 0.49 18.65 –0.55 0.29 37.95 0.21 

Sigma12 0.17 11.53 –0.05 0.13 24.04 0.90 

Sigma13 0.17 14.53 –0.92 0.31 40.83 –0.33 

Sigma21 0.17 11.53 –0.05 0.13 24.04 0.90 

Sigma22 0.40 23.74 –0.23 0.21 36.01 2.37 

Sigma23 0.21 21.79 –0.64 0.14 23.59 0.07 

Sigma31 0.17 14.53 –0.92 0.31 40.83 –0.33 

Sigma32 0.21 21.79 –0.64 0.14 23.59 0.07 

Sigma33 0.26 29.50 –0.90 0.34 38.48 –0.56 
Note: TMPLN = truncated multivariate Poisson log-normal and MGLN = multivariate gamma log-

normal. Sigma11, Sigma22 and Sigma33 represent the variances of the random effects of the demand for 
salmon, white fish and other fish, respectively. The other Sigmas represent the corresponding 

covariances. Geweke Z provides the Z-value for a test of stationarity of the Markov chains.  
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Table VII. Own-price and total expenditure elasticities 

 Frequency 

            Salmon         White Fish        Other Fish 

Estimate t-value Estimate t-value Estimate t-value 

Own price –0.05 –1.97 –0.10 –6.84 –0.10 –10.55 

Total expenditure 0.09 62.41 0.09 62.41 0.09 62.41 

 Average Quantities 

         Salmon        White Fish         Other Fish 

Estimate t-value Estimate t-value Estimate t-value 

Own price –0.18 –28.73 –0.11 –14.40 –0.30 –10.50 

Total expenditure 0.03 19.59 0.04 19.59 0.07 19.59 

 Total Quantities 

        Salmon        White Fish        Other Fish 

Estimate t-value Estimate t-value Estimate t-value 

Own price –0.24 –8.77 –0.21 –7.50 –0.21 –20.51 

Total expenditure 0.12 42.65 0.13 53.85 0.14 81.57 
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Table VIII. Numerical example loss-leader pricing strategy 

   Frequency/Quantity Revenue 

Product Elasticitya ΔChangeb Initialc Newd Initiale Newf 

Salmon 

frequency 

 

–0.05 

 

+ 1.00 

 

1.96 

 

1.98 

  

Average         

quantity 

 

–0.18 

 

+ 3.60 

 

421.78 

 

436.96 

  

Total     9.71 8.12 

White fish 

frequency 

 

–0.10 

 

–2.00 

 

3.77 

 

3.69 

  

Average 

quantity 

–0.11 –2.20 435.03 425.46   

Total     20.73 23.82 

Total fish     30.44 31.94 
Notes: 
a The elasticity estimates are the estimates from Table VII. 
b ΔChange is the percentage change in frequency or average quantity given a 20% price decrease for 

salmon and a 20% price increase for white fish. 
c The initial frequencies and average quantities refer to the frequencies and average quantities as reported 

in Table II. 
d The new frequency and average quantities are the new values after the 20% price decrease for salmon 

and the 20% price increase for white fish. 
e Total revenue in € from sales of salmon and white fish given initial frequencies and quantities. 
f Total revenue in €from sales of salmon and white fish given new frequencies and quantities. 
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Appendix 1. The Microeconomics Model 

The Utility Maximization Problem 

The consumer’s utility maximization problem is specified as: 

 max
𝑛,𝑞,𝑙

{𝑣(𝑥(𝑛𝑞), 𝑛, 𝑙): 𝑤𝑇 + 𝑅 = 𝑝′𝑛𝑞 + 𝑤𝑙 + 𝑤𝑔(𝑛), 𝑛 > 0, 𝑞 > 0, 𝑙 > 0} (1) 

with the associated Lagrangian problem: 

 ℒ = 𝑣(𝑥(𝑛𝑞), 𝑛, 𝑙) + 𝜆[𝑅 − 𝑝′𝑛𝑞 + 𝑤(𝑇 − 𝑙 − 𝑔(𝑛))]  

The first-order conditions to this Lagrangian problem are: 

 𝜕ℒ

𝜕𝑞𝑖
=

𝜕𝑣

𝜕𝑥𝑖
𝑛𝑖 − 𝜆𝑝𝑖𝑛𝑖 = 0 

(2) 

