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Abstract: For the production of geopolymer concrete (GPC), fly-ash (FA) like waste material has 

been effectively utilized by various researchers. In this paper, the soft computing techniques known 

as gene expression programming (GEP) are executed to deliver an empirical equation to estimate 

the compressive strength ��
�  of GPC made by employing FA. To build a model, a consistent, 

extensive and reliable data base is compiled through a detailed review of the published research. 

The compiled data set is comprised of 298 ��
�  experimental results. The utmost dominant 

parameters are counted as explanatory variables, in other words, the extra water added as percent 

FA (%��), the percentage of plasticizer (%�), the initial curing temperature (�), the age of the 

specimen (� ), the curing duration (� ), the fine aggregate to total aggregate ratio (� ��⁄ ), the 

percentage of total aggregate by volume ( %��), the percent SiO2 solids to water ratio (% �/�) in 

sodium silicate (Na2SiO3) solution, the NaOH solution molarity (�), the activator or alkali to FA 

ratio (�� ��⁄ ), the sodium oxide (Na2O) to water ratio (� �⁄ ) for preparing Na2SiO3 solution, and 

the Na2SiO3 to NaOH ratio (�� ��⁄ ). A GEP empirical equation is proposed to estimate the ��
� of 

GPC made with FA. The accuracy, generalization, and prediction capability of the proposed model 

was evaluated by performing parametric analysis, applying statistical checks, and then compared 

with non-linear and linear regression equations. 

Keywords: artificial intelligence; gene expression programming; Fly ash; waste materials; 

geopolymer; regression analysis; building materials; sustainable construction materials; smart 

cities; sustainable concrete; cement 

 

1. Introduction 

Fly ash (FA) is the unburned leftover residue from thermal coal plants [1]. Which is 

transported by gases emitted from the burning zone in the boiler. FA is collected through 

mechanical or electrostatic separator [2]. Annually around 375 million tons of FA is 

produced throughout the globe, with a disposal cost as high as $20–$40 per ton [3]. It is 

dumped into landfills in sub-urban areas [4]. However, dumping tons of FA exclusive of 

treatment sets off a malignant impact on the green environment [5]. The hazardous 

materials in FA like silica, alumina, and oxides such as a ferric oxide (Fe2O3) are 

intervening factors in water, soil, and air pollution. This ultimately leads to health issues 

and different geo-environmental problems [6,7]. A good waste management employment 
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is desirable for the sustainability of a safe environment [8]. FA, if not properly disposed 

of, will affect the whole ecological cycle. Ultra-fine particles of FA act in the same way as 

poison when they reach the respiratory system. Consequently, causing physiological 

disorders and other related health issues like cancer, hepatic disorder, anemia, dermatitis, 

and gastroenteritis. FA pollutes surface and underground water which stresses aquatic 

life and causes skin diseases and diarrhea [7]. 

Concrete is used worldwide as a construction material and is classified as the second 

most consumable material after water [9,10]. It is reported that for every human about 

three tons of concrete is produced [11]. Around 25 billion tons of concrete is manufactured 

every year globally [12]. According to current world stats, approximately 2.6 billion tons 

of cement is produced per year. This will rise by 25 percent in the next 10 years [13]. 

However, the manufacturing of cement has an adverse effect on the environment. One 

ton of CO2 is emitted into the air to produce one ton of cement. This creates an alarming 

situation for the environment. Limestone is the major resource of ordinary Portland 

cement. Severe limestone unavailability could occur in 25–50 years [14,15]. The worldwide 

construction industry consumes one-third of the entire resources and is liable for 30 

percent CO2 release globally. Thus, production of green concrete is important to reduce 

adverse environmental effects [16,17]. FA can be used as supplementary material in the 

cementitious matrix. It has been utilized by researchers to make green concrete [18–21]. 

FA utilization in the construction industry is a smart choice as it will reduce the usage of 

cement and the harmful effect of its disposal into landfills. 

The utilization geopolymer concrete made of FA-like waste, is on the rise for the last 

two decades as lesser amounts of cement are used in geopolymer concrete (GPC) [22–26]. 

FA has been used effectively in the construction industry but its application is still limited 

due to the anomalous behavior of FA [27]. FA-dependent GPC is adopted extensively by 

builders. No method is available to estimate the mechanical properties of FA-based GPC 

based on a mix ratio with maximum variables. The mechanical properties of FA-based 

GPC critically depends on several parameters like the extra water added as percent FA 

(%��), the percentage of plasticizer (%�), the initial curing temperature (�), the age of the 

specimen (�), the curing duration (�), the fine aggregate to total aggregate ratio (� ��⁄ ), 

the percentage of total aggregate by volume ( %��), the percent SiO2 solids to water ratio 