 𝜕ℒ

𝜕𝑛𝑖
=

𝜕𝑣

𝜕𝑥𝑖
𝑞𝑖 +

𝜕𝑣

𝜕𝑛𝑖
− 𝜆𝑝𝑖𝑞𝑖 − 𝜆𝑤

𝜕𝑔

𝜕𝑛𝑖
= 0 

(3) 

 𝜕ℒ

𝜕𝑙
=

𝜕𝑣

𝜕𝑙
− 𝜆𝑤 = 0 

(4) 

From Equations (2) and (4), we have: 

 𝜕𝑣

𝜕𝑥𝑖

1

𝑝𝑖
= 𝜆 

(5) 

 𝜕𝑣

𝜕𝑙

1

𝑤
= 𝜆 

(6) 

By substituting for the first 𝜆 in Equation (3) by Equation (5), we get: 

 𝜕𝑣

𝜕𝑥𝑖
𝑞𝑖 +

𝜕𝑣

𝜕𝑛𝑖
−

𝜕𝑣

𝜕𝑥𝑖

𝑝𝑖𝑞𝑖

𝑝𝑖
− 𝜆𝑤

𝜕𝑔

𝜕𝑛𝑖
= 0 

 

 𝜕𝑣

𝜕𝑥𝑖
𝑞𝑖 +

𝜕𝑣

𝜕𝑛𝑖
−

𝜕𝑣

𝜕𝑥𝑖
𝑞𝑖 − 𝜆𝑤

𝜕𝑔

𝜕𝑛𝑖
= 0 

 

 𝜕𝑣

𝜕𝑛𝑖
− 𝜆𝑤

𝜕𝑔

𝜕𝑛𝑖
= 0 
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 𝜕𝑣/𝜕𝑛𝑖

𝜕𝑔/𝜕𝑛𝑖
= 𝜆𝑤 

(7) 

It follows from Equations (5), (6) and (7) that the necessary conditions for a maximum 

are: 

 𝜕𝑣/𝜕𝑥𝑖

𝜕𝑣/𝜕𝑥𝑗
=

𝑝𝑖

𝑝𝑗
 ∀𝑖, 𝑗 

(8) 

 𝜕𝑣/𝜕𝑙

𝜕𝑣/𝜕𝑞𝑖
=

𝑤

𝑝𝑖
 ∀𝑖, 𝑗 

(9) 

 𝜕𝑣/𝜕𝑛𝑖

𝜕𝑣/𝜕𝑙
=

𝜕𝑔

𝜕𝑛𝑖
 ∀𝑖 

(10) 

 𝜕𝑣/𝜕𝑛𝑖

𝜕𝑣/𝜕𝑛𝑗
=

𝜕𝑔/𝜕𝑛𝑖

𝜕𝑔/𝜕𝑛𝑗
 ∀𝑖, 𝑗 

(11) 

The solution of the first-order conditions is given by three sets of uncompensated 

demand functions: 𝑛(𝑝, 𝑤, 𝑅), 𝑞(𝑝, 𝑤, 𝑅) and 𝑙(𝑝, 𝑤, 𝑅). The total purchased quantities 

are given by 𝑛(𝑝, 𝑤, 𝑅) 𝑞(𝑝, 𝑤, 𝑅) = 𝑥(𝑝, 𝑤, 𝑅). 

 

The Dual Cost Minimization Problem 

The consumer’s cost minimization problem is given by: 

 min
𝑛,𝑞,𝑙

{𝑅 = 𝑝′𝑛𝑞 − 𝑤(𝑇 − 𝑙 − 𝑔(𝑛)): 𝑣(𝑥(𝑛𝑞), 𝑛, 𝑙) = 𝑣∗, 𝑛 > 0, 𝑞 > 0, 𝑙 > 0} (12) 

with the associated Lagrangian problem: 

 

 

ℒ = 𝑝′𝑛𝑞 − 𝑤(𝑇 − 𝑙 − 𝑔(𝑛)) + 𝜆[𝑣∗ − 𝑣(𝑥(𝑛𝑞), 𝑛, 𝑙)]  

The first-order conditions to this Lagrangian problem are: 

 𝜕ℒ

𝜕𝑞𝑖
= 𝑝𝑖𝑛𝑖 − 𝜆

𝜕𝑣

𝜕𝑥𝑖
𝑛𝑖 = 0 

(13) 