(% �/� ) in sodium silicate (Na2SiO3) solution, the NaOH solution molarity (� ), the 

activator or alkali to FA ratio (�� ��⁄ ), the sodium oxide (Na2O) to water ratio (� �⁄ ) for 

preparing Na2SiO3 solution, and the Na2SiO3 to NaOH ratio (�� ��⁄ ) [13,28–35]. This 

creates ambiguity in the prediction properties of GPC. Moreover, a rapid spike in the use 

of soft computing techniques to build an empirical model has been observed recently 

[36,37]. Gene expression programming (GEP) is one of the popular soft computing 

methods utilized by various researchers in several engineering perspectives. Actual GEP 

is inspired by the reproduction of DNA molecules at gene level [38]. Tanyildizi et al. [39] 

predicted different mechanical properties of lightweight concrete subjected to elevated 

temperature. The author projected two different GEP models with chromosome levels 

equal to 30, head size 8, and number of genes equal to 4. Multiplication and addition are 

the two different linking functions used. The execution time of the GEP depends on the 

chromosome level, which dictates the size of the population. Genetic operators help in the 

genetic variation of the chromosomes. The chromosome that delivers the best results is 

forwarded to subsequent generations and the process is repeated until the achievement 

of an acceptable fitness. 

Recently, different researchers use the GEP for the estimation of various mechanical 

characteristics of different types of concrete. The researchers use experimental and 

literature-based data for the prediction of compressive strength of sugar cane bagasse ash 

(SCBA) concrete via GEP [36]. Furthermore, the authors proposed a formula using GEP 

for estimating the axial capacity of concrete filled steel tube (CFST) with just 277 instances 

[37]. Furthermore, Nour et al. [40] worked with GEP algorithms for the estimation of 

compressive strength of CFST containing recycled aggregates. 
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2. Supervised Machine Learning Algorithms  

Artificial neural networks (ANN), fuzzy logic, genetic algorithms (GA), and genetic 

programming (GP) use AI techniques built on natural tools. These methods have been 

used to resolve the problems of the pre-mix design of rubberized concrete and waste 

foundry sand concrete by training of the available data collected from the literature 

[41,42]. The configuration detection capabilities of the AI methods (support vector 

regression or ANN) lead to the generalization of complicated patterns. Therefore, they 

can be applied in the vast field of engineering [43]. By employing such approaches, the 

presence of an enormous sum of hidden or concealed neurons often makes it impossible 

to establish accurate relations between the inputs and outcomes. ANN can be exercised 

for estimating the mechanical properties of concrete. Recently, Getahun et al. used ANN 

on 66 experimental datasets to estimate the compressive strength of rice husk ash-based 

concrete [44]. While Mashhadban et al. predict the workability of self-compacting concrete 

using ANN [45]. These models give a strong correlation with no empirical expression 

which can be practically used. This is because of the complexity of the ANN model 

structure which is considered as the main obstruction in the wide-scale implementation 

of the ANN approach [46]. Multicollinearity is the hindrance in such methods [47]. The 

updated ANN technique was likewise extended to assess silica fume concrete 

compressive strength (��� ) and elastic modulus (�� ) of concrete incorporates recycled 

aggregate. Because of the complexities of the relationship proposed, a devoted graphical 

interface was created for the model functional usage [48]. 

A strong soft computing technique, namely, genetic programming (GP), is valuable 

as it ignores the previous forms of established relationships for the development of the 

model [49,50]. An extension of GP, namely, gene expression programming (GEP), which 

encodes a small program and uses fixed-length linear chromosomes, was recently 

introduced [51]. GEP has an advantage in that a simple mathematical expression can 

represent the outcome that is appropriate for practicable usage of better predictive 

accuracy. It is currently exercised as a substitute to the common techniques of prediction 

[52–58]. 

Compressive strength (��
� ) is considered as the primary factor in designing and 

analyzing concrete [59]. The researchers focused on the experimental route to estimate the 

��
� of FA dependent GPC [60,61]. To save time, cost, and to sustain fly-ash and cement for 

future use, the development of accurate and reliable expressions is needed to relate the 

mix design variables and ��
� of GPC made with FA. A complete and thorough revision of 

the literature discloses that there are few empirical models for the estimation the ��
� of 

FA based GPC [41,55,58]. Though, the predictions of such empirical equations are 

confined to a specific dataset, for example, to the corresponding experimental study 

results. The prediction from such models is not viable and accurate outside the 

corresponding database file. Alkaroosh et al. [62] developed an empirical equation to 

estimate the ��
�  of FA based GPC, based on 56 data points collected from previous 

research [63]. In the proposed equation, no factor was used for making the sodium silicate 

solution. Their equation shows a pure linear relationship between the NaOH solution 

molarity and ��
�  for FA-based GPC. While other researchers reported a decrease in 

compressive strength by increasing the molarity of the NaOH solution [64]. To fill the 

research gap, the GEP approach is employed to establish a generalized and more effective 

empirical equation for the estimation of ��
� of FA-based GPC with a tolerable error. A 

detailed database has been developed from published research that incorporates 

cylindrical specimen of size 200 × 100 mm, height × diameter, and cubic specimens of size 

150 mm and 100 mm. The comprehensive database accomplishment guarantees that the 

models are consistent and accessible for the data that is not exercised in the model’s 

establishment. The model’s performance is also verified by observation of the statistical 

errors, parametric analysis, sensitivity checks, and linear and non-linear regression 

methods. 
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3. Research Methodology  

In this segment, methodology for the establishment of an empirical model for the 

compressive strength (��
�) of GPC made with FA has been incorporated. 

3.1. Brief Review of Genetic Programming and Gene Expression Programming 

Koza proposed a GP method, to provide an alternate method for fixed-length binary 

strings (used in GAs) [65]. This method is illustrated in Figure 1 which is adapted from 

[37]. Five main parameters to be defined throughout the GP methodology are the 

collection of the terminals (the constants and the input variables), the set of primitive 

functions (domain-explicit functions), the fitness evaluation, the control variables (cross-

over and population size, etc.) and the termination criteria followed by a result 

designation method [65]. The induction of non-linear parse tree-like structures makes GP 

an adaptable programming technique. It assumes any initial non-linearity depending on 

the data. A similar kind of non-linearity has been used previously [62,65]. Limitation of 

GP is the ignorance of the independent genome. GP uses non-linear structures that act as 

both the genotype and the phenotype. This makes it unlikely to produce basic and 

simplistic expressions. The GEP method is proposed by Ferreira, as a modified version of 

the GP method to overcome its discrepancies [65]. A significant alteration throughout GEP 

is that only the genome is transmitted towards the subsequent generation. One other 

noteworthy characteristic is the establishment of entities by a single chromosome 

composed of various genes [66]. Every gene within GEP comes in the form of fitted lengths 

parameters, terminal sets of constants, and the functions used are the arithmetic 

operations. Furthermore, in genetic code operators, there is a stabilized interaction 

amongst both the associated function and the chromosome symbol. The necessary 

information for the development of an empirical model is registered into the 

chromosomes and to infer this data a novel program, in other words, karva is established. 

The phases covered in the process of GEP are illustrated in Figure 2 which is adapted 

from [37]. The method starts with the arbitrary formation of fixed-size chromosomes for 

all individuals; which are subsequently converted into expression trees (ET) and for each 

individual, the fitness strength is estimated. For several creations, the replication lasts 

with new individuals until the accomplishment of fine results. Genetic functions like 

crossover, reproduction, and mutation are implemented for population alteration. 

3.2. Data Collection 

Compressive strength (��
�)  is the main factor in analysis and design of concrete 

structure. To save time, cost, and to sustain the use of FA in the construction industry, the 

development of accurate and reliable expression is needed that can relate the mix 

proportion and ��
� of GPC made with FA. 

A detailed database for the ��
�  of FA-based GPC, was compiled from previously 

published, experimental researches [60,61,63,67–99]. The database comprises of total 298 

samples which include 101 cylindrical specimens of size 200 mm × 100 mm, height × 

diameter, 166, and 31 cube specimens of size 150 mm and 100 mm, respectively. ��
� of 

cube and cylindrical specimens depends on the length to diameter (L/D) ratio [100,101]. 

The ��
� of 100 mm cubes are 5% greater than 150 mm cubes. While ��

� of 150 mm cubes 

are 20% greater than cylindrical specimens of size 100 mm × 200 mm. With the increase of 

the volume of the specimen, the number of voids also increases, so, the specimen with 

smaller dimension will have lesser ��
� than the larger dimension specimen. Furthermore, 

the stress is inversely related to the cross-sectional area of the specimen. The one with 

smaller cross-sectional area will have higher stresses, which means high internal 

resistance to failure. Table 1 displays the normalization of the compressive strength of 

various types of specimens considered in this study. The comprehensive database 

guarantees the model reliability and accessibility for the data that is not exercised in the 

development of the empirical model. 
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Figure 1. Flowchart of the genetic programming (GP) algorithm 

 

Figure 2. Gene expression programming (GEP) algorithm flowchart 
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Table 1. Type of specimens and compressive strength normalization factor. 

Type of Specimens Normalized Factor 

Cylindrical (200 mm × 100 mm) 1 

Cubic (150 mm) 0.8 

Cubic (100 mm) 0.95 × 0.8 

The composed database covers data about the explanatory parameters, namely, the 

extra water added as percent FA (%��), the percentage of plasticizer (%�), the age of the 

specimen (�), the curing duration (�), the fine aggregate to the total aggregate ratio (� ��⁄ ), 

the percentage of total aggregate by volume ( %��), the percent SiO2 solids to water ratio 

(% �/� ) in sodium silicate (Na2SiO3) solution, the NaOH solution molarity (� ), the 

activator or alkali to FA ratio (�� ��⁄ ), and the Na2SiO3 to NaOH ratio (�� ��⁄ ) for the 

response of compressive strength. All the samples collected for the mentioned parameters 

are heat cured initially for 24 h at different temperatures. The ��
� increases with curing 

time but researchers reported that the rate of increment in the ��
� of FA-based GPC is 

rapid until 24 h [63]. The early strength of GPC is higher due to the geopolymerization 

process and limited literature is available for longer curing duration. Van Jaarsveld et al. 