 𝜕ℒ

𝜕𝑛𝑖
= 𝑝𝑖𝑞𝑖 + 𝑤

𝜕𝑔

𝜕𝑛𝑖
− 𝜆

𝜕𝑣

𝜕𝑥𝑖
𝑞𝑖 − 𝜆

𝜕𝑣

𝜕𝑛𝑖
= 0 

(14) 
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 𝜕ℒ

𝜕𝑙
= 𝑤 − 𝜆

𝜕𝑣

𝜕𝑙
= 0 

(15) 

From Equations (13) and (15), we have Equations (5) and (6) above. By substituting for 

the first 𝜆 in Equation (14) by Equation (5), we get: 

 

 

𝑝𝑖𝑞𝑖 + 𝑤
𝜕𝑔

𝜕𝑛𝑖
−

𝜕𝑣

𝜕𝑥𝑖

𝜕𝑣

𝜕𝑥𝑖

𝑝𝑖𝑞𝑖 −  𝜆
𝜕𝑣

𝜕𝑛𝑖
= 0 

 

 
𝑝𝑖𝑞𝑖 + 𝑤

𝜕𝑔

𝜕𝑛𝑖
− 𝑝𝑖𝑞𝑖 −  𝜆

𝜕𝑣

𝜕𝑛𝑖
= 0 

 

 
𝑤

𝜕𝑔

𝜕𝑛𝑖
−  𝜆

𝜕𝑣

𝜕𝑛𝑖
= 0 

 

 𝜕𝑣/𝜕𝑛𝑖

𝜕𝑔/𝜕𝑛𝑖
=

𝑤

𝜆
 

(16) 

It follows from Equations (5), (6) and (16) that the necessary conditions for a minimum 

are given by Equations (8), (9), (10) and (11) above. The solution of the first-order 

conditions is three sets of compensated demand functions: 𝑛𝑐(𝑝, 𝑤, 𝑣∗), 𝑞𝑐(𝑝, 𝑤, 𝑣∗) 

and 𝑙𝑐(𝑝, 𝑤, 𝑣∗). The compensated demand function for total purchased quantities is 

𝑛𝑐(𝑝, 𝑤, 𝑣∗)𝑞𝑐(𝑝, 𝑤, 𝑣∗) = 𝑥𝑐(𝑝, 𝑤, 𝑣∗). 

 

Formulas for Compensated Price Elasticities 

Under symmetry restrictions on a semi-log system, there are zero uncompensated cross-

price elasticities; however, there are non-zero compensated cross-price elasticities that 

reflect the changes in total expenditures in the Slutsky equation. These compensated 

elasticities can be useful for calculating welfare effects in the model. The compensated 

price elasticity between products i and j for household k,  𝑒𝑖𝑗𝑘 , are calculated as: 
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𝑒𝑖𝑗𝑘 =
𝑝𝑖𝑘𝑛𝑖𝑘

(𝑅𝑘 + 𝑦𝑘)

𝜕𝑛𝑗𝑘

𝜕(𝑅𝑘 + 𝑦𝑘)

(𝑅𝑘 + 𝑦𝑘)

𝑛𝑗𝑘
= 𝑠𝑛𝑖𝑘𝜔𝑛𝑗𝑘  

(17) 

where 𝑛𝑖𝑘  is the purchase frequency of product i by household k; 𝑠𝑛𝑖𝑘  is the total 

expenditure share of product i by household k, in terms of purchase frequencies; and 

𝜔𝑛𝑗𝑘  is the total expenditure elasticity of product j by household k, in terms of purchase 

frequencies. 

The compensated price elasticities for average purchased quantities are 

calculated as: 

𝜀𝑖𝑗𝑘 =
𝑝𝑖𝑘𝑞𝑖𝑘

(𝑅𝑘 + 𝑦𝑘)

𝜕𝑞𝑗𝑘

𝜕(𝑅𝑘 + 𝑦𝑘)

(𝑅𝑘 + 𝑦𝑘)

𝑞𝑗𝑘
= 𝑠𝑞𝑖𝑘𝜔𝑞𝑗𝑘  

(18) 

where 𝑠𝑞𝑖𝑘  is the total expenditure share of product i by household k, in terms of 

average quantities; and 𝜔𝑞𝑗𝑘  is the total expenditure elasticity of product j by household 

k, in terms of average quantities. 