[102] described that for longer than 24 h curing time, the ��
� is not increased. Every model 

performance depends on the distribution of explanatory parameters [103]. The marginal 

histograms of all ten input parameters used in this study are shown in Figure 3, which 

dictates that all 10 explanatory parameters selected are distributed through its range for 

the compressive strength. The bar charts added above and to the right of the main plot 

add more information to the data. Along with the distribution of the input variables, it 

also shows the distribution of the compressive strength. Every explanatory variable has a 

strong impact on the variation of the compressive strength of FA-based GPC. 
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Figure 3. Marginal histogram of explanatory parameters against output variables. (a) Temperature for curing of 

specimen (T0C), (b) Age of specimen (A), (c) Alkali to fly-ash ratio (AL/FA), (d) Sodium silicate to sodium hydroxide ratio 

(NS/NO), (e) Molarity of NaOH solution (M), (f) Percentage of total aggregate by volume (AG), (g) Fine aggregate to total 

aggregate ratio (F/AG), (h) Percentage of superplasticizer (% P), (i) Percentage of SiO2 solids to water ratio (% S/W), (j) 

Percentage of extra water added (% EW)  
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To conduct the generalized study, both cubes and cylindrical specimens are counted 

to construct a database. The output and input variables’ ranges, along with their mean 

values are presented in Table 2. For the achievement of reliable and consistent predictions 

of the compressive strength, it is endorsed to utilize the suggested model with the ranges 

provided. 

Table 2. Range and average of explanatory and response parameter. 

Parameters Minimum Value Maximum Value Mean Value 

Explanatory parameters    

T (°C) 23 120 71.57 

A (days) 1 540 20.87 

A/F 0.3 1 0.4545 

NS/NO 0.4 4 2.275 

M 8 20 11.68 

AG (%) 60 80 72 

F/AG 0.2 0.5 0.3568 

P (%) 0 11.3 1.998 

S/W (%) 43.4 81.4 61.68 

EW (%) 0 35 3.889 

Response    

fc’ (MPa) 8.2 63 37 

It should be noted that, for the evaluation of the validity, reliability, and consistency 

of the database, multiple trials were conducted. Datasets that diverged considerably from 

the global norm (about 20%) were not included in the model’s creation and performance 

evaluation. To establish an empirical model, 298 datasets for the prediction of compressive 

strength were used. In this research, the data points were arbitrarily divided into two 

statistically consistent sets known as the training and validation sets [37]. Furthermore, 

70% (208 data points) of the total data are assigned to the training set and 30% (90 data 

points) to the validation set [37]. The training set was employed for training the empirical 

model known as gene progression, whereas validation data points were utilized for the 

justification and calibration of the established model’s generalization capability as 

suggested in the literature [57]. 

3.3. Model Development and Evaluation Criteria 

For the development of the model, the first step is the selection of input parameters 

that can influence the FA-based GPC’s properties. Influential parameters that effect the 

compressive strength (��
�) of GPC made with FA were selected for the generalized model 

development. The detailed study is carried out and the performance of several initial runs 

is computed. Hence, the FA-based GPC’s compressive strength is taken into account as 

the function of Equation (1).  

��
� = � ��, �, �, %

�

�
,
��

��

,
��

��

��,
�

��

, %�, %��� (1)

Chromosomes, genes, and expression trees (ETs) perform a central role in the 

development of the GEP model. The program’s running duration is regulated through the 

size of the population (chromosome number). The chromosome is comprised of genes that 

are used for encoding of the subexpression trees (sub-ETs). Considering the predictive 

model complexity, the stages counted as population size were 150. The model’s 

architectural structures rest on the gene number and head-size with the latter dictating 

the difficulty of every term and the latter deciding the sum of the model’s sub-ETs. Thus, 

population size 150, genes 3, and head size 10 is considered for the development of the 
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model. The chromosomes are subjected to genetic variation through genetic operators. In 

mutation, the component of the gene’s tail or head is randomly selected and replaced with 

a randomly selected component of the terminal or function set. The transposition function 

involves the transposition of the sequences inside the chromosomes, in other words, root 

insertion sequence (RIS) and insertion sequence (IS). After all, the recombination 

combines and splits up 2 chromosomes in order to substitute their elements. For creating 

the fair empirical model, the adjusted settings recommended in earlier literature were 

used [41]. To execute the GEP algorithm, GeneXproTool was used. Table 3 illustrates the 

adjusted setting of the hyperparameters utilized in the formation of the GEP empirical 

equation. 

Table 3. Adjusted Setting of parameters for the GEP model. 

Parameters Adjusted Setting for ��
�  

General  

Population chromosomes 150 

Genes 4 

Head size 10 

Linking function Multiplication 

Function Set −, +,/,×, √ 
�

 

Arithmetical Constants  

Constant per gene 10 

Data type Floating data 

Upper Bound 10 

Lower bound –10 

Genetic operators  

Mutation rate 0.00138 

Inversion rate 0.00546 

IS transportation rate 0.00546 

RIS transportation rate 0.00546 

One-point recommendation rate 0.00277 

Two-point recommendation rate 0.00277 

Gene recombination rate 0.00755 

Gene transportation rate 0.00277 

A correlation coefficient (R) is mostly applied to measure model performance. 

However, it cannot be merely studied as the sign of model predictive accuracy as it is 

insensitive towards division and multiplication of outcomes to a constant [104]. For that 

reason, in this research the mean absolute error (MAE), the root means square error 

(RMSE), the relative root mean squared error (RRMSE), and the relative squared error 

(RSE) are also considered. Moreover, the model performance evaluation performance 

index (�) is recommended, as it covered the function of both the R and RRMSE [103]. The 

equations of error functions used in this study are provided as Equations (2)–(7): 

���� = �
∑ (�� − ��)��

���

�
 (2)

��� =
∑ |�� − ��|

�
���

�
 (3)

��� =
∑ (�� − ��)��

���

∑ (�̅ − ��)
��

���

 (4)



Materials 2021, 14, 1106 10 of 23 
 

����� =
1

|�̅|
�

∑ (�� − ��)
��

���

�
 (5)

� =
∑ (�

��� �� − �̅�)(�� − ���)

�∑ (�� − �̅�)��
��� ∑ (�� − ���)��

���

 (6)

� =
����

1 + �
 (7)

where ��  and ��  are the ���  model outcome value and experimental value, 

respectively. While �� � and �̅�  are the model’s outcome average value and experimental 

average value, respectively. Additionally, n denotes the overall data points. High R-value 

and low RMSE, MAE, RSE, and RRMSE shows a best-calibrated model. It is suggested 

that for a deep correlation between measured and predicted values, the R-value should 

be greater than 0.8 (as for ideal model R = 1) [105]. The (�) value near to zero replicates 

better model performance. 

4. Results and Discussion 

The GEP algorithm’s output for the compressive strength ( ��
�)  model as an 

expression tree is shown in Figure 4. The empirical relationship was obtained by decoding 

these expression trees (ETs) that encompass five arithmetical operations, namely, 

+, −,×,/ and ∛. 

GEP ETs use the indicators to express the explanatory variables. The corresponding 

symbols and description of each indicator are provided in Table 4. 

Table 4. Indicators of GEP expression tree. 

Indicator in Expression Tree Description Symbol 

�� The temperature for curing in degrees Celsius � 

�� The age of the sample � 

�� Ratio of alkali or activator to the fly-ash �� ��⁄  

�� Ratio of Na2SiO3 to NaOH �� ��⁄  

�� NaOH solution molarity � 

�� Percentage of total aggregate by volume % ��  

�� Ratio of fine aggregate to total aggregate � ��⁄  

�� Plasticizer as percent fly-ash % � 

�� Percentage of SiO2 solids to water ratio % � �⁄  

�� Extra water addition as percent fly ash % �� 
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Figure 4. GEP model expression trees (ETS) for compressive strength fc’. 

4.1. Compressive Strength Formulation for FA Based Geopolymer Concrete 

Equation (8) is the simplified equation that is presented to estimate the compressive 

strength, ��
�, for GPC made with FA in MPa. It is comprised of four variables namely A, 

B, C, and D represented as Equations (9)–(12) and have been translated from the sub-ETs 

1, 2, 3, and 4, respectively, as illustrated in Figure 4. 

��
�(���) = � × � × � × � (8)

Where; 

� = �
�

�
%

�

− �% + �� ×
�

��
×

��

��
× 6.61� + ��% − ��% (9)

� = −�
� + 80

0.083(� − 17.87)
+ � +

��

��

�

 (10)

� =
�

��
− ���% × � −

0.0003

��

��
− ��%

� − 0.0003 (11)

� =
���% −

�
� %� 1.16

�

�

+ �

0.17

�
��

�
+ 0.77 (12)

Figure 5 represents the comparison of regression lines between experimental and 

model outcomes for both the training samples and validation samples. A strong 

correlation can clearly be seen which is represented via slopes of the regression lines, 

namely, 1.000 and 0.9892, for the train and validation samples, respectively. 
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Figure 5. Experimental and predicted compressive strength values comparison: (a) training set values and (b) validation 

set values. 