The estimated compensated elasticities for our model are provided in Table A1 

at bottom of this Appendix. As we can see, compensated from the table, the cross-price 

effects are small. 

 

Proposition 1.1 

The demand equations 𝑛(𝑝, 𝑤, 𝑅), 𝑞(𝑝, 𝑤, 𝑅), 𝑙(𝑝, 𝑤, 𝑅) and 𝑥(𝑝, 𝑤, 𝑅) are 

homogeneous of degree zero in (𝑝, 𝑤, 𝑅). 

 

Proof of Proposition 1.1 

i) For the constraint of Equation (1) and any scalar 𝜌 > 0, we have: 

{(𝑛, 𝑞, 𝑙)′ ∈ ℝ+
2𝑀+1: 𝜌𝑅 ≥ 𝜌𝑝′𝑥 − 𝜌𝑤(𝑇 − 𝑙 − 𝑔(𝑛)), 𝑥 ≡ 𝑛𝑞}  
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= {(𝑛, 𝑞, 𝑙)′ ∈ ℝ+
2𝑀+1: 𝑅 ≥ 𝑝′𝑥 − 𝑤(𝑇 − 𝑙 − 𝑔(𝑛)), 𝑥 ≡ 𝑛𝑞}  

Thus, when p, w and R increase by the same percentage 𝜌, the choice set and the 

objective function are unchanged and, therefore, the optimal choices of n, q and l are 

unchanged. Q.E.D. 

 

ii) For any scalar 𝜌 > 0, 

{(𝑛, 𝑥, 𝑙)′ ∈ ℝ+
2𝑀+1: 𝜌𝑅 ≥ 𝜌𝑝′𝑥 − 𝜌𝑤(𝑇 − 𝑙 − 𝑔(𝑛)), 𝑥 ≡ 𝑛𝑞}  

= {(𝑛, 𝑥, 𝑙)′ ∈ ℝ+
2𝑀+1: 𝑅 ≥ 𝑝′𝑥 − 𝑤(𝑇 − 𝑙 − 𝑔(𝑛)), 𝑥 ≡ 𝑛𝑞}  

Q.E.D. 

 

Proposition 1.2 

The matrix of compensated substitution effects for 𝑥𝑐(𝑝, 𝑤, 𝑣∗) is symmetric and 

negative semidefinite. 

 

Proof of Proposition 1.2 

First, we need to show that the expenditure function 𝑐(𝑝, 𝑤, 𝑣∗) associated with 

Equation (1) is concave in p and w. For concavity, fix the utility level at 𝑣̅, and let 𝑝′′ =

𝜌𝑝 + (1 − 𝜌)𝑝′ and 𝑤′′ = 𝜌𝑤 + (1 − 𝜌)𝑤′ for 𝜌 ∈ [0,1]. Suppose that 𝑥′′, 𝑛′′ and 𝑙′′ 

are optimal solutions to the expenditure minimization problem when prices are 𝑝′′ and 

wages are 𝑤′′. If so: 

𝑐(𝑝′′, 𝑤′′ , 𝑣̅) = 𝑝′′𝑥′′ − 𝑤′′(𝑇 − 𝑙′′ − 𝑔(𝑛′′))  

= 𝜌𝑝𝑥′′ + (1 − 𝜌)𝑝′𝑥′′ −  𝜌𝑤(𝑇 − 𝑙′′ − 𝑔(𝑛′′)) − (1 − 𝜌)𝑤′(𝑇 − 𝑙′′ −

𝑔(𝑛′′)) 
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=𝜌[𝑝𝑥′′ −  𝑤(𝑇 − 𝑙′′ − 𝑔(𝑛′′))] + (1 − 𝜌)[𝑝′𝑥′′ − 𝑤′(𝑇 − 𝑙′′ − 𝑔(𝑛′′))]  

≥ 𝜌𝑐(𝑝, 𝑤, 𝑣̅) + (1 − 𝜌)𝑐(𝑝′, 𝑤′, 𝑣̅)  

where the inequality follows from 𝑣(𝑥′′, 𝑛′′, 𝑙′′) ≥ 𝑣̅. The definition of the expenditure 

function implies that 𝑝𝑥′′ −  𝑤(𝑇 − 𝑙′′ − 𝑔(𝑛′′)) ≥ 𝑐(𝑝, 𝑤, 𝑣̅) and 𝑝′𝑥′′ −

𝑤′(𝑇 − 𝑙′′ − 𝑔(𝑛′′)) ≥ 𝑐(𝑝′, 𝑤′, 𝑣̅). 

Next, we need to show that for all p and 𝑣∗, the compensated demand 

𝑥𝑐(𝑝, 𝑤, 𝑣∗) is the derivative vector of the expenditure function with respect to p. That 

is, 𝑥𝑐(𝑝, 𝑤, 𝑣∗) = 𝜕𝑐(𝑝, 𝑤, 𝑣∗) 𝜕𝑝𝑖⁄  for all 𝑖 = 1, … , 𝑀. This follows directly from the 

Envelope Theorem. Thus: 

𝜕𝑐(𝑝, 𝑤, 𝑣∗)

𝜕𝑝𝑖
=

𝜕ℒ(𝑥𝑐 , 𝑛𝑐 , 𝑙𝑐)

𝜕𝑝𝑖
= 𝑥𝑐(𝑝, 𝑤, 𝑣∗). 

 

The second derivative of the expenditure function gives: 

𝜕2𝑐(𝑝, 𝑤, 𝑣∗)

𝜕𝑝𝑖
2 =

𝜕𝑥𝑐(𝑝, 𝑤, 𝑣∗)

𝜕𝑝𝑖
. 

 

Because the expenditure function is concave, the matrix of compensated substitution 

effects for 𝑥𝑐(𝑝, 𝑤, 𝑣∗) is symmetric and negative semidefinite. Q.E.D. 

 

Proposition 1.3 

The matrix of compensated substitution effects for the product 𝑛𝑐(𝑝, 𝑤, 𝑣∗)𝑞𝑐(𝑝, 𝑤, 𝑣∗) 

is symmetric and negative semidefinite. 

 

Proof of Proposition 1.3 

This is a corollary of the previous result, which follows from the identity 𝑛𝑐𝑞𝑐 ≡ 𝑥𝑐. 

From the Envelope Theorem, we have 𝜕𝑐(𝑝, 𝑤, 𝑣∗) 𝜕𝑝𝑖⁄ = 𝜕ℒ(𝑥𝑐 , 𝑛𝑐 , 𝑙𝑐) 𝜕𝑝𝑖 = 𝑛𝑐𝑞𝑐⁄ . 
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Then, taking the second derivative, we get 𝜕2𝑐(𝑝, 𝑤, 𝑣∗) 𝜕𝑝𝑖
2⁄ = (𝜕𝑛𝑐 𝜕𝑝𝑖⁄ )𝑞𝑖 +

(𝜕𝑞𝑐 𝜕𝑝𝑖⁄ )𝑛𝑖. Thus, following from the concavity of the expenditure function, the 

matrix of the compensated substitution effect for the product 

𝑛𝑖
𝑐(𝑝, 𝑤, 𝑣∗)𝑞𝑖

𝑐(𝑝, 𝑤, 𝑣∗)∀𝑖 = 1,2, … , 𝑀 or 𝑁𝑄𝐷
𝑐 = (𝜕𝑛𝑐 𝜕𝑝′⁄ )𝑞𝑖 + (𝜕𝑞𝑐 𝜕𝑝′⁄ )𝑛𝑖 is 

symmetric and negative semidefinite. Q.E.D. 

 

Table A1. Compensated elasticities 

 Frequency 

 

Price elasticities 

           Salmon         White Fish        Other Fish 

Estimate Estimate Estimate 

Salmon∙10 0.011 0.022 0.038 

White Fish∙10 0.006 0.011 0.020 

Other fish∙10 0.003 0.006 0.010 

 Average Quantities 

 

Price elasticities 

Salmon        White Fish         Other Fish 

Estimate Estimate Estimate 

Salmon∙10 0.009 0.009 0.010 

White Fish∙10 0.008 0.009 0.010 

Other fish∙10 0.007 0.007 0.008 
Note: The t-value for each estimate in the frequency part is 62.41, as indicated by Equation (17) in A1, 

and the t-value for each estimate in the average quantity part is 19.59, as indicated by Equation (18) in 

A1. 