4.2. Sensitivity and Parametric Analysis 

Sensitivity analysis (SA) is performed to investigate the relative contribution of input 

variables that are exercised to estimate the compressive strength ��
� of GPC made with 

FA, using Equations (13) and (14). SA defines the dependency of the outcome on the input 

variable.  

�� = ����(��) − ����(��) (13)

�� =
��

∑ ��
���
�

 (14)

where ��  represents the ���  input variable. ����(��)  and ����(��)  represent the 

maximum and minimum values of outcome, respectively, that depends on its ��� input 

dominion, where other input variables are maintained at a constant average value. The 

difference between ����(��) and ����(��) gives the range �� of the ��� input variable. 

The sensitivity and parametric study were both conducted for the training data set, as 

both the training and validation data sets are consistent [41,105]. Results of sensitivity 

analysis are presented in Figure 6. The figure clarifies that, from a material engineering 

perspective, the involvement of the explanatory parameters to the ��
� of GPC made with 

FA are similar.  

 

Figure 6. Percent relative contribution of input parameter. 
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Besides, the effectiveness of most influential input variables in the projection of the 

compressive strength of FA-dependent GPC is obtained by performing parametric 

analysis. Changes in compressive strength were recorded only by changing the value of 

one variable from maximum to minimum and other inputs were maintained at average 

values. Figure 7 illustrates the GEP model’s parametric analysis results. 

It is known that the temperature for curing of the samples is the prompting parameter 

in controlling the compressive strength ( ��
�)  of GPC made with FA. Its relative 

contribution is 25.3% as depicted in Figure 6. Figure 7 shows that the ��
� increases at 

various rates with the increase of �, �, %��, (� ��⁄ ), (�� ��⁄ ), and %�, but decreases 

with %��, (�� ��⁄ ), �, and (% � �⁄ ). 

Hydrates and silicates are released by the alkali-activating solution that helps in the 

formation of the polymeric structure of alumina silicates. Extra heat is needed for 

speeding up the reaction process and to improve the mechanical characteristics of GPC. 

Figure 7 shows that the ��
� increases with the increase in the curing temperature up to 

100 °C. At higher curing temperature the moisture from the concrete is lost, even if sealed 

properly. Analogous results have also been witnessed in earlier literature [64]. The 

decrease in the rate of increment of ��
� of GPC after 240 days, is due to the decrease in the 

number of unreacted particles. Wardhono et al. [73] presented scanning electron 

microscopy (SEM) images, which show that gel fills up the voids after 240 days leading to 

the formation of compacted and semi-homogenous microstructure. Furthermore, it can be 

depicted from Figure 7 that the ��
�  increases with an increase in the amount of total 

aggregate, however, the total aggregate relates to the ratio between fine aggregate to total 

aggregate content. 

Alkali to FA ratio is linked to the ratio between sodium silicate to sodium hydroxide, 

and the molarity of NaOH. The increase in the ��
� is greatly altered with the amount of 

sodium silicate that transforms the microstructure of GPC. In the development of the 

sodium silicate solution, the ratio between percentage silica to water needs to be higher. 

The higher the sodium silicate content, the greater the compressive strength will be. The 

lower ratio of alkali to fly ash in combination with higher sodium silicate to sodium 

hydroxide ratio, and lower molarity of NaOH solution results in higher compressive 

strength. However, the amount of NaOH solution must remain enough to complete the 

process of dissolution of the geopolymer. Similar findings have also been observed in a 

previous study [74]. 
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Figure 7. Influence of input parameters variation on the compressive strength. 

In GPC, the total water content is the addition of the water content required in 

preparing the solution of sodium silicate and sodium hydroxide and the addition of extra 

water needed. To prevent cracking and to achieve a practical GPC, it is necessary to 

consider the addition of extra water and plasticizer [90]. The addition of extra water or 

plasticizer as a percent FA contributes 18.85% and 6.71% respectively to the ��
�  in 

comparison with other input factors. ��
� of GPC increases with the increase in plasticizer 

and decreases with the addition of extra water as evident from Figure 7, as the addition 

of extra water beyond certain limits leads to bleeding and segregation in fresh concrete 

mix. 
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Figure 7 is in line with the previous studies of other researchers [74,90]. The results 

of parametric analytics for the proposed GEP model correctly encompasses the influence 

of input variables to estimate the ��
� of FA-based GPC. 

4.3. Performance Evaluation of GEP Models 

According to the previous study, to achieve a reliable GEP equation, the ratio 

between the number of data points in the database to the number of input parameters 

should be at least equal to three [103]. While in this study a higher value of 30 has been 

used. Table 5 represents the statistical analysis for validation sets and training sets of the 

GEP model. These results illustrate the effectiveness of training models and the strong 

correlation between experimental and predicted outcomes with minimal error. The 

RMSE, MAE, and RSE for the training set of the GEP model are 5.971, 5.832, and 0.325, 

respectively, and are calculated as 2.643, 2.057, and 0.0675 from the validation samples. 