Appendix 2. Markov Chain Monte Carlo Sampling 

The sampling of 𝑏𝑁 and 𝑏𝑄 starts with specifying the target densities: 

𝜋(𝑏𝑁|𝑛, 𝛽, 𝐷) = ∏ ∏ 𝜋(𝑏𝑁𝑖𝑘 |𝑛𝑖𝑘, 𝛽, 𝐷)

𝑀

𝑖=1

𝐾

𝑘=1

 

(19) 

𝜋(𝑏𝑄|𝑞, 𝛼, 𝐷) = ∏ ∏ 𝜋(𝑏𝑄𝑖𝑘 |𝑞𝑖𝑘 , 𝛼, 𝐷)

𝑀

𝑖=1

𝐾

𝑘=1

 

(20) 

To sample the density of the kth household of the ith cluster, we have: 
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𝜋(𝑏𝑁𝑖𝑘|𝑛𝑖𝑘 , 𝛽, 𝐷) = 𝑐𝑖𝑘𝜙(𝑏𝑁𝑖𝑘|0, 𝐷𝑁) ∏
exp(−exp(𝐶𝑖𝑘𝑡𝛽𝑡 + 𝑏𝑁𝑖𝑘𝑡))

[1 − exp(𝐶𝑖𝑘𝑡𝛽𝑡 + 𝑏𝑁𝑖𝑘𝑡)]

𝑇

𝑡=1

 

(21) 

 

× [−exp(𝐶𝑖𝑘𝑡𝛽𝑡 + 𝑏𝑁𝑖𝑘𝑡 )]𝑛𝑖𝑘𝑡  

≡ 𝑐𝑖𝑘𝜋+(𝑏𝑁𝑖𝑘 |𝑛𝑖𝑘, 𝛽, 𝐷𝑁)  

𝜋(𝑏𝑄𝑖𝑘 |𝑞𝑖𝑘 , 𝛼, 𝜅, 𝐷) = 𝑖𝑖𝑘𝜙(𝑏𝑄𝑖𝑘|0, 𝐷𝑄) ∏
𝑞𝑖𝑘𝑡

𝐶𝑖𝑘𝑡𝛼𝑡+𝑏𝑁𝑖𝑘𝑡

Γ(𝐶𝑖𝑘𝑡𝛼𝑡 + 𝑏𝑄𝑖𝑘𝑡 )𝜅𝐶𝑖𝑘𝑡𝛼𝑡+𝑏𝑄𝑖𝑘𝑡

𝑇

𝑡=1

 

(22) 

×  exp[−𝑞𝑖𝑘𝑡/𝜅]  

≡ 𝑖𝜋+(𝑏𝑄𝑖𝑘|𝑞𝑖𝑘 , 𝛼, 𝜅, 𝐷𝑄).  

The likelihoods of the target distributions are a truncated Poisson log-normal mixture 

and a gamma log-lognormal mixture, respectively, as specified in Section 3.1. The 

simulation algorithm is a random-walk Metropolis algorithm. This algorithm requires 

little computation power in each step, but because of high autocorrelation, more Markov 

chain Monte Carlo steps are required. The proposal density is found by approximating 

the target density around the modal value by a multivariate t-distribution. Let 𝑏̂𝑁𝑖𝑘 =

argmax ln 𝜋+(𝑏𝑁𝑖𝑘|𝑛𝑖𝑘 , 𝛽, 𝐷𝑁) and 𝑉𝑏𝑁𝑖𝑘
= (𝐻𝑏𝑁𝑖𝑘

)
−1

 be the inverse of the Hessian of 

ln 𝜋+(𝑏𝑁𝑖𝑘 |𝑛𝑖𝑘, 𝛽, 𝐷𝑁) at the mode 𝑏̂𝑁𝑖𝑘 . To find these quantities, we use the Newton-

Raphson algorithm. Then, our proposal density is 𝑏𝑁𝑖𝑘
(𝑠)

|𝑏𝑁𝑖𝑘
(𝑠−1)

∼ 𝑡(𝑏𝑁𝑖𝑘
(𝑠−1)