The statistical measure of the training and validation set are similar, which indicates the 

higher generalization capability of the model. Thus, the developed model can predict 

accurate and reliable outcomes for the new data. Table 5 witnesses � approach zero (as 

ideal cases equal zero).  

Figure 8 illustrates the absolute error of both the experimental and predicted model 

outcomes, which gives an overall idea of the maximum percentage of error. The average 

percent error and maximum percent error were calculated as 6.47% and 8.32% 

respectively, which confirms that the experimental and model outcomes are similar. 

Furthermore, the occurrence frequency for the maximum error is comparatively smaller. 

Almost 90% of model predictive outcomes for validation set have the error below 10%, 

while the average percent error is less than 5.56%. This verifies the accuracy and 

generalization of the developed GEP equation. 

 

Figure 8. Absolute error representation of experimental and predicted outcomes. 

For external validation and testing of the proposed GEP model, various statistical 

error tests were also employed. The literature discloses a suggested criterion that the slope 

(inclination) of any of the regression lines ( � �� �ꞌ ) traversing the origin should be 

approximately equal to 1 [106]. The slope of regression lines is 1.001 and 0.995 as shown 

in Table 6. It shows greater accurateness and correlation. Moreover, the researchers 

proposed that the squared correlation coefficient (passing by origin) among the predicted 
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outcome and experimental results (��
�) or among the experimental and predicted outcome 

(��
��) should approach 1 [107]. Table 6 summarizes these checks and was applied to the 

developed GEP equation. The results of these external validations replicate that the 

proposed GEP model is valid. Thus, the proposed model is not only a correlation but also 

has predictive capacity. 

Table 5. Statistical analysis of GEP, linear, and non-linear regression models. 

Model 
RMSE MAE RSE RRMSE (%) R � 

TR 1 VDN 2 TR VDN TR VDN TR VDN TR VDN TR VDN 

GEP 5.971 2.643 5.823 2.057 0.325 0.0675 16.949 4.949 0.8586 0.9643 0.0911 0.02519 

Linear 6.986 5.546 6.543 4.967 0.589 0.304 19.20 10.21 0.8074 0.8976 0.1062 0.05382 

Non-Linear 6.593 5.054 6.053 4.875 0.497 0.298 18.53 9.021 0.8357 0.9247 0.1009 0.04687 
1 TR symbolizes training sample; 2 VDN symbolizes validation samples. 

Table 6. External validation of the GEP model using arithmetical parameter 

Expression Requirement GEP model, ��
�  

� =
∑ (�� × ��)

�
���

∑ (��
�)�

���

 0.85 < � < 1.15 1.001 

�� =
∑ (�� × ��)

�
���

∑ (��
��

��� )
 0.85 < �� < 1.15 0.995 

��
� = 1 −

∑ (�� − ��
�)��

���

∑ (�� − ���
�)��

���

, ��
� = � × ��  ��

� ≅ 1 0.9998 

��
�� = 1 −

∑ (�� − ��
�)��

���

∑ (�� − ��̅
�)��

���

, ��
� = �� × �� ��

�� ≅ 1 0.9849 

4.4. Comparison of GEP and Regression Models 

No GEP model has been identified from the literature that would estimate the 

compressive strength (��
�) of GPC made with FA and that considers the influencing input 

variables used in this research. So, it is necessary to establish linear and non-linear 

regression models, on the same data points, for the prediction of the ��
� of FA-based GPC, 

the results are then judged against GEP Equation (8). 

Equations (15) and (16) show the empirical expressions for the prediction of ��
� 

founded on linear and nonlinear regression study respectively. 

��
� = 12.81 + 0.226� + 0.0376� − 26.86

��

��

+ 1.1296
��

��

− 0.3935� + 0.6412��% 

−0.4075
�

��

+ 1.256�% − 0.452
�

�
% − 0.7125��% 

(15)

��
� = −7.636 + 1.182��.���� + 0.3446��.��� − 25.80 �

��

��
�

�.��

+ 1.779 �
��

��
�

�.���

 

−0.00895��.�� + 0.7605(��%)�.��� − 0.37099 �
�

��
�

�.���

+ 2.259(�%)�.���� 

−0.0804 �
�

�
%�

�.���

− 0.2654(��%)�.��� 

(16)

The absolute error of predicted results by all three equations are compared in Figure 

9. The statistical indicators like RMSE, MAE, RSE, RRMSE%, R, and � for GEP model, 

linear and no-linear regression model are listed in Table 5. The �  and RMSE of the 

established GEP equation are calculated as the least of all three models, for both the 

training and validation data points. The values of RMSEtraining and ��������� are 14.5% and 

14% lower than the linear regression model, respectively. In the test stage, the proposed 

GEP model gives better performance than the non-linear regression model. �������� of the 

two models varies by 44%. Furthermore, Figure 9 shows that linear and non-linear 
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regression equations failed in efficiently capturing a high ��
�, which limits the application 

of the regression models. 

These observations shows that the GEP model performed better than the linear and 

non-linear regression equations, for the same input variables. The regression methods 

have certain disadvantages as in they use some predefined expressions and pre-assume 

the residual’s normality [105]. Whereas modeling based on GEP implies that the model 

efficiently picks up the non-linear relationship between the dependent and independent 

parameters, with a higher generalization capacity and considerably decreases the error 

values in comparison with the regression models. 

 

Figure 9. Comparison of fc’ of proposed GEP, linear regression, and no-linear regression models. 

5. Recommendations for Future Study 

Fly-ash (FA)- based geopolymer concrete (GPC) has a great potential to be used in 

the construction industry, as a replacement of ordinary Portland cement (OPC) concrete. 

The data set used in this paper is limited to 298 samples. In fact, proper testing must be 

carried out by varying maximum explanatory variables for a more efficient predictive 

model. Although, this paper considers a wide range comprehensive data base consisting 

of ten explanatory parameters for modelling the compressive strength of geopolymer 

concrete made with wasted fly-ash. 

Moreover, study of other mechanical characteristics of fly-ash based GPC like tensile 

strength, elastic modulus, poison ratio, and flexural strength, is highly necessary; at 

normal temperature as well as at elevated temperature. A new data base is also needed 

for the durability study of fly-ash-based GPC. Furthermore, it is recommended to predict 

the stated mechanical properties of fly-ash-based GPC via different artificial intelligence 

(AI) techniques, such as fuzzy logic, adaptive fuzzy interface system (ANFIS), response 

surface methodology (RSM), support vector machine (SVM) analysis, random forest 

regression (RFR), decision tree (DT), artificial neural network (ANN), recurrent neural 

network (RNN), convolutional neural network (CNN), M5P tree and restricted Boltzmann 

machine (RBM), et cetera. Furthermore, an extensive study related to the interaction of 

geopolymer concrete and reinforcing steel is needed. It would also be worthwhile 

formalizing the different mechanical properties of fiber reinforced geopolymer concrete. 
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Normally it is considered that the production cost of GPC is greater than OPC 

concrete. It can be reduced by the use of different types of waste materials such as sand 

replacement that are rich in alumina silicates; like the use of locally available waste 

foundry sand, glass waste, and marble wastes, et cetera. The authors replaced fine 

aggregates with waste foundry sand in GPC. They reported that the initial production 

cost of M50 grade GPC is 11% lower than OPC concrete [108]. However, the M30 grades 

of GPC and OPC concrete have almost similar of production costs [108]. Environmental 

safety delivered by GPC production from waste materials is worthwhile as it reduces the 

carbon-dioxide emission from the manufacture of cement and adds a carbon credit to the 

economy of the country as well. Comparing the overall cost, including the maintenance 

and durability, the cost of GPC is similar to OPC concrete as the geopolymer concrete is 

much more durable and resistive to chemical attacks than OPC concrete [109]. The authors 

immersed GPC and OPC concrete in a magnesium sulfate solution for 45 days and 

reported that the reduction of compressive strength of GPC is 13% lower than OPC 

concrete [109]. Additionally, the immersion for the same duration in a sulfuric acid 

solution resulted in 8% lower reduction of compressive strength of GPC as compared to 

OPC concrete [109]. 

6. Conclusions 

This research utilizes the gene expression programming technique (GEP) to establish 

an expression for the estimation of the compressive strength, ��
�, of geopolymer concrete 

(GPC) made with fly-ash. The projected GEP model is empirical and is built on the broadly 

distributed database, consisting of different parameters, that comes from the published 

literature. For the prediction of the ��
�  of fly-ash-based GPC, highly prominent and 

influential parameters are considered as explanatory variables. The predicted model 

results satisfy the experimental results. From the parametric analysis, it has been shown 

that the projected model successfully encompasses the impact of the input parameters to 

predict the exact pattern of fly-ash-based GPC. The accurateness of the projected models 

is verified by the examination and assessment of statistical checks MAE, RSE, R, and 

RMSE and fitness functions (�) for training and validation samples. Furthermore, the 

model correctly meets the appropriate requirements considered for external validation. 

The comparison of the proposed model with the simple linear and non-linear equations 

shows that the GEP model possesses a higher generality and predictive capability and is 

appropriate to practice in the preliminary design of fly-ash-based GPC. Furthermore, 

before adding fly-ash as a geopolymer binder, it is suggested to perform a leachate 

analysis. The projected models can provide a detailed and practical foundation for 

increasing the use of toxic fly-ash for construction practices, instead of disposal in landfill 

sites. This would lead to effective and sustainable construction as green concrete is made 

by the incorporation of waste fly-ash that reduces the consumption of energy, emissions 

of greenhouse gases, disposal, and construction costs. 
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