, 𝑉𝑏𝑁𝑖𝑘
, 𝑣), 

where v is the degrees of freedom and s indicates the number of the draws. We make a 

draw 𝑒𝑖𝑘 from 𝑡(0, 𝑉𝑏𝑁𝑖𝑘
, 𝑣), where 𝑏𝑁𝑖𝑘

(𝑠)
= 𝑏𝑁𝑖𝑘

(𝑠−1)
+ 𝑒𝑖𝑘 , and we move from 𝑏𝑁𝑖𝑘

(𝑠−1)
 to 

𝑏𝑁𝑖𝑘
(𝑠)

 with probability: 

𝑟 = min {
𝜋+(𝑏𝑁𝑖𝑘

(𝑠)
|𝑛𝑖𝑘 , 𝛽, 𝐷𝑁)

𝜋+(𝑏𝑁𝑖𝑘
(𝑠−1)

|𝑛𝑖𝑘 , 𝛽, 𝐷𝑁)
, 1} 

(23) 
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Next, we sample u from a uniform distribution U(0,1), and if 𝑢 < 𝑟, then 𝑏𝑁𝑖𝑘
(𝑠)

= 𝑏𝑁𝑖𝑘
∗ , 

otherwise 𝑏𝑁𝑖𝑘
(𝑠−1)

= 𝑏𝑁𝑖𝑘
∗ . We use the same steps for the sampling of 𝑏𝑄. The sampling 

of 𝛽 and 𝛼 follow the approach above. The respective target distributions are given as 

follows: 

𝜋(𝛽|𝑛, 𝑏𝑁 , 𝐷𝑁) = 𝜙(𝛽|𝛽0, 𝐵0
−1) ∏ ∏ ∏

exp(−exp(𝐶𝑖𝑘𝑡𝛽𝑡 + 𝑏𝑁𝑖𝑘𝑡))

[1 − exp(𝐶𝑖𝑘𝑡𝛽𝑡 + 𝑏𝑁𝑖𝑘𝑡 )]

𝑇

𝑡=1

𝑀

𝑖=1

𝐾

𝑘=1

 

(24) 

× [−exp(𝐶𝑖𝑘𝑡𝛽𝑡 + 𝑏𝑁𝑖𝑘𝑡 )]𝑛𝑖𝑘𝑡  

𝜋(𝛼|𝑞, 𝑏𝑄 , 𝜅, 𝐷𝑄) = 𝜙(𝛼|𝛼0, 𝐴0
−1) ∏ ∏ ∏

𝑞𝑖𝑘𝑡
𝐶𝑖𝑘𝑡𝛼𝑡+𝑏𝑁𝑖𝑘𝑡

Γ(𝐶𝑖𝑘𝑡𝛼𝑡 + 𝑏𝑁𝑖𝑘𝑡)𝜅𝐶𝑖𝑘𝑡𝛼𝑡+𝑏𝑄𝑖𝑘𝑡

𝑇

𝑡=1

𝑀

𝑖=1

𝐾

𝑘=1

 

(25) 

×  exp[−𝑞𝑖𝑘𝑡/𝜅].  

Sampling 𝐷𝑁
−1 and 𝐷𝑄

−1 is a simpler process than the other two blocks of parameters 

because we specified a hyperprior, which resulted in a Wishart distribution. We sample 

𝐷𝑜
−1, 𝑜 = 𝑁, 𝑄, from a distribution proportional to:  

𝑓𝑊( 𝐷𝑜
−1|𝑣𝑜0, 𝑅𝑜0

−1) ∏ ∏ 𝜙(𝑏𝑜𝑖𝑘 |0, 𝐷𝑜)

𝑀

𝑖=1

𝐾

𝑘=1

. 
(26) 

Combining terms, the expression results in the Wishart distribution: 

𝐷𝑜
−1|𝑏0 ∼ Wishart (𝑀 + 𝑣𝑜0, [𝑅𝑜0

−1 + ∑ ∑(𝑏𝑜𝑖𝑘
′ 𝑏𝑜𝑖𝑘)

𝑀

𝑖=1

𝐾

𝑘=1

]

−1

) 

(27) 

with degrees of freedom 𝑀 + 𝑣𝑜0 and scale matrix [𝑅𝑜0
−1 + ∑ ∑ (𝑏𝑜𝑖𝑘

′ 𝑏𝑜𝑖𝑘 )𝑀
𝑖=1

𝐾
𝑘=1 ]−1. 
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